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Abstract 

Radiative corrections related to the fine structure, Lamb shift and hyperfine structure of atomic 

energy levels are studied. Since the perturbation Hamiltonian is very small compared to zero 

order Hamiltonian first order perturbation is used theory to find the respective corrections. The 

expressions obtained for the fine structure of hydrogen atom using the relativistic approach 

coincides with those obtained using the Dirac equation and the fine structure correction is 

proportional to 𝛼2𝐸𝑛
𝑜, which is a small fraction of the Bohr energy. The Lamb shift correction is 

proportional to 𝛼3𝐸𝑛
𝑜. While the hyperfine structure correction is proportional to 10-3𝛼2𝐸𝑛

𝑜. The 

implications of fine structure and hyperfine structure are seen as an outcome of very small 

corrections. Coincidence of this result with spectroscopic measurements will be a welcome 

confirmation. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background to the study 

The understanding of the atomic structure has been a concern to chemists and physicists 

especially in the twentieth century when the existence of atoms became universally accepted 

[Jones and Childers, 1999]. Earlier, Dalton (1800s) had introduced the idea that elements are 

made of small particles called atoms. Ever since, researchers have been in the quest to 

understand the full nature of the atom. 

J.J. Thomson gave the first atomic model which he conceptualized to be a sphere of size 10-10 m 

and of positively charged matter in which electrons were embedded. This model failed to explain 

optical spectra of hydrogen and other compounds [Chand, 2003]. Rutherford’s scattering 

experiment of alpha particles by thin metal foils led to our present concept of the nuclear atom 

[Jones and Childers, 1999]. He proposed that all the positive charge of the atom was 

concentrated in a tiny nucleus at its center surrounded by a cloud of electrons [Halliday et al., 

2002]. The Rutherford model failed to explain the stability of an atom in spite of the revolving 

electrons around the nucleus. Niels Bohr (1913) gave an explanation of the atomic spectral lines 

which, apparently, whose  wavelength was explained by an equation suggested by Rydberg in 

which the reciprocal wavelength of a spectral line is given as the difference between two terms 

[Chand, 2013]. He formulated his model based on the Rutherford model of a central nucleus. 

Bohr considered electron as revolving round the nucleus in stationary circular orbits for which 

the angular momentum of the electron is an integral multiple of ћ. He also postulated that an 

atom radiates energy only when an electron jumps from a stationary orbit of higher energy to one 

of lower energy. The model failed to explain the fine structure of spectral lines, intensities of 

spectral lines and violated the uncertainty principle by the treating the electron as a miniature 

planet with definite radius and momentum. Sommerfeld (1916) refined the theory to consider 

elliptical orbits thus permitting an explanation of the fine structure of spectral lines [Semat, 

1962]. With this refinement, the theory could only predict the correct spectra for hydrogen atom 

or hydrogen-like atoms. It fails to explain or predict the energy levels and spectra of many-

electron atoms, in part, because it does not include the repulsive interaction between electrons 

and the spin–orbit interaction. Even the simplest many–electron atom, that is, neutral helium 
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atom, with 2 electrons has energy levels at values different from those predicted by the Bohr 

Theory. It also can’t predict transition probabilities. For a given element, not all spectral lines 

possess the same intensity; a correct theory could enable calculation of the relative strength of 

lines [Brensden and Joachain, 2003] 

The Schrödinger theory (1926) successfully eliminates these fundamental problems. It extends to 

the de Broglie matter waves by providing a formal method of treating the dynamics of physical 

particles in terms of associated waves [Peebles, 2003]. It relies in interpretation of the wave 

function in terms of associated probabilities. The Schrödinger equation does not include electron 

spin. The spin appears only in relativistic treatments. The Dirac theory, which does take spin into 

consideration, predicts the fine structure of energy levels. 

The Stern-Gerlach experiment (1942) showed [Chand, 2001] that the angular momentum is 

quantized, and in particular, that the intrinsic angular momentum of the electron (spin) was 

quantized. Orbiting electrons produce a magnetic moment independent of the intrinsic magnetic 

moment of the electron; the system may be regarded as two bar magnets having different 

orientations. 

The spin of the electron was postulated for the first time by two Dutch graduate students 

Uhlenbeck and Goudsmit in 1924, with an associated magnetic moment, μS, and enabled 

physicists to explain the fine structure of energy levels and spectral lines as well the anomalous 

Zeeman Effect [Chand, 2003].   

The fine structure of energy levels and associated spectral lines can be viewed as coming from 

differences in energy of an electron’s spin magnetic moment 𝝁S in the magnetic field  produced 

by the nucleus in the electron’ s rest reference frame. The dependence of the mass of the electron 

on its velocity leads to energy corrections (relativistic corrections) of the same order of 

magnitude as those due to spin - orbit interaction and also contribute  to the observed fine 

structure of energy levels and associated spectral lines. 

 In 1938, deviations for Hα fine structure observed by Houston and Williams Pasternak 

suggested that these results could be interpreted in terms of 2S1/2 being higher by a wave number 

0.03cm-1 relative to 2P1/2. The discrepancies were first attributed to impurities of the source. 

Lamb and Retherford [Phys. Rev. 72, 241 (1947)], stimulated the development of Quantum 
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Electrodynamics (QED) based on the quantization of the electromagnetic field.  The quantization 

involves assimilating the electromagnetic field to a set of simple quantum harmonic oscillators. 

The interaction of the zero point energy of the quantized field causes it to execute rapid 

oscillations [Burkhardt and Levental, 2006]. In his Nobel Prize acceptance speech, Bethe said "It 

is very important that this problem should receive further experimental and theoretical attention. 

When an accuracy of comparison of 0.1 Mc/sec has been reached, it will mean that the energy 

separations of the 2S and 2P states of hydrogen agree with theory to a precision of few parts in 

109 of their binding energy or that the exponent in Coulomb law of force is two with comparable 

accuracy"[Bjorken and Drel, 1976]. 

The spin idea of the electron was also extended to the nucleus. The original indication that nuclei 

have spin is from atomic spectroscopy. Many lines in atomic spectra when examined with 

spectroscopes of very high resolution are found to consist of several lines very close together. 

Such lines are said to exhibit hyperfine structure. 

The hyperfine structure of energy levels results from the interaction between the magnetic 

moment, µI of the nucleus with the magnetic field produced by the electrons at the location of the 

nucleus. The electron magnetic field consists of two parts; one is the field produced by the spin 

magnetic moment and the other is the magnetic field produced by the orbital motion of the 

electron’s charge. For non spherically symmetric nuclei, with nuclear spin I ≥ 1, the interaction 

between electric quadrupole of the nucleus and the gradient of the electric field produced by the 

electrons at the location of the nucleus also contribute to the observed hyperfine structure 

splitting. The expectation value of the hyperfine Hamiltonian in the various atomic (and nuclear 

spin) states yield the hyperfine energy shifts [Ghoshal, 2006]. For spherically symmetric s states 

the expectation value comes from the Fermi contact term. For l ≠ 0, the hyperfine energy comes 

entirely from the second term because the wave functions for l ≠ 0 vanish at the origin [Cohen–

Tannoudjiet al., 1977].  

In this research project, we first briefly review the problem of the hydrogen atom or hydrogen–

like atoms without spin, focusing on the gross energy levels, that is, Bohr’s energies or 

Coulomb’s energies. Secondly, we examine the hydrogen fine structure, which contains three 

first – order relativistic corrections, the relativistic correction to the kinetic electronic energy, the 

spin–orbit coupling and the so–called Darwin term. Thirdly, we briefly discuss the theory of 
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Lamb shift which enable to lift the j degeneracy inherent to the fine structure. Finally we explore 

the quantum theory of the hyperfine structure of the hydrogen atom, which results from the 

interaction between proton magnetic dipole moment and the magnetic field generated by the 

electron at the location of the proton. 

 

 1.2 Problem Statement 

The understanding of the atomic structure has been a concern to chemists and physicists 

especially in the twentieth century when the existence of atoms became universally accepted 

[Jones and Childers, 1999]. In this project the focus is on the radiative corrections related to the 

fine structure and hyperfine structure of spectral lines of the hydrogen atom or hydrogen–like 

ions. For many reasons, it is important to understand the basic level – structure of the hydrogen 

atom or hydrogen-like atoms [Moore, 2009]. Since hydrogen is the simplest atom, not only the 

quantum study of the hydrogen atom or hydrogen-like ions is more or less complete but also the 

results obtained from the study of these systems can serve as a basis to tackle the quantum theory 

of many electron – atoms. Early atomic physics was focused on measuring and explaining the 

various atomic spectra [Moore, 2009].  

The use of the Schrodinger equation without spin was a first key step in understanding and 

explaining atomic spectra.  The considerable accuracy of spectroscopic experiments made it 

possible to observe effects which cannot be explained just by the gross energy levels or Bohr’s 

energy levels [Haken and Wolf, 2005].  The theory has been improved by considering the 

interactions between internally generated fields with the electronic and nuclear spins. Effects 

involving the relativistic correction to the kinetic energy of the electron due to the increase in 

mass with the electron’s velocity, the spin–orbit coupling and the so–called Darwin term 

determine the fine structure of the hydrogen atom [Burkhardt and Leventhal, 2006]. Effects 

related to the interaction of the nuclear multipole moments with internally generated field are 

termed the hyperfine structure. Observing these line splitting and shifts requires the ability to 

measure atomic spectral lines with spectroscopes of high resolving power. Thus, as the 

resolution is increased, first the fine structure will be observed, and then at a higher resolution 

one would finally resolve the hyperfine structure [Moorse, 2009]. 
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 1.3 Objectives of the study 

 1.3.1 Main objective 

The aim of the study is to investigate the effect of radiative corrections related to the fine and 

hyperfine structure splitting of atomic energy levels. 

 1.3.2. Specific objectives 

The specific objectives are: 

i) To evaluate relativistic corrections to the fine structure coupling constant. 

ii) To explore the use of Feynman diagram technique on the Lamb shift 

iii) To determine the effect of electron-proton magnetic moments interaction on atomic 

energy levels.  

 

1.4 Justification and significance of the study 

The main concern for scientists is to understand the atomic structure. With improving 

spectroscopic techniques which have made it possible to observe effects which go beyond Bohr’s 

predictions, theoretical approach has equally improved with the inclusion of the spin of the 

electron and that of the nucleus. This has provided a reliable explanation for the observed 

complex atomic spectra. In view of these observations, calculations have been done to a 

minimum order. Consequently, effects of higher order calculations have not been accounted for. 

Therefore, this study aims at shedding additional light on the theory of fine structure, lamb shift 

and hyperfine structure and the associated radiative effects with a conviction that we can 

contribute to a better understanding of atomic spectra. 

