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ABSTRACT 
  

 Tin occurs in two main oxides; stannic oxide (SnO 2) and stannous oxide (SnO). The two 

oxides depicts the dual valence of tin, with oxidation states of 2+ and 4+. Stannous oxide is less 

well characterized than SnO2. Its electronic band gap is not accurately known but has been 

estimated to be somewhere in the range of 2.5–3 eV. Thus stannous oxide exhibits a smaller band 

gap than stannic oxide, which is largely quoted to be 3.6 eV. There are no single crystals 

available that would facilitate more detailed studies of stannous oxide. As such not much has 

been done about this oxide.  Stannic oxide is the most abundant form of tin oxide [10] and it has 

more technological significance in gas sensing applications, photo electronic applications and 

oxidation catalysts. Furthermore besides its common rutile tetragonal structured SnO2 phase 

there also exists a slightly more dense orthorhombic high pressure phase. Suito et al. showed that 

in a pressure–temperature diagram the regions of tetragonal and orthorhombic phases can be 

separated by a straight line of the equation p (kbar) = 140.0 + 0.022T (°C). 

 Owing to the vast applications of stannic Tin Oxide in the field of transparent conducting 

metal oxides, this project seeks to establish the structural properties, electronic and optical 

properties of stannic rutile tetragonal tin oxide using purely theoretical predictions. In this 

project, the ground properties of SnO2 have been studied using Quantum-ESPRESSO code, 

while the optical properties have been probed using yambo code. The ground state properties are 

studying using the Local Spin Density Approximation (LSDA). The band gap of SnO2 is found 

to be 3.6eV a value that agrees with the theoretical value. The Greens Function and the 

dynamically screened interaction (GW) and the Bethe Salpeter Equation (BSE) have been used 

to study the absorption energy and the electron energy loss spectra. By the BSE, the value of the 

band gap is found to be 3.5eV which is close to the available experimental values showing a 

variance of -2.78% from the experimental value. The absorption spectra obtained from the BSE 

calculations show that the maximum light absorbed by SnO2 is in the UV wavelength near 10nm 

which posses that SnO2 is a good absorber of UV of the electromagnetic spectrum. The 

following SnO2 parameters were used in this work: a=b= 4.1485A° and c=2.6620A°[1,3,6] . 

This was done by computational methods on SnO2 under its normal manifestation. 
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GLOSSARY 
SnO     Stannous tin oxide 

SnO2     Stannic tin oxide 

bc     Body centered 

LSDA    Local Spin Density Approximation 

DFT      Density function theory 

GW     Greens function and dynamically screened   

     interaction 

BSE     Bethe Salpeter Equation 

RPA     Random Phase Approximation 

LDA               Local density approximation 

ESPRESSO                      opEns Source Packages for Research in   

              Electronic Structure, Simulations and    

                       Optimization. 

GGA                      General Gradient Approximation. 

DOS               Density Of States. 

PDOS                       Projected Density Of States 

eV             Electron Volts 

TCO            Transparent Conducting Oxides 

UV            Ultraviolet 

scf            Self-consistent wave-functions 

nscf            Non-self consistent wave-functions 

ks            Kohn-Sham 

BZ            Brillouin zone 

 

 

 



7 | P a g e  
 

Contents 
DECLARATION .......................................................................................................................................... i 

DEDICATION. ............................................................................................................................................ ii 

ABSTRACT ................................................................................................................................................ iii 

ACKNOWLEDGEMENT. ........................................................................................................................ iv 

GLOSSARY ................................................................................................................................................. v 

CHAPTER ONE. ........................................................................................................................................ 9 

1.0 INTRODUCTION. ............................................................................................................................. 9 

1.1 Rutile Tetragonal Stannic Tin Oxide (SnO2) .................................................................................. 9 

1.2  Ab Initio studies. ............................................................................................................................ 9 

1.3 Problem statement. ........................................................................................................................ 10 

1.4 RESEARCH OBJECTIVES. ........................................................................................................ 10 

1.40 GENERAL OBJECTIVES. ........................................................................................................ 10 

1.41 SPECIFIC OBJECTIVES. .......................................................................................................... 10 

1.5 JUSTIFICATION OF THE STUDY. ........................................................................................ 10 

CHAPTER TWO. ..................................................................................................................................... 12 

2.0 LITERATURE REVIEW. ................................................................................................................. 12 

2.1 Introduction. .................................................................................................................................. 12 

2.2 Experimental and Theoretical Structural and Electronic Studies. ................................................. 12 

2.3 Experimental and Theoretical Optical Studies. ............................................................................. 13 

CHAPTER THREE. ................................................................................................................................. 15 

3.0 THEORATICAL BACKGROUND. ................................................................................................. 15 

3.1 STRUCTRURE OF MATERIALS ............................................................................................... 15 

3.2 BAND STRUCTURE ................................................................................................................... 15 

3.3 DENSITY OF STATES ................................................................................................................. 17 

3.4 THEORY OF ELECTRONIC STRUCTURES ............................................................................ 19 

3.5 DENSITY FUNCTIONAL THEORY .......................................................................................... 25 

3.6 BETHE SALPETER EQUATION {BSE} .................................................................................... 27 

CHAPTER FOUR. .................................................................................................................................... 28 

4.0 METHODOLOGY. ........................................................................................................................... 28 

4.1 Introduction ................................................................................................................................... 28 

4.2 QUANTUM ESPRESSO .............................................................................................................. 28 

4.3 DENSITY FUNCTIONAL THEORY (DFT) FORMALISM. ...................................................... 29 



8 | P a g e  
 

4.4 PSEUDO-POTENTIALS.............................................................................................................. 29 

4.5 STRUCTURE OPTIMIZATION. ................................................................................................. 30 

4.6 ELECTRONIC PROPERTIES. .................................................................................................... 31 

CHAPTER FIVE. ..................................................................................................................................... 33 

5.0 RESULTS AND DISCUSSIONS. .................................................................................................... 33 

5.1 STRUCTURAL PROPERTIES OF SnO2. ..................................................................................... 33 

5.2 ELECTRONIC PROPERTIES FOR SnO2. ................................................................................... 34 

5.3 DFT CALCULATIONS FOR RUTILE TIN OXIDE (SnO2) ...................................................... 36 

CONCLUSION. ........................................................................................................................................ 51 

RECOMMENDATIONS. ......................................................................................................................... 51 

REFERRENCES. ...................................................................................................................................... 52 

INPUT FILE FOR SnO2 .......................................................................................................................... 56 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



9 | P a g e  
 

CHAPTER ONE. 

1.0 INTRODUCTION. 

 

1.1 Rutile Tetragonal Stannic Tin Oxide (SnO2) 

 Tin oxide is the simplest of the transparent conducting oxides (TCOs) with an n-type band 

structure. This project focused on the rutile tetragonal structured SnO2 which closely resembles 

the structure of TiO2[1].  It has the rutile structure, in which each tin atom is surrounded by six 

oxygens in an octahedral array, and each oxygen is surrounded by three tin atoms in a planar 

array[1,3]. Its lattice calculated parameters are a=b= 4.1485A°  and c=2.6620A° [1,3,6] 

 Tin is element 50 in the periodic table whose electronic configuration is 1s2 2s2 2p6 3s2 3p6 4s2 

3d10 4p6 5s2 4d10 5p2/ [Kr] 5s2 4d10 5p2 per shell: 2,8,18,18,4 with a mass of  118.71 u[7]. 

Being a diamagnetic [12] TCOs, tin oxide is heavily used for flat panel displays, photo voltaic 

cells, low emissivity windows, electro chromic devices, sensors and transparent 

electronics[4,8,9,11]. Previous works on SnO2 predict this structure to having both a direct and 

in-direct band gap of 3.6eV in different phases[4,8]. 

