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ABSTRACT

The dissertation uses the classical Cramer-Lundberg model to find the minimum initial cap-

ital (MIC) required by a hypothetical insurance company in launching a new product line,

or, for investors wishing to open a new insurance company with their expectations likely to

follow those of the classical ruin model. The Poisson and exponential rate were taken as one

and the probability of ruin taken as fixed (0.1, 0.2 or 0.3). The safety coefficient for each of

the probabilities of ruin was taken as either 0.1 or 0.25 of the premium. A Brownian motion

approximation to the compound Poisson aggregate claims model was also used.

It was observed that there was a linear relationship between the the minimum initial surplus

and the number of claims for the continuous time ultimate ruin model.Cramer’s approx-

imation was considered as providing the most correct MIC whereas the Lundberg model

provided a ceiling. The Brownian motion approximation was slightly higher than the values

provided by the Lundberg model and this can be explained by the variance (higher moments)

effect taken into account by the Brownian motion approximation.

A discrete time model was also considered as that provided by Sattayatham et al (2013)

where the bisection method was used to find the MIC. It was noticed that the MIC in this

case was considerably smaller than those provided by the continuous case and this can be

explained by the fact that the discrete case only requires non-ruin at integer durations. There-

fore ruin can occur in between the intervals as long as there is no ruin at the integer duration.

The curve of the discrete MIC against number of claims was curvilinear. There was no in-

tersection of the curves for any of the methods.
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CHAPTER 1. GENERAL

INTRODUCTION

This dissertation aims to look into ruin theory and its application into the insurance indus-

try. Although this may be extended to any other industry, the theory has been narrowed to

look into a hypothetical insurance company to determine how much investment (capital or

surplus) is required to ensure a given survival (or non-ruin) probability.

Therefore, the dissertation will be looking into a surplus process and trying to determine

how much initial investment would keep the chances of ruin at or below a certain level.

1.1 BACKGROUND OF THE PROBLEM AND

LITERATURE REVIEW

Ruin theory is based on one of the applications of probability theory. Its origin therefore

is tied with the origin of probability. Probability theory developed and grew mainly in sev-

enteenth and eighteenth centuries due to the appeal of games of chance during this period.

The major contributors during this period were Jacob Bernoulli (1654-1705) and Abraham

De Moivre (1667-1754). Bernoulli was a Swiss mathematician who was the first to use the

term integral. His most original work was ’Ars Conjectandi’ published in 1713 in Basel.

De Moivre pioneered the modern approach to the theory of probability when he published

’The Doctrine of Chance: A method of calculating the probabilities of events in play’ in
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1718. The definition of statistical independence appears first in this book. There were new

expanded versions of this book in 1718,1738 and 1756. The birthday problem, in a slightly

different form, appeared in the 1738 edition while the gambler’s ruin problem featured in

the 1756 edition. This was among the first initial use of ruin theory although it had not yet

developed into a body of theory by this time.

The application of ruin theory in insurance is attributed to Filip Lundberg and Harald Cramer.

Lundberg’s 1903 thesis was largely written in Swedish and his notation was largely individ-

ual which meant that there were limited readers to his work and an even lower number

of those who understood it. Cramer understood, mathematically developed and presented

Lundberg’s work into a coherent theory. Lundberg first described the total claim amount of

an insurance company by what is currently known as a compound Poisson process, which

was a concept that was not defined by then. Later in 1926, he studied the ruin probability for

a risk process which describes the net surplus of a company. This net surplus was obtained

by subtracting discontinuous compound Poisson outflow payments from continuous inflow

of premia and an initial capital amount. Lundberg is considered the founder of mathematical

risk theory.

After proving and presenting the work by Lundberg, Cramer became more interested in the

practical work in the insurance industry. This could have been motivated by the interest rate

crisis in the late 1930’s caused by interest rates falling below the level used by insurance

companies in premium calculations. This presented an avenue for Cramer to advance his

research and to provide a solution to the problem without increasing premiums since such

an increase was prohibited by law to policies already in force. Cramer thus advocated the

use of the zero point method for premium calculation and for the use of mixed mortality

for policies with benefits for both death and survival scenarios that would ensure a safe pre-
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mium is calculated.

Since the original Cramer-Lundberg ruin model, there has been a lot of research done on

ruin theory with applications in many areas (especially in finance and insurance) such as en-

terprise risk, barrier option pricing and various other areas in insurance. A prominent figure

in the area of ruin has been Hans Gerber, who has published material related to ruin theory

from 1968. He and other researchers have aimed to improve on the classical ruin model by

making it more applicable to the real world and to various disciplines. This has over the

years involved incorporating investment income, dividends, developing recursion formulae

and algorithms, and, using other stochastic processes other than the compound Poisson pro-

cess to model aggregate claims processes.

In actuarial science, there has been a growth of regulation in the insurance industry to en-

sure protection of consumers of insurance products from malpractices that end up in the

insolvency (ruin) of insurance companies. It should be noted that most of the development

of ruin theory has been to minimize the probability of ruin given an initial level of capital.

The reverse question has of late become an important question for regulating agencies and

regional trading blocs that use uniform policies.

The question of how much capital is required to ensure that there is a small likelihood of a

company becoming insolvent and subsequently closing down has recently become a ques-

tion of interest. In the European Union (EU), the insurance industry used a system analogous

to that used by banks: the solvency system. The EU established the first non-life and life

directives in 1973 and 1979 respectively. Later revisions to these directives led to the es-

tablishment of a single market for insurance among member nations in the EU. This meant

that an insurance undertaking in one state would essentially be sold in any other member

state without restrictions. This system came to be known as solvency I, and subsequently
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solvency II - which is currently being adopted and tested in various countries in the EU.

Solvency II aims to take into consideration the varying nature of insurance risks based on

the environments the companies operate in, affiliates, and, other factors such as individual

underwriting risks of specific companies. Solvency II thus aims at better evaluation and

management of risks and the determination of SCR for the insurance companies operating

within the EU is one way of doing this. In the USA, NAIC uses a risk based capital system

in its regulatory framework to determine such a capital amount. There has been no unified

regulatory approach in Africa although in Kenya the IRA is planning to adopt the EU’s sol-

vency II framework. Whichever system that is being used, the main aim is to determine

how much capital is required to ensure that an insurance company’s chances of becoming

insolvent are below a given measure i.e. risk management. The approaches would thus

be concerned with a firms’ assets, liabilities and shareholders contribution. Much more so,

however, these approaches would be more interested in various risk measures associated

with assets, liabilities, incomes and expenses. The insurance regulator would then be inter-

ested in each firm’s accurate representation of their risk position and their ability to meet (or

surpass) the regulators target. This will enhance good competition among insurance compa-

nies while at the same time provide a feeling of stability.

These types of regulatory frameworks allow for adoption of numerous risks and it is not in-

conceivable that propositions to unify such systems be developed to foster global business.

In essence there is a possibility that the entire world could be a single market for insurance

business.
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1.2 PROBLEM STATEMENT

Early researches (such as works by Cramer, Lundberg, Sparre Andersen, Hans u. Gerber,

Michael R. Powers and Shiu among others) have given more weight on the probability of

ruin given initial capital (MIC/u). Hence ruin probability is a function of initial surplus and

thus to improve the situation (reduce the ruin probability), one of the factors that may be

considered is the initial capital. Although the business underwritten may also be changed

to try and ensure that claims severity are not particularly damaging when they occur, the

insurance firm may not have much flexibility in this area due to competition and demand for

products.

A major challenge that occurs in the computation of ruin probabilities - and in essence com-

putation of quantites in the ruin formula - is that the determination of accurate probabilities

depends on the evaluation of an integro-differential equation that does not always have ex-

plicit solutions. The best bet in many cases is thus the use of approximate formulas or

simulation.

It is also difficult in many cases to incorporate all the risk factors that may affect a specific

class of business. A model that incorporates many risk factors has to make assumptions

regarding the correlation of the risk factors and how to add up those factors. On the other

hand, a very simplified model would not accurately represent reality. A risk measure derived

from ruin probabilities known as value at risk (VaR) may be used to as an alternative to the

MIC in enterprise risk management. VaR was developed mainly in the banking industry

to check the derivative portfolio exposure by looking at what the loss in such a portfolio is

over the the time it takes to get out of a taken position (Long or short position in derivative

markets). Hence VaR is usually used over a short period of time. VaR may also be improved
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to take into account correlation of risks (mainly variances) or for the case of independent

risks. The approach of VaR is however not tackled in this dissertation.

The problem of computing the MIC has been considered from the continuous and discrete

time horizons. For the discrete time case, a bisection method developed by Sattayatham et

al is adopted. The bisection method is carried out twenty times to find the required MIC.

In the continuous time case, the pioneering work of Lundberg and Cramer is considered.

Cramer’s asymptotic formula gives the most accurate MIC while the upper limit provided

by Lundberg’s inequality provides an easy and prudent evaluation for regulators. A Brown-

ian motion approximation of the classical Cramer-Lundberg model is also done to take into

account extra variation.

The problem being considered is therefore that of determining an optimum starting capital

(MIC) for an insurance company to have a ruin probability of at most a predetermined spec-

ified level for the classical Cramer-Lundberg model.

1.3 OBJECTIVES OF THE STUDY

The major objective of the study is to determine a surplus or capital requirement for a hypo-

thetical insurance company that ensures the ruin probability is below a given measure.

The specific objectives are:

• Identifying approximate closed form expressions for the classical Cramer-Lundberg

model of the probability of ultimate ruin and solving for u (MIC).

• Applying Brownian motion approximation to SN as an approximation to the com-
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pound Poisson model.

• Applying a bisection approximation method for the case where time is at integer du-

rations (discrete time model).

