

UNIVERSITY OF NAIROBI

COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES

SCHOOL OF COMPUTING AND INFORMATICS

AUTOMATED CUSTOMER SUPPORT WITH CONVERSATIONAL

AGENTS EMPLOYING TEXT MINING

A Case of Online University Application

BY

MUNYIVA MBITHI NGEA

P58/76753/2012

SUPERVISOR: DR AGNES WAUSI

December, 2014

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

2

DECLARATION

The project, as presented in this document, is my original work and has not been

presented for any other university award.

Signature :_______________________

Ngea Munyiva Mbithi

P58/76753/2012

Date:____________________________

The Project has been submitted in partial fulfillment of the Requirements for the

Degree of Master of Science in Computer Science at the University of Nairobi with

my approval as the University Supervisor.

Signature :_______________________

Dr Agnes Wausi

School of Computing and Informatics

Date:____________________________

3

ACKNOWLEDGEMENT

I wish to thank God for granting me with the ability to complete this project and

the following people for their contributions;

My supervisor Dr. Agnes Wausi for her guidance and encouragement in

undertaking the project from conception to completion.

My partner Geoffrey M. Mimano for his support, encouragement and resources

that facilitated conclusion of this project.

My parents John Mbithi and Elizabeth Mwikali for instilling the values of hard

work and determination in me, and Charles and Grace Mimano for their support

and facilitation in the course of this project.

The rest of my family for their encouragement, support, facilitation and prayers

during the course of this project.

The University Online application staff for their facilitation and provision of data

that was used in this study.

Lastly my friends and colleagues for their facilitation, ideas and interest in the

project.

4

ABSTRACT

The use of online information systems that can be and are accessed on a 24 hour basis has

continued to grow both locally and globally, these systems require available customer support at

all times. Customer support is services that assist customers to make cost effective and correct

use of products or services; it is divided into voice-based and non-voice based. Requests

received by support personnel are routine in nature and their numbers surpass the staff employed

to handle them hence organizations need to device mechanisms of automating customer support

to ensure available staff deal with requests that have been escalated due to their uniqueness as

opposed the routine ones; thereby enhancing productivity and reducing staff related costs and

improving the response times.

This study demonstrates automation of customer support, through design and development of an

automated customer support system that uses the online university application as a case study.

The system employs conversational agents (CA) which are computer systems that are intended to

converse with human beings. The demonstrated CA use classification algorithms specifically

Naive Bayes (NB) algorithm and Latent Semantic Indexing (LSI) to categorize the emails

received.

The developed application can process and respond to 500 emails in 3 minutes, while support

personnel can handle the same in approximately 5000 minutes, hence demonstrating its

applicability in possibly reducing staff costs and improving response times. A comparative

analysis of responses generated was performed on a subset of the sample support emails to

determine the accuracy of the application as compared to the customer support personnel. NB

algorithm was found to have an error rate of 88 percent while LSI was found to have an accuracy

of 74%. Further evaluation conducted on the algorithms resulted in LSI accuracy 0.89 and F-

Score 0.94 while NB accuracy 0.94 and F-Score 0.96. The study recommends that any future

studies to study the improvement of accuracy of the NB classifier and system enhancement to be

able to handle multi- part emails.

5

TABLE OF CONTENTS

LIST OF FIGURES .. 8

LIST OF TABLES .. 9

LIST OF ABBREVIATIONS ... 10

1 INTRODUCTION .. 11

1.1 Background .. 11

1.2 Problem statement .. 13

1.3 Purpose Statement .. 14

1.4 Objectives ... 14

1.5 Research Questions .. 14

1.6 Justification .. 15

1.7 Scope and Limitation ... 15

2 LITERATURE REVIEW ... 16

2.1 Customer Support ... 16

2.2 Automating Customer Support... 16

2.3 Conversational Agents (CA) .. 18

2.4 Text Mining .. 21

2.4.1 Text Preparation .. 21

2.4.2 Text Processing ... 23

2.4.3 Text Analysis .. 29

2.5 Synthesis and Approach ... 30

3 METHODOLOGY ... 31

3.1 Introduction .. 31

3.2 System Development Methodology ... 31

3.2.1 Agile Software Development Methodology ... 31

3.2.2 Multi-Agent Systems Engineering Methodology ... 32

3.3 Data Sources ... 33

3.4 Data Collection ... 33

3.5 General System Architecture ... 33

3.6 Prototype Validation and Comparative Analysis ... 34

3.7 Study Activities .. 35

6

4 ANALYSIS, DESIGN AND IMPLEMENTATION .. 36

4.1 Introduction .. 36

4.2 Systems Analysis.. 36

4.2.1 Functional Requirements .. 36

4.2.2 Non-Functional Requirements .. 37

4.3 System Design .. 38

4.3.1 Architectural System Design .. 38

4.3.2 Conversational Agent Design ... 39

4.3.3 Classifier Design ... 41

4.3.4 Logic/Data flow of the Application .. 45

4.3.5 The Database Model ... 47

4.4 System Implementation .. 50

4.4.1 The Front End ... 50

4.4.2 The Application Logic .. 50

4.5 Evaluation of the Prototype .. 51

4.5.1 Comparative Analysis ... 51

4.5.2 Accuracy, Precision, Recall and F-Score .. 52

5 RESULTS AND DISCUSSION ... 55

5.1 Presentation of Results ... 55

5.2 Conversational Agent Applying Naïve’s Bayes Algorithm ... 56

5.2.1 Application Run Statistics... 57

5.2.2 Validation of the Results ... 57

5.2.3 Accuracy and F-Score ... 58

5.3 Conversational Agent Applying LSI Algorithm .. 58

5.3.1 Application Run Statistics... 59

5.3.2 Validation of the Results ... 59

5.3.3 Accuracy and F-Score ... 60

5.4 Discussion of Results ... 60

6 CONCLUSIONS AND FUTURE WORK ... 64

6.1 Achievements ... 64

6.2 Limitations ... 65

6.3 Conclusions .. 65

7

6.4 Future Work ... 66

7 APPENDIX A: SAMPLE EMAILS ... 67

8 APPENDIX B: SYSTEM RESPONSES GENERATED ... 70

9 APPENDIX C: CLASSIFIERS .. 72

9.1 STOP WORDS ... 72

9.2 NB CLASSIFIER ... 73

9.3 LSI CLASSIFIER .. 74

10 APPENDIX D: USER GUIDE ... 75

11 REFERENCES ... 81

8

LIST OF FIGURES

Figure 1: Data Flow in a Conversational Agent ... 18

Figure 2: The primary natural language components of a conversational agent 19

Figure 3: GO-CA Architecture ... 20

Figure 4: A Schematic Diagram of Major Technology Components in WebTalk 20

Figure 5: Text Mining Process .. 21

Figure 6: Text Classification Process ... 25

Figure 7: A Generic Agile Development Process ... 31

Figure 8: MaSE Development Stages ... 32

Figure 9: General System Architecture... 33

Figure 10: Comparative Analysis Design ... 34

Figure 11: Detailed System Architecture .. 38

Figure 12: Goal Hierarchy Diagram ... 39

Figure 13: Sequence Diagram ... 40

Figure 14: Class Diagram ... 40

Figure 15: Application Initialization ... 45

Figure 16: Application Data Flow .. 46

Figure 17: Applicant Details Fetch Data Flow ... 47

Figure 18: Support Database Model ... 48

Figure 19: Applicants Database Model... 49

Figure 20: Comparison of System Versus User Responses Using NB ... 57

Figure 21: Comparison of System versus User Responses Using LSI ... 60

Figure 22: Pie-Chart of NB CA Comparison .. 60

Figure 23: Pie-Chart of LSI CA Comparison ... 61

Figure 24: Classifier Training Times .. 62

Figure 25: Support Staff Versus System Email Response Times ... 63

9

LIST OF TABLES

Table 1: Internet Users in Kenya .. 12

Table 2: Review of Techniques Studied ... 30

Table 3: Study Activities .. 35

Table 4: Classifier Training Data Count ... 51

Table 5: Validation Test Data Sets ... 52

Table 6: Confusion Matrix .. 52

Table 7: NB Classification Weights for Example 1 .. 56

Table 8: NB Application Run Statistics .. 57

Table 9: NB Validation Results .. 58

Table 10: LSI Classification Weights for Example 1 ... 58

Table 11: Application Run Statistics .. 59

Table 12: LSI Validation Results .. 60

10

LIST OF ABBREVIATIONS

AI - Artificial intelligence

CA – Conversational Agents

CBR - Case-based reasoning

FAQs - Frequently Asked Questions

GO-CA - Goal-Oriented Conversational Agents

IE - Information Extraction

JAB – Joint Admission Board

LSA - Latent Semantic Analysis

LSI - Latent Semantic Indexing

KNN - K-Nearest Neighbor

KUCCPS – Kenya Universities and Colleges Central Placement Service

NB - Naïve Bayes

NLP- Natural Language Processing

POS- Part-of-Speech

STI - Science, Technology and Innovations

SVD - Singular Value Decomposition

SVM - Support vector machines

11

1 INTRODUCTION

1.1 Background

The rapid growth of the internet, intranets, extranets and other interconnected global networks in

the 1990s dramatically changed the capabilities of information systems in business. Globally

internet-based and web-enabled enterprise and global electronic business and commerce systems

have become commonplace in the operations and management of business enterprises. The

internet and related technologies and applications have changed the way businesses operate and

people work, and how information systems support business processes, decision-making and

competitive advantage. Today many businesses are using internet technologies to web-enable

business processes and to create innovative e-business applications(Chow, 2009). In Kenya

private companies adopt the latest in online information systems technology in order to maintain

a competitive edge while government agencies and institutions driven by Kenya Vision 2030 that

proposes intensified application of Science, Technology and Innovations(STI) to raise

productivity and efficiency (GoK, 2007) have slowly began to move operations that were

previously handled manually online to web based information systems. Examples of government

agencies and institutions that have implemented online information systems in the recent past

include; Kenya Universities and Colleges Central Placement Service (KUCCPS) the former Joint

Admissions Board (JAB) in application for admission into public universities and colleges,

Kenya Revenue Authority (KRA) in filing of tax returns, Kenya Civil Service in recruitment of

staff, and the Higher Education Loans Board (HELB) in student loan application. Other

institutions that have been using online information systems include Educational institutions in

student management, job applications and student application. The government online

information systems are accessed by thousands of users, consequently increasing demands on the

customer support provided. These online services require the availability of customer support on

a 24 hour basis as customers access the applications at different times at their convenience.

Customer support is a range of services that assist customers in making cost effective and correct

use of a product, it includes assistance in planning, installation, training, troubleshooting,

maintenance, upgrading and disposal of a product (BusinessDictionary.com, 2014). Customer

12

support is divided into two categories: voice-based customer support which involves customers

calling and asking for assistance and non-voice customer support services which are

differentiated into chat support, email support, (Open Access BPO, 2013) and more recently

social media based support whereby customers post their inquiries or problems on social media.

In Kenya both forms of customer support are employed, with voice-based support being more

popular as evidenced by the number of organizations which are setting up and which already

have existing contact-centers these include banks, mobile network operators and digital content

providers. The popularity of voice-based support has been supported by the drastic growth in the

mobile industry that resulted in an increased number of mobile subscribers approximately 31

million in December 2013 (CCK, 2014) up from 15,000 in 1999 (CCK, 2008) and the lowering

of calling costs in the industry. With the landing of the three undersea fiber-optic cables at the

Kenyan Coast and laying of terrestrial fiber-optic network across the country, the cost of

accessing internet has drastically reduced while speed and reliability of internet connectivity

improved (Mokaya, 2012), consequently the number of internet users has increased as illustrated

by Table 1 which compares the total number of internet users of Kenya in 2007 and in 2013.

Table 1: Internet Users in Kenya

Indicator Sep 2007 Dec 2008 Dec 2009 Sep 2010 Sep 2011

Dec 2012

Dec 2013

Internet users

(cumulative)

2,865,646 3,359,552 3,648,406

8,689,304

14,300,679

16,236,583

21,273,738

Source (CCK, 2014)

As more people access the internet and familiarize themselves with various web applications

they also relay their support requests on non-voice based platforms these include; email, chat and

social media. The growing move to non-voice based customer support platforms has forced

organizations to hire more personnel to respond to requests that are received on the various

channels. In Kenya some of the organizations that offer customer supports on email as well as

social media include; Safaricom a mobile network operator, Kenya Power a utility provider,

Kenya Airways an airliner and University of Nairobi.

13

Effective customer support and service has become a strategic imperative, regardless of the

organization’s field of specialization, what is increasingly making a competitive difference is the

customer support and service that is built into and around the product or service, rather than just

the quality of the product or service (Sawy and Bowles, 1997). Hence organizations have to

ensure that the customer support offered is provided in a timely manner and it is helpful to

customers. With many of the customer requests received on a daily basis being routine in a

nature, an organization has to find ways of automating the handling of such requests to ensure

available staff deal with requests that have been escalated as opposed the routine ones; thereby

enhancing productivity.

Lester, Branting & Mott (2004) studied conversational agents (CA) which are computer systems

that are intended to converse with human beings. These conversational agents integrate

computational linguistics techniques with the communication channel of the Web to interpret and

respond to statements made by users in ordinary natural language. The study highlighted the use

of the agents in the areas of customer service, help desk, website navigation, guided selling and

technical support (Lester et al., 2004). The conversational agents were used to automate

customer support by simulating dialogue between customer and customer support personnel.

