

UNIVERSITY OF NAIROBI

School of Computing & Informatics

Comparing the Performance of Naïve Bayes and Support Vector

Machines in Text Classification

Submitted by

Nicholas Muchai Gateru

Supervisor: Mr. Evans Anderson Kirimi Miriti

A project report submitted in partial fulfillment of the requirement for the award of

the degree of Master of Science in Computer Science

September 2014

i

DECLARATION

Student

I declare that this report is my original work and has not been presented to any other

university for an academic award.

Sign: ……………………………………. Date: ……………………………………

Nicholas Muchai Gateru

P58/75750/2012

Supervisor

This project report has been submitted as a partial fulfillment of the requirements for the

degree of Master of Science in Computer Science of the University of Nairobi with my

approval as a university supervisor.

Sign: ……………………………………. Date: ……………………………………

Mr. Evans Anderson Kirimi Miriti

SCHOOL OF COMPUTING & INFORMATICS

ii

ACKNOWLEDGEMENTS

I’m thankful to my family members and loved ones for their support and patience along the

way.

I thank Mr. Evans K. Miriti of University of Nairobi for supervision and guidance through

this process, his dedication and commitment was highlighted appreciated.

I thank and appreciate the contributors to Sckit-learn for assembling the tools used in

analyzing the data.

I also give thanks to the school of computing and informatics lecturers who gave their time to

educate and advise me on various aspects of my study.

Finally I thank the School of Computing and Informatics community for giving me a favorable

environment to successfully carry out this study.

iii

ABSTRACT

Classification is a supervised learning task whose goal is to infer a prediction model using a

training dataset containing instances whose category membership is known, and then using

the model to assign class labels to testing instances whose class labels are unknown. E.g. in

spam filtering, already labelled mail as either spam or not spam is used to train a classifier,

and the classifier is then used in the future to automatically place mail whose category is

unknown, into either spam or not spam categories.

Training of a classifier progresses from gathering a training set that is representative of the

real world, thereafter, the input data is represented into a feature vector that contains the

features that describe the object. With input features in place, a training algorithm e.g. SVM

or Naïve Bayes is selected and run on the training set to come up with a predicting function.

The function is run on the testing set and its prediction accuracy and performance is

measured.

Owing to the proliferation of easily available textual data of late, the need and interest to

classify that data has increased. In the real-world, the ability to automatically classify

documents into a fixed set of categories is highly desirable.

Machine learning offers powerful tools for automatically classifying documents. A

techniques performance depends not only on the algorithm in use, but also on the

characteristics of the data in use. As such, it’s prudent to apply various techniques on

classifying the same dataset and try to analyze the performance of each technique relative to

the particular data.

In this project, we compared the performance of Support Vector Machines and Naïve Bayes

algorithms in the task of text classification by using the ’20 newsgroups’ dataset. The ’20

newsgroups’ dataset comprises around 20,000 newsgroup posts on 20 topics split in two

subsets: one for training and the other one for testing.

The data pre-processing, training of the classifiers, testing of the classifiers and performance

evaluation was accomplished by implementing a python script.

Performance evaluation was done by comparing: training time, testing time, precision, recall,

and F-measure scores for each classifier when each classifier was run against 4,887

documents and 10,794 documents.

We found that SVM achieved an F-score of 0.969 and Naïve Bayes an F-score of 0.964 when

tested using 4,887 documents. When tested using 10,794 documents, SVM achieved an F-

iv

score of 0.900, and Naïve Bayes an F-score of 0.869. We also found that, for 4,887

documents, SVM took 0.676s to train, while Naïve Bayes took 0.026s to train for the same

number of documents. For 10,794 documents, SVM took 3.733s to train while Naïve Bayes

took 0.106s to train for the same number of documents.

The findings show that the size of the dataset affected the performance of both classifiers, i.e.

with more documents used, both classifiers were less able to place documents in their correct

classes. The findings also confirm the existing findings of the suitability of SVM as

compared to other classifiers to classify text.

Keywords: Text classification, SVM, Naïve Bayes, Recall, Precision, F-measure

v

TABLE OF CONTENTS

DECLARATION I

ACKNOWLEDGEMENTS II

ABSTRACT III

TABLE OF CONTENTS V

LIST OF FIGURES VII

LIST OF TABLES VIII

ACRONYMS AND KEY TERMINOLOGIES IX

1. INTRODUCTION 1

1.1. BACKGROUND 1
1.2. PROBLEM STATEMENT 3
1.3. OBJECTIVES 3
1.4. SIGNIFICANCE 3
1.5. SCOPE 4

2. LITERATURE REVIEW 5

2.1. INTRODUCTION 5
2.2. CLASSIFICATION OVERVIEW 5
2.3. CLASSIFIERS USED IN TEXT CLASSIFICATION 5
2.3.1. DECISION TREE CLASSIFIERS 5
2.3.2. RULE-BASED CLASSIFIERS 6
2.3.3. PROBABILISTIC CLASSIFIERS 7
2.3.4. LINEAR CLASSIFIERS 9
2.3.5. PROXIMITY-BASED CLASSIFIERS 13
2.4. PREVIOUS COMPARATIVE STUDIES 14
2.5. CHAPTER SUMMARY 15

3. METHODOLOGY 16

3.1. INTRODUCTION 16
3.2. DATASET 16
3.3. REQUIREMENTS ANALYSIS 17
3.4. SYSTEMS DESIGN 18
3.4.1. CONCEPTUAL DESIGN 18
3.4.2. DETAILED DESIGN DESCRIPTION 19
3.5. DEVELOPMENT TOOLS 22
3.6. SYSTEM IMPLEMENTATION 21
3.7. CHAPTER SUMMARY 23

4. TESTING AND RESULTS 24

4.1. INTRODUCTION 24
4.2. DATASET 24
4.3. SETUP 24
4.4. DATA PREPARATION 25
4.5. RESULTS 25
4.6. COMPARISON OF THE CLASSIFIERS 26

5. DISCUSSION 28

5.1. RECAP OF THE PROJECT 28
5.2. DISCUSSION 28
5.3. ACHIEVEMENTS 28
5.4. LIMITATIONS 29
5.5. RECOMMENDATIONS FOR FURTHER STUDY 29

vi

5.6. CONCLUSION 30

REFERENCES 31

APPENDICES 34

SOURCE CODE 34

vii

LIST OF FIGURES

Figure 1: SVM representation .. 10
Figure 2: Sample newsgroup message classified under comp.os.ms-windows.misc 17