1.4 SIGNIFICANCE OF THE STUDY

The techniques used in this dissertation are applicable to various companies the result of

which would be that different companies would have varying capital amounts based on risks

that are specific to them. This concept is highly useful as it may be applied to insurance

companies that provide different products and that are also in different geographical and

cultural environments. This would enable the provision of similar regulation to companies

in such varied environments. In Kenya, the methods used may be considered as an initial

guideline to provide insurance regulation for the proposed East African Community integra-

tion regions. This will enable the companies in different countries to compute their proposed

capital requirements which will in turn inform other regulatory policies such as margin re-

quirements and the subdivision of the capital amounts into various categories.

Similarly, ruin methods may be applied to any other organization as a means of risk man-

agement. The main idea is to identify the major sources of income and expenses and model

them to compute the probability of ruin. If the result is not desired, then one or more of the

inputs (incomes or expenses) may be adjusted to obtain the desired ruin levels. It should be

noted however that increasing charges to customers may interfere with income due to indus-

trial competition. Therefore, in the instances that only part of expenses may be transfered to

customers, unique measures may need to be adapted to reduce expenses or other sources of
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income identified (for example the capital markets).

The computation of initial capital also helps investors know when new companies are over/under

capitalized. Over-capitalization leads to opportunity costs as funds that are tied up as equity

could be used to purchase income generating assets. Under-capitalization on the other hand

leads to high underwriting risk which may lead to insolvency.
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CHAPTER 2. RUIN THEORY

2.1 INTRODUCTION

This section will aim to look at various methods of computing the initial surplus as a form

of review of key papers. There will be a mention of how the Panjer recursion method may

be used to compute the MIC/surplus in the form of an upper limit due to the importance of

this model in the numerical computation of probabilities. However, Panjer’s method is not

included in the methodology and analysis.

The chapter also lays the foundation for the bisection method developed by Sattayatham et

al in 2013 for the approximation of the initial surplus and this is the main model adopted for

the discrete time ruin model.

In the continuous time ruin model, there is also the mention of the Erlang distribution and

how it applies to the aggregate claims for certain assumptions of claim severity and claim

number distribution. Again however, the Erlang distribution is not explored further in the

paper but is only mentioned due to its importance in continuous time ruin models. The meth-

ods introduced here and further utilized are those of Cramer and Lundberg in the original

ruin problem, the bisection method by Sattayatham et al and the Brownian motion approxi-

mation to the compound Poisson process.
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2.2 INTEGRO-DIFFERENTIAL EQUATION

The probability of ruin is obtained by the observation of surplus over time. In the case of

this dissertation the equation of surplus being observed is:

Ut = u + ct −
N(t)∑
i=1

Xi (2.1)

Since
∑N(t)

i=1 Xi is a random variable, whose randomness is brought about by the number of

claims at a given time N(t) and the claims severities X ′is, then the use of probabilities be-

comes inevitable. The claim numbers are modeled as being Poisson distributed (N(t) ~P(λ))

and claim severities as being exponentially distributed (Xi ~exp(µ)). Therefore the new

quantity of observation is:

Pr{Ut} = Pr

{
u + ct −

N(t)∑
i=1

Xi

}

Ruin is said to occur if equation 2.1 ever becomes negative. Thus a more accurate definition

of the probability being observed is:

Pr{Ut < 0 | U0 = u} = Pr

{
u + ct −

N(t)∑
i=1

Xi < 0

}

= Pr

{
u + ct <

N(t)∑
i=1

Xi

}

Which simply means that the probability of ruin occurs when there is a positive probability

of the income and initial capital at a given time being less than the size of a claim. It should

be noted that the probability is a cumulative distribution function (CDF).

To find this probability of ruin, or be able to determine its components (such as u for this
18



dissertation), an integro differential equation 1 is developed. This equation is developed as

in Klugman et al (2004).

Definition 2.1. Let G(u,y) = Pr{ruin occurs when the initial reserve is u and deficit imme-

diately after ruin is at most y}

∴ the surplus immediately after ruin is between 0 and -y.

Then the probability that a claim amount x satisfies u + ct < x ≤ u + ct + y is

F (u + ct + y) − F (u + ct).

By the law of total probability we have:

G(u, y) =

∫ ∞
0

[{∫ u+ct

0

G(u + ct − x, y)dF (x)

}
+ F (u + ct + y) − F (u + ct)

]
λe−λtdt

(2.2)

The probability G(u, y) represents the sum of different possibilities after the occurrence of

the first claim amount x. There is a likelihood that the first claim will not cause ruin to occur

which means that the surplus now reduces to u + ct - x and that ruin can occur later on

with the new probability G(u + ct - x). Alternatively, the first claim can cause ruin to occur

and this ruin will not be greater than y. The time to ruin, if ruin occurs, is exponentially

distributed since the claim numbers are assumed to be Poisson distributed.

Differentiating (2.2) with respect to u requires first a change of variable:

z = u + ct⇒ dz = cdt ∴ dt =
1

c
dz

t =
z − u

c

1An integro differential equation is an equation that involves both integrals and derivatives of a function
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The integral now becomes:

G(u, y) =

∫ ∞
0

[∫ z

0

G(z − x y)dF (x) + F (z + y) − F (z)

]
λe−λ

z−u
c

1

c
dz

=
λ

c

∫ ∞
u

[∫ z

0

G(z − x y)dF (x) + F (z + y) − F (z)

]
e−λ

z−u
c dz

=
λ

c
e
λu
c

∫ ∞
u

e
−λz
c

[∫ z

0

G(z − x y)dF (x) + F (z + y) − F (z)

]
dz

From the fundamental theorem of calculus and Leibnitz theorem we have d
du

∫∞
u
k(z)dz =

−k(u). Applying this and using the product rule of differentiation gives:

∂ G(u, y)

∂ u
=

λ

c

{
λ

c
e
λu
c

∫ ∞
u

e
−λz
c

[∫ z

0

G(z − x y)dF (x) + F (z + y) − F (z)

]}

+
λ

c
e
λu
c

{
− e

λz
c

[∫ z

0

G(z − x, y)dF (x) + F (z + y) − F (z)

]}

If we let z = u then this leads to the following theorem

Theorem 2.1.

∂ G(u, y)

∂ u
=

λ

c
G(u, y)− λ

c

{∫ u

0

G(u − x, y)dF (x) + F (u + y) − F (u)

}

NB. It should be noted that limy→∞ G(u, y) = ψ(u)

Also, using the Lundberg inequality which will be developed later in the section, we see that:

0 ≤ G(u, y) ≤ ψ(u)

0 ≤ G(u, y) ≤ e−κu

Thus

0 ≤ G(∞, y) = limu→∞ G(u, y) ≤ limu→∞e
−κu

0 ≤ G(∞, y) ≤ 0

20



Therefore, with an infinite amount of initial capital the probability of ruin is 0. That is, if

wealth is not a problem, then an insurance company adopting this model will almost surely

never experience ruin.

Further

∫ ∞
0

G(u, y)du ≤
∫ ∞
0

e−κu

≤ 1

κ

[
− e−κu

]∞
0

≤ 1

κ
[−0 + 1]∫ ∞

0

G(u, y)du ≤ 1

κ

where κ is the adjustment/Lundberg coefficient as will be shown later on. A discrete time

analogue may be obtained as:
∞∑
u=0

G(u, y) ≤ 1

κ
(2.3)

Thus from theorem 2.1 and the note above, to obtain the infinite time ruin probability (or

the MIC as desired in this dissertation), one must find a solution to the integro differential

equation

∂ ψ(u)

∂ u
=

λ

c
ψ(u)− λ

c

{∫ u

0

ψ(u − x)dF (x) + F (u + y) − F (u)

}
(2.4)

2.3 APPROXIMATION METHODS

There have been various approximations to the integro differential equation (2.4). Some of

those include:
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I The Lundberg inequality/ceiling

II Cramer’s assymptotic formula

III Sparre Andersen model

IV Beekman’s approximate formula

V De Vylder approximation

VI Panjer recursions for ruin probability

VII Discrete time bisection method by sattayatham et al.

There are many other approximations and improvements to the basic ruin probability pre-

sented in this dissertation. However as mentioned earlier, the writing looks only at the

discrete time bisection method, the Lundberg inequality, Cramer’s approximation and the

Brownian motion approximation to the Lundberg Inequality. As such the dissertation chooses

one discrete time method for computing the MIC, one continuous time method and an upper

bound in continuous time.

Since the ruin probability is a function of u (MIC), then the analytical expressions have u

in them which may be approximated. Methods of finding the ruin probability explicitly are

rare and in many cases simulation is used.

In the discrete time case, the theory is developed that the ruin probability curve is a mono-

tonically decreasing function and then it is illustrated how the MIC can be obtained given

some set parameters.
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2.3.1 DISCRETE TIME MODELS

Panjer Recursion

Panjer’s model may be used as a consequence of (2.3). It should also be noted that Gerber

came up with a discretization method which may be applied to continuous probability distri-

butions to enable the use of Panjer’s model. From (2.3) the idea is to obtain the probability

G(u, y) for various values of u using the Panjer recursion model. As this model was not

used, then a brief mention is given.

