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ABSTRACT 

The electromagnetic spectrum is underutilized despite its physical scarcity. This underutilization 

is due to inefficient spectrum management techniques. Cognitive radio is a technology that can 

help achieve flexible spectrum management and thereby increase spectrum efficiency. In this 

research distributed transmit-power control in cognitive radio networks is studied and represented 

as a non-cooperative game-theoretic problem. The cognitive radio network is modeled as a single-

cell Wide-band Code Division Multiple Access (W-CDMA) network with a number of mobile 

stations representing the players in the game-theoretic framework. In order to arrive at the Nash 

Equilibrium (NE) the Iterative Water-Filling (IWF) algorithm is implemented by employing the 

best response dynamic (BRP). Various characteristics of the NE are investigated such as the 

convergence speed, the power levels, the signal to interference and noise ratio (SINR) and the 

utility at NE. Quadrature Phase Shift Keying (QPSK) and Frequency Shift Keying (FSK) are also 

investigated and compared with respect to the NE and its characteristics. Sequential play is also 

compared to simultaneous play in the cognitive radio network. 

 

The Nash Equilibrium is found not to be Pareto-optimal and the research presents an iterative 

algorithm to achieve a strategy that is Pareto-superior to the Nash Equilibrium. Based on the results 

of the algorithm, a method employing an equation is developed which enables a direct and faster 

attainment of the Pareto-superior strategy. 

 

In the research a hybrid algorithm that interfaces Iterative Water-Filling and game-theoretic 

learning is also developed and implemented. The learning component of the game is adaptive and 

switches between two learning algorithms (Hedge Algorithm and Historical Matching Algorithm) 

based on the perceived operation of other players in the cognitive radio network. When compared 

with individual learning algorithms the hybrid-adaptive algorithm yields an improvement in the 

average utility of 12.65% over Iterative Water-Filling, 9.45% over Historical Matching Algorithm 

and 67.52% over the Hedge Algorithm. The Iterative Water-Filling component of the hybrid-

adaptive algorithm is also seen to offer a convergence that is five times faster than the individual 

learning algorithms. The novel hybrid-adaptive algorithm offers an improvement on the previous 

treatments of Iterative Water-Filling and game-theoretic learning. All implementations and 

simulations are done using MATLAB R2011b.  
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1 INTRODUCTION 

1.1 Background 

The electromagnetic radio spectrum is a natural resource and its shortage has become more 

apparent in recent years. This shortage has been due to the physical scarcity of the radio spectrum 

as well as to the proliferation of wireless devices. However, a deeper analysis of this shortage has 

revealed that despite the physical scarcity, there is a lot of inefficiency in its utilization. It has been 

found that some frequency bands in the spectrum are largely unoccupied most of the time whereas 

some bands are only partially occupied [1]. This state of affairs is illustrated in Figure 1.1 [1], 

which shows the general nature of spectrum occupancy in an approximately 700 MHz block of 

spectrum below 1 GHz for three different locations, namely Atlanta, New Orleans and San Diego 

in the United States. Measurements over various time durations also indicated many time slots in 

which the spectrum was idle. 

 

 

Figure 1.1: Occupancy of a 700 MHz block below 1 GHz 
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In Kenya, a study done in 2012 by Deloitte & Touche, revealed that of the 436 frequencies 

allocated 30% were not on air [2]. In this case though the frequencies are assigned, they are totally 

unutilized. This underutilization of the electromagnetic spectrum gives rise to the concept of 

spectrum holes, which are bands of frequencies assigned to licensed users, but which, at particular 

times and specific geographic locations are not utilized by those users [3]. In order to increase the 

efficiency of the utilization of the spectrum resource, more flexible and dynamic spectrum 

management techniques and regulations are required. 

 

The current spectrum management policy is a static one in which licensees are assigned 

frequencies for exclusive use. This is typically regulated by regional bodies such as the 

Communications Authority of Kenya (CA), the Federal Communications Commission (FCC) in 

the United States, the Office of Communications (Ofcom) in the United Kingdom, and the 

Electronic Communications Committee (ECC) of the Conference of European Post and 

Telecommunications (CEPT) in Europe. 

 

A key technology which can enable the flexible and dynamic spectrum access is cognitive radio. 

Cognitive radio techniques provide the capability to use or share the spectrum in an opportunistic 

manner and take advantage of the available spectrum holes and thus increase the efficiency of 

spectrum utilization. Dynamic spectrum access techniques allow the cognitive radio to operate in 

the best available channel. 

 

This effort to increase spectrum efficiency becomes important especially due to the scarcity and 

cost of the spectrum, as well as the need to deploy more services and applications. For instance, 

there is a general move to migrate television broadcasting to digital broadcast so as to free up TV 

whitespace. This whitespace could be used for services such as Long Term Evolution (LTE) as 

well as other services relying on cognitive radio technology. 

 

1.2 Problem Statement 

The electromagnetic spectrum is underutilized. This is not so much due to physical scarcity as to 

inefficient spectrum management techniques and rigid regulations [1]. This gives rise to spectrum 
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holes. There is a need for more flexible and dynamic spectrum management techniques and 

regulations in order to increase the efficiency of spectrum utilization. 

 

Cognitive radio, first put forward by Mitola [4], was proposed as a novel technique to achieve 

flexible spectrum management and thereby increase spectrum efficiency [3]. A key task of 

cognitive radio is the implementation of appropriate dynamic spectrum sharing and allocation 

techniques and in this, transmit-power control plays an important role. Cooperative mechanisms 

are often employed to carry out transmit-power control. However, these can often be complicated 

by competition, especially in a distributed environment. Competition works in opposition to 

cooperation and can result in negative emergent behaviour, characterized by disorder, chaos and 

ultimately inefficient spectrum utilization [3]. 

 

Game theoretic analysis, coupled with stochastic learning models, is one of the techniques that 

helps deal with this phenomenon of competition in spectrum sharing in a distributed environment, 

making stability possible and avoiding exploitation by any of the users. However, these learning 

models can exhibit a comparatively slow convergence. 

 

Water-filling algorithms, rooted in information theory, offer alternative techniques that can be 

employed to achieve dynamic spectrum sharing. Water-filling algorithms exhibit fast convergence 

by virtue of incorporating information on both the transmission channel and the RF environment. 

However, water-filling lacks learning strategies and, therefore, can leave the users susceptible to 

exploitation, whereby a user or group of users hog resources and starve the other users. 

 

1.3 Objectives 

The overall objective is to develop a model for the implementation of transmit-power control in a 

cognitive radio network, which has the potential of increasing the efficiency of utilization of the 

electromagnetic spectrum. 

 

Specifically, the research focuses on algorithms useful for dynamic spectrum sharing and 

allocation strategies in cognitive radio. The research aims to achieve the following: 
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i. Model distributed transmit-power control in a cognitive radio network as a non-cooperative 

game-theoretic problem. 

ii. Implement a water-filling algorithm that helps achieve distributed spectrum sharing and 

allocation in a multiuser scenario. 

iii. Implement a learning model to be embedded into the formulated game-theoretic algorithm. 

iv. Interface the water-filling approach and the learning model to achieve fast convergence as well 

as mitigate the exploitation phenomenon. 

 

1.4 Justification of Work 

The electromagnetic spectrum is a scarce and expensive resource. As has been pointed out this 

resource is sometimes underutilized which brings about underutilization. This research seeks to 

address this problem. Solutions arising from this and similar research can facilitate the availing of 

spectrum to entities that need to use it. In addition, as TV whitespace becomes available with the 

migration to digital TV broadcasting it becomes important to investigate schemes that can be used 

for the utilization of the spectrum that is made available. 

 

1.5 Scope of Work 

Cognitive radio systems mainly carry out the tasks of spectrum sensing (radio-scene analysis), 

spectrum analysis and spectrum decision (transmit-power control and dynamic spectrum 

management) [3]. These tasks form the cognitive cycle [4]. 

 

This work mainly focuses on spectrum transmit-power control (which falls under spectrum 

decision) implemented based on algorithms relying on game theory, information theory and 

machine learning. The research does not deal directly with the cognitive tasks of spectrum sensing 

and spectrum analysis. Prototyping of the algorithms and simulation is carried out using 

MATLAB. 
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2 COGNITIVE RADIO 

2.1 Cognitive Radio 

Cognitive radio is a technology that can help achieve flexible spectrum management and increase 

the efficient use of the electromagnetic spectrum [3][5]. In a cognitive radio network, a secondary 

user (unlicensed user) is allowed to access spectrum owned by a primary user (licensed user) so 

long as the expected Quality of Service (QoS) of the primary user is met and the interference level 

does not go above a certain threshold. 

 

Akyildiz [5] defined cognitive radio as a radio that can change its transmitter parameters based on 

interaction with the environment in which it operates. He highlighted cognitive capability, which 

is the ability of the radio technology to sense or capture information (including temporal and spatial 

variations) from its radio environment, and re-configurability, which enables the radio to be 

dynamically programmed according to the radio environment, as the key characteristics of 

cognitive radio. 

 

Haykin [3] defined cognitive radio as an intelligent wireless communication system that is aware 

of its surrounding environment and adapts its internal states to statistical variations in the incoming 

RF stimuli by making corresponding changes in certain operating parameters in real-time, with 

two primary objectives: highly reliable communications whenever and wherever needed; and 

efficient utilization of the radio spectrum. 

 

Cognitive radio, therefore, has the ability to exploit its environment to increase spectral efficiency 

and capacity by exploiting the existence of spectrum holes [6]. Spectrum holes are bands of 

frequencies assigned to primary users, but which, at a particular time and specific geographic 

location, are not being utilized by that user [3]. The concept of spectrum holes is illustrated in 

Figure 2.1 [5]. The spectrum holes can either be temporal or spatial [7]. The more the utilization 

of spectrum holes the greater the spectrum efficiency. 
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Spectrum efficiency occurs when the maximum amount of information is transmitted within a 

given amount of spectrum or equivalently, when the least amount of spectrum is used to transmit 

a given amount of information [1]. 

 

 

Figure 2.1: Spectrum Holes  

 

Cognitive radio was first proposed by Mitola [4] as an extension to Software-Defined Radio 

(SDR), an idea which he had earlier proposed. Mitola’s concept of cognitive radio was general and 

included personal services, whose flexibility could be enhanced through a Radio Knowledge 

Representation Language (RKRL). A key goal was to serve the needs of the user more adequately. 

He saw Software-Defined Radio as an ideal platform for the realization of cognitive radio. Since 

his publication in 1999 a lot of research has been done with many advances in this field [7][8]. 

Part of this has led to the publication of the IEEE 802.22-2011 standard [9], which is a standard 

for Wireless Regional Area Networks and aims to enable spectrum sharing and broadband wireless 

access using cognitive radio technology in TV whitespaces between 55 MHz and 862 MHz [10]. 

 

2.2  Cognitive Tasks 

One way of understanding cognitive radio is by assessing the processes and tasks involved in its 

realization. These tasks can be viewed in terms of a cognitive cycle, which was first described by 

Mitola [4]. In illustrating the basic cognitive cycle, Haykin [3] referred to the following 

fundamental cognitive tasks: radio-scene analysis, channel identification, transmit power control 
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and dynamic spectrum management as illustrated in Figure 2.2 [3]. The cognitive process starts 

with passive sensing of RF stimuli and culminates with action at the transmitter. 

 

 

 

Figure 2.2: The Basic Cognitive Cycle  

Akyildiz [5] essentially explained the same cognitive tasks, but employing different terminology. 

He referred to the basic cognitive functionalities in terms of Spectrum Sensing, Spectrum Analysis 

and Spectrum Decision. 

 

2.2.1 Spectrum Sensing 

Spectrum sensing is also referred to as radio-scene analysis. It is the stage in which unlicensed 

users – the secondary users (SU) – continuously monitor the activities of the licensed users  – the 

primary users (PU) – to detect the spectrum holes [7]. Haykin [3] indicated that the interference 

temperature is also estimated at this stage. The interference temperature as a metric to quantify 

and manage the sources of interference in the radio environment was proposed by the FCC in 2003 

[11]. 

 

Some of the techniques widely employed for spectrum sensing include energy detection, matched 

filter detection, cyclostationary feature detection, correlator-based sensing and eigenvalue-based 

sensing [12].  
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2.2.2  Spectrum Analysis 

During spectrum analysis, the characteristics of the detected spectrum holes are estimated. This 

entails channel-state information estimation and predictive modeling. The channel capacity, which 

can be derived from a number of channel parameters is the most important factor for spectrum 

characterization [5]. It involves capacity estimation based on the interference at the licensed 

receivers. The channel capacity together with the known threshold for interference help determine 

the maximum transmit power that the cognitive radio can employ. 

 

2.2.3  Spectrum Decision 

During spectrum decision, the cognitive radio determines the frequency and bandwidth of 

transmission. It also determines the data rate and transmission mode of the communication. This 

is all based on the information provided from spectrum sensing and analysis. Key tasks in this 

stage are transmit-power control and dynamic spectrum management. 

 

2.3  Dynamic Spectrum Access: Spectrum Sharing 

The SUs determine which channels can be used for transmission as well as when and how to access 

the channel. A key goal is to protect the PU from undue interference. The SU also needs to take 

into account the activities of other SUs. In order to achieve a better overall system performance, a 

sharing strategy can be implemented which entails a dynamic spectrum access [13]. The 

classification of the sharing strategy can be based on the spectrum access technique, the 

architecture and the spectrum allocation behaviour [5][13]. These are explained below and 

illustrated in Figure 2.3 [5]. 

 

 

Figure 2.3: Spectrum Sharing Strategies  
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2.3.1 Spectrum Access Technique 

Based on spectrum access technique the spectrum sharing can be open spectrum sharing or 

licensed spectrum sharing. In open spectrum sharing, all the SUs have equal rights to access the 

spectrum and freely contend among themselves. In licensed spectrum sharing the PUs have the 

bands assigned to them and, therefore, have priority over the SUs to use the bands. Licensed 

spectrum sharing is also referred to as hierarchical spectrum sharing [13]. Hierarchical spectrum 

sharing is further divided into spectrum underlay and spectrum overlay. In spectrum underlay, the 

SUs use the spectrum at the same time as the PUs so long as they meet the requirements related to 

interference and QoS for the PUs. The SUs only transmit when the PUs are not transmitting. 

 

The advantage of open spectrum sharing is that it enables flexible use of the spectrum by a number 

of users; this can also be done in an ad hoc manner. It also facilitates a greater usage of the spectrum 

which results in a higher efficiency. However, there may be no guarantee that QoS requirements 

will be met. The advantage of licensed spectrum sharing is that the primary user is guaranteed the 

usage of the spectrum and a certain QoS can be guaranteed without much difficulty. However, the 

flexibility in spectrum use is reduced and it can lead to underutilization of the spectrum. 

 

2.3.2 Architecture 

Based on the architecture the spectrum sharing can either be centralized spectrum sharing or 

distributed spectrum sharing [5]. Centralized spectrum sharing entails a central server which is in 

charge of allocating bands to the other devices [14]. This may, however, involve an increased 

overhead in terms of signaling. For this reason centralized sharing may be impractical in some 

cases [13]. Decentralized sharing has been shown in some cases to have benefits over centralized 

sharing [14]. 

 

2.3.3 Spectrum Allocation Behaviour 

With regard to spectrum allocation behaviour, the spectrum allocation can be cooperative or non-

cooperative. In cooperative spectrum sharing, several SUs work together in order to access the 

spectrum efficiently. This may be done in a centralized or distributed manner. In the case of non-

cooperative spectrum sharing, each SU works to maximize its own benefit, without necessarily 

taking the global system performance into account. Non-cooperative spectrum sharing is also 
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known as selfish or non-collaborative spectrum sharing. Selfish sharing has a trade-off to be 

considered since on one hand the non-cooperation may result in a reduced spectrum utilization but 

on the other hand there is a reduced overhead in communication required among the SUs as seen 

in cooperative sharing (centralized or decentralized). Therefore, in non-cooperative spectrum 

sharing the concept of competition arises, in which a particular user may try to exploit the cognitive 

radio channel for self-enrichment, which in turn, prompts other users to do the same. This results 

in chaos and inefficient utilization of the spectrum [3]. 

 

2.4  Spectrum Allocation and Transmit-Power Control 

Transmit-power control is one of the key tasks of the cognitive cycle and plays a big role in 

carrying out spectrum sharing. It is one of the parameters that needs to be adjusted in order to 

effect the spectrum sharing and allocation strategy selected. This has to be done in such a way that 

the interference generated from the SUs is appropriately constrained so as to protect the PUs and 

to allow as many users as possible to share the spectrum [5]. A number of techniques and methods 

(spectrum allocation algorithms) can be used to effect transmit-power control and, by extension, 

the desired spectrum sharing strategy. Cooperative and non-cooperative, as well as centralized and 

decentralized techniques have been considered and analyzed in [15]. Examples of non-cooperative 

approaches which have been applied include Game Theory [16][17] and Water-Filling based on 

information theory [18][19][20]. Spectrum allocation techniques resulting in overlay and underlay 

sharing strategies have also been assessed in [21]. 

 

The spectrum allocation techniques have been gauged and compared using various metrics. The 

main metrics include interference, spectrum utilization, fairness and throughput [5][14]. The speed 

of convergence is also useful, and affects these three metrics. The general effort is to optimize 

these metrics as much as possible. 

 

2.4.1.1 Interference 

It is generally desirable that the SUs create limited or no interference to the PUs. Interference 

between SUs should also be kept at a minimum. Interference is the most common criterion for 

designing an efficient cognitive spectrum assignment algorithm [22]. The interference temperature 
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was suggested as an approach for quantifying and managing interference [3][11]. The FCC defined 

the interference temperature as a measure of the RF power generated by undesired emitters plus 

noise sources that are present in a receiver system per unit of bandwidth. The temperature 

equivalent of this power is measured in degrees Kelvin (K). The concept of interference 

temperature is illustrated in Figure 2.4 [11]. It is seen that utilizing the new opportunities for 

spectrum access raise the noise floor and interference temperature limit. This has the result of 

reducing the service range. 

