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Abstract 

Malaria is one of the leading causes of illness and mortality in Africa.  A lot of resources have 

been, and continue to be channeled towards prevention, controlling and treatment of malaria. The 

World Health Organization receives annual data of reported malaria cases from all member 

countries including a number of African countries albeit some missing reports. The objective of 

this research is to use a statistical model to manipulate reported longitudinal data from selected 

African countries for the period 2000 to 2012 to estimate malaria disease burden. This model 

will also address the issue of missing data, which is a shortcoming in most Africa Countries.  

The longitudinal nature of the data will be modeled using linear mixed-effects model using 

country specific intercepts and slopes. These models accounts for heterogeneity between 

countries with regards to magnitude of malaria. The model is also robust in cases where data is 

incomplete. As a final step, two ways of acknowledging and accounting for missing information 

(complete case analysis and multiple imputations) were explored and results compared with the 

direct likelihood approach whereby all the observed data is used for analysis. 

Results indicated that the model is flexible enough to capture the variability in profiles of 

different countries, thus allowing for inference regarding the reported number of confirmed 

malaria cases for any given period per country.  

In conclusion, the number of reported and confirmed malaria cases in Africa between the year 

2000 and 2012 highly depends on the country under investigation. Some countries reported high 

cases while others reported fewer cases. The evolution of the number of cases over time has 

remained relatively constant. Therefore, choices on which countries have a higher malaria 

burden can be made with certainty, thus focusing more intervention resources to those countries 

as it’s expected that for the lower risk countries, the rate of malaria infection will also remain 

relatively constantly low. 

Keywords: Linear mixed-effects model, malaria, multiple imputation, Africa 
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1 INTRODUCTION 

1.1 Background 

Malaria remains of a global public health concern. It is a vector borne disease that is most 

prevalent in tropical and sub tropical regions. It is a deadly infectious disease that mostly affects 

human species. The global impact of malaria on health, economic and social wellbeing is high. 

This is attributed to the reported morbidity and mortality rate, the cost of healthcare associated 

with malaria, the social capital required in combating the menace as well as the loss in man work 

hours and disability years due to the disease.  

In fulfilling its mandate, the World Health Organization(WHO) routinely receives data on 

several malaria indicators on the number of reported and confirmed malaria cases, number of 

reported and confirmed malaria deaths, those receiving nets, pregnant women population 

reporting affecting by malaria, funding for malaria, country progress on malaria activities, 

availability of appropriate and recommended testing and treatment among other statistics (WHO, 

2008). The data is usually provided by the relevant countries’ departments of health at the end of 

every year. There are however instances where for some reason, a country fails to provide its 

malaria statistics to the WHO. This data is usually availed and stored in WHO database to inform 

malaria program implementation status in individual countries. 

It is globally estimated that malaria kills one child in every 30 seconds, translating to about 3000 

children deaths daily, (United Nations Children Fund, 2014). In the adult population, malaria 

related mortality rate almost nears that of Human Immunodeficiency Virus (HIV)/ Acquired 

Immunodeficiency Syndrome (AIDS) and tuberculosis. Even more worrying is an article by the 

Daily Telegraph which indicated that in the year 2014, despite the panic due to the  Ebola 

outbreak,  malaria killed 70 times more people than Ebola hence malaria is a bigger threat in 

Africa,(Nelson, 2014). 

According to the WHO most of the deaths in Africa are largely preventable and treatable. The 

magnitude at which malaria kills the vulnerable has seen a lot of countries efforts geared towards 

reducing the spread of malaria mainly by putting up control and prevention measures.  
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The presence of malaria parasite, a female anopheles mosquito plays a major role in the 

transmission of malaria to humans. These mosquitoes breed mostly in paddy waters especially 

during rainy season, or on marshy grounds. The life cycle of a mosquito comprises of four 

stages: a new life begins when an adult mosquito lays eggs in stagnant water such as marshy 

areas or water pods. At the second stage, the eggs hatch into mosquito larvae which transform 

into pupae in their third phase of life. The pupa stage is interestingly a resting phase at which 

they do not feed but are still mobile. Finally  an new adult emerges and floats on water for 

several days after which its ready to fly off, mate, feed amongst other tasks, (Kalman, 2004). 

Mosquitoes feed on blood to survive. In the process of sucking blood form their hosts, they 

transmit protozoa that cause malaria from an infected host to other humans. Usually, the malaria 

causing agent is transmitted by female anopheles mosquito. The biological adaptations that 

specifically makes this species and gender of mosquito suited to transmission has been studied 

by several researchers, (Carter, 2001; Dimopoulos, Seeley, Wolf, & Kafatos, 1998).  

Kenya government with support from private, Non Governmental Organizations (NGOs) and 

other stakeholders have been at the forefront in the fight against malaria using various 

interventions. Focus has also been directed to populations most at risk for example the provision 

of mosquito bed nets to pregnant mothers and infants(Mutuku et al., 2013). Moreover, a huge 

investment in medical research with regards to effective malaria vaccines by WHO researchers 

and other institutions in Kenya is an indicator of the public health importance of malaria in 

coming up with long term measures in combating the disease. For instance, The Kenya Medical 

Research Institute(KEMRI) and other research partners is at an advanced stage conducting 

clinical trials at various sites in Kenya; Kilifi in coastal and Siaya in western parts of 

Kenya(Agnandji et al., 2011; Moorthy, Good, & Hill, 2004).All this scientific work is being 

recognized by WHO. 

1.2 Statistical model theoretical background 

Linear mixed-effects models are flexible statistical models which are appropriate in modeling 

data that is collected severally from the same measurement unit. Data tables will be extracted 

from the WHO databases the reported malaria cases that were actually medically confirmed to be 

malaria. The resulting dataset is a longitudinal data at country level with missing information for 

specific countries. In this analysis, a unit is each country for whom annual malaria cases were 
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reported to the WHO. The challenge is however that some of the countries fail to remit their 

annual statistics due to several reasons that are beyond the scope of this analysis. Missing data 

however has an impact on the analysis and inference performed herewith. A statistical treatment 

for the missing data is therefore a point of focus for this analysis.  

The objective of this study is to focus in formulating an appropriate linear mixed model for the 

extracted longitudinal data. The study also propose to fill in the missing data with plausible 

values by using complete case analysis and multiple imputations and compare how these two 

corrections influence the resulting estimates.  