 

1.2  Ab Initio studies. 

 

Theoretical methods and computational physics technology has gone through tremendous 

changes in the recent past. This has created a new platform for the researchers to research on 

material properties from first principles. This has made it possible for the researchers to be able 

to study ground state properties of materials for complicated systems which have strong many-

electron interaction effects. Theoretically determining the properties of any material however 

simple from first principles must come from solving the Schrödinger Equation for a quantum 

many-body interacting system. As such, exact numerical solutions for such systems are empirical 

as per the size of the system. It therefore warrants that solutions to such systems be determined 

by approximations from time to time. 

 On the other hand, to determine the electronic properties of any given system in solid 

state physics, the Kohn-Sham equation within the Density Functional Theory using either Local 

spin density approximation or the generalized gradient approximation, which generally solves 

the many-body problem by considering a non-interacting systems with a one electron exchange 

correlation potential. 
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1.3 Problem statement. 

Stannic rutile tetragonal SnO2 is the largest ore of tin oxides and it is estimated to be about 99% 

abundant in the earth's crust. Furthermore SnO2 is a transparent conducting metal oxide with 

numerous optoelectronic applications ranging from small scale to massive industrial usability. In 

this applications there is need to understand the theoretical predictions to open up the insight of 

the characteristics and properties of SnO2. This work therefore will focus on the properties 

which will make SnO2 an important optoelectronic solution to the growing demand for this class 

of materials. 

 

1.4 RESEARCH OBJECTIVES. 

 

1.40 GENERAL OBJECTIVES. 

  

This project is aimed at establishing the structural properties of rutile tetragonal tin oxide and its 

electronic properties as well as its optical properties using LSDA calculations and yambo coding 

computational methods. 

 

1.41 SPECIFIC OBJECTIVES. 
 

a) To determine the structural properties of rutile tetragonal SnO2 using LSDA method. 

b) To determine the electronic properties of rutile tetragonal SnO2 using LSDA method. 

c) To determine the optical properties of the body centered rutile tetragonal SnO2 using GW and 

BSE methods. 

1.5 JUSTIFICATION OF THE STUDY. 

 

Of the oxides of tin, rutile stannous tin oxide is the most useful with stable structural, electrical 

and optical properties. It attracts dynamic applications owing to its conductivity and transparency 

in nature. Tin oxide is an attractive material due to its wide variety in its physical properties 

related to its electronic structure and optical nature. It is an n- type semiconductor with narrow 

band gap, making it to have a wide range of applications in solar energy, optics and electronics 

due to its absorbency, reflectivity and transmittance properties. Tin oxide has been under 

extensive theoretical and experimental research in the resent research world to date and there is 
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substantial information from these research findings describing the structure and electronic 

properties. Tin is one of the best transparent oxides, its optical properties have been studied 

extensively experimentally; in this studies however, this experimental results have not been 

tested theoretically. We seek to establish and proof the electronic, structural and optical 

properties of tin oxide using the theoretical techniques mainly by computational methods. 

 Treatment of correlations in metal oxides in the valence band has been a challenge and as 

such describing accurately the correlations in highly complex systems has proved to be a 

challenge. Hence it is still desirable to have more first – principles investigations of the 

electronic structure, optical properties and the mechanical structure of tin oxide using different 

approaches to enhance the understanding of tin oxide properties. LSDA is one such approach that 

works better for tin oxide and as a result, it gives better prediction of the electronic properties 

and mechanical structure. Tin oxide has many applications in solar energy, as such, studying it's 

optical properties using the GW and BSE methods of yambo coding becomes significant and 

crucial. 
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CHAPTER TWO. 

2.0 LITERATURE REVIEW. 

2.1 Introduction. 

 

Tin oxide being a transparent metal oxide, it exhibits a wide range of physical properties related 

to its electronic  structure. Its optical behavior forms the basis of a wide range of applications, as 

such, this material has been the subject of extensive experimental and theoretical investigations 

for the past years. In this chapter, we focus on the review of some of the essentials of tin oxide to 

set up the background in studying this material. 

 

2.2 Experimental and Theoretical Structural and Electronic Studies. 

 Tin oxide occurs in two forms, stannous tin oxide (SnO) and Stannic tin oxide (SnO2). 

SnO does not have great electrical relevance and hence it has not spurred interest in the research 

world. Owing to its optoelectronic properties, SnO2 has been an extensive source of research. 

The figure below represents the structure of rutile tin oxide; 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Primitive unit cell of the bulk rutile structure, space group P4 2 mnm. white balls 

correspond to tin atoms, and red balls to the oxygen atoms. There are two units of SnO 2  in the 

unit cell. 
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             The study of stannic tin oxide is motivated by its applications as a solid state gas sensor 

material[1], oxidation catalyst, and transparent conductor[3] due to its high photo stability and 

good carrier mobility [28,29]. The great diversity of oxide materials could not be better 

demonstrated than in the variety of self-assembled nanoscale materials that have been recently 

discovered. For tin oxide, for instance SnO nanodiskettes [5], SnO 2 nanobelts, and other 

nanoscopic materials [6] form. SnO 2 nanobelts have the bulk-like rutile structure . Their 

surfaces are low index bulk terminations and thus should exhibit similar properties to single 

crystal surfaces. 

 

 Many of these materials have gas sensing properties[5]. This and their large surface to 

volume ratio make them promising materials for well defined, highly sensitive gas sensors. The 

key for understanding many aspects of SnO 2 surface properties is the dual valency of Sn. The 

dual valency facilitates a reversible transformation of the surface composition from 

stoichiometric surfaces with Sn 4+ surface cations into a reduced surface with Sn 2+ surface 

cations depending on the oxygen chemical potential of the system[13]. Reduction of the surface 

modifies the surface electronic structure by formation of Sn 5s derived surface states that lie 

deep within the band gap and also cause a lowering of the work function[5]. In most applications 

tin oxide is modified by additives to either increase the charge carrier concentration by donor 

atoms, or to increase the gas sensitivity or the catalytic activity by metal additives. Some of the 

basic concepts by which additives modify the electronic structure of SnO2. The band gap of 

SnO2 has been determined to be 3.6eV[1,3,6]. 

 

2.3 Experimental and Theoretical Optical Studies. 

 

          The optical properties of rutile tetragonal stannic tin oxide have not been studied to a large 

extend [12]. The Ab initio calculations in the framework of density functional theory (DFT) [1] 

have yielded high-quality results for a large variety of systems, ranging from periodic solids to 

molecules and nanostructures [1]. These results are however mostly limited to quantities related 

to the ground state properties (structural and electronic), whereas additional phenomena that 

occur in the excited state are not correctly described [2]. 

           Quantum-ESPRESSO is therefore not suitable for studying and describing the optical 
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properties of SnO2. Yambo coding has been extensively used to study the optical properties of 

SnO2. Yambo coding includes explicitly the electronic occupations, therefore yambo can be best 

applied to analyzing semiconductors, insulators and metals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 | P a g e  
 

CHAPTER THREE. 

 

3.0 THEORATICAL BACKGROUND. 

 

3.1 STRUCTRURE OF MATERIALS 

 

 The structure of materials can be classified by the general magnitude of various features 

being considered. The three most common major classification of structural, listed generally in 

increasing size, are: Atomic structure, which includes features that cannot be seen, such as the 

types of bonding between the atoms, and the way the atoms are arranged [26]. Micro structure, 

which includes features that can be seen using a microscope, but seldom with the naked eye. 

Macro structure, which includes features that can be seen with the naked eye. 

