
    

ECOLOGICAL NICHE MODELING OF MALARIA VECTOR 

DISTRIBUTION FOR CLIMATE CHANGE ADAPTATION IN 

KENYA 

 

 

 

      BY 

 

KIMUYU, JACINTA SYOKAU 

REG. NO: I80/91921/2013 

 

 

UNIVERSITY OF NAIROBI 

 

 

 

A Thesis Submitted in Fulfillment of the Requirement for Award of the 

Degree of Doctor of Philosophy in Meteorology of the University of 

Nairobi 

 

 

 

APRIL, 2015 



   

ii 
 

 



   

iii 
 

 

ABSTRACT 

 

This study employed Ecological Niche Modeling (ENM), a technique that encompasses a suite 

of tools that relate known occurrences of species or phenomena to raster geographic information 

system layers that summarize variation in several environmental dimensions. The spatial-

temporal distributions of the main malaria vectors in Kenya were quantified using BIOCLIM and 

DOMAIN models to determine the relationship between vector distribution and climate change. 

The biological data used was from published sources (Okara et al., 2010 and MARA/ARMA, 

1998), comprising of point samples for geo-referenced malaria vector occurrences. The climate 

data used was maximum temperature, minimum temperature and precipitation for current climate 

(1950-2000) and climate projection for HADCM3, CCCMA and SCIRO models of IPCC 

projected future climate under the A2a scenario by the years 2020, 2050 and 2080. The climate 

data was acquired in grid format from WorldClim global climate data which was further 

processed to generate 19 bioclimatic variables for Kenya.  

 

The predictions showed that by the year 2020, the suitability areas for malaria vectors in Kenya 

will start to change from the current ecological suitability. Most areas where the malaria vectors 

are thriving currently will still remain suitable ecologies. New suitability zones will emerge in 

most counties ranging from low to very high suitability as shown by the predictions. By the year 

2050, areas of suitability will expand at an alarming extend. The year 2080 has been predicted to 

show that the suitable ecologies will start to revert to the original areas of suitability as in the 

current climate. Therefore, climate change in Kenya will adversely affect the environment at an 

alarming rate by 2050, but beyond that there will be a level of stabilization, where further change 

will trigger reversal to the past climate.  

 

For instance, BIOCLIM True or False prediction from HADCM3 by the year 2050 showed wide 

spread of malaria in counties like Narok, Kajiado, Kitui, Makueni, Machakos, Meru, Marsabit, 

Isiolo, Samburu, Baringo, West Pokot. Turkana county and Mandera among a few others will 

have some emerging isolated malaria hot spots. ENM prediction with HADCM3 future climate 

showed that Laikipia County will become unsuitable malaria ecology by the year 2050 and the 

case remains the same by the year 2080. 
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Validation results for prediction model performance showed that all the models used had errors 

in prediction as none of them had kappa =1 or AUC=1. The highest kappa (k = 0.909) and Area 

under ROC Curve (AUC=0.954) values were achieved from DOMAIN model with CCCMA 

projection by the year 2020. The lowest model performance values of k = 0.427 and AUC = 

0.714 were obtained from BIOCLIM True or False model with HADCM3 projections by the 

year 2020. 

 

The following conclusions were drawn from the Ecological Niche Modeling done using 

BIOCLIM, BIOCLIM True or False and DOMAIM prediction models: There is correlation 

between climate change as an explanatory variable and the distribution of main malaria vectors 

in Kenya.  The spatial-temporal distribution of the main malaria vectors in Kenya varies under 

different IPCC future climate projections which are HADCM3, CCCMA and CSIRO. The future 

ecological niches for malaria vector occurrence in Kenya will extend from the current niches in 

most endemic areas, new hotspots will emerge and some suitable ecology will become 

unsuitable, resulting in varying areas from current climate predictions to projections by the year 

2020, 2050 and 2080 under IPCC A2a scenario. Intervention strategies such as indoor or outdoor 

residual spraying, distribution of insecticide-treated mosquito nets (ITNs) and long-lasting 

insecticide-treated nets (LLINs) should be diversified in new emerging areas for disaster risk 

reduction and increase adaptive capacity and resilience among local communities. 
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DEDICATION 

 

To Samuel, Moses, Debra Ruth, Prince Leon; and 

 

To all mankind: 

 

…….”BE WORRIED, BE VERY WORRIED - climate change is not some vague future problem - 

it is already damaging the planet at an alarming rate”….. (Special Report Global Warming 

TIME, April 3, 2006- www.time.com ). 
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CHAPTER 1: INTRODUCTION 

 

1.1  Background 

The Working Group II (WGII) of the Fourth Assessment Report (AR4) of the 

Intergovernmental Panel on Climate Change (IPCC) has confirmed that global climate 

highlighted a wide range of predominantly negative impacts on human health (IPCC, 2007). 

Global warming increases the risk of some infectious diseases, particularly those that appear 

in warm areas. Evaluation on the evidence regarding the observed changes in human health 

and regional climate change has linked temperature trends and extreme temperature changes 

to a range of infectious and non-infectious disease outcomes. Deadly diseases often 

associated with hot weather, for instance the West Nile virus, Cholera and Lyme diseases are 

spreading rapidly throughout North America and Europe because increased temperatures in 

these areas allow disease carriers like mosquitoes, ticks, and mice to thrive.  

 

Vector-borne diseases (VBDs) which are known to be sensitive to temperature and rainfall 

have been studied over time. Mostly, vector-borne diseases refer to infections that are 

transmitted by the bite of arthropods which suck either human or animal blood for their feed 

like mosquitoes or ticks. Malaria being one of those diseases and a fatal killer is mainly 

caused by five distinct species of plasmodium parasite, namely; (Plasmodium falciparum, 

Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi). The 

disease is transmitted from one affected individual to another by Anopheline mosquitoes. An 

estimated 216 million episodes of malaria were reported in 2010 worldwide, mostly amongst 

children under 5 years in the African Region (WHO, 2010). The number of global malaria 

deaths was estimated to be 1,238,000 in 2010 (Murray et al., 2012). 
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Since The Fourth Assessment Report (AR4) of IPCC, more research work has been done to 

elucidate the role of local warming on malaria transmission in the East African highlands. 

However, the effort has been thwarted by inefficient time series data on levels of drug 

resistance and intensity of intervention strategies on vector control. Earlier research had 

failed to find a clear increase in temperatures accompanying increases in malaria 

transmission, but new studies with aggregated meteorological data over longer periods have 

confirmed increasing temperatures since 1979 (Omumbo et al., 2011; Stern et al., 2011).  

 

The influence of temperature on malaria development appears to be non-linear, and is vector-

specific (Alonso et al., 2011). The strongly non-linear response to temperature means that 

even modest warming may drive large increases in transmission of malaria, if conditions are 

otherwise suitable (Alonso et al., 2011; Pascual et al., 2006). In Kenya, analysis of 

environmental factors associated with the malaria vectors Anopheles gambiae and A. 

funestus found that abundance, distribution, and disease transmission are affected in different 

ways by precipitation and temperature (Kelly-Hope et al., 2009). Although the incidence of 

malaria has reduced over much of East Africa (Stern et al., 2011), increased variability in 

disease rates has been observed in some high altitude areas (Chaves et al., 2012).  

  

The greatest effect of climate change on transmission is likely to be observed at the extremes 

of the range of temperatures at which transmission occurs (Githeko et al., 2000). At around 

30–32
0
C, the malaria vector capacity to thrive can increase substantially owing to a reduction 

in the extrinsic incubation period, despite a reduction in the vector‟s survival rate. Malaria 

vectors and their parasites also have the potential to be affected by environmental changes 

resulting from climate change. Environmental changes, either natural phenomenon or through 
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human intervention, alter the ecological balance and context within which vectors and their 

parasites breed, develop, and transmit disease (Patz et al., 2000).  

 

The devastating change in climate has contributed to raise average temperatures in the 

Central Highlands district of Kenya, allowing the disease to creep into higher altitude areas 

where the population has little or no immunity. In 1989, the average temperature in the 

Central Highlands was 17
o
C, with malaria completely absent from the region as the parasite 

which causes it can only mature above 18
o
C.  Currently, with the temperatures averaging 

19
o
C, mosquitoes are carrying the disease into high altitude areas and epidemics have begun 

to break out in humans.  

 

In Kenya, the Division of Malaria Control has cited that 70% of the total population is at risk 

of malaria (WHO, 2003). The World Health Organization officials have reported that 

increases in temperature and rainfall could accelerate the spread of malaria to high altitude 

areas as the vector‟s survival, generally known to be above 18
0
C would be enhanced, thereby 

increasing the possibility of malaria transmission. Rainfall affects the availability and 

suitability of breeding habitats while temperature affects the rate of mosquito and malaria 

parasite development, suitability of habitats and mosquito blood feeding rates. The 

geographic distribution of malaria parasites transmitted by mosquitoes of the genus 

Anopheles is the result of a complex interaction of biogeography, including biotic and abiotic 

factors that vary in both time and space.  

 

In the early 1990s, there was little awareness of health risks posed by global climate change. 

This reflected a general lack of understanding of how the disruption of biophysical and 

ecological systems might affect the long-term wellbeing and health of populations. There was 
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little awareness among natural scientists that changes in their particular objects of study, for 

instance climate conditions, biodiversity stocks, ecosystem productivity, among others, were 

of potential importance to human health. Indeed, this was well reflected in the meager 

reference to health risks in the first major report of United Nation‟s Intergovernmental Panel 

on Climate Change published in 1991.  

 

Subsequently, the situation changed as it was portrayed in the IPCC Second Assessment 

Report published in 1996. In the report, a full chapter was devoted to the potential risks to 

human health. The Third Assessment Report (TAR) published in 2001 went further to include 

discussion of some early evidence of actual health impacts, along with assessing potential 

health impacts. The report also highlighted the anticipated health impacts by major 

geographic regions. In this Third Assessment Report, the IPCC concluded that; “Overall, 

climate change is projected to increase threats to human health, particularly in lower income 

populations, predominantly within tropical/subtropical countries” (IPCC, 2001).  

 

Broadly, The Third Assessment Report summarized that a change in climate conditions can 

have three kinds of health impacts as outlined below:- 

 Those that are relatively direct, usually caused by weather extremes. 

 The health consequences of various processes of environmental change and ecological 

disruption that occur in response to climate change. 

 The diverse health consequences; (traumatic, infectious, nutritional psychological and 

others) that occur in demoralized and displaced populations in the wake of climate 

induced economic dislocation, environmental decline, and conflict situations. 
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Consideration of the relationships between climate change and vector-borne diseases suggests 

that warmer temperature is likely to have two major kinds of closely related, potentially 

detectable, outcomes: changes in vectors per se, and changes in vector-borne disease 

outcomes (Kovats et al., 2001). The ecology of some disease vectors in Africa are likely to be 

altered by climate change, hence consequently affecting the spatial and temporal transmission 

of such diseases. There have been a number of studies that reported associations between 

inter-annual variability in temperature and malaria transmission in the African highlands. In 

the highland areas of Kenya, malaria prevalence has been associated with rainfall and 

unusually high maximum temperatures (Githeko and Ndegwa, 2001).  

 

Forecasting the range shifts of species in response to climate change is typically done by 

assuming that a species‟ current distribution represents its total climate tolerance, and 

creating a future „climate envelope‟ based on predicted shifts in those abiotic conditions 

(Hughes et al., 1996; Iverson and Prasad, 2001; Pearson and Dawson, 2003; McClean et al. 

2005; Hamann and Wang, 2006; Gómez-Mendoza and Arriaga, 2007). When predicting 

species‟ distribution, the models that are used make use of associations between 

environmental variables and known occurrence of the species. These aides in identifying 

environmental conditions within which species‟ populations can be maintained.  

 

Therefore, the spatial distribution of the species‟ suitable environments can be estimated 

across any region of study. The two approaches that can be applied to characterize 

environmental conditions that are suitable for species are either mechanistic or correlative. 

When mechanistic models are used, they incorporate physiologically limiting mechanisms in 

a species‟ tolerance to environmental conditions. On the other hand, use of correlative models 

aims to estimate the suitable environmental conditions for a species by associating known 
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species‟ occurrence records with suites of environmental variables that can reasonably be 

expected to affect the species‟ physiology and probability of persistence. 

 

1.2  Statement of the Problem 

The National Malaria Strategy (2009–2017), launched by Kenya's Ministry of Public Health 

and Sanitation, identifies epidemic preparedness and response as a key approach to the 

containment of epidemics in Kenya. The National Malaria Strategy was developed in line 

with the Government‟s first Medium-Term Plan of Kenya Vision 2030 together with the 

Millenium Development Goals. Also, the strategy was drawn in partnership with Roll Back 

Malaria partnership goals and targets for malaria control. One of the drawn key strategic 

objectives and targets of the National Malaria Strategy was: to ensure that all malaria 

epidemic prone districts have the capacity to detect and the preparedness to respond to 

malaria epidemics annually by 2010 through capacity strengthening for epidemic 

preparedness and response. The WHO's Roll Back Malaria initiative notes that forecasting 

and early warning can reinforce local preparedness and allow authorities and communities to 

use cost-effective and timely control options to prevent excessive deaths.  

 

However, despite the known causal links between climate and malaria transmission 

dynamics, there is still much uncertainty about the potential impact of climate change on 

malaria at local and global scales (IPCC, 2007). This is because of several factors, namely; 

the paucity of concurrent detailed historical observations of climate and malaria, the 

complexity of malaria disease dynamics, and the importance of non-climatic factors in 

determining infection and infection outcomes. Given the large populations living in highland 

areas of East Africa, the limitations of the analyses conducted, and the significant health risks 

of epidemic malaria, further research is warranted.  
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There has been an attempt to model the prevalence and distribution of malaria epidemic in 

Kenya, (Okara et al., 2010; Githeko et al., 2014). These studies did not investigate on 

Ecological Niche Modeling to project the future impact of climate change on malaria vector 

distribution. There has been no attempt to correlate the vector presence data with the 

underlying environmental factors, and further investigate the impact of climate change on the 

vector ecologies. Alongside weather monitoring and seasonal climate forecasts, other 

epidemiological and environmental factors are not incorporated into algorithms for malaria 

modeling to predict and project the future dynamics of malaria prevalence with climate 

change. Moreover, with the unpredictable change in climate, research on prediction models 

that integrates climate data and spatial-temporal changes is at its infancy. 

 

Therefore, this study seeks to address the existing gap in spatial-temporal modeling of 

malaria vectors by correlating the spatial distribution of main malaria vectors in Kenya with 

the underlying ecological conditions with respect to climate change. There is urgent need to 

spatially integrate timely environmental data, biological data and the IPCC projected climate 

change scenarios to quantify the prevalence and distribution of malaria. 

 

1.3 Objective of the study 

The main objective of the study is to investigate spatial-temporal effect of climate change on 

the distribution of main malaria vectors in Kenya.  The specific objectives were:- 

 To model the spatial-temporal distribution of the main malaria vectors in Kenya. 

 To determine through investigation the relationship between vector distribution and 

climate change.  

 To project the future ecological niches for malaria vector occurrence in Kenya. 

 To compare predictions from different IPCC future climate scenarios. 
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The research questions that guided the research were structured as follows: 

• Is climate change a contributory factor to changing dynamics of malaria vector 

distribution in Kenya?  

• What parameters determine the most appropriate spatial model for malaria 

distribution and prediction analysis?  

• How does climate projection model and scenario change affect the predicted 

distribution of malaria vectors? 

 

 

1.4 Justification and significance of the study 

Climate change has the potential to significantly impact the distribution of malaria vectors. A 

number of species have been affected by recent climate change, with ranges expanding 

towards higher latitudes and longitudes (Parmesan and Yohe, 2003; Root et al., 2003). 

Further, recent studies have shown that it is challenging to attribute health outcomes to 

climate change or variability per se (WHO, 2003). Consequently, it is difficult to identify 

climate-related thresholds for human health.  

 

Limited inclusions of different developmental scenarios in human health projections, and also 

the limited understanding of extent, rate of occurrence and adaptation measures of human 

populations to a changing climate justify the study.  Important to note  is the difficult in 

generalizing health outcomes from one setting to another especially at the event of many 

diseases occurring with local transmission dynamics that cannot be represented in simple 

relationships. However, there are limited region-specific projections of climate change with 

significant impact on human health, and consideration of multiple, interacting and multi-

causal health outcomes.  
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1.5 Scope and limitations 

The research was conducted in Kenya, in order to model malaria prevalence in the entire 

country.  Model generation was done based on IPCC projected climate for Hadley Centre 

Coupled Model 3 (HADCM3), Canadian Centre for Climate Modeling and Analysis 

(CCCMA) and Commonwealth Science and Industrial Research Organisation (CSIRO) 

models under A2a scenario. Biological data on malaria vector spatial distribution in Kenya 

was used to provide the presence data required for Ecological Niche Modeling. This was due 

to the fact that malaria prevalence and occurrence has taken new dimensions with changing 

climate, thus the need to quantify the role of climate change in altering malaria vector 

ecologies.  

 

The PRECIS (Providing Regional Climates for Impacts Studies) model which has been 

customized for East Africa provides predicted rainfall and temperature patterns. PRECIS is 

essentially a regional climate modeling system. It is based on the third generation of the 

Hadley Centre‟s regional climate model (HadRM3), together with user-friendly data 

processing and visualization interface (Jones et al., 2004). The model‟s flexible design allows 

for applications in any region of the world. Just like any other regional climate models 

(RCMs), PRECIS is driven by boundary conditions simulated by General Circulation Models 

(GCMs). The RCMs do not replace GCMs, but they are powerful tools used together with the 

GCMs in order to add fine-scale detail to their broad-scale projections. 

 

Global minimum and maximum mean temperature and precipitation data from WorldCLIM 

was acquired and used to extract the data for Kenya. Further processing was done to generate 

bioclimatic factors which are used in Ecological Niche Modeling. Climate envelopes are used 

to predict current ecological suitability of malaria vector survival and project future spatial-
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temporal models. Climate change projections are simulated by Global Climate Models 

(GCMs). Different GCMs exists and for the same GCM, variants can be found that try to 

simulate climate change conditions related to different anthropogenic behaviors for the next 

century. The future trend analysis have been based on the climate projections (IPCC, 2001) 

Special Report on Emissions Scenarios storyline (SRES). The SRES describe the 

relationships between the forces driving greenhouse gas and aerosol emissions and their 

evolution during the 21st century. Figure 1.1 below shows the area of study. 
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         Figure 1. 1: A map of Kenya showing the county boundaries. 



   

12 
 

CHAPTER 2: LITERATURE REVIEW 

The organization of this chapter was done in eight sub-sections with intention to explain the 

observed changes in climate and the relevant studies that have been done to relate climate 

change and malaria prevalence. 

 

2.1 Observed Climate Change and Variability 

 

The history of the Earth has shown that the climate is always changing; from warm periods 

when the dinosaurs flourished, to the many ice ages when glaciers covered much of the land. 

The climate system is a complex, interactive system that consists of the atmosphere, land 

surface, snow and ice, oceans and other water bodies, and living things (IPCC, 2007). The 

climate system evolves in time under the influence of its own internal dynamics and due to 

changes in external factors that affect climate, called „forcings‟. External forcings include 

natural phenomena such as volcanic eruptions and solar variations, as well as human-induced 

changes in atmospheric composition. The three fundamental ways that change the radiation 

balance of the Earth include:  

 by changing the incoming solar radiation (e.g., by changes in Earth‟s orbit or in the 

Sun itself);  

 by changing the fraction of solar radiation that is reflected, called „albedo‟ ( e.g., by 

changes in cloud cover, atmospheric particles or vegetation); and  

 by altering the long wave radiation from Earth back towards space (e.g., by changing 

greenhouse gas concentrations).  

Therefore, „climate change‟ refers to a change in the state of the climate that can be identified 

(e.g., using statistical tests) by changes in the mean and/or the variability of its properties, and 

that persists for an extended period, typically decades or longer (IPCC, 2007). Climate 

change may be due to internal processes and/or external forcings. Some external influences, 
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such as changes in solar radiation and volcanism, occur naturally and contribute to the total 

natural variability of the climate system.  

 

Other external changes, such as the change in composition of the atmosphere that began with 

the industrial revolution, are the result of human activity. Internal variability is present on all 

time scales. Atmospheric processes that generate internal variability are known to operate on 

time scales ranging from virtually instantaneous (e.g., condensation of water vapour in 

clouds) up to years (e.g., troposphere-stratosphere or inter-hemispheric exchange). Other 

components of the climate system, such as the ocean and the large ice sheets, tend to operate 

on longer time scales. These components produce internal variability of their own accord and 

also integrate variability from the rapidly varying atmosphere (Hasselmann, 1976). In 

addition, internal variability is produced by coupled interactions between components, such 

as is the case with the El-Niño Southern Oscillation. 

  

Distinguishing between the effects of external influences and internal climate variability 

requires careful comparison between observed changes and those that are expected to result 

from external forcing. These expectations are based on physical understanding of the climate 

system. Physical understanding is based on physical principles. This understanding can take 

the form of conceptual models or it might be quantified with climate models that are driven 

with physically based forcing histories. An array of climate models is used to quantify 

expectations in this way, ranging from simple energy balance models to models of 

intermediate complexity to comprehensive coupled climate models such as those that 

contributed to the multi-model data set (MMD) archive at the Program for Climate Model 

Diagnosis and Intercomparison (PCMDI). 
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Climate models are based on well-established physical principles that have been 

demonstrated to reproduce observed features of the recent and past climate changes. They 

attempt to simulate the behavior of the climate, in order to understand the key physical, 

chemical and biological processes which govern climate. There is considerable confidence 

that Atmosphere-Ocean General Circulation Models (AOGCMs) provide credible 

quantitative estimates of future climate change, particularly at continental and larger scales 

(IPCC, 2007). Atmosphere-Ocean Global Circulation Models (AOGCM), also known as 

'coupled atmosphere-ocean models', are global climate models that model both atmospheric 

and ocean processes and interactions between them. The term Global Climate Model (GCM) 

is used to refer to climate models that reflect both atmosphere and ocean processes and 

feedbacks. 

 

The use of AOGCMs has a limitation in projecting climate change at the regional and sub-

regional level. This is due to the significant differences in climate occurrence at a scale below 

the resolution of the AOGCMs. Fully coupled GCM are typically on a resolution of 2-3° 

(~200-300 km) because they are computationally intensive. There has been an 

unprecedented, joint modeling effort by many groups worldwide. Currently, multi-model 

means are the basis of climate change projections. Quantitative assessment of differences 

between models, and in some instances, estimates of the probability of change of important 

climate system parameters has been reported to complement expert judgment. 

 

Climate models provide better understanding of the climate system, clearly highlighting the 

past climate by comparing records of instrumental and paleo-climatic observations. The 

analysis enables the prediction of future climate change. As reported by Working Group I 

(WGI) in the Fifth Assessment report (AR5) (IPCC, 2013), over the 1951–2010 period, the 
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observed Global Mean Surface Temperature (GMST) increased by approximately 0.6°C. 

GHG increases likely contributed 0.5°C to 1.3°C, other anthropogenic forcings likely 

contributed –0.6°C to 0.1°C and natural forcings likely contributed –0.1°C to 0.1°C to 

observed GMST trends over this period. Internal variability likely contributed –0.1°C to 

0.1°C to observed trends over this period (Knutson et al., 2013). GMST warmed strongly 

over the period 1900–1940, followed by a period with little trend, and strong warming since 

the mid-1970s (Section 2.4.3, Figure 10.1) (IPCC, 2013). Currently, these temperatures 

exceed the upper limit of natural (historical) variability. Climate is often defined as „average 

weather‟, and it is usually described in terms of the mean and variability of temperature, 

precipitation and wind over a period of time, ranging from months to millions of years, the 

classical period being 30 years (IPCC, 2007).  

 

Global climate models (GCMs) have been used extensively to project warming in the 21
st
 

Century due to mankind‟s greenhouse gas pollution of the atmosphere. As reported by Meehl 

et al., (IPCC, 2007), an expert assessment based on the combination of available constraints 

from observations and the strength of known feedbacks simulated in the models used to 

produce the climate change projections have indicated that the equilibrium global mean 

Surface Air Temperature (SAT) warming for a doubling of atmospheric carbon dioxide 

(CO2), or „equilibrium climate sensitivity‟, is likely to lie in the range of 2°C to 4.5°C, with a 

most likely value of about 3°C. Equilibrium climate sensitivity is very likely larger than 

1.5°C.  

 

For fundamental physical reasons, as well as data limitations, values substantially higher than 

4.5°C still cannot be excluded, but agreement with observations and proxy data is generally 

worse for those high values than for values in the 2°C to 4.5°C range. Climatologists assess 
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that most of that recent increase is due to human influence. Human societies have had long 

experience of naturally-occurring climatic vicissitudes due to mankind‟s greenhouse gas 

pollution of the atmosphere. The apparent change in world climate would influence the 

functioning of many ecosystems and their member species. Likewise, there would be impacts 

on human health.  

 

The following diagram in Figure 2.1 shows an illustration of global mean near-surface 

temperature over the twentieth century from observations (black), and as obtained from 58 

simulations produced by 14 different climate models driven by both natural and human-

caused factors that influence climate (yellow). The multi-model ensemble mean of all these 

runs is also shown (red). As reported by Brohan et al., (2006), the vertical grey lines indicate 

the timing of major volcanic eruptions, (Hadley Centre/Climate Research Unit gridded 

surface temperature data set, (HadCRUT 3)). All data are shown as global mean temperature 

anomalies relative to the period 1901 to 1950, as observed (black), (HadCRUT3), and, in (a) 

as obtained from 58 simulations produced by 14 models with both anthropogenic and natural 

forcings. 
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Figure 2. 1: Comparison between global mean temperature anomalies (
0
C) from observations 

(black) and AOGCM simulations forced with both anthropogenic and natural forcings(a) and (b) 

natural forcings only (Source: IPCC, 2007: Figure 9.5).  

 

 

All data in Figure 2.1 are shown as global mean temperature anomalies relative to the period 1901 to 

1950, as observed (black, Hadley Centre/Climatic Research Unit gridded surface temperature data set 

(HadCRUT3); Brohan et al., 2006) and, in (a) as obtained from 58 simulations produced by 14 models 

with both anthropogenic and natural forcings.  
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The multi-model ensemble mean is shown as a thick red curve and individual simulations are 

shown as thin yellow curves. Vertical grey lines indicate the timing of major volcanic events. 

Those simulations that ended before 2005 were extended to 2005 by using the first few years 

of the IPCC Special Report on Emission Scenarios (SRES) A1B scenario simulations that 

continued from the respective 20th-century simulations, where they were available. The 

simulated global mean temperature anomalies in (b) are from 19 simulations produced by 

five models with natural forcings only. The multi-model ensemble mean is shown as a thick 

blue curve and individual simulations are shown as thin blue curves. Simulations are selected 

that do not exhibit excessive drift in their control simulations (no more than 0.2°C per 

century). Each simulation was sampled so that coverage corresponds to that of the 

observations.  

 

Modeling climate change scenarios has enabled identification of gaps in the development of 

regional and sub-regional scenarios. Global circulation models and regional climate models 

can be applied usefully to identify a range of uncertainties allowing strategic policy-making 

for adaptation. Regional climate downscaling (RCD) techniques, including both dynamical 

and statistical approaches, are being used to provide higher-resolution climate information 

than is available directly from contemporary global climate models. However, it is important 

that these techniques, together with the results they produce, be applied appropriately. The 

strengths and weaknesses should also be understood. This requires a better evaluation and 

quantification of the performance of the different techniques for application to specific 

problems.  

 

For a future warmer climate, the current generation of models indicates that precipitation 

generally increases in the areas of regional tropical precipitation maxima (such as the 
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monsoon regimes) and over the tropical Pacific in particular, with general decreases in the 

subtropics, and increases at high latitudes as a consequence of a general intensification of the 

global hydrological cycle. Globally averaged mean water vapour, evaporation and 

precipitation are projected to increase. Intensity of precipitation events is projected to 

increase, particularly in tropical and high latitude areas that experience increases in mean 

precipitation. Even in areas where mean precipitation decreases (most subtropical and mid-

latitude regions), precipitation intensity is projected to increase but there would be longer 

periods between rainfall events. There is a tendency for drying of the mid-continental areas 

during summer, indicating a greater risk of droughts in those regions. Precipitation extremes 

increase more than does the mean in most tropical and mid- and high-latitude areas (IPCC, 

2007). 