Figure 3: Text classification using supervised learning ... 18

file:///E:/Data/MSc-CS/Sem%20V/Project/Milestone%203-2%20After%20comments/final-gateru%20muchai.docx%23_Toc405121216
file:///E:/Data/MSc-CS/Sem%20V/Project/Milestone%203-2%20After%20comments/final-gateru%20muchai.docx%23_Toc405121218

viii

LIST OF TABLES

Table 1: List of the ‘20 newsgroups’ partitioned according to subject matter 16
Table 2: Time in seconds taken to extract features from the training dataset 25

Table 3: Time in seconds taken to extract features from the testing dataset 25
Table 4: Performance for each classifier version when 4,887 documents are loaded 26
Table 5: Performance for each classifier version when 10,794 documents are loaded 26

ix

ACRONYMS AND KEY TERMINOLOGIES

Supervised learning: the machine learning task of inferring a function from labeled training

data

Classifier: mathematical function, implemented by a classification algorithm that

maps input data to a category

SVM: Support Vector Machine

NB: Naïve Bayes

MultinomialNB: Multinomial Naïve Bayes

BernoulliNB: Bernoulli Naïve Bayes

K-NN: K-Nearest Neighbors

Python: a general-purpose, high-level programming language

Sckit-Learn: an open source machine learning library for the Python programming

language

Liblinear: an open source library for large-scale linear classification

NumPy: the fundamental package for scientific computing with Python

SciPy: an open source library of scientific tools

Matplotlib: a python 2D plotting library which produces publication quality figures

Tf–idf: term frequency-inverse document frequency

Recall: the ratio of correct assignments by the system divided by the total

number of correct assignments. (Intuitively, recall is the ability of the

classifier to find all the positive samples)

Precision: the ratio of correct assignments by the system divided by the total

number of the system's assignments. (Intuitively, precision is the

ability of the classifier not to label as positive a sample that is

negative)

F-measure: combines recall (r) and precision (p) with an equal weight

1

1. INTRODUCTION

1.1. Background

Classification is a supervised learning task whose goal is to infer a prediction model using a

training dataset containing instances whose category membership is known, and then using

the model to assign class labels to testing instances whose class labels are unknown. E.g. in

spam filtering, already labelled mail as either spam or not spam is used to train a classifier,

and the classifier is then used in the future to automatically place mail whose category is

unknown, into either spam or not spam categories.

Training of a classifier progresses from gathering a training set that is representative of the

real world, thereafter, the input data is represented into a feature vector that contains the

features that describe the object. With input features in place, a training algorithm e.g. SVM

or Naïve Bayes is selected and run on the training set to come up with a predicting function.

The function is run on the testing set and its prediction accuracy and performance is

measured.

Owing to the proliferation of easily available textual data of late, the need and interest to

classify that data has increased. In the real-world, the ability to automatically classify

documents into a fixed set of categories is highly desirable.

Some common application areas of automatic text classification include:

i. News filtering and Organization

Most of the news services today are electronic in nature in which a large volume of

news articles are created every single day by the organizations. In such cases, it is

difficult to organize the news articles manually. Therefore, automated methods can be

very useful for news categorization in a variety of web portals.

ii. Document Organization and Retrieval

A variety of supervised methods may be used for document organization in many

domains. These include large digital libraries of documents, web collections,

scientific literature, or even social feeds. Hierarchically organized document

collections can be particularly useful for browsing and retrieval.

iii. Opinion Mining

2

This deals with the computational treatment of opinion, sentiment, and subjectivity in

text. Customer reviews or opinions are often short text documents which can be

mined to determine useful information from the review.

iv. Email Classification and Spam Filtering

It is often desirable to classify email in order to determine either the subject or to

determine junk email in an automated way.

Machine learning offers powerful tools for automatically classifying documents. A

techniques performance depends not only on the algorithm in use, but also on the

characteristics of the data in use. As such, it’s prudent to apply various techniques on

classifying the same dataset and try to analyze the performance of each technique relative to

the particular data.

Key methods commonly used for text classification

i. Decision Trees

ii. Pattern (Rule)-based Classifiers

iii. SVM Classifiers

iv. Neural Network Classifiers

v. Bayesian (Generative) Classifiers

vi. Nearest Neighbor Classifiers

vii. Genetic algorithm-based classifiers

Previous studies related to this study include: work done by Thorsten Joachims (1997),

comparing SVM, Naive Bayes for multivariate Bernoulli models, C4.5, Rocchio algorithm,

and K-NN. From his results, SVMs performed substantially better than all other methods.

Comparing training time, SVMs roughly compared to C4.5, but were more expensive than

naive Bayes, Rocchio, and k-NN. Specifically, as far as SVM and Naive Bayes for

multivariate Bernoulli models were concerned, Thorsten Joachims (1997) obtained a F1-

score of (.860-864) for SVM and a F1-score of 0.720 for Naive Bayes for multivariate

Bernoulli models, using the ‘Reuters’ and the ‘Ohsumed collection’ datasets.

Andrew McCallum and Kamal Nigam (1998), compared Naive Bayes for multinomial

models and Naive Bayes for multivariate Bernoulli models, using five datasets, and showed

that multinomial model to be almost uniformly better than the multivariate Bernoulli model.

Results on five real world corpora they found that the multinomial model reduced errors by

an average of 27%, and sometimes by more than 50%.

3

1.2. Problem Statement

The goal of text categorization is the classification of documents into a fixed number of

predefined categories. This allows users to find desired information faster by searching only

the relevant categories and not the entire information space. The importance of text

classification is even more apparent when the information space is huge such as the World

Wide Web.

Machine learning offers powerful tools for automatically classifying documents. A

techniques performance depends not only on the algorithm in use, but also on the

characteristics of the data in use. Hence given a particular dataset and a particular task, it’s

important to know the right tool for the task. As such, evaluating how different algorithms

fair in classifying text is of much value.

1.3. Objectives

The main objective of this research was to evaluate and compare the performance of Support

Vector Machines versus Naïve Bayes in the task of text classification.

The specific objectives were to:

i. To experiment with the feature sets and compare the performance of SVM and Naïve

Bayes techniques, in categorizing the ‘20 newsgroup’ dataset.

ii. Examine the classifier learning abilities for an increasing number of documents in the

dataset.

iii. To evaluate each classifier from the perspectives of precision, recall, and F-measure.