Since

SN = X1 + X2 + X3 + ... + XN

The probability generating function (pgf) may be defined as:

GSN = E[sj]

=
∞∑
j=0

sj Pr{SN = j}

∴
d

ds
GSN (s) =

∞∑
j=0

jsj−1Pr{SN = j} (2.5)

23



Similarly

GSN (s) = GN [Gx(s)]

= eλ[Gx(s) − 1]

∴
d

ds
GSN (s) = λ eλ[Gx(s) − 1] d

ds
Gx(s)

= λ GSN (s)
d

ds
Gx(s)

= λ

[ ∞∑
j=0

sjPr{SN = j}
][ ∞∑

x=0

s sx − 1 Pr{X = x}
]

=
∞∑
j=0

λsjPr{SN = j}
∞∑
x=1

x sx − 1Pr{X = x}

=
∞∑
j=0

∞∑
x=1

λ sj x sx − 1 Pr{SN = j} Pr{X = x}

=
∞∑
j=0

∞∑
x=1

λ x sx + j − 1 Pr{SN = j} Pr{X = x}

Let

j + x = k ⇒ j = k − x

Also

j = 0 ⇒ k − x = 0 ∴ k = x

24



Thus

d

ds
GSN (s) =

∞∑
k=x

∞∑
x=1

λ x sk − 1 Pr{SN = k − x} Pr{X = x}

=
∞∑
x=1

∞∑
k=x

λ x sk − 1 Pr{SN = k − x} Pr{X = x}

=
∞∑
x=1

∞∑
k=1

λ x sk − 1 Pr{SN = k − x} Pr{X = x}

=
∞∑
x=1

∞∑
k=1

λ x sk − 1 p(k − x) p(x)

Replacing the left hand side with (2.6) and noting that the summation of j will give non zero

values from 1, gives

∞∑
j=1

j sj − 1 Pr{SN = j} =
∞∑
x=1

∞∑
k=1

λ x sk − 1 p(k − x) p(x)

⇒
∞∑
k=1

j sk − 1 Pr{SN = k} =
∞∑
x=1

∞∑
k=1

λ x sk − 1 p(k − x) p(x) (2.6)

Comparing the LHS and RHS of (2.7) gives

k p(k) =
∞∑
x=1

λ x p(x) p(k − x)

∴ p(k) =
λ

k

∞∑
x=1

x p(x) p(k − x) (2.7)

(2.8) is the Panjer recursion model where aggregate claims follow a compound Poisson dis-

tribution. It may also be written in terms of probability distribution functions as

gk =
λ

k

∞∑
x=1

x fx gk − x

25



Bisection Method

The interest is to prove the existence of a minimum initial capital given some specific pa-

rameters i.e. MIC
(
α,N = n, c{Xn, n ≥ 1}

)
such that the probability of ruin ψn(u) is

less than or equal to some pre-determined measure α. The first important theorem and its

corollary is given below

Theorem 2.2. Let N ∈ {1, 2, 3, ...}, c > 0 and u ≥ 0, be given. Then the ruin

probability at the times 1, 2, 3,...,N satisfies the following equation

ψN(u) = ψ1(u) +

∫ u + c

−∞
ψN − 1(u + c − x)dFX1(x)

The theorem can be seen as a variant of (2.4)

Corollary 2.1. Let α ∈ (0, 1), N ∈ {1, 2, 3, 4, ...} and c > 0 be given. If {Xn, n ≥ 1}

is an i.i.d claim process, then there exists ũ ≥ 0 such that for all u ≥ ũ, u is an acceptable

initial capital corresponding to
(
α,N, c, {Xn, n ≥ 1}

)

Proof. If we let ψN(u) denote the ruin probability given surplus u, and φN(u) = 1−ψN(u)

be the corresponding survival probability, then we consider case by case. Case 1: If

ψN(0) ≤ α, and since ψN(u) is a decreasing function, then ψN(u) ≤ ψN(0) ≤ α. This

implies that 0 is the required minimum initial capital and thus no capital is needed. Case 2

If ψN(0) > α and since limu→∞ψN(u)→ 0, then there exists ũ > 0 such that ψN(ũ) < α.

We conclude that for all u ≥ ũ, ψN(u) ≤ ψN(ũ) < α. In this case ũ is the required

minimum initial capital.

As a result of the above corollary, then {u ≥ 0 : ψN(u) ≤ α} is a non empty set. Therefore
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an initial capital can always be chosen to ensure that the value of ruin probability does not

exceed the chosen measure α. The minimum initial capital is defined as:

MIC
(
α,N = n, c, {Xn, n ≥ 1}

)
= minu≥0{u : ψN(u) ≤ α}

The proof of the existence of the minimum initial capital was then done using the following

lemma

Lemma 2.3. let a, b and α be real numbers such that a ≤ b. If a function f is decreasing

and right continuous on [a, b] and α ∈ [f(b), f(a)], then there exists d ∈ [a, b] such that;

d = min{x ∈ [a, b] : f(x) ≤ α}

Proof. Let

S = {x ∈ [a, b] : f(x) ≤ α}

Since f(b) ≤ α ≤ f(a) then b ∈ S i.e. S is a non empty set. S is a subset of [a, b], then

there exists d (by the previous lemma) such that d = inf S. Case 1: If d = b, then since

b ∈ S, then b = min S. Case 2: If a ≤ d < b, then we can dn ∈ S such that

d ≤ dn < d+ 1/n

for all n ∈ N For each 1
n
> b−d

2
i.e n > 2

b−d , we have

d < d+
1

n
< d+

b− d
2

=
b+ d

2
< b

Thus, d+ 1
n
∈ (d, b) ⊂ [a, b] for all n > 2

b−d . Since f is right continuous at d we have

f(d) = limn→∞f
(
d+

1

n
≤ α

)
Thus d ∈ S and d = min S.

The existence of the minimum initial capital may thus be obtained from the theorem below.
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Theorem 2.4. Let α ∈ (0, 1), N ∈ {1, 2, 3, 4, ...} and c > 0. Then there exists u∗ ≥ 0

such that

u∗ = MIC
(
α,N = n, c, {Xn, n ≥ 1}

)

Proof. Case 1: ψN(0) ≤ α. This implies that

MIC
(
α,N = n, c,Xn, n ≥ 1

)
= 0

Case 2: ψN(0) > α. By corollary 2.1 there exists ũ > 0 such that ψN(ũ) < α. Since ψN(u)

is decreasing and right continuous, by lemma 2.1 there exists u∗ ∈ [0, u] such that:

u∗ = minu∈[0,ũ]{u : ψn(u) ≤ α}

That is:

u∗ = MIC
(
α,N = n, c, {Xn, n ≥ 1}

)

2.3.2 CONTINUOUS TIME MODELS

The Erlang Distribution

For the continuous time ruin probability, the classical Cramer-Lundberg process is used. For

this model, the claim severities are considered to be exponential while the claim numbers

Poisson distributed. Therefore, the sum of the i.i.d claim severities SN =
∑N(t)

i=1 Xi can

be considered to form the Erlang distribution which is one way of evaluation. The Erlang

distribution comes about as shown:

We will first use a gamma distribution with parameters α and β and then proceed to obtain
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the Erlang distribution

fX(x) =
βα

Γ(α)
xα−1e−βx

MX(t) = E[etx]

=

∫ ∞
0

ext
βα

Γ(α)
xα−1e−βxdx

=
βα

Γ(α)

∫ ∞
0

e−(β−t)xxα−1dx

=
βα

Γ(α)

Γ(α)

(β − t)α

∫ ∞
0

(β − t)
Γ(α)

xα−1e−(β−t)xdx

=
βα

(β − t)α

=

(
β − t
β

)−α
Mx(t) =

(
1− t

β

)−α
It can be seen that setting α to be n and β to be µ results in 3.1. We can use this to show that

for integer values of α (or n) the values of Γ(α, x) can be calculated. We will show this by

induction.
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Γ(α;x) =
1

Γ(α)

∫ x

0

tα−1e−tdt

For α=1

Γ(1;x) =
1

Γ(1)

∫ x

0

e−tdt

= (−e−t)x0

= 1− e(−x)

For α=2

Γ(2;x) =
1

Γ(2)

∫ x

0

te−tdt

using integration by parts

u = t ⇒ du = dt, and dv = e−tdt ⇒ v = −e−t

Thus

1

Γ(2)

∫ x

0

te−tdt =
1

Γ(2)

[
(−e−tt)x0 +

∫ x

0

e−tdt

]

=
1

Γ(2)
[−xe−x + 1− e−x]

= 1−
[
e−x + e−x

x

Γ(2)

]
For α=3

Γ(3;x) =
1

Γ(3)

∫ x

0

t2e−tdt

Using integration by parts

u = t2 ⇒ du = 2tdt and dv = e−tdt ⇒ v = −e−t

=
1

Γ(3)

[
(−e−tt2)x0 + 2

∫ x

0

te−tdt

]

=
1

Γ(3)
+

2

Γ(3)
[1− e−x − xe−x]

= 1−
[
e−x +

xe−x

1!
+
x2e−x

2!

]
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Thus by induction we can see that:

Γ(n;x) = 1−

[
e−x

0!
+
xe−x

1!
+
x2e−x

2!
+
x3e−x

3!
+ ...+

xne−x

n!

]

Γ(n;x) = 1−
n−1∑
j=0

e−x
xj

j!
(2.8)

This is the cumulative distribution function of the Erlang distribution with rate equal to 1.

We now can get the distribution function of SN .

FSN (x) = Pr(SN ≤ x)

=
∞∑
n=0

pnPr(SN ≤ x|N = n)

FSN (x) = pnF
∗n
x (x)

= p0 +
∞∑
n=1

pnΓ(n;x) (2.9)

Substituting 2.9 into 2.10

FSN (x) = p0 +
∞∑
n=1

pn

[
1−

n−1∑
j=0

xje−x

j!

]

= p0 +
∞∑
n=1

pn −
∞∑
n=1

pn

n−1∑
j=0

xje−x

j!

= 1−
∞∑
n=1

pn

n−1∑
j=0

xje−x

j!

FSN (x) = 1−
∞∑
j=0

xje−x

j!

∞∑
n=j+1

pn

Thus we have a form of mixed Erlang distribution where pn is Pr(N = n).

For the compound Poisson distribution, N has a Poisson distribution say with rate λ. This

leads to:

FSN = 1−
∞∑
j=0

xje−x

j!

∞∑
n=j+1

e−λ
λn

n!
(2.10)
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Brownian Motion /Wiener Approximation

The use of Brownian motion with drift term is used as an approximation to the compound

Poisson process as done in Klugman et al (2004).