1.3 Case study data overview and analysis justification 

The data used in this analysis was obtained from the website of the WHO by following the link 

http://apps.who.int/gho/data/node.main.A1364?lang=en. After some data cleaning and 

manipulations, the final dataset comprised of 43 out of 54 African countries, for which at least 

one reported and confirmed number of malaria cases available. The data was available from the 

year 2000-2012 by the time we extracted it although a recent check reveals that 2013 data has 

now been updated.  

Although our initial interest was to analyze malaria cases in Kenya, the provided data was only 

an aggregate of all malaria cases reported per country for each year. Without a breakdown within 

the country for instance at county level, there was little statistical modeling that could be done 

just with Kenya’s data. A careful examination of the data however revealed that there was high 

heterogeneity in the number of reported malaria cases in African countries across the years. This 

realization motivated us to explore statistical models that would capture this heterogeneity and 

more so, account for the fact that the data was expected to be highly correlated within a country. 

Mixed effects models were the candidate models of choice. In particular, we chose linear mixed 

effects models rather than generalized linear models so that we could easily illustrate the 

concepts by transiting from the well known linear regression models to the linear mixed effects 

models. Generalized linear mixed effects models appropriate for this analysis would have 

entailed extending the Poisson regression model to account for the heterogeneity.  

 

http://apps.who.int/gho/data/node.main.A1364?lang=en
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1.4 Problem Statement 

According to WHO approximately 3.2 billion people in 2015 are at risk of malaria, statistics 

which is about half of the world's population. Sub-Saharan Africa accounts much of the malaria 

cases and deaths experienced. Sub-Saharan Africa continues to carry a disproportionately high 

share of the global malaria burden. In 2015, the region was home to 89% of malaria cases and 

91% of malaria deaths.  

Malaria burden cost Africa about twelve (12) billion in lost Gross Domestic Product (GDP) 

every year. This accounts for about 40% of all public health spending in Africa. 

Surveillance of the disease is of create importance, since this will empower Health Programs and 

Policy makers to optimize on the interventions, based on the statistics to aid in resources 

allocation. 

There is then an urgent need to monitor malaria statistics to enable a timely and effective malaria 

response in endemic regions, to prevent outbreaks and resurgences, to track progress, and to hold 

governments and the global malaria community accountable.  

In fulfilling its mandate, WHO routinely receive data on several malaria indicators such as the 

number of reported and confirmed malaria cases deaths among other statistics. This then inform 

health program implementation status in individual countries through policy development and 

interventions recommendations as a move towards malaria control and elimination. 

WHO in the recent years reported four countries as certified for having eliminated malaria: 

United Arab Emirates (2007), Morocco (2010), Turkmenistan (2010), and Armenia (2011). 

Thirteen countries also reported zero cases of malaria in the year 2014 while six countries 

reported fewer than ten cases of malaria.  

There are however instances where for some reason, a country fails to provide its malaria 

statistics to the WHO. The extracted data is thus longitudinal at country level with missing 

information for specific countries. 

The interest is therefore to formulate an appropriate linear mixed model for the longitudinal data 

since this is robust in cases of missing data, as seen on the extracted data that some profiles 

exhibit missing data scenarios.  
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With insight that failure to account for missing data may lead to misinformed inferences hence 

poor policy formulation and wrong interventions considered for health program implementation. 

A comparison to establish if estimates with missing data may have influence on the inferences 

made using Linear mixed model, with complete case analysis & multiple imputations is 

proposed. 

1.5 Research Questions 

i. What are the implications of having missing data in the implementation of public health 

programs? 

ii. What models are appropriate to enable programs and policy makers estimate the expected 

burden of a public health event and subsequently make inferences? 

1.6 Objectives 

1.6.1 General Objective: 

The overall objective of this study is to apply appropriate statistical methodology for longitudinal 

malaria dataset, while examining the missing data patterns and resulting impact on statistical 

inference.  

1.6.2 Specific objectives: 

1. To fit an appropriate linear mixed-effects model to the malaria data in Africa using 

the data for 2000-2012. 

2. To estimate the parameters using complete case analysis. 

3. Provide a comparison of parameter estimates resulting from classical linear mixed-

effects models with observed data, complete case analysis as well as the multiple 

imputations. 
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2 LITERATURE REVIEW 

Malaria remains a global problem, thus the continued attention from the scientific community, 

government agencies, NGOs, and the population at large. A widespread campaign to control and 

possibly eradicate malaria globally by health and non health stakeholders is ongoing. Various 

strategies are being employed; for example the provision of insecticide treated nets, pesticides, 

environmental sanitization, equipping health facilities with test kits and adequate malaria 

medicine and research. Funding from both government and other agencies such as United States 

Agency for International Development (USAID), United Kingdom (UK) aid, Bill and Melinda 

Gates Foundation, Against Malaria Foundation amongst others have not only enabled the 

provision of protective gear but also funded research into vaccines and more effective treatment 

for malaria, (Agnandji et al., 2011; McCoy, Kembhavi, Patel, & Luintel, 2009). 

Non-medical research into the impact of the interventions has also been a point of focus for 

academic researchers. Other findings documented that although mosquito nets were easily 

accessible among other interventions, their long term physical integrity was hampering their 

effectiveness(Mutuku et al.2013). Another community based cross-sectional survey in Kwale 

County to determine the physical condition of the nets and more importantly, identify the 

predictors of poor physical conditions of bed nets. To this end, a semi-parametric logistic 

regression was used and concluded that physical deterioration of nets was associated with higher 

use and washing frequency. Young and older children were using ineffective nets more than 

infants, highlighting the focus that had been placed on lactating mothers and infants by the 

interventions.(Hosmer, Jr., Lemeshow, & Sturdivant, 2013)  

A decline reported in pediatric admissions on the coast of Kenya which could actually be 

attributed to malaria specific interventions that were being conducted in the hospital catchment 

areas of Kwale, Kilifi and Malindi between January 1997 and March 2007. In their analysis, they 

adjusted for seasonal variations in the rainfall and admission rates using different time series 

models with a 13-point moving average. To assess the effect of time on the reported malaria 

cases, they fitted a linear regression model using non-malaria cases as an additional covariate for 

predicting the malaria cases. By using this linear regression model, their assumption was that the 

model residuals were independent, an assumption which is usually invalid for longitudinal data 

of this nature, as they rightly acknowledged. Following additional tests they performed, they 
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indeed concluded that there was serial correlation in the dataset and hence they adjusted their 

model to an autocorrelation time-series with a lag of two months (Okiro et al. 2007). 