The theory has been done for the hydrogen atom and hydrogen-like atoms. Being the simplest 

atom, the hydrogen problem can be solved completely not only without considering the spin of 

the electron, but also for the fine structure which involves relativistic corrections and the 

hyperfine structure resulting from the interaction of the nuclear multipole moments with 

internally generated fields. 
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It is anticipated that the results obtained from hydrogen atom can be used to study more complex 

atoms quantum mechanically. A deep understanding of the quantum theory of the hydrogen atom 

can form a basis to explain these spectral lines. The results can also be generalized to alkali since 

their optical properties are governed by the behavior of a single valence electron. Singly-ionized 

group two elements are also hydrogen-like and can be described by the same quantum theory. In 

addition, measurements of the spectral lines of hydrogen atom can act as a source of 

astronomical data in stellar spectroscopy. 
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 CHAPTER TWO: LITERATURE REVIEW 

  2.1 Introduction 

This section reviews relevant studies on the fine structure, the lamb shift and the hyperfine 

structure of spectral lines by different researchers. The section is therefore intended to capture 

some major results pertaining to atomic spectra. In particular, the understanding of the atomic 

structure has been a concern to chemists and physicists especially in the twentieth century when 

the existence of atoms become universally accepted [Jones and Childers, 1999]. 

The nuclear model of the atom, as we know it presently, that is, the positive charge of the atom is 

concentrated in a tiny nucleus at its center surrounded by a cloud of electrons, was proposed by 

Rutherford and his co–workers in 1911 as an explanation to their scattering experiment of alpha 

particles by thin metal foils [Halliday et al., 2002]. This put an end to the Thomson’s model 

which assumed that the positive charge of the atom was spread out through the entire volume of 

the atom [Chand, 2003].  

The energy levels of the hydrogen atom or hydrogen–like atoms, were derived for the first time 

by Bohr using his semi-classical approach (Bohr’s postulates) [Haken and Wolf, 2005] and 

thirteen years later, they were confirmed by solving the Schrodinger equation. This achievement 

enabled scientists to explain the atomic spectral lines of hydrogen atom and other elements 

including many–electron atoms. The formulation of quantum theory managed to overcome some 

of the challenges faced by the Bohr’s theory by predicting the energy levels and spectra of many-

electron atoms and to calculate the intensity of spectral lines. 

 

 2.2. Fine structure of spectral lines 

Many lines in atomic spectra when examined with spectroscopes of high resolution are found to 

consist of several lines very close together. Bohr’s energy terms of one – electron atoms (with 

exceptions of the s states) are split into two sub-states [Haken and Wolf, 2005]. Such lines are 

said to exhibit fine structure.  In 1921, Stern and Gerlach performed a deflection experiment of 

atomic beams of silver in inhomogeneous magnetic fields and came up with the conclusions of 
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space quantization for the intrinsic magnetic moments and the existence of two unique 

orientations of the atomic magnetic moments relative to the direction of the magnetic field [Jones 

and Childers, 1999].  

Electron spin was introduced by Uhlenbeck and Goudsmit in 1925 to explain the fine structure of 

spectral lines and the anomalous Zeeman Effect [Subrahmanyam and BrijLal, 1984].  The 

discovery of the electron spin and the associated magnetic moment when introduced in the 

Schrodinger equation, as a correction term together with the relativistic correction in the electron 

kinetic energy, give an explanation of the fine structure of spectral lines [Barchewitz, 1997; 

Burkhardt and Leventhal, 2006]. 

The fine structure Hamiltonian can be separated into three corrective terms: the kinetic energy 

term (Hkin), the spin-orbit interaction term (Hso), and the Darwinian term (HDarwin). The atomic 

Hamiltonian including fine structure corrections is given by [Wikipedia, 2015]: 

 H = H0 + Hkin + Hso + HDarwin       (2.1) 

The fine structure can be described completely using the Dirac equation. Equation (2.1) can be 

seen as a non-relativistic approximation of the Dirac equation [Burkhardt and Leventhal, 2006]. 

The scale of the fine structure splitting relative to the gross structure splitting is of the order of 

(Zα)2, where Z is the atomic number   and α = (e2/ћc) is the fine structure constant, which has an 

approximate value of (
1

137
). Therefore, the fine structure splitting is a small effect, but it can be 

observed with the aid of spectroscopes of high resolution [Chandra, 2010].  The expression of 

the energy levels for one–electron atoms taking into account the above fine structure corrections 

have been derived by many authors among them; [ Barchewitz, 1997;  Burkhardt and Leventhal, 

2006; Bransden and Joachain, 2002] to obtain the following result: 

   𝐸𝑛,𝑗 = −|𝐸𝑛| [1 + (𝑍2 𝛼2

𝑛
) (

1

𝑗+
1

2

−
3

4𝑛
)]    (2.2)) 

Where En is the Bohr energy, n the principal quantum number and j is the total angular 

momentum quantum number. 



9 
 

 2.3 The Lamb shift 

According to Equation (2. 2) states with the same n and j quantum numbers but different orbital 

quantum numbers ought to be degenerate. Therefore, fine structure terms with the same value of 

j (assuming n fixed) will be at the same level even if they have different values of 𝑙. In the years 

1947 – 1952, Lamb and Retherford in their experiment showed that even the Dirac theory did not 

accurately describe the hydrogen atom [Hakin and Wolf, 2005]. In their findings, they showed 

that the 2S1/2 and 2P1/2 states of the hydrogen atom were not degenerate, but that the s-state had 

slightly higher energy than that of the p state [Davydov, 1962 ]. This is due to the fact that the 

ground state of the electromagnetic field is not zero, but the field undergoes “vacuum 

fluctuations” which interact with the electron [Bethe, 1947]. 

There is a self interaction of the electron by exchange of a photon as sketched in the Feynman 

diagram (fig.2). This "smears out" the electron position over a range of distance about the 

nucleus. There is a slight weakening of the force on the electron when it is very close to the 

nucleus, causing the 2s electron (which has penetration all the way to the nucleus) to be slightly 

higher in energy than the 2p1/2 electron. Simply stated, random electric fields push the electron 

and thereby they move it slightly further away from the proton than it would otherwise be. 

For the hydrogen atom, with one electron, there is no shielding from inner electrons when in the 

2s or 2p excited states. In the absence of this effect, the 2s and 2p would have identical energies 

since there is no shielding by the presence of other electrons. The "self-interaction" of the 

electron when near the proton causes the effective "smearing" of the electron charge so that its 

attraction to the proton is slightly weakened than it otherwise would have been. This means it has 

encountered an interaction which makes it slightly less tightly bound than a 2p electron, hence 

higher in energy. The lamb shift is a very small effect; a small change of energy levels than they 

should. It is the energy of interaction between hydrogen and empty space. It is easily observed in 

the excited states of the hydrogen atom. [Bjorken and Drel, 1964]. 

 2.4 Hyperfine structure of energy levels 

The atomic nucleus influences the electronic spectra. The three most influences of the nucleus on 

electronic spectra , aside from the effect of the Coulomb field of the nuclear charge (+Ze),  are 
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the isotopic effect, the differing volumes of isotopic nuclei and most importantly, the interaction 

of  the nuclear multipole moments with internally generated fields [Hakin and Wolf, 2005].  If 

the different physical properties of the nucleus are considered in the Schrodinger equation as 

correction terms, energy shifts smaller than those due to fine structure are obtained. This effect is 

called hyperfine structure [Peebles, 2003]. The optical hyperfine structure was already observed 

in 1881 by Albert Abraham Michelson [Wikipedia, 2015]. The presence of spins and magnetic 

moments of the atomic nuclei was first postulated by Wolfgang Pauli in 1924 and this enabled 

him to explain spectroscopic observations in terms of quantum mechanics [Hakin and Wolf, 

2005]. In the year 1935, H. Schuler and Theodor Schmidt further proposed the existence of a 

nuclear electric quadrupole moments to explain the anomalies in the hyperfine structure 

[Wikipedia, 2015]. In this study, only the atomic hyperfine structure is considered. 

Hyperfine structure occurs due to the energy of interaction between the nuclear magnetic dipole 

moment with the magnetic field generated by the electrons at the site of the nucleus, and the 

energy of interaction between the nuclear electric quadrupole moment with the electric field 

gradient produced by atomic electrons [Brandsen and Joachain, 2002; Chandra, 2010]. 

For spherically symmetric nuclei, the electric quadrupole moment is equal to zero, and therefore, 

only the magnetic hyperfine Hamiltonian is significant [Cohen – Tannoudjiet al., 1977]. 

For non spherically symmetric nuclei,  with nuclear spin I ≥1, the interaction between the electric 

quadrupole of the nucleus and the gradient of the electric field produced by the electrons at the  

site of the nucleus also contribute to the observed hyperfine structure splitting [Hakin and Wolf, 

2005]. However, the contribution of the electric hyperfine structure is much smaller than that of 

the magnetic HFS [Chandra, 2010] 

Two approaches have been used in order to compute the magnetic hyperfine Hamiltonian, which 

include the electromagnetic approach [Wikipedia, 2015], and the quantum approach [Cohen – 

Tannoudjiet al., 1977]. In the electromagnetic approach, the magnetic field produced, at the 

location of the nucleus, by the orbital motion of the electron is calculated using the Biot & Savart 

law [Wikipedia, 2015]. The magnetic field generated at the site of the nucleus by the electron 

spin magnetic moment is calculated using the classical formula of electromagnetism [Jackson, 

1999]: 
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  𝐵𝑠(𝑟) =
1

𝑟5
(3𝜇𝑠. 𝑟)𝑟 − (

𝜇𝑠

𝑟3) +
8𝜋

3
𝜇𝑠𝛿(𝑟)     (2.3) 

Using the electromagnetic analogy, the Magnetic hyperfine Hamiltonian is given by: 

Hhf = - μs. Btot        (2.4) 

Where Btot =  Bl + Bs, with Bl and Bs the magnetic field produced by the orbital angular 

momentum and the electron spin magnetic moment, respectively. For a many–electron atom, the 

expression of Btot is written in terms of the total angular momentum and the spin angular 

momentum, by summing over all the electrons and using an ad hoc projection operator 

[Wikipedia, 2015]. 

The determination of the magnetic hyperfine Hamiltonian using a quantum approach is based on 

the Schrodinger equation for the electron in the presence of the electromagnetic field produced 

by the nuclear spin magnetic moment. Many authors, among them Cohen – Tannoudjiet al. 