They first showed the link between the compound Poisson process and the Brownian motion

process with drift term before using the Brownian motion process as an approximation to the

compound Poisson process to find the ruin probabilities. The link between the two processes

is shown here.

A continuous time stochastic process {Wt; t ≥ 0}, is a Brownian motion risk process with

drift process µt if:

1. W0 = 0

2. Wt, t ≥ 0 has stationary and independent increments

3. For every t > 0,Wt is normally distributed with mean µt and variance σ2t.

The process Zt = Ut−u = ct−St ; t > 0 was considered. The idea was to show that in the

limiting case, the process {Zt, t > 0} is a Brownian motion with local drift µt.

From the definition of Brownian it is seen that Z0 = 0 and that {Zt, t > 0} has indepen-

dent and stationary increments since the processes {Ut.t ≥ 0} and {St, t ≥ 0} also have

stationary and independent increments. The remaining thing left to show is that {Zt, t ≥ 0}

is normally distributed with mean µt and variance σ2t. They did this using the MGF of Zt.
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MZt(r) = Mct−St(r)

= E
[

exp(ct− St)r
]

= ectrE
(
e−rSt

)
= ectreλt(MX(−r)−1)

∴MZt(r) = exp {t(cr + λ[MX(−r)− 1])}

Letting

µ = c− λE(x) and σ2 = λE(X2)

andX = αY

Then

lnMZt(r)

t
= cr + λ[MX(−r)− 1]

= r[µ+ λE(X)] + λ[E(e−rx)− 1]

= rµ+ rλE(X) +

[
1− rE(X) +

r2E(X2)

2!
− r3E(X3)

3!
+ ...− 1

]

= rµ+ λ

[
r2E(X2)

2
− r3E(X3)

3!
+ ...

]

= rµ+

[
λr2E(X2)

2
− λ

(
r3E(X3)

3!
− r4E(X4)

4!
+ ...

)]

Using

X = αY
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lnMZt(r)

t
= rµ+

λr2α2E[Y 2]

2
− λ

[
r3α3E(Y 3)

3!
− r4α4E(Y 4)

4!
+ ...

]

= rµ+
σ2r2α2E(Y 2)

α2E(Y 2)2
− σ2

α2E(Y 2)

[
r3α3E(Y 3)

3!
− r4α4E(Y 4)

4!
+ ...

]

∴
lnMZt(r)

t
= rµ+

σ2r2

2
− σ2

E(Y 2)

[
r3αE(Y 3)

3!
− r4α2E(Y 4)

4!
+ ...

]

As α→ 0

limα→0MZt(r) = exp

{
t

(
rµ+

σ2r2

2

)}

Which is the MGF of a normal distribution with mean µt and variance σ2t.

This is the approximation to the compound Poisson process developed by Filip Lundberg

and later Harald Cramer which leads to the approximation of the c.

The Brownian motion process with local drift term was used as an approximation to the

compound Poisson process. The corollary to the following theorem was used to determine

u:

Theorem 2.5. For the process Ut where:

• Ut = u+Wt

• {Wt; t ≥ 0} is a Brownian motion with local drift

• U0 = u is the initial capital

and the probability of ruin before time τ expressed as:
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ψ(u, τ) = Pr{min0<t<τUt < 0}

= Pr{min0<t<τU0 +Wt < 0}

= Pr{min0<t<τWt < −u}

the ruin probability is given by

ψ(u, τ) = Φ

(
−u+ µτ√

σ2τ

)
+ exp

(
−2µu

σ2

)
Φ

(
−u− µτ√

σ2τ

)

Where Φ(.) is the cumulative distribution function of the standard normal distribution.

When time (τ ) tends to infinity, the following corollary is obtained

Corollary 2.2. For the above process, the probability of ultimate ruin is given by

ψ(u) = exp

(
−2µu

σ2

)

From the corollary above, the initial capital may be obtained as

u = −lnψ(u)
σ2

2µ

Beekman’s Approximation

Also, in 1969 John Beekman published a paper deriving a formula for approximating the

ruin function of collective risk theory. In his paper in the transaction of actuaries, he ex-

plains the use of the ruin function in the setting of retention limits and for the determination
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of initial capital for a new line of business. The ruin model described by Beekman is:

U(t) = u+ (p1 + λ)t−
N(t)∑
i=1

Xi

Where:

• p1 is the average claim amount.

• λ is the aggregate security loading.

• N(t) is the number of claims that follows the Poisson process

• Xi represents the claim amounts each with probability P(z).

The ruin function is given by:

ψ(u) = limT→∞P
[
minimum0≤t≤TU(t) < 0

]
which represents the probability that the risk reserve eventually becomes zero. He explains

that ψ(u) is not a probability distribution function but is related to one as follows:

ψ∗(u) =


1 − ψ(u) , u ≥ 0

0 , u < 0

Then since ψ∗(u) is a probability distribution function, it involves the random variable Z

defined by:

Z = maximum0≤t<∞

[
N(t)∑
i=1

Xi − t(p1 + λ)

]
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Roughly, Z is the maximum excess of claims over income examined at each point of very

long time periods. The mean and variance of Z according to Beekman are given by:

E(Z) =
E(X2)

2λ

V ar(Z) =
E(X3)

3λ
+ [E(Z)]2

The main theorem the used by Beekman is based on the approximation of the incomplete

gamma distribution based on Bower’s paper (2). The theorem is stated here:

Theorem 2.6. The distribution function ψ∗(u) has a jump of 1 − p1
p1 + λ

at u = 0, and

for u > 0 has the approximate form:

ψ∗(u) = Γ(βu, α) =

∫ βu

0

wα−1e−w

Γ(α)
dw

Where:

• β = E(Z)
V ar(Z)

and

• α = [E(Z)]2

V ar(Z)

With this theorem, then initial capital is obtained by setting the probability of ruin to desired

levels and then solving for u.
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Mirca’s Approximation

In a conference paper in 2010, Mirca PHD et al, the authors considered the ruin probability

of a risk process using approximating methods by: De Vylder, Beekman-Bowers, Cramer-

Lundberg, Grandell, Willmot and the diffusion approximation. Since some of the methods

are considered in this dissertation, a review is done for a few of those methods not consid-

ered.

The authors define the aggregate amount for the individual risk process as Dn =
∑n

k=1Xk,

where Xk represents the loss on on insured claim k. Ruin in this case is defined as ψ(u) =

P (Dn > u), u being a risk reserve (which can be considered also as the initial capital).

This ruin quantity may then be obtained using the following theorem:

Theorem 2.7. Let {Xk}k be independent random variables withE(Xk) = µk, V ar(Xk) =

σ2
k > 0, ρ3k = E

(
|Xk − µk|3

)
finite and let ρ3(Dn) =

∑n
k=1 ρ

3
k. Then, there exists a

constant 0 < C0 < ∞ such that

supx ∈R

∣∣∣∣∣P
(
Dn − nµ

σ
√
n

< x

)
− Φ(x)

∣∣∣∣∣ < C1√
n

(
ρ

σ

)3

Where Φ(.) is the cumulative distribution function of the normal distribution.

For the collective risk model, the authors considered a model in which the claim severi-

ties are i.i.d non negative random variables with cumulative distribution function F that is

considered to be non- discrete. The number of claims N was taken to have a negative bino-

mial distribution (NB(α, β)) and D =
∑N

i=1Xi. The probability of ruin is thus given by

ψ(u) = P (D > u).
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The distribution of N is given by:

pn =

(
n + α − 1

n

)
ρn (1 − ρ)α, n ∈ N

Where 0 < ρ 1 and α ∈ N .

Assuming that there exists a constant K > 0 satisfying:

∫ ∞
0

eKxdF (x) = ρ−1

and

V = ρ

∫ ∞
0

xeKxdF (x) < ∞

The ruin probability may thus be obtained using the following proposition

Theorem 2.8 (Proposition). If eKu.P (D > u) is monotone, then

φ(u) ∼
(
K.Γ(α)

)−1
.

(
1 − ρ

v

)α

.uα−1 .e−Ku, as r → ∞

approximations may be found for φ(u) and for the negative binomial distribution used in

Mircea et al, this was found using Embrechts et al’s result φ(u) = 1 −
∑u

x=0 fD(x)

The concept of ruin may be applied for many other situations. For instance inDickson et

al (3), ruin theory is used in the case where an insurer has a fixed level of initial capital

u. The problem that is considered in this case is whether the insurer can reduce ultimate

ruin probability by allocating part of this initial capital to the purchase of a reinsurance

contract. Th reinsurance contract would restore the insurers surplus to a positive level, say

k, every time the surplus fell between o and k. Another application of ruin theory is as

seen in Pranevicius H and Sutiene K (2008). They used the compound Poisson continuous
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time surplus process to consider how long a surplus process would remain below zero. This

implies that an insurance company may not become ruined immediately the surplus drops

below zero. In such situations a firm may be able to operate with a negative surplus for a

period of time before this becomes impossible and the company has to eventually wind up

operations. Therefore duration of ruin and negative surplus modeling is also important to

insurance companies and ruin theory provides a framework to carry out such analyses.
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CHAPTER 3. APPROXIMATIONS

3.1 ASSUMPTIONS AND LIMITATION

3.1.1 ASSUMPTIONS

i The rate of premium income is constant and continuous

ii The claim severities are exponentially distributed and are i.i.d

iii The number of claims follow a Poisson distribution and hence the aggregate claim is

compound Poisson

iv The only factors affecting the probability of ruin are the initial surplus (MIC) the rate of

premium income and the aggregate loss function

3.1.2 LIMITATIONS

i The dissertation only takes account of the case of exponential claim severities. This is

because it was the case in the classical ruin model. However, there are more challenges

for distributions other than the exponential distribution such as Pareto or Lognormal

distributions.

ii The methods used take into account only the compound Poisson distribution and its
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Brownian motion approximation. The dissertation has not taken into account other

compound distributions such as the compound geometric distribution where the Tijms

approximation may be used as an approximation.

iii The dissertation has also taken into account only the probability of ultimate ruin in the

computation of the MIC. The probability of ruin in finite time has not been taken into

account.

iv There has been no evaluation for single period models such as FFT (fast fourier trans-

form) since the strength of ruin model is in tracing the probability of ruin over time.

v There has been no evaluation of acceptable ruin levels or, the modeling of negative

surplus or, evaluation of the time to ruin. The assumption is that any amount of negative

surplus causes ruin. In reality however, there exist facilities that assist firms in case of

temporary shortfalls in operating capital.