Text mining is the process of extracting patterns from natural language rather than from

structured database facts, employing algorithms for converting unstructured text into structured

data and conveying the insightful information (Segall et al., 2009). The patterns extracted must

be valid and potentially useful. Text mining was used to categorize requests received from

customers into the various predefined categories that determined the action or response to be

given.

1.2 Problem statement

The growth of social media platforms, use of email, and chat for business processes has resulted

in a move to non-voice based customer support. To remain competitive organizations ensure that

all platforms are manned by support staff who read, interpret and handle customer requests

appropriately, this has resulted in large number of employees employed for the sole role of

providing support. With the increase in employees organizations are faced with challenges

14

specifically training costs, providing competitive remuneration and staff turnover. The

organizations in the face of these challenges should implement methodologies to automate

customer support in order to decrease the staff requirements.

Most customer requests are routine in nature and can be handled automatically without need for

human intervention, example of these requests include; queries on how to use an application,

queries whose responses already exist in frequently asked questions (FAQs) website page and

queries whose responses are determined by database data. In addition as the number of users

accessing online applications dramatically surpasses staff employed to provide support, and as

applications become more complex then, the need for efficient handling of requests is

emphasized in order to ensure that customers can effectively navigate and use applications with

ease. As we know humans as prone to err; as such some simple customer requests are sometimes

misunderstood by support personnel resulting in customer frustration.

1.3 Purpose Statement

The purpose of the study was to design, implement and study and automated customer support

system and demonstrate its effectiveness using the online university application as a case study.

1.4 Objectives

The following were the objectives of this study:

1. To identify and analyze techniques used in automating customer support and select

suitable technique for creating a customized automatic customer support system.

2. To develop a customized automatic customer support system using the selected technique.

3. Conduct a comparative analysis of the performance of the system developed with human

customer support.

1.5 Research Questions

1. Are there automatic customer support systems in the market? What are the methodologies

used in their development?

15

2. What are the various issues that are encountered in customer support applications?

3. Do existing methodologies have gaps that can be addressed?

4. How can an integrated customized application methodology be developed to address

identified gaps?

5. Can the methodology developed be applied in a real world performance problem scenario?

6. Does an automated customer system perform comparably with human in terms of time,

accuracy?

1.6 Justification

Automated customer support system offers organizations running online applications accessed

by thousands of users a mechanism to automate the handling of routine queries. In addition it

extends possible support offered by 1) proving additional information to customers and 2)

includes not only the issues raised but also those that have a likely hood of occurrence. In

addition the system also dramatically reduces the response time and increases the possible

volumes of requests that can be handled within a day, week or month.

1.7 Scope and Limitation

The study was restricted to the response of requests received via email and for testing purposes

those placed locally in a mail directory. Due to the complexity of case online application and the

multitude of possible issues and requests that can be received the study was restricted to a small

facet of the application. The accuracy and efficiency of the prototype developed was also

capabilities of natural language processing (NLP) technologies; specifically the categorization of

issues which was heavily dependent on the algorithm used, availability of training data and

“cleanliness” of the training data available. Some issues raised require human intervention hence

there is an escalation component in the prototype developed.

16

2 LITERATURE REVIEW

This chapter focuses on previous work related to this study, and provides a theoretical

background to the research work.

2.1 Customer Support

Customer support is a range of services that assist customers in making cost effective and correct

use of a product, it includes assistance in planning, installation, training, troubleshooting,

maintenance, upgrading and disposal of a product (BusinessDictionary.com, 2014). Customer

support is divided into two categories: voice-based customer support which involves customers

calling and asking for assistance and non-voice customer support services which are

differentiated into chat support, email support, (Open Access BPO, 2013) and more recently

social media based support whereby customers post their inquiries or problems on social media.

2.2 Automating Customer Support

Automation of customer support entails building a database of known issues and their resolutions

with delivery mechanisms (“Customer support,” 2014). Customer support automation has been

studied and implemented through Artificial Intelligence (AI), a section of computer science that

is concerned with making computers act rationally or intelligently. In AI the automation studied

and implemented with; Case-based reasoning (CBR) which is a problem solving paradigm

whereby new problems are solved by remembering previous similar situations and reusing the

information and knowledge of that situation (Aamodt and Plaza, 1994), Conversational agents

also referred to as dialog systems are computer systems intended to converse with humans with a

coherent structure (“Dialog system,” 2014).

Wang et al(2010) studied the use of CBR in intelligent help desk agents the study addressed the

two challenges that pertain to CBR namely; case retrieval measures whereby most systems use

traditional keyword-matching-based ranking schemes for case retrieval and have difficulty in

capturing the semantic meanings of cases and result representation whereby most case-based

systems return a list of past cases ranked by their relevance to a new request, and users have to

go through the list and examine the cases one by one to identify their desired cases. To address

17

these challenges the study developed iHelp, an intelligent online Helpdesk system, that

automatically finds problem–solution patterns from the past customer–representative

interactions. When a new customer request arrives, iHelp searches and ranks the past cases

based on their semantic relevance to the request, groups the relevant cases into different clusters

using a mixture language model and symmetric matrix factorization, and summarizes each case

cluster to generate recommended solutions (Wang et al., 2011).

Chang et al(1996) studied SmartUSA a CBR helpdesk system developed for Union Camp

Corporation that solved customer problems by filtering the problem description through an alias

table to generate a brief description and then matching the brief description with the cases in the

database. SmartUSA proved to be an effective and user friendly system that successfully handled

different descriptions of the same problem and allowed for the case base to be built in free-

format (plain) text. The system significantly reduced the workload and the response time in the

customer services department. The study concluded that though impressive success had been

achieved by SmartUSA, more sophisticated approaches for case representation, storage and

indexing are needed for CBR based systems(Chang et al., 1996) .

While CBR has been successfully applied in customer care systems the main issues in its use are;

The CBR system requires large storage space for all cases and it also requires large processing

time to find similar cases. Also cases may need to be created by hand and needs case-base, case

selection algorithm, and possibly case-adaptation algorithm. In short if one requires the best

solution or the best optimum solution then CBR is not the best option. Most user support systems

based on CBR are used to guide customer care personnel on possible diagnosis or solutions to

problems as they display the most related cases; however this study proposes to develop a system

that will automatically diagnose and resolve issues.

Lester, Branting & Mott (2004) studied conversational agents (CA) which are computer systems

that are intended to converse with human beings, these conversational agents integrate

computational linguistics techniques with the communication channel of the Web to interpret and

respond to statements made by users in ordinary natural language. The study highlights the

application of the agents in the areas of customer service, help desk, website navigation, guided

selling and technical support. The study further elaborates on the requirements the conversational

18

agents must satisfy; First, providing sufficient language processing capabilities that they can

engage in productive conversations with users that is being able to understand users' questions

and statements, employing effective dialog management techniques, and accurately responding

at each conversational turn. Second, operating effectively in the enterprise that is must exhibit

scalability and reliability and clean integration into existing business processes and enterprise

infrastructure.

The Conversational Agents are viewed as alternative mechanism to mitigate the shortfalls in

CBR systems, specifically the space and time requirements.

2.3 Conversational Agents (CA)

Accurate and efficient natural language processing (NLP) is essential for an effective

conversational agent. To respond appropriately to a user's utterance, a conversational agent must

(1) interpret the utterance through the interpreter, (2) determine the actions that should be taken

in response to the utterance carried out by the dialog manager, and (3) perform the actions by

response generator, which may include replying with text, presenting Web pages or other

information, and performing system actions such as writing information to a database. Figure 1

illustrates the data flow in a conversational agent as described above while Figure 2 shows the

natural language processing components of a conversational agent (Lester et al., 2004).

Figure 1: Data Flow in a Conversational Agent

19

Figure 2: The primary natural language components of a conversational agent

Conversational agents offer a solution to the cost versus effectiveness tradeoff for customer

support. By engaging in automated dialog to assist customers with problems conversational

agents address inquiries at a much lower cost than human-assisted support. The conversational

agents can only operated in circumscribed domain but can offer a cost-effective solution in

applications where the requirements are bounded (Lester et al., 2004).

Crocket et al. (2011) studied goal-oriented conversational agents designed to converse with

humans through use of natural language dialogue to achieve specific tasks. A Goal-Oriented CA

(GO-CA) is a type of conversational agent which has a deep strategic purpose that enables it to

direct a conversation to achieve a goal. The goal oriented conversational agents utilized pattern

matching algorithms to capture the values of specific attributes through their dialogue interaction

with a user. They achieved pattern matching through use of scripts that contain sets of rules

about the domain and a knowledge base to guide the conversation towards a specific goal. These

systems are stated to be ideal for providing clear and consistent advice 24 hours a day in;

advising on organizational policies and procedures, guiding customers on products, and tutoring

students to understand learning objectives. Figure 3 shows the architecture of a goal-oriented

conversational agent (Crockett et al., 2011).

20

1

Figure 3: GO-CA Architecture

Feng et al., 2003 described WebTalk, a general framework for automatically creating spoken and

text-based customer care dialog applications based entirely on organization’s website. Webtalk

leveraged on the vast information available on websites and enabled tight synchronization of

dialog systems with website updates. Figure 4 illustrates the major components of WebTalk;

Website analyzer constructs dialog oriented task knowledge from given websites taking websites

as input and outputting task data, The speech recognizer derives a language model from website

and structured task knowledge, Language understander is a rule-based component that converts

natural language sentences into semantic representation, Dialog manager is the core of a dialog

system and it involves more handcrafted work such as predicting possible dialog states,

designing associated actions and responses for each state, lastly language generation is

responsible for refining text output of the system to be dialog-style natural prompts. The paper

demonstrated the automatic creation of dialog systems to be used in customer care (Feng et al.,

2003) and its results can be leveraged when creating customer care systems that pertain only to

website data.

Figure 4: A Schematic Diagram of Major Technology Components in WebTalk

21

In order to satisfy the natural language processing requirement the study proposes using text

mining categorization algorithms.

2.4 Text Mining

Text mining is finding useful data by automatically extracting information from textual sources

examples of sources include; web documents, emails, database, and text messages. It is the

process of extracting patterns from natural language rather than from structured database facts,

employing algorithms for converting unstructured text into structured data and conveying the

insightful information (Segall et al., 2009). The patterns extracted must be valid and potentially

useful. The text mining process consists of the following stages illustrated by Figure 5;

Figure 5: Text Mining Process

Source(Liddy, 2000)

2.4.1 Text Preparation

Text preparation or pre-processing is the selection, cleansing and pre-processing of text. In this

stage selection of sources for text mining would occur, usually under the guidance of a human

expert, and early text pre-processing, such as sentence identification and part-of-speech tagging,

would take place (Liddy, 2000). The goal of pre-processing is to represent the text in such a way

that its storage in the system and retrieval from the system is very efficient (Lama, 2013).

Text pre-processing includes the following stages:

22

2.4.1.1 Tokenization

Tokenization is the process of chopping up a given stream of text or character sequence into

words, phrases, symbols, or other meaningful elements called tokens which are grouped together

as a semantic unit and used as input for further processing such as parsing or text mining.

Usually, tokenization occurs in a word level but the definition of the “word” varies accordingly

to the context. So, the series of experimentation based on following basic consideration is carried

for more accurate output(Lama, 2013):

1. All alphabetic characters in the strings in close proximity are part of one token; likewise with

numbers.

2. Whitespace characters like space or line break or punctuation characters separate the tokens.

3. The resulting list of tokens may or may not contain punctuation and whitespace

2.4.1.2 Stop Word Removal

Sometimes a very common word, which would appear to be of little significance in helping to

select text matching user’s need, is completely excluded from the vocabulary. These words are

called “stop words” and the technique is called “stop word removal”. The general strategy for

determining a “stop list” is to sort the terms by collection frequency and then to make the most

frequently used terms, as a stop list, the members of which are discarded during indexing.

Some of the examples of stop-word are: a, an, the, and, are, as, at, be, for, from, has, he, in, is, it,

its, of, on, that, the, to, was, were. For instance: If operated on a token “saw”, stemming may

return just “s”. While lemmatization will go through the morphological analysis and return see or

saw depending upon the use of word “saw” as a verb or noun in the sentence(Lama, 2013).

2.4.1.3 Part of Speech Tagging

Part-of-Speech (POS) tagging means word class assignment to each token. Its input is given by

the tokenized text. Taggers have to cope with unknown words (Out-Of-Vocabulary (OOV)

problem) and ambiguous word-tag mappings. Rule-based approaches like ENGTWOL operate

on;

23

1. Dictionaries containing word forms together with the associated POS labels and

morphological and syntactic features and

2. Context sensitive rules to choose the appropriate labels during application.

2.4.1.4 Synonym Expansion

Synonym expansion, also known as lexical substitution, is the task of replacing a certain word in

a given context with another suitable word similar in meaning. When a word has multiple

meanings, synonym expansion tries to find the correct meaning of the word used in a sentence by

identifying its synonyms (or substitutes) in a given context (Lama, 2013).

2.4.2 Text Processing

Text processing is the use of a data-mining algorithm to process the prepared data, compressing

and transforming it to identify latent nuggets of information. At this stage, a fully featured NLP

system would determine canonical and variant identities of entities identify conceptual relations

between entities, and even instantiate particular frames of interest. Slot-filling of participants,

dates and outcomes, as well as tables of extracted entities and relations, provides meaningful

features for standard algorithms and techniques such as decision trees, neural networks, case-

based learning, association rules or genetic algorithms (Lama, 2013).