Several longitudinal studies within the context of malaria have been done by many researchers. 

A longitudinal study conducted to describe the epidemiology of malaria infection amongst 

children in Western Kenya. Their dataset comprised of prospectively monitored children 

between June 1992 and July 1994 whereby blood smears were tested for malaria infection. They 

reported malaria prevalence of between 60% and 83%(Bloland et al., 1999). In their statistical 

analysis, they applied generalized estimating equations to a binary outcome in order to account 

for correlation between outcomes of the same child. With this model, they were able to illustrate 

the effect of time (months) and age-group of children in the prevalence of malaria. Clinical 

follow up studies are often characterized by incomplete data due to patients failing to show up 

for some follow up visits, lost to follow up incidences as well as due to natural attrition.  In their 

study however, there is no mention of the missing data and the treatment thereof.(Hardin & 

Hilbe, 2012; Ziegler, 2011) 

There is abundance of literature for longitudinal analysis of malaria incidence data in Africa. 

Most of these studies however comprise of a binomial outcome which is presence or absence of 

malaria in an individual. They therefore employ the generalized estimating equations approach to 

account for dependency in the data(Bloland et al., 1999; Degefa et al., 2015). These models 

belong to the class of models for correlated data that are referred to as marginal models(Agresti, 

2012; Geert Molenberghs & Verbeke, 2006). While there is nothing wrong statistically with 

these models, their approach aims at giving a global or the so called population averaged picture 

about the condition being studied. Thus, rather than making inference about a particular child 

who was followed up in the survey conducted by(Bloland et al.,  1999), the model provides 

inference for the entire children population in Western Kenya (or a region with similar 

demographic profile). Moreover, the outcome was dichotomous in nature as characterized by the 

zero prevalence of malaria in the patients. The resulting longitudinal model therefore extends the 

classical logistic regression model to accommodate repeated measurements per study subject. 

The literature explored so far has mainly analyzed data collected at only one study area in the 

case of (Bloland et al.,  1999), or at least homogeneous study areas such as is the case for the 

analysis by(Okiro et al.( 2007). More often than not, studies are conducted in heterogeneous 
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regions, sub populations or even countries. For instance, (Kleinschmidt  2001) was confronted 

with the challenge of analysing data from populations of northern most districts of KwaZulu 

Natal in South Africa, where there are strong heterogeneities in the incidence of malaria. Their 

approach entailed accounting for spatial correlations in the context of generalized linear mixed-

effects models where the spatial effects were captured using appropriately defined random 

effects. This heterogeneity model provides a different dimension of information than we have 

seen in the previously presented literature since it allows for inference specific to different 

regions within the district. Spatial analysis of incidence data is a hot topic in disease 

mapping,(Kleinschmidt, 2001; Lai, So, & Chan, 2008). 

Linear mixed-effects models allows for inclusion of random effects in the model makes it more 

special in that it allows for the hierarchical representation of findings. This is to say that the 

resulting random effects model are subject specific, thus allowing for subject specific inference 

to be performed.(Gałecki & Burzykowski, 2013; Verbeke & Molenberghs, 2009; West, Welch, 

& Galecki, 2014). Situations where such a model may be of interest are abundant in literature 

especially in medical applications. In clinical trials, patients are often followed up resulting in 

panel data. Linear mixed models have been applied to account for the heterogeneity amongst 

patients with regards to their CD4 count (Binquet, 2001; Hoffmann et al., 2013); to analyze 

survival and longitudinal outcomes simultaneously in the so called joint models (Rizopoulos, 

2012) amongst other  contexts. One of the challenges however is that longitudinal data often 

results in incomplete data,(Donald & Robert D., 2006; G Molenberghs, Fitzmaurice, Kenward, 

Tsiatis, & Verbeke, 2014). On a positive note, linear and generalized linear mixed models are 

robust to unbalanced data and can therefore often provide valid inferences even in the presence 

of unbalanced data,(Cnaan, Laird, & Slasor, 1997). 

The topic of missing data has generated wide interest in recent times. Although initially 

researched upon by (RUBIN, 1976), recent literature on the subject can be found in(Little & 

Rubin, 2002; G Molenberghs et al., 2014; Shah, Laird, & Schoenfeld, 1997) amongst others. 

Several authors have presented illustrations of the problem and possible solutions in the context 

of longitudinal studies. One solution that stands out is the method of multiple imputation, 

(Carpenter & Kenward, 2012). Verbeke & Molenberghs, (2009) and Twisk & de Vente, (2002) 
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are a few authors who illustrated practical examples of multiple imputation in different settings 

of correlated data. 

The literature gap that this study seeks to fill is quite clear. While there has been longitudinal 

analysis of binary malaria data, they often did not tackle the missing data analysis. Moreover, in 

this study we model incidence data which is not dichotomous. Such data calls for two possible 

approaches; either model counts of reported infections as having a Poisson distribution using the 

generalized linear mixed effects model or, perform a logarithmic transformation of the reported 

cases and analyze resulting data as a linear mixed effects model. We adopt the second approach 

for this analysis. To give a richer treatment of the problem at hand, multiple imputations to 

account for missing data is applied. Ad hoc treatment of the missing data by only analysing 

complete cases will also be considered depending on the number of available complete cases. 
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3 METHODOLOGY 

Longitudinal malaria dataset for all WHO Africa member states will be extracted from the WHO 

database. Longitudinal data is observed when measurements are scheduled to be obtained from 

an individual at several time periods.  

An important aspect of longitudinal data is that for a given unit of measurement (hereby referred 

to as the subject), at least one measurement is observed. In this thesis, longitudinal data results 

from obtaining the records of reported and confirmed malaria cases for countries in Africa as 

recorded by the World Health Organization. Thus, the subject in this case is each country in 

Africa for whom we have at least one year’s statistics on the reported and confirmed malaria 

cases. 

Formally, let ijY be the number of malaria cases in country 1,2...i N in year : 1,2....ijt j J . 