 

Figure 2.4: Interference Temperature  

In 2007, the FCC indicated that the interference temperature was not workable [23]. The National 

Association for Amateur Radio indicated that the concept was not yet mature [24]. However, it is 

still relevant in research as the demand for spectrum increases and different players highlight the 

urgent need for a specification of a metric for measuring harmful interference [25]. Alternative 

metrics which have been used to characterize interference are Signal to Interference and Noise 

Ratio (SINR) [16] and outage probability [26], which help safeguard the QoS for the PU. With 

respect to SINR, a chief aim is to achieve a SINR necessary to maintain a minimum Bit Error Rate 

(BER). 

 

2.4.1.2 Spectrum efficiency/utilization 

The spectrum efficiency can also be expressed as [1]: 

 

Spectrum efficiency =  
Information transmitted (I)

Spectrum Impacted (U)
   (2.1) 
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The Spectrum Efficiency Working Group [1] indicated the challenges in using efficiency as a 

metric and stated that the calculation would need to be adjusted to suit specific application. 

Spectrum utilization as a metric helps maximize either the number of channels assigned to SUs or 

the number of SUs that are being served in the cognitive network. 

 

2.4.1.3 Throughput 

The throughput can be given in terms of the rate of information transmitted [22]. The throughput 

as a metric helps maximize either the rate of individual users or the total network throughput 

subject to the maximum transmit power, the link capacity, the maximum interference allowable 

and the QoS requirements. 

 

2.4.1.4 Fairness 

Fairness as a metric aims to achieve an appropriate distribution of spectrum over different users 

given the QoS requirements and the priorities of the users. Unfairness can arise in cases where one 

SU selects multiple channels and others are left with no available spectrum (starvation). A possible 

objective is the maximization of the minimum average throughput per SU. The fairness is akin to 

the levels of exploitation that are experienced in the network. 

 

2.4.1.5 Speed of convergence 

The speed of convergence is pertinent in cases where adaptive or iterative algorithms are 

employed. It can be assessed by the number of iterations required to reach an equilibrium or stable 

operation of a system. Closely associated with convergence is the delay, which could either be 

end-to-end delay or switching delay [22]. 

 

2.5 Analyses of Spectrum Sharing based on Spectrum Allocation Behaviour 

Peng et al [14] investigated both centralized and distributed approaches from the point of view of 

utilization and fairness. Peng related that cooperative approaches outperform non-cooperative 

approaches. In addition the cooperative approaches closely approximate the global optimum. 

However, in their work the assumption of a static network environment was made. 
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Zheng and Peng [15] also assessed the effects of collaboration in spectrum access. They also 

concluded that collaboration yields significant benefits in the utilization and fairness. However, 

they also only considered a static network environment with a per snapshot optimization. They 

stated that a dynamic environment could significantly increase the overhead in the case of the 

cooperative approach. 

 

Nie and Comaniciu [16] made a game theoretical analysis and assessed both cooperative and non-

cooperative approaches. They showed that the cooperative case can be modeled as an exact-

potential game which converges relatively quickly to a pure strategy Nash Equilibrium (PNE), 

with a certain degree of fairness and improved throughput. In the non-cooperative approach, a 

learning algorithm is necessary and results in a mixed strategy Nash Equilibrium (MNE). The 

fairness is degraded with slightly worse performance. However, in the non-cooperative approach 

the information exchange necessitated is significantly low. Working with less knowledge about 

the game is possible and consequently there is less implementation overhead. 

 

Etkin et al [17] assessed spectrum sharing from the point of view of non-cooperative game theory 

taking into account Gaussian signals. Whereas in a one shot game inefficient solutions may arise, 

they show that in a repeated or dynamic game the performance loss due to lack of cooperation is 

small. 

 

Yu and Cioffi [18] showed Iterative Water-Filling to be an efficient solution for optimal resource 

allocation problems in linear Gaussian Multiple Access and Broadcast Channels. Yu et al [19] 

considered a multiuser power control problem and modeled it as a non-cooperative game. They 

implemented a distributive iterative water-filling algorithm without the need for centralized 

control. They showed that it reached a competitively optimal power allocation and the algorithm 

was found to give good performance. 

 

Overall in comparing cooperative and non-cooperative spectrum sharing strategies, it is noticed 

that cooperative settings can result in higher utilization of the spectrum as well as fairness. 

However, this benefit may not be so high considering the cost of cooperation due to frequent 

information exchange among users [5]. The performance improvement in the case of cooperative 
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users is acquired at the cost of high environmental knowledge requirement and thereby high 

signaling overhead [16]. On the other hand, non-cooperative approaches, based for instance on 

game-theoretic learning or iterative water-filling, could offer the advantage of incomplete 

information requirement and thereby less signaling overhead. This in turn can give the benefit of 

less implementation complexity. This could offer potential benefits in the design of cognitive 

radios for heterogeneous networks [16] in which users are involved in different applications and 

have various utility functions. 

 

2.5.1  Game-Theoretic Analysis 

The transmit-power control in a multiuser cognitive radio environment can be viewed as a game-

theoretic problem [3]. Game theory is a field of applied mathematics that describes and analyzes 

interactive decision situations. It consists of a set of analytical tools that predict the outcome of 

complex interactions among rational entities, where rationality demands a strict adherence to a 

strategy based on perceived or measured results [27]. Game theory has extensively been applied 

to microeconomics but only relatively recently has it been applied to design and analysis of 

distributed resource allocation algorithms [16]. 

 

In the absence of competition, a cooperative game results, which simplifies to an optimal control-

theoretic problem and eliminates the game-theoretic aspects of the problem. Game-theoretic 

analysis of cognitive radio is especially motivated by the concept of a Nash equilibrium (NE), 

which represents a stable operating point. The NE is a vector of players’ actions (an action profile) 

in which each action is a best response to the actions of all the other players [27]. 

 

The notion of the Nash equilibrium, however, has some limitations in that it does not elaborate the 

underlying process involved in arriving at the equilibrium. Furthermore, it assumes the use of a 

best response strategy by all the players. However, if one player adopts a non-equilibrium strategy, 

the response of the other player(s) will also be of a non-equilibrium kind, making the Nash 

equilibrium inapplicable [3]. To overcome these limitations, learning models may be incorporated 

into the game theoretic algorithms. 
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2.5.2 Game-Theoretic Learning 

Learning models enable the players to strive for optimality over time. The incorporation of learning 

is aimed at achieving the result that clever opponents of a player do not exploit dynamic changes 

or limited resources for their own selfish benefits. It also aims at minimizing bad performance of 

a player. No-regret algorithms, which are rooted in statistical learning theory, are capable of 

achieving these aims. The no-regret algorithms are referred to as boosting algorithms by Freund 

and Shapire [28]. These algorithms result in strong learning models being built around a set of 

weak learning models. A no-regret algorithm has the advantage that it incorporates a regret agenda 

such that the learner cannot be deceptively exploited by a cleverer player. However, it converges 

comparatively slowly [3]. 

 

2.5.3 Iterative Water-Filling (IWF) 

Water-Filling is a technique rooted in information theory. Given a multiuser cognitive radio 

environment viewed as a non-cooperative game, the performance of each unserviced transceiver 

is maximized, regardless of what all the other transceivers do, but subject to the constraint that a 

threshold representing interference is not exceeded. Yu [20] showed that in a Gaussian multiple 

access channel with multiple transmit and receive antennas, the optimum transmit strategy that 

maximizes the sum capacity can be found by an iterative water-filling procedure, where each user 

competitively maximizes its own rate while treating interference from other users as noise. Qi et 

al [29] developed an enhanced water-filling algorithm which achieved a lower computational 

complexity than the classical water-filling algorithms. 

 

Iterative Water-Filling has the advantage that it exhibits fast convergence behaviour by virtue of 

incorporating information on both the channel and the RF environment. However, it lacks the 

learning strategy that could enable it to guard against exploitation [3]. 

 

2.5.4 Learning and Water-filling 

There are a number of implementations in the literature of various versions of learning and water-

filling as shown in the preceding sections. However, these techniques have been treated in 

isolation. Haykin [3] pointed out that the performance of iterative water-filling could be improved 

by interfacing it with a regret-conscious learning algorithm. Ifeh [30] also mentioned the 



 

 
16 

 

combination of water-filling and learning but his simulation results showed a treatment of the 

techniques in isolation. His main findings were a comparison of water-filling and no-regret 

learning giving the strengths and weaknesses of these techniques taken separately, as is illustrated 

in Table 2.1. 

 

Table 2.1: Advantages and disadvantages of IWF and no-regret learning algorithms [30] 

 Iterative Water-filling No regret learning 

Strengths   Converges rapidly  

 Low computational complexity  

 Well suited to distributed 

implementation  

 Avoids communication links between 

users  

 Guarantees learners 

cannot be exploited  

Weaknesses   Its sub-optimal  

 Cannot overcome the behaviour of 

greedy users  

 Slow convergence  

 High computational 

complexity  
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3 GAME THEORY 

3.1 Game Theory Fundamentals 

Game theory is a bag of analytical tools designed to help us understand the phenomena that we 

observe when decision-makers interact [31]. Mackenzie [27] defined Game theory as a field of 

applied mathematics that describes and analyzes interactive decision situations. It consists of a set 

of analytical tools that predict the outcome of complex interactions among rational entities, where 

rationality demands a strict adherence to a strategy based on perceived or measured results. 

Felegyhazi and Hubaux [32] looked at game theory as a discipline aimed at modeling situations in 

which decision makers have to make specific actions that have mutual, possibly conflicting 

consequences. Neel [33] first defined a game and then proceeded to define game theory. He 

defined a game as a model of an interactive decision process. An interactive decision process is a 

process whose outcome is a function of the inputs of several decision makers who may have 

potentially conflicting objectives with regard to the outcome of the process. Game theory, then, is 

a collection of models (games) and analytic tools used to study interactive decision processes [33]. 

 

Game theory has extensively been applied to microeconomics and only relatively recently has it 

been applied to design and analysis of distributed resource allocation algorithms [16]. Other fields 

in which it has found application include politics, biology, networking, military strategy and 

wireless communications. Game theory allows for the modeling of scenarios in which there is no 

centralized entity with a full picture of network conditions [27]. 

 

3.1.1 Basic Elements of a Game 

The following are the basic elements of a game: 

i. Players: these are the decision making entities in the interactive decision process [33]. Games 

only consider situations where there are two or more players since a single player game would 

by definition not be an interactive process. The players have interests, which are potentially 

conflicting. The players are also considered to be rational, meaning that they generally try to 

maximize their payoffs (utilities) [32] and pursue well-defined exogenous objectives [31]. 

They also reason strategically, meaning that they take into account their knowledge or 

expectations of other decision-makers’ behaviour [31]. 
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ii. A set of actions or strategies of the players: the strategy of each player can be a single move or 

a set of moves during the game [32]. Through their strategies the players try to maximize their 

payoffs. 

iii. A set of utilities: these are the players’ objective or payoff functions. The utilities express in a 

compact manner the preference relations of the players [33]. 

 

3.1.2 Strategic Games [Static Games] 

A strategic game is a model of interactive decision-making in which each decision-maker choses 

his plan of action once and for all, and these choices are made simultaneously [31]. They are also 

referred to as single-stage games [32]. A common interpretation of a strategic game is that it is a 

model of an event that occurs only once [31]. The model consists of: 

 Players, represented by the finite set N. 

 A strategy 𝑠𝑖  ∈  𝑺𝒊 for each player 𝑖 ∈ 𝑵: this represents the set of actions available to 

player i. The collective strategies of all players except player i are denoted by 𝒔−𝒊 

 A utility 𝑢𝑖 for each player i: this is the payoff for each player. U is the set of utility 

functions for all players 

The strategy profile s is the vector containing the strategies of all players. It is given by  

𝒔 =  (𝑠𝑖)𝑖∈𝑵      (3.1) 

 

𝑺𝒊 represents the pure individual strategy space of player i, meaning that the strategy assigns zero 

probability to all strategies except one. The joint strategy space of all players is the Cartesian 

product of all the individual strategy spaces. It is given by 

𝑺 =  ∏ 𝑺𝒊𝑖∈𝑵       (3.2) 

 

The utility 𝑢𝑖 is a function that characterizes each player’s sensitivity to the actions of the other 

players. It quantifies the outcome of the game for player i given the strategy profile s. It is a scalar-

valued function of the strategy profile: 

𝑢𝑖(𝒔) ∶ 𝑺 →  𝑹     (3.3) 
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Formally, a function that assigns a numerical value to the elements of the action  set S (i.e. 𝑢(𝒔) ∶

𝑺 →  𝑹) is a utility function if for all 𝑥, 𝑦 ∈ 𝑺, x is at least as preferred as compared to y if and 

only if 𝑢(𝑥) > 𝑢(𝑦) [34]. 

 

Therefore, based on these basic elements, a game in strategic form (or normal form) is represented 

as follows: 

𝛤 = [𝑵, 𝑺, 𝑼]       (3.4) 

 

If each player knows the game, 𝛤 i.e. each player knows the set of players, the strategy space and 

the utility functions, then the game is said to be one with complete information [32]. The strategies 

in the games can either be pure strategies or mixed strategies. A pure strategy is one in which the 

strategy assigns a probability of zero to all moves except one in a player’s strategy space, 𝑺𝒊. This 

means that the players clearly decide on one move or another. For a mixed strategy the players can 

choose different moves with different probabilities. The mixed strategy 𝜎𝑖(𝑠𝑖) of a player, 

therefore, is a probability distribution over his pure strategies 𝑠𝑖  ∈  𝑺𝒊 [32]. The mixed strategy 

space of player i is denoted by 𝛴𝑖 where 𝜎𝑖  ∈  𝛴𝑖. 

 

3.1.3 Matrix Representation 

Strategic games can often be represented in the form of a matrix. For instance, a finite strategic 

game in which there are two players can be represented as in Figure 3.1.  

 

Figure 3.1: Matrix representation of strategic games 

 

One player’s actions are represented by the rows and those of the other player by the columns. In 

this case p1 is Player One and p2 is Player Two. The set of actions of p1 are {T, B} and those of p2 

L R

T w1, w2 x1, x2

B y1, y2 z1, z2

p2

p1
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are {L, R}. The numbers in each of the cells represent the payoffs, the first number being the payoff 

of p1, and the second number being the payoff of p2. For example the payoff from the outcome {B, 

R} is z1 for p1 and z2 for p2. 

 

3.2 Solving a Game 

Solving a game entails determining the likely outcome of the game, given that the players are 

rational and they are involved in strategic play. It means predicting the strategy of each player, 

considering the information the game offers and assuming that all the players are rational. 

 

The simplest way of solving a game is relying on dominance [32]. This entails the iterative 

elimination of dominated strategies and a number of games can be solved in this way. It essentially 

means iteratively ruling out the strategies that a rational player would not choose based on the 

payoff functions. The strategy 𝑠′𝑖 of player i is said to be strictly dominated by his strategy 𝑠𝑖 if, 

 

𝑢𝑖(𝑠′𝑖 , 𝒔−𝒊) < 𝑢𝑖(𝑠𝑖, 𝒔−𝒊), ∀𝒔−𝒊 ∈ 𝑺𝒊     (3.5) 

 

3.2.1 Nash Equilibrium 

A number of games cannot be solved by iterated dominance techniques. Such games can, however, 

be solved by making use of the concept of a Nash Equilibrium (NE). A Nash Equilibrium is a joint 

strategy where no player can increase his utility by unilaterally deviating [27]. Thus, a pure strategy 

profile s* constitutes a Nash Equilibrium if, for each player i, 

 

𝑢𝑖(𝑠𝑖
∗, 𝒔−𝒊

∗ ) ≥ 𝑢𝑖(𝑠𝑖, 𝒔−𝒊
∗ ), ∀𝑠𝑖 ∈  𝑺𝒊     (3.6) 

 

Alternatively, a Nash Equilibrium is a strategy profile comprising of mutual best responses of the 

players [32]. The best response 𝑏𝑟𝑖(𝑠−𝑖) of a player i to the profile of strategies 𝑠−𝑖 is a strategy 𝑠𝑖 

such that: 

𝑏𝑟𝑖(𝒔−𝒊) = arg 𝑚𝑎𝑥𝑠𝑖∈𝑺𝒊
𝑢𝑖(𝑠𝑖, 𝒔−𝒊)     (3.7) 

 

When only considering pure strategies, some games may not have a Nash Equilibrium. These 

games, however, will always at least have a Nash Equilibrium in mixed strategy. Every finite 
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strategic form game has a Nash Equilibrium in either mixed (MNE) or pure (PNE) strategies [27]. 

In the case of mixed strategies, a mixed strategy profile 𝝈 ∈  𝜮 is a Nash Equilibrium if 

 

𝑢𝑖(𝜎𝑖) ≥  𝑢𝑖(𝑠𝑖, 𝝈−𝒊), ∀ 𝑖 ∈ 𝑵, ∀ 𝑠𝑖 ∈  𝑺𝒊    (3.8) 

 

Solving a game, therefore, entails investigating the existence of a Nash Equilibrium and finding 

out whether it is unique or not. In some games there can exist more than one equilibrium point. 

The efficiency of the equilibrium points is also studied and this eventually helps in Equilibrium 

Selection. 

 

3.2.1.1 Arriving at the Nash Equilibrium: Iterative Water-Filling (IWF) 

In regard to IWF Yu et al [19] considered a multiuser power control problem in a frequency-

selective interference channel, modeled as a non-cooperative game. The multiuser environment he 

considered was the Digital Subscriber Line (DSL). The IWF technique that he proposed entailed 

a power allocation scheme that was able to jointly optimize the performance of multiple DSL 

modems in the presence of mutual interference. The optimization technique aimed at finding the 

competitive equilibrium (Nash Equilibrium) for the rate maximization game in the DSL, modeled 

as a frequency-selective Gaussian interference channel. Yu came up with the concept of 

competitive optimality, in which the Nash Equilibrium can be reached by an iterative water-filling 

procedure, where each user successively optimizes his power spectrum while regarding other 

users’ interference as noise. 