      The atomic structure ideally affects the chemical, physical, thermal, electrical, magnetic, and 

optical properties of a material. The micro structure and macro structure can also affect these 

properties but they generally have a larger effect on mechanical properties and on the rate of 

chemical reaction of the material in question.           The properties of a material open up the 

structure of the material [27]. This may be in line with the strength of metals, which in an 

engineering world may suggests that these atoms are held together by strong bonds and hence 

strong hints on the applicability of the material in the real world. To understand the structure of a 

material, the type of atoms present, and how the atoms are arranged and bonded must be known. 

For tin oxide for example, owing to its lucrative optoelectronic properties, a probe on its 

structure is important. 

 

3.2 BAND STRUCTURE 

 

 The band structure of a solid describes the ranges of energy that an electron within the 

solid may have i.e the energy bands, allowed bands, or simply bands and ranges of energy that it 

may not have called band gaps or forbidden bands [18]. Band theory derives these bands and 

band gaps by examining the allowed quantum mechanical wave functions for an electron in a 

large, periodic lattice of atoms or molecules. Band theory has been successfully used to explain 

many physical properties of solids, such as electrical resistivity and optical absorption, and forms 

the foundation of the understanding of all solid state devices including; transistors, solar cells, 
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diodes and many others. 

 The existence of continuous bands of allowed energies can be understood starting with 

the atomic scale. The electrons of a single isolated atom occupy atomic orbitals, which form a 

discrete set of energy levels. If multiple atoms are brought together into a molecule, their atomic 

orbitals will combine to form molecular orbitals each with a different energy. In other words, n 

atomic orbitals will combine to form n molecular orbitals. As more and more atoms are brought 

together, the molecular orbitals extend larger and larger, and the energy levels of the molecule 

will become 

increasingly dense. Eventually, the collection of atoms form a giant molecule, or otherwise 

commonly a solid. For this giant molecule, the energy levels are so close that they can be 

considered to form a continuum of states. {The fineness of spacing required to be considered an 

effective "continuum" depends on the situation.} 

 Band gaps are essentially leftover ranges of energy not covered by any band, a result of 

the finite widths of the energy bands. The bands have different widths, with the widths 

depending on the degree of overlap in the atomic orbitals from which they arise. Two adjacent 

bands may simply not be wide enough to fully cover the range of energy. For example, the bands 

associated with core orbitals such as 1s electrons are extremely narrow due to the small overlap 

between adjacent atoms. As a result, there tend to be large band gaps between the core bands. 

Higher bands involve larger and larger orbitals with more overlap, becoming progressively wider 

and wider at high energy so that there are no band gaps at high energy. 

 Band structure calculations take advantage of the periodic nature of a crystal lattice, 

exploiting its symmetry[9]. The single electron Schrödinger equation is solved for an electron in 

a lattice periodic potential, giving Bloch waves as solutions:  

 

𝜓𝑛𝑘(𝑟) = 𝑒𝑖𝑘∙𝑟𝑈𝑛𝑘(𝑟)                                                                                                             1 

 

where 𝑘 is called the wave vector. For each value of 𝑘, there are multiple solutions to the 

Schrödinger equation labeled by n, the band index, which simply numbers the energy bands. 

Each of these energy levels evolves smoothly with changes in k, forming a smooth band of 

states. For each band we can define a function E n (k), which is the dispersion relation for 

electrons in that band. The band gap of a semiconductor is always one of two types, a direct band 



17 | P a g e  
 

gap or an indirect band gap. The minimal energy state in the conduction band and the maximal 

energy state in the valence band are each characterized by a certain crystal momentum (k-vector) 

in the Brillion zone. If the k-vectors are the same, it is called a "direct gap". If they are different, 

it is called an "indirect gap". The band gap is called "direct" if the momentum of electrons and 

holes is the same in both the conduction band and the valence band; an electron can directly emit 

a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass 

through an intermediate state and transfer momentum to the crystal lattice [21]. 

Figure  

 

 

         Direct Band gap 

 

 

 

 

Figure 

 

 

                Indirect Band gap 

 

 

 

 

3.3 DENSITY OF STATES 

 

 Density of states (DOS) of a system describes the number of states per interval of energy 

at each energy level that are available to be occupied by electrons. Unlike isolated systems, like 

atoms or molecules   in   gas   phase, the density distributions   are   not   discrete   like   a 

spectral   density but continuous. A high density of states at a specific energy level means that 

there are many states available for occupation. A density of states of zero means that no states 

can be occupied at that energy level. Generally a density of states is an average over the space 
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and time domains occupied by the system. Local variations, most often due to distortions of the 

original system, are often called local density of states (LDOS). If the density of states of an 

undisturbed system is zero, the local density of states can locally be non-zero due to the presence 

of a local potential [17]. 

 The density of states in a semiconductor equals the density per unit volume and energy of 

the number of solutions to Schrödinger's equation. We will assume that the semiconductor can be 

mode led as an infinite quantum well in which electrons with effective mass, m * , are free to 

move. The energy in the well is set to zero. The semiconductor is assumed a cube with side L. 

This assumption does not affect the result since the density of states per unit volume should not 

depend on the actual size or shape of the semiconductor [18]. 

 The solutions to the wave equation where V(x) = 0 are sine and cosine functions: 

𝜓 = 𝐴 sin 𝑘𝑥  𝑥 + 𝐵 cos 𝑘𝑥  𝑥 ………………………………………………………2  

 

Where A and B are to be determined. The wave function must be zero at the infinite barriers of 

the well. At x = 0 the wave function must be zero so that only sine functions can be valid 

solutions or B must equal zero. At x = L, the wave function must also be zero yielding the 

following possible value for the wave number, k x . 

𝑘𝑥 =
𝑛𝜋

𝐿
;   {𝑛 = 1,2,3, …… } ……………………………………… . .3 

This analysis can now be repeated in the y and z direction. Each possible solution then 

corresponds to a cube in k-space with size np/L. The total number of solutions with a different 

value for k x , k y  and k z  and with a magnitude of the wave vector less than k is obtained by 

calculating the volume of one eighth of a sphere with radius 21 k and dividing it by the volume 

corresponding to a single solution,, yielding: 

 

𝑁 = 2 ×
1

8
× (

𝐿

𝜋
)
3

×
4

3
× 𝜋𝑘3 …………………………………………4 

 

A factor of two is added to account for the two possible spins of each solution. The density per 

unit energy is then obtained using the chain rule: 

𝑑𝑁

𝑑𝐸
=

𝑑𝑁

𝑑𝑘

𝑑𝑘

𝑑𝐸
= (

𝐿

𝜋
)

3

𝜋𝑘2
𝑑𝑘

𝑑𝐸
………………………………… . .5 
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The kinetic energy E of a particle with mass m *  is related to the wave number, 𝑘, by: 

𝐸(𝑘) =
ℏ2𝑘2

2𝑚∗
     ; 𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 

𝑑𝑘

𝑑𝐸
=

𝑚∗

ℏ2𝑘
  𝑎𝑛𝑑 𝑘 =

√2𝑚∗𝐸

ℏ
………………… .6 

 

And the density of states per unit volume and per unit energy, 𝑔(𝐸), becomes: 

𝑔(𝐸) =
1

𝐿3

𝑑𝑁

𝑑𝐸
=

8𝜋√2

ℎ3
𝑚∗

3

2√𝐸,    𝑓𝑜𝑟 𝐸 ≫ 0……………………… . .7 

The density of states is zero at the bottom of the well as well as for negative energies. 