From the cleaned dataset, data was available for 43N   countries out of the 54 African 

countries and 13J   {Year 2000-2012}. Thus for a given country i , the vector of responses can 

be denoted as(Donald & Robert D., 2006); 
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The difference between the current dataset and that often used for linear regression analysis is 

that the components of the data vector are scalars since each subject contributes only one 

measurement to the data vector unlike in Equation (2) where the components are a vector of 

measurements from each subject. This distinction is important since it results to the breakdown 

of the theory on linear regression analysis in several ways: For one, the resulting model residuals 

from linear regression on such a dataset are no longer independent. This is clearly because 

measurements from a single country are correlated in that they follow a particular pattern and not 

just random. An illustration of longitudinal data resulting for the current case study is shown in  

Figure 1. While for linear regression analysis we could be having only line, here, a collection of 

profiles corresponding to each of the subjects is observed. 

 

 

Figure 1: Country specific profiles for reported confirmed malaria cases between 2000 and 2012 

 

The model ought to address the additional complexities introduced by the data structure. To this 

end, linear mixed-effects models an extension of the classical ordinary linear regression models 

are useful tools for handling Gaussian data from longitudinal studies as discussed in the next 

section. 
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Ware (1982) as well as Verbeke and Molenberghs (2000). The starting point of LMM is noting 

that from  

Figure 1, a plot of the data per subject may reveal several patterns. For instance, the profile plot 

reveals the following. 

i. The number of confirmed cases in the year 2000 varies a lot amongst countries. 

ii. Although the evolution generally follows a similar pattern, there is variability in the 

evolution and more particularly, one of the country profiles (Tanzania) actually 

exhibits a quadratic profile. 

iii. There is variability (fluctuations) in the measurements within a given country over 

time. 

These aspects and more forms core of the linear mixed model analysis. An average profile can be 

obtained by averaging the observed number of cases for all the countries in those years, thus 

obtaining an average profile. Deviation of each country’s measurement from the overall average 

profile is quantified by measurement error just like in linear regression analysis. To quantify 

variability between the subjects, random effects are introduced thus resulting in linear mixed-

effects models. Linear mixed effects models can then be develop in a general setting. 

3.1.1 Model formulation. 

A linear mixed-effects model results by combining two computation steps of the two-stage 

modeling approach. Each of these two stages is described. 

3.1.1.1 Stage 1 

The development of a linear mixed-effects model can be performed in two stages(Verbeke & 

Molenberghs, 2009). In the first step, an ordinary linear regression model is fitted on each 

country’s vector shown in Equation(1). This implies that at this stage, N  linear equations are 

fitted each corresponding to a model for each of the countries. The linear regression model is 

denoted as; 

 

 i i i i Y Z β ε  (3) 
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Where, 

 iZ   is a  in q  matrix of known covariates.  

 iβ  is a q  dimensional vector of subject-specific regression coefficients 

  ~ 0,i iN ε  is the vector of measurement errors (residuals). In many situations, a 

simple structure for the covariance matrix for measurement error is assumed. Thus, rather 

than imposing a complex error structure, 2

ii nI   is used. 

Estimation of the parameters of this model can be performed in any Statistical software that 

supports linear regression analysis. The parameter estimates can be obtained using ordinary least 

squares approach by minimizing the loss function 

 2

1

( )
in

i ij i

i

Q y y


   (4) 

Note that the model in Equation (3) captures the variability within a subject (the so-called within-

subject variability in multivariate statistics(Johnson & Wichern, 2002). 

The resulting output for the model is thus a  in q  matrix of regression coefficients which 

forms the input for the second stage of the model. 

3.1.1.2 Stage 2 

In the second stage, between subjects variability is modeled. This is achieved by relating the 

estimated coefficients i  with known covariates. Thus, 

 i i iK β β b  (5)
 

 

 

 

Where; 
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 iK  is a  q p matrix of known covariates. Additional covariates other than time can be 

adjusted for in this step. 

 β  is a p dimensional vector of regression coefficients. 

  ~ 0,i Nb D  is a matrix of random effects indicating the deviation in individual 

subjects’ measurements from the population average. D  is the covariance matrix 

capturing the between-subject variability. 

3.1.2 General linear mixed-effects model (LMM) 

The two-stages can be combined and performed more efficiently in a single step. Thus, we 

substitute Equation (5) into Equation (3)resulting in; 

  

;i i i i i i i

i i i i i

i i i i i i

K

K

K

   

   

   

Y Z β ε β β b

Y Z β b ε

Y Z β Z b ε

 (6) 

It is important to note that i i iKX Z  is a design matrix containing all the covariates of interest 

in the model. The final general linear mixed-effects model is hereby given as; 

  

 

~ 0,

~ 0,

i i i i i

i

i i

N

N

  



Y X β Z b ε

b D

ε

 (7) 

All the parameters carry the same meaning as earlier defined. Additionally, the model in 

Equation (7) imposes an assumption that the random effects ib  and measurement errors i are 

independent. The regression coefficients  comprises the fixed effects for the model. The model 

is linear in parameters (hence a linear model), contains both fixed and random effects (hence a 

mixed-effects) resulting in the terminology linear mixed-effects model(Donald & Robert D., 

2006; Gałecki & Burzykowski, 2013; West et al., 2014). 
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3.1.2.1 Additional properties of the linear mixed effects model 

The model in Equation (7) is referred to a hierarchical model due to the hierarchy exhibited in 

the variability structure. When i is assumed to have a simple covariance structure as defined in 

Equation (3), then, conditional on the random effects,  

 
 

 

| ~ ,

~ 0,

i i i i i i

i

N

N

 Y b X β Z b

b D
 (8) 

Thus, the variance of the observed data can be decomposed into two components; within-subject 

variability and between-subject variability. 

By using random effects, the between subject variability can be captured accordingly. The 

implied marginal model is denoted as; 

 

 

2

~ ,i i i

i i

i i

N V

V ZDZ

V ZDZ 

 

 

Y X β

 (9) 

Also worth mentioning is that the hierarchical model shown in Equation (8) implies the marginal 

model (9) but the reverse is not true. 

3.2 Parameter estimation and inference 

3.2.1 Maximum Likelihood Estimation (MLE) 

Unlike in the two-stage approach (or classical linear regression), estimation of the linear mixed 

model fixed effects parameters is performed using a maximum likelihood approach. For the 

marginal model in Equation(9), we (re)introduce the following notation; 

 

 

:  fixed effects vector

:  vector of all variance components

= , :  vector of all parameters in the marginal model





   

 (10) 

The marginal likelihood function is given by: 

           
1

122

1

1
2 | | exp

2

inN

ML i i i i i ii
L V Y X V Y X     

 



          
  

 (11) 
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When  is known, the Maximum Likelihood Estimate (MLE) of   is given by; 

   1 1

1 1

ˆ ( ) ( ) ;  where  equals 
n n

i i i i i i i i

i i

X W X X W y W V   

 

    
 
   (12) 

Often,  is unknown and needs to be estimated. MLE ˆ
ML  can then be obtained by maximizing 

Equation (11) with respect to  . Since both  and   are unknown, the algorithm maximizes 

the parameter vector  = ,    simultaneously. 