 

Shum et al [35] looked at synchronous (simultaneous) and asynchronous (sequential) power 

updates and derived conditions that guarantee convergence. By exploiting some properties of the 

water-filling method, Qi and Yang [29] proposed a power increment and power decrement water-

filling with much lower computational complexity than traditional water-filling. 

 

Consider the model shown in Figure 3.2 of a two-user interference channel. 
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Figure 3.2: A two-user communication channel 

 

where x1 and x2 are the transmit signals of transmitter 1 and 2, respectively; y1 and y2 are the signals 

received by receiver 1 and 2, respectively; ℎ𝑖𝑗 represents the path gain from user i to user j. The 

model can also be represented by  

𝑦1 =  ℎ11𝑥1 +  ℎ21𝑥2 +  𝑛1        (3.9) 

𝑦2 =  ℎ22𝑥2 +  ℎ21𝑥1 +  𝑛2      (3.10) 

where n1 and n2 represent additive noise. 

 

The scenario can be viewed as a non-cooperative game as follows: 

 The transmitters and their corresponding receivers are the two players. 

 The transmit signals are the pure strategies. These are represented by the transmit power 

spectra, P1(f) and P2(f). 

 The utilities are the data rates, R1 and R2, of player 1 and player 2, respectively. 

Based on Shannon’s Gaussian Capacity [36], these data rates are represented as follows [19]: 

 

𝑅1 =  ∫ 𝑙𝑜𝑔 (1 +  
𝑃1(𝑓)|𝐻11(𝑓)|2

𝛤(𝜎1(𝑓)+𝑃2(𝑓)|𝐻21(𝑓)|2)
) 𝑑𝑓

𝐹𝑠

0
    (3.11) 

 

𝑅2 =  ∫ 𝑙𝑜𝑔 (1 +  
𝑃2(𝑓)|𝐻22(𝑓)|2

𝛤(𝜎2(𝑓)+𝑃1(𝑓)|𝐻12(𝑓)|2)
) 𝑑𝑓

𝐹𝑠

0
   (3.12) 

where 0 ≤ 𝑓 ≤  𝐹𝑠 

𝐹𝑠 =  1 2𝑇𝑠⁄  and Ts is the sampling rate 

 Γ denotes the SNR-gap 

 𝜎1(𝑓) and 𝜎2(𝑓) are the additive white noise at receiver 1 and 2, respectively. 

x1

x2

y1

y2

h11

h22

h12

h21
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At the Nash Equilibrium, each user’s strategy is the optimal response to the other player’s strategy. 

With P2(f) fixed, the optimal P1(f) is the solution to the following optimization problem 

 

𝑃1(𝑓) =  𝑎𝑟𝑔max
𝑃1

 𝑅1     (3.13) 

s.t.  ∫ 𝑃1(𝑓)𝑑𝑓 ≤  𝑷𝟏
𝐹𝑠

0
 

𝑃1(𝑓) ≥ 0, ∀𝑓 

 

Similarly, with P1(f) fixed, the optimal P2(f) is the solution to the following optimization problem: 

 

𝑃2(𝑓) =  𝑎𝑟𝑔max
𝑃2

 𝑅2     (3.14) 

s.t.  ∫ 𝑃2(𝑓)𝑑𝑓 ≤  𝑷𝟐
𝐹𝑠

0
 

𝑃2(𝑓) ≥ 0, ∀𝑓 

 

The solution to this problem gives the water-filling power allocation. 

 

3.2.1.2 IWF Algorithm 

The Nash Equilibrium can be reached by an iterative water-filling procedure. IWF works in the 

following manner: with a fixed total power constraint, each player updates his power allocation by 

deriving a water-filling power level while regarding all other players’ signals as noise. As each 

player updates his power allocation, the power allocations of the other users are held constant. This 

forms a single iteration. The procedure is then applied repeatedly until the process converges. In 

his implementation, Yu considered a target data rate to be achieved. After the water-filling process 

if a player’s data rate is below its target rate, its power is increased, unless this exceeds the power 

constraint. If, however, a player’s data rate is above its target rate, its power is decreased. If the 

data rate is only slightly above the target rate, its power remains unchanged. Figure 3.3 illustrates 

the algorithm. The Nash Equilibrium is reached when the desired rate is achieved. 
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Figure 3.3: Distributed power control based on iterative water-filling 

 

3.2.1.3 Limitations of the Nash Equilibrium 

The notion of the Nash equilibrium, however, has some limitations in that it does not elaborate the 

underlying process involved in arriving at the equilibrium. Furthermore, it assumes the use of a 

best response strategy by all the players. However, if one player adopts a non-equilibrium strategy, 

the response of the other player(s) will also be of a non-equilibrium kind, making the Nash 

equilibrium inapplicable [3]. 

 

Furthermore, a conceptual problem arises when there are multiple equilibria. In the absence of an 

explanation of how players arrive at the same equilibrium, their play may not necessarily 

correspond to any equilibrium at all. In addition, the hypothesis of exact common knowledge of 

payoffs and rationality may not apply to many games [37]. 

 

To overcome these limitations, learning models may be incorporated into the game theoretic 

algorithms, enabling the players to strive for optimality over time [37]. 
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3.2.2 Pareto-Optimality 

The strategy profile 𝑠 is Pareto-superior to the strategy profile 𝑠′ if for any player 𝑖 ∈ 𝑵: 

𝑢𝑖(𝑠𝑖 , 𝒔−𝒊)  ≥  𝑢𝑖(𝑠𝑖
′, 𝒔−𝒊

′ )     (3.15) 

 

with strict inequality for at least one player [32]. This means that a strategy profile s is said to be 

Pareto-superior to another profile s’ if the payoff of a player i can be increased by changing from 

s’ to s without decreasing the payoff of other players. The strategy profile spo is Pareto-optimal (or 

Pareto-efficient) if there exists no other strategy profile that is Pareto-superior to spo. 

 

3.3 Dynamic Games 

These are games in which, rather than making their moves simultaneously without knowledge of 

the other players’ moves, the players make their moves sequentially, meaning that the move of one 

player is conditioned by the moves of the other players. Repeated games are a subset of dynamic 

games in which the players interact several times. 

 

Dynamic games are typically represented in extensive form, rather than strategic form though the 

strategic form can also be used to represent them. In the extensive form the game is represented as 

a tree. The root of the tree is the start of the game. Each level of the tree is referred to as a stage. 

The nodes represent the sequence relation of the moves of the players. The players are represented 

as labels on the nodes. Each node is a complete description of the path preceding it and thus has a 

unique history. The moves that lead to each node are represented on each branch of the tree. Each 

terminal node (leaf) defines a potential end of the game (an outcome) and is assigned the 

corresponding payoff. Figure 3.4 is an extensive form representation of the game depicted in 

Figure 3.1. 

 

Figure 3.4: Extensive form representation of dynamic games 

P1

P2
P2

T B

L
L

R
R

(w1, w2) (x1, x2) (y1, y2) (z1, z2)



 

 
26 

 

Dynamic games can either have perfect information or imperfect information. A game with perfect 

information is one in which all the players have perfect knowledge of all the previous moves in 

the game at any time they have to make a new move. The games can also be finite-horizon games, 

in which there exist a finite number of stages, or infinite-horizon games. 

 

In repeated games, players try to maximize their expected payoff over multiple rounds of the game. 

The concept of the Nash Equilibrium is also pertinent in the case of repeated games. It can be 

applied in some situations in the form of a sub-game perfect equilibrium. 

 

3.4 Potential Games 

A game 𝛤 = [𝑵, 𝑺, 𝑼] is an ordinal potential game [27][38] if there exists a function 𝑉 ∶ 𝑺 → 𝑹 

such that for all 𝑖 ∈ 𝑵, all 𝑥, 𝑧 ∈ 𝑺𝒊 and all 𝑠−𝑖  ∈ 𝑺−𝒊, 

 

𝑢𝑖(𝑥, 𝑠−𝑖) −  𝑢𝑖(𝑧, 𝑠−𝑖) > 0 ⇔  𝑉(𝑥, 𝑠−𝑖) −  𝑉(𝑧, 𝑠−𝑖) > 0    (3.16) 

 

The game is an exact potential game if equality holds as shown in equation 3.17. 

 

𝑢𝑖(𝑥, 𝑠−𝑖) −  𝑢𝑖(𝑧, 𝑠−𝑖) =  𝑉(𝑥, 𝑠−𝑖) −  𝑉(𝑧, 𝑠−𝑖)   (3.17) 

 

Equation 3.16 and 3.17 show that every exact potential game is an ordinal potential game. In both 

cases, the potential function 𝑉 (ordinal potential function in equation 3.16 and the exact potential 

function in equation 3.17) represents the change in utility for any unilaterally deviating player. 

 

Monderer [38] showed that if 𝛤 is a finite ordinal potential game, then 𝛤 has at least one Nash 

Equilibrium in pure strategies. If 𝛤 is an infinite ordinal potential game with a compact strategy 

space S and a continuous potential function V, then 𝛤 has at least one Nash Equilibrium in pure 

strategies. 
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3.5 Markov Games 

These are also referred to as stochastic games. In a Markov game, the history at each stage of the 

game is summarized by a state, and movement from state to state follows a Markov process, 

meaning that the state of the next round of the game depends on the current state and the current 

action profile. In addition to the elements contained in the strategic form game, the Markov game 

is also characterized by state variables 𝑚 ∈ 𝑴 and transition probability 𝑞 (𝑚𝑘+1 |𝑚𝑘, 𝒂𝒌), which 

denotes the probability that the state in the next round is mk+1 conditional on being in state mk in 

round k and on the playing of the action profile ak. A Markov perfect equilibrium is a profile of 

Markov strategies which yields a Nash Equilibrium in every proper sub game [27]. 

 

3.6 Game-Theoretic Learning 

The notion of the Nash equilibrium assumes the use of a best response strategy by all the players. 

However, if one player adopts a non-equilibrium strategy, the response of the other player(s) will 

also be of a non-equilibrium kind, making the Nash equilibrium inapplicable [3]. A conceptual 

problem also arises when there are multiple equilibria. In the absence of an explanation of how 

players arrive at the same equilibrium, their play may not necessarily correspond to any 

equilibrium at all. In addition, the hypothesis of exact common knowledge of payoffs and 

rationality may not apply to many games [37]. 

 

Learning helps mitigate these limitations. No-regret learning aims at minimizing the cumulative 

loss relative to the loss suffered by the best strategy [28] as well as maximizing rewards in non-

deterministic settings [39]. 

 

If 𝛤 is a repeated game and Q is the joint mixed strategy space made up of the individual mixed 

strategy spaces {𝑸𝒊}𝑖∈𝑵 of each player, at time t the regret 𝜌𝑖 player i experiences for playing 

strategy 𝑞𝑖
𝑡 rather than strategy 𝑠𝑖 is given by [40] 

 

𝜌𝑖(𝑠𝑖 , 𝑞𝑖
𝑡|𝒔−𝒊

𝑡 ) = 𝑢𝑖(𝑠𝑖 , 𝒔−𝒊
𝑡 ) −  𝑢𝑖(𝑞𝑖

𝑡, 𝒔−𝒊
𝑡 )    (3.18) 

 

where 𝑠𝑖 ∈ 𝑺𝒊, 𝑞𝑖 ∈ 𝑸𝒊.and 𝒔−𝒊 represents the collective strategies of all players except player i. 
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The mixed strategy of player i at time t + 1 is given by [40] 

𝑞𝑖
𝑡+1 =  𝐿𝑖(ℎ𝑖

𝑡)      (3.19) 

 

where 𝐿𝑖 is the learning algorithm and ℎ𝑖
𝑡 is the subset of the history known to player i at time t. 

Through the learning algorithm a player makes a prediction of the current strategy of the other 

players and then chooses a strategy in response to that prediction. The more accurate the prediction 

the better response the player will be able to make. 𝑞𝑖
𝑡 represents a probability distribution over 

the pure strategies of player i. The probabilities of the pure strategies can be seen as weights 

corresponding to the pure strategies and which can be updated during each iteration in a learning 

process. 

 

3.7 Learning Algorithms 

3.7.1 Best Response to the Previous Strategy of the Opponent (BRP) 

The iterative water-filling as implemented using the best response to the previous strategy of the 

opponent is the fundamental algorithm to which the other learning algorithms are compared. In 

BRP there is no significant history that is stored by the players. Each player only maintains 

information of the previous stage game. In simultaneous play, the best response correspondence is 

the situation in which each player plays its optimal strategy in response to the predicted current 

strategies of the other players based on the previous stage game. The current strategies of the other 

players in the current stage game are essentially taken to be the same strategies played in the 

previous stage game. 

 

3.7.2 Regret-Matching Algorithm (RMA) 

For the regret-matching algorithm [40][41] the weights for each stage game are updated based on 

the cumulative regrets accrued from the previous stage games. It therefore needs to keep a history 

of the previous stage games. The history size can vary from one stage game up to a maximum of 

all previous stage games. The cumulative regret felt by player i for not having played strategy si 

through time t is given by  

𝑅𝑖
𝑡(𝑠𝑖) =  ∑ 𝜌𝑖

𝑥(𝑠𝑖 , 𝑠𝑖
𝑥|𝑠−𝑖

𝑥 )

𝑡

𝑥=1
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(3.20) 

The update rule is: 

𝑞𝑖
𝑡+1(𝑠𝑖) =  

[𝑅𝑖
𝑡(𝑠𝑖)]+

∑ [𝑅𝑖
𝑡(𝑠𝑖

′)]+
𝑠𝑖

′∈𝑆𝑖

 

(3.21) 

where 𝑋+ ≝  𝑚𝑎𝑥{𝑋, 0} 

 

3.7.3 The Hedge Algorithm (HA) 

The Hedge algorithm [28][40] depends on the cumulative utilities achieved in the previous game 

stages and employs an exponential updating scheme. This algorithm also necessitates maintaining 

information of the previous stage games. 

 

Let 𝑢𝑖
𝑡(𝑠𝑖) denote the cumulative utility obtained by user i through time t by choosing strategy si: 

𝑢𝑖
𝑡(𝑠𝑖) =  ∑ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖

𝑥 )

𝑡

𝑥=1

 

(3.22) 

The weight (probability) assigned to strategy si at time t + 1 is given by: 

𝑞𝑖
𝑡+1(𝑠𝑖) =  

𝛽𝑢𝑖
𝑡(𝑠𝑖)

∑ 𝛽𝑢𝑖
𝑡(𝑠𝑖

′)
𝑠𝑖

′∈𝑆𝑖

 

(3.23) 

where 𝛽 is the hedge parameter [28] and in this case is constrained by 𝛽 > 1. The values used for 

𝑢𝑖
𝑡(𝑠𝑖) are normalized. 

 

The Hedge algorithm maintains a weight vector (𝒒𝑡) which is updated during each iteration. The 

weights are required to be non-negative and for the initial weight vector they sum up to one, so 

that ∑ 𝑞𝑖
1 = 1𝑁

𝑖=1 , where N is the number of players. 
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3.7.4 The Adapted Weighted Majority Algorithm (AWM) 

This is based on the Weighted Majority Algorithm of Littlestone and Warmuth [42]. For the 

adapted weighted majority algorithm an initial positive weight of one is associated with each 

strategy of the learning player. The update rule is given by: 

𝑞𝑖
𝑡+1(𝑠𝑖) = {

𝛼𝑞𝑖
𝑡(𝑠𝑖), 𝑠𝑖 =  argmax

𝑠𝑖∈𝑆𝑖

𝑢𝑖(𝑠𝑖 , 𝑠−𝑖
𝑥 )

𝛽𝑞𝑖
𝑡(𝑠𝑖),  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3.24) 

where 𝛼 > 1 and 0 < 𝛽 < 1. 

 

The multiplicative factors 𝛼 and 𝛽 have the effect that the weight of the strategies which achieves 

the highest utility in an iteration for the learning player are increased whereas the weights of the 

strategies which achieve lower utilities are reduced. Therefore, the strategies producing low 

utilities are employed less and less whereas the strategies producing higher utilities are employed 

more and more. 

 

3.7.5 History-Matching Algorithm (HMA) 

The History Matching Algorithm [43] essentially searches through the history of stage games of 

the adversary and looks for a sequence that matches the last few strategies (the pattern) of the 

adversarial player. If the pattern is found, the algorithm examines the strategy played by the 

opponent immediately after the position of the occurrence of the pattern and predicts that that 

strategy will be played again at the current iteration. To effect the history matching a cross-

correlation is made of the last few strategies with the history of strategies available. The point at 

which the maximum correlation occurs is used to predict the next strategy 
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4 METHOD AND IMPLEMENTATION 

4.1 Modeling 

In this research the transmit-power control is modeled as a non-cooperative repeated game (infinite 

horizon), which is a sequence of stage games, each stage game being a normal form game; the 

players are taken to be myopic. The simulation set-up is for a W-CDMA network containing a 

single cell and a varying number of users. MATLAB was used to implement the different 

algorithms and perform the simulations. 

 

The normal form game is completely defined by specifying the following tuple: 

 

𝛤 = [𝑵, 𝑷, 𝑼]       (4.1) 

 

Where N is the set of players, P is the joint strategy space made up of the individual strategy spaces 

{𝑷𝒊}𝑖∈𝑵 and U is the set of utility functions {𝑢𝒊}𝑖∈𝑵. In this case N consists of the mobile stations 

in the network and varies (2 or more users). P consists of the possible transmission powers of the 

mobile stations and has a minimum of 0 and a maximum of 2 W, based on the power limits of a 

class-1 mobile station of a W-CDMA network. The class-1 mobile stations are among the most 

widely used of the hand-held devices. Note that equation 4.1 uses the symbol P as compared to S 

used in equation 3.4 since in this simulation the strategies consist in power levels. 