1.4. Significance

There are billions of text documents available in electronic form. More and more are

becoming available every day. The Web itself contains over a billion documents. Millions of

people send e-mail every day. Academic publications and journals are becoming available in

electronic form. These collections and many others represent a massive amount of

information that is easily accessible. However, seeking value in this huge collection requires

organization. Many web sites offer a hierarchically-organized view of the Web. E-mail

clients offer a system for filtering e-mail. Numerous academic communities have a Web site

that allows searching on papers and shows an organization of papers. However, organizing

documents by hand or creating rules for filtering is painstaking and labor-intensive. This can

be greatly aided by automated classifier systems.

4

Of late, many data management tools such as: Database management systems, Data mining

systems come equipped with a number of classification and clustering algorithms. Given such

a scenario, it’s important for the end user, end user here refers to the potential data analyst,

software developer, and Business Intelligence developer and so on, to have an idea on the

suitability of each algorithm for a particular task. As such it’s important to analyze the

performance of different algorithms given a particular dataset or scenario.

1.5. Scope

This project aimed at classifying the datasets by using multiclass classification, which makes

the assumption that each sample is assigned to one and only one label rather than multilabel

classification, which assigns each sample a set of target labels. This can be thought of as

predicting properties of a data-point that are not mutually exclusive, such as topics that are

relevant for a document. A text might be about any of religion, politics, finance or education

at the same time or none of these.

In addition, this project didn’t identify region(s) of a document corresponding to topic(s),

which is place different regions of the same document into the respective categories. Neither

did we capture correlation between topics.

5

2. LITERATURE REVIEW

2.1. Introduction

In this chapter we present a review of related literature. We proceed with an overview of the

general classification space, follow that up with a detailed review of algorithms that can be

used in text classification. Then present results from previous classifier comparison work, and

close with a summary of the chapter.

2.2. Classification overview

Classification is a supervised learning task whose goal is to infer a prediction model using a

training dataset containing instances whose category membership is known, and then using

the model to assign class labels to testing instances whose class labels are unknown. E.g. in

spam filtering, already labelled mail as either spam or not spam is used to train a classifier,

and the classifier is then used in the future to automatically place mail whose category is

unknown, into either spam or not spam categories.

Training of a classifier progresses from gathering a training set that is representative of the

real world, from thence, the input data is represented into a feature vector that contains the

features that describe the object. With input features in place, a training algorithm e.g. SVM

or Naïve Bayes is selected and run on the training set to come up with a predicting function.

The function is run on the testing set and its prediction accuracy and performance is

measured.

Text classification presents different challenges, this is because some of the words are much

more likely to be correlated to the class distribution than others. As such, a wide array of

methods have been proposed with a goal of determining the most important features for the

purpose of classification. In the following sub sections, we review the algorithms that can be

used in the task of text classification.

2.3. Classifiers used in text classification

2.3.1. Decision Tree Classifiers

A decision tree is essentially a hierarchical decomposition of the (training) data space, in

which a predicate or a condition on the attribute value is used in order to divide the data space

hierarchically. In the context of text data, such predicates are typically conditions on the

presence or absence of one or more words in the document. The division of the data space is

performed recursively in the decision tree, until the leaf nodes contain a certain minimum

6

number of records, or some conditions on class purity. The majority class label (or cost-

weighted majority label) in the leaf node is used for the purposes of classification. For a

given test instance, we apply the sequence of predicates at the nodes, in order to traverse a

path of the tree in top-down fashion and determine the relevant leaf node. In order to further

reduce the overfitting, some of the nodes may be pruned by holding out a part of the data,

which are not used to construct the tree. The portion of the data which is held out is used in

order to determine whether or not the constructed leaf node should be pruned or not. In

particular, if the class distribution in the training data (for decision tree construction) is very

different from the class distribution in the training data which is used for pruning, then it is

assumed that the node overfits the training data. Such a node can be pruned. In the particular

case of text data, the predicates for the decision tree nodes are typically defined in terms of

the terms in the underlying text collection. For example, a node may be partitioned into its

children nodes depending upon the presence or absence of a particular term in the document.

We note that different nodes at the same level of the tree may use different terms for the

partitioning process. Many other kinds of predicates are possible. It may not be necessary to

use individual terms for partitioning, but one may measure the similarity of documents to

correlated sets of terms. These correlated sets of terms may be used to further partition the

document collection, based on the similarity of the document to them.

2.3.2. Rule-based Classifiers

Decision trees are also generally related to rule-based classifiers. In rule-based classifiers, the

data space is modeled with a set of rules, in which the left hand side is a condition on the

underlying feature set, and the right hand side is the class label. The rule set is essentially the

model which is generated from the training data. For a given test instance, we determine the

set of rules for which the test instance satisfies the condition on the left hand side of the rule.

We determine the predicted class label as a function of the class labels of the rules which are

satisfied by the test instance. In its most general form, the left hand side of the rule is a

Boolean condition, which is expressed in Disjunctive Normal Form (DNF). However, in most

cases, the condition on the left hand side is much simpler and represents a set of terms, all of

which must be present in the document for the condition to be satisfied. The absence of terms

is rarely used, because such rules are not likely to be very informative for sparse text data, in

which most words in the lexicon will typically not be present in it by default (sparseness

property). Also, while the set intersection of conditions on term presence is used often, the

union of such conditions is rarely used in a single rule. This is because such rules can be split

7

into two separate rules, each of which is more informative on its own. For example, the rule

Honda ∪ Toyota ⇒ Cars can be replaced by two separate rules Honda ⇒ Cars and Toyota ⇒

Cars without any loss of information. In fact, since the confidence of each of the two rules

can now be measured separately, this can be more useful. On the other hand, the rule Honda

∩ Toyota ⇒ Cars is certainly much more informative than the individual rules. Thus, in

practice, for sparse data sets such as text, rules are much more likely to be expressed as a

simple conjunction of conditions on term presence. Decision trees and decision rules both

tend to encode rules on the feature space, except that the decision tree tends to achieve this

goal with a hierarchical approach. The main difference is that the decision tree framework is

a strict hierarchical partitioning of the data space, whereas rule-based classifiers allow for

overlaps in the decision space. The general principle is to create a rule set, such that all points

in the decision space are covered by at least one rule. In most cases, this is achieved by

generating a set of targeted rules which are related to the different classes, and one default

catch-all rule, which can cover all the remaining instances.

2.3.3. Probabilistic Classifiers

Probabilistic classifiers are designed to use an implicit mixture model for generation of the

underlying documents. This mixture model typically assumes that each class is a component

of the mixture. Each mixture component is essentially a generative model, which provides the

probability of sampling a particular term for that component or class. This is why this kind of

classifiers are often also called generative classifiers. The Naive Bayes classifier, which is

one of the subject classifiers to be covered in this survey, is perhaps the simplest and also the

most commonly used generative classifier. It models the distribution of the documents in

each class using a probabilistic model with independence assumptions about the distributions

of different terms. Two classes of models are commonly used for naive Bayes classification.