2.4.2.1 Information Extraction

Information Extraction (IE) is an important process in the field of NLP in which factual

structured data is obtained from an unstructured natural language document or text. Often this

involves defining the general form of the information that we are interested in as one or more

templates, which are then used to guide the further extraction process. IE systems rely heavily on

the data generated by NLP systems (Lama, 2013). Tasks that IE systems can perform include:

Term analysis: This identifies one or more words called terms, appearing in the documents. This

can be helpful in extracting information from the large documents like research papers which

contain complex multi –word terms.

Named-entity recognition: This identifies the textual information in a document relating the

names of people, places, organizations, products and so on.

24

Fact extraction: This identifies and extracts complex facts from documents .Such facts could be

relationships between entities or events.

Two typical text mining techniques employed during this stage are classification and clustering.

2.4.2.2 Clustering

Clustering is an unsupervised pattern classification method that takes place during the text

processing stage, whereby a group of n objects is classified into m partitions without prior

knowledge whereby the number of partitions m may or may not be known initially. Clustering

can be also be defined as the “the process of categorizing objects into groups whose members are

similar in some way” (Algorithms, 2013).

The most widely researched and used clustering algorithm is the K-means algorithm that

attempts to solve the clustering problem into a fixed number of clusters K known clusters in

advance (Song and Park, 2009) . K-means classifies objects based on attributes or features into

K number of groups. The algorithm is made up of the following steps:

1. Places K points into the space represented by the objects that are being clustered. These

points represent initial group centroids.

2. Assigns each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculates the positions of the K centroids.

4. Repeats Steps 2 and 3 until the centroids no longer move. This produces a separation of

the objects into groups from which the metric to be minimized can be calculated.

The K-means algorithm aims at minimizing an objective function, in this case a squared error

function. The objective function

,

where is a chosen distance measure between a data point and the cluster centre , is

an indicator of the distance of the n data points from their respective cluster centres (Algorithms,

2013).

25

2.4.2.3 Classification

Text classification is the automated assignment of natural language texts to predefined

categories. Text classification is the primary requirement of text retrieval systems, which retrieve

texts in response to a user query, and text understanding systems, which transform text in some

way such as producing summaries, answering questions or extracting data. Existing supervised

learning algorithms to automatically classify text need sufficient documents to learn accurately

Figure 6 demonstrates the text classification process that begins from text pre-processing

(Ikonomakis et al., 2005).The most common techniques used for automatic text classification

include; Association rule mining, implementation of Naïve Bayes classifier, genetic algorithm,

decision tree (Kamruzzaman et al., 2010) and K Nearest Neighbor.

Figure 6: Text Classification Process

Association rule mining

It finds interesting association or correlation relationships among a large set of data items, the

association rule is based on associated relationships. The discovery of interesting association

relationships among huge amounts of transaction records can help in many decision-making

processes. Association rules are generated on the basis of two important terms namely minimum

support threshold and minimum confidence threshold (Kamruzzaman et al., 2010). Association

rule mining is a two-step process, which includes:

1. Find all frequent itemsets(set of items).

2. Generating strong association rules from the frequent itemsets.

The Naïve Bayes (NB) classifier

A Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with

strong (naive) independence assumptions(Ramesh and Ramar, 2011). It assumes that the

26

occurrence of each word in a document is conditionally independent of all other words in that

document given its class. Bayesian classifiers have exhibited high accuracy and speed when

applied to large database. While applying NB classifier to classify text, each word position in a

document is defined as an attribute and the value of that attribute to be the word found in that

position. Here NB classification can be given by:

VNB = argmax P (Vj) Π P (aj | Vj)

Here VNB is the classification that maximizes the probability of observing the words that were

actually found in the example documents, subject to the usual N independence assumption. The

first term can be estimated based on the fraction of each class in the training data. The following

equation is used for estimating the second term:

where n is the total number of word positions in all training examples whose target value is Vj, nk

is the number of items that word is found among these n word positions, and | vocubulary | is the

total number of distinct words found within the training data (Kamruzzaman et al., 2010).

Bayesian classifiers are popularly used not only for text categorization, but also for any other

classification problems, since their learning is fast and simple. Despite their naive design and

apparently over-simplified assumptions, NB classifiers often work much better in many complex

real-world situations than expected. An advantage of the NB classifier is that it requires a small

amount of training data to estimate the parameters (means and variances of the variables)

necessary for classification. Because independent variables are assumed, only the variances of

the variables for each class need to be determined and not the entire covariance matrix (Ramesh

and Ramar, 2011).

Genetic algorithm

A genetic Algorithm starts with an initial population which is created consisting of randomly

generated rules. Each rule can be represented by a string of bits. Based on the notion of survival

of the fittest, a new population is formed to consist of the fittest rules in the current population,

as well as offspring of these rules. Typically, the fitness of a rule is assessed by its classification

accuracy on a set of training examples. In general, genetic algorithm starts with an initial

27

population which is created consisting of randomly generated rules. Each rule can be represented

by a string of bits.

As a sample example, suppose the samples in a given training set are described by two Boolean

attributes, A1 and A2, and that there are two classes, C1 and C2.The rule “IF A1 AND NOT A2

THEN C2” can be encoded as the bit string “100”, where the two leftmost bits represent

attributes A1 and A2, respectively and the rightmost bit represents the class. Similarly, the rule

“IF NOT A1 AND NOT A2 THEN C1” can be encoded as the bit string “001”, If an attribute

has k-values, where k>2, then k-bits may be used to encode the attribute’s values. Classes can be

encoded in a similar fashion. Based on the notion of survival of the fittest, a new population is

formed to consist of the fittest rules in the current population, as well as offspring of these rules.

Typically, the fitness of a rule is assessed by its classification accuracy on a set of training

examples. Offspring are created by applying genetic operators such as crossover and mutation. In

crossover, substrings from pairs of the rules are swapped to form new pairs of rules. In mutation,

randomly selected bits in a rule’s string are inverted. The process of generating new populations

based on prior populations of rules continues until a population P “evolves” where each rule in P

satisfies a pre-specified fitness threshold (Kamruzzaman et al., 2010).

Decision trees

A decision tree model consists of internal node and leaves. Each of the internal node has a

decision associated with it and each of the leaves has a class label attached to it. A decision tree

based classification consists of two steps.

1. Tree induction whereby tree is induced from the given training set.

2. Tree pruning: The induced tree is made more concise and robust by removing any

statistical dependencies on the specific training data set (Ghosh et al., 2012).

The decision tree classification method is outstanding from other decision support tools with

several advantages like its simplicity in understanding and interpreting, even for non-expert

users. However decision trees are built by greedy search algorithms, guided by some heuristic

that measures “impurity”. Irrelevant attributes may affect badly the construction of a decision

tree. Small variations in the data can imply that very different looking trees are generated (Patra

and Singh, 2013).

28

K-Nearest Neighbor (KNN)

KNN classifier is a classification algorithm where objects are classified by voting several labeled

training examples with their smallest distance from each object. The major disadvantage of KNN

is that it uses all features in computing distance and costs very much time for classifying objects

(Patra and Singh, 2013).

Support vector machines (SVM)

It is a method for classification of linear and non-linear data. This algorithm uses non-linear

mapping to transform training data into higher dimension and then it search for linear optimal

separating hyper plane. SVM optimizes the weights of the inner products of training examples

and its input vector called Lagrange multipliers, instead of those of its input vector, itself, as its

learning process it provides a compact description of the learned model (Patra and Singh, 2013).

The advantages of SVM are; effective in high dimensional spaces, still effective in cases where

number of dimensions is greater than the number of samples, uses a subset of training points in

the decision function (called support vectors), so it is also memory efficient and versatile as

different kernel functions can be specified for the decision function.

Latent semantic indexing (LSI)

This also known as latent semantic analysis (LSA), is an indexing and retrieval method that uses

singular value decomposition (SVD) to identify patterns in the relationships between the terms

and concepts contained in an unstructured collection of text. LSI is based on the principle that

words that are used in the same contexts tend to have similar meanings. A key feature of LSI is

its ability to extract the conceptual content of a body of text by establishing associations between

those terms that occur in similar contexts (“Latent semantic indexing,” 2014).

How it works

It decomposes a term-document or text into a product of matrices using SVD.

SVD is used to compute a new and improved term-document matrix c' which is then used to get

better similarity values (Gray, 2011). Once a term-document matrix is constructed, local and

29

global weighting functions can be applied to it to condition the data. The weighting functions

transform each cell, a_{ij} of A, to be the product of a local term weight, l_{ij}, which describes

the relative frequency of a term in a document, and a global weight, g_i, which describes the

relative frequency of the term within the entire collection of documents (“Latent semantic

indexing,” 2014).

Why use LSI

1) It has been shown to provide superior performance to other information retrieval techniques in

a number of controlled tests. 2) A number of experiments have demonstrated a remarkable

similarity between LSI and the fundamental aspects of the human processing of language. 3) It is

immune to the nuances of the language being categorized, thereby facilitating the rapid

construction of multilingual categorization systems. 4) It can perform well with very limited

quantities of training data, generally with only a few examples per category (Zukas and Price,

2003).

2.4.3 Text Analysis

Text analysis is the evaluation of the output to see if knowledge was discovered and to determine

its importance. Having run the algorithms, the mined text is submitted to various techniques that

will enable direct usage of the mined information, either by a Link Discovery tool or by

visualization in a tool that will enable human analysts to complete the analysis begun by the text

mining technology (Liddy, 2000).

30

2.5 Synthesis and Approach

Table 2 shows a summary of techniques reviewed and the identified gaps;

Table 2: Review of Techniques Studied

Methodology Critique

CBR 1. May require large storage space requirements and large processing

2. Cases may need to be created by hand

3. Needs case-base, case selection algorithm, and possibly case-

adaptation algorithm.

Systems developed using CBR are by customer support personnel to

determine possible solutions.

CA 1. Require sufficient language processing capabilities.

2. Must operate effectively in the enterprise; scalable and reliable, and

must integrate cleanly into existing business processes.

Text classification Algorithms

NB Over-simplified assumptions that may not be applicable in the real world.

Decision Trees 1. Irrelevant attributes may affect badly construction of a decision tree.

2. Small variations in the data can imply that very different looking trees

are generated

KNN 1. It uses all features in computing distance

2. Costs very much time for classifying objects

SVM 1. Training speed is low

2. If features are much greater than samples likely to perform poorly.

3. Do not directly provide probability estimates, these are calculated

using an expensive five-fold cross-validation.

The study implemented automated user support using conversational agents conversed with

customers in a structured way. To address the NLP requirements the study used NB

classification and LSI algorithm to categorize customer requests to determine the appropriate

response to give customer and what actions to perform.

31

3 METHODOLOGY

3.1 Introduction

The chapter covers the system development methodologies that were used in the study.

3.2 System Development Methodology

3.2.1 Agile Software Development Methodology

This methodology was employed for the development of the administration web interface,

automatic email saving component and data generation and saving components. The

methodology puts extreme emphasis on delivering working code or product while downplaying

the importance of formal processes and comprehensive documentation. Proponents of these

methodologies argue that by putting more emphasis on “actual working code,” software

development processes can adapt and react promptly to changes and demands imposed by their

volatile development environment (Kruchten, 2001). Figure 7 illustrates a generic agile

development process that features an initial planning stage, rapid repeats of the iteration stage,

and some form of consolidation before release.

Figure 7: A Generic Agile Development Process

32

3.2.2 Multi-Agent Systems Engineering Methodology

The methodology used in development of the conversational agents was Multi-Agent Systems

Engineering (MaSE) methodology. MaSE builds on object-oriented techniques and uses defined

in the Unified Modeling Language (UML) (Wood and DeLoach, 2001). MaSE was used to

analyze, design, and implement the conversational agents by proceeding in an orderly fashion

through the development lifecycle.

MaSE as illustrated by Figure 8 consists of two phases’ analysis and design. The analysis phase

involves a) Capturing goals, b) Applying use case 3) Refining roles and results in the models

goal hierarchy, use cases, sequence diagrams, concurrent tasks, role model. The Design Phase

involves a) Creating agent classes, b) Constructing conversations, c) Assembling agent classes

and d) System design and results in creation of agent class diagrams, conversation diagrams ,

agent architecture diagrams and deployment diagrams.

Figure 8: MaSE Development Stages

33

3.3 Data Sources

The study used the University Online application user support emails as its core source of data

for support requests and responses, sample data can be viewed in Appendix A. Data on

applicants was retrieved from institutional websites and generated randomly.

3.4 Data Collection

The data was provided as series of forwarded emails from the official online application support

email account. The emails were downloaded then read and saved automatically into the database.

The emails were then used to create training data for the classifier and to validate the prototype.

Other data was manually captured from institutional websites using data entry forms.

3.5 General System Architecture

Figure 9 illustrates the general system architecture.

Figure 9: General System Architecture

The following are automated support system components are;

34

Interface

What a customer uses to relay their requests and what is used by the system to communicate any

information to the customer. In this study chosen interface is email.

Discourse Manager

The discourse manager is the core of the system it controls the dialogue between the customers

and the automated customer support system. If it will perform the following functions;

Interpreter

This is the Natural language understanding (NLU) unit which utilizes NB or LSI text mining

algorithm to determine the meaning of text which it will then pass to the discourse manager. The

interpreter performs text processing as described in the literature review to classify the requests

into various categories. Once the text has been categorized it will store the uncategorized text

and the categorized text in created databases.