 

4.1.1 The Utility Function 

The utility function helps in the modeling of a power-control game. In the game the cognitive 

radios adjust their power levels in order to maximize their utility, local as well as global. In doing 

this, the radios aim at balancing the signal to interference and noise ratio (SINR) and throughput 

against the power consumption. The SINR is a measure of the quality of signal reception for the 

wireless user. Typically, a user would like to achieve a high quality reception while at the same 

time expending as little energy as possible [34]. A typical scenario which can be used to model 

this setting is that of a single-cell mobile network in which the mobiles adapt their transmit-power 

levels. Studies looking at the power control problem as a game have been conducted by [34][44] 

[45] [46]. These authors have used similar utility functions which help maximize the SINR and 
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thereby achieve a certain minimum Quality of Service (QoS). Some of them have also introduced 

pricing to increase the Pareto efficiency of the solution that is arrived at. The utility function for 

user i is specified as follows [34]: 

 

𝑢𝑖(𝑝𝑖 , 𝒑−𝑖) =  
𝐿𝑅

𝑀𝑝𝑖
(1 − 2 × 𝐵𝐸𝑅)𝑀     (4.2) 

 

where L is the number of information bits in each frame 

 M is the total number of bits in each frame 

 R is the transmission rate (bits/second) 

 pi is the transmission power (watts) 

 BER is the Bit Error Rate 

 

The units of the utility function are bits per joule. Therefore, the utility is a measure of the amount 

of information that can be transmitted per joule of energy. For instance, in the case of a mobile 

device, a higher utility would mean that the device can transmit more information for the period 

during which the battery has charge. The utility function can be set to represent any given 

modulation technique [34] by choosing the appropriate BER 

 

4.1.2 Network Details 

For a W-CDMA network with a spreading factor of 256, each frame has the following parameters: 

L = 100, M = 150 (assuming 1/3- rate coding), R = 15kbps. The modulation scheme used in W-

CDMA is QPSK and the bit error rate for player 𝑖 is given by [47]: 

 

 𝐵𝐸𝑅𝑄𝑃𝑆𝐾 =
1

2
(𝑒𝑟𝑓𝑐(√𝛾𝑖) −  

1

4
 𝑒𝑟𝑓𝑐2(√𝛾𝑖))     (4.3) 

 

where 𝛾𝑖 is the signal to interference and noise ratio (SINR) of the 𝑖th user. The SINR of user 𝑖 is 

given by [44]: 

 

𝛾𝑖 =  
𝑊

𝑅
 

𝑝𝑖ℎ𝑖

∑ 𝑝𝑗ℎ𝑗 +  𝜎2𝑁
𝑗=1,𝑗 ≠𝑖
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(4.4) 

where W = 5 MHz (this is the W-CDMA bandwidth) 

 𝜎2 = 2 × 10−14 𝑊 (AWGN at the receiver) 

 hi is the path gain from user i to the base station. 

 

For a calculation of 𝜎2 see Appendix A. As can be seen from equation (4.4), the SINR at the 

receiver depends on all the users. Therefore, there is an interdependence among the users, which 

is aptly expressed by the utility as given in equation (4.2), which depends on 𝛾𝑖 through the BER. 

This emphasizes the appropriateness of applying game theory in such a problem. In some 

instances, FSK has been used for purposes of comparison. The bit error rate for FSK is given by 

[47]: 

 

𝐵𝐸𝑅𝐹𝑆𝐾 =  
1

2
𝑒−𝛾𝑖 2⁄       (4.5) 

 

For the path gains, the Extended Hata Model (COST-231) [48] is employed. The basic formula for 

the propagation loss in dB given by the Extended Hata Model is  

 

𝐿𝑋𝐻𝑎𝑡𝑎 = 46.33 + (44.9 − 6.55 log ℎ1) log 𝑑𝑘𝑚 + 33.9 log 𝑓𝑀𝐻𝑧 − 𝑎(ℎ2) − 13.82 log ℎ1 + 𝐶 

(4.6) 

Where h1 and h2 are the base station and mobile antenna heights in meters, respectively. According 

to COST-231 h1 can range from 30m – 200m and h2 can range from 1m – 10m. dkm is the link 

distance in kilometers and can range from 1km – 20km; fMHz is the centre frequency in megahertz 

and ranges from 1500MHz – 2000MHz; a(h2) is the antenna height-gain correction factor and is 

given by 

 

𝑎(ℎ2) = (1.1 log 𝑓𝑀𝐻𝑧 − 0.7) ℎ2 − (1.56 log 𝑓𝑀𝐻𝑧 − 0.8)   (4.7) 

 

The parameters used for this study are: h1 = 30 m (the base station average height), h2 = 1.5 m (the 

mobile station average height), fMHz = 1900 MHz; dkm are random distances from 1 km to 2 km. 

For a small – medium city or a suburban area, C = 0 [48] (C represents a correction factor 

introduced in the Extended Hata Model to improve on the accuracy of the model).  
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4.2 Convergence to Nash Equilibrium using Iterative Water-Filling (IWF) 

In this research the iterative water-filling [3][19] [35] technique is implemented in an attempt to 

converge to the Nash Equilibrium (NE). The NE is desirable because it represents a stable 

operating point. The IWF is implemented by employing the Cournot Adjustment Process [37], 

which is essentially a best response correspondence [27] where each player’s strategy is the best 

response to the other players’ strategies. The flowchart of Figure 4.1 illustrates the best response 

correspondence (BRP). 

 

Figure 4.1: IWF using the best response correspondence 

The step “optimize pi” for sequential play is carried out as follows: 

𝑝𝑖
𝑡+1 =  argmax

𝑝𝑖

𝑢𝑖(𝑝𝑖, 𝑝−𝑖
∗ )     (4.8) 

s.t.  0 ≤  𝑝𝑖  ≤ 𝑝𝑚𝑎𝑥 

where 𝑝−𝑖
∗  = {

𝑝−𝑖
𝑡+1, 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑜𝑓 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛   

 
𝑝−𝑖

𝑡 , 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑜𝑓 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤𝑛
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4.3 Algorithm for a Pareto-Superior Power Vector 

Goodman [45] illustrated that for the power control game, a NE reached may not be Pareto-

optimal. This is illustrated by the fact that if all the powers of all users are simultaneously reduced 

by a factor μ then a power vector can be found which is Pareto-superior to the NE, such that  

 

𝑝𝑖
𝑝𝑠

=  𝜇𝑝𝑖 , ∀ 𝑖 ∈ 𝑁       (4.9) 

 

where 𝑝𝑖
𝑝𝑠

 is the pareto superior power vector. 

 

A Pareto superior outcome to the NE can be achieved using the following iterative algorithm: 

a. Play the power control game and adjust the powers of the players until the NE is reached. 

b. Determine the value of μpeak as follows: 

i. Reduce μ in small steps from one towards zero. 

ii. At each step multiply the power vector at NE by μ (a scalar) and calculate the individual 

utilities as well as the sum utility. 

iii. Repeat the reduction of μ until a point at which the sum utility decreases instead of 

increasing or until a point at which the utility for at least one player decreases. 

iv. Take the value of μ at that point to be μ𝑝𝑒𝑎𝑘 .  

c. Adjust the power vector at NE for all players by multiplying each power by the factor μ𝑝𝑒𝑎𝑘 . 

𝑝𝑖
𝑝𝑠

=  μ𝑝𝑒𝑎𝑘 𝑝𝑖 , ∀ 𝑖 ∈ 𝑁       (4.10) 

 

4.4 Implementation of Different Learning Algorithms 

In the research a number of learning algorithms (cf. Section 3.6.1) were also implemented and 

compared in a two-player setting. The main metric was the utility derived by the players. The 

details of the setting were as follows: 

a. The game is a simultaneous game of imperfect information. 

b. The players are at equal distances from the base station so that none of them is 

disadvantaged by virtue of position. A player nearer the base station than another would 

have an advantage in that it would expend less power to transmit the same amount of 

information. 
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c. There are two players, one employing a learning algorithm, and the second one employing 

an adversarial strategy (deterministic and/or non-deterministic). 

d. The player employing the learning uses the different learning algorithms implemented in 

turn against the adversarial player. The utilities derived when using the different learning 

algorithms were compared with each other as well as with the best response dynamic. 

e. The players employ pure strategies as opposed to mixed strategies. 

f. Play first proceeds to reach the NE point, and then the adversarial player breaks away from 

the NE. 

i. The adversarial player in one instance plays with a deterministic strategy and in 

another instance with a non-deterministic strategy. 

ii. The learning player employs the learning algorithm in an attempt to learn the 

strategy of the adversarial opponent over 50 learning iterations. 50 is chosen so as 

to give time to the learner to learn the strategy of the adversarial player. 

g. The players have a reduced strategy set. The deterministic and non-deterministic strategies 

of the adversarial player are as follows: 

i. For the deterministic strategies, the adversarial player repeatedly sets his power in 

each stage game to the following levels in turn: 0.5 W, 1 W, 1.5 W and 1.9 W. 

ii. For the non-deterministic strategies, the adversarial players randomly sets his 

power in each stage game to the same levels in as in a) above with each level having 

a probability of occurrence of 0.25. Other probability distributions are possible; it 

will be the goal of the learning player to learn the probability distribution of the 

adversarial player, whichever it may be, and adjust its own strategy accordingly. 

 

The adversarial player in these simulations represents a player who does not necessarily play 

according to the best response dynamic. The adversarial player can be viewed as an embodiment 

of an entire wireless network with many players. It can thus represent the sum total of conditions 

and changes that may occur in the wireless network and which are perceived by a learning player 

trying to maximize its utility. 
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4.5 Interfacing Iterative Water-Filling and Game-Theoretic Learning 

Iterative water-filling has the advantage that it exhibits fast convergence behaviour by virtue of 

incorporating information on both the channel and the RF environment. However, it lacks the 

learning strategy that could enable it to guard against exploitation [3]. Game-theoretic learning 

models on the other hand have the advantage that they incorporate a regret agenda such that the 

learner cannot be deceptively exploited by a cleverer player. However, they converge 

comparatively slowly [3]. 

 

In this research iterative water-filling is combined with game-theoretic learning models to come 

up with an algorithm which draws from the advantages of both techniques. The hybrid is intended 

to exhibit fast convergence behaviour as well as incorporate a regret agenda which helps reduce 

the possibility of exploitation by a cleverer or malicious player. 

 

4.6 Proposed Hybrid-Adaptive Algorithm 

Figure 4.2 shows the algorithm employed to integrate IWF and no-regret game-theoretic learning. 

The play begins with the first stage game. At this point the iterative water-filling algorithm is first 

run. IWF has been chosen to run first because it has a fast convergence characteristic and it is 

desirable that the game converges to the Nash Equilibrium as soon as possible. Each time the IWF 

algorithm is run for all players. The IWF algorithm is run until the NE is reached. A condition is 

put in place to ensure that this iteration does not create an infinite loop in the event that a NE is 

not reached or does not exist. This condition consists in checking that the iterations do not exceed 

a predetermined maximum number of iterations. Note that the existence of the NE is partly 

dependent on the utility function chosen. In the modeling for this research, the utility function 

employed has been shown to result in the existence of the NE (cf. Section 4.1.1). 

 

Once the NE is reached, a switch is made in order to run the game-theoretic learning algorithms. 

The learning algorithms have a slower convergence characteristic but guard well against possible 

exploitation or adaptations in the network conditions. The learning algorithms are used to maintain 

the NE (after convergence) and to reduce the possibility of exploitation, a task which the learning 

algorithms performs better than the IWF. The two learning algorithms used were HMA and HA. 

These two algorithms were selected based on their superior empirical performance. 



 

 
38 

 

The parameters relevant to the learning algorithms employed are first set. These include the NE 

window length, the variation threshold, the correlation threshold and the pattern length. The NE 

window length is a moving window containing a history of the strategies of the players once the 

NE is reached for a number of iteration. A longer window implies more iterations making up the 

history for analysis.  

 

Figure 4.2: Hybrid-Adaptive Algorithm 
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Exceeding the variation threshold prompts the use of either HMA or HA; if the variation threshold 

is not exceeded BRP is used. The variation in this case is a measure of the magnitude of changes 

occurring in power levels between successive iterations. 

 

The pattern length is the number of previous iterations taken into account in order to perform a 

correlation with the rest of the history of strategies available. If the correlation threshold is 

exceeded HMA is employed, otherwise HA is employed. 

 

The adaptive learning algorithm draws on the strengths of two learning algorithms and enables the 

learning player to detect the mode of play of the adversarial player and adapt its own mode of play 

to suit that of the adversarial player. This is done in an attempt to maximize the utility accrued to 

the learning player. Thus, when the learning algorithms are being utilized, there is an adaptation 

from one learning algorithm to another, based mainly on the measured variation of power levels 

and the value for the correlation performed, which are used to detect the mode of play of the 

opponent. 

 

Therefore, the overall hybrid-adaptive algorithm used in the research entails a hybrid of Iterative 

Water-Filling and learning, with the learning component consisting of an algorithm that adapts 

between two different learning algorithms, HMA and HA. 
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5 RESULTS AND DISCUSSION 

5.1 Convergence to Nash Equilibrium (NE) using Iterative Water-Filling 

The number of players is denoted by 𝑁, with 𝑁 ≥ 2. Each of the players play sequentially using 

the best response dynamic over a number of iterations in an attempt to converge to a Nash 

Equilibrium. The sequential play is one with perfect information in that the player whose turn it is 

to play has knowledge of the most recent strategies employed by all other players. For the utility 

function being used, a pure strategy Nash Equilibrium has been shown to exist [34]. Each player 

chooses the best response to the actions of the other players. Therefore, the Nash Equilibrium 

consists of the mutual best responses of all the players in a given game. 

 

Table 5.1 – Table 5.5 show some of the convergence characteristics for 2, 3, 4, 5 and 10 players 

all employing QPSK. 

 

Table 5.1: NE for 2 players 

Player 

distance from BS 

(km) 

NE Tx Power 

(W) 

NE SINR 

(dB) 

NE Utility  

(106 b/J) 

1 1.1319 0.0050 5.2761 1.6804 

2 1.2476 0.0070 5.2422 1.1925 

Iterations to 

reach NE:  2   Sum Utility 2.8729 

 

 

Table 5.2: NE for 3 players 

Player 

distance from BS 

(km) 

NE Tx Power 

(W) 

NE SINR 

(dB) 

NE Utility  

(106 b/J) 

1 1.1319 0.0051 5.2939 1.6529 

2 1.2476 0.0072 5.3047 1.1731 

3 1.3304 0.0090 5.2875 0.9355 

Iterations to 

reach NE:  2   Sum Utility 3.7616 
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Table 5.3: NE for 4 players 

Player 

distance from BS 

(km) 

NE Tx Power 

(W) 

NE SINR 

(dB) 

NE Utility  

(106 b/J) 

1 1.1319 0.0052 5.3103 1.6260 

2 1.2476 0.0073 5.2909 1.1541 

3 1.3304 0.0091 5.2590 0.9203 

4 1.4815 0.0133 5.2620 0.6300 

Iterations to 

reach NE:  2   Sum Utility 4.3305 

 

Table 5.4: NE for 5 players 

Player 

distance from BS 

(km) 

NE Tx Power 

(W) 

NE SINR 

(dB) 

NE Utility  

(106 b/J) 

1 1.1319 0.0052 5.2223 1.5990 

2 1.2476 0.0074 5.2757 1.1353 

3 1.3304 0.0093 5.2874 0.9053 

4 1.4815 0.0135 5.2539 0.6197 

5 1.5569 0.0161 5.2607 0.5203 

Iterations to 

reach NE:  2   Sum Utility 4.7797 

 

Table 5.5: NE for 10 players 

Player  

distance from BS 

(km) 

NE Tx Power 

(W) 

NE SINR 

(dB) 

NE Utility  

(106 b/J) 

1 1.1319 0.0057 5.2414 1.4642 

2 1.2476 0.0081 5.2873 1.0394 

3 1.3304 0.0101 5.2569 0.8288 

4 1.4815 0.0148 5.2738 0.5674 

5 1.5569 0.0176 5.2653 0.4764 

6 1.6306 0.0207 5.2616 0.4048 

7 1.7246 0.0253 5.2790 0.3323 

8 1.8104 0.0300 5.2756 0.2800 

9 1.8927 0.0350 5.2625 0.2394 

10 1.9611 0.0397 5.2676 0.2113 

Iterations to 

reach NE:  3   Sum Utility 5.8442 

 

In all cases the play of the game (iterations) converges to a Nash Equilibrium (NE) with NE SINR 

for all players being close to the expected SINR (cf. Appendix A). The close SINR of all players 
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gives an indication as to the fairness of the NE from the point of view of the signal received at the 

base station. The play converges to the same NE regardless of the order in which the players play. 

Generally, the higher the number of players the higher the number of iterations needed to converge 

to the NE. 

 

Figure 5.1 shows the number of iterations taken to reach convergence for QPSK. In each iteration 

each player adjusts his power to maximize utility and the iterations continue until an equilibrium 

is reached. Figure 5.2 shows the convergence in the case of FSK. 

 

Figure 5.1: Convergence to NE of 10 players using QPSK 

 

Figure 5.2: Convergence to NE of 10 players using FSK 
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When compared to the utility function that employs FSK, it is noticed that QPSK takes fewer 

iterations to converge. This can be attributed to the fact that QPSK a different BER function to 

arrive at the utility is used. In the case of FSK it takes 7 iterations to converge. The characteristics 

of the NE that the FSK situation converges to are shown in Table 5.6. 

 

Table 5.6: NE for 10 players using FSK 

Player  

distance from 

BS (km) 

NE Tx 

Power (W) 

NE SINR 

(dB) 

NE Utility  

(105 b/J) 

1 1.1319 0.0208 13.9272 4.1716 

2 1.2476 0.0293 13.9245 2.9608 

3 1.3304 0.0367 13.9077 2.3610 

4 1.4815 0.0536 13.9054 1.6163 

5 1.5569 0.0638 13.8959 1.3570 

6 1.6306 0.0751 13.8980 1.1530 

7 1.7246 0.0915 13.8993 0.9464 

8 1.8104 0.1086 13.9038 0.7976 

9 1.8927 0.1270 13.9026 0.6820 

10 1.9611 0.1439 13.9008 0.6018 

   

Sum 

Utility 16.6475 

 

5.2 Utility as a function of Power 

The variation of utility with power shown in Figure 5.3 illustrates the characteristics of the utility 

function.  