Both models essentially compute the posterior probability of a class, based on the distribution

of the words in the document. These models ignore the actual position of the words in the

document, and work with the “bag of words” assumption. The major difference between

these two models is the assumption in terms of taking (or not taking) word frequencies into

account, and the corresponding approach for sampling the probability space:

 Multivariate Bernoulli Model: In this model, what is used the presence or absence

of words in a text document as features to represent a document. Thus, the

frequencies of the words are not used for the modeling a document, and the word

features in the text are assumed to be binary, with the two values indicating

8

presence or absence of a word in text. Since the features to be modeled are binary,

the model for documents in each class is a multivariate Bernoulli model.

 Multinomial Model: In this model, what is captured is the frequencies of terms in

a document by representing a document with a bag of words. The documents in

each class can then be modeled as samples drawn from a multinomial word

distribution. As a result, the conditional probability of a document given a class is

simply a product of the probability of each observed word in the corresponding

class.

No matter how we model the documents in each class (be it a multivariate Bernoulli model or

a multinomial model), the component class models (i.e., generative models for documents in

each class) can be used in conjunction with the Bayes rule to compute the posterior

probability of the class for a given document, and the class with the highest posterior

probability can then be assigned to the document.

The Naive Bayes classifier has also been extended to modeling temporally aware training

data, in which the importance of a document may decay with time. As in the case of other

statistical classifiers, the naïve Bayes classifier can easily incorporate domain-specific

knowledge into the classification process. The particular domain that the work addresses is

that of filtering junk email. Thus, for such a problem, we often have a lot of additional

domain knowledge which helps us determine whether a particular email message is junk or

not. For example, some common characteristics of the email which would make an email to

be more or less likely to be junk are as follows:

 The domain of the sender such as .edu or .com can make an email to be more or

less likely to be junk.

 Phrases such as “Free Money” or over emphasized punctuation such as “!!!” can

make an email more likely to be junk.

 Whether the recipient of the message was a particular user, or a mailing list.

The Bayes method provides a natural way to incorporate such additional information into the

classification process, by creating new features for each of these characteristics. The standard

Bayes technique is then used in conjunction with this augmented representation for

classification. The Bayes technique has also been used in conjunction with the incorporation

of other kinds of domain knowledge, such as the incorporation of hyperlink information into

the classification process.

9

The Bayes method is also suited to hierarchical classification, when the training data is

arranged in taxonomy of topics. For example, the Open Directory Project (ODP), Yahoo!

Taxonomy, and a variety of news sites have vast collections of documents which are arranged

into hierarchical groups. The hierarchical structure of the topics can be exploited to perform

more effective classification, because it has been observed that context-sensitive feature

selection can provide more useful classification results. In hierarchical classification, a Bayes

classifier is built at each node, which then provides us with the next branch to follow for

classification purposes.

2.3.4. Linear Classifiers

Linear models for classification separate input vectors into classes using linear (hyperplane)

decision boundaries.

Linear Classifiers are those for which the output of the linear predictor is defined to be p = A

· X + b, where X = (x1 . . . xn) is the normalized document word frequency vector, A = (a1 . .

. an) is a vector of linear coefficients with the same dimensionality as the feature space, and b

is a scalar.

One characteristic of linear classifiers is that they are closely related to many feature

transformation, which attempt to use these directions in order to transform the feature space,

and then use other classifiers on this transformed feature space.

Simple neural networks are a form of linear classifiers, since the function computed by a set

of neurons is essentially linear. The simplest form of neural network, known as the

perceptron (or single layer network) are essentially designed for linear separation, and work

well for text. However, by using multiple layers of neurons, it is also possible to generalize

the approach for non-linear separation. Two linear classifiers: SVMs and Neural Networks

are discussed below.

Support Vector Machine Classifiers

SVM Classifiers attempt to partition the data space with the use of linear or non-linear

characterizations between the different classes. The key in such classifiers is to determine the

optimal boundaries between the different classes and use them for the purposes of

classification. That is, given labeled training data, the algorithm outputs an optimal

hyperplane which categorizes new examples as depicted below.

10

 + +

 + + +

 -

 - -

 - - -

 - h

Some of the properties of text that make SVMs work for text categorization are:

 When learning text classifiers, one has to deal with very many (more than 10000)

features. Since SVMs use overfitting protection, which does not necessarily depend

on the number of features, they have the potential to handle these large feature spaces.

 Few irrelevant features: Feature selection tries to determine these irrelevant features.

Unfortunately, in text categorization there are only very few irrelevant features. A

classifier using only those "worst" features has a performance much better than

random. Since it seems unlikely that all those features are completely redundant, this

leads to the conjecture that a good classifier should combine many features (learn a

"dense" concept) and that aggressive feature selection may result in a loss of

information.

The first set of SVM classifiers, as adapted to the text domain were proposed in Thorsten

Joachims (1998).

In particular, it has been shown why the SVM classifier is expected to work well under a

wide variety of circumstances. This has also been demonstrated experimentally in a few

different scenarios. For example, the work applied the method to email data for classifying it

as spam or non-spam data. It was shown that the SVM method provides much more robust

performance as compared to many other techniques such as boosting decision trees, the rule

based RIPPER method, and the Rocchio method.

We note that the problem of finding the best separator is essentially an optimization problem,

which can typically be reduced to a Quadratic Programming problem. For example, many of

these methods use Newton’s method for iterative minimization of a convex function. This can

sometimes be slow, especially for high dimensional domains such as text data.

Figure 1: SVM representation

11

S. Dumais, et al (1998) showed that by breaking a large Quadratic Programming problem

(QP problem) to a set of smaller problems, an efficient solution can be derived for the task.

S. Dumais and H. Chen (2000) used SVM successfully in the context of a hierarchical

organization of the classes, as often occurs in web data. In this approach, a different classifier

is built at different positions of the hierarchy.

V. Sindhwani, S. and S. Keerthi. (2006) also showed SVM to be useful in large scale

scenarios in which a large amount of unlabelled data and a small amount of labelled data is

available, which is essentially a semi-supervised approach because of its use of unlabelled

data in the classification process.

Why SVMs work well for text categorization

The following are some of the reasons why SVMs work well for text categorization.

 High dimensional input space: When learning text classifiers, one has to deal with

very many (more than 10000) features. Since SVMs use overfitting protection, which

does not necessarily depend on the number of features, they have the potential to

handle these large feature spaces.