3.2 DATA USED

The dissertation looks into the case of a hypothetical insurance company. Therefore the pa-

rameters used were arbitrarily chosen to demonstrate how the various methods chosen can

be used to come up with a value for MIC to guide regulation or investors. The parameters

chosen were: the ruin probability alpha, the number of claims N, the mean rate of claim

severities and claim arrival and the premium loading factor.
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3.3 DESCRIPTION OF APPROXIMATION METHODS

3.3.1 DISCRETE TIME BISECTION METHOD

Here the minimum initial capital is approximated using the bisection technique.

Theorem 3.1. Let α ∈ (0, 1), N ∈ {1, 2, 3, 4, ...}, u0 ≥ 0, and v0 be such that v0 < u0.

Let {un}∞n=1 and {vn}∞n=1 be a real sequence defined by:
vk = vk−1 and uk =

uk−1 + vk−1
2

if ψN

(
uk−1 + vk−1

2

)
≤ α

vk =
vk−1 + uk−1

2
and uk = uk−1 if ψN

(
uk−1 + vk−1

2

)
> α

for all k = 1, 2, ....

If ψN(u0) ≤ α < ψN(v0), then limk→∞uk = MIC
(
α,N, c, {Xn, n ≥ 1}

)
and 0 ≤ uk − MIC

(
α,N, c, {Xn, n ≥ 1}

)
≤ u0 − v0

2k
for all k = 1, 2, 3, ...

The proof of this theorem can be found in Sattayatham et al, 2013.

3.3.2 COMPOUND POISSON PROCESS

. The case of a compound Poisson process is considered the classical ruin problem. It was

first considered by Filip Lundberg in 1903 and later given rigorous mathematical proof by

Swedish mathematician Harald Cramer. Thus, the risk process that utilizes the compound

Poisson process is often known as the Cramer-Lundberg model or the classical ruin problem.

The Poisson process used in this case is essentially a special case of a renewal process. The

stationary and independent increments property of this process is what brings about the
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notion of the process starting over again once an event, ruin in this case, occurs

SURPLUS USING LUNDBERG’S INEQUALITY

A good indicator of the surplus requirements may be obtained using Lundberg’s inequality.

If we let ψ(u) denote the probability of ultimate ruin with initial surplus u, then

ψ(u) ≤ exp{−κu}

If we let α be the maximum ruin probability, we have

ψ(u) = exp{lnα} ≤ exp{−κu}

Thus

∴ ln α = −κu

u =
− lnα

κ

Where κ is the adjustment coefficient

We can prove the Lundberg inequality using mathematical induction.

Proof of Lundberg Inequality. ψn(u) is the probability that ruin occurs before claim num-

ber n. Also, ψ(u) = limn→∞ψn(u). It will therefore be sufficient to show ψn(u) ≤ e−κu for

n=0,1,2,...
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If n=0 and u ≥ 0, then ψ0(u) = 0 which is less than or equal to e−κu

For n=1

ψ1(u) = Pr[U(T1) ≤ 0|U(0) = u]

=

∫ ∞
0

Pr[U(T1) < 0|T1 = t, U(0) = u]λe−λtdt

=

∫ ∞
0

Pr[u+ ct−X1 < 0]λe−λtdt

Considering the first part of the integrand

Pr[u+ ct−X1 ≤ 0] = Pr[u+ ct > X1]

= Pr[X1 > u+ ct]

Taking F (x) as the cdf of X1

Pr[X1 ≥ u + ct] =

∫ ∞
u+ct

dF (x)

∴ Pr[u+ ct−X1 ≤ 0] ≤
∫ ∞
u+ct

e−κ(u+ct−x)dF (x)

≤ e−κ(u+ct)
∫ ∞
u+ct

eκxdF (x)

≤ e−κ(u+ct)
∫ ∞
0

eκxdF (x)

≤ e−κ(u+ct)MX(κ)

Applying this inequality in the integrand
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ψ1(u) ≤
∫ ∞
0

e−κ(u+ct)MX(κ)λe−λtdt

≤ e−κuλMX(κ)

∫ ∞
0

e−t(κc+λ)dt

≤ e−κuMX(κ)
[−e−t(κc+λ)]∞0

κc+ λ

Since c = (1 + θ)µλ

ψ1(u) ≤ e−κuMX(κ)λ

(κ(1 + θ)µ+ 1)λ

From the definition of the adjustment coefficient

1 + (1 + θ)µκ = MX(κ)

Thus

ψ1(u) ≤ e−κu
MX(κ)

MX(κ)

ψ1(u) ≤ e−κufor all u ≥ 0

Considering now when n = 2

We condition on both T1 and X1

ψ2(u) = Pr[U(T1) < 0 or U(T2 < 0)|U(0) = u]

=

∫ ∞
0

∫ ∞
0

Pr[U(T1 < 0)orU(T2) < 0|U(0) = u, T1 = t,X1 = x]dF (x)λe−λtdt
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Again looking at the probability in the integrand

Pr[U(T1) < 0 or U(T2) < 0|U(0) = u, T1 = t,X1 = x] =


1 : u+ ct− x < 0

ψ1(u+ ct− x) : u+ ct− x ≥ 0

It can be observed that both the cases above are less than or equal to e−κ(u+ct−x)

Thus

ψ2(u) ≤
∫ ∞
0

∫ ∞
0

e−κ(u+ct−x)dF (x)λe−λtdt

Thus

ψ2(u) ≤ λe−κu
∫ ∞
0

∫ ∞
0

e−κ(ct−x)e−λtdF (x)

≤ λe−κu
∫ ∞
0

e−t(κc+λ)dt

∫ ∞
0

eκxdF (x)

≤ λe−κu
∫ ∞
0

e−t(κc+λ)MX(κ)dt

≤ λe−κuMX(κ)
[−e−t(κc+λ)]∞0

κc+ λ

≤ λe−κuMX(κ)

κ(1 + θ)λµ+ λ

The above follows from the expected value principle of premium calculation where there is

an explicit loading for expenses in the premium calculation. In this case the premiums are

the cash inflows that are expected to come in at a constant rate c.

Thus in our case.

c = (1 + θ)λµ
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Also from the definition of the adjustment coefficient as the solution κ (other than zero)to

the equation

1 + (1 + θ)κµ = MX(κ)

We have

ψ2(u) ≤ λMX(κ)e−κu

λ(1 + (1 + θ)κµ)

≤ λMX(κ)e−κu

λMX(κ)

∴ ψ2(u) ≤ e−κu

For the general case we have:

Pr[U(Tn + 1) < 0 for some k ≤ n + 1|U(0) = u, T1 = t,X1 = x]

=


1 : u+ ct− x < 0

ψn(u+ ct− x) : u+ ct− x ≥ 0

ψn + 1 ≤
∫ ∞
0

∫ ∞
0

e−κ(u + ct − x)dF (x)λe−λtdt

≤
∫ ∞
0

e−κ(u + ct)Mx(κ)λe−λtdt

and just as in the case where for n = 2

ψn + 1 ≤ e−κu

We can therefore say by induction that
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ψn(u) ≤ e−κu

⇒ limn→∞ψn(u) = ψ(u) ≤ e−κu

This inequality will be used as demonstrated before to obtain the initial surplus u, by mak-

ing this quantity the subject of the formula. The fact that this inequality is an upper bound

means that the value for u obtained will be prudent.

The task therefore is to obtain the adjustment coefficient for the distribution of SN .

The adjustment coefficient used in this dissertation is obtained using the following approxi-

mation with the final inequality assumed to be an equality:

1 + (1 + θ)µκ = E(eκx)

= E(1 + κx+
1

2
κ2x2 + ...)

> E(1 + κx+
1

2
κ2x2)

> 1 + κE(x) +
1

2
κ2E(x2)

θκµ >
1

2
κ2E(x2)

2θµ

E(x2)
> κ

⇒ κ <
2θµ

E(x2)

(Klugman et al 2004)
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SURPLUS USING CRAMER’S APPROXIMATION

Cramer’s approximate formula for computing ruin probability is given below:

limu→∞e
kuψ(u) =

θµ

M ′(k)− µ(1 + θ)

Which may also be written as

ψ(u) ∼ Ce−ku

Where :

C =
µθ

M ′(k)− µ(1 + θ)

and

ψ(u) ∼ Ce−ku ⇒ limu→∞
ekuψ(u)

C
= 1

The task again remains to compute the adjustment coefficient, κ, and to make u the subject of

the formula for an independently determined ruin probability. If we choose a ruin probability

of α then ψ(u) = α and make the asymptotic relationship an equality, we have:

α = Ceku

u = −k lnα

C

Where C is as before and u is the initial surplus we want to determine. It can be seen that if

C ≤ 1 then Cramer’s approximation is the same as the Lundberg inequality.

If the claim severities (x′is) have exponential densities (as was considered in this dissertation)
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then we can find the distribution function of the aggregate claims.