 

Figure 5.3: Variation of utility with power for 5 players using QPSK in the last iteration 
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As power for each user increases the utility increases but only until a certain point where an 

increase in power results in a reduced utility. Therefore, a user cannot indiscriminately increase 

power in an attempt to increase utility. The players closer to the base station achieve a higher utility 

than those farther away. This is expected since the mobile stations closer to the base station 

generally have to expend less power to achieve a target SINR. 

 

5.3 Pareto Optimality 

Goodman [45] illustrated that for the power control game, a NE reached may not be Pareto optimal. 

This is illustrated by the fact that if all the powers of all users are simultaneously reduced by a 

factor μ (equation 5.1) then a power vector can be found which is Pareto superior to the NE, such 

that  

 

𝑝𝑖𝑛𝑒𝑤
=  𝜇𝑝𝑖 , ∀ 𝑖 ∈ 𝑁      (5.1) 

 

For the QPSK simulation, the parameter μ was varied from 0 to 2 in steps of 0.001 for games with 

up to 60 players. Table 5.7 shows the variation of 𝜇𝑝𝑒𝑎𝑘  with the number of players, N, who are 

all at a distance of 1.2 km from the base station so as to present a fairer situation without any 

players being advantaged by virtue of position. 𝜇𝑝𝑒𝑎𝑘  is the value of μ at which the peak in the 

sum utility occurs. It was noticed that the peak in the sum utility does not occur at the same value 

of μ for different numbers of players. For higher numbers of players it was observed that peak of 

the utility sum occurred at lower values of μ.  

 

The Pareto-superior outcomes (at 𝜇𝑝𝑒𝑎𝑘) in Table 5.7 were effectively obtained by employing the 

algorithm for Pareto-superior power vector in Section 4.3. The Algorithm for Pareto-improvement 

helps achieve a higher overall utility for the entire system while guaranteeing that the utility for all 

players is at least equal to their utilities at NE. The utilities and power vectors at 𝜇𝑝𝑒𝑎𝑘  do not 

constitute an equilibrium point and would therefore need to be enforced. The enforcing mechanism 

can be done via a minimum of cooperation or implementation of punishment in the repeated game 

[32]. 
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Table 5.7: Variation of μpeak, sum utilities and average utilities with the number of players 

N μpeak 

Sum Utility 

at μpeak  

(106 b/J) 

Average Utility 

per Player 

at μpeak  

(106 b/J) 

Sum Utility 

at NE 

(106 b/J) 

Sum Utility 

at NE 

(106 b/J) 

2 0.96 2.7331 1.3666 2.7331 1.3666 

3 0.96 4.0280 1.3427 4.0280 1.3427 

4 0.96 5.2715 1.3179 5.2715 1.3179 

5 0.96 6.4612 1.2922 6.4612 1.2922 

6 0.92 7.6847 1.2808 7.5774 1.2629 

7 0.93 8.8146 1.2592 8.7269 1.2467 

8 0.94 9.9019 1.2377 9.8369 1.2296 

9 0.95 10.9470 1.2163 10.9050 1.2117 

10 0.95 11.9410 1.1941 11.9290 1.1929 

11 0.96 12.9060 1.1733 12.9060 1.1733 

12 0.96 13.8340 1.1528 13.8340 1.1528 

13 0.96 14.7110 1.1316 14.7110 1.1316 

14 0.9 15.5530 1.1109 15.2350 1.0882 

15 0.91 16.3520 1.0901 16.0970 1.0731 

16 0.92 17.1120 1.0695 16.9170 1.0573 

17 0.93 17.8300 1.0488 17.6920 1.0407 

18 0.95 18.5110 1.0284 18.4220 1.0234 

19 0.95 19.1480 1.0078 19.1040 1.0055 

20 0.96 19.7360 0.9868 19.7360 0.9868 

21 0.88 20.3220 0.9677 19.8280 0.9442 

22 0.89 20.8490 0.9477 20.4520 0.9296 

23 0.91 21.3390 0.9278 21.0330 0.9145 

24 0.92 21.7940 0.9081 21.5680 0.8987 

25 0.93 22.2110 0.8884 22.0570 0.8823 

26 0.85 22.5930 0.8690 21.8380 0.8399 

27 0.87 22.9390 0.8496 22.3130 0.8264 

28 0.88 23.2520 0.8304 22.7450 0.8123 

29 0.89 23.5300 0.8114 23.1330 0.7977 

30 0.82 23.7740 0.7925 22.7150 0.7572 

31 0.84 23.9860 0.7737 23.0820 0.7446 

32 0.85 24.1650 0.7552 23.4090 0.7315 
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N μpeak 

Sum Utility 

at μpeak  

(106 b/J) 

Average Utility 

per Player 

at μpeak  

(106 b/J) 

Sum Utility 

at NE 

(106 b/J) 

Sum Utility 

at NE 

(106 b/J) 

33 0.79 24.3120 0.7367 22.8640 0.6928 

34 0.81 24.4270 0.7184 23.1640 0.6813 

35 0.76 24.5130 0.7004 22.5470 0.6442 

36 0.77 24.5690 0.6825 22.8140 0.6337 

37 0.78 24.5960 0.6648 23.0440 0.6228 

38 0.74 24.5930 0.6472 22.3990 0.5894 

39 0.75 24.5640 0.6298 22.5940 0.5793 

40 0.71 24.5070 0.6127 21.9390 0.5485 

41 0.68 24.4230 0.5957 21.2910 0.5193 

42 0.69 24.3150 0.5789 21.4450 0.5106 

43 0.66 24.1820 0.5624 20.8080 0.4839 

44 0.63 24.0250 0.5460 20.1930 0.4589 

45 0.61 23.8450 0.5299 19.6030 0.4356 

46 0.59 23.6420 0.5140 19.0390 0.4139 

47 0.57 23.4190 0.4983 18.4980 0.3936 

48 0.55 23.1740 0.4828 17.9810 0.3746 

49 0.51 22.9090 0.4675 16.9520 0.3460 

50 0.5 22.6280 0.4526 16.5060 0.3301 

51 0.47 22.3270 0.4378 15.6230 0.3063 

52 0.45 22.0110 0.4233 14.8250 0.2851 

53 0.41 21.6770 0.4090 13.7470 0.2594 

54 0.38 21.3280 0.3950 12.8100 0.2372 

55 0.36 20.9680 0.3812 11.9900 0.2180 

56 0.32 20.5920 0.3677 10.8190 0.1932 

57 0.29 20.2060 0.3545 9.6774 0.1698 

58 0.25 19.8080 0.3415 8.4781 0.1462 

59 0.22 19.3990 0.3288 7.3371 0.1244 

60 0.18 18.9830 0.3164 6.0328 0.1005 
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Figure 5.4 illustrates the variation of sum utility with μ in the specific case of 40 players. When μ 

= 1, the scenario is that of the NE. Values of μ greater than 1 result in reduced utilities. However, 

when μ reduces slightly, there is an increase in the sum utility without a reduction in utility for any 

one of the players; as μ reduces further beyond 𝜇𝑝𝑒𝑎𝑘  the utility begins to drop rapidly. It is seen 

that some strategies exist that are Pareto-superior to the NE. The algorithm for Pareto-superior 

power vector given in Section 4.3 can thus be employed to improve on the NE. In the case of 40 

players 𝜇𝑝𝑒𝑎𝑘  was found to be 0.71 as shown in Figure 5.4. 

 

Figure 5.4: Sum of utility against μ for 40 players 

 

The variation of Table 5.7 is illustrated in Figure 5.5. It is noticed that the Sum Utility at NE (μ = 

1) and at μpeak generally increases as the number of players increase. As the players increase 

further, the Sum Utility levels off and begins to drop. This points to the fact that increasing the 

number of players does not indefinitely increase the sum utility that can be drawn from the network 

as congestion always leads to poorer throughput. It is noticed that the average utility per player 
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(both at NE and at μpeak reduces steadily as the number of players increases, which is expected, 

since more players means that the same electromagnetic spectrum has to be shared by more users. 

 

 

Figure 5.5: Variation of Sum Utility with number of players 

 

Figure 5.6 illustrates graphically the variation of μpeak with the number of players. It is noticed that 

as the number of players increases the μpeak reduces. 

 

 

Figure 5.6: Variation of μpeak with number of players 
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is arrived at using the algorithm for a Pareto-superior power vector. In both figures, the 60 players 

are placed at equal intervals between 1 km and 2 km such that player 1 is 1km from the base station 

and player 60 is 2 km from the base station. Figure 5.7 and Figure 5.8 illustrate the fact that the 

iterative algorithm for Pareto-improvement yields higher utilities. 

 

Figure 5.7: Utilities for 60 players with μ = 1 (NE) and μ = μpeak (0.18) 

 

Figure 5.8: Power levels for 60 players with μ = 1 (NE) and μ = μpeak (0.18) 
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Determination of μpeak: 

Based on the data of Figure 5.6 a curve-fitting procedure was used to establish a relationship 

between μpeak and the number of players. Following from this, the value of μpeak can be expressed 

as 

 𝜇𝑝𝑒𝑎𝑘 =  (− 0.0301𝑁3 − 0.4412𝑁2  +  0.0128𝑁 +  9481) × 10−4 (5.2) 

where N is the number of players. 

Figure 5.9 shows a comparison of the variation of μpeak with the number of players based on 

equation 5.2 and the experimental variation of the number of players with μpeak. 

 

Figure 5.9: Comparison of values of μpeak based on measured values and developed equation 
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Figure 5.10: Utilities for 60 players using different values of μ 

 

 

Figure 5.11: Powers for 60 players using different values of μ 
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This technique for finding a Pareto-superior power vector to the NE offers an improvement to the 

iterative algorithm for Pareto-superior power vector presented in Section 4.3 as well as to other 

methods such as the method of pricing employed by [34][46] in that a direct equation can be 

employed to arrive at μpeak which can then be used to improve on the NE. The technique used in 

[34][46] entails iteratively looking for the parameter, which can result in a slower process. 

 

5.4 Convergence to NE for Players with different Utility Functions 

A simulation was done for 5 players using the utility function based on QPSK and 5 players for 

the utility function based on FSK. It was found that the play still converged to NE (Figure 5.12); 

however, the NE SINR’s were different. For Figure 5.12, the distances from base stations in km 

were as indicated in Table 5.8. It is noted that for the players based on QPSK the NE SINR was 

close to 5.3 whereas for those based on FSK the NE SINR was close to 13.9; these are the expected 

NE SINR for QPSK and FSK, respectively. 

 

Table 5.8: NE details for a combination of QPSK and FSK 

Player 
Modulation 

Scheme 

Distance from 

BS (km) 

NE Tx 

Power (W) 

SINR 

(dB) 

NE Utility  

(105 b/J) 

1 QPSK 1.1319 0.0067 5.2682 1.2521 

2 FSK 1.2476 0.0243 13.9075 0.3566 

3 QPSK 1.3304 0.0118 5.2512 0.7087 

4 FSK 1.4815 0.0445 13.9037 0.1947 

5 QPSK 1.5569 0.0206 5.2694 0.4073 

6 FSK 1.6306 0.0624 13.9079 0.1389 

7 QPSK 1.7246 0.0295 5.2627 0.2841 

8 FSK 1.8104 0.0902 13.9081 0.0961 

9 QPSK 1.8927 0.0410 5.2710 0.2047 

10 FSK 1.9611 0.1195 13.9028 0.0725 

Iterations to reach NE: 5 
 Sum Utility 3.7156 

 

 



 

 
53 

 

 

Figure 5.12: Convergence for 10 players employing different utility functions 
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communicate simultaneously. For simultaneous play the step “optimize pi” as illustrated in Figure 

4.1 is carried out as follows: 
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𝑡+1 =  argmax

𝑝𝑖

𝑢𝑖(𝑝𝑖, 𝑝−𝑖
𝑡 )     (5.3) 

s.t.  0 ≤  𝑝𝑖  ≤ 𝑝𝑚𝑎𝑥 

 

 

This section presents the results for the simultaneous play and compares them with the results for 

the sequential play. Table 5.9 shows the details of the NE for 10 players in simultaneous play. 
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Table 5.9: NE for 10 players in simultaneous play 

Player 

distance 

from BS 

(km) 

NE Tx Power 

(W) 

NE SINR 

(dB) 

NE Utility  

(106 b/J) 

1 1.1319 0.0057 5.2414 1.4642 

2 1.2476 0.0081 5.2873 1.0394 

3 1.3304 0.0101 5.2569 0.8288 

4 1.4815 0.0148 5.2738 0.5674 

5 1.5569 0.0176 5.2653 0.4764 

6 1.6306 0.0207 5.2616 0.4048 

7 1.7246 0.0253 5.2790 0.3323 

8 1.8104 0.0300 5.2756 0.2800 

9 1.8927 0.0350 5.2625 0.2394 

10 1.9611 0.0397 5.2676 0.2113 

Iterations to 

reach NE: 4   

Sum 

Utility 5.8442 

 

 

Figure 5.13 and Figure 5.14 show the convergence to NE in the case of 10 players and 20 players, 

respectively, using QPSK. Figure 5.13(a) and Figure 5.14(a) are the case of sequential play with 

perfect information (Cournot Adjustment) whereas Figure 5.13(b) and Figure 5.14(b) are the result 

of simultaneous play with imperfect information. It is noted that the sequential play and the 

simultaneous play converge to the same equilibrium points i.e. the play converges to the same 

transmit powers, SINR and utility for all players in the case of simultaneous play as compared to 

sequential play. This is also seen from Table 5.5 and Table 5.9. 

 

However, it is noted that the simultaneous play takes more iterations to reach the NE point. In the 

case of 10 players it took 4 iterations as compared to 3 for sequential play to reach convergence. 

In the case of 20 players it took 8 iterations to reach convergence with simultaneous play as 

compared to 5 iteration for sequential play. Sequential play converges faster due to the fact that 

the players have knowledge of the moves of other players in any individual stage game whereas 

in simultaneous they don’t have the knowledge since the play is taking place at the same time. 

Having this extra information results in a faster convergence. 
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(a) Sequential Play 

 

 
(b) Simultaneous Play 

 

Figure 5.13: Convergence to NE for 10 players 
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(a) Sequential Play 

 

 
(b) Simultaneous Play 

 

Figure 5.14: Convergence for 20 players 
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5.6 No-Regret Game-Theoretic Learning 

This section presents the results of implementations of game-theoretic learning. The first 

subsection shows the performance of a learning player playing against an adversary using the best 

response to the previous strategy. The results of the learning player playing against a deterministic 

and probabilistic adversary are then given. 

 

5.6.1 Best Response to the Previous Strategy of the Opponent (BRP) 

Figure 5.15 and Figure 5.16 show the strategies of an adversarial opponent together with those of 

a learning player over 50 iterations. Figure 5.15 illustrates the case where the opponent is 

deterministic and Figure 5.16 illustrates the case where the opponent is non-deterministic. 

 
Figure 5.15: Learning players BRP response to deterministic adversary 

 

In both Figure 5.15 and Figure 5.16, the player using the best response dynamic (BRP) is seen to 

utilize strategies which are best responses to the play of the adversarial opponent in the previous 

iteration. This is evidenced by the fact that the shape of the graph of the strategies of the learning 

player follows the shape of the graph of the strategies of the adversarial player, only that they are 

delayed by one iteration. BRP algorithm does not use any significant history and was the base case 
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used to gauge the performance of the other learning algorithms given that it forms the fundamental 

implementation of IWF. 

 

Figure 5.16: Learning player’s BRP response to probabilistic adversary 

5.6.2 Learning Against a Deterministic Adversary 

The learning algorithms were implemented in turn and used against an adversary playing with a 

deterministic strategy as shown in Figure 5.15(a). Table 5.10 shows the utilities accrued when 

using the basic IWF as well as the different learning algorithms. Table 5.10 also shows the eventual 

data rates based on the utilities and the average power. The average utility and average power were 

the averages taken over 50 iterations that were used for the learning. 

Table 5.10: Utilities using the different learning algorithms 

  
Cumulative 

Utility 

Average 

Utility 

Average 

Power 

Data 

Rate 
Improvement 

over BRP  

(%)   (x 107 b/J) (x 105b/J) (W) (b/s) 

BRP Player (IWF) 1.0469 2.0939 0.0248 5192.87 N/A 

Learning using 

RMA 
1.3338 2.6675 0.0237 6321.98 27.39 

Learning using HA 1.3830 2.7660 0.0249 6887.34 32.10 

Learning using 

AWM 
1.0469 2.0939 0.0248 5192.87 0.00 

Learning using 

HMA 
1.7555 3.5111 0.0240 8426.64 67.68 
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The player using BRP against the deterministic adversarial player achieved a cumulative utility of 

1.0469 x 107 b/J over 50 iterations. The player that was able to best learn the strategy of the 

adversarial player was the player employing the HMA. The HMA yielded a cumulative utility of 

1.7555 x 107 b/J which was an improvement in the cumulative utility of 0.7086 x 107 b/J. This was 

a 67.68% improvement over the base case. This was the best improvement. On the other hand 

learning using AWM did not register any improvement over BRP. The percentage improvements 

were calculated based on the average utilities. 

 

For the HMA, a variation was done on the length of the recent history of stage games (the pattern) 

being matched with the rest of the previous stage games. This was done in the case where S2 = 

{0.5 W, 1 W, 1.5 W}, S2 = {0.5 W, 1 W, 1.5 W, 1.9W} and S2 = {0.5 W, 0.9 W, 1.3 W, 1.6 W, 

1.9 W}. The results of the variation are illustrated in Table 5.11, Table 5.12 and Table 5.13, 

respectively. 