 Few irrelevant features: One way to avoid these high dimensional input spaces is to

assume that most of the features are irrelevant. Feature selection tries to determine

these irrelevant features. Unfortunately, in text categorization there are only very few

irrelevant features.

 Document vectors are sparse: For each document, the corresponding document

vector contains only few entries which are not zero.

 Most text categorization problems are linearly separable: All Assumed categories

are linearly. The idea of SVMs is to find such linear (or polynomial, RBF, etc.)

separators.

Neural Network Classifiers

The basic unit in a neural network is a neuron or unit. Each unit receives a set of inputs,

which are denoted by the vector Xi, which in this case, correspond to the term frequencies in

the ith document. Each neuron is also associated with a set of weights A, which are used in

order to compute a function f(·) of its inputs. A typical function which is often used in the

neural network is the linear function as follows: pi = A · Xi.

12

The goal of the neural network approach is to learn the set of weights A with the use of the

training data. The idea is that we start off with random weights and gradually update them

when a mistake is made by applying the current function on the training example. The

magnitude of the update is regulated by a learning rate μ. This forms the core idea of the

perceptron algorithm.

Some Observations about Linear Classifiers

While the different linear classifiers have been developed independently from one another in

the research literature, they are surprisingly similar at a basic conceptual level. Interestingly,

these different lines of work have also resulted in a number of similar conclusions in terms of

the effectiveness of the different classifiers.

In Charu C. Aggarwal and ChengXiang Zhai (2012) it’s noted that the main difference

between the different classifiers is in terms of the details of the objective function which is

optimized, and the iterative approach used in order to determine the optimum direction of

separation. For example, the SVM method uses a Quadratic Programming (QP) formulation,

whereas the perceptron method does not try to formulate a closed-form objective function,

but works with a softer iterative hill climbing approach. This technique is essentially

inherited from the iterative learning approach used by neural network algorithms. However,

its goal remains quite similar to other linear methods. Thus, the differences between these

methods are really at a detailed level, rather than a conceptual level, in spite of their very

different research origins.

Y. Yang, L. Liu (1999) observe that all these methods can be implemented with non-linear

versions of their classifiers. For example, it is possible to create non-linear decision surfaces

with the SVM classifier, just as it is possible to create non-linear separation boundaries by

using layered neurons in a neural network.

However, the general consensus has been that the linear versions of these methods work very

well, and the additional complexity of non-linear classification does not tend to pay for itself,

except for some special data sets. The reason for this is perhaps because text is a high

dimensional domain with highly correlated features and small non-negative values on sparse

features. On the other hand, the high dimensional nature of correlated text dimensions is

especially suited to classifiers which can exploit the redundancies and relationships between

the different features in separating out the different classes. Common text applications have

generally resulted in class structures which are linearly separable over this high dimensional

13

domain of data. This is one of the reasons that linear classifiers have shown an unprecedented

success in text classification.

2.3.5. Proximity-based Classifiers

Introduction

In G. Salton (1983) proximity-based classifiers essentially use distance-based measures in

order to perform the classification. The main thesis is that documents which belong to the

same class are likely to be close to one another based on similarity measures such as the dot

product or the cosine metric.

In order to perform the classification for a given test instance, two possible methods can be

used:

 We determine the k-nearest neighbors in the training data to the test instance. The

majority (or most abundant) class from these k neighbors are reported as the class

label. Some examples of such methods are discussed in, E.-H. Han, G. Karypis and V.

Kumar (2001). The choice of k typically ranges between 20 and 40 in most of the

afore-mentioned work, depending upon the size of the underlying corpus.

 We perform training data aggregation during pre-processing, in which clusters or

groups of documents belonging to the same class are created. A representative meta-

document is created from each group. The same k-nearest neighbor approach is

applied as discussed above, except that it is applied to this new set of meta-documents

(or generalized instances, W. Lam and C. Y. Ho. (1998) rather than to the original

documents in the collection. A pre-processing phase of summarization is useful in

improving the efficiency of the classifier, because it significantly reduces the number

of distance computations. In some cases, it may also boost the accuracy of the

technique, especially when the data set contains a large number of outliers. Some

examples of such methods are discussed in.

 A method for performing nearest neighbor classification in text data is the WHIRL.

The WHIRL method is essentially a method for performing soft similarity joins on the basis

of text attributes. By soft similarity joins, we refer to the fact that the two records may not be

exactly the same on the joined attribute, but a notion of similarity used for this purpose. It has

been observed that any method for performing a similarity-join can be adapted as a nearest

neighbor classifier, by using the relevant text documents as the joined attributes.

14

One observation in Y. Yang (1995) about nearest neighbor classifiers was that feature

selection and document representation play an important part in the effectiveness of the

classification process. This is because most terms in large corpora may not be related to the

category of interest.

Therefore, Y. Yang (1995) proposed a number of techniques in order to learn the associations

between the words and the categories. These are then used to create a feature representation

of the document, so that the nearest neighbor classifier is more sensitive to the classes in the

document collection. A similar observation has been made in E.-H. Han, G. Karypis and V.

Kumar (2001), in which it has been shown that the addition of weights to the terms (based on

their class-sensitivity) significantly improves the underlying classifier performance. The

nearest neighbor classifier has also been extended to the temporally-aware scenario in T.

Salles, et al, (2010), in which the timeliness of a training document plays a role in the model

construction process.

In order to incorporate such factors, a temporal weighting function has been introduced in T.

Salles, et al (2010), which allows the importance of a document to gracefully decay with

time.

For the case of classifiers which use grouping techniques, the most basic among such

methods was proposed in J. Rocchio (1971). In this method, a single representative meta-

document is constructed from each of the representative classes.

We note that the nearest neighbor classifier can be used in order to generate a ranked list of

categories for each document. In cases where a document is related to multiple categories,

these can be reported for the document, as long as a thresholding method is available. The

work in Y. Yang (2001) studies a number of thresholding strategies for the k-nearest

neighbour classifier. It has also been suggested in Y. Yang (2001) that these thresholding

strategies can be used to understand the thresholding strategies of other classifiers which use

ranking classifiers.

2.4. Previous comparative studies

In the realm of comparing algorithms, which was the main objective of this paper, previous

studies include: work done in Thorsten Joachims (1997) comparing SVM and Naive Bayes

for multivariate Bernoulli models, C4.5, Rocchio algorithm, and K-NN. From his results,

SVMs performed substantially better than all other methods. Comparing training time, SVMs

roughly compared to C4.5, but were more expensive than naive Bayes, Rocchio, and k-NN.