The same analysis also applies to electrons in a semiconductor. The effective mass takes into 

account the effect of the periodic potential on the electron. The minimum energy of the electron 

is the energy at the bottom of the conduction band, E c , so that the density of states for electrons 

in the conduction band is given by(33): 

𝑔𝑐(𝐸) =
8𝜋√2

ℎ3
𝑚∗3 2⁄ √𝐸 − 𝐸𝑐,    𝑓𝑜𝑟 𝐸 ≤ 𝐸𝑐 ………………………………………………… . .8 

𝒈𝒄(𝑬) = 𝟎,          𝒇𝒐𝒓 𝑬 < 𝑬𝒄 

 

 

3.4 THEORY OF ELECTRONIC STRUCTURES 

  

 Electronic structure is the state of motion of electrons in an electrostatic field created by 

stationary nuclei.[19] The term encompass both the wave functions of the electrons and the 

energies associated with them. Electronic structure is obtained by solving quantum mechanical 

equations for the aforementioned clamped-nuclei problem. A number of methods to obtain 

electronic structures exist and their applicability varies from case to case[20]. The methods 

include: 

 Born–Oppenheimer approximation    

 Molecular Hamiltonian    

 Schrödinger equation   

 The Hartree Approximation 

 Hartree-Fock Techniques 
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3.4.1 BORN–OPPENHEIMER APPROXIMATION 

  

 The computation of the energy and the wave function of an average size molecule is a 

formidable task that is alleviated by the Born–Oppenheimer (BO) approximation, named after 

Max Born and J.   Robert Oppenheimer [21]. For instance the benzene molecule consists of 12 

nuclei and 42 electrons. The time independent Schrödinger equation, which must be solved to 

obtain the energy and wave function of this molecule, is a partial differential eigenvalue equation 

in 162 variables the spatial coordinates of the electrons and the nuclei. The BO approximation 

makes it possible to compute the wave function in two less complicated consecutive steps 

 This approximation was proposed in 1927,[28] in the early period of quantum mechanics, 

by Born and Oppenheimer and is still indispensable in quantum chemistry. It allows the wave 

function of a molecule to be broken into its electronic and nuclear  both vibrational and rotational 

components. In the first step of the BO approximation the electronic Schrödinger equation is 

solved, yielding 

the wave function  depending on electrons only. For benzene this wave function depends on 126 

electronic coordinates[30]. During this solution the nuclei are fixed in a certain configuration, 

very often the equilibrium configuration. If the effects of the quantum mechanical nuclear 

motion are to be studied, for instance because a vibrational spectrum is required, this electronic 

computation must be in nuclear coordinates. In the second step of the BO approximation this 

function serves as a potential in a Schrödinger equation containing only the nuclei—for benzene 

an equation in 36 variables. 

 The success of the BO approximation is due to the high ratio between nuclear and 

electronic masses. The approximation is an important tool of quantum chemistry; without it only 

the lightest molecule, H 2 , could be handled, and all computations of molecular wave functions 

for larger molecules make use of it. Even in the cases where the BO approximation breaks down, 

it is used as a point of departure for the computations [28] 

 

3.4.2 MOLECULAR HAMILTONIAN 

 

 In atomic, molecular, and optical physics and quantum chemistry, the molecular 
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Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a 

molecule. This operator and the associated Schrödinger equation play a central role in 

computational chemistry and physics for computing properties of molecules and aggregates of 

molecules, such as thermal conductivity, specific heat, electrical conductivity, optical, and 

magnetic properties, and reactivity [29]. 

 The elementary parts of a molecule are the nuclei, characterized by their atomic numbers, 

Z, and the electrons, which have negative elementary charge, −𝑒. Their interaction gives a 

nuclear charge of 𝑍 +  𝑞, where 𝑞 =  −𝑒𝑁, with N equal to the number of electrons. Electrons 

and nuclei are, to a very good approximation, point charges and point masses [15]. The 

molecular Hamiltonian is a sum of several terms: its major terms are the kinetic energies of the 

electrons and the Coulomb (electrostatic) interactions between the two kinds of charged particles. 

The Hamiltonian that contains only the kinetic energies of electrons and nuclei, and the Coulomb 

interactions between them, is known as the Coulomb Hamiltonian. From it is missing a number 

of small terms, most of which are due to electronic and nuclear spin. 

Although it is generally assumed that the solution of the time independent Schrödinger 

equation associated with the Coulomb Hamiltonian will predict most properties of the molecule, 

including its shape (3D structure), calculations based on the full Coulomb Hamiltonian are very 

rare. The main reason is that its Schrödinger equation is very difficult to solve. Applications are 

restricted to small systems like the hydrogen molecule. Almost all calculations of molecular 

wave functions are based on the separation of the Coulomb Hamiltonian first devised by Born 

and Oppenheimer.  The nuclear kinetic energy terms are omitted from the Coulomb 

Hamiltonian and one considers the remaining Hamiltonian as a Hamiltonian of electrons only. 

The stationary nuclei enter the problem only as generators of an electric potential in which the 

electrons move in a quantum mechanical way. Within this framework the molecular Hamiltonian 

has been simplified to the clamped nucleus Hamiltonian, also called electronic Hamiltonian that 

acts only on functions of the electronic coordinates. 

 Once the Schrödinger equation of the clamped nucleus Hamiltonian has been solved for a 

sufficient number of constellations of the nuclei, an appropriate eigenvalue preferably the lowest 

can be seen as a function of the nuclear coordinates, which leads to a potential energy surface. In 

practical calculations, the surface is usually fitted in terms of some analytic functions. In the 

second steps of the Born–Oppenheimer approximation the part of the full Coulomb Hamiltonian 
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that depends on the electrons is replaced by the potential energy surface. This converts the total 

molecular Hamiltonian into another Hamiltonian that acts only on the nuclear coordinates. In the 

case of a breakdown of the Born–Oppenheimer approximation—which occurs when energies of 

different electronic states are close—the neighboring potential energy surfaces are needed, see 

this article for more details on this. 

 The nuclear motion Schrödinger equation can be solved in a space-fixed (laboratory) 

frame, but then the translational and rotational (external) energies are not accounted for. Only the 

(internal) atomic vibrations enter the problem. Further, for molecules larger than triatomic ones, 

it is quite common to introduce the harmonic approximation, which approximates the potential 

energy surface as a quadratic function of the atomic displacements. This gives the harmonic 

nuclear motion Hamiltonian. Making the harmonic approximation, we can convert the 

Hamiltonian into a sum of uncoupled one-dimensional harmonic oscillator Hamiltonians. The 

one-dimensional harmonic oscillator is one of the few systems that allows an exact solution of 

the Schrödinger equation. 

 Alternatively, the nuclear motion (vibrational) Schrödinger equation can be solved in a 

special frame (an Eckart frame) that rotates and translates with the molecule. Formulated with 

respect to this body-fixed frame the Hamiltonian accounts for rotation, translation and vibration 

of the nuclei. Since Watson introduced in 1968 an important simplification to this Hamiltonian, it 

is often referred to as Watson's nuclear motion Hamiltonian, but it is also known as the Eckart 

Hamiltonian. 

 

3.4.3 HARTREE FOCK THEORY 

 

 Hartree Fock theory is one of the simplest approximate theories for solving the many-

body Hamiltonian [12]. It is based on a simple approximation to the true many-body wave 

function; that the wave function is given by a single Slater determinant of 

 spin-orbitals 

𝛹𝑇𝑜𝑡𝑎𝑙 = 𝜓𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 × 𝜓𝑛𝑢𝑐𝑙𝑒𝑎𝑟 ……………………………………………………………………9 

 

where the variables   include the coordinates of space and spin. This simple ansatz for the wave 

function captures much of the physics required for accurate solutions of the Hamiltonian. Most 
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importantly, the wave function is ant symmetric with respect to an interchange of any two 

electron positions. This property is required by the Pauli Exclusion Principle, i.e. 