 

Table 5.11: Effects of pattern length variation with strategy space size of 3 

  pattern length 

  2 3 4 5 6 7 8 9 10 

Cumulative Utility  

(107 b/J) 
2.01 1.99 1.96 1.93 1.91 1.88 1.84 1.83 1.80 

Average Utility (105 b/J) 4.02 3.98 3.92 3.86 3.83 3.75 3.69 3.66 3.60 

 

Table 5.12: Effects of pattern length variation with strategy space size of 4 

  pattern length 

  2 3 4 5 6 7 8 9 10 

Cumulative Utility  

(107 b/J) 
1.72 1.76 1.73 1.70 1.67 1.64 1.62 1.58 1.55 

Average Utility (105 b/J) 3.44 3.51 3.47 3.39 3.34 3.28 3.25 3.16 3.11 

 

Table 5.13: Effects of pattern length variation with strategy space size of 5 

  pattern length 

  2 3 4 5 6 7 8 9 10 

Cumulative Utility  

(107 b/J) 
1.64 1.68 1.68 1.66 1.62 1.60 1.57 1.56 1.54 

Average Utility (105 

b/J) 
3.29 3.37 3.35 3.32 3.25 3.21 3.14 3.12 3.09 
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When the strategy space size is 4, the highest utility for the HMA occurred when the pattern length 

was 3 (this is the utility used for comparison purposes in Table 5.10). The utilities for longer 

patterns were generally lower. Table 5.11 – Table 5.13 show that a pattern length equal to the 

strategy space size yields an average utility close to the highest average utility. 

 

The lower cumulative utilities at higher pattern lengths were attributed to the specific 

implementation of the HMA; based on the implementation of the HMA, the greater the pattern 

length the more iterations needed before the HMA can be effectively employed i.e. its activation 

is delayed by a number of iterations proportional to the pattern length. However, it was seen that 

most of the cumulative utilities of the HMA were still greater than those of the other learning 

algorithms. 

 

The variation of the strategies for the learning player as well as the deterministic adversarial player 

are illustrated in Figure 5.17. The pattern length being employed is 4. It is seen that after 6 

iterations the strategies of the learning player correspond to those of the adversarial player; the 

peaks and valleys occur at the same iteration points unlike in the case of best response (Figure 

5.15) where there was a delay of one iteration in the learning player to correspond to the adversarial 

player. 

 

Figure 5.17: Learning player’s HMA response to deterministic adversary 
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For the RMA, the history size over which the cumulative regret is calculated was varied. The 

results are shown in Table 5.14. It was seen that the maximum cumulative utility occurred with a 

history size of 8. The strategy space for Table 5.14 was S2 = {0.5 W, 1 W, 1.5 W, 1.9 W}.  

 

Table 5.15 shows the variation when the strategy space was S2 = {0.5 W, 1 W, 1.5 W}, i.e. when 

the strategy space size was 3. 

 

Table 5.14: Utility values with varying history size for RMA with strategy space size of 4 

 History Size 

 1 2 3 4 5 6 7 8 9 10 20 30 

Cumulative 

Utility (107 b/J) 
1.05 0.90 0.92 1.16 1.18 1.03 1.06 1.33 1.25 1.06 1.18 1.11 

Average Utility 

(105 b/J) 
2.09 1.80 1.84 2.32 2.36 2.06 2.11 2.67 2.50 2.12 2.36 2.23 

 

 

Table 5.15: Utility values with varying history size for RMA with strategy space size of 3 

 History Size 

 1 2 3 4 5 6 7 8 9 10 20 30 

Cumulative 

Utility (107 b/J) 
1.15 1.07 1.55 1.35 1.22 1.50 1.37 1.30 1.47 1.40 1.35 1.38 

Average Utility 

(105 b/J) 
2.30 2.14 3.10 2.69 2.45 2.99 2.74 2.60 2.95 2.80 2.69 2.77 

 

 

5.6.3 Learning Against a Probabilistic Adversary 

Table 5.16 shows the utilities accrued when using the different algorithms when playing against a 

player who chooses his strategies from the strategy space with certain probabilities. The average 

utility and average power were the averages taken over 50 iterations that were used for the learning. 

The strategy space of the adversarial player is: 

 

S2 = {0.5 W, 1 W, 1.5 W, 1.9 W}.     (5.4) 

 

The strategy chosen in each iteration is 𝑠𝑖 ∈ 𝑆𝑖 with each si occurring with probability of 0.25.  
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Table 5.16: Utility values in the probabilistic case 

  

Cumulative 

Utility 

Average 

Utility 

Average 

Power 

Data 

Rate 

Improvement 

over BRP 

  (X 107 b/J) (X 105 b/J) (W) (b/s) (%) 

BRP Player (IWF) 1.2020 2.4039 0.0259 6226.101 N/A  

Learning using 

RMA 
1.3372 2.6745 0.0246 6579.27 11.26 

Learning using HA 1.3925 2.7850 0.0265 7380.25 15.85 

Learning using 

AWM 
1.2508 2.5016 0.0285 7129.56 4.06 

Learning using 

HMA 
1.332 2.664 0.0242 6446.88 10.82 

 

In Table 5.16, each of the algorithms were played against the adversarial player 4 times. The 

utilities accrued each time differed slightly due to the randomization of the strategies chosen by 

the adversarial player. Therefore, the average values over the four runs were used. 

 

As Table 5.16 shows, the HA algorithm performs best against the probabilistic adversarial player. 

The HA algorithm achieved a cumulative utility of 1.39 x 107 b/J whereas the BRP player achieved 

cumulative of 1.202 x 107 b/J. Therefore, the improvement of HA over BRP in the probabilistic 

case was 15.85%, which was the best improvement. The percentage improvements were calculated 

based on the average utilities. The players using the RMA, AWM and HMA algorithm also 

generally achieved utilities higher than the BRP algorithm, which was the base case for the 

evaluation of the other algorithms. The graphs for the strategies of the probabilistic adversarial 

player and the player using the HA are shown in Figure 5.18. After a number of iterations the 

strategies of the learning player using HA converge to a level that depends on the probability 

distribution of the individual strategies of the adversarial player. 

 

The HMA algorithm performed well in the case of the deterministic adversary. However, in this 

case of a probabilistic adversary the HMA algorithm was seen not to be the best performer. When 

the length of the pattern used for history matching in the HMA was varied, it was noticed that there 

was no improvement in the utility accrued. This is illustrated in Table 5.17. A pattern length of 5 

achieved the highest utility. This is the pattern length used for comparison purposes in Table 5.16. 
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Figure 5.18: Learning player’s HA response to probabilistic adversary 

 

 

Table 5.17: Variation of the pattern length for HMA 

 Pattern length 

 2 3 4 5 6 7 8 9 10 

Cumulative Utility 

(107 b/J) 
1.25 1.10 1.26 1.33 1.20 1.15 1.17 1.20 1.11 

Average Utility 

(105 b/J) 
2.51 2.20 2.52 2.66 2.39 2.31 2.35 2.41 2.22 

 

 

5.7 Comparison of BRP algorithm and No-Regret Learning in Converging to NE 

The best response dynamic that has been hitherto employed to investigate the NE characteristics 

was compared to the implementation of RMA learning algorithm. The RMA was chosen as the 

basis for comparison in this case as it appeared to be the most basic of the learning algorithms. 

The convergence characteristics of the learning algorithm in the case of 10 players are depicted in 

Figure 5.19. 
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Comparing Figure 5.19 to Figure 5.1, it is seen that for 10 players, using the RMA learning 

algorithm, the play converges to the same NE as in the case of the best response dynamic (Figure 

5.1). However, convergence to NE takes place after 17 iterations as compared to the case of the 

best response dynamic in sequential and simultaneous play, which takes 3 and 4 iterations, 

respectively. This means that IWF (through BRP) converges more than five times faster than 

learning in sequential play. 

 

Therefore, it is seen that the learning algorithms converge to pure strategy NE in games for which 

the pure strategy NE exists. However, the learning algorithm converges comparatively slowly. 

 

Figure 5.19: Convergence to NE of 10 players all using a learning algorithm 

 

5.8 General Comments on BRP, HMA and HA 

It has been seen that the learning algorithms are capable of adapting well to the strategies of a 

player who does not play according to the best response dynamic. By extension, the learning 

algorithms are also capable of adapting to changes in the network environment. The learning 

algorithms adapt better than the iterative water-filling, exemplified by the BRP algorithm, which 

was the basic algorithm used to arrive at and maintain the NE.  
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Among the learning algorithms, the HMA was seen to perform better in the case where the 

adversarial player changes strategies in a deterministic fashion. In the case where the adversarial 

player changes strategies in a probabilistic fashion, the HA was seen to perform better than the 

other algorithms. 

 

The BRP algorithm was seen to have the advantage of faster convergence to NE in the scenario 

where the players are all playing their best responses to the strategies of the other players. In such 

cases the learning algorithms take many more iterations to converge to the same equilibrium point. 

 

Therefore, whereas BRP converges faster, after equilibrium the learning algorithms adapt to 

changes better. 

 

5.9 Performance of the Proposed Hybrid-Adaptive Algorithm 

Figure 5.20 shows the strategies of the modes of play adopted by the adversarial player over 150 

stage games as well as the corresponding responses of the learning player. In this case 150 was 

selected for the number of stage games to merely present more iterations in which the learning 

algorithms could be studied and tested.  

 

Figure 5.20: Strategies of the varying adversary and the adapting learning player 
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For purposes of clarity Figure 5.21 shows the strategies of the adversarial player over the first 10 

stage games. It is noted that after the first three iterations there is a convergence to NE. This is due 

to the fact that the learning player is also playing according to BRP, which typically has fast 

convergence. There is also a convergence to the same NE from iteration 71 – 90 since the 

adversarial player is using BRP which prompts the same response from the learner. 

 

Figure 5.21: Convergence to NE in the first 10 iterations 

 

As shown in Figure 5.20(a), the adversarial player employs different modes of play. Initially it 

plays according to BRP for 10 stage games. It then changes to a deterministic mode of play for 30 

stage games followed by a probabilistic mode of play for another 30 stage games. This sequence 

of BRP, deterministic and probabilistic modes of play is then repeated for the next 80 stage games: 

BRP (iteration 71 – 90), deterministic mode (iteration 91 – 120) and probabilistic mode (iteration 

121 – 150). Figure 5.20(b) shows the strategies that the learning player adopts based on the 

detected modes of play of the adversarial player. It is seen that in the first 10 stage games the 

learning player also adopts a BRP mode of play. In this case, the play converges to a NE, with 

each player having a transmit power of 0.0061 W. 

 

The next stage games (11 – 40) show the learning player’s response to the adversarial player 

employing a deterministic mode of play. It is seen that once the learning player detects this strategy 

the HMA algorithm enables the learning player to follow closely the periodic variations of the 
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adversarial player, thus maximizing utility. It is noticed that between iteration 11 and 20, the peaks 

and valleys of the learning player trail those of the adversarial player and from iteration 20 onwards 

they coincide. This is due to the fact that the learning player takes 9 iterations to acquire sufficient 

history of the deterministic play and only then is it able to make more accurate predictions of the 

adversarial player’s strategies. 

 

In stage games 41 – 70, the learning player’s response to the adversarial player employing a 

probabilistic strategy is shown. Within a few iterations the learning player detects the change in 

the mode of play from deterministic to a probabilistic play and correspondingly adapts its mode of 

play to the HA. It is noticed that between iteration 140 and 150 the learning player detects the 

mode of play of the adversary wrongly. This is manifested in the glitches in which the learning 

player momentarily breaks away from HA even though the adversarial player is still using a 

probabilistic mode of play. This is an error in the detection process of the hybrid-adaptive learning 

algorithm and offers a potential area of improvement. Iterations 71 to 150 also show the adversarial 

player changing its mode of play from BRP to a deterministic mode and finally to a probabilistic 

mode. The learning player selects the best algorithm to employ given the detected mode of play of 

the adversarial player. 

 

5.9.1 Comparison of Individual Learning Algorithms and the Proposed Algorithm 

The individual learning algorithms were also used against the adversarial player employing the 

different modes of play for comparison purposes. Table 5.18 shows the cumulative and average 

utilities in the cases of a learning player using the proposed algorithm (hybrid-adaptive algorithm) 

as well as the learning player separately using the BRP algorithm, HMA algorithm and HA.  

 

Table 5.18: Utilities for different responses to a varying adversary over 150 iterations 

  
Cumulative 

Utility 

Average 

Utility 

Average 

Power 

Data 

Rate 

Proposed 

Algorithm’s 

Improvement 

(%)   (x 107 b/J) (x 105b/J) (W) (b/s) 

BRP Algorithm (IWF) 6.6220 4.4147 0.0214 9447.458 12.65 

HMA 6.8156 4.5437 0.0211 9587.207 9.45 

HA 4.4531 2.9688 0.0118 3503.184 67.52 

Proposed Algorithm 7.4598 4.9732 0.0228 11338.896 N/A 
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From Table 5.18 it is seen that the adaptive algorithm performs better than BRP, HMA and HA 

algorithms taken separately. Using the adaptive algorithm, there is an improvement in the average 

utility of 12.65% over BRP, 9.45% over HMA and 67.52% over HA. 

 

Figure 5.22 shows the variations of the modes of play of the adversarial player and the response 

of a learning player using only the BRP algorithm. The learning player essentially has a best 

response to the previous play of the adversarial player and this is seen in the general shape of the 

plot of the strategies: the shape of the learner’s graph is similar to the adversarial opponent’s graph 

and it mainly differs in the fact that it is delayed by one iteration and the magnitudes are much 

smaller. In the stages where the adversary is also employing BRP (iterations 1 – 10 and 70 – 90) 

the play converges quickly to the NE. When the adversary adopts other strategies, there is a 

departure from the NE. The average utility achieved when using BRP alone against the changing 

adversarial opponent was 4.4147 x 105 b/J. 

 

Figure 5.22: Strategies of the varying adversary and the learning player using BRP alone 
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of the adversarial player. The HMA matches the recent strategies to the history of strategies 

available in order to predict the next strategy of the adversary. In this case the play never arrives 

at the NE. This suggests that the HMA is not suitable in a situation where convergence to the NE 

is desired. The HMA used alone achieves an average utility of 4.5437 x 105 b/J, which is higher 

when compared to that of BRP alone. 

 

Figure 5.23: Strategies of varying adversary and learning player using HMA alone 

 

Figure 5.24 show the corresponding responses of learning players only using the HA. In this case 

the shape of the graph for the learner’s strategies does not follow the shape of the adversarial 

player’s graph. The play achieves the NE when the adversarial player is using BRP (iterations 1 – 

10 and 70 – 90). The learner reacts significantly mainly when the adversarial player is using a 

probabilistic strategy (iterations 41 – 70 and 120 – 150). The player using HA only achieved an 

average utility of 2.9688 x 105 b/J which was lower than in the case of HMA alone and BRP alone. 
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Figure 5.24: Strategies of varying adversary and the learning player using HA alone 

 

5.9.2 Improvements Resulting from the Hybrid-Adaptive Algorithm 

The hybrid-adaptive algorithm brings out some improvements on related works. Nie and 

Comaniciu [16] treat convergence to the Nash Equilibrium (based on a potential function) and the 

game-theoretic learning in isolation. Several other authors also treat iterative water-filling and 

learning in isolation [6][34][18][35][19]. The algorithm presented here is an interface of the two, 

which offers improvements. Ifeh’s [30] simulation results also show a treatment of the techniques 

in isolation. His main findings are a comparison of water-filling and no-regret learning giving the 

strengths and weaknesses of these techniques taken separately. Although he proposes a hybrid 

scheme, the implementation and simulation data is left for further research. The novel hybrid-

adaptive algorithm in this research interfaces iterative water-filling and learning with simulation 

data; furthermore, learning is harnessed in a dynamic manner, meaning that the algorithm has the 

ability to detect and adapt to the mode of play of an adversarial player (external environment). 

This is achieved by an analysis of several learning algorithms and the corresponding incorporation 

of several learning algorithms into the hybrid-adaptive algorithm. 
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5.9.3 Distributed Transmit-Power Control through the Hybrid-Adaptive Algorithm 

The hybrid-adaptive algorithm developed is able to perform well when compared to the other 

algorithms taken separately. The algorithm maximizes the utility accrued by appropriately 

controlling the transmit-power based on the analysis of the network environment, embodied by the 

actions of the adversarial player. 

 

When the adversarial payer utilizes BRP, the player using the hybrid-adaptive algorithm also used 

BRP and the result is that the play ends up in a Nash Equilibrium. This equilibrium is made 

possible through the repeated control of the transmit-power. If the adversary is not using BRP, the 

play need not necessarily end up in the Nash Equilibrium but through transmit-power adjustments 

the learning player mitigates exploitation and optimizes it utility. 
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6 CONCLUSION AND FURTHER WORK 

In this research transmit-power control in cognitive radio networks has been studied and 

represented as a non-cooperative game-theoretic problem. To achieve the first objective of the 

research, a cognitive radio network was modeled as a single-cell W-CDMA network with a number 

of mobile stations representing the players in the game-theoretic framework. The model was 

simulated using MATLAB. The scenario was a repeated game of infinite horizon. In the cognitive 

radio network the players all attempted to maximize their utilities in a distributed manner by 

appropriately adjusting their powers, which formed the strategy space. The utility of each player 

based on the utility function employed represented the bits transmitted per joule of energy. A 

crucial aspect of the game-theoretic framework was seen to be the concept of the Nash Equilibrium 

(NE), which represented a stable operating point. 

 

In order to arrive at the Nash Equilibrium the iterative water-filling (IWF) algorithm was 

implemented by employing the best response dynamic (BRP). This helped achieve the second 

objective of the research. Various characteristics of the NE were investigated such as the 

convergence speed, the power levels, the SINR and the utility at NE. Two modulation schemes 

were also investigated with respect to the NE and its characteristics. The modulation schemes 

employed were QPSK and FSK. It was found that when using QPSK, the convergence to NE was 

much faster than in the case of FSK. For the same positions of mobile stations (players) it was also 

seen that those using QPSK achieved a higher utility than those using FSK. The developed 

techniques were modeled on a mobile network employing CDMA (QPSK) but they can be 

employed in other kinds of networks, which may use QPSK, FSK or other modulation schemes. 

 

The Pareto efficiency of the Nash Equilibrium arrived at was also assessed. It was seen that the 

equilibrium does not represent a Pareto-optimal power vector. An algorithm for Pareto-

Improvement was developed and implemented. The algorithm helped achieve a higher overall 

utility as compared to the Nash Equilibrium for the entire system while guaranteeing that the utility 

for all players was at least equal to their utilities at the Nash Equilibrium. Based on the results of 

the algorithm an equation useful for directly finding the Pareto-superior power vector was then 
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developed. This method was seen to offer improvements to other methods used for finding Pareto-

superior power vectors to the Nash Equilibrium. 