Specifically, as far as SVM and Naive Bayes for multivariate Bernoulli models were

15

concerned, Thorsten Joachims (1997) obtained a F1-score of (.860-864) for SVM and a F1-

score of 0.720 for Naive Bayes for multivariate Bernoulli models, using the ‘Reuters’ and the

‘Ohsumed collection’ datasets. Of note is, for Naïve Bayes, this project experiments with

both Naive Bayes for multinomial models and Naive Bayes for multivariate Bernoulli

models, and shows that Naive Bayes for multinomial models gives better scores than Naive

Bayes for multivariate Bernoulli models.

In Andrew McCallum and Kamal Nigam (1998), comparison was done between Naive Bayes

for multinomial models and Naive Bayes for multivariate Bernoulli models, using five

datasets, and showed that multinomial model to be almost uniformly better than the

multivariate Bernoulli model. From results on five real world corpora they found that the

multinomial model reduced errors by an average of 27%, and sometimes by more than 50%.

In Y. Yang and L. Liu (1999), using the ‘Reuters-21578’ corpus, they showed from the

resulting F1-scores, that SVM (Support Vector Machines), KNN (K-Nearest Neighbor) and

LLSF (Linear Least Squares Fit) belong to the same class, and significantly outperform NB

(Naïve Bayes) and NNet (Neural Net). That is, for SVM and Naïve Bayes, the F1-scores were

0.8599 and 0.7956 respectively.

2.5. Chapter summary

In summary, the work presented in this paper confirms on previous research to compare the

performance of Naïve Bayes and SVM in the task of text classification. While earlier work

focused on the performance of a particular algorithm in general, in this study we explore

further the performance of each algorithm under different parameters for SVM and different

versions for Naïve Bayes.

16

3. METHODOLOGY

3.1. Introduction

The general objective of the study was to compare the performance of SVM and Naïve Bayes

in the task of text classification. This chapter describes the methodology that was used for the

study. The chapter describes the data used, requirements analysis, system design, and finally

the system implementation.

3.2. Dataset

This project used text documents from the ‘20 newsgroups’ data set for performing the

classification and comparison of the performance of the classifiers.

The ‘20 Newsgroups’ data set is a collection of approximately 20,000 newsgroup documents,

partitioned (nearly) evenly across 20 different newsgroups. The 20 newsgroups collection has

become a popular data set for experiments in text applications of machine learning

techniques, such as text classification and text clustering.

The data is organized into 20 different newsgroups, each corresponding to a different topic.

Some of the newsgroups are very closely related to each other

(e.g. comp.sys.ibm.pc.hardware / comp.sys.mac.hardware), while others are highly unrelated

(e.g. misc.forsale / soc.religion.christian). Table 1 below shows some of the ‘20 newsgroups’

partitioned according to subject matter:

Table 1: List of the ‘20 newsgroups’ partitioned according to subject matter

Computers Science &

Technology

Sports & Motors Politics

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

sci.crypt

sci.electronics

sci.med

sci.space

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

talk.politics.misc

talk.politics.guns

talk.politics.mideast

The data set is split into two subsets: one for training and the other one for. This is important

since SVM and Naïve Bayes are supervised-learning algorithms. This means one needs to

manually classify some data into the correct classes then train a SVM or Naïve Bayes model

with it and eventually use it to predict unlabeled data.

17

Figure 2 below shows a screen shot of a sample newsgroup message under category

computers.

Figure 2: Sample newsgroup message classified under comp.os.ms-windows.misc

3.3. Requirements analysis

This section describes what the system should be in a position to do. The requirements for

this study were:

i. Reading the datasets, that is loading the datasets into memory in readiness for feature

extraction.

ii. Preparing the data, that is labelling the data (in this project some subset of the data is

labelled), extraction of features and creation of a document-term matrix.

iii. Creation and training of SVM and Naïve Bayes models, the two algorithms falling

under supervised learning algorithms, already labelled data was used to train the

models in readiness for them to be fed with unlabeled/testing data.

iv. Testing of the models, in order to decide whether a classification model is accurately

capturing a pattern, we must evaluate that model. Using the testing subset of the

dataset, the two models were tested and evaluated based on, training time, testing

time, recall, precision and F-score metrics.

18

3.4. Systems design

This section describes the overall architecture of text classification, and an overview of the

tools used in the project.

3.4.1. Conceptual design

This section describes the framework for supervised learning, specifically in classifying text.

Supervised learning is the method used in this project.

Figure 3: Text classification using supervised learning

Raw Data Collection

Pre-processing

Sampling

Training Dataset

Pre-processing

Training the

Learning Algorithm

Model Evaluation

Final classification

Test Dataset New Data

Missing Data

Feature

Extraction

Feature Selection

Normalization

Dimensionality

Reduction

Cross Validation

Prediction

Refinement

Split

19

3.4.2. Detailed design description

The design of text classifiers includes a set of steps that are universally recognized.

In this project the following steps were followed.

 Data collection: According to the ’20 newsgroups’ website, the ‘20 newsgroups’

dataset “was originally collected by Ken Lang”. In this project, we used the ‘20news-

bydate.tar.gz’, that is ‘20 Newsgroups’ sorted by date, duplicates and some headers

removed, a total of 18,846 documents. The dataset was downloaded into a local

folder, from where it was loaded into memory by the python program as will be

discussed in the implementation phase.

 Pre-processing: Because of the unstructured nature of text data, preprocessing is an

essential step in text classification. There are several methods used in pre-processing

text documents. Some of these are: tokenization, stop word removal and stemming.

These methods allow us to transform unstructured data into a structured format that

the classification algorithms can work on. In this project, this was achieved by calling

Sckit-Learns HashingVectorizer, which converts a collection of text documents to a

matrix of token occurrences.

 Feature weighting: Features usually assume different roles in different documents,

i.e. they can be more or less representative. To avoid these potential discrepancies it

suffices to divide the number of occurrences of each word in a document by the total

number of words in the document: these new features are called tf for Term

Frequencies. Another refinement on top of tf is to downscale weights for words that

occur in many documents in the corpus and are therefore less informative than those

that occur only in a smaller portion of the corpus. This was achieved by calling Sckit-

Learns TfidfVectorizer, which converts a collection of raw documents to a matrix of

TF-IDF features

 Training: In this phase, a set of training documents whose correct classifications are

known is needed. The output of the learning phase is a model of one or more

categories. In this project, we experimented with:

o Naive Bayes classifier

That is Naïve Bayes for multinomial models, and Naive Bayes classifier for

multivariate Bernoulli models.