3.2.2 Restricted Maximum Likelihood Estimation (REML) 

In ordinary MLE theory, given  and 2  are the population mean and variance respectively, if 

  is known, the sample variance 2 2

1

ˆ ( ) /
n

i

i

Y Y N


   is an unbiased estimator for the 

population variance. For unknown   however, 2 2

1

1ˆ ( )
n

i

i

N
Y Y

N





  which is a biased estimate 

of 2  since 2 21ˆ N

N
 


 .  

An unbiased estimate of 2 is the sample variance defined as  2 2

1

ˆ ( ) / 1
n

i

i

Y Y N


   . This 

implies therefore in the context of linear mixed-effects models, in order to obtain an unbiased 

estimate of the population variance, a transformation of Y  to eliminate   from the likelihood is 

needed. This transformation is given by; 

 

  

1 2

2 3

2

2 1

1

~ 0,

N N

N N

Y Y

Y Y

U A Y N A A

Y Y

Y Y



 



 
 
 
    
 
 
 
 

   (13) 



17 
 

With this transformation in place, the MLE of 2 is now the unbiased one 

 2 2

1

ˆ ( ) / 1
n

REML i

i

Y Y N


    and is referred to as the REML estimate. We shall therefore use 

REML estimation for all the models fitted in this analysis since it is independent of the choice of

A . A more comprehensive discussion of the REML in linear mixed-effects models is given by 

(Verbeke & Molenberghs, 2009). The models will be implemented in Statistical Analysis System 

(SAS) statistical Software, although almost every modern statistical package supports linear 

mixed-effects models. 

3.3 Missing data analysis 

With the advent of big data, there has been an increasing challenge of missing data. Moreover 

attrition is an inherent problem of longitudinally collected data especially if the time span 

between obtaining measurements for an observation is large(Twisk & de Vente, 2002). While 

some statistical models require balanced data, linear mixed models are robust to data imbalance. 

This means that, even with incomplete data, the models can still be applied without the 

underlying theory collapsing.  

In some instances however, interest may be in addressing the issue of missing data one way or 

another. Ad hoc ways of dealing with missing data includes linear interpolation, substituting the 

missing values with an average of the two adjacent values, last observation carried forward, as 

well as complete case analysis. Little and Rubin (2002) presents a good overview of the problem 

of missing data and possible solutions. On the other hand, Molenberghs et al. (2014) developed a 

handbook of missing data methodology which we greatly borrow from in tackling missing data 

analysis. Three approaches to handling missing data will be considered in this thesis: 

3.3.1 Complete case analysis 

The most restrictive of the approaches is complete case analysis. As the name suggests, only 

subjects with measurements in each of the time points are used for the analysis. This is a strictly 

because the underlying assumption for complete case analysis is that the unobserved data is 

Missing Completely At Random (MCAR). In other words, the mechanism generating the 

missingness is independent of both the observed and unobserved parameters of interest.  If 

indeed the missingness mechanism is MCAR, the resulting inference is unbiased. However, there 

are no formal tests for MCAR. Moreover, the fact that in nature missingness is rarely MCAR. 
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3.3.2 Direct likelihood: analysis of the data as-is 

 This is the output of the statistical models applied to the data without further considerations 

about the missing data. Therefore there are no additional computations or data manipulations 

necessary. The underlying assumption is that the data is Missing at Random (MAR). This is an 

unverifiable assumption: given the observed data, the missingness mechanism does not depend 

on the unobserved data. Likelihood inference based on direct likelihood approach is valid (under 

the assumption if MAR). 

3.3.3 Multiple Imputation (MI) 

The focus of this section is in performing Multiple Imputation to account for missingness in 

longitudinal data. The underlying assumption is still that the data generating mechanism is MAR. 

We decompose the density function for the data as follows; 

Define,  

 

     

1,  if  is observed Y

0,  otherwise Y

| , | | ,

o

ij i

ij m

i

o o

i i i i i

Y
R

f y D f y f M Y   

 
 





 (14) 

Where iM  denotes the time of missingness.  

MI is a three-step process; 

i. Create M complete dataset by filling in missing values with some estimates. The 

imputation values are obtained by first sampling them from a given distribution (and 

acknowledging the variability in these random variables accordingly). 

ii. Perform standard analysis on each of the M datasets: in our case, this entails filling the 

linear mixed-effects model (7) in each of the datasets. 

iii. Combine the results of the M  analyses to perform inference on. 

Theoretical justification of these steps can be obtained from Rubin, (1976), Little & Rubin, 

(2002) amongst other authors presented in the references. 
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3.3.3.1 Algorithm of multiple imputation for missing data 

1) Draw a new parameter vector   from its posterior distribution. 

2) Draw 
m

iY 
 from  | ,m o

i if y y    

3) Using the new complete set of data  0 , mY Y   , obtain an estimate of 

   ˆ ˆ ˆ ,o mY Y Y      

4) Repeat the steps 1-3 M  times thus obtaining ˆ m  and within imputation variance 

 ˆ ,    1, ,mU Var m M    

5) Pool the information  obtained in step 4 to obtain the final estimate of the regression 

coefficients; 

    

1

ˆ

ˆ ,   where

ˆ ~ 0,

M
m

m

M

N V





 

 









 (15) 

The variance 
1M

V W B
M

 
   

 
 can be decomposed into within-subject variance 

1

M
m

m

U

W
M




 and between-subject variance

  
1

ˆ ˆ ˆ ˆ

1

M
m m m m

mB
M

    




 





. 

We shall presents results of these three models and compare their efficiency based on the 

estimated variance. 
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4 RESULTS 

4.1 Exploratory data analysis 

A crucial step in statistical modeling is exploring the data in order to gain insights into the 

information contained. This not only helps in making informed choices during the modeling 

steps, but also enables us to assess the model fit. The individual country profiles were presented 

in  

Figure 1 whereby it was clear that the trends are not linear.  Moreover, considering the fact that 

the domain of general linear mixed-effects model is the real line  ,  , we perform a 

logarithmic transformation as follows; 

  log 1ij ijY Y    (16) 

To have an idea of the shape of the mean structure and the random effects to be included, a 

subject specific profile plot of the cases is shown. This is performed on the log-transformed data 

presented in Equation (16) resulting in the plot shown in Figure 2 . 