 

All models assessed in IPCC 2007, for all the non-mitigation scenarios considered, project 

increases in global mean surface air temperature (SAT) continuing over the 21st century, 

driven mainly by increases in anthropogenic greenhouse gas concentrations, with the 

warming proportional to the associated radiative forcing. There is close agreement of globally 

averaged SAT multi-model mean warming for the early 21st century for concentrations 

derived from the three non-mitigated IPCC Special Report on Emission Scenarios (SRES: 

B1, A1B and A2) including only anthropogenic forcing run by the AOGCMs (warming 

averaged for 2011 to 2030 compared to that of 1980 to 1999 is between +0.64°C and 

+0.69°C, with a range of only 0.05°C). 

 

Thus, this warming rate is affected little by different scenario assumptions or different model 

sensitivities, and is consistent with that observed for the past few decades. Possible future 

variations in natural forcings, for example, a large volcanic eruption, could change those 
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values somewhat, but about half of the early 21st-century warming is committed in the sense 

that it would occur even if atmospheric concentrations were held fixed at year 2000 values. 

By mid-century (2046–2065), the choice of scenario becomes more important for the 

magnitude of multi-model globally averaged SAT warming, with values of +1.3°C, +1.8°C 

and +1.7°C from the AOGCMs for B1, A1B and A2, respectively. About a third of that 

warming is projected to be due to climate change that is already committed. By late century 

(2090–2099), differences between scenarios are large, and only about 20% of that warming 

arises from climate change that is already committed (IPCC, 2007). 

 

Scenarios are not simple projections, but are stories that present alternative images of how the 

future might unfold. Scenarios can help explore potential consequences of the interplay of 

multiple variables if they are carefully handled, and thereby help us to make considered and 

comprehensive decisions. The IPCC scenarios, contained in the Special Report on Emissions 

Scenarios (SRES), make projections into the next century and beyond and assume that 

climate change will be linear and involve gradual warming. But events of the last five years 

have overtaken the initial SRES scenarios. Climate has changed faster and more 

unpredictably than the scenarios outlined. Many of the phenomena assumed to lie decades in 

the future are already well underway. This faster pace of change on many fronts indicates that 

more sector-specific, short-term scenarios are needed. 

 

Multi-model means of surface warming (relative to 1980–1999) for the scenarios A2, A1B 

and B1, are shown in the Figure 2.2 below as continuations of the 20th-century simulation. 

Values beyond 2100 are for the stabilization scenarios. Linear trends from the corresponding 

control runs have been removed from these time series. Lines show the multi-model means 

and shading denotes the ±1 standard deviation range of individual model annual means. The 
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concept that the climate system exhibits commitment when radioactive forcing has changed is 

mainly due to the thermal inertia of the oceans.  

 

 
 

Figure 2. 2: Scenarios A2, A1B and B1 Multi-model means of surface warming ; relative to 

1980–1999 (source:
 
 IPCC, 2007: Figure 10.4). 

 
  

Global mean precipitation increases in all scenarios as shown in Figure 2.3, the right column, 

indicating an intensification of the hydrological cycle. Douville et al. (2002) show that this is 

associated with increased water-holding capacity of the atmosphere in addition to other 

processes. The multi-model mean varies approximately in proportion to the mean warming, 

though uncertainties in future hydrological cycle behaviour arise due in part to the different 

responses of tropical precipitation across models (Douville et al., 2005).  

 

When expressed as a percentage of the mean simulated change for 1980 to 1999 (2.83 

mm/day), the rate varies from about 1.4% °C
–1

 in A2 to 2.3% °C
–1

 in the constant 

composition commitment experiment. These increases are less than increases in extreme 

precipitation events, consistent with energetic constraints. Figure 2.3 below shows the time-
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series of globally averaged surface warming. The numbers in parentheses following the 

scenario name represent the number of simulations shown. Values are annual means, relative 

to the 1980 to 1999 average from the corresponding 20th-century simulations, with any linear 

trends in the corresponding control run simulations removed. A three-point smoothing was 

applied. Multi-model (ensemble) mean series are marked with black dots (IPCC, 2007). 

 

 
 

Figure 2. 3: Time series of globally averaged (left) surface warming (surface air temperature 

change, °C) and (right) precipitation change (%) from the various global coupled 

models for the scenarios A2 (top), A1B (middle) and B1 (bottom)
 
; (source:.IPCC, 

AR4, Fig. 10.5). 
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As reported by Wigley (2005), there are three specific definitions of climate change 

commitment:  

(i) the „constant composition commitment‟, which denotes the further change of 

temperature („constant composition temperature commitment‟ or „committed 

warming‟), sea level („constant composition sea level commitment‟) or any other 

quantity in the climate system, since the time the composition of the atmosphere, and 

hence the radiative forcing, has been held at a constant value; 

(ii) the „constant emission commitment‟, which denotes the further change of, for 

example, temperature („constant emission temperature commitment‟) since the time 

the greenhouse gas emissions have been held at a constant value; and  

(iii) the „zero emission commitment‟, which denotes the further change of, for 

example, temperature („zero emission temperature commitment‟) since the time the 

greenhouse gas emissions have been set to zero. 

 

 

2.2  The Impact of Climate Change and Variability on Human health 

Climate variability and change over the recent decades has already affected some health 

outcomes. Indeed, the World Health Organization reported that, in 2000, climate change was 

estimated to have been responsible for approximately 2.4% of worldwide diarrhea, and 6% of 

malaria in some middle-income countries (WHO, 2003). The first detectable changes in 

human health have been reported to be alterations in the geographic range and seasonality of 

certain infectious diseases. Vector-borne infections like malaria and dengue fever, and food-

borne infections like salmonellosis peak in the warmer months. Warmer average temperatures 

combined with increased climate variability alter the pattern of exposure to thermal extremes 

and resultant health impacts in both summer and winter. 
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Unprecedented, the world population is presently encountering unfamiliar human-induced 

changes in the lower and middle atmospheres, and world-wide depletion of various other 

natural systems (e.g. soil fertility, aquifers, ocean fisheries, and biodiversity in general). 

Beyond the early recognition that such changes would affect economic activities, 

infrastructure and managed ecosystems, there is great recognition that global climate change 

poses risks to human population health. This topic is currently emerging as a major theme in 

population health research, social policy development and advocacy. Indeed, considerations 

of global climate-environmental hazards to human health have become a central role in the 

sustainability transition debate.  

 

The IPCC TAR, 2001, highlighted the following findings:- 

 An increase in the frequency or intensity of heat waves will increase the mortality 

and morbidity, principally in older age groups and among the urban poor. 

 Any regional increases in climate extremes associated with climate change would 

cause deaths, and injuries, population displacement, and adverse effects on food 

production, freshwater availability and quality, and would increase the risk of 

infectious diseases, particularly in low-income countries. 

 In some settings, the impacts of climate change may cause social disruptions, 

economic decline, and displacement of populations. The health impacts associated 

with socio-economic dislocation and population displacement are substantial. 

 Changes in climate, including changes in climate variability, would affect many 

vector-borne infections. Populations at the margins of the current distribution of 

diseases might be particularly affected. 

 Climate change represents an additional pressure on the world‟s food supply 

system and is expected to increase yields at higher latitudes and decrease yields at 
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lower latitudes. This would increase the number of undernourished people in the 

low-income world, unless major food redistribution is planned around the world. 

 Assuming that the current emission levels continue, air quality in many large 

urban areas will deteriorate. Increase in exposure to ozone and other air pollutants 

could increase morbidity and mortality. 

 

There are substantial differences between developed and developing countries in the 

incidence of various diseases. Over 40% of the population of the developing world, but only 

2% of the developed world, is infected with at least one infectious or parasitic disease 

(Nathan et al, 1999). This wide disparity is mainly related to differences in socioeconomic 

conditions, including nutrition, sanitation, housing, working conditions, and availability of 

health care. Both developing-world and developed-world populations may experience 

increased rates of various infectious diseases if the climate changes. The association between 

climate change and infectious diseases is illustrated in Figure 2.4 below.  
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Figure 2. 4: Association between climate change and infectious diseases (source: Modified from 

IPCC, AR4) 
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2.3  Climate change and disease transmission in Africa 

As reported in the fourth assessment report of IPCC, human health which is already 

compromised by a range of factors could be further negatively impacted by climate change 

and climate variability. The ecology of some disease vectors in Africa will possibly be 

altered, and consequently the spatial and temporal transmission of such diseases. 

Assessments of health in Africa show that many communities are already impacted by health 

stresses that are coupled to many causes, including poor nutrition, (IPCC, 2007).  Hay et al., 

2002 and Pascual et al., 2006 noted that the resurgence of malaria and links to climate and/ or 

other causal „drivers‟ of change in the highlands of East Africa has recently attracted much 

attention and debate. For instance, in areas that have two rainy seasons, from March to May 

(MAM) and September to November (SON), there is an alternation with more rain falling in 

SON than previously the case in the northern sector of East Africa, (Schreck and Semazzi, 

2004). The SON period is relatively warm, and higher rainfall is likely to increase malaria 

transmission. This is owing to the reduction in the duration required for larval development.  

 

The spread of malaria into other new areas like the observations of malaria vector Anopheles 

aranbiensis, in the central highlands of Kenya, where no malaria vectors have been observed 

previously, has been recorded, (Chen et al., 2006). Further insights into the observed 

warming trends are provided in four high-altitude sites in East Africa, from the end of 1970s 

onwards, (Pascual et al., 2006). Such trends contribute significantly to the biological 

implications of malaria vector population.  

 

Micro-climate change caused by land-use changes, for instance, swamp reclamation for 

agricultural use and deforestation in the highlands of western Kenya, create suitable 

environment for the survival of Anopheles gambiae larvae, thus increasing the risk of 
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malaria, (Munga et al., 2006). Mosquito population rates and larval-to-pupal development 

have been observed to be significantly faster in farmland habitats than in swamp and forest 

habitats, (Munga et al., 2006). Malaria epidemics can also be triggered by floods in arid and 

semi-arid areas, (Thomson et al., 2006). 

 

2.4 Models for malaria Early Warning System  

Malaria early-warning systems based on vulnerability assessment and rainfall variability were 

used in India in the early part of the 20th century, (Gill, 1923). However, there has been a 

concerted effort in the recent years to develop such systems for epidemic prone areas in 

Africa. Rainfall anomalies are widely considered to be a major driver of inter-annual 

variability of malaria incidence in the semi-arid areas of Africa, (Connor et al., 1999). 

Analyses of time-series malaria and climate data have been conducted over the last century in 

many parts of the world, and have indicated that rainfall excess (or occasionally drought) is 

correlated with changes in malaria incidence in certain eco-epidemiologic settings, apparently 

as a result of its impact on the population dynamics of the Anopheles spp. mosquito vector, 

(Koenraadt et al., 2004). In some areas of the world where Sea Surface Temperatures (SSTs) 

in the Pacific and the El Niño-Southern Oscillation (ENSO) are important predictors of 

climate events, significant correlations between malaria incidence anomalies and SSTs have 

been observed (Kovats et al., 2003). 

 

The early detection, containment and prevention of malaria epidemics are one of the four 

technical elements of the Global Malaria Control Strategy (WHO, 1993). The Roll Back 

Malaria (RBM) strategy (WHO, 1998) outlined a range of existing tools in time series 

analysis which can be useful in the development of a MEWS. As reported in RBM/WHO 

(2001), these tools include spectral analyses and autoregressive integrated moving average 
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(ARIMA). For instance, time series analysis was used to assess the contribution of climate to 

a malaria epidemic in Rwanda (Loevinsohn, 1994). The best fitting model from this study 

was developed using multiple linear regression. The model was developed with the following 

parameters: Monthly incidence = 4.32+1.64*LN(monthly mean minimum temperature lagged 

by one month) + 0.83*LN(monthly mean minimum temperature lagged by two months) + 

5.34*10-4 *(rainfall lagged by three months) + 7.7*10-4 * (rainfall lagged by four months). 

 

According to Githeko et al., 2014, two general models were developed and validated for 

climate and ecosystem-based early malaria epidemic prediction models in East Africa. These 

models were referred to as the additive and the multiplicative models. The additive model 

was generated for the poorly drained U-shaped valley ecosystem while the multiplicative 

model was for the well drained V-shaped valleys. The additive model can be expressed as 

follows in Equation 2.1 (ibid): 
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The additive model with exponential temperature effect can be expressed as in Equation 2.2: 
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The multiplicative model is expressed as in Equation 2.3: 
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The additive +18
0
C model can be written as Equation 2.4: 
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Where; 

 T
i = temperature code at month i 

 R
i+2 = Rainfall code at month i + 2 

 T
m = highest temperature anomaly code in the climatology data 

 R
m = maximum rainfall anomaly code in the climatology data 

 ER
i+4 = epidemic risk at month i + 4 

 

Malaria is a significant public health concern in Afghanistan, with approximately 60% of the 

population, or nearly 14 million people, living in malaria-endemic area. Afghanistan‟s 

diverse landscape contributes to the heterogeneous malaria distribution. Research aimed to 

understand the environmental effects on malaria transmission has been essential to the 

effective control of malaria in Afghanistan. Malaria transmission has been shown to be 

dependent on a number of environmental and meteorological variables (Safi et al., 2010). For 

countries in the tropics and the subtropics, rainfall is normally the most important variable, 

except for regions with high altitude where temperature may also be important.  

 

In order to predict malaria risk in Afghanistan, malaria surveillance data collected from 

Afghan Ministry of Public Health and satellite-derived environmental data on precipitation, 

Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) were 

used. Precipitation data was measured from the Tropical Rainfall Measuring Mission 

(TRMM), which is a joint mission between NASA and the Japan Aerospace Exploration 
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Agency (NASA GSFC, 2010). TRMM precipitation data with monthly resolution and at 

0.25
0
 from the GIOVANNI interface (Acker and Leptoukh, 2007). Both LST and NDVI were 

measured by Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and 

Aqua Spacecraft (NASA, 2009). The MODIS datasets are distributed by the Land Processing 

Distributed Active Archive Center (LPDAAC) of the United States Geological Survey 

(USGS).  

 

The retrieved 8-day LST data was at 1 km spatial resolution with a sinusoidal projection, 

where the Normalized Difference Vegetation Index (NDVI) is at a monthly resolution. These 

two datasets were re-projected to a geographical projection compatible with the other 

datasets. In addition, the 8-day LST data was subsequently aggregated to monthly so as to 

synchronize with the malaria data temporal resolution. For each of the environmental 

variables, lagged variables were created. The lags were from the previous 1 month up to 4 

months. All data was divided into two datasets, that is fit and prediction. The fit dataset was 

used in estimating the parameters, and the prediction dataset was reserved for forecast. 

 

The modeling approaches used were; Neural Network (NN) and General Linear Model 

(GLM), specifically, Poisson regression. Neural Network modeling is capable of capturing 

the non-linear relationship. NN typically consists of interconnected nodes arranged in three 

major layers: input, hidden and output. In this study the number of nodes in the input layer 

was limited to three in order to reduce the model complexity. The input nodes are the 

environmental variables. The number of nodes in the hidden layer was limited to two for the 

same reason. There was only one node in the output layer that represents the level of monthly 

malaria case. Feed-forward and back-propagation neural network were employed.  
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The NN performance was measured by the Root Mean Square Error (RMSE) of both the fit 

and prediction dataset. Linear regression, which is a widely used method to predict the risk of 

infectious diseases, was used. Stepwise regression method was used in order to eliminate 

insignificant environmental variable predictors. As is the case for any infectious disease, the 

number of malaria cases in any given month depends on the number of cases in the previous 

months. Thus, the autocorrelation terms for the preceding four months were also used as 

input in the stepwise regression. In order to account for any possible components not 

represented in the environmental input parameters, sinusoidal terms were included, which 

consist of one factor for the trigonometric functions SINE and another for the COSINE 

component. Therefore, the monthly malaria case for each province can be written according 

to Equation 2.5 (ibid): 
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T(t)=Average temperature in month t 

 NDVI(t)=Average NDVI in month t 

 P(t)=Total precipitation in month t 

 f(t) is the general trend accounting for factors other than environmental in nature 

 such as  improvement in public health support or population movements. 
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The regression model is thus: 

 
j

jj tXtC )()(  …………………………………………………………………(2.6) 

Where; j  is the weight for the predictor jX  that was selected using stepwise regression. 

For the NN, the inputs were the previous month case, previous month LST and previous 

month NDVI. 

 

 

2.5 Malaria Early Warning and Spatial mapping 

The project for Mapping Malaria Risk in Africa / Atlas du Risque de la Malaria en Afrique 

(MARA/ARMA) collaboration was initiated to provide an Atlas of malaria for Africa, 

containing relevant information for rational and targeted implementation of malaria control 

(MARA/ARMA, 1998). The MARA/ARMA initiative was non-institutional and was 

operated in the spirit of an open collaboration. A group of dedicated African scientists based 

at institutions across the continent were involved in the project. The set objectives for the 

project were:- 

 To map malaria risk in Africa through:- 

i.) collection of published and unpublished malaria data.  

ii.) spatial modeling of malaria distribution, seasonality and endemicity. 

 To disseminate relevant information to national and international decision makers and 

other end users, in a range of useful formats. 

 To develop capacity in malaria / health GIS. 

 

Several malaria prevalence spatial models were generated in order to fulfil the set objectives. 

In one of the models,   malaria survey data was analysed statistically against co-factors of 
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malaria such as climate and the presence of water bodies, thereby predicting malaria 

endemicity across the entire region. Another model that defines endemic malaria distribution 

in Africa was generated based on the biological constraints placed on the parasite and vector 

by temperature and rainfall. Malaria seasonality model was generated to define the duration 

of transmission season in months, including the start and end of transmission season. Such 

information is handy in intervention measures as different interventions are suitable under 

different situations of malaria seasonality. However, the created continental database of 

malaria survey results (MARA/ARMA, 1998) provides the opportunity for producing 

empirical models and maps of malaria distribution at regional and eventually at continental 

level, but not early warning system per se. 

 

 

2.6 Factors considered Ecological Niche Modeling (ENM)  

Climatic factors have been reported to greatly influence the pattern and level of malaria 

transmission globally. Temperature, rainfall and humidity are the most important climatic 

factors that directly affect malaria transmission. The ranges of minimum and maximum 

temperature greatly affect the development of the malaria parasite and its mosquito vector, 

which determines malaria transmission. Temperatures are higher around the equator and are 

known to vary minimally throughout the year. Temperatures decrease progressively as 

distance increases north or south of the equator. The warm and relatively constant 

temperature in tropical Africa is one of the reasons for high levels of malaria transmission 

near the equator. The right amount of rainfall is often an important factor in providing water 

collections that support vector breeding, which appears mainly after the rains. Therefore, the 

period following the rainy season is most conducive and malaria transmission rate is highest.  
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Temperature affects the malaria parasite life cycle. The time required for the parasite to 

complete its development in the mosquito can be shorter or longer than usual depending on 

the temperature. A decrease in temperature results in increase in the number of days 

necessary to complete the development for a given Plasmodium species. The time needed for 

the parasite to complete its development in the mosquito, decreases to less than 10 days as 

temperature increases from 21°C to 27°C, with 27°C being the optimum. The maximum 

temperature for parasite development is 40°C. Below 18°C, the life cycle of Plasmodium 

falciparum in the mosquito body is limited. The minimum temperatures are between 14–

19°C, with Plasmodium vivax surviving at lower temperatures than Plasmodium falciparum. 

Malaria transmission in areas colder than 18°C can sometimes occur because the Anopheles 

often live in houses, which tend to be warmer than the outside temperature (OpenLearn 

Labspace website). 

 

Temperature is also a determinant factor for the development of the mosquito larva as it 

matures more quickly at higher temperatures. Higher temperatures as well increase the 

number of blood meals taken and the number of eggs laid by the mosquitoes thus amplifying 

the number of mosquitoes in a given area. The minimum temperature for mosquito 

development is between 8–10°C; the optimum temperature is 25–27°C, and the maximum 

temperature for it is 40°C. Altitude influences the distribution and transmission of malaria 

indirectly, through its effect on temperature. Increase in altitude leads to temperature 

decreases, making the highlands colder as compared to the warmer lowlands. With increase 

in altitude to beyond 2,400 metres, the temperature does not go high enough to support 

malaria transmission and these areas are free of malaria (OpenLearn Labspace website). 
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Different anopheline mosquitoes prefer different types of water bodies in which they can 

breed. Water collections that support vector breeding appear mainly after the rains, and 

therefore malaria transmission is highest following the rainy season. Too much rainfall can 

flush away breeding habitats temporarily, but mosquitoes start breeding as soon as the rain 

stops. More often than not, flushing has a bigger impact on vector breeding habitats in the 

highlands and hilly areas than in the lowland plains. It is of essence to note that not all water 

collections are suitable for the mosquito life cycle. Rain water collections are the most 

important breeding ground, as the anopheline mosquitoes prefer to breed in fresh water 

collections created after the rainy season. Such water bodies may be clear or muddy 

(OpenLearn Labspace website). 

 

The breeding habitat for different mosquitoes influences malaria transmission. Some 

mosquitoes breed in small pools that are partially or completely exposed to the sun, while 

others prefer to breed in shaded stagnant pools. Those adapted to breeding close to human 

settlements, and able to breed in wide ranges of environments, are better vectors of malaria 

than those that breed away from human habitation. Anopheles gambiae mosquitoes breed in a 

wide range of habitats, including small water collections such as hoof-prints, water-filled 

holes in rocks and trees, as well as dams, river beds and lake shores. Consequently they are 

responsible for much of the malaria transmission in Africa. 

 

Less rainfall and drought can also penchant mosquito breeding and malaria transmission in 

other areas. Such places are usually covered by vegetation throughout the year and streams 

and rivers often flow rapidly. Lack of rains interrupt the flow of streams and pooling occurs 

along the stream. Thus a favorable environment for mosquito breeding occurs. Malaria 

vectors mainly breed in stagnant water collections, rarely in slightly moving waters and never 
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in rapidly flowing rivers and streams. In drier areas, rainfall can also affect malaria 

transmission indirectly through its effect on humidity. Vegetation cover increases after 

rainfall, which in turn increases the relative humidity of the environment.  

Relative humidity affects the activity and survival of mosquitoes, hence malaria transmission. 

Mosquitoes should live at least 8–10 days to be able to transmit malaria. This is the duration 

of time required for the parasite to complete its development inside the gut of the mosquito 

host. Premature death of the mosquito leads to failure of parasite development and 

transmission. Mosquitoes‟ survival thrives under conditions of high humidity. They also 

become more active with increase in humidity. They are more active and prefer feeding 

during the night for the reason that the relative humidity of the environment is higher at night. 

If the average monthly relative humidity is below 60%, it is believed that the life of the 

mosquito is so short that very little or no malaria transmission is possible. Malaria 

transmission could be high due to the following factors: 

 Immediately following the rains, the explanation for this is that plenty of water 

collections for vector breeding are available after the rainy season. 

 When the temperature is hot, the reason is that temperature speeds up vector and 

parasite development. 

 When the rains fail and there is drought, as rivers and small streams usually slow 

down into pools, thus stagnant water collections for vector breeding. 

 When the fields are covered with vegetation, because when the vegetation cover is 

high the humidity increases; higher humidity helps the mosquito to live longer and 

transmit malaria (OpenLearn Labspace website).  

Non-climatic factors are those that affect malaria transmission, but which are not related to 

the climate. These factors include, and not limited to; the type of vector, the type of parasite, 

drug resistance in parasites, environmental development and urbanization, population 
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movement and migration, the level of immunity to malaria in the human hosts, and 

insecticide resistance in mosquitoes. All these have a role in affecting the severity and 

incidence of malaria, over and above the climatic factors.  

Mosquitoes need a blood meal to develop and reproduce, which can either come from 

humans or animals, with those that feed on both equally being weaker malaria vectors. The 

most efficient carriers of malaria are those that feed on humans than those that feed on 

animals. Not all mosquitoes transmit malaria but only Anopheles mosquitoes can carry the 

malaria parasite, with Anopheles arabiensis, being responsible for more than 95% of malaria 

transmissions. Different species of Anopheles mosquitoes differ in their capacity to transmit 

malaria, depending on the biology and behaviour of the mosquitoes. Mosquitoes in the 

Anopheles gambiae group, which includes Anopheles arabiensis, are the most efficient 

malaria vectors in the world. These mosquitoes are found only in Africa, thus vouching for 

the higher incidence of malaria in Africa as compared to other parts of the world.  

 

Different human hosts are either immune, or non-immune to malaria, hence affecting the 

pattern of malaria transmission and the severity of the disease. Immune people often have a 

better chance of tolerating the effects of malaria and surviving the disease than non immune 

people. In highly endemic areas, children under five years of age and pregnant women have 

weak immunity to malaria infection and are the most at risk. Immunity to malaria develops 

slowly after several infections and children usually gain their immunity at least after five 

years. Certain population groups can either be infected by some types of malaria parasites, 

but not by others. For example most Africans south of the Sahara can get infected by 

falciparum malaria, but not by vivax malaria. Falciparum malaria which is the deadliest form 

of malaria is highly prevalent in the African continent. This explains why most of the deaths 

due to malaria occur in Africa (OpenLearn Labspace website).
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2.7 IPCC Reported Climate Change and Variability in African Region 

The Intergovernmental Panel on Climate Change (IPCC) evaluated the risk of climate change 

caused by human activity in TAR. In the future trend analysis described in TAR (IPCC, 

2001), reference is made to Special Report on Emissions Scenarios storylines (SRES). The 

SRES describes the relationships between the forces driving greenhouse gas and aerosol 

emissions and their evolution during the 21st century.  

 

Regional averages of temperature and precipitation projections for Africa from a set of 21 

global models in the multi-model dataset (MMD) for the A1B scenario is shown in the Table 

2.1 below which is extracted from IPCC 2007 report. The mean temperature and precipitation 

responses were first averaged for each model over all available realizations of the 1980 to 

1999 period from the 20th Century Climate in Coupled Models (20C3M) simulations and the 

2080 to 2099 period of A1B. Computing the difference between these two periods, the Table 

shows the minimum, maximum, median (50%), and 25%  and 75% quartile values among the 

21 models, for temperature (°C) and precipitation (%) change. Regions in which the middle 

half (25–75%) of this distribution is all of the same sign in the precipitation response are 

colored light brown for decreasing and light blue for increasing precipitation (IPCC, 2007). 
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Table 2. 1: Reported Temperature and Precipitation change: Regions are West Africa (WAF), East 

        Africa (EAF), South Africa (SAF) and Sahara (SAH) (Source: Table 11.1, IPCC 2007, pg  

        854. 

 

 
 

 

 

Signal-to-noise ratios for these 20-year mean responses is indicated by first computing a 

consensus standard deviation of 20-year means, using those models that have at least three 

realizations of the 20C3M simulations and using all 20-year periods in the 20th century. The 

signal is assumed to increase linearly in time, and the time required for the median signal to 

reach 2.83 (2 × √2) times the standard deviation is displayed as an estimate of when this 

signal is significant at the 95% level (IPCC, 2007). These estimates of the times for 

emergence of a clearly discernible signal are only shown for precipitation when the models 

are in general agreement on the sign of the response, as indicated by the coloring. The 

frequency (%) of extremely warm, wet and dry seasons, averaged over the models, is also 

presented.  
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Values are only shown when at least 14 out of the 21 models agree on an increase (bold) or a 

decrease in the extremes. A value of 5% indicates no change, as this is the nominal value for 

the control period by construction. The regions are defined by rectangular latitude/longitude 

boxes and the coordinates of the bottom left-hand and top right-hand corners of these are 

given in degrees in the first column under the region acronym (see table notes for full names 

of regions). Information is provided for land areas contained in the boxes except for the Small 

Islands regions where sea areas are used and for Antarctica where both land and sea areas are 

used (1PCC, 2007) on page 854. 

 

2.8 Geostatistical Modeling and Prediction 

The environment is continuous, but in general, properties at only a finite number of places 

can be measured, thus obtaining point samples. The samples deal with properties that vary in 

ways that are far from systematic and at all spatial scales. The environment extends more or 

less continuously in two dimensions. Its properties have arisen as the result of the actions and 

interactions of many different processes and factors. Each process might itself operate on 

several scales simultaneously, in a non-linear way, and with local positive feedback. The 

environment, which is the outcome of these processes, varies from place to place with great 

complexity and at many spatial scales, from micrometres to hundreds of kilometres. The 

major changes in the environment are obvious enough, but others are more subtle. When the 

variation at different spatial resolutions is described, insight can be gained into the processes 

and factors that cause or control it, and so predict in a spatial sense and manage resources. 

 

For any qualitative data analysis, geostatistics enables estimation or prediction without bias 

and with minimum error. However, geostatistics can never provide complete information, of 

course, but, given the data, it can permit estimation of the probabilities that true values 
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exceed specified thresholds. Measurements are made on small volumes of material or areas a 

few centimetres to a few metres across, regarded as point samples or supports.  