In Fabian Pedregosa et al (2011) multinomial Naive Bayes classifier is

suitable for classification with discrete features (e.g., word counts for text

http://qwone.com/~jason/20Newsgroups/

20

classification). Like MultinomialNB, the BernoulliNB classifier is suitable for

discrete data. The difference is that while MultinomialNB works with

occurrence counts, BernoulliNB is designed for binary features.

o Linear Support Vector Machine (SVM)

Which is a SVM implemented in terms of liblinear. In Rong-En Fan et al

(2012:1) LIBLINEAR is an open source library for large-scale linear

classification. It supports logistic regression and linear support vector

machines. Experiments demonstrate that LIBLINEAR is very efficient on

large sparse data sets.

 Testing: Most evaluation techniques calculate a score for a model by comparing the

labels that it generates for the inputs in a test set with the correct labels for those

inputs. This test set typically has the same format as the training set. However, it is

very important that the test set be distinct from the training corpus: if we simply re-

used the training set as the test set, then a model that simply memorized its input,

without learning how to generalize to new examples, would receive misleadingly high

scores.

The simplest metric that can be used to evaluate a classifier, accuracy, measures the

percentage of inputs in the test set that the classifier correctly labeled.

 Performance evaluation of each classifier was measured by the following metrics.

o Training time

This is the time it takes to train each version of each classifier, when given

different parameters, for different sizes of the dataset.

This is the duration between the time the training of the classifiers starts, till

the time the time the training ends.

o Testing time

This is the time it takes to test each version of each classifier, when given

different parameters, for different sizes of the dataset.

This is the duration between the time the testing of the classifiers starts, till the

time the time the testing ends.

 Note: Both the training and testing durations did not include the time it took to

extract features and the time it took to select features.

 The time to extract and select features constitutes the bulk of the processing

time.

21

o Precision-score

According to Fabian Pedregosa et al (2011) precision is the ratio tp / (tp + fp)

where tp is the number of true positives and fp the number of false positives.

The precision is intuitively the ability of the classifier not to label as positive a

sample that is negative. The best value is 1 and the worst value is 0.

o Recall-score

According to Fabian Pedregosa et al (2011) recall is the ratio tp / (tp + fn)

where tp is the number of true positives and fn the number of false negatives.

The recall is intuitively the ability of the classifier to find all the positive

samples. The best value is 1 and the worst value is 0.

o F1-score

According to Fabian Pedregosa et al (2011) F1 score can be interpreted as a

weighted average of the precision and recall, where an F1 score reaches its

best value at 1 and worst score at 0. The relative contribution of precision and

recall to the F1 score are equal. The formula for the F1 score is: F1 = 2 *

(precision * recall) / (precision + recall).

3.5. System Implementation

This section describes the system implementation. It describes the approach taken in training

and testing the classifiers and highlights the general stages taken to achieve the objectives of

the project.

In this project, training and testing was carried out twice for the two classifiers. First by

loading and training the classifiers with 2,934 documents, and testing with 1,953 documents.

Then a second run, where 10,794 documents were loaded, with 6,480 documents used to train

the classifiers and 4,314 documents used to test the classifiers. For each of this run, the scores

of each classifier were noted down.

To achieve the above, the following steps were undertaken:

i. Installation of the required packages

This was the preliminary stage of gathering and installing the required tools. These

are described under development tools in section 3.6.

ii. Reading the data

This stage involved loading the filenames and data from the ‘20 newsgroups’ dataset,

using ‘fetch_20newsgroups’ sckit-learn modules, which returns a list of the raw texts

that will then be fed to text feature extractors. This list of files is stored in a local

22

drive specified or a default storage location. In this project, the following parameters

were specified in the fetch stage:

a. Subset: ‘train’ or ‘test’

To specify the dataset to load: ‘train’ for the training set, ‘test’ for the test set, with

shuffled ordering.

b. Categories

To specify the number of documents to load. In this case, 4,887 and 10,794

documents for each run were loaded.

c. Remove

To remove ‘headers’, ‘footers’ and ‘quotes’. This helps in preventing the classifiers

from overfitting on data stored in those regions.

iii. Data preparation

a. Tokenizing text

Using Sckit-Learns HashVectorizer, text pre-processing, tokenizing and filtering

of stop words were included in a high level component that is able to build a

dictionary of features and transform documents to feature vectors:

b. Getting word frequencies

To get the document frequency, tf and tf–idf were computed by calling

Sckit-Learns TfidfTransformer.

iv. Training the classifiers

With the features in place, the two classifiers were trained. This step made use of

sklearn.naive_bayes.BernoulliNB and sklearn.naive_bayes.MultinomialNB for

Naïve Bayes and sklearn.svm.LinearSVC for SVM.

v. Testing the resulting models

Testing and results are discussed in the next chapter.

3.6. Development tools

The tools used in the project were:

i. Python programming language: in this case version 2.7.

ii. Scikit-learn: an open source machine learning library for the Python programming

language. It features various classification, regression and clustering

algorithms including support vector machines, logistic regression, naive

Bayes, random forests, gradient boosting, k-means and DBSCAN, and is

23

designed to interoperate with the Python numerical and scientific libraries

NumPy and SciPy.

iii. NumPy: the fundamental package for scientific computing with Python.

iv. SciPy: an open source library of scientific tools.

v. Matplotlib: a python 2D plotting library which produces publication quality figures

in a variety of hardcopy formats and interactive environments across

platforms.

vi. Spyder: an interactive development environment for the Python language with

advanced editing, interactive testing, debugging and introspection features.

3.7. Chapter summary

This chapter discussed the data used, the tools used, the flow of arriving at the desired results,

and the evaluation metrics for the models.

24

4. TESTING AND RESULTS

4.1. Introduction

In order to decide whether a classification model is accurately capturing a pattern, we must

evaluate that model. The result of this evaluation is important for deciding how trustworthy

the model is, and for what purposes we can use it. Evaluation can also be an effective tool for

guiding us in making future improvements to the model.

Most evaluation techniques calculate a score for a model by comparing the labels that it

generates for the inputs in a test set with the correct labels for those inputs. This test set

typically has the same format as the training set. However, it is very important that the test set

be distinct from the training corpus: if we simply re-used the training set as the test set, then a

model that simply memorized its input, without learning how to generalize to new examples,

would receive misleadingly high scores.

The simplest metric that can be used to evaluate a classifier, accuracy, measures the

percentage of inputs in the test set that the classifier correctly labeled.