(1977) and Hetch, (2000) have shown that 

  HHF = 2𝜇𝑩 [
𝐿

𝑟3 −
𝑆

𝑟3 + 
3𝑟(𝑆.𝑟)

𝑟5 +
8𝜋

3
𝑆𝛿(𝑟)] . 𝑔𝐼𝜇𝐍𝐼    (2.5) 

Where the first term of HHF represents the interaction of the nuclear magnetic dipole moment μI 

with the magnetic field created at the nucleus by the rotation of the electronic charge. The second 

and third terms represent the dipole-dipole interaction between the electronic and nuclear 

magnetic moment at a distance. The last term known as “the Fermi contact term” arises from the 

singularity at r = o of the magnetic field produced by the electron at location of the nucleus. This 

term describes the interaction of the magnetic moment of the electron spin with the magnetic 

field inside the nucleus. The delta function expresses the fact that this contact term exists only 

when the wave functions of the electron and proton overlap, that is, for an s – orbital (l=0) for 

which Ψn00(0) is different from zero. 

The expectation values of the hyperfine structure Hamiltonian in the various atomic (and nuclear 

spin) states yield the hyperfine energy shifts [Jackson, 1967]. 

 For spherically symmetric s–states, the expectation value comes from the Fermi contact term. In 

this case, the energy difference between the triplet and singlet states of the 1s state of atomic 

hydrogen is the source of the famous 21 cm line used in astrophysics [Peebles, 2003). 
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In an atom with nuclear spin I= 1, the nucleus can have an electric quadrupole moment which 

adds a contribution to the Coulomb’s potential energy. In addition to the magnetic hyperfine 

Hamiltonian, there is an electric quadrupole term which contributes to the hyperfine structure 

splitting of energy levels. Since an electrical interaction does not directly affect the electron spin, 

the quadrupole  term only modifies  the orbital  variables of the electron [Peebles, 2003]. If I>1, 

other nuclear electric and magnetic multipole moments  can exist, increasing in number as I 

increases, leading to the complexity of the hyperfine Hamiltonian  [Cohen – Tannoudjiet al., 

1977]. However, for the great majority of cases, one can limit the hyperfine Hamiltonian to 

magnetic dipole and electric quadrupole terms, the other terms making extremely small 

contributions to the hyperfine structure splitting of spectral lines. 

Some authors have also used the vector model to illustrate hyperfine structure splitting. In this 

model, there is coupling between the nuclear angular momentum, I, and the electron’s total 

angular momentum, J, giving the total angular momentum of the atom, F as 

F = I +J           (2.6) 

and for one-electron atom, J = j. For an atom having two or more valence electrons, then J is 

obtained either through the LS coupling or the jj coupling. 

The interaction energy between I and J, (hyperfine-structure energy), is given by 

    𝐸𝑛𝑓 =  𝛽′〈𝑰. 𝑱〉          (2.7) 

where 𝛽′ is the measure of the strength  of coupling between I and J. using the rule of addition of 

angular momenta the hyperfine quantum number F can take the values ranging from |J – I| to J + 

I in steps of unity. Thus, each fine structure energy splits into (2I + 1) levels when J > I or into 

(2J + 1) when J < I.  
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 CHAPTER THREE: THEORETICAL BACKGROUND 

3.1 BOHR’S ENERGY 

In 1911, Rutherford and his co– workers studied the scattering of alpha particles by thin metal 

foils and concluded that all the positive charge of the atom was concentrated in a tiny nucleus at 

the center surrounded by a cloud of electrons [Hallidayet al., 2002]. They came up with the 

planetary model of the atom. Electrons were considered to be orbiting a static nucleus. However, 

this model meant the atom had a very short lifetime. According to classical electromagnetic 

theory, an accelerating charged particle should emit electromagnetic radiation (Jackson, 2001). 

Electrons being charged and moving in circular paths (accelerating) should spiral into the 

nucleus in 10-8 seconds as predicted by (𝑅 =
2

3

𝑒2𝑎2

𝐶3 ) [Jackson, 2002]. Bohr amended the view of 

planetary motion of electrons to bring the model in line with the regular patterns (spectral series) 

of light emitted by real Hydrogen atoms. By limiting the orbiting electrons to a series of circular 

orbits having discrete radii, Bohr could explain for the series of discrete wavelengths in the 

emission and absorption spectrum of hydrogen. In this model, light is radiated from hydrogen 

atoms only when an electron made a transition from an outer orbit to one closer to the nucleus. 

The energy lost by the electron in the abrupt transition is precisely the same as the energy of the 

quantum of emitted light. 

The structure of the atom will be well understood by studying the radiation emitted and absorbed 

by the atoms of a given element. Atomic spectroscopy of an element is the study of the radiation 

emitted and absorbed by the element. Analyzing light from the element in gas vapor using a 

spectroscope, it is found to consist of a series of very sharp lines of definite wavelength 

characteristic of the element emitting the radiation. In spite of their complex spectra, many of the 

spectral lines of each element were found to be related in a simple manner expressed by a simple 

equation suggested by Rydberg [Jones and Childers, 1999]. Balmer had earlier on obtained a 

simple relationship among the wave numbers in the visible light region of the hydrogen 

spectrum: 

   
1

𝜆
 = 𝜐̅ = 𝑅𝐻(

1

22 −
1

𝑛2),   (n = 3, 4, 5 …)     (3.1) 
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where λ is the wavelength, 𝝊 the wave number of the spectral line, 𝑅𝐻 is the Rydberg constant 

for hydrogen and n is an integer greater than 2-the principal quantum number. Substituting for n 

in equation (3.1) the successive values 3, 4, 5… we obtain the wave numbers of the lines in the 

Balmer series.  

Bohr was the first to obtain a qualitative correct derivation of the Balmer’s empirical formula for 

an atomic model, in his theory of the hydrogen atom. He adopted Rutherford’s nuclear model of 

the atom; the hydrogen atom should consist a singly charged positive nucleus and an electron 

outside the nucleus, since the atomic number is equal to unity. 

Assuming that the Coulomb’s law and Newton’s second law of motion were applicable in the 

atomic domain, the path of the electron around the nucleus should be a conic section [Semat, 

2006]. A first approximation is to assume that this conic section is circle of radius r with nucleus 

fixed at the center of the circle. From coulomb’s law, the force of attraction between the nucleus 

and the electron is 

F = −
𝑍𝑒2

𝑟2          (3.2) 

Where Ze is the charge on the nucleus and e is the electronic charge. From Newton’s second law 

of motion, we have: 

   F = ma = - 
𝑚𝑣2

𝑟
       (3.3) 

where m is the mass of the electron, a is its centripetal acceleration, and v is its velocity. The 

minus sign indicates that the acceleration is directed towards the center. Using equations (3.2) 

and (3.3) we get 

    
𝑧𝑒2

𝑟2
  = 

𝑚𝑣2

𝑟
       (3.4) 

Using Bohr’s quantization of the orbital angular momentum: 

mvnrn = 
𝑛ℎ

2𝜋
.        (3.5) 

From equation (3.4) and (3.5), the expression for the total energy is obtained as 
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   En = −
𝑍2𝑚𝑒4

2𝑛2ћ
2  = −

13.6𝑍2

𝑛2
 (eV).      (3.6) 

By solving the Schrodinger equation for Hydrogen atom and hydrogen–like atoms in spherical 

coordinates, one can confirm the Bohr’s energies in equation 3.6 [Chan, 2001]. The separation 

between the Bohr’s energy levels is in the order of a few electron-volts and can be measured 

using ultra–violet and visible spectroscopy.  

 

3.2 The Fine structure 

When a spectral line of hydrogen spectrum is observed using a high resolution spectroscope, it is 

found to be a closely-spaced doublet [Akhezer, 1965]. This phenomenon is known as fine 

structure splitting of spectral lines. It is attributed to the relativistic correction to the kinetic 

energy of the electron, to the spin–orbit correction and the so-called Darwin term [Burkhardt and 

Leventhal, 2006]. 

 

  3.2.1 The relativistic correction 

The relativistic correction is related to the variation of mass of the electron with its velocity. 

Starting with the relativistic expression for the energy of a classical particle of rest mass 𝑚𝑒 and 

momentum p 

    E = c√𝐩2 + 𝑚𝑒
2𝑐2       (3.6) 

Performing a Taylor series expansion of E in powers of |𝑝| 𝑚𝑒⁄ ,  

    )1(
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cmE

e

e 
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or  

  2/12 )1()( XcmpE e 
,
       (3.8a) 

where  
22

2

cm

p
X

e



.

 

Equation (3.7) can be expanded using Taylor series expansion 

   n

nxaxaxaxaaxaxf  ...)( 3

3

2

210     (3.8b)
 

and performing an expansion about p = 0. In particular, when p = 0, equation 3.8b gives 

    oaEf  )0()0(
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We write: 
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E = 𝑚𝑒𝑐
2 + 

𝐩2

2𝑚𝑒
−

𝐩4

8𝑚𝑒
3𝑐2

 + …      (3.10) 

In addition to the rest mass energy (first term), and the non-relativistic kinetic energy (second 

term), we find the term −
𝐩4

8𝑚𝑒
3𝑐2, which represents the first–order correction to the Hamiltonian. 

The relativistic correction to the energy is the expectation value of this term: 

    𝐸𝑟𝑒𝑙
(1)

 = - 
1

8𝑚𝑒
3𝑐2

〈p̂4〉        (3.11) 

The Hamiltonian of relativistic correction, Ĥ𝑟𝑒𝑙,contains only p̂4= 𝑝̂2𝑝̂2, and 𝑝̂2 appears in the 

unperturbed Hamiltonian so that 

   Ĥ0 = 
𝑝2

2𝑚𝑒
 - 

𝑒2

𝑟
        (3.12) 

Since 𝑝̂2is present in Ĥ𝑟𝑒𝑙, then Ĥ𝑟𝑒𝑙 is diagonal in the 〈𝑛𝑙𝑚〉 basis set and the first–order 

correction to the energy is given by [Burkhardt and Leventhal, 2006]: 

  𝐸𝑟𝑒𝑙
(1)

  = - 
1

8𝑚𝑒
3𝑐2

⟨𝑛𝑙𝑚|p̂2p̂2|𝑛𝑙𝑚⟩      (3.13) 

From Equation (3.13), we have  

  𝑝̂2 = 2𝑚𝑒 (Ĥ0+ 
𝑒2

𝑟
)                   (3.13a) 

so that  

𝐸𝑟𝑒𝑙
(1)

  = - 
1

8𝑚𝑒
3𝑐2 ⟨𝑛𝑙𝑚| (Ĥ0  + 

𝑒2

𝑟
)
2

|𝑛𝑙𝑚⟩   

 = - 
1

2𝑚𝑒𝑐2
[(𝐸𝑛

(0)
)
2

+ 2𝐸𝑛
(0)(𝑒2) 〈

1

𝑟
〉𝑛𝑙 + (𝑒2)2 〈

1

𝑟2
〉𝑛𝑙]    (3.14) 

where 𝐸𝑛
(0)

 is the Bohr energy. 