𝛹 =

[
 
 
 
𝜓1(𝑥1) 𝜓1(𝑥2)

𝜓2(𝑥1) 𝜓2(𝑥2)
⋯

𝜓1(𝑥𝑁)

𝜓2(𝑥𝑁)

⋮ ⋱ ⋮
𝜓𝑁(𝑥1) 𝜓𝑁(𝑥2) ⋯ 𝜓𝑁(𝑥𝑁)]

 
 
 

……………………………………………… .… .10 

 This wave function may be inserted into the Hamiltonian, equation 10 and an expression 

for the total energy derived. [2,3,4] Applying the theorem that the value of a determinant is 

unchanged by any non-singular linear transformation, we may choose the  𝜓  to be an 

orthonormal set. We now introduce a Lagrange multiplier to impose the condition that the 𝜖  are 

normalized, and minimize with respect to the   𝝍 

 

𝜓(𝑋1,𝑋2,……………𝑋𝑖……..,𝑋𝑗………………,𝑋𝑁) = −𝜓(𝑋1,𝑋2,……….𝑋𝑗……..𝑋𝑖………..𝑋𝑁) …………………………… . .11 

 

An enormous simplification of the expressions for the orbitals   results. They reduce to a set of 

one-electron equations of the form 

𝛿
𝛿𝜓⁄ [< Ĥ > −∑𝜖𝑗

𝑗

∫|𝜓𝑗|
2
𝑑𝑟] = 0 …………………………………… .12 

where   𝜖  is a non-local potential and the local ionic potential is denoted by 𝑉𝑖𝑜𝑛𝑠. The one-

electron equations resemble single-particle Schrödinger equations. 

The full Hartree Fock equations are given by 

𝜖𝑖𝜓𝑖(𝑟) = (−
1

2
∇2 + 𝑉𝑖𝑜𝑛𝑠(𝑟))𝜓𝑖(𝑟)

+ ∑∫𝑑 𝑟′
|𝜓𝑗(𝑟′)|

2

|𝑟 − 𝑟′|
𝜓𝑖(𝑟)

𝑗

− ∑𝛿𝜎𝑖𝜎𝑗
∫𝑑𝑟′

𝜓𝑗(𝑟′)
∗ 𝜓𝑖(𝑟′)

|𝑟 − 𝑟′|
𝑗

𝜓𝑗(𝑟) ………………… .13 

 

The right hand side of the equations consists of four terms. The first and second give rise to the 

kinetic energy contribution and the electron-ion potential. The third term, or Hartree term, is the 

simply electrostatic potential arising from the charge distribution of term includes an unphysical 
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self-interaction of N electrons .  As written, the term includes an unphysical self-interaction of 

electrons when 𝑗 = 𝑖. 

 

 This term is canceled in the fourth, or exchange term. The exchange term results from our 

inclusion of the Pauli principle and the assumed determinant form of the wave function [24]. The 

effect of exchange is for electrons of like-spin to avoid each other. Each electron of a given spin 

is consequently surrounded by an ``exchange hole'', a small volume around the electron which 

like-spin electron avoid. The Hartree-Fock approximation corresponds to the conventional 

single-electron picture of electronic structure: the distribution of the electron distributions 

electrons is given simply by the sum of one . 

 This allows concepts such as labeling of electrons by angular momenta (`` a 3d electron 

in a transition metal''), but it must be remembered that this is an artifact 

of the initial ansatz and that in some systems modifications are required to these ideas. Hartree-

Fock theory, by assuming a single-determinant form for the wave function, neglects correlation 

between electrons. The electrons are subject to an average non-local potential arising from the 

other electrons, which can lead to a poor description of the electronic structure. Although 

qualitatively correct in many materials and compounds, Hartree-Fock theory is insufficiently 

accurate to make accurate quantitative predictions. 

 

3.4.4 POST-HARTREE–FOCK 

 

 Post-Hartree–Fock [25,26] methods are the set of methods developed to improve on the 

Hartree– Fock (HF), or self-consistent field (SCF) method. They add electron correlation which 

is a more accurate way of including the repulsions between electrons than in the Hartree–Fock 

method where repulsions are only averaged. 

 Generally, the SCF procedure makes several assumptions about the nature of the multi-

body Schrödinger equation and its set of solutions: - 

 The Born–Oppenheimer approximation is inherently assumed. The true wave function 

should also be a function of the coordinates of each of the nuclei. 

 Typically, relativistic effects are completely neglected. The momentum operator is 

assumed to be completely non relativistic. 
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 The basis set is composed of a finite number of orthogonal functions. The true 

          wave function is a linear combination of functions from a complete (infinite)                                              

 basis set. 

 The energy eigenfunctions are assumed to be products of one-electron wave functions. 

The effects of electron correlation, beyond that of exchange energy resulting from the 

anti-symmetrization of the wave function, are completely neglected. 

 For the great majority of systems under study, in particular for excited states and 

processes such as molecular dissociation reactions, the fourth item is by far the most important. 

As a result, the term post-Hartree–Fock method is typically used for methods of approximating 

the electron correlation of a system. Usually, post-Hartree–Fock methods give more accurate 

results than Hartree–Fock calculations, although the added accuracy comes with the price of 

added computational cost. 

 

 

 

3.5 DENSITY FUNCTIONAL THEORY 

 

 Density functional theory (DFT) is a powerful, formally exact theory and references 

within. It is distinct from quantum chemical methods in that it is a non-interacting theory and 

does not yield a correlated many-body wave function. In the Kohn-Sham DFT, the theory is a 

one-electron theory and shares many similarities with Hartree-Fock[27]. DFT has come to 

prominence over the last decade as a method potentially capable of very accurate results at low 

cost. In practice, approximations are required to implement the theory, and a significantly 

variable accuracy results. Calibration studies are therefore required to establish the likely 

accuracy in a given class of systems. 

 In recent physics literature, a large majority of the electronic structures and band plots are 

calculated using density functional theory (DFT), which is not a model but rather a theory, i.e., a 

microscopic first principles theory of condensed matter physics that tries to cope with the 

electron-electron many-body problem by the introduction of an exchange-correlation term in the 

functional of the electronic density. Density functional theory calculated bands are in many cases 

found to be in agreement with experimentally measured bands, for example by angle resolved 
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photo emission spectroscopy (ARPES). In particular, the band shape is typically well reproduced 

by DFT. But there are also systematic errors in DFT bands when compared to experiment results. 

In particular, DFT seems to systematically underestimate by about 30-40% the band gap in 

insulators and semiconductors [28]. 

 It is commonly believed that DFT is a theory to predict ground state properties of a 

system only (e.g. the total energy, the atomic structure, etc.), and that excited state properties 

cannot be determined by DFT. This is a misconception. In principle, DFT can determine any 

property (ground state or excited state) of a system given a functional that maps the ground state 

density to that property. This is the essence of the Hohenburg–Kohn theorem. In practice, 

however, no known functional exists that maps the ground state density to excitation energies of 

electrons within a material [18]. Thus, what in the literature is quoted as a DFT band plot is a 

representation of the DFT Kohn–Sham energies, i.e., the energies of a fictive non-interacting 

system, the Kohn– Sham system, which has no physical interpretation at all. 