For one claim:

Mx(t) = E[etx] =

∫ ∞
0

etxµe−µxdx

= µ

∫ ∞
0

e−(µ−t)xdx

=
µ

µ− t
[
− e−(µ−t)

]∞
0

=
µ

µ− t
[
1− 0

]
=

[
µ− t
µ

]−1

Mx(t) =

[
1− t

µ

]−1

Thus for all claim severities we have

Mx1+x2+...+xN = E
[
E
[
et(x1+x2+...+xN )

]
/N = n

]
=
(
E[etx]

)n
=
(
Mx(t)

)n
MSN (t) =

[
1− t

µ

]−n
(3.1)

The moment generating function for the aggregate claims is equal to the moment generating

function of the gamma distribution with α = n and β = µ This was demonstrated earlier.

It leads to an Erlang distribution that can be used as an alternative way of evaluation. This

alternative is not explored further here however.

The moment generating function for the aggregate claims for n i.i.d exponential claims was

the preferred method for evaluation of SN .
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3.3.3 BROWNIAN MOTION APPROXIMATION

The Brownian motion process with local drift term was used as an approximation to the

compound Poisson process. Theorem 2.5 and corollary 2.2 are restated here again and a

proof given.

Theorem: For the process Ut where:

• Ut = u + Wt

• {Wt; t ≥ 0} is a Brownian motion with local drift

• U0 = u is the initial capital

and the probability of ruin before time τ expressed as:

ψ(u, τ) = Prmin0<t<τUt < 0

= Prmin0<t<τU0 + Wt < 0

= Prmin0<t<τWt < −u

the ruin probability is given by

ψ(u, τ) = Φ

(
−u + µτ√

σ2τ

)
+ exp

(
−2µu

σ2

)
Φ

(
−u − µτ√

σ2τ

)

Where Φ(.) is the cumulative distribution function for the standard normal distribution.

Theorem When time (τ ) tends to infinity the following corollary is obtained

Corollary: For the above process the probability of ultimate ruin is given by
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ψ(u) = exp

(
−2µu

σ2

)

Corollary From the corollary above, the initial capital may be obtained as

u = − ln ψ(u)
σ2

2µ

Brownian Motion Approximation of Compound Poisson Process. A sample path Ut with fi-

nal level Uτ and crosses the barrier Ut = 0 in the time interval (0, τ) is one of two types:

1. Type A: where Uτ < 0

2. Type B: where Uτ > 0

A path of type B may be considered a reflection of another path of type A.

Let Ax and Bxdenote the sets of all possible paths of type A and B respectively. Similarly,

let Pr{Ax} and Pr{Bx} denote the total probability associated with the paths Ax and Bx

respectively. Let also Uτ = x for Ax and Uτ = −x for Bx Then:

ψ(u, τ) = Pr{min0<t<τUt < 0|U0 = u}

=

∫ 0

−∞
Pr{Ax}+ Pr{Bx}dx

=

∫ 0

−∞

Pr{Uτ (x) = x}
Pr{Uτ (x) = x}

Pr{Ax}+ Pr{Bx}dx

=

∫ 0

−∞
Pr{Uτ (x) = x}Pr{Ax}+ Pr{Bx}

Pr{Ax}
dx

=

∫ 0

−∞
Pr{Uτ (x) = x}

[
1 +

Pr{Bx}
Pr{Ax}

]
dx
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The process Uτ − u is a Brownian motion then Uτ with mean u+ µτ and variance σ2τ .

∴ Pr{Uτ (x) = x} =
1√

2πσ2τ
exp

{
−(x− u− µτ)2

2σ2τ

}

To get Pr{Bx}
Pr{Ax} we condition on all possible run times T.

Pr{Bx}
Pr{Ax}

=

∫ 0

−∞ Pr{Bx|T = t}Pr{T = t}dt∫ 0

−∞ Pr{Ax|T = t}Pr{T = t}dt

=

∫ 0

−∞ Pr{Uτ = −x}Pr{T = t}dt∫ 0

−∞ Pr{Uτ = x}Pr{T = t}dt

Pr{Uτ = x|T = t} = Pr{Uτ − Ut = x}

=
1√

2πσ2(τ − t)
exp

{
−(x− µ(τ − t))2

2σ2(τ − t)

}

=
1√

2πσ2(τ − t)
exp

{
−(x2 − 2xµ(τ − t) + µ2(τ − t)2)

2σ2(τ − t)

}

=
1√

2πσ2(τ − t)
exp

(
xµ

σ2

)
exp

{
−(x2 + µ2(τ − t)2)

2σ2(τ − t)

}

= exp

(
xµ

σ2

)
1√

2πσ2(τ − t)
exp

{
−(x2 + µ2(τ − t)2)

2σ2(τ − t)

}

Similarly when we replace x with −x we have:

Pr{Uτ = −x|T = t} = Pr{Uτ − Ut = −x}

= exp

(
−xµ
σ2

)
1√

2πσ2(τ − t)
exp

{
−(x2 + µ2(τ − t)2)

2σ2(τ − t)

}

∴
Pr{Bx}
Pr{Ax}

= exp

{
− 2µx

σ2

}
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Then:

ψ(u, τ) =

∫ 0

−∞
Pr{Uτ (x) = x}

[
1 +

Pr{Bx}
Pr{Ax}

]
dx

=

∫ 0

−∞
Pr{Uτ = x}dx+

∫ 0

−∞
Pr{Uτ = x}Pr{Bx}

Pr{Ax}
dx

ψ(u, τ) = Φ

(
−u+ µτ

sqrtσ2τ

)
+ exp

{
−2µu

σ2

}
Φ

(
−u+ µτ

sqrtσ2τ

)

And taking the limit as τ → ∞ we get

ψ(u) = exp

{
−2µu

σ2

}

We note that Φ(.) is a defective cumulative normal distribution.

Klugman, Panjer and Willmot(2004)
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CHAPTER 4. NUMERICAL ANALYSIS

4.1 DISCRETE TIME MINIMUM INITIAL CAPITAL

The graphs 4.1 and 4.2 are obtained from the results tabulated in table 4.1 below. Other

tables are tabulated in the tables and figures sections. The MIC obtained as a result of the

discrete method appears to be curvilinear. It is noticed that the higher the rate of premium

income, then the lower the initial capital will be ceteris paribus. This is consistent with

intuition as, if much of the risk is pushed to the consumers of the insurance products through

a higher safety loading, then there should be more initial capital as opposed to the case where

a product’s inelasticity implies that the safety loading cannot be high. A high safety loading

for inelastic products implies that the products will not be competitive and hence have low

uptake. This is seen to be true for each of the predetermined ruin levels.
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Table 4.1: MIC computed using discrete method

alpha=0.1 alpha=0.2 alpha=0.3

Number of Claims (n) c = 1.1 c = 1.25 c = 1.1 c = 1.25 c = 1.1 c = 1.25

5 3.108841 2.608996 1.981775 1.533595 1.283336 0.877361

10 4.319788 3.397328 2.892986 2.093645 1.998658 1.298215

15 5.157427 3.843620 3.512266 2.397223 2.478046 1.519335

20 5.807574 4.132699 3.986288 2.587386 2.840990 1.654745

25 6.340315 4.332350 4.370061 2.715166 3.132105 1.744145

30 6.791095 4.475649 4.691300 2.804793 3.373776 1.805971

35 7.180778 4.581221 4.966256 2.869543 3.579084 1.850124

40 7.522858 4.660497 5.205403 2.917356 3.756431 1.882415

45 7.826648 4.720910 5.415947 2.953268 3.911574 1.906473

50 8.098894 4.767494 5.603086 2.980612 4.048656 1.924668

55 8.344659 4.803767 5.770712 3.001670 4.170761 1.938598

60 8.567860 4.832242 5.921820 3.018044 4.280255 1.949375

65 8.771593 4.854756 6.058772 3.030879 4.379002 1.957785

70 8.958358 4.872665 6.183465 3.041012 4.468489 1.964402

75 9.130206 4.886989 6.297449 3.049063 4.549926 1.969640

80 9.288840 4.898501 6.402008 3.055494 4.624313 1.973812

85 9.435694 4.907793 6.498217 3.060659 4.692482 1.977153

90 9.571986 4.915324 6.586986 3.064823 4.755138 1.979840

95 9.698762 4.921446 6.669092 3.068194 4.812877 1.982012

100 9.816929 4.926441 6.745204 3.070933 4.866212 1.983773

105 9.927272 4.930529 6.815904 3.073166 4.915586 1.985207

110 10.03048 4.933882 6.881695 3.074992 4.961385 1.986377

115 10.12717 4.936641 6.943025 3.076491 5.003945 1.987335

120 10.21788 4.938915 7.000285 3.077722 5.043562 1.988122

125 10.30308 4.940794 7.053822 3.078737 5.080498 1.988770

130 10.38321 4.942350 7.103944 3.079575 5.114982 1.989304

135 10.45865 4.943640 7.150931 3.080269 5.147223 1.989745
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Graph 4.1

Graph 4.2

It is also seen that the higher the expected number of claims, the higher the initial capital
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should be to ensure that the given ruin probability is maintained. This may be explained by

the intuition that if the company expects the number of claims to be large, then it must allow

for a larger provision than if it expects claims during the period to be less in number. Since

it may be difficult for a company to predict the expected number of claims for all the classes

of business, it may be more practical to apply this system to individual portfolio of policies

and maybe aggregate them later for the entire firm.

It should also be noticed that in comparison to continuous time cases (whose results will be

seen later), the initial capital for the discrete cases is lower. This is because the probability

of ruin is only required (or observed) at discrete time intervals.

Graph 4.3

The graph 4.3 above demonstrates that for higher levels of ruin probability accommodated

(i.e for a firm that does not want to tie up a lot of its initial capital as a provision for claims),

then the required MIC is smaller for all number of claims than is the case for a more cautious
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firm which requires the probability of ruin to be small.

4.2 COMPOUND POISSON PROCESS

4.2.1 USING LUNDBERG’S INEQUALITY

The Lundberg inequality provides an upper limit to the probability of ruin and thus a more

prudent MIC than exact methods. The graphs 4.4 and 4.5 indicate that the relationship be-

tween the number of claims and the MIC is a linear one. Therefore the higher the number

of claims the higher will be the MIC.