With the following expectation values (Barchewitz, 1997): 

    〈
1

𝑟
〉𝑛𝑙   = 

1

𝑎𝑜𝑛2       (3.15a) 
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and 

  〈
1

𝑟2
〉𝑛𝑙 = 

1

𝑎𝑜
2 . 

2𝑍

𝑛3(𝑙+ 1 2⁄  )
             (3.15b) 

where 𝑎0 =
ћ2

𝑚𝑒𝑒2 is Bohr radius for the first orbit, n is the principal quantum number and 𝑙 is the 

orbital angular momentum quantum number. 

These expectations values may be expressed in terms of 𝐸𝑛
(0)

 giving, 

   〈
1

𝑟
〉𝑛𝑙𝑚 = 2(

1

𝑒2
) 𝐸𝑛

(0)
                (3.16) 

and 

  〈
1

𝑟2
〉𝑛𝑙𝑚  = 

4𝑛

(𝑙+1 2⁄ )
(

1

𝑒2)
2

(𝐸𝑛
(0)

)2               (3.17) 

Notice that the first expectation value, multiplied by -(𝑒2), is the average value of the potential 

energy. 

Using equations (3.16) and (3.17) in equation (3.13), we then have 

  𝐸𝑟𝑒𝑙
(1)

 = - 
(𝐸𝑛

(0)
)2

2𝑚𝑒𝑐2 [−3 + 
4𝑛

(𝑙+1 2⁄ )
]       (3.18) 

We can express the relativistic energy in terms of the fine structure constant, α = (e2/ћc). From 

equation (3.11), the zero order energy can be expressed in terms of α by 𝐸𝑛
(0)

= −(
1

2
) 𝑚𝑒𝑐

2𝛼2/

𝑛2, giving, after substitution and rearrangements: 

   𝐸𝑟𝑒𝑙
(1)

 = [−
3

4
+ 

𝑛

(𝑙+1/2)
]
𝑍2𝛼2

𝑛2 𝐸𝑛
(0)

       (3.19) 

From equation (3.19), we can see that |E(1)
rel/ E

(0)
n| is of the order of α2, which is approximately 

10-5.  
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3.1.2 Spin-orbit correction 

The spin-orbit correction is associated with the interaction between the spin of the electron with 

its orbital motion. A non-relativistic particle moving in an electric field E with velocity v 

experiences an effective magnetic field according to magnetic field theory. The electric field 

which is due to the charge of the nucleus is 

    E = 
𝑒𝒓

𝑟3        (3.20)  

and the magnetic field B is 

   
2c

EV
B


         (3.21) 

In the electron reference frame, the proton seems to be rotating about it and since its speed is 

high, it can be considered to be a steady current loop generating a magnetic field B such that  

   B = 
𝑍𝑒0

𝑚𝑒𝑐𝑟3 I 𝑧̂                (3.22) 

We can then put an additional correction term to the Hamiltonian of a Hydrogen atom of the 

form 

   𝐻𝑠.𝑜 = -𝜇𝑠. 𝐵 

         =- 
𝑍𝑒2

𝑚𝑒𝑐2𝑟3 V r .S 

= 
𝑍𝑒2

𝑚𝑒
2𝑐2𝑟3L . S        (3.23) 

where L = r𝑚𝑒v  

Introducing the Thomas precession term, which is a purely relativistic correction term, we have: 

  𝐻𝑠.𝑜 = 𝝁𝒔. 𝑩=  
𝑍𝑒2

2𝑚𝑒
2𝑐2𝑟3

 L .S       (3.24)  

Equation (3.23) gives the spin-orbit correction/interaction Hamiltonian, for the hydrogen atom or 

hydrogen–like ion. Using J = L + S, where J is the total angular momentum, we have: 
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L .S =1/2 (J2 - L2 -S2) 

𝑯𝑠.𝑜
 commutes with both L2 and  S2 but not with Sz and Lz. This means that the simultaneous 

Eigen states of the unperturbed and perturbing Hamiltonian are the same as the simultaneous 

Eigen states of L2, S2 and J2. We then have 

L2𝜑𝑙,𝑠,𝑗,𝑚𝑗
 = 𝑙(𝑙+1) ћ2𝜑𝑙,𝑠,𝑗,𝑚𝑗         (3.25a) 

S2𝜑𝑙,𝑠,𝑗,𝑚𝑗
 = s(s+1)ћ2 𝜑𝑙,𝑠,𝑗,𝑚𝑗

        (3.25b) 

J2 𝜑𝑙,𝑠,𝑗,𝑚𝑗
= j(j+1)ћ2 𝜑𝑙,𝑠,𝑗,𝑚𝑗

        (3.25c) 

L 𝜑𝑙,𝑠,𝑗,𝑚𝑗
= mћ𝜑𝑙,𝑠,𝑗,𝑚𝑗

        (3.25d) 

and 

  ∆𝐸 = ⟨𝑙,
1

2
, 𝑗, 𝑚𝑗|𝐻̂|𝑙,

1

2
, 𝑗, 𝑚𝑗⟩ 

      = 
𝑒2ћ2

4𝑚𝑒
2𝑐2 ⟨𝑙,

1

2
, 𝑗, 𝑚𝑗|

𝐽2−𝐿2−𝑆2

𝑟3 |𝑙,
1

2
, 𝑗, 𝑚𝑗⟩ 

        = 
𝑒2ћ2

4𝑚𝑒
2𝑐2 [j(j+1) – 𝑙(𝑙+1) – 

3

4
]〈

1

𝑟3
〉 

         = 
𝑒2ћ2

4𝑚𝑒
2𝑐2𝑎𝑜

3𝑛3 [
{𝑗(𝑗+1)−𝑙(𝑙+1)− 

3

4
}

𝑙(𝑙+
1

2
)(𝑙+1)

]      (3.26) 

where n is the principal quantum number and  

    〈
1

𝑟3
〉𝑛𝑙= 

𝑍2

𝑎𝑜
3𝑛3𝑙(𝑙+1)(𝑙+1/2)

 

(Bransden and Joachain, 2003). In addition, 

  ∆𝐸 = 𝐸𝑛
𝑍2𝛼2

𝑛2 [
𝑛{

3

4
+𝑙(𝑙+1)−𝑗(𝑗+1)}

2𝑙(𝑙+
1

2
)(𝑙+1)

]      (3.27) 

where 𝛼 = 
𝑒2

ħ𝑐
 and is the fine structure constant. 
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The magnitude of the correction is 𝛼2 times the unperturbed hydrogen energy, which is very 

small since α =
1

137
. 

 

3.1.3 The Darwin Term 

This term does not act on the spin variable. It is diagonal in l, ml and ms. It applies to the case 

when l = 0. The energy correction to this term is given by 

   ∆𝐸 = 
ћ2𝑍𝑒2

2𝑚2𝑐2
⟨Ѱ𝑛𝑜𝑜|𝛿(𝑟)|Ѱ𝑛𝑜𝑜⟩ 

       = 
ћ2𝑍𝑒2

2𝑚2𝑐2
|Ѱ𝑛𝑜𝑜(0)|

2 

= ½ m𝑐2 (𝑍𝛼)2

𝑛2

(𝑍𝛼)2

𝑛
 

= -En
(𝑍𝛼)2

𝑛
  ,           𝑙 = 0     (3.28) 

Since the energy shift due to spin-orbit coupling (including the limit 𝑙=0, which represents the 

Darwin term) has the same order of magnitude as that due to the relativistic correction, we 

combine the two corrections to obtain the total energy correction due to the fine structure. 

Adding together these two corrections and using j = l ± ½ for a hydrogen atom the energy shift is 

given by: 

   ∆𝐸 = 𝐸𝑛
𝑍2𝛼2

𝑛2 (
𝑛

𝑗+
1

2

−
3

4
)      (3.29) 

This is the modification of energy levels of a hydrogen atom or a hydrogen-like atom due to 

spin-orbit coupling and relativistic correction. The set of values corresponding to different values 

of ∆Enj but the same value of En is called fine structure. |∆𝐸| becomes smaller as n or j increases, 

and larger as Z increases. 

 The total width of the fine structure for a given principal quantum number, n i.e. between levels 

with j = l – ½ and j = l +½ is equal to  



22 
 

D = ∆𝐸nj1 - ∆𝐸nj2 = 
𝑅𝐻𝛼2𝑍4

2𝑛3
       (3.30) 

We can see that the fine structure shift is proportional to n-3. 

 

3.2 Lamb Shift 

The lamb shift is an electrodynamics’ phenomenon that is due to the interaction between matter 

and empty space. The ‘empty’ space is regarded as an electron-positron vacuum and the 

electromagnetic vacuum. The electromagnetic vacuum interaction with the electron is strong that 

it causes the shifting of the 2S1/2 and 2P1/2 levels. Performing the expansion of the 

electromagnetic field in Fourier series and considering the zeroth energy, the coordinate 

displacement of the electron can be written as [Sokolov, et al., 1962] 

   𝑟 =  −
𝑒

𝑚0
∑ 𝐸(𝑤) cos𝑤𝑡𝑤       (3.31) 

with a variation 

   (∆𝑟)̅̅ ̅̅ ̅̅ 2 =
2

𝜋
𝛼 (

ћ

𝑚0𝑐
)
2

ln
2𝑛2

𝛼2       (3.32) 

This is Brownian motion of pseudo photons [Beck, 1976]. This means that vacuum waves 

destroy the point electron making the electron become a geometrical mean between the classical 

radius and the Compton wavelength:  

𝑟𝑝𝑝 = √𝛼
ћ

𝑚0𝑐
       (3.33) 

This changes the interaction of the electron with nuclear charge leading to additional interaction 

energy–level shift. This means that the potential energy of the electron in the nuclear field will 

have a different form i.e. putting into consideration the Poisson equation, the energy shift is: 

  ∆𝐸𝑝𝑝 = 
4

3
𝑒0

2 (
ћ

𝑚0𝐶
)
2
|Ѱ(0)|2 ln

2𝑛2

𝛼2
      (3.34) 

The shift is valid only for the s-state (𝑙=0) where 
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   |Ѱ(0)|2 =
1

𝜋𝑛3𝑎0
3 

For 𝑎0 =
ћ2

𝑚0𝑎0
3, the first Bohr radius for hydrogen, 

∆𝐸𝑝𝑝 =
8

3𝜋
𝛼3 𝑅ћ

𝑛3 ln
2𝑛2

𝛼2       (3.35) 