 

In some instances the supports are enlarged by taking several small volumes of material and 

mixing them to produce bulked samples. In others several measurements might be made over 

larger areas and averaged rather than recorded as single measurements. Even so, these 

supports are generally very much smaller than the regions themselves and are separated from 

one another by distances several orders of magnitude larger than their own diameters. 

Nevertheless, they must represent the regions, preferably without bias. 

 

An additional feature of the environment is that at some scale the values of its properties are 

positively related, that is autocorrelated. Places close to one another tend to have similar 

values, whereas ones that are farther apart differ more on average. Geostatistics expresses this 

intuitive knowledge quantitatively and then uses it for prediction. However, error in the 

estimates is inevitable, but by quantifying the spatial autocorrelation at the scale of interest, 

the errors can be minimized and also estimated. 

  

Measurements of the environment are made on small bodies of material or supports separated 

from one another by relatively large distances. These constitute a sample from a continuum 

that cannot be recorded everywhere. The values that can be lying in the intervening space 

should be predicted in a spatial sense from their more or less sparse data. For instance, 

meteorologists can predict rainfall from their rain gauges, hydrogeologists predict flow 

properties in rock from their measurements in boreholes, mining engineers estimate ore 

grades from diamond drill cores, and agronomists estimate concentrations of elements in the 
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soil from auger samples. Therefore, mapping the spatial distributions of the variables 

provides a basis for quantitative and qualitative analysis.  

 

Mostly, attempts of spatial prediction have been mathematical, based on geometry and some 

appreciation of the physical nature of the phenomena. Most of them take into account only 

systematic or deterministic variation, but not any error. In these respects, the methods fall 

short of what is needed practically. In geostatistical prediction, Kriging is the logically more 

conclusive than the other spatial prediction attempts in that it builds on them and overcomes 

their weaknesses. Nearly all the methods of prediction, including the simpler forms of 

Kriging, can be seen as weighted averages of data (Webster and Oliver, 2007). The general 

prediction formula is as shown in Equation 2.7: 
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*  ……………………………………………………………………..(2.7) 

where;   0

* XZ = the prediction;  

  0X = a target point for which we want a value, the  iXZ ; Ni ,........2,1 ; 

  N = total number of sample points; 

  iX = measured data; 

  i = assigned weights. 

Assigning of weights for some common methods of prediction is done as described in the 

following sub-sections. 

 

2.8.1 Thiessen Polygons 

 

Thiessen (Voronoi) polygons define individual areas of influence around each point of a set 

of sample points. The boundaries of the Voronoi polygons define the area that is closest to 

each point relative to all other points. They are mathematically defined by the perpendicular 
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bisectors of the lines between all sampling points. These polygons can be used for instance to 

delineate a set of soil sampling points to define non overlapping polygons for each soil type. 

The following diagram in Figure 2.5 illustrates Thiesssen polygons generated from a feature 

layer of point sample data. 

Point Collection Convex Hull Thiessen Polygons 

   

Figure 2. 5: Thiessen Polygons from point data  

(Source:  http://www.ian-ko.com/ET_GeoWizards/UserGuide/thiessenPolygons.htm)  

 

In this method, the region sampled, R, is divided by perpendicular bisectors between the N 

sampling points into polygons or tiles, NiVi ,......,2,1,  , such that in each polygon all points 

are nearer to its enclosed sampling point iX than to any other sampling point. The prediction 

at each point in iV is the measured value at iX , that is    iXZXZ 0

* . The weights are as in 

Equation 2.8 below: 





 


otherwise

VXif ii

i
0

,1
 …………………………………………..(2.8) 

This method has shortcomings because each prediction is based on just one measurement, 

there is no estimate of the error, and information from neighbouring points is ignored. When 

used for mapping, the result is crude in that the interpolated surface consists of a series of 

steps. 

 

http://www.ian-ko.com/ET_GeoWizards/UserGuide/thiessenPolygons.htm
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2.8.2 Triangulation 

 

In this method, the sampling points are linked to their neighbors by straight lines to create 

triangles that do not contain any of the points. The measured values are envisaged as standing 

above the basal plane at a height proportional to those values so that the whole set of data 

forms a polyhedron consisting of more or less tilted triangular plates. The aim is to determine 

the height of the plate at 0X from the apices of the triangle by linear interpolation. This can 

be represented as a weighted average and the weights are determined. In order to determine 

the weights, the coordinates of the three apices are denoted by 

   22211211 ,,, xxxx and 3231, xx ; and those of the target point denoted by 0201, xx . Then the 

weights are given by Equation 2.9 (Webster and Oliver, 2007): 

 

     
     3121321232223111
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1

xxxxxxxx

xxxxxxxx




 ……………….....(2.9) 

 

The technique is simple and local, but the disadvantages are that, although it is somewhat 

better than the Thiessen method, each prediction makes no use of data further away, and there 

is again no measure of error. Unlike the Thiessen method, the resulting surface is continuous, 

but it has abrupt changes in gradient at the margins of the triangles. If the principal aim is to 

predict rather than to make a map with smooth isolines then the discontinuities in the 

derivative are immaterial. Another difficulty is that there is no obvious triangulation that is 

better than any other; even for a rectangular grid there are two options. 
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2.8.3 Natural Neighbor Interpolation 

 

As reported by Webster and Oliver, (2007), Sibson (1981) combined the best features of the 

two methods above in what he called „natural neighbour interpolation‟. The first step is to 

triangulate the data by Delauney‟s method.  The apices of the triangles are those sampling 

points in adjacent Dirichlet tiles. This triangulation is unique except where the data are on a 

regular rectangular grid. To determine the value at any other point, x0, that point is inserted 

into the tessellation, and its neighbours, the set T (the points within its bounding Dirichlet 

tiles), are used for the interpolation. Sibson (1981) referred to these points as „natural 

neighbours‟. For each neighbour the area, A, of the portion of its original Dirichlet tile that 

became incorporated in the tile of the new point is calculated. These areas, when scaled to 

sum to 1, become the weights. This can be represented as in Equation 2.10: 
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 for all ..,.........2,1 Ni  ………………………………………………………………(2.10) 

Where;  i = assigned weights, 

  iA = overlap area corresponding to a known data point ix  

This means that if a point ix  is a natural neighbour, that is Txi  , then iA  has a value and 

the point carries a positive weight. If ix  is not a natural neighbor then it has no area in 

common with the target and its weight, i , is zero. This interpolator is continuous and smooth 

except at the data points where its derivative is discontinuous. This was referred to as the 

natural neighbour 0C interpolant (Sibson, 1981). 
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2.8.4 Inverse Functions of Distance 

 

Methods based on inverse functions of distance, have the weights defined by the formula in 

equation 2.11 below:  


 0/1 xxii  with   > 0;….……………………………………………………….......(2.11) 

 

where:  0x = a target point for which we want a prediction value;   

ix = measured data; 

 i = assigned weights. 

They are scaled so that they sum to 1, and the result is that data points near to the target point 

carry larger weight than those further away. The most popular choice of   is 2 so that the 

data are inversely weighted as the square of distance. 

 

Similar to the triangulation, if 0x coincides with any ix  then i  becomes infinite, the other 

weights are immaterial, and  0xz  takes the value  ixz . Therefore, interpolation is exact. A 

desirable feature of weighting by inverse squared distance is that the relative weights 

diminish rapidly as the distance increases, and so the interpolation is sensibly local. Further, 

because the weights never become zero there are no discontinuities. Its disadvantages are that 

the choice of the weighting function is arbitrary, and there is no measure of error. Moreover, 

it takes no account of the configuration of the sampling. So where data are clustered, two or 

more points may be at approximately the same distance and direction from 0x , and each point 

will carry the same weight as an isolated point a similar distance away but in a different 

direction. This is clearly undesirable, and some implementations for mapping have elaborated 

the scheme to overcome this problem, such that the interpolated surface will have a gradient 

of zero at the data points, and maxima and minima can occur only there. 
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2.8.5 Trend Surfaces 

 

 

Trend surfaces are a form of multiple regression in which the predictors are the spatial 

coordinates. For example in Equation 2.12: 

    ,,, 2121  xxfxxz ……………………………………………...............(2.12) 

where,  21, xxz is the predicted value at  21, xx and f denotes a function of the spatial 

coordinates there. The model contains an error term, , and in regression this is assumed to 

be independently and identically distributed with mean 0 and variance 
2

 . Plausible 

functions, usually simple polynomials such as planes, quadratics or cubics, are fitted by least 

squares to the spatial coordinates, and the resulting regression equation is used for the 

prediction. Thus for a plane the regression equation would be as shown in equation 2.13 

below: 

,22110 xbxbbz  ………………………………………………………….(2.13) 

On the other hand, for a quadratic surface the regression equation would be as shown in 

equation 2.14; 

.215

2

24

2

1322110 xxbxbxbxbxbbz  ………………………………………(2.14) 

where; x‟s are the spatial coordinates and b‟s are the coefficients. 

 

The predictor can be expressed as a weighted average of the data used to obtain the trend. 

The spatial coordinates and their powers are represented by a matrix X with N rows for the N 

sampling points and as many columns as coefficients b to be estimated. For a first-order 

surface the spatial coordinates are written as a matrix as in Equation 2.15 below; 
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In the matrix, the first column is a dummy variant of ones, and the recorded values of z at 

those places are vectors as in Equation 2.16; 
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1

…………………………………………………………………………....(2.16) 

The coefficients b are obtained from the matrix multiplication (Equation 3.12) and the 

predictions are then given by *

0z  (Equation 2.18), in which 0x is the row vector  02011 xx . 

The weights are yielded by Equation (2.17) below. For a more complex surface the matrix X 

is simply extended by adding columns for the additional powers of 1x  and 2x . 

  ,
1

zxxxb TT 
 …………………………………………………………………………………...........(2.17)

  

bxz 0

*

0  ,……………………………………………………………………………………………….(2.18) 

In most instances of trend surfaces, spatial variation is so complex that a polynomial of very 

high order is needed to describe it, and the resulting matrix equations are usually unstable. 

The residuals from the trend are auto-correlated, and so one of the assumptions of regression 

is violated. Thus, in a region containing both mountains and plain the prediction of 

topographic height on the plain will be determined by the much larger fluctuations in the 

mountains. Trend surfaces are not sufficiently local, and they do not return the values at data 
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points. Nevertheless, simple regression surfaces can represent long-range trend in some 

instances. The technique has its merits therefore in revealing long-range structures and 

filtering them to leave variation of shorter range that can be analyzed by other techniques. 

 

 

2.8.6 Splines 

 

A spline function also consists of polynomials, but each polynomial of degree p is local rather 

than global (Webster and Oliver, 2007). The polynomials describe pieces of a line or surface, 

and they are fitted together so that they join smoothly, and their 1p derivatives are 

continuous. The places at which the pieces join are known as „knots‟, and the choice of knots 

confers an arbitrariness on the technique. Splines can be constrained to pass through the data. 

Alternatively, by choosing knots away from the data points they can be fitted by least squares 

or some other method to produce smoothing splines. Typically the splines are of degree 3, 

referred to as cubic splines. 

 

2.9 The Variogram 

Most environmental variables are continuous; the stochastic processes that are believed to 

represent them are continuous, and so also are the autocovariance functions and variograms 

of a continuous lag. The variogram is a function of an underlying stochastic process and may 

be regarded as the theoretical variogram. It may be thought of as the average of the 

variograms from all possible realizations of the process. The regional variogram is the 

variogram of the particular realization in a finite region, R. It is the one that might be 

computed if complete information of the region could be available. The regional variogram 

does not necessarily represent the whole ensemble. A process that is second-order stationary 

might appear unbounded in a small region, especially if the distance across the region is 
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smaller than the correlation range. It is more or less accessible, depending on the effort we 

are prepared to devote to sampling the realization.  

 

The experimental variogram is computed from data, z(xi), i = 1,2….., which constitute a 

sample from the region, R. It is also called the sample variogram. It necessarily applies to an 

actual realization, and it estimates the regional variogram for that realization. It is usually the 

only variogram that we may know. The variogram seeks to summarize the spatial relations in 

data. The true variogram representing the regional variation should be conti 
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CHAPTER 3: METHODOLOGY 

 

The methodology employed in this research was Ecological Niche Modeling (ENM), a 

technique that encompasses a suite of tools that relate known occurrences of species or 

phenomena to raster geographic information system layers that summarize variation in 

several environmental dimensions. The spatial-temporal distributions of the main malaria 

vectors in Kenya were quantified using BIOCLIM and DOMAIN models to determine the 

relationship between vector distribution and climate change.  

 

The biological data used was from published sources (Okara et al., 2010 and MARA/ARMA, 

1998), comprising of point samples for geo-referenced malaria vector occurrences. The 

climate data used was maximum temperature, minimum temperature and precipitation for 

current climate (1950-2000) and climate projection for HADCM3, CCCMA and SCIRO 

models of IPCC projected future climate under the A2a scenario by the years 2020, 2050 and 

2080. The climate data was acquired in grid format from WorldClim global climate data 

which was further processed to generate 19 bioclimatic variables for Kenya. Predictive 

modeling was done to correlate climate change as an explanatory variable to the changing 

dynamics of malaria vector distribution in Kenya. 

 

3.1 Data 

Correlative species distribution models require two types of data input: 

 Biological data – describing the known species distribution. 

 Environmental data – describing the landscape in which the species is found. 
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3.1.1 Malaria Vector Data 

 

Malaria vector data was acquired from published sources. The details of the data are 

summarized in Table 3.1 below. 

    Table 3. 1: Description of acquired malaria vector data  

Data 

Sources 
 KEMRI (Okara, et al.,2010)  

 

 MARA ARMA project (1998).  

 

Data 

types 

 

• Database of Presence only data – records of localities where the 

malaria vectors have been observed with GPS reference. 

• Metadata – information about the databases.  

 

Data 

Format 

 

• Point vector data - representing points where malaria vectors 

have been observed. 

• Polygon vector data – polygons defining areas where malaria 

vectors are found. 

• Raster data – converted grid of cells representing ecology types.  

 

The malaria vector data acquired, as amassed by Okara, et al., 2010 was primary empirical 

data from published and unpublished sources. This data was collated for the period from 

1990 to 2009. Details recorded for each source in the database included the first author, year 

of publication, report type, survey location name, month and year of survey, the main 

Anopheles species reported as present and the sampling and identification methods used. 

Survey locations were geo-positioned using national digital place name archives and on-line 

geo-referencing resources. The geo-located species-presence data were displayed and 

described administratively, using first-level administrative units (province), and biologically, 

based on the predicted spatial margins of Plasmodium falciparum transmission intensity in 

Kenya for the year 2009 (Figure 3.1). Each geo-located survey site was assigned an urban or 

rural classification and attributed an altitude value. 
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A total of 498 spatially unique descriptions of Anopheles vector species across Kenya were 

identified. More than half (54%) of the sites surveyed were investigated since 2005. A total 

of 174 sites reported the presence of Anopheles gambiae complex without identification of 

sibling species. Anopheles arabiensis and Anopheles funestus were the most widely reported 

at 244 and 265 spatially unique sites respectively with the former showing the most 

ubiquitous distribution nationally. Anopheles gambiae, Anopheles arabiensis, Anopheles 

funestus and Anopheles pharoensis were reported at sites located in all the transmission 

intensity classes with more reports of Anopheles gambiae in the highest transmission 

intensity areas than the very low transmission areas (see Apendix A, Table A.1). 

 

Figure 3. 1:  Map of Kenya showing the spatial distribution of 498 unique survey sites displayed 

  over first –level administrative boundaries (provinces) and the predicted endemicity 

  classes.(Source:  Okara, et al., 2010. Malaria journal, DOI: 10.1186/1475-2875-9-69). 

http://www.malariajournal.com/content/9/1/69/figure/F2?highres=y
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The survey data for MARA/ARMA project (1998) had been geo-referenced so as to 

determine the latitude and longitude to be applied in geospatial analysis. The geospatial data 

for the survey sites was published in some reports, while in others, only the name of the area 

or settlement where the survey was carried out was provided. In such cases, as reported in the 

data collection process, the geographical location had to be obtained by either reading it off a 

topographical map, or by using digital maps and databases, such as the African Data Sampler 

(World Resources Institute, 1995) the Geoname Gazetteer (GDE Systems Inc., 1995) or 

Encarta (Microsoft, 1998). The database contained various data classes from different 

countries in Africa. For the purpose of this research, entomology data for Kenyan was 

extracted from the published database (see Apendix 1, Table A.2).  

 

 

3.1.2 Climate Data 

 

The Climate data used was acquired from WorldClim climate surfaces for the globe. It 

covered the duration from 1950 – 2000 giving scenarios for future climate change for the 

globe and reconstructed palaeoclimates. The ESRI grid data format was extracted for 

geostatistical modeling. Further processing of the data was done to generate the 19 

bioclimatic variables that were used for ecological niche modeling. These bioclimatic 

variables represent: 

 annual trends (e.g., mean annual temperature, annual precipitation);  

 seasonality (e.g., annual range in temperature and precipitation); and  

 extreme or limiting environmental factors (e.g., temperature of the coldest and 

warmest month, and precipitation of the wet and dry quarters).  

The acquired data was adopted as developed by Hijmans, et al., 2005 and comprised the 

interpolated climate surfaces for global land areas, at a spatial resolution of 30 arc seconds 

(often referred to as 1-km spatial resolution). The climate elements that were considered in 
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the interpolation included monthly precipitation and mean, minimum, and maximum 

temperature. The input data used were gathered from a variety of sources and, where 

possible, were restricted to records from the 1950–2000 period. As reported by Hijmans, et 

al., 2005, the thin-plate smoothing spline algorithm implemented in the ANUSPLIN package 

for interpolation, using latitude, longitude, and elevation as independent variables was used to 

generate the high resolution data.  

 

Any possible uncertainty arising from the input data and the interpolation by mapping 

weather station density, elevation bias in the weather stations, and elevation variation within 

grid cells and through data partitioning and cross validation was quantified. Uncertainty in 

climate surfaces usually stems from the quality of the input data and the interpolation method 

used. The geographic variation in uncertainty is illustrated by carrying out a number of 

complimentary analyses. Elevation bias tended to be negative (stations lower than expected) 

at high latitudes but positive in the tropics. Uncertainty was reported as highest in 

mountainous and in poorly sampled areas. Data partitioning showed high uncertainty of the 

surfaces on isolated islands, e.g. in the Pacific (Hijmans, et al., 2005).  

 

The ANUSPLIN-SPLINA program, which uses every station as a data point, was used to 

generate interpolated climate surfaces. Second-order spline was fitted using latitude, 

longitude, and elevation as independent variables; due to the fact that this produced the 

lowest overall cross-validation errors as compared with some other settings like for instance, 

the third-order spline. SPLINA fits a continuous surface to the points, but, as in regression, 

the surface does not necessarily go through every observed point. The climate models created 

by ANUSPLIN-SPLINA are continuous surfaces that can be interrogated for any specific 

location and elevation within the specified domain of interpolation. The resolution of the data 
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thus only depends on the grid that is used to sample the continuous prediction (with the 

ANUSPLIN-LAPGRD program), and the higher the resolution of the grid, the better it 

represents the modeled climate data.  

 

The fabricated climate surfaces data had the following advantages as compared to any 

previous global climatologies: the data are at a higher spatial resolution (400 times greater or 

more); more weather station records were used; improved elevation data were used; and more 

information about spatial patterns of uncertainty in the data is available. However, due to the 

overall low density of available climate stations, the generated surfaces do not capture of all 

variation that may occur at a resolution of 1 km, particularly of precipitation in mountainous 

areas.  

 

The IPCC Third Assessment Report data for future climate projections calibrated and 

statistically downscaled using the WorldClim data for 'current' conditions was acquired for 

use in modeling the distribution of malaria vectors in Kenya. The current climate (1950-

2000) data was obtained in ESRI grids format. These grids can be used in any ESRI software 

platform, hence exported to any other software for modeling. The datasets are summarized in 

Table 3.2 below. 
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     Table 3. 2: WorldClim climate data (current and future).  

 Down loaded Climate Grids 

Current 

(1950-2000) 

 

Precipitation:   prec_30s_esri.zip 

Maximum temperature:  tmax_30s_esri.zip 

Minimum temperature:  tmin_30s_esri.zip 

 

Climate 

Model 

By 

(Year) IPCC  Projected Future Climate Grids 

HADCM3 2020 Precipitation:   wc_30s_HADCM3_A2a_2020_prec.zip 

  Maximum temperature: wc_HADCM3_A2a_2020_tmax.zip 

  Minimum temperature:  wc_HADCM3_A2a_2020_tmin.zip 

 2050 Precipitation:   wc_30s_HADCM3_A2a_2050_prec.zip 

  Maximum temperature: wc_HADCM3_A2a_2050_tmax.zip 

  Minimum temperature:  wc_HADCM3_A2a_2050_tmin.zip 

 2080 Precipitation:   wc_30s_HADCM3_A2a_2080_prec.zip 

  Maximum temperature: wc_HADCM3_A2a_2080_tmax.zip 

  

Minimum temperature:  wc_HADCM3_A2a_2080_tmin.zip 

 

CCCMA 2020 Precipitation:   wc_30s_CCCMA_A2a_2020_prec.zip 

  Maximum temperature:   wc_CCCMA_A2a_2020_tmax.zip 

  Minimum temperature:  wc_CCCMA_A2a_2020_tmin.zip 

 2050 Precipitation:   wc_30s_CCCMA_A2a_2050_prec.zip 

  Maximum temperature:   wc_CCCMA_A2a_2050_tmax.zip 

  Minimum temperature:  wc_CCCMA_A2a_2050_tmin.zip 

 2080 Precipitation:   wc_30s_CCCMA_A2a_2080_prec.zip 

  Maximum temperature:   wc_CCCMA_A2a_2080_tmax.zip 

  

Minimum temperature:  wc_CCCMA_A2a_2080_tmin.zip 

 

CSIRO 2020 Precipitation:   wc_30s_CSIRO_A2a_2020_prec.zip 

  Maximum temperature:  wc_CSIRO_A2a_2020_tmax.zip 

  Minimum temperature:  wc_CSIRO_A2a_2020_tmin.zip 

 2050 Precipitation:   wc_30s_CSIRO_A2a_2050_prec.zip 

  Maximum temperature:   wc_CSIRO_A2a_2050_tmax.zip 

  Minimum temperature:  wc_CSIRO_A2a_2050_tmin.zip 

 2080 Precipitation:   wc_30s_CSIRO_A2a_2080_prec.zip 

  Maximum temperature:   wc_CSIRO_A2a_2080_tmax.zip 

  

Minimum temperature:  wc_CSIRO_A2a_2080_tmin.zip 

 

 

After acquisition of the global climate surfaces from WorldClim database, further processing 

was done to extract by mask the national grid for Kenya. Bioclimatic variables were 

generated in DIVA-GIS eventually to be used in ecological niche modeling. The default 

coding for the bioclimatic variables was as shown in Table 3.3. 
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Table 3. 3: Coding of bioclimatic variables 

 

Abbreviation Description of bioclimatic variable 

BIO1  Annual Mean Temperature. 

BIO2   Mean Diurnal Range (Mean of monthly (max temp - min temp)). 

BIO3  Isothermality (BIO2/BIO7) (* 100). 

BIO4   Temperature Seasonality (standard deviation *100). 

BIO5  Max Temperature of Warmest Month. 

BIO6   Min Temperature of Coldest Month. 

BIO7   Temperature Annual Range (BIO5-BIO6). 

BIO8   Mean Temperature of Wettest Quarter. 

BIO9  Mean Temperature of Driest Quarter. 

BIO10   Mean Temperature of Warmest Quarter. 

BIO11   Mean Temperature of Coldest Quarter. 

BIO12  Annual Precipitation. 

BIO13   Precipitation of Wettest Month. 

BIO14 Precipitation of Driest Month. 

BIO15  Precipitation Seasonality (Coefficient of Variation). 

BIO16 Precipitation of Wettest Quarter. 

BIO17  Precipitation of Driest Quarter. 

BIO18  Precipitation of Warmest Quarter. 

BIO19 Precipitation of Coldest Quarter.  
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3.2 Methodology 

In order to model the spatial-temporal distribution of malaria vectors in Kenya, the model-

building process entailed model selection, model fitting, and model validation. These three 

basic steps are applied iteratively until an appropriate model for the data to be analyzed has 

been developed. In the model selection step, plots of the data, process knowledge and 

assumptions about the process are used to determine the form of the model that can be fit to 

the data. Figure 3.2 below shows the model-building process. 

 

Figure 3. 2:  Flow diagram for the steps required in building a species distribution model. 
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Further to model selection, using the selected model and possibly information about the data, 

an appropriate model-fitting method is used to estimate the unknown parameters in the 

model. When the parameter estimates have been made, the model is then carefully assessed. 

The underlying assumptions of the analysis are quantified for plausibility. Validity of the 

assumptions renders the model useful so as to answer the scientific or engineering questions 

that prompted the modeling effort. In case the model validation identifies problems with the 

current model, then the modeling process is repeated using information from the model 

validation step to select and/or fit an improved model. 

 

3.2.1 Selecting Prediction Models for Ecological Niche Modeling 

 

There exist varieties of environmental modeling approaches that are capable of being applied 

to generate species distribution in current and future ecologies under climate change 

scenarios. The selection of appropriate modeling methodology largely depends on the type of 

data available. The different published models used in environmental modeling include the 

following (Pearson, 2007): 

 

 BIOCLIM / DOMAIN Models are useful in modeling presence only malaria vector 

distribution data and prediction is made without any reference to other samples in the 

study area. The Software used to implement it is Diva GIS which is freeware. 

 MAXENT / ENFA models use “background” environmental data for the entire study 

area; focus on how the environment where the malaria vectors are known to occur 

relates to the environment across the study area („the background‟); and importantly, 

the occurrence localities are included as part of the background. 

 BIOMOD Multiple Methods sample „pseudo-absences‟ from the study area. In 

principle, any presence-absence algorithm can be implemented using pseudo-

absences; the aim here being to assess differences between the occurrence localities 
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and a set of localities chosen from the study area that are used in place of real absence 

data. The occurrence localities within the set of pseudo-absences are not included. 

 Models for presence and absence or pseudo-absence are implemented in R- GIS 

Software which is freeware. These models include: 

• GLM – Generalized Linear Model; 

• GAM – Generalized Additive Model; 

• BRT – Boosted Regression Trees; 

• MARS – Multivariate Adaptive Regression Splines. 

 

For this research, BIOCLIM and DOMAIN models were adopted based on the type of data 

available to predict the ecological niches of Malaria vector distribution in Kenya. This 

criterion for model selection was arrived at since presence only biological data was collated. 

Models that predict distributions of species by combining known occurrence records with 

digital layers of environmental variables have much potential for application in ecological 

niche modeling. The most applied strategy for estimating the actual or potential geographic 

distribution of a species is by characterizing the environmental conditions that are suitable for 

the species to thrive in certain ecology, and then identify where suitable environments are 

distributed in space. The environmental conditions that are suitable for a species can be 

characterized either by use of a mechanistic or a correlative approach.  

 

Mechanistic models aim to incorporate physiologically limiting mechanisms in a species‟ 

tolerance to environmental conditions. For instance, a species response to environmental 

variables like daily precipitation, mean daily temperatures and night length can be used to 

model the distribution using mechanistic models of factors such as phenology, frost injury 

and reproductive success. Such mechanistic models would require thorough understanding of 
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the physiological response of species to environmental factors.  Therefore, in terms of 

applicability, such models are difficult to develop for all but the most well understood 

species.  

 

Conversely, correlative models usually aim to estimate the environmental conditions that are 

suitable for a species by associating known species‟ occurrence records with suites of 

environmental variables that can reasonably be expected to affect the species‟ physiology and 

probability of persistence. The central assertion in such approach is that the observed 

distribution of a species would provide useful information regarding the environmental 

requirements of that particular species. Since spatially unequivocal occurrence records for a 

large number of species are available, the vast majority of species‟ distribution models are 

correlative. Therefore, this fusion has embarked on the correlative approach to malaria vector 

distribution modeling. 

 

The extracted climate data can be used to predict new suitable ecologies where a species is 

likely to occur, or would survive if it was brought there. BIOCLIM prediction results into 

different types of areas that are mapped according to percentile range of suitability. The areas 

are classified in terms of their suitability ranging from not suitable to excellent areas. 

BIOCLIM true/false makes use of binary numbers.  All areas that are within the envelope 

described by the data points, cut off beyond a certain user defined percentile, are mapped as 

“true” (1) and all other areas are mapped as “false” (0).  