Response Generator

This receives the classified text and determines the appropriate action to be performed or

message to be sent to the customer. It consists of a set of production rules used to determine the

correct actions or responses to give depending on the category the email has been placed.

3.6 Prototype Validation and Comparative Analysis

Figure 10 illustrates the general architecture of the comparative analysis component of the

system.

Text
Pre-Processing

Human
Generated
Response/

Actions

Text Processing
(Analysis &

Categorization)
Database(s)

Category/text
comparison

System
Generated
Response/

Actions

Results Display

Figure 10: Comparative Analysis Design

35

3.7 Study Activities

Table 3 shows a summary of activities that were carried out to realize the objectives of this

study.

 Table 3: Study Activities

Objective How the objective was achieved

1. To identify and analyze techniques

used in automating customer

support and select suitable

technique for creating a customized

automatic customer support system.

Conducted desk research on techniques used to automate

customer support. Analyzed all the techniques identified

and reviewed their advantages and disadvantages and

selected the most suitable for the study.

2. To develop a customized automatic

customer support system.

Implemented the identified method through

development of prototype.

3. Conduct a comparative analysis of

the performance of the system

developed with human customer

support.

Analyzed the responses generated by the automated

customer support system and compared with those

generated by customer support personnel to identify the

level of accuracy of the developed system.

36

4 ANALYSIS, DESIGN AND IMPLEMENTATION

4.1 Introduction

This chapter covers the system’s requirements, the design and finally the implementation of

system.

4.2 Systems Analysis

4.2.1 Functional Requirements

The following are the functional requirements for the prototype components;

Interface

1. Should be able to send and receive support emails from and to various email accounts.

2. Should allow polling by a local application to retrieve new emails.

Discourse Manager

The discourse manager is the core of the system it will control the dialog between the customers

and the customer support system. It should be able to;

1. Poll and retrieve emails from the support email account.

2. Ignore duplicate or empty emails and save valid new emails only.

3. Perform text pre-processing on retrieved emails before passing the text to the interpreter for

analysis. Pre-processing should involve removing non ascii characters, removal of html tags,

stripping text of excess spaces and removal of stop words.

4. Interact with the interpreter and the response generator to; receive and save classifications,

relay classifications to response generator and store responses.

5. Relay messages to the customer via the email account.

Interpreter

The interpreter should do the following;

1. Categorize the emails received

37

2. If it is unable to determine a category it should relay this to the discourse manager for

escalation to an administrator

Response Generator

It will should be able to do the following based on the category text has been placed in;

1. Determine what email response to send to a customer and action to perform.

2. It should be able to relay response and action to the dialogue manager.

Admin interface

The interface should do the following;

1. Authenticate users based on username and password set to allow access.

2. Allow start, stop and viewing of current run status of the application.

3. Allow change of application configurations.

4. Allow addition, update or delete of data from the support and applicant databases.

5. Allow the view of the system logs as the application is run.

4.2.2 Non-Functional Requirements

A non-functional requirement specifies systems’ properties and constraints. The following are

the non-functional requirements for the application;

1. Administrator’s graphical user interface should be easy to use and navigate.

2. Performance requirements

a. Training time for the classifier should be low.

b. The system should have short response times for emails once received.

3. Operating constraints: The application should not exhaust available resources that is;

memory and processor by creation of agents, there should be a mechanism to limit agents

created.

To run the application a server requires to meet the following minimum system

requirements; RAM 1GB, CPU 2.4 GHz and 64 bit system

38

4. Platform constraints: The application should run operate in either Windows or Linux

environment but there are noted difficulties involved in optimizing the classifier in

Windows.

5. Accuracy and Precision: The classifier should be as accurate as possible even with

minimal training data.

4.3 System Design

4.3.1 Architectural System Design

The Figure 11 illustrates the detailed architectural design of the system.

Figure 11: Detailed System Architecture

1. The User Interface Layer enables users to interact with the system. The interface for

customers is email while that for administrators is web pages. The interface layer will carry

out user commands and presents results generated by the system to the user.

2. The Business Logic Layer is the as main system engine. It has the working logic for the

system; which it includes the dialogue manager, support agent and the administrative

backend processing.

39

3. The Data Access Layer serves retrieval requests from the upper layers these include; data

storage, data retrieval and data crosschecking.

4. The Data Layer this is the data store for all data pertaining to the application, includes

support related data and applicant data.

4.3.2 Conversational Agent Design

Each conversational agent houses the following components explicitly or implicitly;

1. Part of the discourse manager

2. Interpreter

3. Response generator

The methodology used in design of the conversational agent is MaSE which entailed two phases;

analysis and design that yielded the models highlighted in the following sections. The agents

designed and developed are purely reactive, responding to change in their internal states.

Capturing Goals

This phase takes the initial system specification and transforms it into a structured set of system

goals as shown in a Goal Hierarchy Diagram (Figure 12). The Goal Hierarchy Diagram is a

directed, acyclic graph where the nodes represent goals and the arcs define a sub-goal

relationship.

Figure 12: Goal Hierarchy Diagram

40

Applying Use Cases

This phase captures use cases from the initial system requirements and restructures them as a

sequence diagram (Figure 13), which depicts a sequence of messages between the agent roles.

Figure 13: Sequence Diagram

Creating Agent Classes

The product of this step of the Design phase is an agent class diagram (Figure 14), that depicts

the agent classes and the conversations between them.

Figure 14: Class Diagram

41

4.3.3 Classifier Design

The interpreter component of the system was designed to use two classifier algorithms NB and

LSI.

4.3.3.1 Naïves Bayes Classifier Design

While applying NB classifier to classify text, each word position in a document is defined as an

attribute and the value of that attribute to be the word found in that position. The NB

classification is given by:

VNB = argmax P (Vj) Π P (aj | Vj)

Here VNB is the classification that maximizes the probability of observing the words that were

actually found in the example documents, subject to the usual N independence assumption.

Pseudo code

The following section shows the pseudo code for the NB classifier used. The Train function

returns; CategoriesCount array which holds the categories and the number of training data for

each, Categories array which holds the category, words in training data and the number of times

each word appears per category and the Totalwords this is a counter of all the words used in

training. The Classifications function is called by the classify function and it returns the Score

array which holds the category and a score associated with the category. The Score array is

ordered downward and the category with the largest value is that which is assigned to test. In the

event that two or more categories have the same score then the text is not classified in any

category.

CategoriesCount = [] #Initialize category counts array
Categories = [] #Initialize categories array
Totalwords = [] #Initialize total words counter
Train(category,text) #The train function will receive categories and text from the database
{

1. CategoriesCount[category] +=1 #Increment the counter for this category
2. WordCount = Hasher.Word_hash(text) # Create an array that holds the words and the number of

times they appear in the text
3. For Each WordCount as word => count # Loop through the array
4. Categories[category][word] += count # increment counter for the word with the count
5. Totalwords += count # Increment the counter for total words with the word count
6. End For Each #end the loop

}

42

Classifications(text){

1. Score =[] #initialize the scores array
2. For Each CategoryCount as k => catcount #Loop through the array
3. training_count +=catcount #Increment with the number of training data for each category
4. End For Each #End loop
5. For Each Categories as category=> category_words #Loop through the array created during

training
6. Score[category]=0 #initialize the score for the category
7. For Each category_words as k => catcount #Loop through the array of words for each category
8. total += catcount #increment the variable with the number of words in each category
9. End For Each
7. WordCount = Hasher.Word_hash(text)) # Create an array that holds the words and the number of

times they appear in the text
10. For Each WordCount as word=> count # Loop through the array
11. If category_words has key word or category_words[word] exists
12. s=0.1
13. Score[category] = log (s/total)
14. End If
15. End For Each

Adding prior probability for the category
16. If category_words has key word or category_words[word] exists
17. s=0.1
18. Score[category] = log (s/ training_count)
19. End If
20. End For Each
21. return Score

}
Word_hash(text)
{

1. Remove extra punctuation, short symbols and tags
2. Words = text.split # Split the text to create and array of words
3. d =[] #initialize word count array
4. d_s =[] #initialize synonym count array
5. For Each Words as word #Loop through the array
6. Set the word to lowercase
7. If word is not contained in CORPUS_SKIP_WORDS and if it is length greater than 2
8. synonym =stem(word) #Find synonyms for the word
9. d_s[synonym] += 1 #increment the array counter for the synonym
10. End If
11. d[word] += 1 #increment the array counter for the word
12. End For Each
13. return d + d_s #merge the arrays for synonyms and for words

}

43

IssueClassifier(issuetext, issue_id)
{

1. classificationArray = Classifications(issuetext) #Classify the text
2. Sort the classifications weights returned in ClassificationsArray in Descending order
3. proposedcatweight = classificationArray[0][1] #Get the highest score
4. samecount =0 #Initialize the counter for checking the number of categories with the same weight
5. For Each classificationArray as k => value #loop through the array of categories & scores
6. If proposedcatweight==value #compare the returned score with those returned
7. Samecount +=1 #increment the counter if the category has the same score returned
8. End If
9. End For Each
10. If issue_id is not empty #Check if the issue_id has been received
11. Save to classifications table all the weights #If it has save to the database the categories & scores
12. End If
13. If samecount >=2 # If the counter has value greater than or equal to 2
14. classification ="" #Set no classification
15. else
16. classification = classificationArray[0][0] #Return the category with the highest weight
17. End If
18. return classification

}

4.3.3.2 Latent Semantic Indexing Classifier Design

How it works

1. It decomposes a term-document or text into a product of matrices using SVD.

2. SVD then is used to compute a new and improved term-document matrix c' which is then

used to get better similarity values (Gray, 2011).

3. Once a term-document matrix is constructed, local and global weighting functions can be

applied to it to condition the data. The weighting functions transform each cell, a_{ij} of

A, to be the product of a local term weight, l_{ij}, which describes the relative frequency

of a term in a document, and a global weight, g_i, which describes the relative frequency

of the term within the entire collection of documents (“Latent semantic indexing,” 2014).

44

Pseudo code

The following section indicates the pseudo code for the LSI classify used. The same Word_hash

function is used as in the NB Classifier.

Items = [] #Initialize category counts array
Train(category, text)

{
1. text = clean(text)Remove extra punctuation, short symbols and tags
2. Items[text]= [text,categories]#load the cleaned text into an array
3. Word_list = Word_hash(text) # Create an array that holds the words and the number of times they

appear in the text
4. Create an index vector of all words and the number of times they appear in the text using the

Word_list array
 #No. 4 will decompose the text into term-document array using SVD u, v, s = matrix.SV_decomp

}

classifycustom(text)
{

1. Use the vector created in Train function to assign votes for each category based on the text
2. Return the Votes array that shows the categories and the vote assigned per category for the text

indicated
 }
Issueclassifier(issuetext, issue_id)

{
1. Votes = classifycustom(issuetext) # Get the votes array for the issue text
2. If the Votes array is not empty
3. Save the votes and categories to the classifications table
4. Get the category with the highest weight as the classified category
5. End If
6. Return the category assigned

 }

The word_hash function removes the words that are defined in Appendix C section 9.1.

45

4.3.4 Logic/Data flow of the Application

Application Initialization

Figure 15 illustrates the logic that pertains to initialization of the application.

Figure 15: Application Initialization

The system requirements that are required to be met for application to run include installation

and initialization of apache, mysql and ruby.

Application Logic

 Figure 16 shows the data/logic flow during email processing; the steps followed during a typical

run of the application. The figures also shows when the conversational agent is initialized, what

functions it performs and finally when it is stopped.

46

Conversational Agent

Figure 16: Application Data Flow

47

Figure 17 shows the logic flow during the retrieval of an applicant’s details based on the index

number numerical string provided in the email text. .

Figure 17: Applicant Details Fetch Data Flow

4.3.5 The Database Model

4.3.5.1 Support Database

Figure 18 shows the database model for the automatic customer support application. The tables

shown store the following information;

1. application_run: Statistics of each run of the application, this includes; the number of emails

received, agents created, emails ignored, escalated, responded and pending. It also shows the

run time of the application.

2. class: The group which each category falls under

3. categories; The sub-groups which each class holds

4. categories_data: Data that is used by to train the classifier which is related to the categories

table

5. support_issue: Emails received by polling an email account or a mail directory. The table

holds the raw email received as well as the processed email.

6. issue_categories : Categories of each of the emails received

48

7. classifications: Weights that are generated per category when each classifier is used

8. issue_responses: Messages and actions that generated and sent per issue received

9. check_emails: Emails that are used to validate the application and to compare against the

responses created by support staff

10. emails: support emails that have been automatically saved for creation of training data and

for comparison purposes.

11. response_categories; The categories for the responses that will be sent out

12. response_categories_data: Data that is used by to train the response classifier that is related to

the response_categories table

Figure 18: Support Database Model

49

4.3.5.2 Applicant’s Database

Figure 19 shows the applicant’s database model.

Figure 19: Applicants Database Model

The applicant’s database consists of the tables illustrated above which hold the data;

1. admissions : Year of admission, the cut off points for male and females and the revision

dates.

2. applicants: Applicant information that is names, index numbers and other details required for

registration, processing and validation.