 

In carrying out the game-theoretic analysis in the cognitive radio network, sequential play and 

simultaneous play were also compared. It was seen that the sequential play converged faster than 

simultaneous play given that in sequential play the users had knowledge of the opponents’ moves 

in the current stage games. 

 

Since IWF does not prevent against possible exploitation of players by their opponents, game-

theoretic learning was also implemented in an attempt to mitigate the possible exploitation. 

Therefore, the third objective of the research was achieved. A number of learning algorithms were 

implemented and these included a regret-matching algorithm (RMA), the hedging algorithm (HA), 

weighted majority algorithm (WMA) and the historic matching algorithm (HMA). The learning 

algorithms resulted in a convergence to the same NE as in the case of IWF. The learning algorithms 

were also able to adapt better to changes in the overall network environment. These changes were 

represented by an adversarial player which had different modes of playing: in some instances the 

adversary played using BRP, in some instances using a deterministic mode of play and in some 

instances using a probabilistic mode of play. The learning algorithms were found to generally 

adapt better than IWF (implemented using BRP) to the changes is the mode of play of the 

adversarial player. This better adaptation was manifested by higher utilities. 

 

A deeper investigation was made as to the best mode of play for the player employing a learning 

algorithm (the learning player) when faced with the different modes of player of the adversarial 

player. It was found that when the adversary employed BRP, then BRP was also the appropriate 

response for the learning player; when the adversary employed a deterministic strategy, then using 

HMA was the appropriate response by the learning player; when the adversary employed a 

probabilistic strategy, then HA was the appropriate response by the learning player. 

 

The research led to the development of a hybrid and adaptive transmit-power control algorithm. 

This achieved the fourth objective of the research. The hybrid nature of the overall algorithm was 

in the interfacing of the IWF and game-theoretic learning. The hybrid algorithm drew from the 
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strengths of both algorithms. In the hybrid, IWF was run first followed by the learning component, 

given that IWF has faster convergence. The adaptive nature of the overall algorithm was in the 

fact that it changed among different learning algorithms depending on the perceived behaviour of 

other players in the network. This novel algorithm offered an improvement on the previous 

treatments of iterative water-filling and game-theoretic learning. 

 

6.1 Main Contributions 

The following is a summary of the main contributions resulting from the research: 

i. A characterization and comparison of the Nash Equilibrium was given with respect to: 

a. Two modulation schemes: QPSK and FSK. 

b. Sequential and simultaneous play. 

c. Game-theoretic framework with learning and without learning. 

ii. An algorithm to find a Pareto-superior power vector to the Nash Equilibrium was developed 

and implemented. This was further improved on by developing an equation by which the 

Pareto-superior strategy could be directly arrived at. 

iii. The appropriate responses of a learning player (in terms of the learning algorithm to employ) 

to different modes of operation of other players were determined. 

iv. A novel hybrid-adaptive algorithm was developed and implemented. The hybrid was an 

interface of iterative water-filling and game-theoretic learning. The algorithm was able to adapt 

between the Hedging Algorithm and Historic Matching Algorithm based on the behaviour of 

the adversary. The hybrid-adaptive algorithm was able to achieve fast convergence as well as 

mitigate exploitation. It achieved an improvement in the average utility of 12.65% over BRP, 

9.45% over HMA and 67.52% over HA. 

 

6.2 Further Work 

Part of the process of selecting among learning algorithms is a detection of the mode of play of the 

adversarial player representing the general network environment. A deeper investigation needs to 

be made into this process of detection so as to make it improve on its accuracy. Accurate detection 

of the behaviour of other players results in the most appropriate learning algorithm used as a 

response of the learning player and leads to a higher overall utility. 
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The Pareto-superior strategy arrived at in this research was not an equilibrium and in an 

environment of non-cooperation, the situation can revert to the Nash Equilibrium, which is a more 

stable operating point. Further work will consist in an implementation of punishment in repeated 

games, which can act as a motivating factor for all players to maintain the Pareto-superior power 

vector. 
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APPENDIX A 

Expected Value of SINR at the Nash Equilibrium 

The utility function used in the research is given in equation 4.2 and can be written as 

𝑢𝑖(𝑝𝑖 , 𝒑−𝑖) =  
𝐿𝑅

𝑀𝑝𝑖
𝑓(𝛾𝑖)    (A1.1a) 

where 

𝑓(𝛾𝑖) = (1 − 2 𝐵𝐸𝑅)𝑀    (A1.1b) 

At the Nash Equilibrium there is a mutual best response correspondence, meaning that all users 

have maximized their utility functions in response to the other users’ adjustments. For each player 

i to maximize its utility, it is required that 

𝜕𝑢𝑖(𝑝𝑖 ,𝒑−𝑖)

𝜕𝑝𝑖
= 0     (A1.2) 

which gives the maxima of the utility function as well as the condition for the occurrence of the 

Nash Equilibrium. 

𝜕𝑢𝑖(𝑝𝑖 ,𝒑−𝑖)

𝜕𝑝𝑖
=

𝐿𝑅

𝑀
(

1

𝑝𝑖

𝜕𝑓(𝛾𝑖
)

𝜕𝑝𝑖
−  

𝑓(𝛾𝑖
)

𝑝𝑖
2

)    (A1.3) 

where 𝛾𝑖 is given by equation 4.4. Equation A1.3 yields  

𝜕𝑢𝑖(𝑝𝑖 , 𝒑−𝑖)

𝜕𝑝𝑖
=

𝐿𝑅

𝑀
(

1

𝑝𝑖
2

𝑑𝑓(𝛾𝑖 )𝛾𝑖

𝑑𝛾𝑖

−  
𝑓(𝛾𝑖 )

𝑝𝑖
2

) 

=
𝐿𝑅

𝑀𝑝𝑖
2

(
𝑑𝑓(𝛾𝑖

)𝛾𝑖

𝑑𝛾𝑖

−  𝑓(𝛾
𝑖
))    (A1.4) 

Therefore, for equation A1.2 to hold, it is required that  

𝐿𝑅

𝑀𝑝𝑖
2 (

𝑑𝑓(𝛾𝑖)𝛾𝑖

𝑑𝛾𝑖
−  𝑓(𝛾𝑖)) = 0     (A1.5) 

A solution is given by the values of 𝛾𝑖 that makes 
𝑑𝑓(𝛾𝑖

)𝛾𝑖

𝑑𝛾𝑖

−  𝑓(𝛾
𝑖
) = 0 



 

 
81 

 

The condition for the Nash Equilibrium is therefore now given as 

𝑑𝑓(𝛾𝑖
)𝛾𝑖

𝑑𝛾𝑖

−  𝑓(𝛾
𝑖
) = 0      (A1.6) 

For QPSK, the BER is given by equation 4.3. Substituting the first term of equation 4.3 in equation 

A1.1b and using equation A1.1b in equation A1.6 yields 

𝛾𝑖𝑀
𝑒−𝛾𝑖

√𝜋𝛾𝑖
(𝑒𝑟𝑓(√𝛾𝑖 ))

𝑀−1

 −  (𝑒𝑟𝑓(√𝛾𝑖 ))
𝑀

= 0  (A1.7) 

NB: only the first term of equation 4.3 is used because the second term is negligible compared to 

the first term. 

 

Based on the value of M given in section 4.1.2 and using the numerical technique shown in section 

B.5 of Appendix B equation A1.7 can be solved for 𝛾𝑖; this gives the value of 𝛾𝑖 that satisfies the 

condition for Nash Equilibrium (equation A1.6). This value of 𝛾𝑖 was found to be 5.27 for QPSK. 

 

Value of Thermal Noise Power (𝝈𝟐) used in Calculating SINR 

The noise spectral density is given by 

𝑃

𝐵
=  𝑘𝐵𝑇  (𝑊/𝐻𝑧) 

where P = noise power in Watts 

 B = Bandwidth 

 kB = Boltzmann constant = 1.381 × 10−23 𝐽/𝐾 

 To = Room temperature in degrees Kelvin = 290 K 

 

Therefore, 

𝑃

𝐵
= 4 × 10−21 (𝑊/𝐻𝑧) 

 

In the case of B = 5 MHz, 

𝑃 = 𝜎2 = 4 × 10−21 × 5 × 106 = 2 × 10−14 𝑊  
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APPENDIX B 

Sample Code of the MATLAB Implementations 

B1 Game-Theoretic Power Control 

 
% Developed by Oscar Ondeng, University of Nairobi. 22-09-15. 
% implementation of game-theoretic power control 
% WCDMA 

  
% -Best response of each player to other players' actions  
% => iterations converging to a NASH EQUILIBRIUM 

  
% ALL PLAYERS WITH THE SAME UTILTIY FUNCTIONS 

  
% -Strategy Space: each player can transmit at power of between 0 and 2W 
%  in steps of 0.1 

  
clc; 
close all; 
clear all; 

  
% initalize game parameters 
N = 10;  % number of players 
iterations = 300; %  maximum number of iterations during convergence 

  
% distances from the base station (randomly generated) 
a = 1; % minimum distance from the base station 
b = 2; % maximum distance from the base station 
d = sort(a + (b-a).*rand(1, N)); % distances (km) 

  
% Stratety Space 
p_max = 2; % maximum power transmission level 
step = 0.001; % the steps in which the power levels can increase 
p_min = step; % minimum power transmission level 
p = ones(1, N) * p_min; % initial power levels 

  
powerTracer = zeros(N,iterations); % to keep track of how long it takes to 

converge 
convergenceCount = 0; % to count how many iterations are needed for 

convergence 
ceilingHit = false; % checks whether any player reached p_max 

  
utilityVsPowerTracer = zeros (N, (p_max - p_min) / step + 1); 
utilityVsIterationsTracer = zeros(N,iterations); 

  
% loop to iterate until NE convergence 
for convergence = 1:iterations 

     

    % initialize vectors 
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    br_power = nan(1, N); % power at the best response 
    br_utility = nan(1, N); % utility at the best response 
    br_snr = nan(1, N); % snr at the best response 

     
    % loop to search for best response for each player 
    for i =  1:N %N:-1:1 % 

        
        k = 1; % counter for tracking power trajectory 
        ind = 1; % coutner for tracking utility 

         
        % provide initial best response 
        if isnan(br_power(i)) 
            [br_power(i), br_utility(i), br_snr(i)] = utility(i,p,d); %best 

response utility - QPSK 
%              [br_power(i), br_utility(i), br_snr(i)] = u(i,p,d*1000); % 

best response utility - FSK 
        end 

         
        % search through strategy space for best response of player i 
        for j = p_min:step:p_max 
            p(i) = j; 
            % get current response for power, utility and snr 
            [cr_power, cr_utility, cr_snr] = utility(i,p,d); % QPSK 
%             [cr_power, cr_utility, cr_snr] = u(i,p,d*1000);% FSK 

  
            k = k + 1; 

             
            if cr_utility > br_utility(i) 
                br_utility(i) = cr_utility; 
                br_power(i) = cr_power; 
                br_snr(i) = cr_snr; 
            end 

             

  
            utilityVsPowerTracer(i, ind) = cr_utility; 
            ind = ind + 1; 

  

             
        end 
        p(i) = br_power(i); 

         
    end 

     
    powerTracer(:,convergence) = p';  

     

    utilityVsIterationsTracer(:,convergence) = br_utility'; 

     
    convergenceTest = true; 
    convergenceCount = convergenceCount + 1; 
    for k = 1:N 

  
        if (convergence > 1 && powerTracer(k,convergence) - powerTracer(k, 

convergence - 1) ~= 0)   
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            convergenceTest = false; 
        end 
        if (powerTracer(k,convergence) == p_max) 
            convergenceTest = true; 
            ceilingHit = true; 
            break; 
        end 
    end 

     
    if ((convergence > 1 && convergenceTest) || ceilingHit) 
        break; 
    end 
end 

  
if convergenceCount == iterations || ceilingHit 
    disp 'Did not converge' 
else 
    br_power 
    convergenceCount 
    br_utilitySum = sum(br_utility) 
end 

  
%%%%%%%%%%%%%%% CHECK FOR A PARETO SUPERIOR POWER VECTOR %%%%%%%%%%%%%%%%%% 

  
timesParetoFound = 0; 
for mu = 1:-0.05:0 
    paretoDominant = false; 
    paretoRegion = true; 
    pp = mu .* p; 

     
    paretoUtilitySum = 0; 

     

    for i = 1:N 
        [cr_power, cr_utility, cr_snr] = utility(i,pp,d); % QPSK 
%         [cr_power, cr_utility, cr_snr] = u(i,pp,d*1000); % FSK 
        paretoUtilitySum = paretoUtilitySum + cr_utility; 

        
        if cr_utility < br_utility(i) 
            paretoRegion = false; 
            break; 
        elseif cr_utility > br_utility(i) 
            paretoDominant = true; 
        end 
    end 

     
    if paretoRegion && paretoDominant 
        timesParetoFound = timesParetoFound + 1; 

         
        break; 
    end 

     
end 

  
if timesParetoFound > 0 
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    disp 'Pareto Dominant power vector found'; 
    mu 
    paretoUtilitySum 
end 

  
%%%%%%%%%%%%%   PLOT sumUitility Vs mu  %%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mu_spacing = 200; 
mu = linspace(0, 2, mu_spacing); 
paretoUtilitySumTracer = zeros(1, mu_spacing); 

  
for j = 1:mu_spacing 
    pp = mu(j) .* p; 
    paretoUtilitySum = 0; 
    for i = 1:N 
        [cr_power, cr_utility, cr_snr] = utility(i,pp,d); % QPSK 
%         [cr_power, cr_utility, cr_snr] = u(i,pp,d*1000); % FSK 
        paretoUtilitySum = paretoUtilitySum + cr_utility; 
    end 
    paretoUtilitySumTracer(1, j) = paretoUtilitySum; 
end 

  
figure; 
plot(mu, paretoUtilitySumTracer); 

  
title('Sum of Utility vs \mu (0 < \mu < 2)', 'FontSize', 15); 
ylabel('Utility Sum', 'FontSize', 15); 
xlabel('\mu', 'FontSize', 15); 

  

  
%%%%%%%%%%%%%   PLOT POWER OVER THE ITERATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
color = jet(N); % for different color of plots for the different players 
figure; 
hold on; 

  
x_dim = size(powerTracer,2); 

  
for i = 1:N 

  
    plot(1:convergenceCount-1, powerTracer(i,1:convergenceCount-1), 'Color', 

color(i,:)) 
end 
hold off; 
ylabel('power levels', 'FontSize', 12); 
xlabel('iterations', 'FontSize', 12); 
title('Convergence to a Nash Equilibrium (Mutual Best Responses)', 

'FontSize', 12); 
set(gca,'XTick',[1:convergenceCount-1]) 
grid on; 

  
%%%%%%%%%%%%%   PLOT UTILITY OVER THE ITERATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

color = jet(N); % for different color of plots for the different players 
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figure; 
hold on; 

  
x_dim = size(utilityVsIterationsTracer,2); 

  
for i = 1:N 

  
    plot(1:convergenceCount, utilityVsIterationsTracer(i,1:convergenceCount), 

'Color', color(i,:)) 
end 
hold off; 

  
%%%%%%%%%%%  PLOT UTILITY for the last iteration 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
figure; 
hold on; 
myMax = 2000; 
for i = 1:N 
    plot (1:myMax,utilityVsPowerTracer(i,1:myMax), 'Color', color(i,:)); 
end 
ylabel('Utility', 'FontSize', 12); 
xlabel('Power (W)', 'FontSize', 12); 
% set(gca,'XTick',[1:myMax]/1000) 
set(gca,'XTick',1:500:2000) 
set(gca,'XTickLabel',[1:500:myMax]/10000) 
hold off; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

 

B2 The Hedge Algorithm (Learning Algorithm) 

 
function cumUtil=  utilityComparator2(ne_power,d) 
% Hedge algorithm (Freund & Shapire) 

% Developed by Oscar Ondeng, University of Nairobi. 22-09-15. 

 

  
global N; 

  
global p_max; % maximum power transmission level 
global step; % the steps in which the power levels can increase 
global p_min; % minimum power transmission level 

  

  
strategy = 0; 

  
learningIterations = 50; % number of games to be played 

  
global cumUtilTrace; 
global powerTrace; 
cumUtilTrace = zeros(N, learningIterations); 
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powerTrace = zeros(N,learningIterations); 

  
global weightsCumUtility; % this is for calculations 
weightsCumUtility =  zeros(N, (p_max - p_min) / step + 1); 

  
cumUtil = zeros(1, N); % this is for output 
cumPower = zeros(1, N); % useful for finding average power over all 

iterations 
p = zeros(1, N); 

  
power = zeros(1,N); 
util = zeros(1,N); 
snr = zeros(1, N); 

  
W = zeros(N, (p_max - p_min) / step + 1); % weights for the updates 

  

  
% make a number of iterations of play 
for i = 1:learningIterations 

     
    % set the strategies of all players before playing the game 
    for j = 1:N 

         
        if mod(j,2) == 1 

             
            % for player 1, play based on a learning strategy  
            if i > 1 
                best_index = find(W(j,:) == max(W(j, :))); % max weight 
                p(j) = step * best_index; 
            else 
                % use ne_power for the first iteration 
                p = ne_power; % power at NE 
            end 
        else 

             
            % for player 2, employ a fixed strategy! 
%             p(1, j) = fixedStrategy(); 
            p(j) = fixedStrategy2(mod(strategy,4) + 1); 
            strategy = strategy + 1; 
        end 
    end 

     
    % once the strategies are set, play the stage game 
    for j = 1:N 
        % pure strategies 
        [power(j), util(j), snr(j)] = utility(j,p,d); % QPSK 
    end 

     
    cumUtil = cumUtil + util; 
    cumPower = cumPower + p(1, :); 

     
     cumUtilTrace(:,i) = cumUtil'; 
    powerTrace(:, i) = p(1,:)'; 
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    % get the weights for the next iteration 
    W = getWeights(p, d); 

        
end 

  

  
avgUtility = cumUtil / learningIterations 
avgPower = cumPower / learningIterations 

  
close all 

  
%%%%%%%%%%%%%   PLOT POWER OVER THE ITERATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
color = jet(N); % for different color of plots for the different players 
figure; 
hold on; 

  
x_dim = size(powerTrace,2); 
x = N; 
for i = 1:N 
    %     plot(1:x_dim, powerTracer(i,:), 'Color', color(i,:)) 
    subplot(2,1,x); x = x - 1; 
    plot(1:learningIterations, powerTrace(i,:), 'Color', color(i,:)) 
end 
hold off; 
subplot(2,1,2); 
ylabel('power levels', 'FontSize', 12); 
xlabel('iterations', 'FontSize', 12); 
title('Strategies of the learning player', 'FontSize', 12); 
% set(gca,'XTick',1:learningIterations); 
grid on; 

  

subplot(2,1,1); 
ylabel('power levels', 'FontSize', 12); 
xlabel('iterations', 'FontSize', 12); 
title('Strategies of the adversarial opponent', 'FontSize', 12); 
% set(gca,'XTick',1:learningIterations); 
grid on; 

  

  
%%%%%%%%%%%%%   PLOT CUMULATIVE UTILITIES OVER THE ITERATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
color = jet(N); % for different color of plots for the different players 
figure; 
hold on; 

  
x_dim = size(cumUtilTrace,2); 

  
for i = 1:N 
%     plot(1:x_dim, powerTracer(i,:), 'Color', color(i,:)) 
plot(1:learningIterations, cumUtilTrace(i,:), 'Color', color(i,:)) 
end 
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hold off; 
ylabel('Cumulative Utility', 'FontSize', 12); 
xlabel('iterations', 'FontSize', 12); 
title('Cumulative Utilities of a learning player and an adversarial 

opponent', 'FontSize', 12); 
% set(gca,'XTick',1:learningIterations); 
grid on; 

B3 Implementation of Hybrid Play 

 
% hybridPlay.m 

% Developed by Oscar Ondeng, University of Nairobi. 22-09-15. 