 

The Domain procedure calculates the Gower distance statistic between each cell on the map 

and each point, using the values of the 19 climate variables. The distance between point A 

and grid cell B for a single climate variable is calculated as the absolute difference in the 
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values of that variable divided by the range of the variable across all points. The Gower 

distance is then the mean over all climate variables (Equation 3.1).  
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The Domain similarity statistic is calculated as in Equation 3.2 below:  

ABdD 1 ………………………………………………………………………………...(3.2) 

The maximum similarity between a chosen grid cell and all sample points is mapped. In 

DIVA GIS software that is used to implement the prediction, this value is then multiplied by 

100. A good match is thus a high number (e.g., above 95). Domain true/false selects all areas 

that are within the specified threshold and are mapped as “true” (1) while all other areas are 

mapped as “false” (0).  

 

3.2.2 Model Validation 

 

The prediction models used in this study were validated to assess the accuracy of models‟ 

predictions. The data was split into test data (evaluation data) and calibration data (training 

data). Training data was used to build the model. In order to test predictive performance, test 

data was used to run the model predictions. BIOCLIM and DOMAIN models were used in 

ecological studies as tools for extrapolating field measurements and integrating complex 

ecological information over space and time.  

 

BIOCLIM and DOMAIN predictive models have been used in this research as a means for 

estimating spatial-temporal patterns of malaria vector distribution in Kenya with climate data 

from HADCM3, CCCMA and CSIRO under A2a scenario. The potential impact of climate 

change on malaria suitable ecologies has been predicted and an assessment of the predictive 

accuracy is fundamental. Section 3.1.2.1 provides further explanations on the evaluation of 

BIOCLIM and DOMAIN model performance. 
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Ideally, qualitative and quantitative assessment of model performance assists in determining 

the suitability of the model for specific applications and may help to identify those aspects of 

the model that may require improvement. In the event that different modeling techniques 

have been explored, an assessment of model performance provides a basis for comparing 

alternative methodologies in order to achieve the most probable accuracy. In species 

distribution modeling, predictor variables are typically organized as raster (grid) type files. 

Each predictor should be a 'raster' representing a variable of interest. Bioclimatic Variables 

derived from mean, maximum and minimum precipitation and temperature over decades 

were generated and stored in GIS ESRI grid format.  

 

In univariate statistical modeling, dependent variables typically consist of field measurements 

performed at known locations and the independent variables are derived from the raster files 

containing continuous data. Univariate regression models are used to relate the dependent and 

independent variables. However, the means for compiling data, synthesizing these data and 

developing predictive models to relate ecological functions to quantifiable landscape 

characteristics entails complex interrelationships. Since the factors that determine the values 

of environmental variables are numerous, largely unknown in detail, and interact with a 

complexity that we cannot disentangle, we can regard their outcomes as random.  

 

If a stochastic view is adopted, then at each point in space there is not just one value for a 

property but a whole set of values. The observed value there can be regarded as one drawn at 

random according to some law, from some probability distribution. This means that at each 

point in space there is variation, a concept that has no place in classical estimation. Thus, at a 

point x a property, Z(x), is treated as a random variable with a mean,  , a variance, 2 , and 

higher-order moments, and a cumulative distribution function (cdf). It has a full probability 



   

66 
 

distribution, and it is from this that the actual value can be drawn. By knowing approximately 

what that distribution might be, values at unrecorded places can be estimated from data in the 

neighborhood and errors can be put on the estimates. 

 

Multivariate statistical techniques that can evaluate many variables simultaneously were used 

to predict the malaria vector distribution. Multiple regression analysis relates the dependent 

variable statistically to several independent variables, resulting in an equation of the form 

shown in equation 3.3 below: 

.........3322110  xaxaxaaz     ……………………………………………………(3.3) 

where ,,, 210 aaa etc. are the coefficients of the regression and ,321 ,, xxx etc. are the 

independent variables. Discriminant Function Analysis (DFA) has been used with GIS-

derived vector distribution data to develop multivariate ecological model predictions. Most 

environmental variables, such as the temperature and precipitation, are continuous. For these 

a value z(x) can be thought of as one of an infinite number of possible values, with a cdf that 

is the probability that Z takes any value less than or equal to a particular value zc (Equation 

3.4);  

     czxZobzxZF  Pr;  for all z……………………………………………………..(3.4) 

 

The probability   zxZF ;  takes values between 0 and 1. Its derivative is the probability 

density function, the pdf (Equation 3.5); 

  
  

.
;

dz

zxZdF
xZf  …………………………………………………………………….(3.5) 

The distribution may be bounded, as in the case of a proportion or percentage, but the most 

useful assumption is that it is not, so that    xZ . The given description represents 

an individual point x and it applies to the infinitely many points in the space; at each point xi; 
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i =1, 2, . . . , Z(xi) has its own distribution and cdf. The range of possible values constitutes an 

ensemble, and one member of the ensemble is the realization. The set of random variables, 

Z(x1), Z(x2), . . . ; constitute a random function, a random process, or a stochastic process. 

The set of actual values of Z that comprise the realization of the random function referred to 

as a regionalized variable. A region is regarded as made up of a population of units, so that a 

random function Z(x) can be taken as a super population, with an infinite number of units in 

space and an infinite number of values of Z at each point in the space. Thus it is said to be 

doubly infinite. 

 

3.2.2.1        The Presence/Absence Confusion Matrix 

 

The confusion matrix was used to summarize the predictive performance of the adopted  

ecological prediction models. Binary model predictions (i.e. predictions of suitable and 

unsuitable rather than probabilities) are required in order to complete the confusion matrix. 

The confusion matrix records the frequencies of each of the four types of predictions from 

analysis of test data as follows: 

(a) True positive - model predicts presence of an event and test data confirms; 

(b) False positive - model predicts presence of an event but test data show absence; 

(c) False negative - model predicts absence of an event and test data show presence; 

(d) True negative - model predicts and test data show absence of an event. 

The models used generated presence–absence predictions. These models are referred to as 

presence–absence models, and are usually evaluated by comparing the predictions with a set 

of validation sites and constructing a confusion matrix that records the number of true 

positive (a), false positive (b), false negative (c) and true negative (d) cases predicted by the 

model. Presence data are records of occurrence of species in certain time in space. Absence 

data are complex as a species can fail to be identified in ecology where it thrives, thus 
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recording a false absence. There errors encountered were either errors of omission and 

commission in identifying these records. The confusion matrix was applied as shown in Table 

3.4 below: 

           Table 3. 4: Presence / Absence Confusion Matrix 

           Validated Data Set 

Model Presence a-True +ve b-False +ve 

Model Absence c- False -ve d-True –ve 

 

An error matrix was used to evaluate the predictive accuracy of BIOCLIM and DOMAIN 

models; a being the number of cells for which presence was correctly predicted by the model; 

b, number of cells for which the species was not found but the model predicted presence; c, 

number of cells for which the species was found but the model predicted absence; and d, 

number of cells for which absence was correctly predicted by the model. The columns are 

reference data, or known classifications as the sites were evaluated on the ground while the 

rows are model predictions. Models generating non-dichotomous scores on an ordinal scale 

are often evaluated by applying a certain threshold to transform the scores into a dichotomous 

set of presence–absence predictions, and constructing a corresponding confusion matrix. One 

simple measure of accuracy that can be derived from the confusion matrix is the proportion 

of correctly predicted sites, which is the overall accuracy. Model performance is a measure of 

how well a model explains an independent dataset.  

 

Measures of predictive accuracy were calculated from the 2 × 2 error matrix. Overall 

accuracy gives the rate of correctly classified cells. Sensitivity is the probability that the 

model will correctly classify a presence. Specificity is the probability that the model will 

correctly classify an absence. The kappa statistic normalizes the overall accuracy by the 
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accuracy that might have occurred by chance alone. The kappa statistic is a chance corrected 

measure of agreement between two sets of categorized data. Kappa result ranges from 0 to 1 

and the higher the value of Kappa, the stronger the agreement. If Kappa = 1, then there is 

perfect agreement and if Kappa = 0, then there is no agreement.  

 

Therefore, kappa was used as a measure of the agreement between model predictions and 

existing reality, thus determining if the values contained in an error matrix represented truly 

significant result better than random. Omission error is the proportion of actual presences that 

are not predicted properly while commission error is a measure of all absences placed where 

the species is not. Correct Classification Rate (CCR) is a measure of how many of our test 

points are correctly predicted versus not. In all formulae n = a + b + c + d. The parameters 

used to measure the predictive accuracy of correlative models used are summarized in Table 

3.5 below:  

 

       Table 3. 5: Measures of model predictive accuracy 

 

Performance measure 

 

Formula 

Sensitivity 

ca

a


 

Specificity 

db

d


 

Kappa statistic      

     
2

2

1
n

bddccaba

n

bddccaba

n

da













 

 

Omission error 

ca

c


 

Commission error 

db

b


 

Overall accuracy / Correct 

Classification Rate (CCR)  n

da 
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The measure of overall accuracy has been criticized for ascribing high accuracies for rare 

species, thus rendering measures of sensitivity and specificity most applicable. Theoretically, 

kappa responds in a unimodal fashion in prevalence, and that the level of prevalence found to 

maximize Kappa depends on the ratio between sensitivity and specificity. The dependency of 

Kappa on prevalence eventually introduces statistical artifacts to the estimates of model 

predictive accuracy. Sensitivity is the proportion of observed presences that are predicted as 

such, and therefore quantifies omission errors. Specificity on the other hand is the proportion 

of observed absences that are predicted as such, and therefore quantifies commission errors.  

 

Sensitivity and specificity are independent of each other when compared across models. In 

addition, they are independent of prevalence, which can be elaborated as the proportion of 

sites in which the species was recorded as present. Thus, Kappa can be represented in the 

form shown in Equation 3.6 below: 

      00
0 112,.1.,

1
pppsspspspp

p

pp
Kappa pnepn

e

e 



 ……………(3.6) 

where nsp, and ps are prevalence, sensitivity and specificity respectively, 0p is the observed 

accuracy, while ep is the accuracy expected to occur by chance. The extremism of Kappa at 

p satisfies both       01122  pppn spspss and .10  p When 1 pn ss > 0, the 

extremism is a maximum and when 1 pn ss < 0, the extremism is a minimum. The former 

case characterizes models with performance better than random. Therefore, the prevalence 

that maximizes the Kappa score of a given model is a function of the sensitivity and 

specificity of the models. The Kappa statistic ranges from -1 to +1, with values of +1 

indicating perfect agreement and values of 0 indicates a performance no better than random 

(Cohen, 1960). The k value can be interpreted as shown in Table 3.6 below (Altman, 1991): 
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        Table 3. 6:      Evaluation of Kappa strength of agreement 

Value of K Strength of agreement 

< 0.20 Poor 

0.21 - 0.40 Fair 

0.41 - 0.60 Moderate 

0.61 - 0.80 Good 

0.81 - 1.00 Very good 

 

Alternatively, ROC curve can be used as a method for assessing the accuracy of prediction 

models (Fielding and Bell, 1997). ROC curves are constructed by using all possible 

thresholds to classify the predictions into confusion matrices, obtaining sensitivity and 

specificity for each matrix, and then plotting true positive rate (sensitivity) against the 

corresponding proportion of false positives rates (1- specificity). Therefore, an ROC curve 

gives the following information; 

 It shows the tradeoff between sensitivity and specificity any increase in sensitivity 

will be accompanied by a decrease in specificity (Pearce and Ferrier, 2000).  

 The closer the curve follows the left-hand border and then the top border of the 

ROC space, the more accurate the test.  

 The closer the curve comes to the 45-degree diagonal of the ROC space, the less 

accurate the test.  

 The area under the ROC Curve (AUC) is a measure of test accuracy, often used as 

a single threshold-independent measure for model performance. 

The accuracy of the test depends on how well the test separates the group being tested into 

those with and without the predicted results. Accuracy was measured by the area under the 

ROC curve. Two methods are commonly used to compute the AUC: 

 a non-parametric method based on constructing trapezoids under the curve as an 

approximation of area; and  
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 a parametric method using a maximum likelihood estimator to fit a smooth curve 

to the data points.  

For a perfect test, an AUC value of 1 is obtained; an AUC value of 0.5 represents a worthless 

test. A rough guide for classifying the accuracy of a model prediction test is the traditional 

academic point system as shown in Table 3.7 below:  

            Table 3. 7:        Interpretation of AUC values 

AUC Value Interpretation 

0.90 – 1 excellent (A) 

0.80 - 0.90 good (B) 

0.70 - 0.80 good (B) 

0.60 - 0.70 poor (D) 

0.50 - 0.60 fail (F) 

 

 

 

3.2.2.2        Selecting Thresholds of Occurrence 

 

In order to test model performance using statistics derived from the confusion matrix, it was 

important to convert continuous model output into binary predictions of „present‟ or „absent‟, 

by setting a threshold probability value above which the species is predicted to be present. 

Several different methods have been used in selecting thresholds of occurrence (Pearson, 

2007). One approach is to use the lowest predicted value of environmental suitability or 

probability of presence across the set of sites where malaria vectors have been detected. This 

method assumes that malaria vector presence is restricted to locations equally or more 

suitable than those at which the species has been observed. The approach seeks to identify the 

minimum areas in which malaria vectors occur whilst ensuring that no localities at which the 

vectors have been observed has been omitted (i.e. omission rate=0 and sensitivity = 1). The 

approach has been found to be appropriate for presence-only data type (Pearson, 2007).  
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When the model output is continuous, it is often important to derive a test statistic that 

provides a single measure of predictive performance across the full range of possible 

thresholds. This can be achieved using a statistic known as AUC: the Area under the Receiver 

Operating Characteristic (ROC) Curve. The ROC curve is defined by plotting sensitivity 

against „1 – specificity‟ across the range of possible thresholds, then the AUC test is derived 

from the ROC Curve. Sensitivity and specificity are used as these two measures take into 

account all four elements of the confusion matrix (true and false presences and absences). 

Conventionally, it is common to subtract specificity from 1 (i.e. 1 – specificity) so that both 

sensitivity and specificity vary in the same direction when the decision threshold is adjusted 

(Pearce and Ferrier, 2000).  

 

The ROC curve thus describes the relationship between the proportion of observed presences 

correctly predicted (sensitivity) and the proportion of observed absences incorrectly predicted 

(1 – specificity). Therefore, a model that predicts perfectly will generate an ROC curve that 

follows the left axis and top of the plot, whilst a model with predictions that are no better than 

random, meaning that it is unable to classify accurately sites at which the species is present 

and absent, will generate a ROC curve that follows the 1:1 line (see illustration in Figure 3.3 

below). 

 

Figure 3. 3:  ROC curves illustrating superior predictive ability (red) and random predictive ability 

  (dashed black line, 1:1) 
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3.3 Choice of Future Climate Emission Scenario for Prediction 

IPCC has investigated several storylines but the data used to create the ESRI grids used the 

SRES A2a and B2a story-line scenarios. The storylines represent different demographic, 

social, economic, technological, and environmental developments that diverge in increasingly 

irreversible ways. Both A2a and B2a storylines describe a „regionalization‟ meaning a 

heterogeneous world development opposed to a „globalization‟ of a homogeneous world 

development as described in the A1 and B1 storyline family.  

 

The future climate scenario A2a describes a highly heterogeneous future world with 

regionally oriented economies. The main driving forces are a high rate of population growth, 

increased energy use, land-use changes and slow technological change. Conversely, the B2a 

storyline is also regionally oriented but with a general evolution towards environmental 

protection and social equity. In Comparison to A2a, B2a has a lower rate of population 

growth, a smaller increase in GDP but more diverse technological changes and slower land-

use changes. A2a storylines was used to describe the projected climate change in Kenya.  

 

The A2a storyline seemed more appropriate since demographic data has portrayed an upward 

trend for population growth rate in Kenya, hence adoption of the A2a storyline to model the 

future climate change impact on the malaria vector ecologies. Population growth rate can be 

defined as the average annual percent change in the population, resulting from a surplus (or 

deficit) of births over deaths and the balance of migrants entering and leaving a country. The 

growth rate may either be positive or negative and is a major factor in determining the 

magnitude of burden that would be imposed on a country by the changing needs of its people. 

Rapid population growth can be viewed as threatening by neighboring countries.  
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Kenya‟s population stands at 38.6 million according to the 2009 National Population and 

Housing Census results as reported by Kenya National Bureau of Statistics, (2010). This 

growth was a tremendous increase on the 1979 census, whose tally stood at 15.3million, and 

rising to 21.4 million ten years later. The 1999 Census results were not released to the public 

but it was estimated that the population stood at 28.7 million.  

 

According to statistics, an average kenyan woman gives birth to 4 to 6 babies. Projections 

indicate that the country‟s population will stand at 51.3 million by 2025, if the current rate of 

population growth is maintained. These figures will put Kenya as one of the most populous 

countries in Africa. The figures indicate that the country‟s population is growing at the rate of 

1 million people per year. The population growth rate in Kenya was reported to be at 2.44 

percent in the year 2011, higher than the world‟s which is at 1.2 percent. The high population 

growth rate can be attributed mostly to poor family planning methods and ignorance. 

 

According to the 2010 revision of the World Population Prospects the total population for 

Kenya was 40.5m in 2010, compared to only 6m in 1950. The proportion of children below 

the age of 15 in 2010 was 42.5%, 54.9% was between 15 and 65 years of age, while 2.7% 

was 65 years or older. The charts in Figure 3.4 and 3.5 have shown estimates and 

probabilistic projections of the total population for Kenya which were generated by United 

Nations, Department of Economic and Social Affairs, among other 195 countries and areas 

with a population of 100,000 or more in 2010. The projections are based on the probabilistic 

projections of total fertility and life expectancy at birth, based on estimates of the 2010 

Revision of the World Population Prospects. 
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Figure 3. 4: Kenya population growth rate for selecting future climate scenario 

 (Source: United Nations, Department of Economic and Social Affairs, Population Division 

 (2011): World Population Prospects: The 2010 Revision. New York  (Updated 24 

 October 2012)). 

javascript:Onetransport()
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Figure 3. 5:  Probabilistic Population Projection to guide scenario selection: Total Population  

         (thousands), based on the 2010 Revision of the World Population Prospects. 

 (Source: United Nations, Department of Economic and Social Affairs, Population Division 

 (2010):  Population projections using probabilistic projections of total fertility and life 

 expectancy at birth,  based on a Bayesian Hierarchical Model (BHM). New York 

 (internal data set)). 

 

These probabilistic projections of total fertility and life expectancy at birth were carried out 

with a Bayesian Hierarchical Model. The figure display the deterministic high and low 

variant of the 2010 Revision of the World Population Prospects, as well as the probabilistic 

median and the 95 as well as 80 percent confidence intervals of the probabilistic projections. 

It should be noted that most likely there is a (small) difference between the median of these 

probabilistic population projections and the medium variant of the official 2010 Revision of 

the World Population Prospects. This is due to the fact that the population projections 

javascript:Onetransport()
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displayed here includes probabilistic projections of life expectancy at birth, while the 2010 

Revision was based on a deterministic projection of life expectancy at birth. 

 

3.4 Testing Autocorrelation in point sample data 

Several techniques were applied to test the autocorrelation in malaria vector point samples. 

For instance, autocorrelation was used which is the correlation between elements of a series 

and others from the same series separated from them by a given interval. Spatial 

autocorrelation is found to exist when the values of nearby geographical objects are more 

similar than those of objects that are further away. Spatial autocorrelation is concerned with 

the degree to which objects or activities at some place on the earth's surface are similar to 

other objects or activities located nearby. Its existence is reflected in the proposition which 

Tobler (1970) referred to as the "first law of geography: everything is related to everything 

else, but near things are more related than distant things." Therefore, it becomes impossible to 

imagine a world in which spatial autocorrelation could be absent. There could be no regions 

of any kind, since the variation of all phenomena would have to occur independently of 

location, and places in the same neighborhood would be as different as places a continent 

apart.  

 

Covariance and correlation are measures of the similarity between two different 

variables  YX , . The magnitude of the covariance,  YXCov , , increases with increasing 

similarity in the patterns of variation of the two variables about their respective means. The 

correlation coefficient,  YX , , ranges from 1 for perfect positive correlation to -1 for 

perfect negative correlation and is in the vicinity of 0 for uncorrelated variables. Equations 

3.7 and 3.8 are used to compute covariance and correlation coefficient respectively. 
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Spatial autocorrelation can be interpreted as a descriptive index, measuring aspects of the 

way things are distributed in space. However, it can also be seen as a causal process, 

measuring the degree of influence exerted by something over its neighbors. The spatial 

pattern of a distribution is defined by the arrangement of individual entities in space and the 

geographic relationships that exists among them. A prerequisite to understanding the 

complicated spatial processes underlying the distribution of a phenomenon is the capability of 

evaluating the spatial patterns. Spatial autocorrelation indicates the extent to which the 

occurrence of one feature is influenced by similar features in the adjacent area.  

Therefore, statistics of spatial autocorrelation provide a useful indicator of spatial patterns. 

Different indicators of spatial autocorrelation are available, but those applied to test the 

vector point distribution are the global indicators of spatial association, join count statistics; 

Moran's I (Moran, 1948) and Geary's c (Geary, 1954). The resulting correlogram illustrates 

autocorrelation at each lag distance. Membership in a given distance class is defined by 

assigning a weight to each pair of points in the analysis; typically this weight is a simple 

indicator function, taking on a value of 1 if within the distance class, else 0. 

Geary‟s index (Geary, 1954; 1968) is a measure of spatial autocorrelation for area objects and 

interval data. Attribute similarity ijc is calculated from the squared difference in value, as 

shown in Equation 3.9. A Geary‟s c value of zero indicates positive spatial autocorrelation.  
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Negative spatial autocorrelation is indicated by a value greater than one. A Geary‟s c value of 

one suggests that no spatial autocorrelation is present. 

    C  =  [(n – 1) / 2  Wij]  •  [ Wij (xi  - xj) 
2 

  /  (xi  -  xi)
 2 

] .....................................(3.9) 

 

Where:          n = the number of observations; 

Wij = the distance (spatial lag) between pixels i and j; 

  xi = the DN value at location I; 

  xj = the DN value at location j; 

 

Moran's index (Moran, 1948) provides an alternative to Geary's for the same data context, 

and in most applications both are equally satisfactory. Perhaps the only obvious advantage of 

one over the other is that the Moran index is arranged so that its extremes match the earlier 

intuitive notions of positive and negative correlation, whereas the Geary index uses a more 

confusing scale. The Moran index is positive when nearby areas tend to be similar in 

attributes, negative when they tend to be more dissimilar than one might expect, and 

approximately zero when attribute values are arranged randomly and independently in space. 

The attribute similarity measure used by the Moran index makes it analogous to a covariance 

between the values of a pair of objects (see Equation 3.10). 

 

 
i j i j

ijijij WsCWI 2/ …………………………………………………………….(3.10) 

 

Where:  s
2
 denotes the sample variance,   

i

i nzz /
2

, 

Wij = the distance (spatial lag) between pixels i and j; and 

 

Cij=   zzzz ji  ………………………………………………………(3.10a) 
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The Autocorrelation option in DIVA-GIS calculates this relationship by using two common 

statistics, the Geary and Moran indices. The results obtained are analyzed using the 

interpretation values depicted in Table 3.8. The spatial autocorrelation functionality 

implemented in DIVA-GIS is based on the “Rookcase” software by Sawada (1999). 

 

 

 

Table 3. 8: Autocorrelation interpretation values (rather than o
*
, the precise expectation is -1/(n-1)) 

 

 

 

 

 

 
 

 

 

 

Spatial autocorrelation is important as an index for it provides a type of information about a 

spatially distributed phenomenon that could not be available in any other form of statistical 

analysis, and which can be vital to correct interpretation. Spatial autocorrelation may be 

classified as either positive or negative depending on how the values appear. Positive spatial 

autocorrelation has all similar values appearing together, while negative spatial 

autocorrelation has dissimilar values appearing in close association. A positive spatial 

autocorrelation refers to a map pattern where geographic features of similar value tend to 

cluster on a map, whereas a negative spatial autocorrelation indicates a map pattern in which 

geographic units of similar values scatter throughout the map. When no statistically 

significant spatial autocorrelation exists, the pattern of spatial distribution is considered 

random. 

Geary 

index 

 

Moran 

index 

Interpretation 

0 < c < 1 i > 0
* 

 

Autocorrelation exists, data are clustered 

c=1 i = 0
* 

 

Independent, at random 

 

C > 1 i < 0
* 

 

Negative autocorrelation 
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The value of a variable at a given location tends to be similar to the values of that variable in 

nearby locations in the positive case. In deduction, if the value of some variable is low in a 

given location, the presence of spatial autocorrelation indicates that nearby values are also 

low.  Conversely, negative spatial autocorrelation usually is characterized by dissimilar 

variant values in nearby locations. 

 

The biological data used is for malaria vector distribution in Kenya. It has the spatial 

component in latitude and longitude obtained using Global Positioning System (GPS), as well 

as the attribute data for each point. The point data represents locations where any species of 

malaria vector was observed to be present. The point data sets were from MARA ARMA 

project, 1998 (vectors1 in red) and that from KEMRI published by Okara et al., 2010 

(vectors2 in blue). Figure 3.6 below shows the spatial distribution of malaria vectors from the 

two data sets.  
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Figure 3. 6: Malaria Vector distribution in Kenya; Vectors1 in red (MARA/ARMA, 1998) and 

Vectors2 in blue (Okara et al., 2010 ) 

 

3.4.1 Point Autocorrelation in vectors1  

 

In order to calculate the autocorrelation for malaria vector points in vectors1, it was 

imperative to define which neighboring points to consider. This was done by specifying the 

separation distance between vector points referred to as lag (or neighborhood) distance, 

which was set as 0.05km. The lag distance was based on the assumption that malaria vectors 

can travel an average distance of 0.05km radius hence neighborhood polygons can emerge. 

Only pairs of points within the lag distance were considered for calculation.  Figure 3.7 
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below shows the parameters used to determine autocorrelation of malaria vector point 

samples in vectors1. 

 

 Figure 3. 7:  Statistics used in the determination of lag distance (0.05) for Vectors1. 

 

Point autocorrelation in vectors1 was analyzed with a lag distance of 0.05km between 

neighboring points in the data sample. With the lag distance of 0.05km only 24 pairs could be 

generated from a total of 166 vector points.  The Geary‟s index value obtained was c = 

5.9948 falling under c > 1 in Geary‟s index and Moran‟s index value was i = 0.26726 falling 
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under i < 0
* 

in Moran‟s index (Figure 3.8). This shows that autocorrelation exists and the data 

are clustered.
 

A negative autocorrelation exists in vector1 data, explaining the sparse 

distribution within the spatial space. 

 
 

Figure 3. 8:   Vector spatial autocorrelation using Geary (c=5.9948) and Moran (i=0.26726) Indices 

for Vectors1. 

 

3.4.2      Point Autocorrelation in vectors2  

 

Point autocorrelation in vectors2 was determined with similar lag distance of 0.05km 

between neighboring points as in vectors1 above. Only pairs of points within the lag distance 

were considered for calculation. From a total number of 408 vector point observations, 607 
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pairs were obtained. To determine malaria vector point autocorrelation, a number of statistics 

were applied as shown in the Figure 3.9. These statistics include the number of observations 

(points) and statistics describing the distances among all pairs of points (min, max, mean, 

median and first and third quartile). 

 

Figure 3. 9: Statistics used in the determination of lag distance (0.05) for Vectors2. 

 

The autocorrelation in vector2 points was calculated and the results are as shown in Figure 

3.10 below. The value obtained for c is 0.52751, falling under 0 < c < 1 in Geary‟s index and 
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i = 0.41394, falling under i > 0 in Moran‟s index. This shows that autocorrelation exists and 

the data are clustered. 

 

 
 

Figure 3. 10: Vector spatial autocorrelation using Geary (c=0.52751) and Moran (i=0.41394)         

Indices for Vectors2. 
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3.5 Climate Change and Malaria Vector Distributions in Kenya  

In order to predict the change in malaria vector distribution in Kenya, there should be clear 

evidence of change in climate in the region likely to affect the ecology. During the twentieth 

century, world average surface temperature was reported to have increased by approximately 

0.6ºC, and approximately two-thirds of that warming has occurred since 1975 (IPCC 2007). 

Climatologists forecast further warming, along with changes in precipitation and climatic 

variability, during the coming century and beyond. Their forecasts are based on increasingly 

sophisticated global climate models, applied to plausible future scenarios of global 

greenhouse gas emissions that take into account alternative trajectories for demographic, 

economic and technological changes and evolving patterns of governance. There is likely to 

be an increase in annual mean rainfall in East Africa (IPCC 2007). 