 The Kohn–Sham electronic structure must not be confused with the real, quasi particle 

electronic structure of a system, and there is no Koopmans’s theorem holding for Kohn–Sham 

energies, as there is for Hartree–Fock energies, which can be truly considered as an 

approximation for quasi particle energies. Hence, in principle, 

Kohn–Sham based DFT is not a band theory, i.e., not a theory suitable for calculating bands and 

plotting band. In principle time dependent DFT can be used to calculate the true band structure 

although in practice this is often difficult. A popular approach is the use of hybrid functional, 

which incorporate a portion of Hartree–Fock exact exchange; this produces a substantial 

improvement in predicted band gaps of semiconductors, but is less reliable for metals and wide-

band gap materials. 
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3.6 BETHE SALPETER EQUATION {BSE} 

 

 The BSE is used to treat the excitation effects introduced by the electron-hole Green's 

function L.it can be obtained from Hedin's Equations and this can be written as follows; 

𝐿 = 𝐿0 + 𝐿0 (𝑣 + 𝑖
𝛿𝛴

𝛿𝐺
) 𝐿 ……………………………………………………………14 

making substitutians and rearranging the above equation, the self energy in equation 14 

can be written as follows; 

𝐿 = 𝐿0 + 𝐿0 (𝑣 −
𝛿𝐺𝑊

𝛿𝐺
)𝐿 = 𝐿0 + 𝐿0 [𝑣 − (𝑊 −

𝛿𝑊

𝛿𝐺
)] 𝐿 ……………… ……………… .15 

The variation of the screened Coulomb interaction (𝑊) with respect to the Dyson 

equation (G) tends to zero and hence 15 can be written as follows; 

𝐿 = 𝐿0 + 𝐿0(𝑣 − 𝑊)𝐿 ……………………… ………………………… ………… .16 

 

the above equation 16 is commonly known as the BSE and it describes the coupled propagation 

of two particles including the electron and the hole. 
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CHAPTER FOUR. 
 

4.0 METHODOLOGY 
 

4.1 Introduction 

 

In this study, the calculations on the ground state properties for SnO2 were done using Quantum-

ESPRESSO coding [30]. This is an integrated suit of computation code  for electronic structure 

calculations and material modeling which is based on density functional theory (DFT), plane 

waves and pseudo potentials (ultra soft, norm-conserving, projector-augmented wave). The 

optical properties were studied using yambo code [32]. This is an ab initio code for calculating 

quasi particle energies and optical properties of electronic systems within the framework of 

many-body perturbation theory and the time-dependent density functional theory. 

 

4.2 QUANTUM ESPRESSO 

 

Quantum-ESPRESSO is a software suite for ab initio quantum chemistry methods of electronic 

structure calculation and materials modeling, distributed for free under the GNU General Public 

License which works well in Linux, Ubuntu and Kubuntu. It is based on density functional 

theory (DFT), plane wave basis sets and pseudo potentials (ultra soft, norm-conserving, 

projector-augmented wave) . ESPRESSO is an acronym for opEn-Source Package for Research 

in Electronic Structure, Simulation, and Optimization [30]. The structural properties and 

electronic properties of SnO2 where done using this coding software. Quantum-ESPRESSO can 

be used in performing the following: 

  Self-consistent, plane wave, pseudo potential total energy calculation   

 Pseudo potential generation code and pseudo potential library 

 Norm-conserving, ultra soft and  projector-augmented wave. 

 Scalar relativistic, fully relativistic 

 Geometric optimization also with variable cells . 

 Inclusion of electric field, macroscopic polarizability 

 Non collinear magnetism 

  Infrared and Raman cross sections 
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 Dielectric tensors 

  Meta dynamics 

 Ballistic conductance 

  Maximally localized Wannier functions 

 Nudged Elastic Bands 

In this study Quantum-ESPRESSO was able to do structural optimization, Self consistent and 

non self consistent  total energy calculations, density of states (DOS) and projected density of 

states (PDOS). 

 

4.3 DENSITY FUNCTIONAL THEORY (DFT) FORMALISM. 

 

 For purpose of studying the ground state properties of electronic systems for the quantum 

many-body problems, we engage in describing the Hamiltonian for the interaction between the 

electrons which are identical Fermionic particles. This complex many-body problem is reduced 

to solving the simpler problems of a single non-interacting electron moving in an effective field. 

In Density Functional Theory [30], the ground state energy of a system is obtained from the 

ground state electron density. Extensive approximations including the LDA, GGA, LSDA and 

LSDA+U, have allowed practical and quantitatively accurate calculations for ground-state 

properties to be made using DFT. 

 

4.4 PSEUDO-POTENTIALS 

  

 The pseudo potentials used in this study were Norm-conserving pseudo potentials for 

both Sn and O. The pseudo potentials used were as follows:- 

 

Sn          Sn.pbe-hgh.UPF 

O            O.pbe-hgh.UPF 

The pseudo potentials used had the following specifications for the outer most electrons:- 
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4.5 STRUCTURE OPTIMIZATION. 

 

In this study, DFT was used to do the following computations: 

 Running the relaxation calculation. 

 Self consistent plane wave function (scf) calculations mainly in k points, cut off energy 

optimization and cell dimensions. 

 Non-consistent plane wave function(nscf) calculations for the band structure 

 Running the bands calculations that were applied in plotting of band structure. 

 Density of states calculations 

 Projected density of states calculations. 

 

Xcryden was used to study structural properties k-path selection. 

Xmgrace and gnuplot were used in plotting the graphs for cell dimension optimization, band 

structure, density of states and projected density of states. 

 For the plane wave pseudo potential calculations done, attention was put on cutoff energy 

convergence;the cutoff for wave-function expansion and the number of k points which measures 

how well the discrete grid had approximated the continuous integral over Brillion Zones (BZ). 

The higher the cutoffs, the higher the accuracy, however, time should also be considered as stated 

earlier,since this high cutoff calculations will take longer to run. 

 

 

4.5.0 K-POINTS OPTIMIZATION PROCEDURE 

 

 Being a tetragonal rutile structured material, Optimization of k-points was not very 

necessary but however the optimization considered variation of points from 2,3,4,5,6,7, 8 and 9 

and then executed using the running command pw.x <input-file.in> output-file.out . A table of 

variation in energy and selected k-points using grep command and from this table, a graph of 

energy against k-points was generated using xmgrace and gnuplot command. From the graph, 

one of the k-points was selected a point where the graph was constant. 
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4.5.1 CUTOFF ENERGY OPTIMIZATION PROCEDURE 

 

 I considered the optimized value of k-points selected and varied cutoff energy from 20-

120 and using the pw.x command and grep, the values found were put in a file from which a 

graph of xmgrace and gnuplot drawn. From the graph, the best cutoff energy was chosen mainly 

from where the graph was constant accuracy and time considered. 

 

4.5.2 CELL DIMENSIONS  OPTIMIZATION PROCEDURE 

  

 With the optimized values of k-points and ecut I varied cell dimension against total 

energy by running the input file by scf calculations. Being a tetragonal structure,  a=b=c, it has 

cell dimensions 1 and 3. For all the dimensions a table of energy variation with cell dimension 

was created using grep command.  Graphs of total energy verses cell dimensions plotted using 

xmgrace and gnuplot for the two phases. The point with minimum total energy was chosen since 

this is the point where the system is stable. 

 

 

 

4.6 ELECTRONIC PROPERTIES. 

 

4.6.0 PROCEDURE FOR RUNNING SCF CALCULATIONS 

 

 After cell optimization for the two phases, i.e. k-points, cutoff energy, cell optimization, 

the chosen values were used to run scf calculations using pw.x command. The output file gave 

Fermi energies and total energies for the two phases. 

 

4.6.1 PROCEDURE FOR RUNNING NSCF CALCULATIONS 

 

 The input files that were used in the above were copied to other files with nscf. in 

extension. In the input file with nscf. in, the following adjustments were done: 

  calculation changed to 'nscf' 
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 occupation changed to 'tetrahedra' from 'smearing' 

 number of bands included in the systems block 

 The number of k-points where increased by a factor of 3. 