Graph 4.4
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Graph 4.5

The graphs indicate that the higher the rate of income, which is directly influenced by the

safety loading (θ), the lower the MIC. Similarly, the lower the rate of premium income, the

higher the MIC to ensure the ruin probability is at the desired levels.
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Graph 4.6

Just as was the case in the discrete case, the graph 4.6 (and consequently data on Table 5.2)

also indicate that the lower the probability of ruin then the higher the MIC. Conversely, the

higher the probability of ruin the lower the MIC.

4.2.2 USING CRAMER’S APPROXIMATE FORMULA

As was the case when Lundberg’s inequality was used to determine the MIC, Cramer’s

asymptotic formula demonstrates a linear relationship between the number of claims and

the MIC. It also shows that for a higher safety loading coefficient and hence higher rate of

premium income, the required MIC is small.
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Graph 4.7

Cramer’s formula is more accurate (especially for exponential claim severities) as it is not

an upper bound for the ruin probability. As a result, the associated MIC is smaller than

that given by Lundberg inequality. The MIC obtained in this method may thus be of more

interest to investors as it gives a more accurate value. This can be seen in the graphs 4.7 and

4.8 below.
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Graph 4.8

It is again seen, in the graph 4.9 below, that the MIC is greater for a lower probability of ruin

than it is for a higher probability of ruin. These relationships may also be seen in table 5.4.

4.3 BROWNIAN MOTION APPROXIMATION TO COM-

POUND POISSON PROCESS

The graphs 4.10 and 4.11 of the Wiener/Brownian motion MIC also show a linear relation-

ship between the number of claims and the initial MIC. Just like the case in the previous

methods, the higher the rate of premium income the lower the MIC. Similarly, the lower the

rate of premium income the lower the MIC. This can also be seen in table 5.3.
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Graph 4.9

Graph 4.10
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Graph 4.11

Again the graph 4.12 below shows that the higher the level of ruin probability the lower the

MIC required. Similarly, the lower the level of ruin probability, the higher the required MIC.
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Graph 4.12

Comparing all the continuous methods (Graph 4.13), it is clear that the Lundberg method

is higher than the Cramer method of computing the MIC. This is because the Lundberg

inequality provides an upper limit to ruin probability whereas Cramer’s approximation is

designed to be accurate for large values of the MIC. However, Cramer’s asymptotic ruin

formula is known to be accurate for even small MIC’s especially in the case of exponential

claim severities. Thus Cramer’s formula provides the most accurate MIC. However, if pru-

dence is require then the Lundberg MIC may be used especially for regulatory purposes or

as a rough approximation.
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Graph 4.13

The MIC given by the Brownian motion approximation of the compound Poisson process is

even higher than that given by Lundberg’s inequality. This may be attributed to the fact that

the Brownian motion process takes into account the variation of the claim numbers. The

slight difference between the Lundberg generated MIC and the Brownian motion generated

MIC may thus be attributed to variance in claim numbers and hence the difference arises

the evaluation of the aggregate claims. It should not be forgotten that the two processes

(compound Poisson and Brownian motion) may be used as approximations to each other.

68



CHAPTER 5. SUMMARY AND

CONCLUSION

It is seen from the dissertation that there is a big difference between the discrete time ruin

MIC and the continuous time ruin MIC’s. This can be attributed to the fact that in the dis-

crete time the condition for ruin to occur is weaker than in the continuous time analogues.

That is to say that in the discrete time case, ruin is checked only at integer time intervals and

the requirement is that there is no ruin at the time ruin is checked for. This implies that ruin

may have occurred in the interval between the checking times and then the surplus restored

by the time of checking. The continuous time MIC requires that the surplus be monitored

continuously and ensures that ruin does not occur at any point in time. Therefore the MIC

given by the continuous time models provides more prudence in that they require higher

initial reserves. This MIC may be seen as prudent and one which ensures that at the time of

usage, the investors are highly guaranteed return on their investments. The continuous time

models may also be used by regulatory bodies to protect customers who consume insurance

products. However, in the case of an established firm that is launching a new product line,

the higher MIC may be seen as providing an opportunity cost in that more funds are tied

up to ensure desired levels of ruin are attained instead of being channeled into other income

generating ventures.

It is also evident that in the continuous case, there is a direct linear relationship between

the number of claims and the MIC. This means that a straight line may be used to forecast

future MIC’s barring any significant changes in the important parameters such as the safety
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loading, the mean size of the claim severities, the mean of claim numbers or even the prob-

ability distribution of the claim severities. In the case of the discrete time, it is observed

that for a higher number of claim numbers the relationship is almost linear and thus can

be approximated with the use of a regression line. However, for lower claim numbers, the

graph of claims Vs MIC appears concave and probably fitting a distribution using moments

or any other technique may be used to forecast the future MIC as long as there are no signif-

icant changes in the parameters of interest or the distribution of claim numbers and/or claim

severities.

It is also noticed from the graphs and tables that the higher the rate of premium income c,

which is essentially controlled by the premium loading factor theta, the lower the MIC re-

quired. The rationale is, it is expected that the constant trickle of income through premiums

will be higher with a higher safety loading and thus the required MIC at the beginning of

the period will be lower than when the safety loading is lower. The higher the expected flow

of future income through premiums, the lower the MIC.

It is also observed that the higher the required level of ruin, the lower the MIC. It is easy

to see this because a high level of ruin probability implies that there is a high risk appetite

within the firm and therefore a low provision for the eventuality of insolvency is taken into

account. However if the required ruin probability is low then there is a low risk attitude

adopted and hence a higher provision for ruin required.

It can also be seen that the MIC derived in this dissertation is somehow related to if not equal

to a value at risk (VaR) measure. The major difference between the MIC obtained and the

VaR is that VaR is usually for a given unit period and in practice this is usually one year. In

determination of the reserves required to meet the liabilities associated with the launch of a

new product or in the opening of an insurance company, a time horizon of one year may not

70



be ideal and thus using Var may not be as prudent as using MIC. Also, VaR is derived from

ruin theory and the MIC uses a model that can incorporate many other factors that VaR may

not be able to capture thus giving enhance flexibility. for instance, dividend payments and

interest incomes may easily be incorporated in the VaR, negative surplus and time to ruin

may also be evaluated to possibly come up with different MIC’s.

The study shows that if the claims data can be properly fit into an exponential distribution

for claim severities and into a Poisson distribution for the claim numbers, then the classical

ruin model may be used to obtain a probability of ruin. If a company is starting a new line

of business or investors want to start an insurance company, they may benchmark their ex-

pected losses and premium income with the market (if possible) or with another company to

determine the important parameters that are used in the classical Cramer-Lundberg model

and use that to determine their MIC.

It is not lost that the classical model is a starting point in the study of ruin theory and there

have indeed been major improvements and advancements in this area. Some of the assump-

tions of this classical model may be relaxed or changed (such as using stochastic rate of

premium income instead of a constant rate or the inclusion of dividend payments and/or in-

terest income) to come up with more realistic models. Many of these models may be difficult

to apply and hence there are equally as many approximations. The adjustment coefficient is

also a big factor as it may not exist for sub exponential distributions such as the log normal

distribution and the Pareto distribution among others. The aspect of zero inflation of proba-

bility distributions and the distribution of claim amounts is also important. Perhaps the most

important aspect is stochastic claims process: whether they should be treated as aggregate

or as individual claims and whether they should be i.i.d or not.

The dissertation therefore recognizes that although the classical model may be easier to
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understand and apply, it may not be the most realistic model to aid in regulation or in invest-

ment. It is however a good start especially for developing countries to understand and build

models that are tailor made to suit the environment that the insurance companies operate in

and have the ability to make changes (and improvements) when required.
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APPENDIX

R Code for Discrete MIC

rm(list=ls())

##The gmp package checks large factorials

library("gmp")

pdruin<-function(u,c,n,rate)

{

if(n<=170){

A<-(u+c)*(rate^(n-1))

B<-(u+(n*c))^(n-2)

C<-(A*B)/factorial(n-1)

D<-rate*(u + (n*c))

E<-exp(-D)

G<-C*E

return(G)

}else if(n>170){

A<-(u+c)*(rate^(n-1))

B<-(u+(n*c))^(n-2)

C<-(A*B)/factorialZ(n-1)
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D<-rate*(u + (n*c))

E<-exp(-D)

G<-C*E

return(G)

}

}

Bisec<-function(v,z,alpha){

newu<-u

u.up<-20

u.down<-0

it<-0

ruin<-rep(n)

for(i in 1:n){

if(i<=0){0}

if(i>0) {ruin[i]<-pdruin(newu,c,i,rate)}

adruin<-sum(ruin)

while(it<25 & adruin!=alpha){

it<-it+1

if(adruin<alpha){

u.up<-newu

newu<-(u.down+newu)/2

#ruin[i]<-pdruin(u=newu,c,i,rate)
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#return(sum(ruin))

}else if(adruin>alpha){

u.down<-newu

newu<-(u.up+newu)/2

#ruin[i]<-pdruin(u=newu,c,i,rate)

#return(sum(ruin))

}

ruin<-rep(n)

for(i in 1:n){

if(i<=0){0}

if(i>0) {ruin[i]<-pdruin(newu,c,i,rate)}

adruin<-sum(ruin)

}

}

output<-data.frame(cat(c(newu,ruin[n],adruin,it=it),sep="\t"))

return(output)

}

}

#### An example using some of the parameters

c<-1.1

n<-10

alpha<-0.1

rate<-1
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v<-0

z<-20

u<-z

Bisec(v,z,alpha)
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TABLES AND FIGURES