 

As reported by the working group III of AR4, future greenhouse gas (GHG) emissions are the 

product of very complex dynamic systems, determined by driving forces such as 

demographic development, socio-economic development, and technological change. Their 

future evolution is highly uncertain. Scenarios are alternative images of how the future might 

unfold and are an appropriate tool with which to analyze how driving forces may influence 

future emission outcomes and to assess the associated uncertainties.  

 

Different scenarios were used to project the future global climate. Each storyline assumes a 

distinctly different direction for future developments, such that the four storylines differ in 

increasingly irreversible ways. Together they describe divergent futures that encompass a 

significant portion of the underlying uncertainties in the main driving forces. They cover a 

wide range of key “future” characteristics such as demographic change, economic 

development, and technological change. For this reason, their plausibility or feasibility should 
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not be considered solely on the basis of an extrapolation of current economic, technological, 

and social trends. The four storylines as described in IPCC, 2007 are as follows: 

 The A1 storyline and scenario family describes a future world of very rapid economic 

growth, global population that peaks in mid-century and declines thereafter, and the 

rapid introduction of new and more efficient technologies. Major underlying themes 

are convergence among regions, capacity building, and increased cultural and social 

interactions, with a substantial reduction in regional differences in per capita income. 

The A1 scenario family develops into three groups that describe alternative directions 

of technological change in the energy system. The three A1 groups are distinguished 

by their technological emphasis: fossil intensive (A1FI), non-fossil energy sources 

(A1T), or a balance across all sources (A1B). 

 The A2 storyline and scenario family describes a very heterogeneous world. The 

underlying theme is self-reliance and preservation of local identities. Fertility patterns 

across regions converge very slowly, which results in continuously increasing global 

population. Economic development is primarily regionally oriented and per capita 

economic growth and technological change is more fragmented and slower than in 

other storylines.  

 The B1 storyline and scenario family describes a convergent world with the same 

global population that peaks in midcentury and declines thereafter, as in the A1 

storyline, but with rapid changes in economic structures toward a service and 

information economy, with reductions in material intensity, and the introduction of 

clean and resource-efficient technologies. The emphasis is on global solutions to 

economic, social, and environmental sustainability, including improved equity, but 

without additional climate initiatives.  
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 The B2 storyline and scenario family describes a world in which the emphasis is on 

local solutions to economic, social, and environmental sustainability. It is a world 

with continuously increasing global population at a rate lower than A2, intermediate 

levels of economic development, and less rapid and more diverse technological 

change than in the B1 and A1 storylines. While the scenario is also oriented toward 

environmental protection and social equity, it focuses on local and regional levels. 

 

Kenya is in East Africa (EA) region thus the projected changes apply. As shown in the Table 

2.1 above, the reported minimum and maximum annual temperature change is 1.8°C and 

4.3°C respectively. The quartile temperature response in all the quarters has portrayed an 

increasing trend. Figure 3.11 below has been generated to visualize the relationship in 

seasonal temperature response in East Africa over the given periodic difference.  From the 

generated seasonal temperature response charts, it is evident that the season that will portray 

the greatest difference in temperature for the 1980-1999 and 2080-2099 climatic periods is 

June, July, August (JJA). This season is a quarter that comes immediately after the rainy 

quarter March, April, May (MAM), hence favorable for malaria vector transmission. The 

season with least temperature response difference is December, January, February (DJF) 

which is a rainy season, hence not conducive for malaria vector breeding and transmission. 

These two seasons provide the most limiting factors for malaria vector ENM. 
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Figure 3. 11: Difference in Seasonal Temperature Response in East Africa for the periods  

  (1980 – 1999) and (2080 – 2099)   

 

 

The precipitation response (%) in East Africa was portrayed as increasing in all the seasons 

after differencing between 1980-1999 and 2080-2099 climatic periods. Figure 3.12 has been 

generated to visualize the differences and compare the seasons. The season with the least 

difference is JJA while DJF has the highest up to 75% quartile value, then September, 

October, November (SON) season portrayed the highest precipitation difference up to 

maximum. 
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Figure 3. 12: Difference in Seasonal Precipitation Response in East Africa for the periods  

         (1980 – 1999) and (2080 – 2099)   

 

 

3.5.1 Prediction and Mapping of Malaria Vector Ecological Niches  

 

The principal steps that have been executed in order to build and validate a correlative species‟ 

distribution model for malaria vectors in Kenya are outlined in Figure 3.13 below. The two types 

of model input data were known species‟ occurrence records, and a suite of environmental 

variables. Raw environmental variables, such as precipitation and temperature records collected 

from weather stations, had been processed to generate model inputs, further used to produce 

bioclimatic variables that were thought to have a direct physiological role in limiting the ability of 

the species to survive. 

 

 



   

93 
 

END

START
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layers (precipitation, tmax, tmin, tmean)

Map the known species‟ distribution 

(presence only Malaria vector sample 

points)

Process to generate 19 Bioclimatic 

variables for ENM 

Convert from point sample to grid data

Predict Ecological Niches with BIOCLIM/DOMAIN 

ENM models

Test predictive performance through data-splitting 

statistical approach (AUC/Kappa)

Predict species‟ distribution for different time periods 

under future climate change scenario

Create suitability maps of current and future climate

 

Figure 3. 13: Flow diagram for correlative malaria vector distribution modeling. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

Malaria vector distribution modeling was done using BIOCLIM and DOMAIN species 

distribution models. The modeling effort quantified climate change as an explanatory variable 

in alteration of the suitable malaria vector ecologies in Kenya. Since two different data sets 

for published malaria vector geo-location had been acquired, there was need to test the 

autocorrelation of point data. Ecological Niche Modeling was done using the more clustered 

data set from Okara et al., 2010 which is denoted as Kenya_vectors2 in Figure 4.1. IPCC 

Future climate for HADCM3, CCCMA and CSIRO under A2a Scenario was used in 

prediction of malaria prevalence zones by 2020, 2050 and 2080.  

 

 

 

4.1 Ecological Niche Modeling (ENM) Results and Analysis  

Ecological Niche Modeling (ENM) was done to predict the geographic ranges of malaria 

vector distribution, and hence malaria parasite prevalence in Kenya. The predictive spatial 

risk mapping was achieved by use of Worldclim ESRI grid rasters for current climate from 

1950 to 2000 and IPCC projected A2a scenario for 2020, 2050 and 2080, for three different 

climate models (HADCM3, CCCMA and CSIRO). Biological data for vector presence with 

spatial reference was obtained from existing publications. Geographic mapping of these 

vector points and climate surfaces was done with Diva - GIS software, which has ecological 

niche modeling functionalities. In order to achieve the set objectives, surface maps at 30 

second resolution for minimum and maximum monthly mean temperature and precipitation 

were collected and re-processed to create the bioclimatic factors, eventually used to develop 

future suitability maps.  
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Bioclimatic variables were generated from three different future climate models, namely, 

HADCM3, CCCMA and CSIRO all of 30 arc seconds resolution, under A2a scenario. Ecological 

Niche Modeling was performed with each data set and predicted suitability maps produced using 

BIOCLIM, BIOCLIM True/False and DOMAIN predictions. The suitability maps for malaria 

vector prevalence were generated for visualization and arranged in succession from the maps for 

current climate (1950 – 2000) being the first, followed by the predicted prevalence by the year 

2020, then 2050 and finally 2080 predictions.  

 

 

4.1.1 BIOCLIM Model Prediction with HADCM3, CCCMA and CSIRO Data 

 

Ecological Niche Modeling was done using BIOCLIM prediction model to create climate 

envelope for malaria vectors in Kenya. The environmental data used in ecological suitability 

analysis was from HADCM3, CCCMA and CSIRO future climate under A2a scenarios. 

Ecological suitability prediction was based on the assumptions that: 

 malaria vector presence is restricted to locations equally or more suitable than those at 

which the species has been observed; and  

 most environmental variables are continuous.  

Discriminant Function Analysis (DFA) was applied to map different classes of suitable areas 

for malaria vectors to thrive. Areas completely outside the 0-100 percentile envelope for one 

or more climate variables get a code “0”. The cells within the 5-95 percentile get a code “3”, 

those outside this range but within the 2.5-97.5 percentile get a code “2”, and the ones outside 

this but within the 0 -100 percentile for all climate variables get a code “1”. Different color 

shades were used to denote the suitability classes. The approach therefore identifies the 

minimum areas in which malaria vectors occurs whilst ensuring that no localities at which the 

vectors have been observed are omitted (i.e. omission rate=0 and sensitivity = 1).  
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The areas found not to harbor the suitability to sustain malaria vectors were denoted by gray 

color. Areas of low suitability were denoted as dark green, while light green color was used 

to describe areas of medium potential for malaria vectors to thrive. Ecological zones with 

high potential were shown in yellow while orange color was used to denote those ecologies 

of very high potential. Red color was used to designate all the ecological zones with excellent 

geographical space for malaria vectors in Kenya. Maps for the predicted results using 

BIOCLIM model and the three IPCC future climates scenarios are shown in Figures 4.1 for 

HADCM3, 4.2 for CCCMA and 4.3 for CSIRO models all under A2a scenario. 
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4.1.1.1  Generated BIOCLIM Prediction Results from HADCM3 Model data 

 

a. Current (1950-2000)        b.        By 2020                            c.         By 2050 d.       By 2080

 

Figure 4. 1: BIOCLIM Ecological Niche models for malaria vector distribution in Kenya for current climate 1950-2000(a) and IPCC projected 30s HADCM3 

2020(b), 2050(c) and 2080(d) 
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4.1.1.2  Generated BIOCLIM Prediction Results from CCCMA Model data 

 

a. Current (1950-2000)        b.        By 2020                  c.         By 2050 d.        By 2080

 
 

Figure 4. 2:  BIOCLIM Ecological Niche models for malaria vector distribution in Kenya for current climate 1950-2000(a) and IPCC projected 30s CCCMA 

2020(b), 2050(c) and 2080(d) 
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4.1.1.3  Generated BIOCLIM Prediction Results from CSIRO Model data 

 

a.  Current (1950-2000)            b.   By 2020                      c.      By 2050                     d.    By 2080

 

Figure 4. 3:   BIOCLIM Ecological Niche models for malaria vector distribution in Kenya for current climate 1950-2000(a) and IPCC projected 30s CSIRO 

2020(b), 2050(c) and 2080(d) 
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4.1.2 BIOCLIM True or False Model Prediction with HADCM3, CCCMA and 

CSIRO Data 

 

Malaria vector distribution modeling was done using BIOCLIM True/False species 

distribution model. All areas that fell within the envelope described by malaria presence 

sample points were cut off beyond a certain user defined percentile and mapped using binary 

categorization as “true” (1) and “false” (0). All the areas found to be suitable for malaria 

vectors to thrive were denoted with red color while those areas with no potential to sustain 

malaria vectors were shown in gray. Forecasting for malaria vector distribution was done 

with HADCM3, CCCMA and CSIRO IPCC future projected climate under A2a scenario. The 

generated maps had two ecological zones with gray color denoting all the unsuitable areas 

and red color denoting the areas of excellent ecologies for malaria vectors to thrive. The 

results are displayed in Figures 4.4 for HADCM3, 4.5 for CCCMA and 4.6 for CSIRO 

models. 
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4.1.2.1  Generated BIOCLIM True or False Prediction Results from HADCM3 Model data 

 

a.    Current (1950-2000) b.     By 2020 c.          By 2050 d.       By 2080

 

Figure 4. 4: BIOCLIM True/False Ecological Niche models for malaria vector distribution in Kenya for current climate 1950-2000(a) and IPCC projected 

30s HADCM3 2020(b), 2050(c) and 2080(d) 
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4.1.2.2  Generated BIOCLIM True or False Prediction Results from CCCMA Model data 

 

a.  Current (1950-2000) b.  By 2020 c. By 2050 d.   By 2080

 

Figure 4. 5: BIOCLIM True/False Ecological Niche models for malaria vector distribution in Kenya for current climate 1950-2000(a) and IPCC projected 30s 

CCCMA 2020(b), 2050(c) and 2080(d) 
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4.1.2.3  Generated BIOCLIM True or False Prediction Results from CSIRO Model data 

 

a.    Current (1950-2000) b.    By 2020 c.     By 2050 d.      By 2080

 

Figure 4. 6: BIOCLIM True/False Ecological Niche models for malaria vector distribution in  Kenya for current climate 1950-2000(a) and IPCC projected 

30s CSIRO 2020(b), 2050(c) and 2080(d) 
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4.1.3 DOMAIN Model Prediction with HADCM3, CCCMA and CSIRO Data 

 

Prediction of the ecological space for malaria vectors in Kenya was done using DOMAIN 

that calculates the Gower distance statistic characteristic between each cell on the map and 

each point, from the generated 19 climate variables for HADCM3, CCCMA and CSIRO 

IPCC future climate models under A2a scenario. The distance between any malaria vector 

sample point, say A and grid cell B for a single climate variable is calculated. This is obtained 

as the absolute difference in the values of that variable divided by the range of the variable 

across all points (Equation 3.1). The Gower distance is therefore the mean over all the 19 

bioclimatic variables for each future climate model. 

 

The generated prediction maps represented six different ecological zones. The areas that were 

found not to be suitable were denoted with gray color. Dark green color denoted the 

ecological zones of low suitability while light green denoted those areas found to be of 

medium suitability for malaria vectors to thrive. Areas denoted by yellow color were those 

found to harbour high potential while color orange denoted those areas found to harbour very 

high potential. The ecological zones that were found to be excellent for malaria vectors to 

thrive in were shown in color red. Suitability maps were generated for the three IPCC future 

projected climate change scenarios. The results are shown in Figures 4.7 for HADCM3, 4.8 

for CCCMA and 4.9 for CSIRO models. 



   

105 
 

4.1.3.1     Generated DOMAIN Prediction Results from HADCM3 Model data 

 

a.  Current (1950-2000)            b.      By 2020 c.     By 2050 d. By 2080

 
Figure 4. 7:  DOMAIN Ecological Niche models for malaria vector distribution in Kenya for current climate 1950-2000(a) and IPCC projected 30s 

HADCM3 2020(b), 2050(c) and 2080(d) 
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4.1.3.2     Generated DOMAIN Prediction Results from CCCMA Model data 

 

a.   Current (1950-2000)          b.         By 2020 c.      By 2050 d.     By 2080

 

Figure 4. 8:  DOMAIN Ecological Niche models for malaria vector distribution in Kenya for current climate 1950-2000(a) and IPCC projected 30s CCCMA 

2020(b), 2050(c) and 2080(d) 
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4.1.3.3     Generated DOMAIN Prediction Results from CSIRO Model data 

 

a.  Current (1950-2000)         b.    By 2020 c.      By 2050 d.       By 2080

 

Figure 4. 9:  DOMAIN Ecological Niche models for malaria vector distribution in Kenya for current climate 1950-2000(a) and IPCC projected 30s CSIRO 

2020(b), 2050(c) and 2080(d) 
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4.2 Model Output Results  

 

Ecological Niche Modeling was done with current climate data (1950 – 2000) and IPCC 

projected data for three climate models (HADCM3, CCCMA and CSIRO). The projected 

data was at 30 years‟ interval from the current climate. Thus, predictive modeling was done 

and mapped as current climate, projected by the years‟ 2020, 2050 and 2080. The predicted 

suitability maps generated from the three climate models have shown that climate change in 

Kenya will result to the spread of malaria vectors to new areas. Most current ecologies will 

still remain as viable malaria zones, with continuous extent to neighboring zones. Further 

change to climatic conditions will trigger extremely new hotspots that were not close to the 

current existing ecosystems. The results obtained in each prediction model are analyzed in 

sections 4.2.1 for BIOCLIM, 4.2.2 for BIOCLIM True or False and 4.2.3 for DOMAIN. 

 

4.2.1 Analysis and Discussion of BIOCLIM Model Prediction Results 

 

Prediction of suitable ecologies using BIOCLIM model resulted into six categorized classes 

where malaria vectors could be found.  Representative bar graphs were generated for each 

BIOCLIM prediction with the three IPCC future projected climate scenarios. The areas for 

non-suitable ecological niches for malaria vectors to thrive in Kenya have been quantified 

based on current climate and IPCC future projections. Figure 4.10 below shows that the 

current climate (1950-2000) has the largest unsuitable area of 285,830 km
2 

while CCCMA by 

2080 prediction has the least unsuitable area of 180,984 km
2
. Predicted non-suitable niches 

for HADCM3 and CSIRO projections have shown a similar trend of decrease of area from 

current to by the year 2020, with the area increasing by the year 2050, then further decrease 

by the year 2080. On the contrary, CCCMA projection has deviated from this trend but 
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portrays continuous decrease in ecological niche suitability from current climate through 

2020 and 2050 up to by the year 2080.  

 

 

Figure 4. 10: BIOCLIM predicted areas for non-suitable Ecological Niche from current climate,  

HADCM3, CCCMA and CSIRO  

 

The ecological niche with low potential to support the malaria vectors to thrive in Kenya was 

also quantified based on area for each BIOCLIM prediction with different future climate 

projections. Figure 4.11 below shows how the area changed from current climate (1950-

2000) through 2020 and 2050, up to by the year 2080. The highest area of low suitability for  

malaria vector habitat in Kenya was 428,596 km
2
 predicted with CCCMA projection by the 

year 2080. BIOCLIM prediction from HADCM3 projection by the year 2050 resulted into the 

least area of low suitability for malaria vectors to thrive in Kenya. Trend analysis showed that 

bioclim prediction for low suitability for HADCM3 and CSIRO projections will increase upto 
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by the year 2020, followed by decrease by the year 2050, then further increase upto 2080. On 

the contrary, BIOCLIM predictions with CCCMA projection portrayed continous increase 

from current climate upto by the year 2080 of low suitability ecological niche.    

 

 

Figure 4. 11: BIOCLIM predicted areas of low suitability from current climate,  HADCM3, CCCMA 

and CSIRO 

 

Further investigation was done to study the trend in areas found to harbor medium potential 

for malaria vectors to thrive. Figure 4.12 below showed that the highest area with medium 

potential was 97,990 km
2
 predicted by BIOCLIM with HADCM3 projection by the year 

2050. The lowest area of medium potential was 46,046 km
2
 predicted by BIOCLIM with 

CCCMA future climate scenario. When prediction was done with HADCM3 projection, the 

area of medium potential was found to increase from current climate through 2020 up to by 
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the year 2050, followed by drastic decline up to by the year 2080. Prediction with CCCMA 

projection resulted into an increase in area of medium suitability from current climate up to 

by the year 2020, beyond which there was decrease through the year 2050 up to by the year 

2080. BIOCLIM prediction with CSIRO projection showed that areas of medium suitability 

will decline from the area predicted with current climate up to by the year 2020, increase 

moderately up to 2050, followed by decrease in the area up to by the year 2080. 

 

Figure 4. 12: BIOCLIM predicted areas of medium suitability from current climate, HADCM3, 

CCCMA and CSIRO 

 

 

BIOCLIM prediction with HADCM3 projection by the year 2050 resulted into the highest 

area of 58,728 km2 found to be of high suitability habitat for malaria vectors in Kenya. The 

lowest habitat area was 26,480 km2 predicted with CCCMA projection by the year 2080. 

Trend analysis for predictions with HADCM3 projection showed that the ecological niche of 
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high potential for malaria vectors to thrive will increase moderately from the current climate 

prediction through the year 2020, followed by drastic increase up to the year 2050, then 

decrease drastically up to the year 2080. Predictions with the CSIRO projection showed that 

there will be very gradual decrease from the current climate prediction through by the year 

2020, by 2050 and up to the year 2080. Conversely, predictions with CSIRO projection 

showed that there will be decreased areas of high suitability from the current climate 

prediction up to by the year 2020, followed by an increase of the high suitability areas 

through the year 2050, up to by the year 2080 (Figure 4.13). 

 

Figure 4. 13: BIOCLIM predicted areas of high suitability from current climate, HADCM3, CCCMA 

and CSIRO 

 

The highest ecological niche of very high suitability for malaria vectors to thrive was 

predicted with HADCM3 projection by the year 2050  as shown in Figure 4.14 below. Apart 
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from the prediction with HADCM3 projection by the year 2050 which was very high with an 

area of 56,033 km
2
, the rest of the predictions varied moderately, ranging from the lowest 

area of 11,861 resulting from current climate projection, to an area of 18,582 km2 resulting 

from prediction with HADCM3 projection by the year 2080.  

 

Figure 4. 14: BIOCLIM predicted areas of very high suitability from current climate, HADCM3, 

CCCMA and CSIRO 

 

The ecological niche with the highest potential to sustain malaria vectors in Kenya was 

classified as area of excellent suitability. BIOCLIM prediction with HADCM3 projection 

produced the highest area of 18,618 km
2
. Prediction with CSIRO projection by the year 2020 

was 3,157km2 which was the lowest area of very high suitability. Trend analysis in Figure 

4.15 showed that there will be moderate increase of very high suitability from current 

prediction up to by the year 2020 as predicted with HADCM3 projection, followed by very 
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drastic increase up to by the year 2050, and further drastic decrease up to the year 2080. 

Prediction with CCCMA projection registered slow decrease from current climate prediction 

up to the year 2020, followed by moderate increase up to by the year 2050 and further 

decrease by the year 2080. The predicted areas with CSIRO projection changed moderately, 

with a deccrease from current climate prediction to by the year 2020, then slight increase by 

the year 2050 and further slight decrease by the year 2080. 

 

Figure 4. 15:  BIOCLIM predicted areas of excellent suitability from current climate, HADCM3, 

CCCMA and CSIRO 

 

Malaria vector suitability areas for all BIOCLIM predicted ecological niches done with the 

three IPCC future climate projections were analyzed in bar graphs representing each 

ecological niche.  The colors for each bar corresponded to the colors of the predicted 

ecological niches in the earlier spatial models and they are shown in the following sections 

4.1.1.1, 4.1.1.2 and 4.1.1.3 for HADCM3, CCCMA and CSIRO respectively. 
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4.2.1.1  Ecological Niche Area  Analysis for BIOCLIM Model with HADCM3 

 

BIOCLIM prediction with current climate (1950-2000) resulted in to areas of different 

suitability as habitats for malaria vectors in Kenya. These ecological niches were analyzed 

and the total area of non-suitability was found to be 285, 830 km
2
. The total area found to be 

low in suitability was 273, 055 km
2
. The ecological niche found to harbor medium potential 

occupied a total area of 63, 917 km
2
 across Kenya. The area of high potential was 38, 939 

km2 while area of very high suitability was found to be 11, 861 km
2
. The total area that was 

found to be of excellent suitability was 6, 044 km
2
. Visualization for the ecological niche 

areas has been done in Figure 4.16 below. 

 

 

            

            Figure 4. 16: Areas for BIOCLIM predicted Ecologies with current climate 
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When BIOCLIM prediction was done with climate data from HADCM3 projection by the 

year 2020, analysis of the ecological niches showed that the total area found to non-suitable 

as malaria vector habitat will be 237, 492 km
2
. The total area found to be low in suitability 

was 325, 411km
2
. The ecological niche found to harbor medium potential occupied a total 

area of 66, 891km
2
 across Kenya. The area of high suitability will be 43, 215 km

2
 while area 

of very high suitability was predicted to be 13, 167 km
2
. Excellent ecological niche will be 6, 

545 km
2
; slightly more than that in the current climate condition. Comparison of these 

ecological niche areas have been shown in Figure 4.17 below. 

 

 Figure 4. 17: Areas for BIOCLIM predicted Ecologies with HADCM3 by 2020 
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By the year 2050, the predicted ecological niches will emerge with different areas as follows: 

not suitable area (250, 867 km
2
), area of low suitability (210, 485 km

2
), medium suitability 

area (97, 990 km
2
), area of high (58, 728 km

2
) and area of very high suitability (56, 033 km

2
).  

The ecological niche that will be of excellent suitability for malaria vectors was predicted to 

be 18, 618 km
2
. This area has increased from the previous prediction for by the year 2020. 

These areas can be visualized in Figure 4.18 below. 

 

 

 Figure 4. 18:  Areas for BIOCLIM predicted Ecologies with HADCM3 by 2050 

 

HADCM3 Future climate by the year 2080 was also used to spatially quantify the effect of 

climate on malaria vector distribution in Kenya. Different ecologies will emerge and the areas 

were analyzed as shown in Figure 4.19 below. Area of 195, 802 km
2
 will be unsuitable, area 

of low suitability will be 387, 293 km
2
, area of medium suitability will be 46, 046 km

2
, area 
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of high suitability will be 39, 846 km
2
 and area of very high suitability will be 18, 582 km

2
. 

The area of excellent suitability will drop significantly to 5, 152 km
2
, being the lowest 

excellent ecological niche predicted using BIOCLIM model with HADCM3 projection. 

 

 Figure 4. 19:  Areas for BIOCLIM predicted Ecologies with HADCM3 by 2080 

 

4.2.1.2  Ecological Niche Area  Analysis for BIOCLIM Model with CCCMA 

 

 

BIOCLIM prediction with CCCMA future projection resulted in to areas of different 

suitability as habitats for malaria vectors in Kenya. From the analyzed results, the total area 

of non-suitability will be 250, 060 km
2
. The total area of low suitability will be 323,901 km

2
. 

The medium potential area will be a total area of 65, 794 km
2
 across Kenya. The area of high 

potential will be 35, 151 km
2
 while area of very high suitability was found to be 14,076 km

2
. 
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The total area that was found to be of excellent suitability was 3, 739 km
2
. Visualization for 

the ecological niche areas has been done in Figure 4.20 below. 

 

 

 Figure 4. 20:  Areas for BIOCLIM predicted Ecologies with CCCMA by 2020 

 

Prediction of Ecological Niches with BIOCLIM model with climate data from CCCMA 

projection by the year 2050 showed that non-suitable malaria vector habitat areas will be 235, 

052 km
2
. The total area found to be low in suitability was predicted to be 355, 460 km

2
. The 

ecological niche found to harbor medium potential occupied a total area of 51, 655km
2
. The 

area of high suitability will be 28, 313 km
2
 while area of very high suitability was predicted 
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to be 15, 626km
2
. Excellent ecological niche will be 6, 615km

2
. Comparison of these 

ecological niche areas have been shown in Figure 4.21 below. 

 

 

 

 

 Figure 4. 21:  Areas for BIOCLIM predicted Ecologies with CCCMA by 2050 

 

 

 

By the year 2080, the BIOCLIM predicted with CCCMA climate projection will emerge with 

different areas of ecological niches as follows: not suitable area (180, 984 km
2
), area of low 

suitability (428, 596 km
2
), medium suitability area (34, 241 km

2
), area of high (26, 480 km

2
) 

and area of very high suitability (18, 353 km
2
).  The ecological niche that will be of excellent 
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suitability for malaria vectors was predicted to be 4, 067 km
2
. These areas can be visualized 

in Figure 4.22 below. 

 

 

 Figure 4. 22:  Areas for BIOCLIM predicted Ecologies with CCCMA by 2080 

  

 

 

4.2.1.3  Ecological Niche Area  Analysis for BIOCLIM Model with CSIRO 

 

When BIOCLIM prediction was done with climate data from CSIRO future projection, the 

following areas for six different ecological niches were obtained; Not suitable (219, 457 

km
2
), Low suitability (379, 921 km

2
), Medium suitability area (47, 305 km

2
), High (27, 219 

km
2
), Very High area (15, 662 km

2
) and Excellent suitability (3, 157 km

2
). These ecological 

zone areas have been shown Figure 4.23 below. 
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 Figure 4. 23:  Areas for BIOCLIM predicted Ecologies with CSIRO by 2020 

 

By the year 2050 as projected by IPCC with CSIRO climate model, the BIOCLIM predicted 

ecological niches will emerge with different areas as follows: not suitable area (235, 060 

km
2
), area of low suitability (353, 833 km

2
), medium suitability area (54,060 km

2
), area of 

high Suitability (31, 539km
2
) and area of very high suitability (14, 790 km

2
).  The ecological 

niche that will be of excellent suitability for malaria vectors was predicted to be 3, 439 km
2
. 