From the figure, it is evident that there was much variability between countries in the year 2000. 

This therefore implies that there is need for random intercepts in the model. The evolution over 

the years was more or less constant as can be seen from the relatively flat profiles. The trends are 

not perfectly linear and therefore additional non-linear effects of time such as the quadratic and 

cubic slope coefficients will be explored. 

 

Figure 3: Subject-specific profiles of the log transformed malaria cases in Africa. 
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In longitudinal data analysis, correlation between observed outcomes is always expected and 

that’s what differentiates the analysis of longitudinal data from ordinary linear regression. Linear 

mixed models account for correlation by including independent parameters. In order to decide on 

the covariance structure to model, exploration on the covariance structure in the current dataset 

as well as knowledge of the subject matter come in handy. A scatter plot matrix of the 

association between the log transformed number of cases across different years and all 

observations can be obtained.  

Even better, a heat map of the correlation matrix gives a more appealing visual effect as seen in 

Figure 4. There were mainly strong correlations between blocks of measurements such as 2001, 

2002 and 2003. Since there is no clear structure in the correlation over all the years, an 

unstructured covariance can be a good candidate. However, convergence issues may limit its 

usage hence the need to explore other covariance structures in the modeling and probably 

compare the models based on their Akaike Information Criteria (AIC)  

 

Figure 4: Heatmap of the correlation between the number of cases across the years. 
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patterns. A country with no missing data should have 13 observations while for any country to be 

included in the analysis, at least one observation is necessary. A clearer picture of the extent of 

missing data in this analysis is presented in Figure 5. Only a few countries had all the data 

available in the 13 year period. These included Tanzania, Democratic Republic of Congo, 

Madagascar amongst others. As expected, the Northern horn of African countries including 

Somalia had sparse data mainly due to long term conflicts hence poor data collection by 

government agencies. 

 

Figure 5: Reported data pattern for African countries.  

Note: Each colour denotes the number of available observations 

4.2 Linear mixed-effects model formulation and selection 

The linear mixed effects model provides a mechanism for modellig the observed subject specific 

profiles. To begin with, the model comprises of two components; the fixed linear component, 

and the random effects. In this analysis, we allowed for linear, quadratic and cubic effects of 

time in the model. Random effects included the random intercept, linear, quadratic and cubic 

slopes.  
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The resultig model can be denoted as follows; 

        2 3

1 1 2 2 3 3 4 4ij j j ij j ij j ij ijY b b t b t b t              (17) 

Where   k are the model intercept, fixed effects of linear, quadratic and cubic slope parameters 

respecively and kjb are the corresponding random effects 1 2 3, ,j j jb b b for 1 4k   . An unstructured 

covariance for the random effects was fitted to begin with. This model however did not converge 

and therefore, the first step was to reduce the number of random effects to only have with an 

unstructured covariance between them which converged without issue. 

The estimated variance of the quadratic random effect was still too low, an indication that we 

could possibly remove it and left with just a random intercept and random linear slope 

component. The AIC of the resulting model however, did not improve much as shown in Table 

1, although this implies that we reduce the number of random effect parameters by three. More 

parsimonius models ( models with few parameters) are always preferred. 

Table 1:Akaike Information Criterion (AIC) fit statistic for different models 

  Cubic mean Quadratic mean Linear mean 

Cubic random effects Did not converge NA NA 

Quadratic random effects 1540.8 1532.3 NA 

Linear random effects 1538.2 1529 1521.2 

Random intercept only 1703.8 1694 1687.2 

 

To clearly see the reduction in covariance parameters, consider the estimated covariance 

matrices for the models with intercept linear and quadratic random effects as well as for that with 

only intercept and linear slope parameter as shown in Table 2. A further reduction in the 

covariance structure could be obained by only having the random intercept in the model. This 

simple random effects model was not the most suitable for the data at hand  as reveled in Table 2 

whereby, the AIC was larger than models with more than one random effects parameters. 

 

 

 



24 
 

Table 2: Random effects covariance matrices for 3 and 2 random effects models 

3 random effects model 

 Effect b1j b2j b3j 

b1j Intercept 14.8664 -1.5394 0.03666 

b2j Linear slope -1.5394 0.3883 -0.01119 

b3j Quadratic slope 0.03666 -0.01119 0.000472 
 

 

2 random effects model 

 Effect b1j b2j 

b1j Intercept 13.3808 -0.9267 

b2j Linear slope -0.9267 0.1789 

 

Further steps in  model selection entailed the reduction of the mean structure for each set of 

random effects. Starting with cubic time effects model, the time trend was simplified as shown in 

Table 1.  For each model, the corresponding AIC is displayed. Model with only linear fixed 

effects (intercept and linear slope parameter) and linear randon effects (random intercept and 

random slope) had the lowest AIC value of 1521.2 hence the preferred model.  The final model 

used for further analysis and the results are presented in the next section. 

4.3 The fitted linear mixed-effects model 

The best model based on the values of AIC is the linear model with fixed intercept and slope as 

well as random intercept and slope parameters. The final model is therefore presented  below as-: 

    1 1 2 2ij j j ij ijY b b t        (18) 

This model implies that on the log scale, the number of cases follow a linear trend with intercept 

1  and slope 2 .  Output resulting from this model is discussed next. 

4.3.1 Random effects estimates 

Fitting the model, there is two random effects parameters to be estimated that is the  intercept 

and slope parameters. Different covariance structures can be imposed such as independence, 

unstructured, compound symetry, autoregressive covariance amongst others. The compound 

symmetry, autoregressive and independence in cases estimate two parameters while unstructured 

estimates three parameters.  



25 
 

The final random effects matrix is presented in Table 3. The variance of the random intercept is 

quite high  
1

2 13.3402
jb  while for random slope, the variance is relatively low  

2

2 0.1802
jb  . 

This is consistent with the observation made on the individual profiles in Figure 3, where it was 

observed that there is greater variablility in the intercepts (number of cases reported in the year 

2000). Equally the trend of the lines was found to be relatively constant (almost flat lines for all 

countries). This implies that the countries varied in the number of cases they reported in the year 

2000, with some countries reporting high malaria cases while others reporting low malaria cases. 