Substituting for the values of the 2S-state, we obtain 

    ∆𝐸𝑝𝑝 = 17.8𝑅 = 1040𝑀𝐻𝑧 

and the experimentally accepted value is as given below: 

    ∆𝐸𝑝𝑝 = 1057.77 𝑀𝐻𝑧 

This is a semi-classical approach for electrons interacting with electron-positron vacuum. We 

now check for the relativistic quantum theory and check how the value obtained therein 

compares with the experimental one. Essentially, the electrons are scattered by a relatively static 

nucleus as shown below: 

 

 e-    e-   ui    uf 

  Pi  pf      ie𝛾𝜇 

 

 

           −𝑖
𝑔𝜇𝑣

𝑞2  

    Au(x) 

         X       X  -i(Ze,0) 

Figure 1. Feynman rules for Rutherford scattering of electrons off a static charge Ze, for instance 

a nucleus. 
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The scattering amplitude for the above processes is defined as 

   Tfi = -i∫𝑑4𝑥 𝐽𝜇
𝑓𝑖(𝑥)𝐴𝜇(𝑥)      (3.36) 

where 𝐽𝜇
𝑓𝑖(𝑥) = -e𝑢̅𝑓𝛾𝜇𝑢𝑖𝑒

−𝑖𝑞.𝑥, 𝐴𝜇(𝑥) is a four-vector potential associated with static charge 

and q is the change in momentum given as q = pi - pf. Hence, equation 3.36 becomes 

Tfi = ie𝑢̅𝑓𝛾𝜇𝑢𝑖𝐴
𝜇(𝑞)       (3.37) 

where 𝐴𝜇(𝑞) = ∫𝑑4𝑥 𝐴𝜇(𝑥)𝑒−𝑖𝑞.𝑥. For a static charge 𝐴𝜇(𝑥) is time independent, thus we have 

𝐴𝜇(𝑞) = ∫𝑑𝑡 𝑒−𝑖(𝐸𝑖−𝐸𝑓 ∫𝑑3𝑥 𝑒−𝑖𝑞.𝑥𝐴𝜇(𝑥̅) 

   = (2𝜋)𝛿(Ei - Ef)𝐴𝜇(𝑞)       (3.38) 

Therefore, 𝐴𝜇(𝑞) = (2𝜋)𝛿(Ei - Ef)
𝐽𝜇(𝑞)

|𝑞|2
, 

where we use Maxwell’s equations and the time-independence of the potential 𝐴𝜇(𝑞) to arrive at  

   𝐴𝜇(𝑞) = 
𝐽𝜇(𝑞)

|𝑞|2
 

and 

 Tfi  = i(2𝜋)𝛿(Ei - Ef) e 𝑢̅𝑓𝛾𝜇𝑢𝑖
1

|𝑞|2
𝐽𝜇(𝑞̅)      (3.39) 

The scattering amplitude is thus given by: 

   -iM = ie𝑢̅𝑓𝛾𝜇𝑢𝑖
1

|𝑞|2
𝐽𝜇(𝑞̅) 

When there is energy conservation, we have:     

-iM = ie𝑢̅𝑓𝛾𝜇𝑢𝑖 (
−𝑔𝜇𝜎

𝑞2 ) (−𝑖𝑗𝜎(𝑞))         (3.40) 

−𝑖𝑗𝜎is associated with the source such that  

𝑗(̅𝑥̅) = 0 and 𝑗𝑜(𝑥)= 𝜌(𝑥̅) = Ze 𝛿(𝑥̅)         (3.41) 
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This implies that 

  -iM = ( ie𝑢̅𝑓𝛾𝜇𝑢𝑖 (
−𝑖

|𝑞|2
) (-iZe) 

and 

q2 = (pi – pf) = -2K2 (1 – cos𝜃) 

= - 16Sin2𝜃

2
        (3.42) 

where we have used  K ≡  |𝑝𝑖| = |𝑝𝑓| and M is the scattering amplitude whose square gives  

   
𝑑𝛿

𝑑𝛺
~|𝑀|2~

1

− 16Sin2𝜃

2

       (3.42a) 

In equation (3.42a), 𝜃is the scattering angle. The exchange photon fluctuates to an e- e+ pair as in 

figure 2 below 

 

      𝑖𝑒𝛾𝜇 

 

       𝑖𝑒𝛾𝜇′ 

   P   q-p 

       𝑖𝑒𝛾𝑣 

  −
𝑖𝑞𝑣′𝑣

𝑞2
 

       X   𝑖𝑗𝑣(𝑞) 

Figure 2.Feynman diagram for Rutherford scattering in which the exchanged photon fluctuates 

into an e-e+ pair. 



26 
 

The exchanged photon spends time as a virtual e-e+ pair and this will lead to a modification of 

coulomb’s law which results from the lowest order diagram. Using  

iM = (ie𝑢̅𝑓𝛾0𝑢𝑖) (
−𝑖

|𝑞|2
) ( 1 − 

𝛼

3𝜋
log (

𝑀2

𝑚2) −  
𝛼

15𝜋

𝑞2

𝑚2 +  𝑂(𝑒4))(-i Ze)      (3.43) 

which becomes 

  -iM = (ieR𝑢̅𝑓𝛾0𝑢𝑖) (
−𝑖

|𝑞|2
) (1 − 

𝑒𝑅
2

60𝜋2

𝑞2

𝑀2) (−i ZeR)   (3.44) 

where eR= e (1 −
𝑒2

12𝜋2
log

𝑀2

𝑚2
)
2

. Suppose eR is the electric charge, i.e., 

    
𝑒𝑅

2

ћ𝑐
 = 

1

137
, 

then, if there is an infinity associated with Mn→ ∞, it will be ‘absorbed’ by eR. Therefore this 

factor contributes to the invariant amplitude M becoming finite.  

For the scattering amplitude representing the Fourier transform of the potential, the first term in 

(-iM) is considered proportional to the potential |𝑞|−2 associated with the coulomb potential. 

Since  

V0(r)  =
−𝑍𝑒𝑅

2

(2𝜋)3
∫𝑑3𝑞 𝑒−𝑖𝑞𝑟 1

|𝑞|2
= - 

𝑍𝑒2

4𝜋𝑟
,      (3.45) 

then the second term represents the quantum effect of the virtual e-e+ loop in the propagator of 

the exchanged photon. It contains an extra term |𝑞|2 in relation to the first. In coordinate space 

|𝑞|2 → ∇2 

1

(2𝜋)3
∫𝑑3𝑞 𝑒𝑖𝑞𝑟 = 𝛿(𝑟)         (3.46) 

The 𝛿(𝑟) implies that there is a conservation 

From equation 3.44, (-iM) corresponds to an interaction between the electron and the charge ZeR 

of the form 

V(r) = - (1 −
𝑒𝑅

2

60𝜋2𝑀2 ∇2)
𝑍𝑒2

4𝜋𝑟
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   = −
𝑍𝑒2

4𝜋𝑟
−

𝑒𝑅
4

60𝜋2𝑀2 𝛿(𝑟)         (3.47) 

The extra interaction and its sign is due to the screening by the e-e+ pair.  

i) The first term in (3.43) is such that when q2→ 0, the e-- probes the static charge ZeR 

from a large distance and interacts via the coulomb interaction 

ii) By definition eR is the usual electron charge, the one measured in any long-range 

electromagnetic interaction. 

iii) When the electron comes closer to the nucleus (i.e. –q2 increases) it penetrates the 

cloud of virtual e-e+ pairs which surround it. This leads to an increase in the effective 

interaction. The presence of the loop, thus, leads to an additional attractive force 

between the electrons and the nucleus. 

This effect, represented to the lowest order by the 𝛿(𝑟) potential contributes to the energy levels 

of the hydrogen atom. Treating the second term as a perturbation, a contribution to the lamb shift 

is obtained thus: 

∆𝐸𝑛𝑙 = 
𝑒𝑅

4

60𝜋2𝑀2
|Ѱ𝑛𝑙(0)|

2𝛿𝑙0      (3.48) 

where Ѱ𝑛𝑙 are hydrogen wave functions. 𝛿𝑙0 imply that the 𝛿(𝑟) potential can only perturb wave 

functions which are finite at the origin, i.e. those with 𝑙 = 0. These can be established 

experimentally by measuring the lamb shift between 2S1/2 and 2p1/2. These levels are degenerate 

if the loop contributions are not included. The changes depend on their separation. 

For instance, the hydrogen atom is bound by the exchange of photons between the electrons and 

protons. The Coulomb force leads to a separation of a Bohr radius on the average. The electron 

can deviate from its Bohr orbit due to the fluctuation of the exchange photons into e-e+ pairs.  

This quantum screening reduces the attraction when the electron is far from the proton and 

increases the force when it approaches the nucleus. These competing effects don’t cancel since 

the Coulomb force falls with r. The net force is an additional attraction over and above the 

coulomb potential −
𝑒𝑅

𝑟
 given by the second term in (3.40) as: 

 -iM = (ieR𝑢̅𝑓𝛾0𝑢𝑖) (
−𝑖

|𝑞|2
) [1 − 

𝑒𝑅
2

60𝜋2

𝑞2

𝑀2] (−i ZeR)   (3.43) 
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The second term in the square bracket modifies the 𝛾𝜇 Lorentz structure of the current. This 

means that the electron interacts via both its charge −𝑒𝑚 and its magnetic moment −𝑒/2𝑚. With 

  −eR𝑢̅𝑓𝛾0𝑢𝑖 = −
𝑒

2𝑚
𝑢̅𝑓[𝑝𝑓 + 𝑝𝑖 − 𝑖𝛿𝜇𝑣𝑞

𝑣]𝜇𝑢𝑖,      (3.49) 

we can identify the magnetic moment from the interaction energy (-μ.B) using the relation  

∫ [−
𝑒

2𝑚
Ѱ̅𝑓[𝑝𝑓 + 𝑝𝑖 − 𝑖𝛿𝜇𝑣𝑞

𝑣]𝜇Ѱ𝑖] 𝐴
𝜇𝑑3𝑥 = ∫Ѱ𝐴

𝑓
(

𝑒

2𝑚
𝛿. 𝐵)Ѱ𝐴

𝑖 𝑑3𝑥)  (3.49a) 

Ѱ𝐴 denotes the upper two large components of Ѱ and, hence, 𝜇̅ = −
𝑒

2𝑚
𝛿̅.  