This area has increased from the previous prediction for by the year 2020 which was 3, 157 

km
2
. These areas can be visualized in Figure 4.24 below. 
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 Figure 4. 24:   Areas for BIOCLIM predicted Ecologies with CSIRO by 2050 

 

BIOCLIM predicted with CCCMA climate projection by the year 2080 that ecological niches 

will emerge with different areas of as follows: not suitable area (222, 813 km
2
), area of low 

suitability (369,305 km
2
), medium suitability area (43, 770 km

2
), area of high (38, 056 km

2
) 

and area of very high suitability (15, 785 km
2
).  The ecological niche that will be of excellent 

suitability for malaria vectors was predicted to be 2, 992 km
2
. These areas can be visualized 

in Figure 4.25 below. Important to note is fact that this model has predicted the smallest 

excellent ecological niche with BIOCLIM model when all the three climate projections are 

considered.  
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 Figure 4. 25:   Areas for BIOCLIM predicted Ecologies with CSIRO by 2080 
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4.2.1.4  Comparison of Ecological Niche Area  from BIOCLIM Model with 

HADCM3, CCCMA and CSIRO climate projections 

 

The areas comparison of the six predicted ecological niches resulting from BIOCLIM ENM 

with the three IPCC future climate projections have been summarized in Figure 4.26 below. 

Similar ecological niches are denoted with the same color for each climate scenario. The total 

area for the six ecological niches from the current climate was found to vary slightly from the 

total area obtained in each future climate scenario. This can be attributed to the fact that 

ecological zones overlap with grid duplication thus variation in area summation as observed 

in the light blue bars.  

 

Interesting to note is the trend in which the viable malaria vector ecologies are spreading 

from the current climate to projected climate conditions. The non-suitable ecological niche 

has diminished in all the predictions with IPCC projected climate as compared to the current 

climate prediction. There will be gain of area in the five suitable ecological niches 

cumulatively. These observations strongly demonstrated that climate change plays a major 

role in altering the suitable ecologies for malaria vector to thrive in new areas in Kenya. The 

generated spatial models should be incorporated in any strategic plans to increase malaria 

surveillance and combat malaria epidemics.  
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Figure 4. 26: Area Comparison of BIOCLIM predicted Ecological Niches from Current Climate (1950-2000), HADCM3, CCCMA and CSIRO
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4.2.2 Analysis and Discussion of BIOCLIM True or False Model Prediction 

 Results 

 

 

Ecological Niche Modeling using BIOCLIM True or False model resulted into two classes of 

either suitable or non suitable niches as shown compared in Figure 4.27 below. The highest 

suitable ecology was 227, 092 km
2
 obtained when prediction was done with HADCM3 future 

climate by the year 2050. The least suitable ecology was 80, 060 km
2
 which was predicted 

with CCCMA projection by the year 2050. Ecological niche prediction from HADCM3 and 

CSIRO showed a similar trend although at different magnitudes. The predicted suitable 

ecology will increase from by the year 2020 to the year 2050 at higher magnitude in 

HADCM3 than in CSIRO projection, followed by further decrease of suitable ecology for 

malaria to survive by the year 2080 in both projections. However, the predicted ecological 

niche that will be suitable by 2080 will be lower than the area in the year 2020 as predicted 

with HADCM3 projection while the reverse is true for prediction with CSIRO projection. 

 

CCCMA future climate prediction deviated from the trend observed in the two other climate 

projections. The area of suitable malaria ecology will decline from by the year 2020 

prediction, through the year 2050 up to by the year 2080. Some currently suitable malaria 

habitants will become unsuitable, as new suitable ecologies emerge. These emerging 

ecologies will extend from the current niches, but new isolated hot spots will emerge. For 

instance, prediction from HADCM3 by the year 2050 has shown wide spread of malaria in 

counties like Narok, Kajiado, Kitui, Makueni, Machakos, Meru, Marsabit, Isiolo, Samburu, 

Baringo, West Pokot. Turkana county and Mandera among a few others will have some 

emerging isolated malaria hot spots. ENM prediction with HADCM3 future climate showed 

that Laikipia County will become unsuitable malaria ecology by the year 2050 and the case 

remains the same by the year 2080. 
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Figure 4. 27: Area Comparison of BIOCLIM True or False predicted Ecological Niches from current Climate (1950-2000), HADCM3, CCCMA and CSIRO
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4.2.3 Analysis and Discussion of DOMAIN Model Prediction Results 

 

 

DOMAIN Ecological Niche Modeling with the three different IPCC projected climate 

(HADCM3, CCCMA and CSIRO) resulted into six suitability ecological zones for malaria 

vectors in Kenya. The classification was done based on the computed Gower distances and 

domain similarity statistics multiplied by 100. The most excellent ecology is the one denoted 

as 100. Ecological class denoted as 98 - 99 harbors very high suitability while 96-97 has 

relatively low suitability to malaria vectors. All the classes below 95 are not very suitable as 

malaria vector habitats. These results are displayed in Figure 4.28 below. 

 

The highest area of excellent suitability was 202, 216 km
2
 resulted from ENM prediction 

with HADCM3 climate projection by 2050. Prediction with HADCM3 projection by the year 

2020 produced the highest ecology of very high suitability (98-99) which covered a total 566, 

713 km
2
. The highest ecology classified as high suitability (96-97) was 55, 947 km

2
 yielded 

by prediction with HADCM3 by the year 2080. None of the future climate projections 

produced areas of non-suitability and low suitability except that HADCM3 projection by 

2050 yielded a total area of 86 km
2
 of low suitability (51-90). The ecology classified as 

medium suitability (91-95) produced small areas less that 100 km2 in all predictions except 

HADCM3 by 2050 which produced the highest area in this class of 1, 858 km
2
 and CSIRO 

projections by 2020, 2050 and 2080 with areas of 289 km
2
, 103 km

2
 and 571 km

2
 

respectively. Therefore, the model prediction portrays future malaria prevalence in Kenya to 

be climate driven.  
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Figure 4.28: Area Comparison of DOMAIN predicted Ecological Niches from current Climate (1950-2000), HADCM3, CCCMA and CSIRO 
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4.3 Evaluation of Prediction Model Performance 

Data was randomly divided into training and testing subsets, with 75% of the records used in 

model training while 25% of the records were used to test the model. Random absence data 

was included from the mask since the validation requires an input of presence-absence 

records. Point values were extracted from the generated bioclimatic grids and Receiver 

Operating Characteristic (ROC) files from presence – absence distribution of malaria vectors 

generated for the entire mask. Area under curve (AUC) and Kappa statistic values were 

computed using the ROC file for each grid. These were the values used to validate the 

accuracy performance and significance of the ecological niche models. 

   

The malaria vector ecological niches prediction results generated with IPCC model data from 

the HADCM3, CCCMA and CSIRO future climate projections were validated to assess the 

model performance of BIOCLIM, BIOCLIM True or False and DOMAIN prediction models. 

The generated kappa and AUC statistical graphs for model validation outcomes for the 

current climate and future climate scenarios A2a_2020, A2a_2050 and A2a_2080 are shown 

in Appendix B. For all the three cases, BIOCLIM and BIOCLIM True or False validation 

graphs are shown combined in one figure while the results for DOMAIN model are shown in 

a separate figure. The validation outcome showed that all the models predictions were 

acceptable as they all met the set conditions for either good or excellent values given in the 

AUC interpretations (Table 3.7). The kappa statistics for all the predictions were acceptable 

when interpreted according to the summary in Table 3.6. Further discussions of the resulting 

kappa and AUC from the validations were done on section 4.4 below. 
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4.4 Discussion and Comparison of model validation outcomes 

The prediction models were all validated using the kappa statistics and Receiver Operator 

Characteristics (ROC) area under curve (AUC). Interpretation of the acquired model 

performance values was done for kappa statistics and AUC values. The results from all the 

IPCC projection models were summarized for comparison. Visualization and comparison of 

the model performance for all the prediction models was achieved through generation of bar 

graphs representing the AUC and kappa values.  

 

From the compared results of model validations, DOMAIN model performance with each 

future climate projection was found to be excellent as the Kappa and AUC values were the 

highest when compared to those obtained in both BIOCLIM and BIOCLIM True/False. 

BIOCLIM True/False model performed worse amongst the three models. For instance, the 

highest AUC value was 0.954 achieved from DOMAIN model with CCCMA projection by 

2020, while the lowest AUC value was 0.714 achieved from BIOCLIM True or False Model 

with HADCM3 projection by 2020 (Figure 4.29a). The highest Kappa value was 0.909 

resulting from DOMAIN model with CCCMA projection by 2020 while the lowest kappa 

value was 0.427 obtained from BIOCLIM True or False model with HADCM3 projection by 

2020 (Figure 4.29b) 

 

However, the overall prediction performance for all the models was found to be within 

acceptable range as per the interpretation guidelines provided by Kappa and AUC statistics in 

Tables 3.6 and 3.7 respectively. All the models had errors in prediction as none of them had 

kappa =1 or AUC=1. Therefore, the prediction error for each model can be obtained by 

subtraction the obtained kappa and AUC validation value from 1. Figure 4.30 compares both 

kappa and AUC for all the prediction models under the three IPCC climate projections. 
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Figure 4. 29: Comparison of prediction model performance using (a) AUC and (b) Kappa statistics 
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Figure 4. 30: Model Prediction Validation Comparison for BIOCLIM, BIOCLIM True or False and DOMAIN with HADCM3, CCCMA and CSIRO 

future climate projections 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

This research was set to correlate the relationship between climate change and the 

distribution of the main malaria vectors in Kenya. Ecological Niche Modeling was applied to 

spatially establish the effect of climate as an explanatory variable in main malaria vector 

distribution, hence malaria prevalence in new hotspots.  Predictive modeling was done to 

investigate the spatial-temporal vector distribution under different IPCC future climate 

projections. The period from 1950 – 2000 was treated as the current climate scenario to 

explain where malaria vectors are existing as per vector spatial presence data and the 

prediction of the ecological niches where the vectors would also be found to thrive.  

 

BIOCLIM and DOMAIN models were applied to determine the appropriate prevalence 

ecological niches. Future prediction for the prevalence and distribution of the malaria vectors 

was done with model data from HADCM3, CCCMA and SCIRO IPCC future climatic 

projections under A2a scenario in Kenya. Spatial models were generated for the current 

climate and projections done to depict how the vectors will be distributed by the years 2020, 

2050 and 2080. Validation for the model performance was achieved through analyses of the 

Receiver Operating Characteristic (ROC) Area under Curve (AUC) and Kappa statistics. 

 

 

5.1 Conclusions 

Ecological Niche Modeling (ENM) was done using IPCC projections for HADCM3, 

CCCMA and CSIRO models. Climate change has been shown to be a major driving force in 

the spread of suitable malaria vector ecologies. Qualitative investigation has shown that by 

use of data from HADCM3, CCCMA and SCIRO models of IPCC projected future climate 

under the A2a scenario, there is correlation between climate change and malaria vector 



   

136 
 

spread to new regions.  Excellent ecologies for malaria vector to thrive in new environment 

will expand to continuous spatial areas, with some isolated new hotspots. This was 

demonstrated through visualization of the generated spatial-temporal models for malaria 

vector distribution. 

 

The predictions showed that by the year 2020, the suitability areas for malaria vectors in 

Kenya will start to change from the current ecological suitability. Most areas where the 

malaria vectors are thriving currently will still remain suitable ecologies. New suitability 

zones will emerge ranging from low to very high suitability as shown by the predictions. By 

the year 2050, areas of suitability will expand at an alarming extend. The year 2080 has been 

predicted to show that the suitable ecologies will start to revert to the original areas of 

suitability as in the current climate. Therefore, climate change in Kenya will adversely affect 

the environment at an alarming rate by 2050, but beyond that there will be a level of 

stabilization, where further change will trigger reversal to the past climate.  

 

The emerging new suitable areas can be clearly distinguished from the BIOCLIM True or 

False predictions. BIOCLIM True or False prediction with CCCMA future climate prediction 

showed that the area of suitable malaria ecology will decline from by the year 2020 

prediction, through the year 2050 up to by the year 2080. Some currently suitable malaria 

habitants will become unsuitable, as new suitable ecologies emerge. These emerging 

ecologies will extend from the current niches, but new isolated hot spots will emerge. For 

instance, prediction from HADCM3 by the year 2050 has shown wide spread of malaria in 

counties like Narok, Kajiado, Kitui, Makueni, Machakos, Meru, Marsabit, Isiolo, Samburu, 

Baringo, West Pokot. Turkana county and Mandera among a few others will have some 

emerging isolated malaria hot spots. Prediction with HADCM3 future climate showed that 
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Laikipia County will become unsuitable malaria ecology by the year 2050 and the case 

remains the same by the year 2080. 

 

Validation accuracies for the three models were graphically displayed. The validation 

outcomes were tabulated and compared in bar graphs. When the DOMAIN model was 

applied, the highest validation values were achieved as compared to the BIOCLIM Model. 

Kappa statistics and AUC values were generated for the three projections in order to 

investigate the predictive accuracy in determining the malaria vector prevalence with 

different IPCC projections. The highest kappa (k = 0.909) and Area Under ROC Curve 

(AUC=0.954) values were achieved from DOMAIN model with CCCMA projection by the 

year 2020. The lowest model performance values of k = 0.427 and AUC = 0.714 were 

obtained from BIOCLIM True or False model with HADCM3 projections by the year 2020. 

Validation results for prediction model performance showed that all the models used had 

errors in prediction as none of them had kappa =1 or AUC=1. However, the overall 

prediction performance for all the models was found to be within acceptable range as per the 

interpretation guidelines provided by Kappa and AUC statistics. 

 

Intervention measures for malaria catastrophes in Kenya should be well planned to capture 

the future suitable ecologies in all the newly predicted regions, rather than the witnessed 

overemphasis in the current epidemic zones. Adaptation strategies should be well formulated 

and communicated to the unsuspecting populations residing in the currently malaria free 

zones found to harbor the potential for future epidemics. Climate change has been changing 

at an alarming rate and the only way to safeguard the population is by creating awareness for 

preparedness and early risk management. The recent decision by the health sector to collect 

actual laboratory tested data on malaria incidences in hospitals, coupled with the ecological 
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niche predictions, will suffice for strategic adaptation for early malaria epidemic risk 

reduction in Kenya. 

 

The following conclusions were drawn from the Ecological Niche Modeling done using 

BIOCLIM, BIOCLIM True or False and DOMAIM prediction models: There is correlation 

between climate change as an explanatory variable and the distribution of main malaria 

vectors in Kenya.  The spatial-temporal distribution of the main malaria vectors in Kenya 

varies under different IPCC future climate projections which are HADCM3, CCCMA and 

CSIRO. The future ecological niches for malaria vector occurrence in Kenya will extend 

from the current niches in most endemic areas, new hotspots will emerge and some suitable 

ecology will become unsuitable, resulting in varying areas from current climate predictions to 

projections by the year 2020, 2050 and 2080 under IPCC A2a scenario. Intervention 

strategies such as indoor or outdoor residual spraying, distribution of insecticide-treated 

mosquito nets (ITNs) and long-lasting insecticide-treated nets (LLINs) should be diversified 

in new emerging areas for disaster risk reduction and increase adaptive capacity and 

resilience among local communities. 

 

Therefore, this research made a breakthrough in establishing the relationship between climate 

change and the occurrence of main malaria vectors in Kenya. Suitable Climate Envelope 

Models (CEMs) that use the current geographic distribution of species to infer its 

environmental requirements and to predict malaria vector species‟ geographic distribution for 

the current, or for future climates were investigated and validated. Thus, Ecological Niche 

Modeling (ENM) has been applied to correlate climate change and the emerging hotspots of 

malaria vector geographical distribution in Kenya. Predictive modeling showed that the 

future climate projections under different scenarios will impact malaria vector distribution 
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negatively, thus the prevalence of malaria in areas which are not currently threatened by the 

epidemic. 

 

5.2 Recommendations 

The accuracy of predicted malaria vector ecological niches, hence malaria prevalence is 

dependent on the accuracy of projected climate data. Therefore, the author of this research 

would recommend that local climate data should be collected at finer resolution, so as to 

localize the trend of malaria vector distribution. The results should be validated with 

laboratory tested actual county malaria incidence data for a period not less than thirty years. 

Such data is not currently available as the recorded hospital data on malaria cases in the past 

categorized most fever incidences as malaria, before the recent undertaking by the health 

sector to perform clinical laboratory test for any suspected malaria patient.  

 

The predictions in this research employed correlative Ecological Niche Modeling rather than 

mechanistic approach. The author recommends further research that can adopt mechanistic 

approach to model the suitable ecologies for malaria vector distribution. The physiologically 

limiting mechanisms in malaria vectors‟ tolerance to environmental conditions should be 

incorporated in mechanistic models to predict the future geographic space. Results from the 

two different methods can be compared. 

 

The climate change data used in this research has been projected by IPCC by use of different 

scenarios that are estimates of future dynamics. However, there are uncertainties as many 

processes are not fully described in the mathematical models, such as turbulence in the 

atmosphere and ocean, precipitation growth in clouds, cumulus convection, radiation transfer 

in and around clouds, and CO2 transfer processes in heterogeneous biosphere canopies. IPCC 
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should consider modeling climate with simple one-dimensional or volume-integrated models 

of the atmosphere with prescribed ocean, cryosphere, biosphere, and land surface 

specifications are necessary. Further, interactive studies of the ocean processes using simple 

diffusion, radiation and convection, and energy balance relationships are important. This 

approach can increase plausibility to obtain qualitative simulations of climate change which 

can be used modeling ecological niches. 

 

5.3 Areas for Further Research 

Further to the research findings elaborated in this study, there is need to carry on the 

following investigations: 

 If climate change dictates the distribution of malaria vectors in Kenya, then 

surveillance studies should be done to investigate the climate change impacts at 

county level. Analyses techniques that can provide differencing to extract models 

showing the new hotspots should be explored. This would be important as the 

boundary of ecological niches does not follow any stipulated county boundaries. 

 From the generated 19 bioclimatic variables used in Ecological Niche Modeling, what 

combination would impact the distribution most significantly? This will assist in 

determining the climatic variables that can be most attributed to affect the distribution 

of malaria vectors in Kenya.  

 Apart from BIOCLIM and DOMAIN models, other integrated techniques that can 

model the correlation between climate change and vector distribution should be 

investigated. The prediction performance for these techniques should be compared to 

what has been achieved in this research. 
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 Modeling should be done with the results of Representative Concentration Pathways 

(RCP) from the Fifth Assessment Report of the IPCC with an aim to review the 

findings in this research. 
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Table A. 1 Malaria Spatial Data from Okara et. al., 2010 

 

Year Report Prov Dist Name Lat Long Source Month Year Num peop 

examined 

Positive Method 

examination 
2006 MoH 

Report 

Western 

Province 

Bungoma Ack Primary School 0.6081 34.7732 GPS 2 2006 100 2 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Amalemba Primary 

School 

0.273 34.7529 GPS 6 2005 194 15 Microscopy 

2003 Journal Coast 

Province 

Kwale Amani -4.1235 39.2847 GPS 5 1998 100 73 Microscopy 

2005 MoH 

Report 

Nyanza 

Province 

Migori Aringo Primary School -0.846 34.1839 GPS 1 2005 130 6 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Homa-bay Arunda Primary School -0.5374 34.4655 GPS 5 2005 99 29 Microscopy 

2003 Journal Coast 

Province 

Kilifi Barani -3.924 39.7675 GPS 5 1998 100 65 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Bhulukunya Primary 

School 

0.2701 34.7451 GPS 5 2005 163 25 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Kisii 

Central 

Bigege & Matieko -0.5734 34.7129 Other 11 2007 150 16 Microscopy 

2002 Report Nyanza 

Province 

Nyamira Birongo -0.7482 34.8902 Other 10 1999 162 32 Microscopy 

2000 MoH 

Report 

Eastern 

Province 

Meru 

Central 

Bishop Bessone Primary 

School 

0.03265 37.69389 GPS 2 2000 261 17 Microscopy 

2001 MoH 

Report 

Rift Valley 

Province 

Bureti Bishop Nding Junior 

Academy 

-0.49957 35.09869 GPS 10 2001 67 26 Microscopy 

2001 Report Nyanza 

Province 

Nyamira Blue line Academy    6 2001 34 25 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Migori Bondo Kosiemo Primary 

School 

-0.8252 34.1966 GPS 2 2006 124 4 Microscopy 

2002 MoH 

Report 

Rift Valley 

Province 

Nandi Bonjoge Primary School 0.1092 34.8936 GPS 7 2002 64 20 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Bonyaiguba Primary 

School 

-0.514 34.8917 GPS 10 2001 140 88 Microscopy 

2005 Report Western 

Province 

Kakamega Bukhulunya Primary 

School 

0.27012 34.74514 GPS 5 2005 163 25 Microscopy 

2001 MoH Rift Valley Bureti Charera Primary School -0.50464 35.1155 GPS 10 2001 48 13 Microscopy 
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Report Province 

2003 Journal Coast 

Province 

Kilifi Chasimba -3.7291 39.7012 GPS 5 1998 100 39 Microscopy 

2005 MoH 

Report 

Western 

Province 

Bungoma Chebukaka Primary 

School 

0.7577 34.6018 GPS 5 2005 190 28 Microscopy 

2004 MoH 

Report 

Rift Valley 

Province 

Keiyo Chegilet Primary School 0.8301 35.6063 GPS 4 2004 56 9 Microscopy 

2003 Report Rift Valley 

Province 

Nandi Chepsui 0.169147 35.042803 Other 8 2002 12 1 Microscopy 

2005 MoH 

Report 

Western 

Province 

Bungoma Chesamisi Primary 

School 

0.8392 34.7902 GPS 10 2005 375 62 Microscopy 

2006 Report Western 

Province 

Bungoma Chesamisi Primary 

School 

0.8392 34.7902 GPS 3 2006 225 18 Microscopy 

2006 Report Western 

Province 

Bungoma Chesamisi Primary 

School 

0.8392 34.7902 GPS 10 2006 150 44 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Nyamira Chirochiro & Nyaturubo -0.771 34.8852 Other 11 2007 150 1 Microscopy 

2000 MoH 

Report 

Eastern 

Province 

Meru 

Central 

Chorobia    2 2000 267 74 Microscopy 

2005 MoH 

Report 

Western 

Province 

Bungoma Chwele Primary School 0.7665 34.5506 GPS 5 2005 190 35 Microscopy 

2004 Journal Central 

Province 

Kirinyaga Ciagini -0.7497 37.3939 GPS 2 2002 69 6 Microscopy 

2003 Journal Coast 

Province 

Malindi Dabaso -3.3397 40.0007 Other 5 1998 99 38 Microscopy 

2006 Journal North 

Eastern 

Province 

Garissa Dadaab (refugee camps) 0.0544 40.3081 GPS 4 2002 198 21 Microscopy 

2007 Report North 

Eastern 

Province 

Garissa Dertu 0.2726 39.7984 Pers. 

comm 

11 2006 157 1 Microscopy 

2003 Journal Coast 

Province 

Kilifi Dindiri -3.734 39.799 Encarta 5 1998 101 62 Microscopy 

2003 Journal Coast 

Province 

Kwale Dumbule -4.1164 39.3695 GPS 5 1998 100 82 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Kisii 

Central 

Ekerubo Primary School -0.7103 34.7375 GPS 7 2007 66 1 Microscopy 

2002 Report Coast Tana River Elan -0.2219 39.4837 Other 10 1999 59 3 Microscopy 
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Province 

2007 MoH 

Report 

Nyanza 

Province 

Gucha Emenwa Primary School -0.8304 34.8123 GPS 7 2007 92 2 Microscopy 

2004 Report Rift Valley 

Province 

Keiyo Emsea Secondary 

School 

0.44169 35.61437 GPS 6 2004 9 3 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Nyamira Eremo Primary School -0.7346 34.8539 GPS 6 2007 100 5 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Gucha Etono Primary School -0.8844 34.7524 GPS 7 2007 145 4 Microscopy 

2006 Journal Rift Valley 

Province 

Kericho Fort Ternan -0.199 35.349 Encarta 10 1999 95 6 Microscopy 

2006 Journal Rift Valley 

Province 

Kericho Fort Ternan -0.199 35.349 Encarta 4 2000 68 8 Microscopy 

2006 Journal Rift Valley 

Province 

Kericho Fort Ternan -0.199 35.349 Encarta 11 2000 56 3 Microscopy 

2006 Journal Rift Valley 

Province 

Kericho Fort Ternan -0.199 35.349 Encarta 5 2001 59 7 Microscopy 

2005 MoH 

Report 

Eastern 

Province 

Meru 

Central 

Gaceero Primary School -0.108 37.7615 GPS 6 2005 65 11 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Siaya Gangu Primary School 0.0755 34.1835 GPS 8 2006 173 76 Microscopy 

2003 Journal Coast 

Province 

Malindi Garithe -2.9966 40.1953 Other 5 1998 100 79 Microscopy 

2005 MoH 

Report 

Eastern 

Province 

Meru 

Central 

Gateway Primary School 0.0019 37.8326 Other 3 2004 61 9 Microscopy 

2003 Journal Coast 

Province 

Kwale Gazi -4.427 39.503 Encarta 5 1998 100 60 Microscopy 

2007 Report Nyanza 

Province 

Kisii 

Central 

Genga Primary School -

0.637399 

34.643327 GPS 9 2007 100 7 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Kisii 

Central 

Gesabakwa Primary 

School 

-0.5871 34.7639 GPS 5 2007 100 7 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Gesura Primary School -0.4856 34.9741 GPS 7 2001 97 32 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Getaari Primary School -0.4641 35.0122 GPS 8 2001 131 104 Microscopy 

2004 MoH 

Report 

Nyanza 

Province 

Bondo Godwa community -0.17 34.24 Other 10 2004 87 56 Microscopy 

2006 MoH Nyanza Migori Gunga Primary School -0.8049 34.1275 GPS 2 2006 73 2 Microscopy 
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Report Province 

2006 Report Eastern 

Province 

Isiolo Halgani Primary School 0.325 38.20072 GPS 5 2006 25 4 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Siaya Hawinga Primary 

School 

0.0874 34.159 GPS 8 2006 119 61 Microscopy 

2005 Journal Western 

Province 

Kakamega Iguhu 0.167 34.7483 GPS 7 2002 163 90 Microscopy 

2005 Journal Western 

Province 

Kakamega Iguhu 0.167 34.7483 GPS 6 2003 309 136 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Kisii 

Central 

Iranda Primary School -0.6278 34.7849 GPS 5 2007 100 8 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Gucha Itumbe -0.7578 34.7757 GPS 10 2007 100 1 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Gucha Itumbe Primary School -0.8418 34.8298 GPS 7 2007 100 0 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Migori Jangoe Primary School -0.8416 34.2603 GPS 2 2006 358 24 Microscopy 

2003 Journal Coast 

Province 

Kilifi Jaribuni -3.633 39.733 Encarta 5 1998 98 53 Microscopy 

2004 Thesis Coast 

Province 

Malindi Jilore -

3.188313 

39.903548 GPS 2 2003 99 36 Microscopy 

2003 Report Rift Valley 

Province 

Nandi Kabaskei 0.159086 34.950867 Other 7 2002 37 28 Microscopy 

2006 Report Nyanza 

Province 

Homa-bay Kabunde -

0.610105 

34.651789 Other 6 2006 26 16 Microscopy 

2004 Journal Central 

Province 

Kirinyaga Kagio -0.617 37.249 Encarta 2 2002 53 9 Microscopy 

2003 Journal Coast 

Province 

Kilifi Kagombani -3.5385 39.6096 GPS 5 1998 100 72 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Kakamega Primary 

School 

0.2823 34.754 GPS 7 2005 238 31 Microscopy 

2005 Journal Rift Valley 

Province 

Turkana Kakuma 3.717 34.865 Encarta 3 2001 194 13 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Kisumu Kaloleni Primary School -0.0963 34.7675 GPS 9 2005 161 27 Microscopy 

2003 Report Rift Valley 

Province 

Nandi Kamoiywo 0.401687 35.09186 Other 7 2002 38 11 Microscopy 

2005 MoH Western Bungoma Kamukuywa Primary 0.7783 34.7878 GPS 2 2005 200 21 Microscopy 
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Report Province School 

