SEED PRODUCTION FIELD DIAGNOSTICS COURSE HELD FROM 16th to 23rd November 2014 AT UoN CAVS

DEFINITIONS OF THRESHOLD LEVELS; ACCEPTABLE THRESHOLD LEVELS AND REGULATORY TOLERANCE LEVELS FOR TARGETED SEED CROPS PRESENTED BY Munyao W. M

PRESENTATION OUTLINE

- Introduction
- Threshold
 - Definition
 - Types of thresholds
- Tolerance levels of disease

INTRODUCTION

- Seed is an international commodity
- Seed is a carrier of inoculums
- Seed borne inoculum may
 - Cause disease in the crop

INTRODUCTION

- Introduce disease to new regions
- Reduce germination and % normal seedlings
- Seed borne inoculum therefore must be managed to avoid spread of diseases and reduction of yield losses

THRESHOLD LEVEL

- Definition
 - It is a boundary where something starts or ends
 - The point that must be exceeded to begin producing a given effect or result or to elicit a response
- Characteristics of threshold
 - changes throughout the season at different stages of crop development

THRESHOLD

- vary from variety to variety
- must be constantly revised to account for new pests, new varieties, new management practices, new marketing standards and variation in commodity prices
- developed by the grower to suit their IPM needs

Types of thresholds

- Economic Thresholds (action thresholds)
 - The pest density at which some control should be exerted to prevent a pest population from increasing further and causing economic loss

Types of thresholds

- Can also be defined as the break-even pest density.
- It is simply the operational criteria for administering pest control action.
- Normally lower than economic injury level

- Economic threshold depends on:
 - a. Economic injury level
 - b. Pest and host phenology
 - c. Population growth and injury rates
 - d. Time delays associated with integrated pest management tactics utilized

Damage Thresholds

The maximum damage a crop can sustain without yield loss

Economic Injury Thresholds (EIL)

- The lowest pest density at which economic damage occurs,
 where the cost of the control measure is equal to the loss
 likely to be inflicted by the pest.
- EIL is above the economic threshold

- Ell is governed by five primary variables
 - 1. cost of the management tactic per production unit, (C)
 - 2. market value per production unit (V)
 - 3. injury units per pest (I),
 - 4. damage per injury unit (D)
 - 5. the proportional reduction in pest attack (K)

Aesthetic Thresholds

The level at which a pest causes an undesirable change in the appearance of something, typically ornamental plants

How thresholds are developed

- Thresholds can be developed from the following factors among others
 - Amount of physical damage related to various pest densities.
 - Monetary value and production costs of the crop at various levels of physical damage.
 - Monetary loss associated with various levels of physical damage.
 - Amount of physical damage that can be prevented by the control measure.
 - Monetary value of the portion of the crop that can be saved by the control measure

Units of thresholds

- Thresholds are expressed as:
 - damage to leaves, plants, foliage,
 - b. Number of plants showing damage; or Number adults or larvae/stem / plant.
 - Number of adult insects or larvae / m2
 - d. Number of adult insects or larvae/sweep

Importance of Thresholds

- Decision making on scheduling of control and control methods
- Establishment of optimal amount of control which can be used to minimize risk of economic damage and environmental hazards

PEST AND DISEASE TOLERANCE

- Tolerance means the allowable upper limit
 of observed disease during
 - field inspection
 - post-harvest test and
 - laboratory evaluation

PEST AND DISEASE TOLERANCE

- Zero tolerance means no allowable limit
- Disease tolerance levels for infested seed crops and seed in seed certification are part of legislative measures for seed health management.

Pest and disease tolerance cont'd

- In assessing pests and disease in a seed field for allowable tolerances, five rules are generally applied
 - Examine every field
 - Sample randomly

Pest and disease tolerance cont'd

- Sample across the entire field
- Take enough samples
- Keep records of inspection Data and Management Actions

Disease tolerance levels

		%TOLERANCE	
CROP	DISEASE	Basic	Certified 1
Bean	Bean common mosaic virus	0	0.1
	Anthracnose of bean %	0.02	0.02
	Halo blight %	0	0.05
	Bacterial canker	0	0.05
	Angular bean leaf spot	0.02	0.05
	Bacterial blight of bean	0	0.05
Maize	Head smut (at final inspection)	0	0
	Common smut (at final inspection)	0	0
	Loose smut (at final inspection)	0	0
Rice	Rice blast (piricularia)%	0.1	0.5
	White tip nematode	0	0

Disease tolerance levels

		%TOLERANCE	
CROP	DISEASE	Basic	Certified 1
Groundnut	Ralstonia solanacearum	0	0
	Rosette virus	1/1000 plants	5/1000 plants
Wheat	Kernel bunt	0	1/100m2
	Loose smut	1/100m2	1/100m2
	Color rot (At final		
Sunflower	inspection)	0	0
	Verticillium wilt	0	0
	Downy mildew %	0	0.2
	Leaf blight of sunflower (%)	0	0.2
	Grey mould of sunflower		
	(%)	0.5	1
Sorghum	Covered kernel smut (%)	0.1	0.2
	Mildew	0.1	0.2

Disease tolerance levels

		%TOLERANCE	
CROP	DISEASE	Basic	Certified 1
Soybean	Soybean mosaic virus SMV %	0	0.02
	Purple stain %	2.5	2.5
	Bacterial pustule	0	0
	Pseudomonas savastanoi	0	0
Cassava	African cassava mosaic	0	0
	Cassava Bacterial Blight	0	0
	Cassava brown streak disease	0	0
	Bacterial wilt of potato, Black leg		
Irish potato	%, Golden nematode	0	0
	Fusarium wilt	0	2/1000
	Verticillium wilt	0	0.5
	Potato virus Y	0.1	1
	Potato virus X	0.3	2

THANKS FOR LISTENING

wmunyao@kephis.org