Countries that reported high number of malaria cases in the year 2000, consistently reported high 

cases over the 13 year period, while those that reported low cases, consistently reported low 

cases over the same time period. 

Table 3: Random effects covariance matrix for the final model 

 Effect b1j b2j 

b1j Intercept 13.3402 -0.9267 

b2j Linear slope -0.9267 0.1802 

 

As illustrated in Equation (9), the variance of a linear mixed effects model is the sum of 

covariance matrices from the random effects and the model residual variance 2I  . The 

estimated residual variance for the final model is 2 1.5420  . I  is a 13 13  identity covariance 

matrix,  

while 
1 0 13.3402 0.9267

,
0 1 0.9267 0.1802

z D
   

    
   

.   

By substituting these parameters in the formulae given in Equation (9), the final variance-

covariance matrix for the number of cases observed across the 13 year period for any given 

country is obtained as shown in Table 4. Clearly, the covariance matrix is unstructured, implying 

that there is no assumption on the structure of the association between outcomes of a given 

country across the years. 
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Table 4: Covariance matrix for the final model 

  2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

2000 14.882 12.414 11.487 10.560 9.633 8.707 7.780 6.853 5.926 5.000 4.073 3.146 2.219 

2001 
 

13.209 10.921 10.174 9.427 8.681 7.934 7.188 6.441 5.695 4.948 4.202 3.455 

2002 
  

11.896 9.788 9.222 8.655 8.089 7.523 6.956 6.390 5.824 5.258 4.691 

2003 
   

10.944 9.016 8.630 8.244 7.858 7.472 7.085 6.699 6.313 5.927 

2004 
    

10.352 8.604 8.398 8.192 7.987 7.781 7.575 7.369 7.163 

2005 
     

10.120 8.553 8.527 8.502 8.476 8.450 8.425 8.399 

2006 
      

10.249 8.862 9.017 9.171 9.326 9.480 9.635 

2007 
       

10.739 9.532 9.866 10.201 10.536 10.871 

2008 
        

11.589 10.562 11.077 11.592 12.107 

2009 
         

12.799 11.952 12.648 13.343 

2010 
          

14.370 13.703 14.579 

2011 
           

16.301 15.815 

2012                         18.593 

 

From the estimated covariance matrix, the resulting correlation matrix is shown in Table 5. 

Interestingly, the resulting correlation structure shows that as time passes, the correlation 

between measurements reduces. This is more in line with the autoregressive covariance pattern 

whereby, measurements closer together in time are strongly correlated, while measurements 

further apart are less correlated.  

Table 5: Correlation matrix for the fitted model 

  2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

2000 
1 0.8854 0.8633 0.8275 0.7761 0.7094 0.6299 0.5421 0.4513 0.3623 0.2785 0.202 0.1334 

2001 
 1 0.8712 0.8462 0.8062 0.7508 0.6819 0.6035 0.5206 0.438 0.3592 0.2864 0.2205 

2002 
  1 0.8578 0.831 0.7888 0.7326 0.6656 0.5925 0.5179 0.4454 0.3775 0.3154 

2003 
   1 0.847 0.82 0.7784 0.7248 0.6634 0.5987 0.5342 0.4727 0.4155 

2004 
    1 0.8406 0.8153 0.777 0.7292 0.676 0.6211 0.5673 0.5163 

2005 
     1 0.8398 0.818 0.785 0.7447 0.7007 0.6559 0.6123 

2006 
      1 0.8447 0.8273 0.8007 0.7684 0.7335 0.698 

2007 
       1 0.8544 0.8416 0.8212 0.7963 0.7693 

2008 
        1 0.8672 0.8584 0.8434 0.8248 

2009 
         1 0.8813 0.8756 0.8649 

2010 
          1 0.8954 0.8919 

2011 
           1 0.9084 

2012 
                        1 
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4.3.2 Fixed effects estimates 

To complete the linear mixed–effects specification, fixed effects are estimated. The model for 

fixed effects comprised of linear intercept and slope parameters as shown in Table 1. 

Table 6: Fixed effects estimates for the final model 

Effect Estimate Standard Error P-value 

Intercept 8.7687 0.6321 <.0001 

Slope (year) 0.1909 0.07212 0.0085 

 

These estimates indicate that both the intercept and slope parameters were statistically significant 

(p-value<0.05) implying that these parameters are significantly different from zero. The 

interpretation for these fixed parameters are; 

Fixed intercept: the average (log transformed) number of cases in the year 2000 for a country 

whose random intercept parameter is equal to zero. In other words, a country whose reported 

number of cases for the year 2000 is similar to the average of all countries had  

 exp 8.7867 6,547
 
reported malaria cases. 

Fixed slope: the slope coefficient implies that, for each additional year, the expected number of 

cases for an average country ( a country whose random effects are zero) is  0.190ex 19p 1.2 . 

This therefore implies that over the 13 year period, the expected number of malaria cases only 

increased by about  0.1909*1exp 3 12 cases.  

This, combined with the low varinace of random effects therefore explains the relatively flat 

slopes as seen in the individual profiles.  

Figure 6 presents the fitted profiles for nine randomly selected countries. The model clearly 

captured the trend in the number of cases regardless of the number and pattern of missing data of 

a given country. 
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Figure 6: Predicted profiles for 9 randomly chosen countries. The model fits a regression line 

that best fits the data within a country. 
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4.4 Missing data analysis: complete cases analysis and multiple imputation 

The final analysis for this thesis comprises of complete case analysis, whereby only countries 

with complete data are considered, and multiple imputation whereby we account for missing data 

by imputing alternative datasets and computing the parameter estimates of interest. 

4.4.1 Complete case analysis 

This is achieved by extracting the dataset from countries whose reported number of cases is 

available across all the 13 years under review. Out of 43 countries, only 11 countries had 

complete data for the 13 years period. These include; Algeria, Botswana, Burundi, Cape Verde, 

Democratic Republic of Congo, Guinea, Madagascar, Sao Tome, Senegal, Swaziland and 

Tanzania (as shown in the colour-coded map of Africa as well). 

The subject specific profiles for these 11 countries are shown in Figure 7. The trend is similar to 

that observed previously in that, there was variations in the outcome in the year 2000 although 

the overall evolution remained constant.  

 

Figure 7: Complete case analysis subject specific profiles.subject specific profiles. 