3. choices: Possible choices descriptions

50

4. applicant_choices: Programme choices made by applicants

5. applicant_result : Applicant results that have been sent by the examination body

6. centers: Examination centers that were used by applicants

7. clusters: List of all possible clusters

8. institutions : List of institutions which have registered with KUCCPS

9. programmes: List of programmes offered per institution

10. revisions: Possible revision dates

4.4 System Implementation

4.4.1 The Front End

The front end of the system was developed using PHP/HTML and MYSQL database. The PHP

script interacts with the backend automatic support application Ruby service.

4.4.2 The Application Logic

The application was implemented in Ruby and MYSQL in Windows environment. It was also

customized for Linux environment.

4.4.2.1 Email Retrieval

The email retrieval component was implemented using the Mail and Mailman libraries, and the

email address used for implementation is a Gmail account, specifically

p58.75763.2012.2@gmail.com.

4.4.2.2 Conversational Agents

The conversational agents were implemented using the AgentDispatcher multi-agent libraries

more specifically the SimpleDispatcher class that extends the AgentDispatcher. Multithreading

was used to enable parallel execution of multiple agents.

4.4.2.3 Classifier Development

The NB and LSI classifiers were implemented using the Classifier-Reborn library. To speed up

the training of the LSI classifier the GNU Scientific Library (GSL) a numerical library was

51

installed in the Linux environment. The training data used by the classifiers was loaded from

MYSQL database.

Table 4 shows the categories created and the total training data that was loaded to the database

for each of the categories.

 Table 4: Classifier Training Data Count

Category Cluster Programmes System Application Login Registration Payment

Number 41 37 15 17 10 35 68

4.5 Evaluation of the Prototype

To decide determine whether the prototype created was accurately capturing the required

categories, it was necessary to evaluate it. The result of the evaluation was important in deciding

how reliable the prototype was. Assessment of the prototype involved the following;

1. Comparative analysis of classification of issues

2. Calculation of accuracy, precision, recall and F-Score

4.5.1 Comparative Analysis

This involved the following;

1. Selection a test data set to be used for comparing the categorization of issues by the system

to those by the customer support personnel, Table 5 illustrates the data set selected.

2. Cleaning and saving the test data set; this involved ensuring the issue and response text sent

where saved in different fields of the check_emails table.

3. Manually categorizing all the responses sent by the user support personnel into the

predefined response categories in the response_categories table.

4. Running the application on the available text data and automatically categorizing the emails

responses based on the predefined categories.

5. Generating a bar graph to compare the differences in the categorizations.

52

The prototype validation component was built on Ruby and PHP with MYSQL database. The

backend Ruby/MYSQL component is used to classify the responses generated by the system.

The front end PHP/MYSQL is a charting script that was used to generate the graphs of the

comparison.

4.5.1.1 The Test Data Set

From the sample data a total of 74 data sets were used as the test set from the following

categories;

Table 5: Validation Test Data Sets

Category Cluster Login Payment Programmes Registration System Total

Number 10 6 32 14 11 1 74

4.5.2 Accuracy, Precision, Recall and F-Score

In order to visualize the performance of the algorithms used confusion matrices were created for

each of the algorithms. In the field of machine learning, a confusion matrix, also known as a

contingency table or an error matrix, is a specific table layout that allows visualization of the

performance of an algorithm, typically a supervised learning one. Each column of the matrix

represents the instances in a predicted class, while each row represents the instances in an actual

class (Wikipedia, 2014). Let us define an experiment from P positive instances and N negative

instances for some condition. The four outcomes can be formulated in a 2×2 contingency table or

confusion matrix, as shown by Table 6.

Table 6: Confusion Matrix

 Actual Outcome

 Total Population Condition positive Condition negative

Expected Outcome Test outcome positive True Positive (TP)

eqv. with hit

False Positive (FP)

eqv. with false

Test outcome Negative True Negative (TN)

eqv. with correct rejection

False Negative(FN)

eqv. with miss

53

True positives (TP) are relevant items that we correctly identified as relevant. True negatives

(TN) are irrelevant items that we correctly identified as irrelevant. False positives (FP) are

irrelevant items that we incorrectly identified as relevant. False negatives (FN) are relevant items

that we incorrectly identified as irrelevant.

Given these outcomes, the following metrics can be defined:

1. Accuracy: Measures the percentage of inputs in the test set that the classifier correctly

labeled. This is defined as (TP + TP)/N

2. Precision: Indicates how many of the items that we identified were relevant; TP /(TP+FP).

3. Recall: Indicates how many of the relevant items that we identified; TP/ (TP+FN).

4. The F-Measure (or F-Score): Combines the precision and recall to give a single score, is

defined to be the harmonic mean of the precision and recall: (2 × Precision × Recall) /

(Precision + Recall).

A confusion matrix is a table where each cell [i,j] indicates how often label j was predicted when

the correct label was i. Thus, the diagonal entries (i.e., cells |ii|) indicate labels that were

correctly predicted, and the off-diagonal entries indicate errors(Bird et al., 2009).

 Cross-Validation

To evaluate the models the original corpus was divided into N subsets called folds. The model

was then trained with all the data except that in the fold then tested on the fold.

Pseudo Code

The following illustrates the pseudo code for the component used to create the confusion matrix

and to cross validate the model;

1. Perform k-fold cross-validation and return a confusion matrix involves steps 2 to 10 .

2. Load corpus # Training data

3. Assign the number of folds that corpus will be sub-divided into

or

4. Assign the percentage of data in each fold that will be used to test the classifier

54

5. Initialize the classifier

6. Assign the key from the corpus that will be used as the category

7. Assign the key from the corpus that will be used as the text

8. Train the classifier

9. Initialize the confusion matrix with the method that determines whether the

classification is fp, fn, tp or tn.

10. Classify the sample data assigned for testing

Implementation

The cross-validation component was implemented in Ruby with the cross_validation libraries

calling data that had been saved in the database specifically the categories and categories_data

tables.

55

5 RESULTS AND DISCUSSION

This chapter presents and discusses the results obtained from study.

5.1 Presentation of Results

The automatic customer support interpreter component of the conversational agents was

designed and developed to use either NB or LSI classifiers. The following section illustrates the

typical responses generated by the application to user requests using either of the classifiers,

more sample emails and responses can be viewed in Appendix B.

Example 1

 User Email

I would like to know what your website refers to as cluster weights . I would also like to know how you arrived at the latter.

Thanks in advance

Response by Personnel

the cluster weight has being calculated from your grade and it shows your points for the various cluster groups. it was calculated

using the new formula at http://jab.uonbi.ac.ke/node/61

Response by System

Subject: Cluster Points Inquiry

Please send us your VALID KCSE index number so we can verify your registration details. The following is the procedure for

viewing your cluster:

 i. Visit the page https://kuccpsapp.uonbi.ac.ke/admission_inquiry.php to verify that you qualify for placement. Enter your details

in the form provided and submit if you qualify, a list of your previous choices, weighted clusters will appear.

 ii. If you would like to know how each cluster is calculated simply click on the decimal value and you will see how it was

generated

iii. You should then use the previous years cutoff point to compare with your cluster points for a particular cluster to check

whether or not you qualify to apply for the programmed.

iv. To view only those programmes which you qualify to apply based on their minimum subject requirement, cluster requirements

and mean grade requirement, ensure you register using the registration form https://kuccpsapp.uonbi.ac.ke/ then proceed to click

on View Clusters -> Then click on any of the active cluster links

PLEASE NOTE: v. To view general information on the new formular visit the page https://kuccps.uonbi.ac.ke/node/61

vi. There are no cut off points released for the current admission, however you can use the previous years cutoff points to guide

on you if you qualify for admission for more competitive programmes.

56

Example 2

 User Email

Why is it that when i fill in my information for registration they tell me that it is invalid

Response by Personnel

send your details so that we can assist you.Index number KCSE KCPE birtth certificate number and KCPE year.

Response by System

Registration Procedure

Please send us your VALID KCSE index number so we can verify your registration details. Ensure you are using the following

details to register Your Birth Certificate or Your Year of birth, Gender, KCPE index number and KCPE year.

If the application is still unable to validate you when you use your KCSE Index number as appearing on you result slip then you

have NOT qualified to register and apply for degree programmes

5.2 Conversational Agent Applying Naïve’s Bayes Algorithm

To determine which classification to assign to text the classifier assigns weights to all the

categories available based on the training data it then proceeds to select the category with the

highest weight. Table 7 illustrates the weights assigned for Example 1, the selected category is

cluster which has the largest value.

Table 7: NB Classification Weights for Example 1

Category Cluster Programmes System Application Login Registration Payment

Weight -199.545 -202.957 -207.979 -211.172 -221.111 -241.111 -254.27

57

5.2.1 Application Run Statistics

Training

The classifier using NB took 1.0 seconds to train with 223 data sets. Table 8 shows the

application run statistics using the NB algorithm, from these statistics it can be estimated that the

application takes 0.4 seconds to handle each request.

Table 8: NB Application Run Statistics

emails agents responded escalated ignored pending
Duration
(Seconds)

Duration
Per Request
(Seconds)

242 242 239 0 0 3 108 0.446281

242 242 239 0 0 3 94
0.38843

242 242 239 0 0 0 87
0.359504

821 821 812 0 0 0 324
0.394641

5.2.2 Validation of the Results

A comparison of the responses generated by the system versus those sent by the support

personnel yielded the graph in Figure 20 which illustrates that out of the 74 test emails that were

used to evaluate the system from the different categories (Table 5), only 12 percent were

classified in the same category as those generated by support staff.

Figure 20: Comparison of System Versus User Responses Using NB

58

Figure 20 illustrates that with NB the error rate was approximately 88 percent which for a real

world application is unacceptable, this necessitated the implementation of another algorithm with

improved accuracy.

5.2.3 Accuracy and F-Score

Using various number training data sets cross-validation of the data sets was carried out across 5

folds of data and the mean of the validation calculated as illustrated by Table 9.

Table 9: NB Validation Results

Parameter Accuracy Precision Recall F-score

Results (70 data sets) 0.942 0.942 1.0 0.970

Results (130 data sets) 0.953 0.953 1.0 0.976

Results (200 data sets) 0.925 0.925 1.0 0.961

Mean 0.94 0.94 1 0.969

5.3 Conversational Agent Applying LSI Algorithm

To determine which classification to assign to text the LSI classifier uses a voting system to

categorize based on the categories of other text. It takes content and finds other text that is

semantically “close”, returning an array of documents or text sorted from most to least relevant.

Table 10 illustrates the weights for Example 1, the selected category in this case is cluster.

 Table 10: LSI Classification Weights for Example 1

Category Cluster Programmes System Application Login Registration Payment

Weight 14.4572 5.01403 0.165699 3.43984 0.815106 1.81205 1.62943

59

5.3.1 Application Run Statistics

Training

The classifier implemented with LSI was found to utilize exhaust system memory (RAM) and

CPU in creation of the indexing vector, consequently it was unable to complete the training

process with all the available training data. To ensure that the classifier was able to complete

training a maximum threshold of 47 data sets per category was employed, it then trained in 21.0

seconds with a total of 200 data sets.

Application Run

Table 11 shows the application run statistics using the LSI algorithm, from these statistics it can

be estimated that the application takes 0.4 seconds to handle each request.

Table 11: Application Run Statistics

emails agents responded escalated ignored pending
Duration
(Seconds)

Duration Per
Request
(Seconds)

242 242 239 0 0 3 108 0.44628099

821 821 812 0 0 0 324
0.39464068

824 824 824 0 0 0 79
0.09587379

5.3.2 Validation of the Results

A manual classification and comparison of the responses generated by the system versus those

sent by the user yielded Figure 21 which shows that out of 74 emails that were tested 74 percent

were classified in the same category as those sent by users using LSI algorithm and 26 percent

were classified in a different category.

60

Figure 21: Comparison of System versus User Responses Using LSI

5.3.3 Accuracy and F-Score

Using various training data sets divided into 5 folds the results in Table 12 where acquired.

Table 12: LSI Validation Results

Parameter Accuracy Precision Recall F-score

Results (70 data sets) 0.9 0.9 1.0 0.947

Results (130 data sets) 0.884 0.884 1.0 0.938

Mean 0.892 0.892 1 0.9425

5.4 Discussion of Results

The conversational agents were initially implemented with NB algorithm, Figure 22 shows the

error rate which was approximately 88 percent.

Similar

Different

Figure 22: Pie-Chart of NB CA Comparison

61

The 88 percent error rate was considered unacceptable for a real world application and several

techniques were used to try to improve the accuracy of the classifier these included;

1. Stemming this is whereby if you have the terms programmer, programming and program the

stemmer reduces this to a single stem example program.

2. Manual training data optimization and cleaning; removal of all words and symbols that

would interfere with the classifier accuracy.

The performance of the classifier did not improve necessitating the implementation of another

classification algorithm thought to be more accurate. LSI algorithm selected because it has

proven to be accurate even when the training data is minimal. With LSI using only 200 training

data the algorithm performed better than NB with an error rate of 26 percent and accuracy of 74

percent as illustrated by Figure 23.

Similar

Different

Figure 23: Pie-Chart of LSI CA Comparison

The results (Table 9) demonstrate that the NB classifier has a mean accuracy of 94 percent,

precision 94 percent, recall 100 percent and F-score of 97 percent. These results acquired are

quite contentious especially given that the algorithm was not able to accurately categorize 88

percent of the test data, this implies that there must be an issue with either the training data set or

the algorithm used to calculate the parameters. The results (Table 12) demonstrate that the LSI

classifier has a mean accuracy of 89.2 percent, precision 89.2 percent, recall 100 percent and F-

score of 94 percent. These results for this algorithm appear to be more realistic especially given

the comparison results illustrated in Figure 21.