Since 𝜇̅ = −𝑔
𝑒

2𝑚
𝑠̅, then 𝑆 ≡

1

2
𝛿 for gyromagnetic ratio g = 2. This therefore, implies from 

equation (3.49) that  

    𝜇 = −
𝑒

2𝑚
(1 +

𝛼

2𝜋
) 𝛿 

or    𝑔 = (1 +
𝛼

2𝜋
) 

The electron, thus, has an anomalous magnetic moment given as [Chand, 2001] 

   
𝑔−2

2
=

1

2
(
𝛼

𝜋
) − 0.32848 (

𝛼

𝜋
)
2

+ (1.49) (
𝛼

4𝜋
)
3

+ ⋯ 

    = (116955.4)10−19     (3.50) 

This compares with the experimental value 

   
𝑔−2

2
= (1159657.7 ± 3.5)10−19     (3.51) 

 

3.3 The Hyperfine structure 

The interaction between the nuclear magnetic moment and the magnetic field produced by the 

electrons at the position of the nucleus perturbs the energy levels of an atom [Peebles, 1992]. For 

nuclei with nuclear spin 𝐼 ≥ 1, the hyperfine structure splitting involves another term associated 

with the interaction between the nuclear electric quadrupole and the gradient of the electric field 
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generated by the electrons at the position of the nucleus [Wikipedia, 2015]. Since the effect is 

very small compared to the separation between Bohr’s energies and fine– structure energies, it is 

named hyperfine structure. The hyperfine splitting of the ground state level of the hydrogen atom 

is equivalent to a wavelength of 21.1 cm [Cohen–Tannoudjiet al., 1977]. This is the famous line 

used to derive the most stable atomic clocks, and used in radio astronomy to map out the 

distribution and motion (through the Doppler Effect) of neutral gas in galaxies, the bulk of the 

gas being atomic hydrogen. 

 

3.3.1 The Magnetic Hyperfine Hamiltonian 

The term in the Hamiltonian that represents the interaction between the proton dipole moment 

and magnetic field produced by the electron at the position of the nucleus is derived from 

classical electromagnetism. 

3.3.1.1 Magnetic field of a magnetic dipole 

It is often convenient to consider a loop of wire to be magnetic dipole. In the case of atoms, the 

current loop is due to the circulation of electrons about the nucleus.  

Just as electric behavior of many molecules can be characterized in terms of their electric dipole 

moment, the magnetic behavior of atoms can be characterized in terms of their magnetic dipole 

moment [Halliday et al., 2003]. The vector potential produced by a circular loop of radius at a 

distance r from its center is given by [Lorrain and Corson, 1970; Perez et al., 2002]  

3r

rM
A


 
         (3.52) 

where |M| = I(πa2) is the magnitude of the magnetic dipole. By definition,  

    B = 𝛁𝑨 

From the theory of vectors, if f is a scalar function and C


 is a vector, then 

  )()( CfCfCf


       (3.53) 
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Taking C


 = mr and f = (
1

𝑟3), we then have: 

B(r) = 
3(𝒎.𝒓)𝒓

𝑟5 −
𝒎

𝑟3 

If we replace m by the nuclear magnetic dipole moment (μI), we obtain the magnetic field 

produced by μI at the position of the nucleus as 

B(r) = 
3(μI.𝒓)𝒓

𝑟5
−

𝝁𝑰

𝑟3
       (3.54) 

The energy of interaction between the electron magnetic moment (µe) in this magnetic field is 

V = - µe. B = {
𝝁𝒆.𝝁𝒑

𝒓𝟑 − 3
(𝝁𝒆.𝒓)(𝝁𝒑.𝒓)

𝒓𝟓 }       (3.55)  

In Equation (3.55), µe is the electron magnetic dipole momentand r is the separation between the 

electron and nucleus. Note that the equation is symmetric in the electron and nucleus variables.  

We will use the classical equation (3.55) for V as a guide to writing down the magnetic hyperfine 

Hamiltonian for a hydrogen atom.  

The proton and electron magnetic dipole moments are defined respectively by [Peebles, 1992] 

µp = (gpe/2Mpc) I,          gp ≈5.6      (3.56a) 

µe = - (gee/2mec)s,        ge ≈2        (3.56b) 

In equation (3.65), Mp and me are the proton mass and the electron mass, respectively. The 

magnetic moment of the negatively charged electron is antiparallel to the spin, and the magnetic 

moment of the positively charged proton is parallel to the spin. 

The classical approach above enables one to determine the magnetic hyperfine Hamiltonian for 

the hydrogen atom (one electron–atom). The results obtained can be extended to any atom. 
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3.3.1.2 Quantum Approach for Determining the magnetic hyperfine 

Hamiltonian  

The magnetic hyperfine Hamiltonian originates from the coupling between the electron and the 

electromagnetic field created by the nucleus [Cohen-Tannoudjiet al., 1977]. To show this, we let 

A (r, t) and φ (r, t) be the vector and the scalar potentials associated with the electromagnetic 

field of the nucleus. Then, for the hydrogen atom in which the sole electron is interacting with 

the proton through the Coulomb’s potential energy and the binding energy of the electron being 

much smaller than its rest energy, one can predict the properties of the atom from the non- 

relativistic quantum theory. The fields B and E are calculated from the known relations of 

classical electromagnetism (Gauss system) 

     B =∇⃗⃗ 𝑨      (3.57a) 

            E = ∇⃗⃗ φ - 
1

𝑐

𝜕𝑨

𝜕𝑡
      (3.57b) 

The quantum Hamiltonian for an electron in an electromagnetic field with vector and scalar 

potentials A and φ is obtained by replacing in the zero–order Hamiltonian V (r) by V (r) + qφ (r, 

t) and the momentum p by [p – (q/c) A] = [ p + (e/c) A], where 𝑝  =-iħ∇⃗⃗ . The time–dependent 

Schrodinger equation is then given by: 

iħ
𝜕𝜑

𝜕𝑡
 =H𝜑       (3.58) 

where the Hamiltonian H is given, in the presence of an electromagnetic field, by 

  𝐻̂ = 
1

2𝑚
(𝒑 +  𝑒/𝑐 𝑨)2 + V(r) + eφ(r,t) - 𝝁𝒔.B    (3.59) 

For static magnetic fields, the most convenient gauge is the Coulomb’s gauge for which φ = 0 

and ∇⃗⃗ . A = 0. Taking into account equation (3.57a), equation (3.59) becomes 

 H = 
𝑝2

2𝑚
 + V ( r) + 

𝑒

2𝑚𝑐
[p . A + A .p]+ (

𝑒2

2𝑚2𝑐2)A2 + 2µB S. (∇⃗⃗   A)    (3.60) 

In equation (3.60), the term 
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  HHF = 
𝑒

2𝑚𝑐
[p . A + A . p] + (

𝑒2

2𝑚2𝑐2
) A2 + 2µBS . (∇⃗⃗   A)    (3.61) 

represents the magnetic hyperfine Hamiltonian. Since the hyperfine structure brings a very small 

correction to the Bohr energies, it is legitimate to ignore the second term proportional to A2.  

We then calculate the term (p . A + A . p), where 
3r

r
A I

 



 is the vector potential produced by 

the nuclear magnetic dipole moment at the position of the electron so that 

(p. A + A. p)=[𝒑. (𝝁𝐼 X 𝒓)
1

𝑟3 + 
1

𝑟3 (𝝁𝐼𝒓). 𝒑]    (3.62) 

We apply the rules for a mixed vector product to the vector operators provided that we do not 

change the order of two non–commuting operators. Since the components of 𝜇𝐼 commute with r 

and p, we have: 

(𝝁𝐼𝒓).p = (r p . µI) = ћL. µI        (3.63) 

where (r x p) = ћLis the electron’s orbital angular momentum operator. It can be shown easily 

that [𝐿,
1

𝑟3]. Therefore,  

  
1

𝑟3 (𝝁𝐼 𝒓).p = 
(𝒓𝒑).𝝁𝑰

𝑟3  = 
ħL.𝝁𝑰

𝑟3         (3.64) 

Similarly, 𝒑. (𝝁𝐼𝒓)
1

𝑟3  = - µI. (pr). (
1

𝑟3)=
ħ𝐋.𝝁𝐼

𝑟3        (3.65) 

Substituting equations (3.64) and (3.65) into equation (3.62), we find that 

(p . A +  A . p) =2 
ħ𝐋.𝝁𝐼

𝑟3
        (3.66) 

(
𝑒

2𝑚𝑐
) (p . A +  A . p) =

𝑒ћ

𝑚𝑐

𝝁𝐼.𝑳

𝑟3 = 2𝜇𝐵
𝝁𝐼 .𝑳

𝑟3        (3.67) 

HHF = 2𝜇𝐵 {
𝝁𝐼 .𝑳

𝑟3 + 𝑺. (∇⃗⃗ 𝐀)}         (3.68) 

To write the explicit expression of S.(∇⃗⃗ A), we use the following property from theory of vector 

analysis. The expression for the vector potential is equivalent to  
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∇⃗⃗ 
𝝁𝐼

𝒓
. This then becomes 

  ∇⃗⃗  ( 
𝝁𝐼

𝑟
) = 

1

𝑟
 (∇  𝝁𝐼) - 𝝁𝐼 ∇⃗⃗ (

1

𝒓
) = 𝝁𝐼

𝒓

𝑟3
     (3.69) 

The first term on the right hand side of equation (3.69) is equal to zero since 𝝁𝐼 is a constant 

vector (depending only on the coordinates of the nucleus) and does not depend on the coordinate 

of the “field - point”. Hence,  

S. (∇⃗⃗ A)=S.[∇ (∇
𝝁𝐼

𝑟
)]       (3.70) 

Substituting equation (3.70) into equation (3.68), we have: 

HHF = 2𝜇𝐵 {
𝝁𝐼 .  𝑳

𝑟3 + 𝑺. [∇ (∇
𝝁𝐼

𝑟
)]}       (3.71) 

The first term in equation (3.71) is called the orbital term and the second term containing the 

electron spin (S) and nuclear spin (I) is the spin–spin interaction term (HSS). We can calculate 

explicitly the spin–spin interaction term (HSS) for r different from zero and for r equal to zero as 

follows: 

(i) r ≠ o 

In this case, we consider equation (3.71) and use the following vector identity: 

   CCC


2).(   

so that,  

Hss= 2𝜇𝐵 [𝑆. ∇⃗⃗ (∇.
𝝁𝐼

𝑟
)  −  ∇2(

𝝁𝐼

𝑟
)]                  (3.72a) 

Hss= 2𝜇𝐵 [𝑺. [−∇(𝝁𝐼 .  
𝑟

𝑟3)] − ∇2(
𝝁𝐼

𝑟
)]      (3.72b) 

But ∇2(
𝝁𝐼

𝑟
) = 𝝁𝐼∇

2(
1

𝒓
) = 0                   (3.72c) 