 

In order to make  comparisons with other results discussed in this report, we refit the model 

specified in Equation (18) now with complete cases only. However, for ease of comparison, 
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from multiple imputation procedure are presented in one table for cross referencing. Results for 

complete case analysis will be discussed together with those of multiple imputations. 

4.4.2 Multiple imputation 

Multiple imputation entails first generating several imputed datasets (5 in this analysis). 

Imputation is performed by sampling using Bayesian MonteCarlo Multiple Chains (MCMC) 

sampling, the posterior estimate of the missing data is obtianed.For each new complete imputed 

dataset, the model specified in Equation (18) is fitted and parameter estimates for the fixed 

effects and random effects covariance matrix obtained in the second step. The final step in the 

analysis entails pooling together the parameter estimates for fixed and random effects from the 

five imputed datasets in order to obtain a single estimates for inference. The resulting estimates 

from multiple imputation is presented in Table 7 and Table 8. 

Table 7: Fixed effects estimates for the three set of analyses conducted 

  Direct likelihood Complete case Multiple imputation 

Fixed effects Estimate (SE) Estimate (SE) Estimate (SE) 

Intercept 8.7687 (0.6321) 7.8962 (0.9865) 9.3204 (0.7103) 

Slope (year) 0.1909 (0.0721) 0.1368 (0.0960) 0.1378 (0.0790) 

 

Table 8: Random effects matrices for the three set of analyses conducted 

  Direct likelihood Complete case Multiple imputation 

Random effects Estimate Estimate Estimate 

b1j 13.340 10.135 20.217 

b2j 0.180 0.090  0.247 

Cov(b1j, b2j) -0.927 0.021              -1.671 

residual 1.542 2.071 3.175 

rho -0.598 0.022 -0.748 

 

Looking at the fixed effects estimates from the three models, there was variation in the parameter 

estimate for the intercept across the three models. The estimate of slope coefficient is similar for 

the complete cases and multiple imputation although the direct likelihood approach (using all 

observed data) resulted in a slightly higher parameter estimate.The standard error of the fixed 

estimates were smallest for direct likelihood and largest for  complete case analysis.  Thus, under 
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the assumption of MAR mechanism, direct likelihood model using data as observed, is the most 

efficient model. In estmating the values of missing data complete case analysis performed poorer 

than multiple imputaion.  

On the other hand, random effects estimates and the residual variance estimates were two 

variable across the models. There is need to conduct further research on the appropriatenes of the 

procedures used to conduct inference for random effects parameters resulting from multiple 

imputation process.   
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5 Discussion 

This study focused on analysing observational data on the reported number of confirmed malaria 

cases in countries in Africa. The data was obtained from the WHO database for the period 2000-

2012 for various countries. Thus, a longitudinal profile for the number of cases for each country 

with at least one year data on reported confirmed malaria cases was available. The focus of this 

study was to illustrate the use of appropriate methodology to aanalyse data resulting from 

longitudinal studies, especially in the presence of missing data. 

To this end, a linear mixed model for continous data was proposed. The model comprises of 

fixed effects that capture the trend of an average subject and random effects that capture the 

heterogeneity between subjects in their responses relative to the average expecation. With linear 

mixed-effeects models, the correlation between outcomes of the same subject can be captured. In 

this analysis, a linear mixed model with only two fixed effects (intercept and linear effect of 

time) was the preffered model. This model suggests that the evolution of a country’s number of 

reported cases is relatively constant over time. Moreover, the two random effects (random 

intercept and time) were highly correlated  0.596   . The association between random 

effects implies that, for countries whose reported number of cases were very high, their evolution 

of the number of cases over the years was slower.  

In developing the statistical model, choices had to be made for both the linear part of the model 

as well as the covariance structure. In linear mixed modelling, the variance matrix of the 

outcomes comprises of components from the residual variablity and the random effects 

variability. By chosing to impose an association on  the random effects covariance, the resulting 

covariance matrix of observations can imply a particular covariance structure.  

In this study, the final correlation matrix was autoregressive. More so, the trend of the 

association was that, measurements closer together in time were highly correlated while 

measurements further apart were less correlated. This implies that, there is little influence of time 

in the long run over the reported number of malaria cases.  We can further conclude that the only 

component that determined the number of reported confirmed malaria cases was the country in 

question and not the year under review.  Some countries were susceptible to higher malaria 

infestation while others were less susceptible. 
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One challenge of working with longitudinal data is the ‘curse of missingness’. Often, followup 

studies results in information gaps due to several factors some known and preventable, such as 

inefficiencies in data management and reporting, while others are random and unknown. In order 

to deal with missing data, some assumptions ought to be put in place in order to perform 

inference using the resulting data.  Where very strict assumptions of independence of the missing 

data from both the observed and unobserved cases (MCAR), the complete dataset can be 

analysed. The assumptions are however hard to verify and thus, less strict asssumptions of the 

missing data being independent of the observed data only (MAR) is more commonly applied.  

By imputing missing observations, complete datasets are obtained from which inference can be 

performed. The imputation and inference mechanism ought however to account for the 

uncertainty introduced in the imputation process. This is achieved by using Bayesian principles 

of posterior means, which are a mix of the prior information and data likelihood. There is 

however need to perform further research especially sensitivity analysis as a way of evaluating 

the impact of multiple imputation in an analysis. 

Finally, although the main goal of this analysis was to illustrate statistical methodology that 

come in handy in analysis of day to day data, we have shown that there is need to take into 

consideration the subject matter under investigation while performing statistical analysis. For 

instance, the choice of an appropriate distribution for the analysis led us to transforming the 

outcome with a logarithmic transform so as to obtain inference within the domain of the model. 

Moreovoer, by combining simple statistical skills such as graph generation and other exploratory 

techniques with the technical understanding of statistical modelling, we were able to formulate a 

starting model which formed the core of the analysis. 

As a conclusion, for this particular study, there was high variability between countries in the year 

2000 in their reported number of confirmed malaria cases. Over the years however, within a 

given country, the reported number of malaria cases were relatively constant, with only an 

increase of about 12 cases on average over the 13 year period. Multiple imputation can be used 

to generate estimates of the expected numebr of cases in years where a country fails to file its 

reports  in order to have a more complete database.   
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For future research, I would propose to model the data using generalized linear mixed effects 

model (using the counts as a Poisson outcome rather than taking the logarithm) and comparing 

the resulting inference with the one presented here.  
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