2005 MoH 

Report 

Western 

Province 

Bungoma Kamusinde Rc Primary 

School 

0.8249 34.7422 GPS 10 2005 205 43 Microscopy 

2005 MoH 

Report 

Western 

Province 

Bungoma Kamusinga Primary 

School 

0.8046 34.7073 GPS 3 2005 123 14 Microscopy 

2002 Report Nyanza 

Province 

Nyando Kandiang'a -0.3312 34.8687 Other 10 1999 434 322 Microscopy 

2005 Journal Nyanza 

Province 

Kuria Kanyawegi sublocation -1.2366 34.6462 GPS 5 2003 134 122 Microscopy 

2003 Report Rift Valley 

Province 

Baringo Kapkelewa Primary 

School 

0.37685 35.72099 GPS 9 2002 35 0 Microscopy 

2003 Report Rift Valley 

Province 

Nandi Kapkinduywa -

0.002065 

34.91202 Other 7 2002 48 18 Microscopy 

2003 Report Rift Valley 

Province 

Nandi Kapkobis Primary 

School 

0.2333 35.0833 GPS 8 2002 35 11 Microscopy 

2004 MoH 

Report 

Rift Valley 

Province 

Baringo Kapkuikui Primary 

School 

0.3689 36.0165 GPS 5 2004 128 4 Microscopy 

2002 MoH 

Report 

Rift Valley 

Province 

Nandi Kaptabongeni Primary 

School 

0.2154 35.0371 GPS 5 2002 67 24 Microscopy 

2004 MoH 

Report 

Rift Valley 

Province 

Baringo Kaptombes Primary 

School 

0.4109 36.0244 GPS 5 2004 80 2 Microscopy 

2001 MoH 

Report 

Rift Valley 

Province 

Bureti Kapurus Primary School -

0.558952 

35.106407 GPS 10 2001 83 21 Microscopy 

2003 Report Rift Valley 

Province 

Nandi Kapwareng 0.145908 34.912848 Other 7 2002 22 12 Microscopy 

2005 MoH 

Report 

Eastern 

Province 

Meru 

Central 

Karirwara Primary 

School 

0.037 37.7506 GPS 3 2004 82 10 Microscopy 

2002 MoH 

Report 

Rift Valley 

Province 

Baringo Katibel Primary School 0.6315 35.6667 GPS 9 2002 70 0 Microscopy 

2005 MoH 

Report 

Eastern 

Province 

Meru 

Central 

Kaurone Primary School -0.1101 37.7956 GPS 6 2005 66 29 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Kemasare Primary 

School 

-0.5248 34.9184 GPS 10 2001 112 64 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Gucha Kemoreko Primary 

School 

-0.8844 34.77 GPS 10 2007 71 0 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Nyamira Kiamokama sublocation -0.8316 34.8832 GPS 5 2007 55 0 Microscopy 

2002 Report Eastern Meru Kibaranyaki -0.0017 37.5706 Other 10 1999 138 13 Microscopy 
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Province Central 

2005 MoH 

Report 

Western 

Province 

Bungoma Kibichori Primary 

School 

0.755 34.5847 GPS 5 2005 180 39 Microscopy 

2006 Report Coast 

Province 

Malindi Kibokoni Primary 

School 

-3.1708 40.11838 GPS 6 2005 99 32 Microscopy 

2006 Report Coast 

Province 

Malindi Kibokoni Primary 

School 

-3.1708 40.11838 GPS 9 2005 89 10 Microscopy 

2002 Report Eastern 

Province 

Meru 

North 

Kibureni 0.0167 37.84 Other 10 1999 156 58 Microscopy 

2002 Report Coast 

Province 

Kwale Kifyonzo -4.1861 39.2683 Other 10 1999 166 86 Microscopy 

2002 Report Coast 

Province 

Kwale Kikoneni -4.45 39.299 Encarta 10 1999 179 76 Microscopy 

2001 MoH 

Report 

Rift Valley 

Province 

Bureti Kimase Primary School -0.6928 35.10542 GPS 10 2001 83 26 Microscopy 

2005 MoH 

Report 

Western 

Province 

Bungoma Kimilili Boys School 0.796 34.7104 GPS 10 2005 236 31 Microscopy 

2006 Report Eastern 

Province 

Isiolo Kinna Primary School 0.32118 38.2107 GPS 5 2006 30 7 Microscopy 

2002 MoH 

Report 

Rift Valley 

Province 

Baringo Kinyach Primary School 0.9461 35.6803 GPS 9 2002 72 2 Microscopy 

2002 MoH 

Report 

Rift Valley 

Province 

Nandi Kiptulya Primary School 0.2027 34.9914 GPS 5 2002 65 32 Microscopy 

2003 Report Rift Valley 

Province 

Nandi Kiropket 0.152879 35.090002 Other 7 2002 22 11 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Kisumu Kisian Primary School -0.0732 34.663 GPS 3 2005 116 92 Microscopy 

2003 Report Rift Valley 

Province 

Baringo Kisok Primary School 0.407 35.70509 GPS 9 2002 32 2 Microscopy 

2002 Report Coast 

Province 

Kwale Kiteje Primary School -4.1185 39.6063 GPS 2 2002 146 6 Microscopy 

2003 Journal Coast 

Province 

Kilifi Kitengwani -3.5269 39.778 Other 5 1998 99 69 Microscopy 

2004 Report Central 

Province 

Kirinyaga Kithinti Primary School -0.6107 37.3248 GPS 5 2004 178 62 Microscopy 

2003 Journal Coast 

Province 

Kilifi Kitsoeni -3.7034 39.7322 GPS 5 1998 100 69 Microscopy 

2005 Report Nyanza Homa-bay Kogelo Kalanya Primary - 34.471327 GPS 3 2005 93 10 Microscopy 
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Province School 0.532914 

2006 Report Nyanza 

Province 

Homa-bay Kogwang Primary 

School 

-

0.638507 

34.523555 GPS 6 2006 46 16 Microscopy 

2002 MoH 

Report 

Rift Valley 

Province 

Nandi Koimet Primary School 0.0339 35.0333 GPS 7 2002 70 20 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Kisumu Kotetni Primary School -0.0706 34.7085 GPS 3 2005 120 83 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Kowidi Primary School -0.4423 34.9788 GPS 11 2001 82 48 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Kisumu Kudho Primary School -0.072 34.7611 GPS 9 2005 226 75 Microscopy 

2002 MoH 

Report 

Rift Valley 

Province 

Baringo Kuikui Primary School 0.8008 35.7079 GPS 9 2002 65 1 Microscopy 

2002 Report Eastern 

Province 

Kitui Kyatune -1.7762 38.1137 Other 10 1999 153 3 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Nyando Lela Primary School & 

Community 

-0.1649 34.8922 GPS 6 2007 133 77 Microscopy 

2001 MoH 

Report 

Rift Valley 

Province 

Bureti Lelach Primary School -0.65368 35.08937 GPS 10 2001 74 20 Microscopy 

2007 Journal Eastern 

Province 

Makueni Lower Mangelete & 

Yumbuni 

-2.7 38.133 Encarta 11 2003 1044 146 Microscopy 

2007 Journal Eastern 

Province 

Makueni Lower Mangelete & 

Yumbuni 

-2.7 38.133 Encarta 2 2004 973 464 Microscopy 

2004 MoH 

Report 

Nyanza 

Province 

Siaya Lwango Kotieno 

community 

-0.3859 34.2846 Other 10 2004 120 82 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Nyamira Maburi & Amariba -0.7509 34.8061 Other 11 2007 150 5 Microscopy 

2003 Journal Coast 

Province 

Kwale Magaoni -4.38 39.4724 GPS 5 1998 78 50 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Mahiakalo Primary 

School 

0.2996 34.7665 GPS 11 2005 211 23 Microscopy 

2003 Journal Coast 

Province 

Kilifi Majajani -3.6667 39.75 Other 5 1998 101 76 Microscopy 

2003 Journal Coast 

Province 

Malindi Majenjeni -3.1403 40.1405 Other 5 1998 100 58 Microscopy 

2006 Report Coast 

Province 

Malindi Majivuni Primary 

School 

-

3.202999 

40.088636 Other 6 2005 113 32 Microscopy 

2006 Report Coast Malindi Majivuni Primary - 40.088636 Other 9 2005 93 12 Microscopy 
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Province School 3.202999 

2006 Journal Western 

Province 

Kakamega Makhokho 0.1758 34.7495 GPS 2 2000 80 32 Microscopy 

2005 MoH 

Report 

Western 

Province 

Bungoma Makhonge Primary 

School 

0.77 34.5769 GPS 5 2005 200 42 Microscopy 

2006 Report Western 

Province 

Bungoma Makhonge Primary 

School 

0.77 34.5769 GPS 5 2006 200 39 Microscopy 

2005 MoH 

Report 

Western 

Province 

Bungoma Malaha Primary School 0.6386 34.7385 GPS 2 2005 220 28 Microscopy 

2005 Report Nyanza 

Province 

Homa-bay Manga Primary School -0.4892 34.6174 GPS 3 2005 80 30 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Homa-bay Manga Primary School -0.4892 34.6174 GPS 1 2006 63 32 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Gucha Mangere Primary School -0.8266 34.717 GPS 10 2006 83 0 Microscopy 

2004 Journal Nyanza 

Province 

Kisii 

Central 

Marani -0.5794 34.7991 GPS 2 2002 114 29 Microscopy 

2004 MoH 

Report 

Nyanza 

Province 

Kisii 

Central 

Marani -0.5794 34.7991 GPS 5 2004 75 9 Microscopy 

2003 Report Rift Valley 

Province 

Baringo Maregut Primary School 0.868322 35.694798 GPS 9 2002 27 0 Microscopy 

2005 MoH 

Report 

Nyanza 

Province 

Migori Marienga Primary 

School 

-0.9466 34.5581 GPS 7 2005 185 28 Microscopy 

2003 Journal Coast 

Province 

Malindi Masheheni -3.1281 40.109 Other 5 1998 101 67 Microscopy 

2004 Journal Nyanza 

Province 

Nyamira Masimba -0.8607 34.9403 GPS 2 2002 76 1 Microscopy 

2001 Report Nyanza 

Province 

Nyamira Masosa Primary -

0.490186 

34.89943 GPS 7 2001 195 102 Microscopy 

2007 MoH 

Report 

Eastern 

Province 

Makueni Matangani Primary 

School 

-2.6961 38.1442 GPS 5 2004 95 6 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Matende Primary School 0.26563 34.75392 GPS 7 2005 222 23 Microscopy 

2005 Report Western 

Province 

Kakamega Matende Primary School 0.26563 34.75392 GPS 5 2005 160 20 Microscopy 

2003 Journal Coast 

Province 

Malindi Maziwani -3.2085 40.0699 Other 5 1998 100 48 Microscopy 

2003 Journal Coast Malindi Mbarak Chembe -3.294 40.0843 Other 5 1998 100 59 Microscopy 
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Province 

2004 Journal Nyanza 

Province 

Suba Mbita & Lwanda -0.418 34.204 GPS 11 2001 276 154 Microscopy 

2004 Journal Central 

Province 

Kirinyaga Mbui Njeru -0.6981 37.3446 GPS 2 2002 21 0 Microscopy 

2002 Report Coast 

Province 

Kwale Mbweka Primary School -4.1634 39.5873 GPS 2 2002 178 0 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Menyenya Sda Primary 

School 

-0.7625 35.0194 GPS 1 2002 108 77 Microscopy 

2005 MoH 

Report 

Western 

Province 

Bungoma Miendo Primary School 0.6718 34.6801 GPS 2 2005 295 35 Microscopy 

2003 Journal Coast 

Province 

Malindi Mijomboni -3.2599 40.0122 Other 5 1998 100 63 Microscopy 

2002 Report Coast 

Province 

Kwale Miritini -4.0107 39.5869 GPS 10 1999 133 35 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Miruka Sibora Primary 

School 

-0.4988 34.8806 GPS 7 2001 60 34 Microscopy 

2001 Report Nyanza 

Province 

Nyamira Miruka Sibora Primary 

School 

-0.4988 34.8806 GPS 6 2001 127 53 Microscopy 

2002 Report Western 

Province 

Bungoma Misikhu 0.7148 34.7568 Other 10 1999 173 100 Microscopy 

2005 MoH 

Report 

Eastern 

Province 

Meru 

Central 

Mitunguu Primary 

School 

-0.1045 37.782 GPS 6 2005 114 17 Microscopy 

2003 Journal Coast 

Province 

Malindi Mjanaheri -3.068 40.1405 Other 5 1998 100 49 Microscopy 

2006 Report Coast 

Province 

Malindi Mkao Moto Primary 

School 

-3.25125 40.05228 GPS 6 2005 100 18 Microscopy 

2006 Report Coast 

Province 

Malindi Mkao Moto Primary 

School 

-3.25125 40.05228 GPS 9 2005 91 6 Microscopy 

2002 Report Coast 

Province 

Kwale Mkumbi Primary School -4.0986 39.6084 GPS 2 2002 148 6 Microscopy 

2003 Report Rift Valley 

Province 

Baringo Mogorwa Primary 

School 

0.31206 35.71901 GPS 9 2002 30 2 Microscopy 

2005 Report Western 

Province 

Bungoma Moi Girls High School 

Kamusinga 

0.802822 34.70819 GPS 4 2005 173 14 Microscopy 

2007 Report Nyanza 

Province 

Gucha Mosache Primary -

0.753484 

34.631764 Other 9 2007 100 5 Microscopy 

2007 MoH Nyanza Gucha Mosasa Primary School -0.8475 34.819 GPS 7 2007 186 4 Microscopy 
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Report Province 

2007 MoH 

Report 

Nyanza 

Province 

Gucha Mosobeti Primary 

School 

-0.9184 34.712 GPS 10 2007 71 0 Microscopy 

2004 Journal Nyanza 

Province 

Kisii 

Central 

Mosocho -

0.591993 

34.736268 GPS 2 2002 35 11 Microscopy 

2003 Journal Coast 

Province 

Kwale Moyeni -4.1424 39.3906 GPS 5 1998 100 78 Microscopy 

2003 Journal Coast 

Province 

Kilifi Mtepeni -3.9001 39.7315 GPS 5 1998 99 82 Microscopy 

2002 Report Coast 

Province 

Kwale Mteza Primary School -4.0824 39.5151 GPS 2 2002 139 0 Microscopy 

2007 Report Nyanza 

Province 

Kisii 

Central 

Mugori Primary School -

0.665629 

34.641485 GPS 9 2007 100 17 Microscopy 

2006 MoH 

Report 

Western 

Province 

Bungoma Mukhuyu Primary 

School 

0.598 34.7662 GPS 2 2006 100 0 Microscopy 

2008 Report Western 

Province 

Kakamega Mukumu Boys High 

School 

0.223505 34.763689 GPS 5 2008 15 2 Microscopy 

2004 Journal Central 

Province 

Kirinyaga Murinduko -0.5667 37.45 Encarta 2 2002 63 34 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Muslim Primary School 0.2818 34.7503 GPS 11 2005 175 10 Microscopy 

2007 Report Nyanza 

Province 

Nyamira Mutembe Primary 

School 

-

0.876729 

34.965569 GPS 9 2007 62 1 Microscopy 

2006 Report Central 

Province 

Kirinyaga Mutithi village -0.7255 37.3215 GPS 8 2005 186 0 Microscopy 

2002 Report Nyanza 

Province 

Kisii 

Central 

Mwamosioma -0.6378 34.7852 Other 10 1999 203 88 Microscopy 

2003 Journal Coast 

Province 

Kwale Mwaroni -4.2668 39.5762 GPS 5 1998 100 50 Microscopy 

2007 Report Nyanza 

Province 

Kisii 

Central 

Mwata Primary School -

0.678266 

34.648639 GPS 9 2007 140 20 Microscopy 

2006 Report Central 

Province 

Kirinyaga Mwea childrens home -0.6643 37.3494 GPS 6 2006 76 0 Microscopy 

2005 MoH 

Report 

Western 

Province 

Lugari Namagara Primary 

School 

0.5026 34.8714 GPS 5 2005 159 29 Microscopy 

2006 Report Nyanza 

Province 

Kisumu Nanga Primary School -0.1346 34.7384 GPS 5 2005 184 69 Microscopy 

2006 MoH Nyanza Kisumu Nanga Primary School -0.1346 34.7384 GPS 3 2006 269 180 Microscopy 
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Report Province 

2007 Report Nyanza 

Province 

Kisii 

Central 

Ndaru Primary School    9 2007 100 2 Microscopy 

2006 Report Nyanza 

Province 

Homa-bay Ndiru Primary School -0.61035 34.51041 GPS 6 2006 22 14 Microscopy 

2004 Report Central 

Province 

Kirinyaga Ndomba Primary School -0.5808 37.3418 GPS 5 2004 179 10 Microscopy 

2002 Report Eastern 

Province 

Embu Nga'ratuko -0.2249 37.3787 Other 10 1999 100 3 Microscopy 

2005 MoH 

Report 

Nyanza 

Province 

Migori Ngere Primary School -0.7744 34.5719 GPS 7 2005 121 14 Microscopy 

2002 Report Coast 

Province 

Kwale Ningawa Primary 

School 

-4.1256 39.6003 GPS 2 2002 107 0 Microscopy 

2002 Report Central 

Province 

Nyandarua Njabini -0.726 36.6531 Other 10 1999 77 0 Microscopy 

2000 MoH 

Report 

Eastern 

Province 

Meru 

Central 

Nkabune Primary 

School 

0.03445 37.69383 GPS 2 2000 261 35 Microscopy 

2005 MoH 

Report 

Eastern 

Province 

Meru 

North 

Nthamiri Primary 

School 

0.0388 37.7891 GPS 3 2004 102 25 Microscopy 

2004 Journal Nyanza 

Province 

Kisii 

Central 

Nyagoto -0.5459 34.8062 GPS 2 2002 65 12 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyando Nyakorio community -0.174 35.0626 Other 8 2001 125 33 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Siaya Nyalaji Primary School 0.0771 34.1717 GPS 8 2006 193 103 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Homa-bay Nyalkinyi Primary 

School 

-0.5199 34.4912 GPS 5 2005 100 6 Microscopy 

2006 Report Nyanza 

Province 

Kisumu Nyamasaria Primary 

School 

-0.10475 34.786116 GPS 3 2005 32 12 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Gucha Nyamiobo Primary 

School 

-0.8585 34.699 GPS 10 2006 72 2 Microscopy 

2007 Report Nyanza 

Province 

Kisii 

Central 

Nyandiwa Primary 

School 

-

0.582831 

34.829368 GPS 9 2007 100 4 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Nyaobe Primary School -0.4407 34.9856 GPS 11 2001 77 60 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Nyarichia Primary 

School 

-0.5607 34.9417 GPS 7 2001 126 61 Microscopy 

2007 MoH Nyanza Kisii Nyataro Primary School -0.7203 34.7635 GPS 6 2007 100 6 Microscopy 
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Report Province Central 

2007 MoH 

Report 

Nyanza 

Province 

Kisii 

Central 

Nyaura & Inaga -0.677 34.7718 Other 11 2007 150 18 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Migori Obolo Primary School -1.0219 34.1448 GPS 2 2006 90 20 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Homa-bay Ogande Primary School -0.5704 34.4955 GPS 1 2006 71 29 Microscopy 

2001 Report Nyanza 

Province 

Nyamira Oganga Sibora Academy -

0.515042 

34.89164 GPS 6 2001 53 39 Microscopy 

2005 MoH 

Report 

Nyanza 

Province 

Migori Ogwedhi Primary 

School 

-1.1097 34.6195 GPS 7 2005 70 4 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Kisii 

Central 

Omwari Primary School -0.6578 34.6523 GPS 5 2007 100 10 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Homa-bay Ongeti Primary School -0.4778 34.5434 GPS 5 2005 86 37 Microscopy 

2005 MoH 

Report 

Nyanza 

Province 

Migori Othochrakuom Primary 

School 

-1.001 34.1784 GPS 4 2005 158 32 Microscopy 

2003 Journal Coast 

Province 

Kilifi Paziani -3.5881 39.5266 GPS 5 1998 100 72 Microscopy 

2002 Report Coast 

Province 

Kwale Pungu Primary School -4.1181 39.627 GPS 2 2002 168 4 Microscopy 

2006 Report Nyanza 

Province 

Homa-bay Radiro Primary School -

0.563773 

34.444089 GPS 6 2006 33 17 Microscopy 

2004 Journal Nyanza 

Province 

Nyamira Ramasha -0.8963 34.9748 GPS 2 2002 56 2 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Nyando Ranjira Primary School -0.1495 34.8629 GPS 7 2007 120 81 Microscopy 

2008 MoH 

Report 

Nyanza 

Province 

Rachuonyo Rawinji Primary School -0.429 34.7447 GPS 3 2008 61 20 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Gucha Riamo Primary School -0.8691 34.7086 GPS 10 2007 100 1 Microscopy 

2004 Journal Nyanza 

Province 

Kisii 

Central 

Riana -0.651 34.666 Encarta 2 2002 68 15 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Nyamira Ribate Primary School -0.8609 34.9385 GPS 6 2007 100 3 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Kisii 

Central 

Rioma & Marani -0.5334 34.7924 Other 10 2007 150 4 Microscopy 

2006 Report Nyanza Homa-bay Ruga Primary School - 34.459306 GPS 6 2006 48 25 Microscopy 
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Province 0.629291 

2002 Report Central 

Province 

Nyandarua Rurii -0.201 36.382 Other 10 1999 117 11 Microscopy 

2006 MoH 

Report 

Western 

Province 

Bungoma S.A. Primary School 0.6163 34.7596 GPS 2 2006 100 1 Microscopy 

2006 Report Coast 

Province 

Malindi Sabaki Primary School -3.16368 40.08292 GPS 6 2005 103 51 Microscopy 

2006 Report Coast 

Province 

Malindi Sabaki Primary School -3.16368 40.08292 GPS 9 2005 82 32 Microscopy 

2007 Report Nyanza 

Province 

Siaya Sauri (sublocation) 0.118 34.5126 GPS 4 2005 909 481 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Sda Satellite Primary 

School 

0.2809 34.7509 GPS 11 2005 241 8 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Gucha Sengera Primary School -0.9277 34.7198 GPS 7 2007 100 3 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Migori Senye Primary School -0.9812 34.0864 GPS 2 2006 148 14 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Homa-bay Sero Primary School -0.5933 34.4932 GPS 1 2006 60 30 Microscopy 

2004 Thesis Coast 

Province 

Malindi Shakahola -

3.133702 

39.553492 Other 2 2003 109 19 Microscopy 

2003 Journal Coast 

Province 

Kilifi Shariani -3.7897 39.8211 GPS 5 1998 100 54 Microscopy 

2005 MoH 

Report 

Western 

Province 

Lugari Shihome Primary School 0.3977 34.7842 GPS 5 2005 171 27 Microscopy 

2007 MoH 

Report 

Western 

Province 

Kakamega Shisasari And 

Rosterman Primary 

Schools 

0.2616 34.7147 GPS 7 2007 330 73 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Shitaho Primary School 0.2713 34.7687 GPS 11 2005 183 28 Microscopy 

2006 Journal Western 

Province 

Kakamega Sigalagala 0.199 34.749 Encarta 2 2000 80 21 Microscopy 

2006 Report Coast 

Province 

Malindi Sir Ali Primary School -3.21838 40.11909 GPS 6 2005 105 1 Microscopy 

2006 Report Coast 

Province 

Malindi Sir Ali Primary School -3.21838 40.11909 GPS 9 2005 86 0 Microscopy 

2002 Report Western 

Province 

Busia Sisenye 0.158 33.994 Encarta 10 1999 171 117 Microscopy 
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2006 Journal Western 

Province 

Bungoma Sitikho 0.4776 34.667 Other 11 1998 300 230 Microscopy 

2004 MoH 

Report 

Rift Valley 

Province 

Keiyo Songeto Primary School 0.5929 35.5601 GPS 4 2004 83 15 Microscopy 

2005 MoH 

Report 

Nyanza 

Province 

Migori Sori Primary School -0.8456 34.154 GPS 1 2005 110 6 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega St Antony Primary 

School 

0.2066 34.8509 GPS 5 2005 190 43 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega St Josephs Primary 

School 

0.2803 34.7449 GPS 11 2005 123 4 Microscopy 

2006 Report Coast 

Province 

Malindi St. Andrews Primary 

School 

-3.21874 40.10201 GPS 6 2005 108 7 Microscopy 

2006 Report Coast 

Province 

Malindi St. Andrews Primary 

School 

-3.21874 40.10201 GPS 9 2005 100 6 Microscopy 

2005 Report Western 

Province 

Bungoma St. Antony Primary 

School 

0.603587 34.770425 GPS 5 2005 190 42 Microscopy 

2005 Report Western 

Province 

Kakamega St. Joseph Primary 

School 

0.28357 34.74551 GPS 11 2005 123 4 Microscopy 

2003 Journal Coast 

Province 

Kilifi Takaungu -3.683 39.85 Encarta 5 1998 100 52 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Gucha Tendere Primary School -0.8177 34.7207 GPS 10 2006 105 2 Microscopy 

2004 Report Rift Valley 

Province 

Baringo Tirion village Sunshine 

ECD 

0.38736 36.02541 GPS 5 2004 29 0 Microscopy 

2001 MoH 

Report 

Nyanza 

Province 

Nyamira Tombe Sda Primary 

School 

-0.6528 34.8719 GPS 7 2001 77 58 Microscopy 

2005 MoH 

Report 

Nyanza 

Province 

Migori Tonye Primary School -0.715 34.6324 GPS 7 2005 100 6 Microscopy 

2005 MoH 

Report 

Western 

Province 

Kakamega Township Primary 

School 

0.2714 34.7585 GPS 6 2005 226 34 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Siaya Uhembo Primary School 0.1393 34.2762 GPS 8 2006 187 75 Microscopy 

2007 MoH 

Report 

Nyanza 

Province 

Siaya Usula Primary School 0.0806 34.3679 GPS 10 2007 251 53 Microscopy 

2002 Report Coast 

Province 

Mombasa Utange -3.9667 39.7167 Encarta 10 1999 106 36 Microscopy 

2003 Journal Coast 

Province 

Kwale Vinuni -4.183 39.533 Encarta 5 1998 100 66 Microscopy 
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2002 Report Coast 

Province 

Kwale Voroni Primary School -4.1926 39.5618 GPS 2 2002 295 0 Microscopy 

2003 Journal Coast 

Province 

Kwale Vuga -4.183 39.499 Encarta 5 1998 100 44 Microscopy 

2006 MoH 

Report 

Western 

Province 

Bungoma Webuye Primary School 0.6109 34.7685 GPS 2 2006 100 0 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Homa-bay Wiamen Primary School -0.6341 34.4658 GPS 1 2006 66 20 Microscopy 

2006 MoH 

Report 

Nyanza 

Province 

Homa-bay Wi-Obiero Primary 

School 

-0.6277 34.4901 GPS 1 2006 52 29 Microscopy 

2002 Report Coast 

Province 

Kwale Yeje Primary School -4.1748 39.5876 GPS 2 2002 329 5 Microscopy 

2002 Report Coast 

Province 

Kwale Zibani Primary School -4.1277 39.6128 GPS 2 2002 264 15 Microscopy 

2003 Journal Coast 

Province 

Kwale Ziwani -4.1553 39.4541 GPS 5 1998 100 59 Microscopy 
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Table A. 2 Malaria Spatial Data from MARA ARMA, 1998 

 

Country Locality Lat Long Month Year Catch Species Iden Number Reference 

KENYA AHERO 0 34 5 89,90 HRD ARABIENSIS 2   GITHEKO SERVICE ETAL 1996,  

PARASSITOLOGIA 38 481-489 

KENYA AHERO 0 34 5 89,90 HRD GAMBIAE 2  GITHEKO SERVICE ETAL 1996,  

PARASSITOLOGIA 38 481-489 

KENYA BARINGO 0.5 36 ? ? HRD ARABIENSIS 2  MNZAVA ET AL 1994, JAMCA 

10:507 

KENYA BUNYALA (IRR. 

SCHEME) 

0.1 34.05 12-Aug 1974 HRD ARABIENSIS 2 33 HIGHTON (PERS COMM) 

KENYA BUNYALA (IRR. 

SCHEME) 

0.1 34.05 12-Aug 1974 HRD GAMBIAE 2 2 HIGHTON (PERS COMM) 

KENYA BUNYALA (IRR. 

SCHEME) 

0.1 34.05 3 1974 HRD ARABIENSIS 1,2 7 R.I. 

KENYA BUNYALA (IRR. 

SCHEME) 

0.1 34.05 3 1974 OSA ARABIENSIS 1,2 7 R.I. 