NB classifier was shown to train in 1 second with 223 training data sets while LSI trained in 21

seconds with 200 datasets as shown by Figure 24. Addition of data sets to the LSI classifier

62

resulted in the classifier utilizing too many system resources resulting in a hanging of the

application.

0 5 10 15 20 25

NB

LSI

Training Time with 336 data for
NB and 201 for LSI

Figure 24: Classifier Training Times

NB classifiers were found to be generally easy to understand and their training extremely fast,

requiring only a single pass through the data if all the attributes are discrete. In addition they are

robust to irrelevant attributes and classification taking into account evidence from many

attributes to make the final prediction. Unfortunately they require strong independence

assumptions and when these are violated, the achievable accuracy may deteriorate and will not

improve much as the database size increases (Kohavi, 1996). This was illustrated by the poor

performance of the classifier with the available training data. The results illustrate that that

though LSI classifiers are not as small as NB they may provide more accuracy, flexibility, fast

search and clustering detection as well as semantic analysis of the text that theoretically

simulates human learning. In this study the LSI classifiers were found to have better accuracy

than NB classifier even when utilizing a subset of the training data.

The results obtained in this study illustrate that the classification accuracy depends not only on

the classification algorithm employed but also on the quality of training data used. In the event

that noisy dataset is used then it is inevitable that the accuracy of the algorithm will be

compromised.

The application was found to handle each request in approximately 0.4 seconds regardless of the

algorithm used this involved the preprocessing, categorization and response generation, with the

polling time to the email account set to 10 seconds or more depending the time set by the user.

63

Support personnel handle each request in approximately 10 minutes this includes opening the

email, reading it, querying the database and generating a suitable response or action then

executing or sending the email. If 500 emails were received every day in the university online

application Figure 25 illustrates that a support staff would take approximately 5000 minutes or

83.3 hours to handle all these requests. To ensure all the requests were handled effectively in a

single day 4 support personnel staff members would be required. However the system takes 3

minutes to handle the 500 emails this demonstrates how effective the application would be in

handling routine requests or inquires.

0

2000

4000

6000

Response Time Per Email (min)

Response Time 500 Emails
(min)

Response Time

Per Email (min)

10 0.007

Response Time

500 Emails (min)

5000 3.333

Human System

Figure 25: Support Staff Versus System Email Response Times

64

6 CONCLUSIONS AND FUTURE WORK

6.1 Achievements

The following indicates the objectives of this study and how they were met;

1. To identify and analyze techniques used in automating customer support and select

suitable technique for creating a customized automatic customer support system. Desk

research was done to identify and study existing techniques for automating customer

support and the most suitable for the study was selected.

2. To develop a customized automatic customer support system using the selected

technique. To meet this objective an application was designed and implemented in

RUBY and PHP that incorporated multiple components from conversational agents

which use NB or LSI classification algorithms to categorize issues into predefined

categories, to email retrieval and sending components and web based interface

component. In addition the researcher created and optimized multiple training data sets

for categorizing emails into predefined categories. These data sets can be used with any

algorithm as they are in a format that is easily interpretable.

3. Conduct a comparative analysis of the performance of the system developed with human

customer support. To achieve this objective two system components were created; the

first for comparing the responses generated when processing each email and the other for

generating the graphs that illustrate the various comparisons. The categorization of

responses created by staff was done manually.

The end product of this study was an application that can be easily customized and extended for

any industry requiring minimal code modifications.

65

6.2 Limitations

The study faced several limitations these included;

Data availability; due to the volumes of emails received daily in online support email account the

mail administrators have to purge the account from time to time hence drastically reducing the

available sample data to be used for training the classifier and validating the application.

Language processing; the application was plagued with issues pertaining to language processing;

firstly the inaccuracy of NB which was then substituted with LSI. Unfortunately LSI requires

significant computer resources that is RAM greater or equal to 1 GB and needs to be optimized

with the GSL library which unfortunately proved problematic to install on windows.

Time; the application required a lot of time to go through all available data to create training data

for the two classifiers and to clean the emails sent by personnel in order to allow comparison to

those generated by the application.

Power; having relocated to Uganda the researcher found that the region of residence was plagued

with electricity outages and blackouts that resulted in delays in achieving set targets.

6.3 Conclusions

During the analysis of the support emails sent and received some issues were noted with the

responses generated by user support personnel these included; grammatical errors in emails sent

to customers, some queries sent were not understood and the staff simply resent a previous email

assuming it would be of assistance to the applicants and the personnel were only able to deal

with one issue at a time; basically if a applicants sent an email saying they were unable to

register the staff would only resolve that issue and not any other issues example; missing results,

payment issues and lost information resulting in the applicants sending multiple emails on

different occasions to ensure all their issues are resolved. It was also noted that many of the

emails received were quite routine in nature requiring the same response or action by the support

staff.

66

The application developed can be built upon to handle routine user requests pertaining to online

information systems that may not require human intervention. The conversational agents can be

able to resolve multiple issues noted within short spans of time as note approximately 0.4

seconds per issue. This application can be used in applications that receive high volumes of

support requests and have few users to respond.

LSI CA was found to accurately categorize 74 percent of the test data set, this can be greatly

improved by cleaning the training data further and introducing more training data after ensuring

the server running the application has been optimized to reduce LSI training time. NB classifier

accuracy was found to be 94 percent and LSI 89.2 percent respectively from the comparison

results there seems to be a discrepancy in the returned accuracy as LSI seems to accurately

categorize the test data set.

6.4 Future Work

Future studies should focus on improving the classification algorithm accuracy especially in the

case of Naïve’s Bayes which is faster than LSI and uses less system resources. The studies could

concentrate on either optimization of available training data and further customization of the stop

words that are omitted from the processed text. These studies should also study and improve the

cross validation library and functions created in order to return realistic values that compare to

the comparison results.

Future studies should also investigate and implement handling conversations whereby once a

user responds to a system generated email the system simply processes the response sent and not

the entire email.

67

7 APPENDIX A: SAMPLE EMAILS

This section holds samples of the various emails retrieved from the applicants. In order to reduce

the content displayed the footer has been omitted from all emails displayed. To protect applicant

data, private information has been replaced with dummy data in this section.

Sample 1: Category Payment Details

From: "JAB" <jabonline@uonbi.ac.ke>
To: <abc@gmail.com>
Cc: <jabonline@uonbi.ac.ke>
Subject: RE: Money send to wrong account
Date: Fri, 24 May 2013 20:30:28 +0300
MIME-Version: 1.0
Content-Type: text/plain;
 charset="utf-8"
Content-Language: en-us

Your payment was successful, kindly proceed with jab revision
Rgds
Jab

-----Original Message-----
From:abc@gmail.com [mailto:abc@gmail.com]=20
Sent: Tuesday, May 21, 2013 7:27 AM
To: jabonline@uonbi.ac.ke
Subject: Money send to wrong account
Transaction code-1234567,date-20th may,amount paid-800,phone =
no-123456789,index no-25533308053

Sample 2: Category Cluster Details

From: "JAB" <jabonline@uonbi.ac.ke>
To: <abc@ovi.com>
Cc: <jabonline@uonbi.ac.ke>
Subject: RE: How to calculate weighted cluster point
Date: Fri, 24 May 2013 19:33:20 +0300
MIME-Version: 1.0
Content-Type: text/plain;
 charset="utf-8"
X-Mailer: Microsoft Office Outlook 12.0
Content-Language: en-us

Go to http://jabonline.uonbi.ac.ke/admission_enquiry and fill in the =
details and then you will get your weighted cluster point. Click on the =
value to show you the calculation
Rgds
Jab

-----Original Message-----
From: abc1@ovi.com [mailto:abc1@ovi.com]=20
Sent: Monday, May 20, 2013 11:15 PM

68

To: jabonline@uonbi.ac.ke
Subject: How to calculate weighted cluster point

Show me how i can get raw cluster performance index<r>,sum of the =
maximum performance index<m>,aggregate performance index<api> and =
summation performance index<spi>.my grades are,=20
Eng B Kisw D+ Maths A Bio A Chem A Histo A Agric A Geog B+
show me so that i can help many others please.

Sent from my Nokia phone

Sample 3: Category Programme Details

From: "JAB" <jabonline@uonbi.ac.ke>
To: "ABC" <abc@yahoo.com>
Cc: <jabonline@uonbi.ac.ke>
Subject: RE: Inquiry
Date: Fri, 24 May 2013 19:17:17 +0300
MIME-Version: 1.0
Content-Type: text/plain;
 charset="utf-8"
Content-Transfer-Encoding: quoted-printable
X-Mailer: Microsoft Office Outlook 12.0
Thread-Index: Ac5VmJtYm3FGWW7vRaiWFxSaaj1ZtQDARK5A
Content-Language: en-us

There is no direct way of knowing if you have qualified but you can use =
the previous cut off points to guide you on the degree programmes that =
are more competitive
Rgds
Jab=20
-----Original Message-----
From: ABC [mailto:abc@yahoo.com]=20
Sent: Monday, May 20, 2013 11:29 PM
To: jabonline@uonbi.ac.ke
Subject: Inquiry

Dear Sir/Madam,
Following the review of Degree Choices, I am requesting guidance since the cluster weight is written respectively for each
course, how do I know if am qualified or should I cross-check with Weight cut-off in each university, for example my cousin
scored As in all subjects but Cluster weight is 45. 582 for the first three choices, but on checking course cut-off it is 46 and
above, does it mean he doesn't qualify ?
Thanks in advance.
Regards
Abc

69

Sample 4: Category Registration Details

From: "JAB" <jabonline@uonbi.ac.ke>
To: "'ABC Mutai'" <abc@yahoo.com>
Cc: <jabonline@uonbi.ac.ke>
Subject: RE: inquiry,urgent
Date: Fri, 24 May 2013 20:34:10 +0300
MIME-Version: 1.0
Content-Type: multipart/alternative;
 boundary="----=_NextPart_000_0000_01CF9A9C.37BAD300"
X-Mailer: Microsoft Office Outlook 12.0
Thread-Index: Ac5V28h6SZsRUpDYQcma4P+8dAz4fwCyOJHg
Content-Language: en-us

This is a multipart message in MIME format.

------=_NextPart_000_0000_01CF9A9C.37BAD300
Content-Type: text/plain;
 charset="us-ascii"
Content-Transfer-Encoding: 7bit

Kindly register here
http://jabonline.uonbi.ac.ke/applicant_information?applicant_action=applicant_initial_login and ensure you put the year in full
e.g 2012

Rgds
Jab

 From: ABC Mutai [mailto:abc@yahoo.com]
Sent: Tuesday, May 21, 2013 7:29 AM
To: jabonline@uonbi.ac.ke
Subject: inquiry,urgent

I have paid the required amount to revise courses but when i try to
register it direct me to provide correct information. please help on how the
year format YYYY is written

70

8 APPENDIX B: SYSTEM RESPONSES GENERATED

This section holds samples of the various emails generated for the different categories of issues.

In order to reduce the content displayed the footer has been omitted from all emails displayed.

To protect personal data, private information has been replaced with dummy data in this section.

Sample 1: Category Programme Details

Delivered-To: abc@gmail.com
Received: by 10.107.16.226 with SMTP id 95csp2796ioq;
 Wed, 5 Nov 2014 23:57:32 -0800 (PST)
From: p58.76753.2012.2@gmail.com
X-Google-Original-From: P58.76753.2012.2@gmail.com
Date: Thu, 06 Nov 2014 10:57:30 +0300
To: abc@gmail.com
Message-ID: <545b29ea97bac_4ef91405c58647db@Asymptotic.mail>
Subject: Programme Details
Mime-Version: 1.0
Content-Type: text/plain;
 charset=UTF-8
Content-Transfer-Encoding: 7bit

 Please send us your VALID KCSE index number so we can verify your registration details. Please visit the website
http://jab.uonbi.ac.ke/ and use the search option to view details on all available programmes.
 Kindly note that the following:
 i. Under each university the programmes available for application are listed, if a programme is not listed then it is not
available for application.
 ii. The cut offs for the programmes are not available only those for 2012 are available and these should be used as a
guide to check the competitive programmes.
 These cutoffs can change for this year depending on average performance and capacity available.
 iii. You should only apply for programmes which you meet the minimum subject requirements, cluster requirements and
which you have a weighted cluster near, equal or greater than the previous year. You should visit the page
https://kuccpsapp.uonbi.ac.ke/admission_inquiry.php to determine the amount, paybill number and account you are required
to pay to.

71

Sample 2: Category Payment Details

Delivered-To: abc@gmail.com
From: p58.76753.2012.2@gmail.com
Date: Thu, 06 Nov 2014 10:59:52 +0300
To: abc@gmail.com
Subject: Payment Inquiry
Mime-Version: 1.0
Content-Type: text/plain;
 charset=UTF-8
Content-Transfer-Encoding: 7bit

Dear BSCD JOSPHAT ,

 The system indicates that you have already registered.

PLEASE NOTE: You should visit the page https://kuccpsapp.uonbi.ac.ke/admission_inquiry.php to determine the amount, paybill
number and account you are required to pay to. You have paid LESS than the required amount. Please pay the remaining
balance indicated on the inquiry page. You should visit the page https://kuccpsapp.uonbi.ac.ke/admission_inquiry.php to
determine the amount, paybill number and account you are required to pay to.