On the other hand,  

 −∇(𝝁𝐼 .
𝑟

𝑟3
) = − 

1

𝑟3
∇(𝝁𝐼. r) – (𝝁𝐼.r)∇ (

1

𝑟3
) = 

3𝑟(𝝁𝐼.𝒓)

𝑟5
 - 

𝝁𝐼

𝑟3
    (3.73)  
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Substituting equations (3.72c) and (3.73) into equation (3.72b), we then have  

Hss = 2𝜇𝑩 [
3(𝑺.𝑟)(𝝁𝐼.𝒓)

𝑟5  −  
𝑺.𝝁𝐼

𝑟3 ]       (3.74) 

Equation (3.74) represents the Hamiltonian of spin–spin interaction for r≠0: 

(ii) For r = 0, we have 

Hss = 2𝜇𝑩 [
8𝜋

3
(𝑺. 𝝁𝑰)𝛿(𝒓)]       (3.75) 

Considering equations (3.74) and (3.75), the Hamiltonian of spin-spin interaction for any value 

of r is given by the sum of equations (3.73) and (3.75) as 

Hss = 2𝜇𝑩 [
8𝜋

3
(𝒔. 𝝁𝐼)𝛿(𝒓) +

3(𝑺.𝑟)(𝝁𝐼.𝒓)

𝑟5  −  
𝑺.𝝁𝐼

𝑟3 ]     (3.76) 

In equation (3.76), the first term in bracket represents the “contact Hamiltonian” and the second 

and third terms represent the Hamiltonian of spin – spin interaction at a distance. The contact 

Hamiltonian will give a contribution only for r =0 and for Ψ(0)  0, that is, for s-states for which 

𝑙 = 0. 

In equation (3.76), we  use the relation µI = gIµNI and taking into account equation (3.71), the 

hyperfine magnetic Hamiltonian can be written as 

HHF = 2𝜇𝑩 [
𝐿

𝑟3 − 
𝑺

𝑟3 + 
3𝑟(𝑺.𝑟)

𝑟5 +
8𝜋

3
𝑺𝛿(𝑟)] . gI𝝁N𝑰     (3.77) 

Under this form of Equation (3.77), the magnetic hyperfine Hamiltonian can be interpreted easily 

by writing the equation as 

HHF = −𝝁𝑰. Be         (3.78) 

where Be is the magnetic field generated by the electron(s) at the position of the nucleus (proton) 

and 

Be=BL + BSBJ        (3.79) 
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where BJ is the magnetic field produced by the electrons at the position of the nucleus, BL is the 

magnetic field produced by the orbital motion of the electron and BS is the magnetic field 

produced by the spin magnetic dipole moment. 

 

3.3.1.3 Magnetic hyperfine energy for one–electron atoms 

The magnetic hyperfine energy for one electron-atom can be written as 

.   𝐸𝐻𝐹
𝑚  = 〈−𝜇𝐈. 𝑩𝑒〉 = 〈−𝑔𝐼𝝁𝑵𝑰. 𝑩𝐽〉     (3.80)  

Introducing the coefficient of hyperfine energy, Equation (3.80) becomes: 

    𝐸𝐻𝐹
𝑚  =  𝛽〈𝑰. 𝑱〉       (3.81) 

where 𝛽 = −
𝑔𝐼𝜇𝑰

〈𝐽2〉
< 𝐁J. 𝐉 > is the coefficient of magnetic hyperfine energy which measures the 

strength of the coupling between I and J. 

At the position of the nucleus, there is a magnetic field BJ which interacts with the nuclear 

magnetic moment and orients the nuclear spin. The result of this interaction is a coupling of the 

electron’s angular moment (J) and that of the nucleus (I) to give a total angular momentum of 

the atom (F). In analogy to the coupling for electrons, we have 

F = J + I         (3.82a) 

F2 = J2 + I2 + 2 J.I         (3.82b) 

 〈𝑱. 𝑰〉 =
1

2
[𝐹(𝐹 + 1) − 𝐽(𝐽 + 1) − 𝐼(𝐼 + 1)]      (3.83) 

According to the atom vector model, the quantum number F has values ranging from J+I to

IJ  . Substituting equation (3.83) into equation (3.81), the hyperfine magnetic energy becomes 

 𝐸𝐻𝐹
𝑚  = 

𝛽

2
[𝐹(𝐹 + 1) − 𝐽(𝐽 + 1) − 𝐼(𝐼 + 1)]      (3.84) 
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3.3.1.4 Expression of the coefficient of hyperfine magnetic energy 

We do a calculation for L≠ 0 and since we are dealing with one–electron atoms, L≡ 𝑙. 

Therefore, the contact Hamiltonian will not be considered here because r≠ 0. Hence, for L ≠ 0 , 

the coefficient of hyperfine magnetic energy is given by: 

   𝛽 = −
𝑔𝐼𝜇𝑁

〈𝐽2〉
〈𝐻𝐽. 𝐽〉       (3.85) 

where: J = L + S 

BJ = Be = −
𝟐𝜇𝐵

𝒓𝟑 [−𝑳 + 𝑺 − (𝑺.
 𝒓

𝑟
)

𝒓

𝑟
]      (3.86) 

Substituting for BJ  into 𝛽 we have  

  𝛽 = 
2

𝐽(𝐽+1)

𝑔𝐼𝜇𝐵𝜇𝐼

〈𝑟3〉
〈[−𝑳 + 𝑺 − (𝑺.

 𝒓

𝑟
)

𝒓

𝑟
] . (𝑳 + 𝑺)〉 

Since the angular momentum is perpendicular to r, we have 0. rL . Therefore,  

  𝛽 = 
2

𝐽(𝐽+1)

𝑔𝐼𝜇𝐵𝝁𝐼

〈𝑟3〉
<[ - L2  +S2 –(S.r/r)2]> 

= 
2

𝐽(𝐽+1)
𝑔𝐼𝜇𝐵𝜇𝐼 〈

1

𝑟3
〉 [−𝐿(𝐿 + 1) + 𝑆(𝑆 + 1) − 3 〈𝑆.

𝒓

𝑟
〉2]   (3.87) 

For an electron, 𝑠 =
1

2
 ∴ 𝑠(𝑠 + 1) =

3

4
 and (𝑺.

𝒓

𝑟
 ) is the projection of S along the direction of the 

radial unit vector. The 3 〈𝑆.
𝒓

𝑟
〉2 is obtained thus: 

  〈𝑆𝑧〉 = ms = 
1

2
 

  〈𝑆.
𝒓

𝑟
〉 = ms = 

1

2
 

-3〈𝑆.
𝒓

𝑟
〉2 = - 3 x (

1

2
)2 =−

3

4
 

The value of 〈
1

𝑟3
〉 is given by (Zettili, 2009) : 
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  〈
1

𝑟3
〉 = 

𝑍3

𝑎𝑜
3𝑛3𝑙(𝑙+1)(𝐿+

1

2
)
 

where Z is the atomic number 𝑎0 = 
ℎ2

𝜇𝑒2is the radius of Bohr’s first orbit for the reduced 

mass 𝜇, n is the principal quantum number 𝑙 is the orbital quantum number 

Therefore for 𝑙 ≠ 0,  

   𝛽 = 
𝑍3𝑔𝐼𝜇𝐵𝝁𝑁

𝑎𝑜
3𝑛3(𝑙+1/2)𝐽(𝐽+1)

        (3.88) 

 

3.3.1.5 Calculation of the coupling constant for L =0 

To calculate the coupling constant for L = 0, we use 

  𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 
16𝜋

3
𝜇𝐵〈𝑺. 𝝁𝐼〉|𝜑(0)|2      (3.89) 

For L = 0, J≡S; 𝝁𝑰 = 𝑔𝐼𝜇𝐵𝑰 

so that 

 𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
16𝜋

3
𝑔𝐼𝜇𝐼𝜇𝐵|𝜑(0)|2〈𝑱. 𝑰〉 =𝛽′〈𝑱. 𝑰〉 

where 〈𝑱. 𝑰〉 = 
1

2
 [F(F+1) –J(J+1) – 𝐿(𝐿 + 1)] 

𝜑𝑛00(0) = 𝑌00𝑅𝑛0is given by (Zettili, 2009): 

|𝜑𝑛00(0)|
2 = 

1

4𝜋
(

2𝑍

𝑛𝑎0
)
3 1

2𝑛(𝑛!)3
(𝑛!)4

(𝑛−1)!
 

|𝜑𝑛00(0)|
2 = 

1

8𝜋
(

2𝑍

𝑛𝑎0
)
3

 = 
𝑍3

𝜋𝑛3𝑎0
3 

𝛽′ =
16𝑍3

3

𝑔𝐼𝜇𝐼𝜇𝐵

𝑛3𝑎0
3  

  𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 
𝛽′

2
 [F(F+1) –J(J+1) – 𝐼(𝐼 + 1)]      (3.90) 
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Using equation (3.90), we can show that the hyperfine structure of the ground state of the 

Hydrogen atom is given by: 

  𝐸ℎ𝑓 = 
𝛽′

2
 [F(F+1) –J(J+1) – 𝐼(𝐼 + 1)] 

The ground state level 12S1/2; n =1, 𝑙 = 0, J  =
1

2
 and I = 

1

2
. 

Since F is the total angular momentum quantum number of the atom, ranging from I + J to |I - J|. 

for J = I = 
1

2
, we have, F: 1, 0. 

Equation (3.90) becomes, in this case,  

for F =  0; 𝐸𝑜 = 
𝛽′

2
[0 − 

3

4
− 

3

4
] 

  =− 
 3𝛽′

4
 

For  F = 1; E1 = 
𝛽′

2
[1.2 −

3

2
] =  

𝛽′

4
 

This implies, that the 𝐸ℎ𝑓 splits the 1S1/2 level into two hyperfine levels separated by energy as: 

   ∆𝐸 = 𝐸1 − 𝐸0= 𝛽′ 

    = 
16𝑍3

3

𝑔𝐼𝜇𝑁𝜇𝐵

𝑛3𝑎0
3        (3.91) 

Substituting for Z = n = 1, 𝜇𝑁 = 5.058410−24𝑒𝑟𝑔/𝐺, 𝜇𝐵 = 9.27410−21𝑒𝑟𝑔/𝐺, 𝑎0 =

0.529𝑋10−8𝑐𝑚𝑔𝐼 = 5.58569, we find: 

  ∆𝐸 =1424.7 MHz 

This corresponds to a wavelength of 20.986 cm 
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3.3.2 Quadrupolar hyperfine Hamiltonian and energy of quadrupolar 

interaction 

The hyperfine splitting between levels with the same value of J, expressed in units of 

frequency, are in general of the order of 109 Hz [ Hakin and Wolf, 2005; Chandra, 2010]. 