KENYA GARASHI -3.1 40 4 1981 MBO ARABIENSIS 2 2 MOSHA & SUBRA 1982 

KENYA GARASHI -3.1 40 4 1981 MBO GAMBIAE 2 5 MOSHA & SUBRA 1982 

KENYA GARASHI -0.1 40 4 1981 MBO MERUS 2 2 MOSHA & SUBRA 1982 

KENYA HOLA AREA -1.25 39.6333 1 1975 HRD ARABIENSIS 2 32 HIGHTON (PERS COMM) 

KENYA HOLA AREA -1.25 39.6333 6 1975 HRD ARABIENSIS 2 27 HIGHTON (PERS COMM) 

KENYA HOLA AREA -1.25 39.6333 ? 1976 HRD ARABIENSIS 2 248 HIGHTON (PERS COMM) 

KENYA HOLA AREA -1.25 39.6333 1 1975 HRD GAMBIAE 2 1 HIGHTON (PERS COMM) 

KENYA HOLA AREA -1.25 39.6333 6 1975 HRD GAMBIAE 2 2 HIGHTON (PERS COMM) 

KENYA HOLA AREA -1.25 39.6333 ? 1976 HRD GAMBIAE 2 5 HIGHTON (PERS COMM) 

KENYA HOLA AREA -1.25 39.6333 6 1981 MBO ARABIENSIS 2 24 MOSHA & SUBRA 1982 

KENYA HOLA AREA -1.25 39.6333 6 1981 HRD ARABIENSIS 2 32 MOSHA & SUBRA 1982 

KENYA HOLA AREA -1.25 39.6333 10 1974 HRD ARABIENSIS 1,2 2 R.I. 

KENYA HOLA AREA -1.25 39.6333 1 1975 HRD ARABIENSIS 1,2 4 R.I. 

KENYA HOLA AREA -1.25 39.6333 8 1975 HRD ARABIENSIS 1,2 16 R.I. 
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KENYA HOLA AREA -1.25 39.6333 6 1976 HRD ARABIENSIS 1,2,3 57 R.I.; MILES 1978 

KENYA JIMBO -4.6 39.2333 3-Jan 1979 MB? GAMBIAE 7 16 MOSHA & MUTERO 1982 

KENYA JIMBO -4.6 39.2333 6-Apr 1979 MB? GAMBIAE 7 4 MOSHA & MUTERO 1982 

KENYA JIMBO -4.6 39.2333 12-Oct 1979 MB? GAMBIAE 7 23 MOSHA & MUTERO 1982 

KENYA JIMBO -4.6 39.2333 3-Jan 1979 MB? MERUS 7 71 MOSHA & MUTERO 1982 

KENYA JIMBO -4.6 39.2333 6-Apr 1979 MB? MERUS 7 40 MOSHA & MUTERO 1982 

KENYA JIMBO -4.6 39.2333 12-Oct 1979 MB? MERUS 7 59 MOSHA & MUTERO 1982 

KENYA JIMBO -4.6 39.2167 8-May 1981 HRD ARABIENSIS 2 1 MOSHA & SUBRA 1982;  

MOSHA & PETRARCA 1983 

KENYA JIMBO -4.6 39.2167 8-May 1981 HRD GAMBIAE 2 1 MOSHA & SUBRA 1982;  

MOSHA & PETRARCA 1983 

KENYA JIMBO -4.6 39.2167 8-May 1981 HRD MERUS 2 56 MOSHA & SUBRA 1982;  

MOSHA & PETRARCA 1983 

KENYA JIMBO -4.6 39.2167 8-May 1981 MBO MERUS 2 236 MOSHA & SUBRA 1982;  

MOSHA & PETRARCA 1983 

KENYA KAPKUIKUI 

(Baringo DIST) 

0.6333 36.2833 6/91- Aug-92 HRD ARABIENSIS 2 666 MNZAVA ET AL 1994 

KENYA KAPKUIKUI 

(BARINGO DIST) 

0.6333 36.2833 6/91- Aug-92 OSA ARABIENSIS 2 78 MNZAVA ET AL 1994 

KENYA KARIMA -

0.6667 

37.3 6-Dec 86-87 HRD ARABIENSIS 2 9525 IJUMBA ET AL 1990 

KENYA KARIMA -

0.6667 

37.3 6-Dec 86-87 MBO ARABIENSIS 2 1278 IJUMBA ET AL 1990 

KENYA KARIMA -

0.6667 

37.3 6-Dec 86-87 OWT ARABIENSIS 2 454 IJUMBA ET AL 1990 

KENYA KARIMA -

0.6667 

37.3 6-Dec 86-87 ILT ARABIENSIS 2 242 IJUMBA ET AL 1990 

KENYA KARIMA -

0.6667 

37.3 6-Dec 86-87 OSA ARABIENSIS 2 3872 IJUMBA ET AL 1990 

KENYA KILIFI (NEAR 

MOMBASA) 

-

3.6167 

39.8333 5-.4 94-95 MBI, MBO ARABIENSIS 5  MBOGO ETAL 96, MVE 10:251 

KENYA KILIFI (NEAR 

MOMBASA) 

-

3.6167 

39.8333 5-.4 94-95 MBI, MBO GAMBIAE 5  MBOGO ETAL 96, MVE 10:251 

KENYA KILIFI (NEAR - 39.8333 5-.4 94-95 MBI, MBO MERUS 5  MBOGO ETAL 96, MVE 10:251 
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MOMBASA) 3.6167 

KENYA KIMILILI (ON 

TANA RIVER) 

0.7833 34.6667 6 1980 HRD GAMBIAE 2 6 R.I. 

KENYA KISIAN -

0.0667 

34.6833 11 1990 HRD ARABIENSIS 2 144 GITHEKO ET AL 1993 

KENYA KISIAN -

0.0667 

34.6833 4 1991 HRD ARABIENSIS 2 84 GITHEKO ET AL 1993 

KENYA KISIAN -

0.0667 

34.6833 11 1990 HRD GAMBIAE 2 188 GITHEKO ET AL 1993 

KENYA KISIAN -

0.0667 

34.6833 4 1991 HRD GAMBIAE 2 340 GITHEKO ET AL 1993 

KENYA KISIAN -

0.0667 

34.6833 11-Oct 1986 HRD ARABIENSIS 2 64 MA ET AL 1990 

KENYA KISIAN -

0.0667 

34.6833 11-Oct 1986 ARD ARABIENSIS 2 93 MA ET AL 1990 

KENYA KISIAN -

0.0667 

34.6833 11-Oct 1986 HRD GAMBIAE 2 385 MA ET AL 1990 

KENYA KISIAN -

0.0667 

34.6833 11-Oct 1986 ARD GAMBIAE 2 18 MA ET AL 1990 

KENYA KISIAN -

0.0667 

34.6833 11-Oct 1986 ABN ARABIENSIS 2 129 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Oct 1986 HRD ARABIENSIS 2 60 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Sep 1987 ABN ARABIENSIS 2 61 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Sep 1987 HRD ARABIENSIS 2 106 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Sep 1987 MBI ARABIENSIS 2 37 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Sep 1987 MBO ARABIENSIS 2 1 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Sep 1987 OSA ARABIENSIS 2 4 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Oct 1986 ABN GAMBIAE 2 21 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Oct 1986 HRD GAMBIAE 2 417 PETRARCA ET AL 1991 

KENYA KISIAN - 34.6833 11-Sep 1987 ABN GAMBIAE 2 8 PETRARCA ET AL 1991 
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0.0667 

KENYA KISIAN -

0.0667 

34.6833 11-Sep 1987 HRD GAMBIAE 2 516 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Sep 1987 MBI GAMBIAE 2 68 PETRARCA ET AL 1991 

KENYA KISIAN -

0.0667 

34.6833 11-Sep 1987 OSA GAMBIAE 2 9 PETRARCA ET AL 1991 

KENYA KISUMU -

0.1667 

34.3833 3 90 HRD GAMBIAE 5  VULULE ETAL 94, MVE 8:71 

KENYA KISUMU AREA -

0.1667 

34.3833 ? 1952 HRD GAMBIAE 1 a DAVIDSON & JACKSON 1962; 

 MOORES 1953 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Mar 1975 HRD ARABIENSIS 2 1322 HIGHTON ET AL 1979 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Mar 1975 OSA ARABIENSIS 2 178 HIGHTON ET AL 1979 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Mar 1975 HRD GAMBIAE 2 144 HIGHTON ET AL 1979 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Mar 1975 OSA GAMBIAE 2 25 HIGHTON ET AL 1979 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Jan 1972 HRD ARABIENSIS 2 450 JOSHI ET AL 1975 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Jan 1972 OSA ARABIENSIS 2 65 JOSHI ET AL 1975 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Jan 1972 HRD GAMBIAE 2 1375 JOSHI ET AL 1975 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Jan 1972 OSA GAMBIAE 2 29 JOSHI ET AL 1975 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Jun 1971 HRD GAMBIAE 2 32 JOSHI IN SERVICE 1972 

KENYA KISUMU AREA -

0.1667 

34.3833 8-Jul 1976 HRD GAMBIAE 2,3 12 MILES 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 7 1981 MBO GAMBIAE 2 7 MOSHA & SUBRA 1982 

KENYA KISUMU AREA -

0.1667 

34.3833 8-Jul 1968 HRD ARABIENSIS 1 11 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 11-Sep 1968 OSN ARABIENSIS 1 9 R.I. 
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KENYA KISUMU AREA -

0.1667 

34.3833 12 1968 MBO ARABIENSIS 1 1 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 12 1968 ARD ARABIENSIS 1 1 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 3-Dec 1969 OSN ARABIENSIS 1,2 10 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 3-Jan 1969 HRD ARABIENSIS 1,2 1 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Apr 1969 HRD ARABIENSIS 1,2 5 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Apr 1969 OSN ARABIENSIS 1,2 22 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Apr 1969 OSA ARABIENSIS 1,2 2 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 2-Dec 1970 ABN ARABIENSIS 1,2 20 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 3 1974 HRD ARABIENSIS 1,2 17 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 8-Jul 1968 HRD GAMBIAE 1 33 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 11-Sep 1968 OSN GAMBIAE 1 7 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 3-Dec 1969 OSN GAMBIAE 1,2 2 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 3-Jan 1969 HRD GAMBIAE 1,2 5 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Apr 1969 HRD GAMBIAE 1,2 3 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Apr 1969 MBI GAMBIAE 1,2 1 R.I. 

KENYA KISUMU AREA -

0.1667 

34.3833 5-Apr 1976 HRD ARABIENSIS 1,2,3 31 R.I.; MILES 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1969 L ARABIENSIS 2 203 SERVICE 1970B 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1969 HRD ARABIENSIS 2 167 SERVICE 1970B 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1969 OSN ARABIENSIS 2 187 SERVICE 1970B 
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KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1969 L GAMBIAE 2 375 SERVICE 1970B 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1969 HRD GAMBIAE 2 428 SERVICE 1970B 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1969 OSN GAMBIAE 2 45 SERVICE 1970B 

KENYA KISUMU AREA -

0.1667 

34.3833 11 1969 LIGHT 

TRAP 

ARABIENSIS 2 15 SERVICE 1970C 

KENYA KISUMU AREA -

0.1667 

34.3833 11 1969 LIGHT 

TRAP 

GAMBIAE 2 38 SERVICE 1970C 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1971 HRD ARABIENSIS 2 449 SERVICE 1973 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1971 L ARABIENSIS 2 706 SERVICE 1973 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1971 HRD GAMBIAE 2 495 SERVICE 1973 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1971 L GAMBIAE 2 107 SERVICE 1973 

KENYA KISUMU AREA -

0.1667 

34.3833 7 1974 L ARABIENSIS 2 151 SERVICE 1976B 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 L ARABIENSIS 2 1066 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 HRD ARABIENSIS 2 297 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 OSN ARABIENSIS 2 240 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 OSA ARABIENSIS 2 36 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 MB ARABIENSIS 2 3 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 OWT ARABIENSIS 2 1 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 L GAMBIAE 2 1137 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 HRD GAMBIAE 2 667 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 OSN GAMBIAE 2 57 SERVICE ET AL 1978 
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KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 OSA GAMBIAE 2 9 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 MB GAMBIAE 2 3 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 LIGHT 

TRAP 

GAMBIAE 2 1 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 6-Apr 1975 ABO GAMBIAE 2 1 SERVICE ET AL 1978 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Jun 1971 HRD ARABIENSIS 2 27 WHITE & MUNISS 1971 

KENYA KISUMU AREA -

0.1667 

34.3833 7-Jun 1971 HRD GAMBIAE 2 13 WHITE & MUNISS 1971 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1970 HRD ARABIENSIS 2 405 WHITE 1972 

KENYA KISUMU AREA -

0.1667 

34.3833 12-Nov 1970 HRD GAMBIAE 2 72 WHITE 1972 

KENYA LAMBWE 

VALLEY 

-

0.6667 

34.25 11 1970 HRD ARABIENSIS 2 5 WHITE & MUNISS 1970 

KENYA LAMBWE 

VALLEY 

-

0.6667 

34.25 11 1970 HRD GAMBIAE 2 2 WHITE & MUNISS 1970 

KENYA LODWAR 3.1 35.6333 7 1970 HRD ARABIENSIS 1,2 7 R.I. 

KENYA MAJI MOTO -

1.3333 

35.7 4 1973 MBI ARABIENSIS 1,2 4 R.I. 

KENYA MAJI-NDEGE 

(Baringo DIST) 

0.6333 36.2833 6/91- Aug-92 HRD ARABIENSIS 2 600 MNZAVA ET AL 1994 

KENYA MAJI-NDEGE 

(Baringo DIST) 

0.6333 36.2833 6/91- Aug-92 OSA ARABIENSIS 2 126 MNZAVA ET AL 1994 

KENYA MALINDI AREA -3.25 39.9667 5 1973 MBI GAMBIAE 1,2 1 R.I. 

KENYA MALINDI AREA -3.25 39.9667 6-May 1975 HRD GAMBIAE 1 1 R.I. 

KENYA MALINDI AREA -3.25 39.9667 6-May 1975 HRD MERUS 1,2,3 14 R.I.; MILES 1978 

KENYA MALINDI AREA -3.25 39.9667 ? ? ? MERUS 7 a VAN SOMEREN ET AL 1955 

KENYA MARA GAME 

PARK 

-1.5 35.5 6 1974 HRD GAMBIAE 1,2 1 R.I. 

KENYA MOMBASA 

(JARDINI) 

-

4.0667 

39.5167 4 1967 MBI GAMBIAE 2 2 WHITE 1968 

KENYA MWEA TEBERE -0.5 37.6833 6 1981 HRD ARABIENSIS 2 3 MOSHA & SUBRA 1982 
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KENYA MWEA TEBERE -0.5 37.6833 6-May 1970 MBI ARABIENSIS 1,2 3 R.I. 

KENYA MWEA TEBERE -0.5 37.6833 6-May 1970 OSN ARABIENSIS 1,2 10 R.I. 

KENYA MWEA TEBERE -0.5 37.6833 6-May 1970 HRD ARABIENSIS 1,2 14 R.I. 

KENYA NYANZA PROV 

(AHERO) 

-0.5 34.5 ? ? MBI ARABIENSIS 5  WALKER ETAL 96 JAMCA 12:172 

KENYA SARADIDI -

0.0667 

34 11-Oct 1986 HRD ARABIENSIS 2 10 MA ET AL 1990 

KENYA SARADIDI -

0.0667 

34 11-Oct 1986 HRD GAMBIAE 2 58 MA ET AL 1990 

KENYA SARADIDI -

0.0667 

34 11-Oct 1986 HRD ARABIENSIS 2 11 PETRARCA ET AL 1991 

KENYA SARADIDI -

0.0667 

34 11-Sep 1987 ABN ARABIENSIS 2 10 PETRARCA ET AL 1991 

KENYA SARADIDI -

0.0667 

34 11-Sep 1987 HRD ARABIENSIS 2 67 PETRARCA ET AL 1991 

KENYA SARADIDI -

0.0667 

34 11-Sep 1987 MBI ARABIENSIS 2 12 PETRARCA ET AL 1991 

KENYA SARADIDI -

0.0667 

34 11-Oct 1986 HRD GAMBIAE 2 63 PETRARCA ET AL 1991 

KENYA SARADIDI -

0.0667 

34 11-Sep 1987 HRD GAMBIAE 2 272 PETRARCA ET AL 1991 

KENYA SARADIDI -

0.0667 

34 11-Sep 1987 MBI GAMBIAE 2 24 PETRARCA ET AL 1991 

KENYA SARADIDI -

0.0667 

34 11-Sep 1987 MBO GAMBIAE 2 2 PETRARCA ET AL 1991 

KENYA TAVETA AREA -

3.3833 

37.6667 1 1961 HRD GAMBIAE 1 a DAVIDSON & JACKSON 1962 

KENYA TAVETA AREA -

3.3833 

37.6667 5 1981 HRD ARABIENSIS 2 65 MOSHA & SUBRA 1982 

KENYA TAVETA AREA -

3.3833 

37.6667 5 1981 MBO ARABIENSIS 2 28 MOSHA & SUBRA 1982 

KENYA TAVETA AREA -

3.3833 

37.6667 5 1981 MBO GAMBIAE 2 1 MOSHA & SUBRA 1982 

KENYA TAVETA AREA -

3.3833 

37.6667 6 1967 HRD ARABIENSIS 1 3 R.I. 

KENYA TAVETA AREA -

3.3833 

37.6667 6 1969 HRD ARABIENSIS 1,2 6 R.I. 
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KENYA TAVETA AREA -

3.3833 

37.6667 6 1969 OSN ARABIENSIS 1,2 2 R.I. 

KENYA TAVETA AREA -

3.3833 

37.6667 6 1980 HRD ARABIENSIS 2 5 R.I. 

KENYA TAVETA AREA -

3.3833 

37.6667 3 1970 OSA ARABIENSIS 2 3 WHITE & MUNISS 1970 

KENYA TAVETA AREA -

3.3833 

37.6667 3 1970 OSN ARABIENSIS 2 20 WHITE & MUNISS 1970 

KENYA TAVETA AREA -

3.3833 

37.6667 3 1970 HRD ARABIENSIS 2 247 WHITE & MUNISS 1970 

KENYA TAVETA AREA -

3.3833 

37.6667 3 1970 HRD GAMBIAE 2 31 WHITE & MUNISS 1970 

KENYA TAVETA AREA -

3.3833 

37.6667 8 1971 HRD ARABIENSIS 2 70 WHITE & MUNISS 1971 

KENYA TAVETA AREA -

3.3833 

37.6667 8 1971 HRD GAMBIAE 2 10 WHITE & MUNISS 1971 

KENYA TURKANA 

DISTRICT 

4 36 6.-8 94 HRD, OSN ARABIENSIS 5  CLARKE, ODIALLA ETAL 1996; 

 TRSTM&H 90 302-304 
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APPENDIX B:  MODEL VALIDATION OUTCOMES 
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B.1 Validation Results for HADCM3 Predictions 

 Ecological Niche Modeling was executed with HADCM3 future climate projection resulting 

in different suitability classes for malaria vectors to thrive. Section B.I.1 shows the graphs for 

AUC and kappa statistics from BIOCLIM and BIOCLIM True or False predictions.  The 

validation outcomes for DOMAIN model are shown in section B.I.2. 

 

B.1.1 HADCM3 BIOCLIM and BIOCLIM True or False Model Validation Results 

 

 

 

1a                 BIOCLIM 

 

 
 

 
 

ROC/KAPPA Evaluation  for 1950-2000 climate 

BIOCLIM Model Prediction (AUC = 0.823; k = 0.547) 

 

 

1b       BIOCLIM True or False 

 

 
 

 
 

ROC/KAPPA Evaluation for 1950-2000 climate 

BIOCLIM True/False Model prediction 

(AUC=0.703; k = 0.406) 
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2a                  BIOCLIM 

 
 

 
 

ROC/KAPPA Evaluation  for HADCM3_ 2020 _A2a 

climate BIOCLIM Model Prediction (AUC = 0.805; k 

= 0.476) 

 

2b          BIOCLIM True or False 

 

 
 

ROC/KAPPA Evaluation for HADCM3_ 

2020_A2a  climate BIOCLIM True/False Model 

prediction (AUC = 0.714;  k = 0.427) 

 

3a           BIOCLIM 

 

 
 

ROC/KAPPA Evaluation  for HADCM3_ 2050 _A2a 

climate BIOCLIM Model Prediction (AUC=0.803; k = 

0.484) 

 

3b        BIOCLIM True or False 

 

 
 

 
 

ROC/KAPPA Evaluation for HADCM3_ 

2050_A2a  climate BIOCLIM True/False Model 

prediction (AUC = 0.728; k = 0.456) 
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4a          BIOCLIM 

 

 

 
ROC/KAPPA Evaluation  for HADCM3_ 2080 _A2a 

climate BIOCLIM Model Prediction (AUC = 0.843; k 

= 0.576) 

 

4b       BIOCLIM True or False 

 

 

 
ROC/KAPPA Evaluation for HADCM3_ 

2080_A2a  climate BIOCLIM True/False Model 

prediction (AUC = 0.743; k = 0.486) 

Fig. B. 1:   BIOCLIM Model Validation Results for HADCM3 predicted malaria vector distribution 

cases, Bioclim (a), BIOCLIM True/False (b). 

 

 

 

B.1.2 HADCM3 DOMAIN Model Validation Results 

 

 

1a      DOMAIN AUC 
 

 

ROC Evaluation  for 1950-2000 climate DOMAIN 

Model Prediction (AUC=0.994) 

 

 

1b   DOMAIN Kappa 

 

 

KAPPA Evaluation  for 1950-2000 climate DOMAIN 

Model Prediction (k=0.954) 
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2a 

 

 
 
ROC/KAPPA Evaluation  for IPCC projected 2020 

_A2a climate DOMAIN Model Prediction 

(AUC=0.952) 

 

2b 

 

 
 
ROC/KAPPA Evaluation  for IPCC projected 2020 

_A2a climate DOMAIN Model Prediction 

(AUC=0.904) 

 

3a 

 

 

ROC Evaluation  for HADCM3_ 2050 _A2a climate 

DOMAIN Model Prediction (AUC=0.861) 

 

3b 

 

 

KAPPA Evaluation  for HADCM3_ 2050 _A2a 

climate DOMAIN Model Prediction (k=0.722) 

 

 

4a 

 

 
 
ROC Evaluation  for HADCM3_ 2080 _A2a climate 

DOMAIN Model Prediction (AUC=0.949) 

 

4b 

 

 
 
KAPPA Evaluation  for HADCM3_ 2080 _A2a 

climate DOMAIN Model Prediction (k=0.897) 

 

Fig. B. 2:  DOMAIN Model Validation Results for HADCM3 predicted malaria vector distribution 

cases,   ROC (1a, 2a, 3a) and Kappa (1b, 2b, 3b) 
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B.2 Validation Results for CCCMA Predictions 

When Ecological Niche Modeling was done with CCCMA future climate projection, 

different suitability classes for malaria vectors to thrive emerged. Section B.2.1 shows the 

graphs for AUC and kappa statistics from BIOCLIM and BIOCLIM True or False 

predictions.  The validation outcomes for DOMAIN model are shown in section B.2.2. 

 

B.2.1 CCCMA BIOCLIM and BIOCLIM True or False Model Validation Results 

 

 

1a            BIOCLIM 

 

 
 

 
 
ROC/KAPPA Evaluation  for CCCMA_ 2020 _A2a 

climate BIOCLIM Model Prediction (AUC=0.852; k 

= 0.549) 

 

 

1b       BIOCLIM True or False 

 

 
 

 
 
ROC/KAPPA Evaluation for CCCMA_ 2020_A2a  

climate BIOCLIM True/False Model prediction 

(AUC = 0.767; k = 0.534) 
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2a         BIOCLIM 

 
 

 
 
ROC/KAPPA Evaluation  for CCCMA_ 2050 _A2a 

climate BIOCLIM Model Prediction (AUC=0.869; k 

= 0.805) 

 

2b     BIOCLIM True or False 

 
 

 
 
ROC/KAPPA Evaluation for CCCMA_ 2050_A2a  

climate BIOCLIM True/False Model prediction 

(AUC = 0.780; k = 0.559) 

 

3a       BIOCLIM 

 
 

 
 
ROC/KAPPA Evaluation  for CCCMA_ 2080 _A2a 

climate BIOCLIM Model Prediction (AUC=0.845; k 

= 0.582) 

 

3b        BIOCLIM True or False 

 
 

 
 
ROC/KAPPA Evaluation for CCCMA_ 2050_A2a  

climate BIOCLIM True/False Model prediction 

(AUC = 0.780; k = 0.485) 

Fig. B. 3: BIOCLIM Model Validation Results for CCCMA predicted malaria vector distribution cases, 

Bioclim (a), BIOCLIM True/False (b) 
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B.2.2 CCCMA DOMAIN Model Validation Results 

 

 

 

1a     DOMAIN AUC 

 
 

ROC Evaluation  for CCCMA_ 2020 _A2a climate 

DOMAIN Model Prediction (AUC=0.954) 
 

 

1b     DOMAIN Kappa 

 
 

KAPPA Evaluation  for CCCMA_ 2020 _A2a 

climate DOMAIN Model Prediction (k = 0.909) 

 

 

2a 

 
 
ROC Evaluation  for CCCMA_ 2050 _A2a climate 

DOMAIN Model Prediction (AUC=0.948) 
 

 

2b 

 
 
KAPPA Evaluation  for CCCMA_ 2050 _A2a 

climate DOMAIN Model Prediction (k = 0.896) 

 

 

3a 

 
 
ROC Evaluation  for CCCMA_ 2080 _A2a climate 

DOMAIN Model Prediction (AUC=0.951) 

 

3b 

 
 
KAPPA Evaluation  for CCCMA_ 2080 _A2a 

climate DOMAIN Model Prediction (k = 0.897) 

Fig. B. 4:  DOMAIN Model Validation Results for CCCMA predicted malaria vector 

distribution cases, ROC (1a, 2a, 3a) and Kappa(1b, 2b, 3b)  
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B.3 Validation Results for CSIRO Predictions 

Ecological Niche Modeling performed with CSIRO future climate projection, different 

suitability classes for malaria vectors to thrive emerged. Section B.3.1 shows the graphs for 

AUC and kappa statistics from BIOCLIM and BIOCLIM True or False predictions.  The 

validation outcomes for DOMAIN model are shown in section B.3.2. 

 

B.3.1 CSIRO BIOCLIM and BIOCLIM True or False Model Validation Results 

 

 

1a          BIOCLIM  

 

 
 

 
 
ROC/KAPPA Evaluation  for CSIRO_ 2020 _A2a 

climate BIOCLIM Model Prediction 

(AUC=0.860; k=0.621) 
 

  

1b     BIOCLIM True or False 

 

 
 

 

 
 
ROC/KAPPA Evaluation for CSIRO_ 2020_A2a  

climate BIOCLIM True/False Model prediction (AUC 

= 0.796; k= 0.592) 
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2a     BIOCLIM 

 
 

 
 

ROC/KAPPA Evaluation  for CSIRO_ 2050 _A2a 

climate BIOCLIM Model Prediction (AUC=0.862; 

k=0.591) 

 

2b     BIOCLIM True or False 

 
 

 
 

ROC/KAPPA Evaluation for CSIRO_ 2050_A2a  climate 

BIOCLIM True/False Model prediction (AUC = 0.783; k= 

0.566) 

3a      BIOCLIM 

 
 

 
 

ROC/KAPPA Evaluation  for CSIRO_ 2080 _A2a 

climate BIOCLIM Model Prediction (AUC=0.858; 

k=0.624) 

3b      BIOCLIM True or False 

 
 

 
 

ROC/KAPPA Evaluation for CSIRO_ 2080_A2a  climate 

BIOCLIM True/False Model prediction (AUC = 0.762; k= 

0.525) 

Fig. B. 5: BIOCLIM Model Validation Results for CSIRO predicted malaria vector distribution 

cases, BIOCLIM (a), BIOCLIM True/False (b) 
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B.3.2 CSIRO DOMAIN Model Validation Results 

 

 

1a    DOMAIN AUC 

 
 
ROC Evaluation  for CSIRO_ 2020 _A2a climate 

DOMAIN Model Prediction (AUC = 0.953) 

 

 

1b   DOMAIN Kappa 

 
 
KAPPA Evaluation  for CSIRO_ 2020 _A2a climate 

DOMAIN Model Prediction (k = 0.906) 

 

 

2a 

 
 
ROC Evaluation  for CSIRO_ 2050 _A2a climate 

DOMAIN Model Prediction (AUC = 0.942) 

 

2b 

 
 
KAPPA Evaluation  for CSIRO_ 2050 _A2a climate 

DOMAIN Model Prediction (k = 0.884) 

 

 

3a 

 
 
ROC Evaluation  for CSIRO_ 2080 _A2a climate 

DOMAIN Model Prediction (AUC=0.947) 

 

3b 

 
 
KAPPA Evaluation  for CSIRO_ 2080 _A2a climate 

DOMAIN Model Prediction (k = 0.893) 

 

 

 

Fig. B. 6: DOMAIN Model Validation Results for CSIRO predicted malaria vector distribution 

cases, ROC (1a, 2a, 3a) and Kappa (1b, 2b, 3b). 