Sample 3: Category System Access

Delivered-To: abc@gmail.com
From: p58.76753.2012.2@gmail.com
Date: Thu, 06 Nov 2014 07:39:24 +0300
To: abc@gmail.com
Subject: System Access
Mime-Version: 1.0
Content-Type: text/plain;
 charset=UTF-8
Content-Transfer-Encoding: 7bit

 Please send us your VALID KCSE index number so we can verify your registration details. Ensure you are using a good
internet connection, Mozilla as your default browser and javascript is enabled on your browser. The following is the procedure
for application:
 i. Visit the page https://kuccpsapp.uonbi.ac.ke/admission_inquiry.php to verify that you qualify for placement.
 Enter your details in the form provided and submit if you qualify, a list of your previous choices, weighted clusters
will appear.
 ii. Using results from i. determine if you would like to revise your choices, if so pay the indicated amount to the
indicated Mpesa Pay bill number and Account
 iii. Visit the website https://kuccps.uonbi.ac.ke/ to view and selected the available programmes that you may qualify
for, note down programme codes for 3 similar (optional) and three others you may be interested in applying for.
 iv. Once you have received a payment confirmation text visit https://kuccpsapp.uonbi.ac.ke and register by
providing the requested information and entering a password.
 v. You can then proceed to enter your selected programmes in the Application form provided, remember to save.
 vi. Review the choices saved and log out.
 REMEMBER YOU CAN CHANGE THE CHOICES YOU MAKE AS MANY TIMES AS YOU WISH DURING THE
REVISION PERIOD

72

9 APPENDIX C: CLASSIFIERS

This section data used in specified ways and arrays or vectors that were generated by the two

algorithms

9.1 STOP WORDS

This section contains some of the words which the classifiers are required to omit from text

before they can classify

2gt a able about ascertain admissions after again all along appreciate are also an and as assist assistance at back

be because become became been beg board but by came come can cannot cant choice choose chose chosen

choosen click consider considered considers couldnt dear decision decide detail did didn didnt display displays

displaying do doesnt does dont done each easy easier easily enter even eventually ever every fill filling filled find

finding first follow followed follower for from gave get give given go got had hadnt has hasnt have havent havenot

hello help her hereby herby here him hi how i if in inform infor information intro introduction into instructions is isnt it

itll jab join joint just kindly know knew last least left leaving like link madam made met meet most my myself mine

need new no not notify notifies notifys now of on or other otherwise please procedure problem problems rather re re:

read receive received replied reply run ryou said save see send self should sinc since sir so soo some sometime

sometimes suppose supposed supposes still take takes taken took time till th than thank this that the their there they

them then those through though to told too true tried try unable until update url us via view wait web website were

what when whether whenever which while why will with within without write wrote yes yet you ypu your youll rgdsjab

http httpjabonline jab jabonline here regard regards enquiry inquiry uonbi keadmission_enquiry gmail com mail

monday tuesday wednesday thursday friday saturday sunday message follow admission_enquiry original mailto sent

amto mail ke kesubject revisingthank revis courseshi nokia phone revision mail mai admission check course courses

revisin revising revision following yesterday tommorrow tomorrow yahoo revisionrgdsjab was account ableto

amessage office proceed proceedwith be provide

73

9.2 NB CLASSIFIER

This section illustrates the hash generated by the NB classifier during each run of the application

that is then used in classification of text.

 #<ClassifierReborn::Bayes:0x00000004b84d50 @categories={:Systemaccess=>{:slow=>2, :speed=>1, :access=>5,
:system=>4, :hang=>1, :load=>5, :page=>5, :login=>1, :choic=>1, :error=>1, :try=>2, :veri=>1, :modul=>1, :miss=>1,
:captcha=>1, :open=>2, :delai=>1, :activ=>1, :center=>1, :number=>1, :submit=>2, :appllic=>1, :pop=>1, :menu=>1, :prompt=>1,
:show=>1, :webpag=>1, :browser=>1, :need=>1, :resend=>1, :site=>1, :offlin=>1},
:Login=>{:login=>3, :system=>2, :authent=>2, :wrong=>1, :index=>2, :registr=>1, :access=>1, :deni=>1, :be=>1, :provid=>2,
:invalid=>1, :password=>2, :try=>1, :regist=>1, :candid=>1, :point=>4, :paid=>1, :respons=>1, :get=>1, :number=>1,
:minimum=>1, :cut=>1, :off=>1, :femal=>1, :forgotten=>1, :log=>1, :manag=>1, :wai=>1},
 :Paymentdetails=>{:payment=>31, :go=>2, :success=>2, :system=>2, :monei=>9, :refund=>3, :mobil=>1, :wrong=>20,
:blunder=>1, :pai=>7, :fee=>10, :onli=>1, :enter=>1, :nine=>2, :digit=>3, :instead=>7, :eleven=>2, :transact=>16, :code=>11,
:amount=>15, :paid=>26, :be=>2, :number=>27, :us=>15, :mpesa=>9, :overpay=>1, :excess=>1, :dure=>1, :error=>1,
:instruct=>1, :current=>1, :index=>24, :consider=>1, :incorrect=>2, :indexno=>3, :correct=>4, :balanc=>3, :todai=>1, :invalid=>3,
:qualifi=>1, :sai=>2, :quot=>1, :make=>4, :cohort=>2, :student=>2, :who=>2, :minimum=>1, :cut=>2, :off=>2, :point=>2, :,
………..},
 :Registrationdetailsinquiry=>{:regist=>17, :registr=>9, :index=>6, :number=>7, :birth=>4, :certif=>3, :be=>3, :provid=>5,
:invalid=>6, :correct=>3, :center=>1, :applic=>1, :onlin=>5, :try=>6, :success=>2, :procce=>2, :page=>2, :reset=>2, :right=>1,
:access=>1, :befor=>2, :closur=>1, :exercis=>1, :detail=>2, :name=>1, :kcse=>2, :kcpe=>3, :year=>3, :log=>2, :complet=>1,
:password=>6, :us=>2, :must=>2, :login=>1, :claim=>1, :process=>2, :ascertain=>1, :address=>1, :verifi=>1, :cutoff=>1,
:point=>5, :similar=>1, :degre=>2, :section=>1, :qualifi=>1, :revis=>4, :univers=>2, :fail=>1, :attempt=>3,
…………………………………………………….},
:Programmesdetails=>{:cutoff=>13, :point=>45, :cut=>15, :off=>13, :variou=>6, :degre=>12, :enabl=>2, :revis=>6, :cluster=>19,
:offer=>2, :public=>1, :univers=>6, :academ=>1, :year=>11, :shall=>1, :chang=>3, :compar=>1, :form=>1, :where=>3,
:download=>1, :differ=>2, :weight=>6, :onli=>2, :displai=>2, :column=>1, :guidelin=>1, :get=>1, :us=>5, :intak=>1, :previou=>3,
:mean=>2, :qualifi=>3, :engin=>2, :ask=>2, :formula=>4, :admit=>1, :student=>1, :go=>1, :reduc=>2, :program=>2, :consid=>1,
:on=>4, :make=>1, :inform=>1, :decis=>1, :select=>1, :base=>2, :old=>1, :formular=>1, :grade=>1, :would=>5, :pursu=>2,
:medicin=>1, :possibl=>1, :concern=>1, :access=>1, :calcul=>5, ……………},
:Clusterinquiry=>{:cluster=>49, :point=>27, :formula=>6, :weight=>15, :need=>1, :programm=>1, :order=>1, :qualifi=>5, :ani=>1,
:perform=>5, :index=>6, :per=>1, :subject=>8, :calcul=>13, :check=>2, :attain=>1, :entri=>1, :match=>1, :respect=>3, :appli=>3,
:revis=>1, :show=>1, :raw=>1, :sum=>1, :maximum=>1, :aggreg=>2, :grade=>2, :eng=>1, :kisw=>1, :math=>2, :bio=>1,
:chem=>1, :histo=>1, :agric=>1, :geog=>1, :where=>2, :year=>4………..
:Applicationprocess=>{:far=>1, :end=>1, :weight=>2, :point=>4, :differ=>1, :on=>1, :us=>1, :li=>1, :question=>1, :these=>1,
:year=>2, :attain=>1, :qualifi=>1, :applic=>4, :work=>1, :want=>1, :univers=>3, :intak=>1, :tell=>1, :admit=>1, :degre=>6,
:choic=>5, :hard=>1, :select=>2, :cluster=>3, :refer=>1, :thank=>1, :advancegt=>1, :must=>1, :simmilar=>1, :slot=>1, :impot=>1,
:import=>1, :go=>1, :place=>1, :next=>1, :formeri=>1, :requir=>2, :consind=>1, :final=>1, :k
cse=>1, :candid=>1, :who=>1, :revis=>2, :todai=>1, :paid=>1, :fee=>1, :chang=>1, :effect=>1, :previou=>1, :under=>1,
:name=>1, :someon=>1, :assur=>1, :succes=>1, :maximum=>1, :number=>1, :time=>1, :dure=>1, :revisiongt=>1}},
@total_words=1367,
@category_counts={:Systemaccess=>15, :Login=>10, :Paymentdetails=>47, :Registrationdetailsinquiry=>34,
:Programmesdetails=>37, :Clusterinquiry=>40, :Applicationprocess=>17}>

74

9.3 LSI CLASSIFIER

The following illustrates a snippet of the LSI vector generated by the application. The generated

vector is quite large and cannot be displayed here. The key for the vector is the categorization

text.

#<ClassifierReborn::LSI:0x000000039c6528 @auto_rebuild=true, @items={"Enquiry About
Courses"=>#<ClassifierReborn::ContentNode:0x000000039c1730 @categories=[:Applicationprocess], @word_hash={},
@raw_norm=GSL::Vector[-nan -nan -nan -nan -nan -nan -nan ...], @raw_vector=GSL::Vector
[0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ...], @lsi_vector=GSL::Vector
[0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ...], @lsi_norm=GSL::Vector
[-nan -nan -nan -nan -nan -nan -nan ...]>, "At the far end there are weighted points but different from the ones I used for
2009 here lies my question.Are these the points for this year and should I have attained If they are am I qualified for those
courses"=>#<ClassifierReborn::ContentNode:0x000000039bc780 @categories=[:Applicationprocess], @word_hash={:far=>1,
:end=>1, :weight=>1, :point=>2, :differ=>1, :on=>1, :us=>1, :"2009"=>1, :li=>1, :questionar=>1, :these=>1, :year=>1, :attain=>1,
:qualifi=>1}, @raw_norm=GSL::Vector
[2.539e-01 2.539e-01 2.539e-01 4.024e-01 2.539e-01 2.539e-01 2.539e-01 ...], @raw_vector=GSL::Vector[2.650e-01 2.650e-
01 2.650e-01 4.200e-01 2.650e-01 2.650e-01 2.650e-01 ...], @lsi_vector=GSL::Vector[2.615e-01 2.615e-01 2.676e-01 4.203e-
01 2.654e-01 2.666e-01 2.678e-01 ...], @lsi_norm=GSL::Vector[2.507e-01 2.507e-01 2.565e-01 4.029e-01 2.544e-01 2.555e-
01 2.567e-01 ...]>, "my application is not working"=>#<ClassifierReborn::ContentNode:0x000000039bbf88 @categories =
[:Applicationprocess], @word_hash ={:applic=>1, :work=>1}, @raw_norm=GSL::Vector[0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 ...], @raw_vector=GSL::Vector[0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 ...], @lsi_vector=GSL::Vector [8.462e-05 8.462e-05 -1.406e-04 -3.860e-05 1.815e-04 -
1.390e-03 -1.046e-03 ...], @lsi_norm=GSL::Vector[5.985e-05 5.985e-05 -9.944e-05 -2.730e-05 1.284e-04 -9.830e-04 -7.399e-
04 ...]>, ……………………………………. "cluster revision clusters"=> #<ClassifierReborn::ContentNode:0x00000003946da0
@categories=[:Clusterinquiry], @word_hash={:cluster=>2}, @raw_norm=GSL::Vector [0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 ...], @raw_vector=GSL::Vector [0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 ...], @lsi_vector=GSL::Vector[1.018e-04 1.018e-04 -4.688e-03 3.919e-03 -1.031e-03 1.558e-
03 2.852e-03 ...], @lsi_norm=GSL::Vector [5.091e-05 5.091e-05 -2.345e-03 1.960e-03 -5.157e-04 7.792e-04 1.427e-03 ...]>,
"NEW CLUSTER POINT FORMULA"=>#<ClassifierReborn::ContentNode:0x0000000393d458 @categories=[:Clusterinquiry],
@word_hash={:cluster=>1, :point=>1, :formula=>1}, @raw_norm=GSL::Vector [0.000e+00 0.000e+00 0.000e+00 5.774e-01
0.000e+00 0.000e+00 0.000e+00 ...], @raw_vector=GSL::Vector [0.000e+00 0.000e+00 0.000e+00 6.309e-01 0.000e+00
0.000e+00 0.000e+00 ...], @lsi_vector=GSL::Vector [-3.126e-03 -3.126e-03 -2.562e-03 6.400e-01 -1.959e-02 1.792e-02
4.617e-04 ...], @lsi_norm=GSL::Vector[-2.897e-03 -2.897e-03 -2.374e-03 5.931e-01 -1.815e-02 1.661e-02 4.278e-04 ...
]>,…………………………………………………………………. @word_list=#<ClassifierReborn::WordList:0x00000003af0ed0
@location_table={:far=>0, :end=>1, :weight=>2, :point=>3, :differ=>4, :on=>5, :us=>6, :"2009"=>7, :li=>8, :questionar=>9,
:these=>10, :year=>11, :attain=>12, :qualifi=>13, :applic=>14, :work=>15, :want=>16, :univers=>17, :intak=>18, :tell=>19,
:admit=>20, :degre=>21, :choic=>22, :hard=>23, :select=>24, :"345"=>25, :cluster=>26, :refer=>27, :thank=>28,
:advancegt=>29, :must=>30, :simmilar=>31, :slot=>32, :impot=>33, :import=>34, :go=>35, :place=>36, :next=>37, :formeri=>38,
:requir=>39, :consind=>40, :final=>41, :"2012"=>42, :kcse=>43, :candid=>44, :who=>45, :revis=>46, :todai=>47, :paid=>48,
:feebut=>49, :chang=>50, :effect=>51, :previou=>52, :under=>53, :name=>54, :someon=>55, :assur=>56, :succes=>57,
:maximum=>58, :number=>59, :time=>60, :dure=>61, :revisiongt=>62, :formula=>63, :need=>64, :programm=>65, :order=>66,
:ani=>67, :perform=>68, :index=>69, :per=>70, :subject=>71, :calcul=>72, :check=>73, :entri=>74, :match=>75, :respect=>76,
:appli=>77, :show=>78, :raw=>79, :sum=>80, :aggreg=>81, :indexmi=>82, :grade=>83, :eng=>84, :kisw=>85, :math=>86,
:bio=>87, :chem=>88, :histo=>89, :agric=>90, :geog=>91, :where=>92, :formswher=>93, :download=>94, :enquri=>95,
:group=>96, :wish=>97, :enquir=>98, :reffer=>99, :entail=>100, :have=>101, :difficulti=>102, :understand=>103, :simplifi=>104,
:abov=>105,…………………………...............