Table 5.1: MIC computed using Lundberg inequality

alpha=0.1 alpha=0.2 alpha=0.3

Number of Claims (n) c = 1.1 c = 1.25 c = 1.1 c = 1.25 c = 1.1 c = 1.25

5 46.05170 18.42068 32.18876 12.87550 24.07946 9.631782

10 103.6163 41.44653 72.42471 28.96988 54.17878 21.67151

15 161.1810 64.47238 112.6607 45.06426 84.27810 33.71124

20 218.7456 87.49823 152.8966 61.15864 114.3774 45.75097

25 276.3102 110.5241 193.1325 77.25302 144.4767 57.79069

30 333.8748 133.5499 233.3685 93.34740 174.5761 69.83042

35 391.4395 156.5758 273.6044 109.4418 204.6754 81.87015

40 449.0041 179.6016 313.8404 125.5362 234.7747 93.90988

45 506.5687 202.6275 354.0763 141.6305 264.8740 105.9496

50 564.1333 225.6533 394.3123 157.7249 294.9733 117.9893

55 621.6980 248.6792 434.5482 173.8193 325.0727 130.0291

60 679.2626 271.7050 474.7842 189.9137 355.1720 142.0688

65 736.8272 294.7309 515.0201 206.0081 385.2713 154.1085

70 794.3919 317.7567 555.2561 222.1024 415.3706 166.1482

75 851.9565 340.7826 595.4920 238.1968 445.4699 178.1880

80 909.5211 363.8084 635.7280 254.2912 475.5693 190.2277

85 967.0857 386.8343 675.9639 270.3856 505.6686 202.2674

90 1024.650 409.8601 716.1999 286.4799 535.7679 214.3072

95 1082.215 432.8860 756.4358 302.5743 565.8672 226.3469

100 1139.780 455.9118 796.6718 318.6687 595.9665 238.3866

105 1197.344 478.9377 836.9077 334.7631 626.0659 250.4263

110 1254.909 501.9636 877.1437 350.8575 656.1652 262.4661

115 1312.474 524.9894 917.3796 366.9518 686.2645 274.5058

120 1370.038 548.0153 957.6156 383.0462 716.3638 286.5455

125 1427.603 571.0411 997.8515 399.1406 746.4631 298.5853

130 1485.167 594.0670 1038.087 415.2350 776.5625 310.6250

135 1542.732 617.0928 1078.323 431.3294 806.6618 322.6647
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Table 5.2: MIC computed using Brownian motion approximation

alpha=0.1 alpha=0.2 alpha=0.3

Number of Claims (n) c = 1.1 c = 1.25 c = 1.1 c = 1.25 c = 1.1 c = 1.25

5 69.077553 27.631021 48.283137 19.313255 36.119184 14.447674

10 126.642180 50.656872 88.519085 35.407634 66.218504 26.487402

15 184.206807 73.682723 128.755033 51.502013 96.317824 38.527130

20 241.771435 96.708574 168.990981 67.596392 126.417144 50.566858

25 299.336062 119.734425 209.226929 83.690771 156.516465 62.606586

30 356.900689 142.760276 249.462876 99.785151 186.615785 74.646314

35 414.465317 165.786127 289.698824 115.879530 216.715105 86.686042

40 472.029944 188.811978 329.934772 131.973909 246.814425 98.725770

45 529.594571 211.837829 370.170720 148.068288 276.913745 110.765498

50 587.159199 234.863679 410.406668 164.162667 307.013065 122.805226

55 644.723826 257.889530 450.642615 180.257046 337.112385 134.844954

60 702.288453 280.915381 490.878563 196.351425 367.211705 146.884682

65 759.853081 303.941232 531.114511 212.445804 397.311025 158.924410

70 817.417708 326.967083 571.350459 228.540184 427.410346 170.964138

75 874.982335 349.992934 611.586407 244.634563 457.509666 183.003866

80 932.546963 373.018785 651.822355 260.728942 487.608986 195.043594

85 990.111590 396.044636 692.058302 276.823321 517.708306 207.083322

90 1047.676217 419.070487 732.294250 292.917700 547.807626 219.123050

95 1105.240845 442.096338 772.530198 309.012079 577.906946 231.162778

100 1162.805472 465.122189 812.766146 325.106458 608.006266 243.202506

105 1220.370099 488.148040 853.002094 341.200837 638.105586 255.242235

110 1277.934727 511.173891 893.238041 357.295217 668.204906 267.281963

115 1335.499354 534.199742 933.473989 373.389596 698.304227 279.321691

120 1393.063981 557.225593 973.709937 389.483975 728.403547 291.361419

125 1450.628609 580.251443 1013.945885 405.578354 758.502867 303.401147

130 1508.193236 603.277294 1054.181833 421.672733 788.602187 315.440875

135 1565.757863 626.303145 1094.417780 437.767112 818.701507 327.480603
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Table 5.3: MIC computed using Cramer’s asymptotic formula

alpha=0.1 alpha=0.2 alpha=0.3

Number of Claims (n) c = 1.1 c = 1.25 c = 1.1 c = 1.25 c = 1.1 c = 1.25

5 26.91271 7.506759299 13.04977 1.961582 4.940468 -1.28214

10 77.05682 24.94606926 45.86519 12.46942 27.61926 5.171048

15 128.7739 42.94030073 80.25359 23.53218 51.87103 12.17916

20 180.9566 61.10315531 115.1076 34.76356 76.58844 19.35589

25 233.3406 79.33936577 150.1629 46.06830 101.5071 26.60598

30 285.8299 97.61407489 185.3236 57.41154 126.5311 33.89456

35 338.3813 115.9114958 220.5463 68.77749 151.6172 41.20586

40 390.9723 134.2234369 255.8086 80.15796 176.7429 48.53168

45 443.5902 152.5452240 291.0978 91.54827 201.8955 55.86734

50 496.2271 170.8739950 326.4060 102.9456 227.067 63.20999

55 548.8779 189.2078992 361.7282 114.3480 252.2526 70.55777

60 601.5394 207.5456869 397.0610 125.7543 277.4488 77.90944

65 654.2091 225.8864835 432.4020 137.1636 302.6531 85.26411

70 706.8852 244.2296589 467.7494 148.5753 327.8640 92.62116

75 759.5666 262.5747472 503.1021 159.9890 353.0800 99.98013

80 812.2522 280.9213971 538.4590 171.4041 378.3003 107.3407

85 864.9413 299.2693380 573.8195 182.8206 403.5241 114.7025

90 917.6334 317.6183586 609.1829 194.2382 428.7509 122.0654

95 970.3279 335.9682913 644.5487 205.6566 453.9801 129.4292

100 1023.025 354.3190014 679.9167 217.0759 479.2115 136.7938

105 1075.723 372.6703797 715.2865 228.4958 504.4446 144.159

110 1128.423 391.0223362 750.6579 239.9163 529.6794 151.5249

115 1181.125 409.3747967 786.0306 251.3372 554.9155 158.8912

120 1233.827 427.7276989 821.4046 262.7587 580.1528 166.258

125 1286.531 446.0809906 856.7796 274.1805 605.3912 173.6251

130 1339.235 464.4346274 892.1555 285.6027 630.6305 180.9927

135 1391.941 482.7885714 927.5323 297.0251 655.8707 188.3605
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Table 5.4: Adjustment coefficient κ

Number of Claims (n) c=1.1 c=1.25

5 0.050000 0.125000

10 0.022222 0.055556

15 0.014286 0.035714

20 0.010526 0.026316

25 0.008333 0.020833

30 0.006897 0.017241

35 0.005882 0.014706

40 0.005128 0.012821

45 0.004545 0.011364

50 0.004082 0.010204

55 0.003704 0.009259

60 0.003390 0.008475

65 0.003125 0.007813

70 0.002899 0.007246

75 0.002703 0.006757

80 0.002532 0.006329

85 0.002381 0.005952

90 0.002247 0.005618

95 0.002128 0.005319

100 0.002020 0.005051

105 0.001923 0.004808

110 0.001835 0.004587

115 0.001754 0.004386

120 0.001681 0.004202

125 0.001613 0.004032

130 0.001550 0.003876

135 0.001493 0.003731
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Table 5.5: Cramer’s coefficient C

Cramer’s C

Number of Claims (n) M’(k) for c = 1.1 M’(k) for c = 1.25 c=1.1 c=1.25

5 1.360374142 2.228187235 0.384063 0.2555748

10 1.280436985 1.875251066 0.554210 0.3998394

15 1.258876680 1.789403469 0.629419 0.4634750

20 1.248851459 1.750730604 0.671811 0.4992705

25 1.243058023 1.728732773 0.699017 0.5222120

30 1.239283919 1.714538630 0.717958 0.5381684

35 1.236630073 1.704621494 0.731903 0.5499080

40 1.234662162 1.697301434 0.742599 0.5589072

45 1.233144684 1.691676430 0.751063 0.5660252

50 1.231938873 1.687218826 0.757927 0.5717961

55 1.230957653 1.683599379 0.763606 0.5765691

60 1.230143623 1.680602012 0.768382 0.5805825

65 1.229457406 1.678079043 0.772455 0.5840043

70 1.228871091 1.675926107 0.775969 0.5869563

75 1.228364342 1.674067361 0.779033 0.5895290

80 1.227921993 1.672446362 0.781726 0.5917911

85 1.227532500 1.671020238 0.784114 0.5937957

90 1.227186923 1.669755840 0.786244 0.5955843

95 1.226878232 1.668627135 0.788157 0.5971901

100 1.226600821 1.667613392 0.789884 0.5986398

105 1.226350164 1.666697898 0.791451 0.5999550

110 1.226122568 1.665867030 0.792880 0.6011537

115 1.225914992 1.665109573 0.794187 0.6022506

120 1.225724905 1.664416209 0.795387 0.6032583

125 1.225550186 1.663779134 0.796494 0.6041871

130 1.225389044 1.663191760 0.797518 0.6050459

135 1.225239956 1.662648490 0.798467 0.6058425
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