Compared with the distance between the ground state level and various excited levels of the 

hydrogen atom, for example, the hyperfine structure splitting represent very small corrections 

(the relative correction being of order of 10-5). For these corrections to be meaningful, it is 

necessary that the general study of the atom be done with sufficient rigor; in particular, one must 

take into account the extension of the nucleus, that is, one must consider the electric quadrupole 

moment (Q) of the nucleus. If the nucleus were comparable to a point or had a spherical 

symmetry, its electric quadrupole moment would be equal to zero. Nuclei whose nuclear spin is 

equal to 0 or to 1/2 are spherically symmetric and their electric quadrupole moment, Q =0. 

Helium atom (2
4He) with I =0 and Hydrogen atom (1

1H) with I = 1/2 are some examples of atoms 

for which Q =0. 

In many cases, when I > 1, the distribution of the nuclear charge (qN) inside the nucleus is not 

spherically symmetric. We take into account this gap to spherical symmetry by introducing the 

nuclear electric moments. Since the nuclear charge is positive, its electric dipole moment is equal 

to zero.  The deformation of the nucleus leads to an electric quadrupole moment.  

The electric quadrupole moment is defined as follows: 

 𝑄𝑒 =  〈3𝑍2 − 𝑟2〉 =  ∫(3𝑍2 − 𝑟2)𝜌𝑁(𝑟)𝑑𝜏      (3.92) 

In Equation (3.92), the average is calculated around the configuration of the nucleus. It is 

assumed that the distribution of nuclear charge has symmetry of revolution around the OZ axis, 

which is parallel to the nuclear angular momentum operator I


). From equation (1), it is clear that 

Q = 0 for a sphere. In fact, <x2> = <y2> = <z2> = (1/3) <r2>.  

The electric quadrupolar hyperfine effect is associated with the interaction between the electric 

quadrupole moment and the gradient of the electric field generated by the electrons in the 

neighborhood of the nucleus [Wikipedia, 2015].  Assuming that the distribution of the nuclear 



40 
 

charge has a symmetry of revolution about the OZ axis, that is, the nuclear spin I


is parallel to 

OZ axis, and that the electronic cloud has a symmetry of revolution about the oz axis, that is, the 

electronic total angular momentum J


is parallel to oz, it is shown that the gradient of the electric 

field is given by [Hakin and Wolf, 2005]: 

   𝜑𝑧𝑧 =
−𝜕𝐸𝑧

𝜕𝑧
= 

𝜕2𝑉

𝜕𝑧2       (3.93) 

The additional energy resulting from the quadrupolar coupling is given by: 

 ∆𝐸𝑄 = 
𝑒𝑄〈𝜑𝑧𝑧〉

4
[
3

2
〈𝑐𝑜𝑠2𝜃〉 − 

1

2
] =

𝑒𝑄

4
〈
𝜕2𝑉

𝜕𝑧2
〉 [

3

2
〈𝑐𝑜𝑠2𝜃〉 − 

1

2
]    (3.94) 

In Equation (3),   is the angle between the OZ and oz axes (i.e., the angle between I


and .J


); 

therefore, Equation (3) is equivalent to: 

  ∆𝐸𝑄 = 
𝑒𝑄

4
〈
𝜕2𝑉

𝜕𝑧2
〉 [

3

2
〈𝑐𝑜𝑠2𝑰. 𝑱〉 −

1

2
]      (3.95)  

The calculation of ),(cos 2 JI  can be done using the atom vector model: 

  F = I + J 

  F2 = I2 + J2 + 2 I J cos (I . J) 

 〈cos (𝐼. 𝐽)〉 =  
〈𝐹2〉− 〈𝐼𝟐〉− 〈𝐽2〉

2√〈𝐼𝟐〉√〈𝐽𝟐〉
= 

𝐹(𝐹+1)−𝐼(𝐼+1)−𝐽(𝐽+1)

2√𝐼(𝐼+1)√𝐽(𝐽+1)
 (3.96) 

However, the expression of ∆EQ obtained by substituting Equation (3.96) into Equation (3.95) is 

imperfect. The correct result was obtained by CASIMIR using a quantum mechanical approach:    

 ∆𝐸𝑄 = 
𝑒𝑄

4
〈
𝜕2𝑉

𝜕𝑧2
〉
3

2

𝐶(𝐶+1)− 2𝐼(𝐼+1)𝐽(𝐽+1)

𝐼(2𝐼−1)𝐽(2𝐽−1)
     (3.97)  

where C = F(F+1) – 𝐼(𝐼+1)- J(J+1). Introducing the quadrupolar coupling constant, 𝐵 =
𝑒𝑄

4
〈
𝜕2𝑉

𝜕𝑧2
〉, 

we have: 

 ∆𝐸𝑄 = 
𝐵

4

3

2

𝐶(𝐶+1)− 2𝐼(𝐼+1)𝐽(𝐽+1)

𝐼(2𝐼−1)𝐽(2𝐽−1)
     (3.98)   
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The quadrupolar hyperfine Hamiltonian is an effect of second order compared to the magnetic 

hyperfine Hamiltonian [Hakin and Wolf, 2005].  

Considering both the magnetic hyperfine structure effect and the electric quadrupolar interaction, 

the hyperfine structure energy splitting is described by the following expression [Chandra, 

2010]: 

  𝐸𝐽,𝐼 = 
𝐴′

2
𝐶 +

𝐵

4

3

2

𝐶(𝐶+1)− 2𝐼(𝐼+1)𝐽(𝐽+1)

𝐼(2𝐼−1)𝐽(2𝐽−1)
      (3.99) 

In Equation (3.99), 𝐴′ is the hyperfine structure energy constant; the constants C and B have the 

same meaning as in equation (3.97). 
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          CHAPTER FOUR: RESULTS AND DISCUSSIONS 

In this section, the results and discussions involving the fine structure, the lamb shift and the 

hyperfine structure of spectral lines splitting are presented. In particular, from the expression 

(3.27) of the spin-orbit coupling correction, it is evident that the interaction between the electron 

spin with the orbital angular momentum splits each level of a hydrogen-like atom into two 

resulting doublet levels. For instance, the upper state of sodium D lines, the 3P state is split into 

the 3P1/2 and the 3P3/2 states. From the expression (3.28) of fine structure, it can also be deduced 

that the splitting is proportional to the fourth power of the atomic number, Z and therefore, the 

splitting is easily observable for heavy atoms. However, the values of fine structure splitting of 

the various lines of hydrogen (Z=1) are comparatively small. For the Hα, line of the Balmer 

series (6560.98A0), the splitting in wave numbers calculated using the spin-orbit correction is 

approximately 0.2217 cm-1 which is comparable to the value 0.33cm-1 obtained spectroscopically 

[Haken and wolf,2004]. This lies in the microwave range. 

Observations of optical spectral lines are, however, affected by Doppler broadening of spectral 

lines, implying that these splitting may be temperature dependent. From the fourth power 

dependence on the atomic number of the fine structure splitting, it follows that heavier elements 

may have a larger magnitude of splitting.  

It can also be noticed that the splitting is greatest for the smallest principal quantum number, n. 

From Equation (3.35), it can be deduced that the lamb shift is proportional to the third power of 

the fine structure constant and it decreases with increasing principal quantum number. The 

electron emission/absorption has given us a method by which it is possible to accurately 

calculate a value for the electron spin g-factor. 

The hyperfine structure of energy levels resulting from the interaction between the nuclear 

multipole moments and the internally generated field was determined using the electromagnetic 

approach and the quantum approach. It can be deduced from equation (3.88) that the hyperfine 

structure corrections are proportional to approximately 10-8𝐸𝑛
0. In addition, the hyperfine 

splitting for the ground state of the hydrogen was calculated and a value of λ = 20.986 cm was 

obtained. This value is close to the accepted value of 21cm. 
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         CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 

From our study we have seen that all the fine–structure terms, that is, the relativistic correction to 

the electronic kinetic energy term, the spin – orbit interaction term and the Darwin term (for 𝑙 

=0), are proportional to α2 E0
n, where α is the fine – structure constant. Since α2 is about 10-5, the 

fine -structure correction is a small fraction of the Bohr energy, E0
n. The energy shift between 

fine–structure states (the fine–structure interval) decreases as 1/n3, where n is the principal 

quantum number. For a hydrogen–like atom with atomic number Z, the fine structure correction 

increases rapidly as Z4. This implies, that the fine - structure correction becomes easier to 

observe as the atomic number Z increases. The fine - structure correction for the hydrogen atom 

can also be obtained by solving the Dirac equation for an electron placed in the Coulomb 

potential created by the proton.  

Since the quantum electrodynamical result closely compares to the experimental result than the 

semi-classical result, the quantum electrodynamics proves to be more reliable and an extended 

study to higher order corrections seems compelling. 

We have developed the quantum theory of atomic hyperfine structure and have applied this 

theory to the description of the hyperfine structure splitting of the ground state of the hydrogen 

atom. In the ground state of the hydrogen atom, the proton and electron spin can only be oriented 

parallel or antiparallel to one another. This corresponds to two possible values of the total 

angular momentum quantum number F (F =1 or 0). From the theory that we have developed, 

using the values of the nuclear gyromagnetic ratio, the radius of Bohr’s first obit, the Bohr 

magneton and the nuclear magneton, we have calculated the energy difference between these two 

states and found a wave number of 0.0475 cm-1. This was found to correspond to a frequency of 

1424.7 MHz or λ=20.984 cm. Since its discovery in 1951, the 21 cm line of hydrogen has played 

an important role in radio – astronomy.  For the hydrogen–like atoms, the hyperfine splitting 

increases with the cubic power of the atomic number and therefore, in such heavy ions, the 

hyperfine splitting should be many times larger than in the hydrogen atom. Also, in such heavy 

ions, the electric quadrupolar effect may contribute to the observed hyperfine structure splitting. 
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 RECOMMENDATIONS 

Future studies on the theory of fine structure could focus on solving the Dirac equation for an 

electron placed in the Coulomb potential created by the proton and consider the limits of the 

weak relativistic system such as the hydrogen atom to obtain the three fine structure correction 

terms.  

In addition, a consideration on higher order loops in the Feynman diagrams could help improve 

the accuracy of a theoretical prediction on the Lamb shift splitting. 

Also, future studies should focus on developing the theory of molecular hyperfine structure and 

carry out measurements of hyperfine structure interaction in atomic and molecular spectra and in 

electron paramagnetic resonance spectra of free radicals and transition metal ions. 
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