I ran the nscf.in file using the pw.x command. 

 

 

4.6.2 PROCEDURE FOR BAND STRUCTURE COMPUTATIONS 

 

 The structure of the optimized cell was displayed by Xcrysden using suitable k-paths. The 

results were saved in a file with extension pwscf. The optimized input file was copied to another 

folder called bands and using cat file.pwscf>> optimized input file was used to replace the k-

points initially optimized with new k-points from the file.pwscf. The new input file was edited to 

remove the initial k-points. The calculation part was changed to 'bands and the new file copied to 

file-bands.in keeping the prefixes for each file. pw.x command was used to run optimized 

inputfile.in followed by band.x<bands.in>bands.out to calculate the band structure. I used 

plotband.x and provided input file, output file,choose the range of energy and Fermi energy , 

plotting values from which a link to xmgrace was given and the band structure plotted with 

xmgrace and gnuplot. 

 

4.6.3 COMPUTATION OF DENSITY OF STATES 

 

 Dos.in file was created that had the following content : 

The files were ran using dos.x <dos.in> dos.out from which I got the dos.dat file that was used 

to plot the dos graph using xmgrace and gnuplot. 

 

4.6.4 COMPUTATION OF PROJECTED DENSITY OF STATES 

 

 A file of pdos.in was created that had the following content: 

The file was run using the projwf.x command as follows; projwfc.x<pdos.in>pdos.out. The 

results were wave functions for each state of Sn atoms and O atoms. I used xmgrace to plot the 

graphs for the states. 
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CHAPTER FIVE. 

5.0 RESULTS AND DISCUSSIONS. 
 

5.1 STRUCTURAL PROPERTIES OF SnO2. 

 

 Tin oxide (TO) is an attractive transparent conductor since it is less expensive and scarce 

compared to indium [3,5,12]. Rutile tin oxide crystallizes in a tetragonal structure with space 

group D4h P4 2 /mnm [3]. The unit cell is rutile tetragonal, with six atoms two stannous and four 

oxygen atoms [3]. Each tin atom is at the center of six oxygen atoms placed approximately at the 

corners of a regular slightly deformed octahedron, and three tin atoms approximately at the 

corners of an equilateral triangle surround every oxygen atom and is characterized by the lattice 

parameters a and c and intrinsic parameter u. The atoms of Sn are located in the bcc-positions (0, 

0, 0) and (1/2, 1/2, 1/2) and are surrounded by oxygen atoms being in the positions ± (u, u, 0) 

and ± (1/2+u, 1/2–u, 1/2)  [1,2,3] to form a distorted tetrahedron. The optimized cell parameters 

obtained in the calculation are  a=b= 4.738Å, c= 3.188Å and u = 0.30756 [1,4]. In the bulk all Sn 

atoms are six fold coordinated to threefold coordinate oxygen atoms. . A unit cell with lattice 

constants a=b= 4.7374(1) Å and c = 3.1864(1) Å contains two tin and four oxygen atoms. The tin 

cations are located at the a sites, and the oxygen anions are found at the f sites, according to 

Wyckoff notation. From the oxygen perspective, the tin atoms are located at approximately the 

corners of an equilateral triangle. 

 The study of rutile tin oxide was done by examining its electronic properties using 

quantum espresso code and its optical properties are investigated using yambo code. Quantum 

ESPRESSO is a software suite for ab initio quantum chemistry methods of electronic structure 

calculation and materials modeling. It is based on density functional theory, plane wave basis 

sets, and uses pseudo potentials. Electronic structure of the rutile SnO2 was done by this 

powerful computation software. In this study, quantum ESPRESSO was able to do geometric 

optimization,Self-consistent (scf)  and non self-consistent (nscf)  total energy calculations, 

density of states and projected density of states. 
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5.2 ELECTRONIC PROPERTIES FOR SnO2. 

 The optimization of Sn2O was done using the following input file. 

              

&control 

     restart_mode='from_scratch', 

     calculation='scf', 

     outdir = './', 

     pseudo_dir='/home/masika/Applications/espresso-5.0.2/pseudo', 

     prefix = 'Sn2O', 

/ 

&SYSTEM 

     ibrav=6, 

     celldm(1)= 9.3, 

     celldm(3)= 0.684, 

     nat=  6, ntyp= 2, 

     ecutwfc =100 , 

     ecutrho = 400, 

     occupations='smearing', 

     smearing='marzari-vanderbilt', 

     degauss=0.05 

/ 

&ELECTRONS 

      mixing_mode = 'plain', 

      mixing_beta = 0.7, 

      conv_thr = 1.0e-8, 

/ 

ATOMIC_SPECIES 

Sn 50.011 Sn.pbe-hgh.UPF 

O  15.9994 O.pbe-hgh.UPF 

ATOMIC_POSITIONS {crystal} 

Sn       0.000000000   0.000000000   0.000000000 
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Sn       0.500000000   0.500000000   0.500000000 

O        0.313000000   0.313000000   0.000000000 

O        0.813000000   0.187000000   0.500000000 

O       -0.313000000  -0.313000000   0.000000000 

O       -0.813000000  -0.187000000   0.500000000 

K_POINTS automatic 

 6 6 9 0 0 0 

 

 

 

 The pseudo potentials used in this study were NORM-OCONSERVING Sn.pbe-dn-

kjpaw_psl.0.2.UPF and O.pbe-n-rrkjus_psl.0.1.UPF. The pseudo potential for Sn used has the 

following valence and occupation specifications: 

 

 

 

 

 

 

 

Valence configuration: 

    nl pn  l   occ       Rcut    Rcut US       E pseu 

    5S  1  0  2.00      2.000      2.200    -0.775326 

    5P  2  1  2.00      2.300      2.500    -0.271510 

    4D  3  2 10.00      1.700      2.400    -1.899141 

    Generation configuration: 

    5S  1  0  2.00      2.000      2.200    -0.775324 

    5S  1  0  0.00      2.000      2.200     3.100000 

    5P  2  1  2.00      2.300      2.500    -0.271509 
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    5P  2  1  0.00      2.300      2.500     6.300000 

    4D  3  2 10.00      1.700      2.400    -1.899141 

    4D  3  2  0.00      1.700      2.400     4.300000 

 As compared to the electronic configuration of Sn the valence occupation of the pseudo 

potential used agrees with the electronic configuration of the element Sn 

 

 

5.3 DFT CALCULATIONS FOR RUTILE TIN OXIDE (SnO2) 

 

5.3.1 K-POINTS OPTIMIZATION 

 

 SnO2 is a rutile tetragonal structure whose k-points can be obtained most preferably by 

calculation but can also be obtained by optimization which I did by variation from 2,3,4,5,6,7,8 

and 9. I then plotted the graph below which agrees with the theoretical calculations. 

By calculation, 

𝑥 = 𝑦 = 1/𝑎 

 

= 1/4.737 

 

= 0.21𝑥10 

 

= 2𝑥3 

𝑥, 𝑦 =  6,6 

 

 

𝑧 = 1/𝑐 = 1/3.181 

 

= 0.31𝑥10 

 

= 3𝑥3 
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𝑧 = 9 

 

(𝑥, 𝑦, 𝑧) =  (6, 6,9) 

 

 

therefore the values of k-points can be taken to be any multiple of this. For my calculations I 

took the value to be (6,6,9) which coincides with the optimized value as shown by the k-points 

graph below. 
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Fig.2: the graph of energy Vs k-points. 
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5.3.2 KINETIC ENERGYCUT OFF (ECUT) OPTIMIZATION 

 

 I considered the value of k-points as obtained from the optimization process of k-points 

above as (6,6,9) and I varied cutoff energy from 20 to 105Ry to get the optimized value of ecut 

as 75Ry as shown by the graph below. 