 

  
clc; 
close all; 
clear all; 
tic 
firstTime = toc; 

  
%% initialize variables 
global N; 
N = 2;  % number of players 
maxIterations = 150; %  number of stage games 
global iterationsCounter; % useful in regretVector.m 

  
global p_max; global step; global p_min; 
p_max = 2; % maximum power transmission level 
step = 0.0001; % the steps in which the power levels can increase 
p_min = step; % minimum power transmission level 

  
p = ones(1, N) * p_min; % initialize power levels; p => power vector of 

current iteration 
p_prev = p_min + (p_max - p_min - 1.5).*rand(1, N); % p_prev => power vector 

of previous iteration; 

  
d =  [1.2 1.2]; 

  
strategy = 0; 

  
 % initialize vectors 
 br_power = zeros(1, N); % power at the best response 
 br_utility = zeros(1, N); % utility at the best response 
 br_snr = zeros(1, N); % snr at the best response 

  
 power = zeros(1,N); 
 util = zeros(1,N); 
 snr = zeros(1, N); 

  
 cumUtility = zeros(1, N); 
 cumPower = zeros(1, N); % useful for finding average power over all 

iterations 

  

 global cumUtilTrace; 



 

 
90 

 

 global powerTrace; 
 cumUtilTrace = zeros(N, maxIterations); 
 powerTrace = zeros(N,maxIterations); 

  
 playModel = 0; % adversay's detected play model 
 % 0  => BRP (default); 1 => deterministic; 2 => probabilistic 
 global previousPlayModel; % used to detect changes in the play model 

  
% variables pertinent to BRP 
 global historySize; 
historySize = 1; 
global R_history; 
% set historySize to -1 to use entire histroy 
% set historySize to +ve value to use varying amounts of history 
% historySize of 1 => BR response; don't set historySize to 0 
R_history = zeros(historySize,N,(p_max - p_min) / step + 1); % set the regret 

vector 

  

R = zeros(N,(p_max - p_min) / step + 1); % the regret vector 
R_cumulative = zeros(N,(p_max - p_min) / step + 1); % the cumulative regret 

vector 

  
% variables pertinent to model of play determiniation 
global historySize_strategy; % used in the assessment of adversary's strategy 
historySize_strategy = 5; 
global P_history; 
% set historySize to -1 to use entire histroy 
% set historySize to +ve value to use varying amounts of history 
% historySize of 1 => BR response; don't set historySize to 0 
P_history = zeros(historySize_strategy,N,(p_max - p_min) / step + 1); % set 

the regret vector 

  

global BR; 
BR = true; % BRP is default 

  
global pointOfChange; 
pointOfChange = 0; 

  
% variables pertinent to HA 
W = zeros(N, (p_max - p_min) / step + 1); % weights for the updates 
global weightsCumUtility; % this is for calculations 
weightsCumUtility =  zeros(N, (p_max - p_min) / step + 1); 

  
% variables pertinent to HMA 
global history; 
history = zeros(N, maxIterations); 
global sequenceSize; % size of recent history to use for searching through 

the previous histroy 
sequenceSize = 4;  
global predictedSnr; 

  
% variables pertinent to plotting 
playModelTracer = zeros(1, maxIterations); 
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 for game = 1:maxIterations 
     iterationsCounter = game; 
     playModelTracer(game) = playModel; 

      
     % for progress report 
     if mod(game, 5) == 0 
         timer = toc; 
         tic; 
         disp(['Running Time at start of iteration ' num2str(game) ': ' 

num2str(timer/60) ' min']); 

          

     end 
     if game >= 40 
         disp(['iteration: ' num2str(game)]); 
     end 

      
     %% set the strategies of player one and two 
     for player = 1:N 
         if mod(player, 2) == 1 

  
             % if adversary is employing BRP play model 
             if playModel == 0 % BRP 
                 % set strategy BRP model of play 
                 % get the normalized regret vector 
                 total_regret = sum(R_cumulative,2); 
                 total_regret = total_regret(player); % pick only the ith 

element 
                 if total_regret > 0 
                     R(player,:) = R_cumulative(player,:) ./ total_regret; % 

normalized regret vector for player i 
                     % pure strategies 
                    best_index = find(R(player,:) == max(R(player,:))); % 

best-performing strategy in previous iteration 
                    p(1,player) = step * best_index; 
                 end 

                  
             elseif playModel == 1 % deterministic 
                 % set strategy using the HMA 
                 p(1, player) = getOptimum(predictedSnr); 

                  
             else % probabilistic 
                 % set strategy using HA 
                 if game > 1 
                     best_index = find(W(player,:) == max(W(player, :))); % 

max weight 
                     p(player) = step * best_index; 
                 end 
             end 

              
             % set player one's strategy (based on adversary's play model 

detected) 

              
         else  
             % set player two's strategy 
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             if game < 11 % 1 -> 100 
                 % play BRP strategies 
                 % get the normalized regret vector 
                 total_regret = sum(R_cumulative,2); 
                 total_regret = total_regret(player); % pick only the ith 

element 
                 if total_regret > 0 
                     R(player,:) = R_cumulative(player,:) ./ total_regret; % 

normalized regret vector for player i 
                     % pure strategies 
                    best_index = find(R(player,:) == max(R(player,:))); % 

best-performing strategy in previous iteration 
                    p(1,player) = step * best_index; 
                 end 

                  

                  
             elseif game < 41 % 101 -> 200 
                 % play deterministic strategies 
                 p(1, player) = fixedStrategy2(mod(strategy,4) + 1); 
                 strategy = strategy + 1; 
             elseif game < 71 % 201 -> 300 
                 % play probabilistic strategies 
                  p(1, player) = fixedStrategy(); 
             elseif game < 91 
                 % play BRP strategies again 
                 if game == 61 
                     R = zeros(N,(p_max - p_min) / step + 1); % the regret 

vector 
                     R_cumulative = zeros(N,(p_max - p_min) / step + 1); % 

the cumulative regret vector 
                 end 
                 total_regret = sum(R_cumulative,2); 
                 total_regret = total_regret(player); % pick only the ith 

element 
                 if total_regret > 0 
                     R(player,:) = R_cumulative(player,:) ./ total_regret; % 

normalized regret vector for player i 
                     % pure strategies 
                    best_index = find(R(player,:) == max(R(player,:))); % 

best-performing strategy in previous iteration 
                    p(1,player) = step * best_index; 
                 end 
             elseif game < 121 
                 % play deterministic strategies again 
                 if game == 81 
                     strategy = 0; 
                 end 
                 p(1, player) = fixedStrategy2(mod(strategy,4) + 1); 
                 strategy = strategy + 1; 
             elseif game 
                 % play probabilistic strategies again 
                  p(1, player) = fixedStrategy(); 
             end 
         end 
     end 
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     %% play the game 
     for player = 1:N 
         [power(player), util(player), snr(player)] = 

utility(player,p(1,:),d); % QPSK 

          
         history(player, game) = snr(player) / p(1, player); % useful only 

for HMA 
     end 

      

      

     %% calculate vectors for next iteration for the learning player(s) and 

update variables useful for plotting 
     % update regret vector 

     
     % detect adversary's strategy (done only by learning player i.e. 
     % player 1) 

      

      
     previousPlayModel = playModel; 
     playModel = getPlayModel(p(1,2)); % input to getPlayModed is player 2's 

strategy 

  
%      playModel = getPlayModel_force_HMA; 
%      playModel = 2; 

      
     R_cumulative = regretVector(p(1,:),d,R_cumulative, util); 

      
     if playModel == 2  
         if previousPlayModel ~= playModel % detect a change in play model 
             W = zeros(N, (p_max - p_min) / step + 1); % weights for the 

updates 
             weightsCumUtility =  zeros(N, (p_max - p_min) / step + 1); 
         end 
         W = getWeights(p, d); 

          
     end 

      

      

      
     %%% update variables useful for plotting 
     cumUtility = cumUtility + util; 
     cumPower = cumPower + p(1, :); 

      
     cumUtilTrace(:,game) = cumUtility'; 
     powerTrace(:, game) = p(1,:)'; 

      
 end 

  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cumUtility 
avgUtility = cumUtility / maxIterations 
avgPower = cumPower / maxIterations 
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%%%%%%%%%%%%%   PLOT POWER OVER THE ITERATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

color = jet(N); % for different color of plots for the different players 
figure; 
hold on; 

  
x_dim = size(powerTrace,2); 
x = N; 
for i = 1:N 
    %     plot(1:x_dim, powerTracer(i,:), 'Color', color(i,:)) 
    subplot(2,1,x); x = x - 1; 
    plot(1:maxIterations, powerTrace(i,:), 'Color', color(i,:)) 
end 

  
hold off; 

  
subplot(2,1,2); 
ylabel('power levels', 'FontSize', 12); 
xlabel('iterations', 'FontSize', 12); 
title('Strategies of the learning player', 'FontSize', 12); 
set(gca,'XTick',0:10:150) 
grid on; 

  

subplot(2,1,1); 
ylabel('power levels', 'FontSize', 12); 
xlabel('iterations', 'FontSize', 12); 
title('Strategies of the adversarial opponent', 'FontSize', 12); 
set(gca,'XTick',0:10:150) 
grid on; 

  

figure; 
plot(playModelTracer); 
grid on; 

  
disp(['Total Running Time: ' num2str((toc - firstTime) / 60) ' min']); 
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B4 Function Used by the Hybrid Implementation 

 
function playModel = getPlayModel(p) 
% function determines the adversarial player's mode of play 
% (only one adversary) 
% function used in conjuction with hybridPlay.m 

% Developed by Oscar Ondeng, University of Nairobi. 22-09-15. 

 

  

  

%% initialize variables 
global historySize_strategy; 
global P_history; 
global iterationsCounter; 

  
global previousPlayModel; 

  
global history; global sequenceSize; global BR; 
global predictedSnr; 

  
global pointOfChange; 

  
variationThreshold = 0.3; % the amount of variation in Watts in the power 
correlationThreshold = 0.99999999999; 

  
if iterationsCounter < historySize_strategy 
    playModel = 0; % without suffficient history, BRP is default 
    return; 
end 

  
%% determine whether adversary is playing BR 
% by assessing the variation in the last few iterations 

  
newP = mod(iterationsCounter - 1, historySize_strategy) + 1; 
P_history(newP) = p; 

  
if max(P_history) - min(P_history) < variationThreshold 
    playModel = 0; 
    BR = true; 
else % adversary not playing BR 
    % determine whether adversary is playing a deterministic model or 

probabilisitic model 

     
    if previousPlayModel == 0 && BR % a change in play model from BR has been 

detected 
        pointOfChange = iterationsCounter; 
        BR = false; 
    end 
    % determine xcorr of pattern with history of interest 
    if iterationsCounter  > pointOfChange + sequenceSize * 2 
        j = 1; % player one 
        i = iterationsCounter; 
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        % perform xcorrelation 
        pattern = history(j, i + 1 - sequenceSize : i); 
        history_to_check = history(j, pointOfChange : i - 1); 

         
        xcor = xcorr(history_to_check, pattern); 
        perf_xcor = xcorr(pattern, 0); 
        xcor = xcor ./ perf_xcor; 
        xcor(xcor > 1.00001) = 0; 

         
        xcor = xcor(size(history_to_check,2) - sequenceSize + 1 : end); 

         
        indexMax = find(xcor == max(xcor)); 
        selectedIndex = indexMax(end); 

         
        if max(xcor) > correlationThreshold && selectedIndex < 

size(history_to_check, 2) 
            % adversary has deterministic model of play 
            playModel = 1; 
            predictedSnr = history_to_check(j, selectedIndex + 1); 
        else 
            % adversary has probabilistic model of play 
            playModel = 2; 
        end 

         

    else 
        playModel = 0; % play BR until there is sufficient history for HMA 
    end 

       
end 

 

 

 

B5. Finding SINR Numerically 

 

function sinr = findSINR(M) 
% finding the equilibrium snr numerically 

% Developed by Oscar Ondeng, University of Nairobi. 22-09-15. 
  
% M is the packet length 

  
accuracy = 0.001; 
threshold = 0.001; 

  
for snr = 1:accuracy:20 

  
diff = snr * M * ((erf(sqrt(snr))) ^ (M - 1)) * (exp(-snr) * snr ^ (-1 

/ 2)) / sqrt(pi) - (erf(sqrt(snr))) ^ M; 
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    if diff < threshold 
        break; 
    end 
end 

B6. Function to calculate the utility 

 
% utility.m 

% Developed by Oscar Ondeng, University of Nairobi. 22-09-15. 

 
% utility function in the game-theoretic power control 
% WCDMA 

  
function [br_power, br_utility, br_snr] = utility(i, p, d) %#codegen 

  
% p is the vector of powers of the players 
% d is the vector of distances of the players from the base station 

  

% initalize constants 
% based on typical values used in a WCDMA network with SF = 256 
global L; global M; global R; global W; global noise; 
L = 100; % number of information bits/frame with 1/3 rate coding 
M = 150; % total number of bits/frame 
R = 15e3; % bit rate 
W = 5e6; % Spread Spectrum Bandwidth  
noise = (4e-21) * W; % noise power = noise floor * bandwidth 

  
% path loss 
h = pathLoss(d); % path loss in decibels; using Extended HATA 
h = 1 ./ (10 .^ (h./10)); % path loss as a ratio 

  
% vector of powers other than for player i 
p_i = p; 
p_i(i) = 0; 

  
% signal to noise ratio  
snr = W / R * (p(i) * h(i)) / (p_i * h' + noise); 

  

% symbol and bit error rate (for QPSK modulation) 
ser = erfc(sqrt(snr)) - (1/4)*(erfc(sqrt(snr))).^2; % revised ser, based on 

Proakis... 

  
ber = ser / 2; %QPSK 

  
% ber = 0.5 * exp(-0.5 * snr); %FSK 

  
% power of zero yields utility of zero 
if p(i) == 0 
    u = 0; 
else 
    u = L * R * ((1 - 2 * ber) ^ M) / (M * p(i)); 
end 
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br_power = p(i); 
br_utility = u; 
br_snr = snr; 
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APPENDIX C 

Publications Resulting from this Research 

i. “Game-Theoretic Transmit-Power Control in Cognitive Radio with Pareto-

Improvement of the Nash Equilibrium”, International Journal of Scientific and 

Engineering Research, Vol. 6, No. 4, April, 2015 

Abstract – In implementing cognitive radio networks, transmit-power control is one of the key 

tasks of the cognitive cycle and plays a big role in carrying out spectrum sharing. In this work the 

transmit-power control of a CDMA cognitive radio network is modeled as a non-cooperative 

game-theoretic problem. The iterative water filling algorithm is implemented using the best 

response to the previous play in an attempt to arrive at the Nash Equilibrium. The characteristics 

of the convergence and of the Nash Equilibrium are studied and of special interest is the Pareto 

optimality. It is found that the Nash Equilibrium is not Pareto-optimal and a method is proposed 

and implemented to achieve a power vector which is Pareto-superior to the power vector of the 

Nash Equilibrium and which yields a higher utility. 

Keywords: Cognitive Radio, Nash Equilibrium, Non-Cooperative Game Theory, Pareto 

Efficiency, Transmit-Power Control 

 

ii. “Distributed Transmit-Power Control in Cognitive Radio Networks Using a Hybrid-

Adaptive Game-Theoretic Technique”, IEEE Africon Proceedings, September, 2015 

Abstract—This paper studies game-theoretic distributed transmit-power control in a cognitive 

radio network. It presents a hybrid-adaptive algorithm that interfaces Iterative Water-Filling with 

two learning algorithms: the Hedging Algorithm and the Historical Matching Algorithm. Iterative 

Water-Filling helps achieve a fast convergence whereas the learning algorithms help guard against 

exploitation. The learning algorithms employed are selected based on their performance in 

deterministic and probabilistic network environments. The hybrid-adaptive algorithm is shown to 

offer improvements on other methods published. It also performs better than Iterative Water-

Filling and the learning algorithms taken in isolation. The main metric is the utility achieved by 

the players in the game-theoretic setting. 

Keywords—Cognitive radio, game theory, iterative water-filling, learning algorithms, Nash 

Equilibrium, transmit-power control. 