75

10 APPENDIX D: USER GUIDE

In order to run the application a user would require to follow the following steps to install the

application on a machine

1. System Requirements

i. Windows or Linux Operating system

ii. 64 bit system

iii. RAM 1GB

iv. CPU 2.4 GHz

2. Installation Requirements

i. Apache version >= 2.4

ii. MySQL version >= 5.6

iii. PHP version >= 5.5

iv. PHP extensions;

Windows specific: win32service

v. Ruby version >= 2.0

vi. Ruby gems/libraries; mailman, mysql, sanitize, classifier-reborn, agentdispatcher,gsl,

cross_validation

Windows specific; win32

Linux specific; rvm, basic_daemon

3. Installation

i. Install Apache, MySQL and PHP, then install and load the indicated PHP extensions on the

machine.

ii. Install Ruby on the machine then install all the indicated Ruby gems, on Windows configure

the Apache server to run Ruby files. On Linux if using RVM ensure you run the following

command before installing any gem;

rvm ruby-(RUBYVERSION)@global

replace the text RUBYVERSION with your preferred Ruby version.

76

iii. Copy and paste the following functions into the indicated files, if the function already exists

replace it with the code;

 ruby\lib\ruby\gems\2.0.0\gems\classifier-reborn-2.0.1\lib\classifier-reborn\bayes.rb

def classify(text)
 #Code that returns the classification array
 samecount =0
 classificationArray = (classifications(text).sort_by { |a| -a[1] })
 proposedcatweight = classificationArray[0][1]
 classificationArray.each {|key, value|
 #puts "#{key} is #{value}"
 if (proposedcatweight==value)
 samecount +=1
 end
 }
 if (samecount>=2)
 return nocat = ""
 else
 return classificationArray[0][0]
 end
 end

ruby\lib\ruby\gems\2.0.0\gems\classifier-reborn-2.0.1\lib\classifier-reborn\lsi.rb

def train(category, text)
 add_item text, eval(":#{category}")
 end

def classifycustom(doc, cutoff=0.30, &block)
 icutoff = (@items.size * cutoff).round
 carry = proximity_array_for_content(doc, &block)
 carry = carry[0..icutoff-1]
 votes = {}
 carry.each do |pair|
 categories = @items[pair[0]].categories
 categories.each do |category|
 votes[category] ||= 0.0
 votes[category] += pair[1]
 end
 end
 return votes
 end

iv. Extract and copy the application files to the web root of the Apache server.

v. Create 3 databases on the mysql server and import the corresponding MySQL scripts from

the autosupport/sql directory as indicated;

a. online_application: online_application.sql

b. customer_suppost: customer_support.sql

c. web: web.sql

77

vi. Customize the application settings i.e. database and email credentials in the file

autosupport/supportapp/settings.rb then save. Ensure the following configurations are set in

the setting.rb file;

ENVIROMENT ='LIVE'

SHOWEMAILTEXT =false

FUNCTION ='classify'

CLASSIFIER ='NB'

MAXLSI ='47'

CHECKUNIQUE =true

RUNSERVICE =true

CLEARTESTDATA =false

CROSSVALIDATE =false\

If you have installed gsl successfully you can change the classifier to LSI

vii. Customize the database, host and file path settings in the file autosupport/admin/settings.rb

and Drupal front end settings in the file autosupport/sites/default/settings.rb then save the

changes made.

viii. To update or add data sets go to the following web pages;

a. Applicant data: http://localhost/autosupport/admin/jab/admissionslist.php

b. Support data : http://localhost/autosupport/admin/supportupdate/login.php

Details of the data expected in the tables can be found in the design document. You can

then proceed to use the available forms to update data.

ix. Windows: You will need to register and start the service; open command prompt as

administrator and run the following commands;

ruby registerservice.rb

sc start supportservice

 To stop and unregister the Windows the service you will need to run;

sc stop supportservice

ruby unregisterservice.rb

78

x. To run the application enter the url http://localhost/autosupport/node/4 on your browser the

following should be displayed, click the Start button.

xi. All new emails in the indicated email account or mail directory will be processed and

appropriate responses generated and sent to the indicated sender email address.

xii. To view the application run statistics you can visit the page

http://localhost/autosupport/admin/supportupdate/application_runlist.php

4. Testing/ Comparison

i. Update the data sets in the table check_emails to use emails for testing purposes ensure

the field check_status is set to 0

ii. Load all your test emails in the mail directory that is autosupport/supportapp/mail/new

iii. Customize the application settings in the file autosupport/supportapp/settings.rb, ensure

the following configurations are set;

ENVIROMENT ='TEST'

FUNCTION ='classify'

CHECKUNIQUE =true

RUNSERVICE =false

CLEARTESTDATA =false

79

CROSSVALIDATE =false

iv. Open command prompt or console as administrator and ensure you are in the directory

with the application files that is autosupport/supportapp/ then run the command;

Windows: ruby mailfetchservice.rb

Linux: ruby daemon.rb

v. Customize the application settings in the file autosupport/supportapp/settings.rb, ensure

the following configurations are set;

ENVIROMENT ='TEST'

FUNCTION ='classify_responses'

RUNSERVICE =false

CLEARTESTDATA =false

CROSSVALIDATE =false

vi. Open command prompt or console as administrator and ensure you are in the directory

with the application files that is autosupport/supportapp/ then run the command;

ruby testruns.rb

vii. To view generated reports on comparisons visit the page

http://localhost/autosupport/node/10 you should then view the following generated

graphs;

80

5. Generating Confusion Matrix

i. Customize the application settings in the file autosupport/supportapp/settings.rb, ensure

the following configurations are set;

ENVIROMENT ='TEST'

FUNCTION ='classify'

CHECKUNIQUE =true

RUNSERVICE =false

CLEARTESTDATA =false

CROSSVALIDATE =true

ii. Open command prompt or console as administrator and ensure you are in the directory

with the application files that is autosupport/supportapp/ then run the command;

 ruby crossvalidator.rb

iii. An example of the output of running the script is illustrated below;

81

11 REFERENCES

Aamodt, A., Plaza, E., 1994. Case-based reasoning; Foundational issues, methodological variations, and
system approaches. AI COMMUNICATIONS 7, 39–59.

Algorithms, H.C., 2013. A Tutorial on Clustering Algorithms. Online][Cited: 24 04 2008.] http://home.
dei. polimi. it/matteucc/Clustering/tutorial_html/hierarchical. html.

Bird, S., Klein, E., Loper, E., 2009. Natural Language Processing with Python. O’Reilly Media, Inc.
BusinessDictionary.com, 2014. What is customer support? definition and meaning [WWW Document].

BusinessDictionary.com. URL http://www.businessdictionary.com/definition/customer-
support.html (accessed 6.20.14).

CCK, 2008. Communications Statistics Report 2008 [WWW Document]. Communications Commission
of Kenya. URL
http://www.ca.go.ke/images/downloads/STATISTICS/Communications%20Statistics%20Report
%202008.pdf (accessed 6.20.14).

CCK, 2014. Sector Statistics Report Q2 2013/14 [WWW Document]. Communications Commission of
Kenya. URL http://www.cck.go.ke/resc/downloads/Sector_Statistics_Report_Q2_201314.pdf
(accessed 6.20.14).

Chang, K.H., Raman, P., Carlisle, W.H., Cross, J.H., 1996. A self-improving helpdesk service system
using case-based reasoning techniques. Computers in Industry 30, 113–125.

Chow, D., 2009. Evolution of Information Systems.
Crockett, K., James, O., Bandar, Z., 2011. Goal orientated conversational agents: Applications to benefit

society, in: Agent and Multi-Agent Systems: Technologies and Applications. Springer, pp. 16–
25.

Customer support, 2014. . Wikipedia, the free encyclopedia.
Dialog system, 2014. . Wikipedia, the free encyclopedia.
Feng, J., Bangalore, S., Rahim, M., 2003. Webtalk: Mining websites for automatically building dialog

systems, in: Automatic Speech Recognition and Understanding, 2003. ASRU’03. 2003 IEEE
Workshop on. IEEE, pp. 168–173.

Ghosh, S., Roy, S., Bandyopadhyay, S.K., 2012. A tutorial review on Text Mining Algorithms.
International Journal of Advanced Research in Computer and Communication Engineering 1.

GoK, 2007. Vision 2030.
Gray, A., 2011. Web Search and Text Mining.
Ikonomakis, M., Kotsiantis, S., Tampakas, V., 2005. Text classification using machine learning

techniques. WSEAS Transactions on Computers 4, 966–974.
Kamruzzaman, S.M., Haider, F., Hasan, A.R., 2010. Text classification using data mining. arXiv

preprint arXiv:1009.4987.
Kohavi, R., 1996. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid., in:

KDD. pp. 202–207.
Kruchten, P., 2001. Agility with the RUP. Cutter IT Journal 14, 27–33.
Lama, P., 2013. Clustering system based on text mining using the K-means algorithm: news headlines

clustering.
Latent semantic indexing, 2014. . Wikipedia, the free encyclopedia.
Lester, J., Branting, K., Mott, B., 2004. Conversational agents. The Practical Handbook of Internet

Computing.
Liddy, E.D., 2000. Text Mining. Bul. Am. Soc. Info. Sci. Tech. 27, 13–14. doi:10.1002/bult.184

82

Mokaya, J., 2012. Fibre-optic cable Internet helps Kenyan economy [WWW Document].
Sabahionline.com. URL
http://sabahionline.com/en_GB/articles/hoa/articles/features/2012/02/20/feature-01 (accessed
6.23.14).

Open Access BPO, 2013. The different types of customer support services - Open Access BPO.
Patra, A., Singh, D., 2013. A Survey Report on Text Classification with Different Term Weighing

Methods and Comparison between Classification Algorithms. International Journal of Computer
Applications 75, 14–18.

Ramesh, V., Ramar, K., 2011. Classification of Agricultural Land Soils: A Data Mining Approach.
Agricultural Journal 6, 82–86. doi:10.3923/aj.2011.82.86

Sawy, O.A.E., Bowles, G., 1997. Redesigning the Customer Support Process for the Electronic
Economy: Insights from Storage Dimensions. MIS Quarterly 21, 457–483. doi:10.2307/249723

Segall, R.S., Zhang, Q., Cao, M., 2009. Web-Based Text Mining of Hotel Customer Comments Using
SAS® Text Miner and Megaputer Polyanalyst®. SWDSI 2009 141–152.

Song, W., Park, S.C., 2009. Genetic algorithm for text clustering based on latent semantic indexing.
Computers & Mathematics with Applications, Proceedings of the International Conference Bio-
Inspired Computing-Theories and Applications BIC-TA 2007 Zhengzhou, China 57, 1901–1907.
doi:10.1016/j.camwa.2008.10.010

Wang, D., Li, T., Zhu, S., Gong, Y., 2011. iHelp: An Intelligent Online Helpdesk System. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41, 173–182.
doi:10.1109/TSMCB.2010.2049352

Wikipedia, 2014. Confusion matrix. Wikipedia, the free encyclopedia.
Wood, M.F., DeLoach, S.A., 2001. An overview of the multiagent systems engineering methodology,

in: Agent-Oriented Software Engineering. Springer, pp. 207–221.
Zukas, A., Price, R.J., 2003. Document categorization using latent semantic indexing, in: Proceedings,

Symposium on Document Image Understanding Technology. pp. 87–91.