Fig.3 The graph energy against the kinetic energy cut off. 
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5.3.3 CELL DIMENSIONS (celldm1 & celldm3) OPTIMIZATION. 

 

 Being a tetragonal structure, 𝑎 = 𝑏 ≠  𝑐, the SnO2 rutile structure has two cell 

dimensions, celldm1 and celldm3. I retained the optimized value for k-points and the value 

obtained for the ecut. I first optimized for celldm1 by varying the value for celldm1 for values of 

celldm1 ranging from 8.6au to 11au and then plotted the value of the total energy against the 

celldm1. The experimental value of celldm1 is 8.9496au, however from the graph below; the 

optimized value of celldm1 was obtained as 9.2au which represents an error of 6.98%. 

 

 

Fig.4: The graph of Energy against cell dimension one (celldm1). 
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 Similarly I varied the values for celldm3 for values ranging from 0.64au to 0.75au and 

then plotted the value of the total energy against the celldm3. The experimental value of the 

celldm3 is given as 0.67au, however from the graph below, the optimized value of  0.70au was 

obtained which agrees with the experimental value giving an error of 4.48%. 

 

 

Fig.5: The graph of Energy against cell dimension three (celldm3).  
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5.3.4 RUNNING SCF CALCULATIONS 

 

 After cell optimization for the K-points, ecut, celldm1 and celldm3, our cell parameters 

have now been determined and therefore we can run the scf, nscf, bands calculations, dos and 

pdos. The output for the scf calculation gives the Fermi energy to be 4.6650 eV. When the bands 

where plotted,  the evident band structure shows band gap of 3.52eV between the conduction and 

valence bands as shown the graph below. This shows a variation of 2.22% from the largely 

quoted theoretical value of 3.6eV. 

 

 

 

Fig.6: The figure shows the graph of Energy against the symmetric points for the k-points. 



43 | P a g e  
 

5.3.5 DENSITY OF STATES (dos) COMPUTATION 

 I created a Dos.in input file and I ran the file using the following command: 

 

dos.x <dos.in> dos.out 

 

This gave me the dos.dat file which I used to plot the dos graph using xmgrace. The dos graph 

obtained were as shown below. 

  

 From the graph the structure of SnO2 can be presumed to be having a very small band 

gap between the valence and conduction bands. 

 

 

 



44 | P a g e  
 

Fig. 7: The figure represents the graph the density of states plotted against the energy. 
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5.3.6 PROJECTED DENSITY OF STATES (pdos) COMPUTATION 

  

 The pdos.in file was created and run using the projwf.x command as follows; 

 

projwfc.x<pdos.in>pdos.out. 

 

 The results obtained were wave functions for each state of tin atoms and Oxygen atoms. I 

used xmgrace to plot the graphs for the states the output graph was as shown below. The oxygen 

atoms are responsible for the reduced band gap since they are the most participating atoms 

around the Fermi level as seen from the graph of pdos below. 
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Fig.8: The graph of projected density of states plotted against the total Energy. 

 

 

 

  

 

 To visualize and understand the electronic properties for the rutile tetragonal SnO2 results 

as obtained from the DFT calculation I  superimposed the graphs of dos and bands and then dos, 

pdos and bands as shown in the fig.9a and 9b below. 
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Fig.9a: Graph of dos superimposed on bands. 

 

 

 The above graph shows that at the Fermi level, SnO2 has a band gap as predicted by the 

theocratic and experimental studies. This is a very powerful characteristic for these conducting 

oxides. This implies that as per these results SnO2 is good conducting metal oxide. 
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Fig.9b: graph of superimposed dos, pdos and bands. 
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5.4.0 OPTICAL PROPERTIES OF RUTILE TETRAGONAL SnO2 USING GW AND BSE. 

 

             DFT method cannot correctly predict the optical properties of SnO2. As such we seek 

other approaches such as Random Phase Approximation, Green function commonly known as 

electron propagator and dynamically screened interaction and the Bethe Salpeter Equation are 

used to investigate the optical properties of bc rutile tetragonal SnO2 structure. 

 

 The figure 10 shows the density of states of SnO2. As shown earlier by the DFT 

calculations, SnO2 exhibits continuous states. The graph of density of states below confirms this. 

 

Fig.10.1: the graph of density of states. 
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The various graphs showing the optical properties for SnO2 were plotted and the results where as 

shown in the fig.10.2-4 below. 

 

 

Fig10.2: the graph of energy against the GW-RPA and the BSE. 

 

The first peaks were established at 2.0eV, 2.0eV and 2.34eV for the GW-RPA_EEL, GW-

RPA_EPS and BSE methods respectively. The highest intensity peak of the absorption energy is 

realized GW-RPA (EPS) at 6.0eV, 6.84eV for BSE and the same is observed at 7.2eV for GW-

RPA(eel). If we compare the BSE and the GW-RPA (EEL), it is evident that GW-RPA (EEL) has 

been shifted by 0.8eV to the left of BSE. 
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CONCLUSION. 
 

 DFT calculation predicts the rutile tetragonal SnO2 to be having an indirect band gap of 

3.6eV a value that agrees with the existing experimental and theoretical results. The absorbency 

of SnO2 as predicted by the BSE equation is realized at a normal range which posses to the fact 

that tin oxide is good absorbent pointing to its good performance in a solar cell and other 

optoelectronic devices. 

 

 

RECOMMENDATIONS. 
  

 For proper results to be realized on the rutile structure, one may need to consider using 

norm-conserving pseudo potentials as opposed to the ultra soft. Remember the choice of the 

pseudo potential to be used should consider the electronic configuration of the material and the 

valence occupancy of the pseudo potentials to be used. 

 Use of DFT+U calculation method would give better results than DFT calculation. Since 

SnO2 is a good transparent conducting oxide, a study of the optical properties will increase the 

usability of this element. This can easily be done using the yambo coding system. In this case 

you need to note that you will have to use norm conserving pseudo potentials with much smaller 

values of k-points to save on the running time. 

          The electronic and optical properties take place on the surface of the material. I would 

therefore recommend that this study would have been more meaningful if would have been done 

on the surface of the material. I recommend surface analysis for this material to establish the best 

surfaces that can be used to realize best performance of SnO2 as an optoelectronic material. 
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INPUT FILE FOR SnO2 

&control 

     restart_mode='from_scratch', 

     calculation='scf', 

     outdir = './', 

     pseudo_dir='/home/masika/Applications/espresso-5.0.2/pseudo', 

     prefix = 'Sn2O', 

/ 

&SYSTEM 

     ibrav=6, 

     celldm(1)= 9.3, 

     celldm(3)= 0.684, 

     nat=  6, ntyp= 2, 

     ecutwfc =100 , 

     ecutrho = 400, 

     occupations='smearing', 

     smearing='marzari-vanderbilt', 

     degauss=0.05 

/ 

&ELECTRONS 

      mixing_mode = 'plain', 

      mixing_beta = 0.7, 

      conv_thr = 1.0e-8, 
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/ 

ATOMIC_SPECIES 

Sn 50.011 Sn.pbe-hgh.UPF 

O  15.9994 O.pbe-hgh.UPF 

ATOMIC_POSITIONS {crystal} 

Sn       0.000000000   0.000000000   0.000000000 

Sn       0.500000000   0.500000000   0.500000000 

O        0.313000000   0.313000000   0.000000000 

O        0.813000000   0.187000000   0.500000000 

O       -0.313000000  -0.313000000   0.000000000 

O       -0.813000000  -0.187000000   0.500000000 

K_POINTS automatic 

 6 6 9 0 0 0 
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