Performance evaluation of each classifier was undertaken by measuring the following

metrics:

 Training time

 Testing time

 Precision-score

 Recall-score

 F1-score

4.2. Dataset

Testing was carried out in two runs, in the first run, 1,953 documents (5 categories of the

dataset) were loaded, and in the second run, 4,314 documents (11 categories of the dataset)

were loaded, and used to test the classifiers. For each of this run, the scores of each classifier

were noted down.

4.3. Setup

 Naïve Bayes

For Naïve Bayes, the two versions of Naïve Bayes classifier: MultinomialNB and

BernoulliNB were fed with the testing data.

25

 SVM

For SVM, testing was done by setting different parameters of LinearSVC:

LinearSVC with penalty ‘l1’ and LinearSVC with penalty ‘l2’.

4.4. Data preparation

This section highlights the time taken in data preparation, which is the time taken to extract

features from the training and testing dataset. The results for the two runs are shown below.

 Extracting features from the training dataset

The table below shows the time in seconds it took to extract features from the training

dataset.

 Table 2: Time in seconds taken to extract features from the training dataset

5 Categories /

2,934 documents

 11 Categories /

6,480 documents

Time in Seconds MBs per second Time in Seconds MBs per second

2.588000s 2.350MB/s 5.370000s 2.414MB/s

 Extracting features from the testing dataset

The table below shows the time in seconds it took to extract features from the testing

dataset.

 Table 3: Time in seconds taken to extract features from the testing dataset

5 Categories /

1,953 documents

 11 Categories /

4,314 documents

Time in Seconds MBs per second Time in Seconds MBs per second

1.649000s 2.631MB/s 3.077000s 2.679MB/s

4.5. Results

 4,887 documents loaded

The table below shows performance of each classifier, in regards to training time,

testing time, F1-Score, precision and recall scores when run against 4,887

documents, i.e. 2,934 documents used for training and 1,953 documents used for

testing.

26

 Table 4: Performance for each classifier version when 4,887 documents are loaded

5 Categories / 4,887 documents

Metric Linear SVC-

L2 Penalty

Linear SVC-

L1 Penalty

BernoulliNB MultinomialNB

Training time 0.676s 0.814s 0.034s 0.026s

Testing Time 0.006s 0.006s 0.027s 0.007s

F1-score 0.969 0.942 0.937 0.964

Precision score 0.969 0.943 0.940 0.964

Recall score 0.969 0.942 0.937 0.964

 10,794 documents loaded

The table below shows performance of each classifier, in regards to training time,

testing time, F1-Score, precision and recall scores when run against 10,794 documents,

i.e. 6,480 documents used for training and 4,314 documents used for testing.

 Table 5: Performance for each classifier version when 10,794 documents are loaded

11 Categories / 10,794 documents

Metric Linear SVC-

L2 Penalty

Linear SVC-

L1 Penalty

BernoulliNB MultinomialNB

Training time 3.733s 4.425s 0.124s 0.106s

Testing Time 0.019s 0.019s 0.108s 0.028s

F1-score 0.900 0.873 0.773 0.869

Precision score 0.901 0.876 0.822 0.872

Recall score 0.900 0.873 0.794 0.870

4.6. Comparison of the classifiers

 4,887 documents loaded

For 4,887 documents, as shown in table 4.4, SVM takes longer time to train than

Naïve Bayes. For F1, precision, and recall scores. Linear SVM with penalty ‘L2’

performs better than any of the Naïve Bayes versions and better than Linear SVM

with penalty ‘L1’. Of note is, Multinomial Naïve Bayes has better scores than Linear

SVM with penalty ‘L1’.

27

 10,794 documents loaded

For 10,794 documents, as shown in table 4.5, both versions of Naïve Bayes take much

less time to train than Linear SVM. On the other hand, both versions of Naïve Bayes

take longer time during testing than Linear SVM. For F1, precision, and recall scores.

Linear SVM with penalty ‘L2’ performs much better than any of Naïve Bayes

versions and better than Linear SVM with penalty ‘L1’. In this setup, Linear SVM

with either ‘L1’ or ‘L2’ penalties has better scores than both versions of Naïve Bayes.

From the results, as the number of documents increases, SVM as previous studies

have shown, performs better than Naïve Bayes in classifying text.

28

5. DISCUSSION

5.1. Recap of the project

The project aimed at comparing the performance of Naïve Bayes and SVM classifiers as

applied in the task of text classification. This was accomplished by using the ’20 Newsgroup’

dataset. The classifiers were evaluated by comparing their training times, testing times, F-

score, precision and recall scores, when the two classifiers are run against different sizes of

data.

5.2. Discussion

In this discussion, we’re going to highlight the performance differences between Linear SVC

with penalty ‘L2’ and MultinomialNB. This is because the two versions were the better

performers as per the results.

For 4,887 documents, the difference between the two classifiers was 0.005, that is, an F-score

of 0.969 for Linear SVC and an F-score of 0.964 for MultinomialNB. For the same number

of documents, Naïve Bayes took shorter times to train, by taking 0.026s against 0.676s for

SVM. Testing time for SVM was slightly better than Naïve Bayes, with 0.006s and 0.007s

respectively.

For 10,794 documents, the difference between the two classifiers was 0.031 (a figure that is

six times the previous score), That is, an F-score of 0.900 for Linear SVC and an F-score of

0.869 for MultinomialNB. For the same number of documents, Naïve Bayes took shorter

times to train, by taking 0.106s against 3.733s for SVM. Testing time for SVM was slightly

better than that for Naïve Bayes, with 0.019s and 0.028s respectively.

From the results above, as the number of documents increased, the differences in

performance between the two classifiers grew apart. This was the case too for the training

times. The difference in testing times seem not to be that large, but that can probably be

attributed to the relatively small differences in the number of testing documents used in each

run.

5.3. Achievements

The main objective of this research was to evaluate and compare the performance of Support

Vector Machines versus Naïve Bayes in the task of text classification. This was achieved by

assembling tools provided in Sckit-learn into a Python script/program that was then run

29

against the ’20 newsgroup dataset’ and different performance criteria (F-score, precision, and

recall scores) for each classifier captured. From the results, SVM did well in classifying text

than Naïve Bayes.

The other objective was to experiment with different feature sets of the two classifiers. This

was achieved by passing two different parameters to Linear SVC, a linear implementation of

SVM. The two parameters in this case were, ‘L1’ and ‘L2’ for the penalty parameter. From

the results, with ‘L2’ penalty Linear SVC had better scores than when it was passed ‘L1’

parameter as the penalty. For Naïve Bayes, this objective was achieved by comparing

different implementations of Naïve Bayes, i.e. MultinomialNB and BernoulliNB. From the

results, MultinomialNB had much better scores than BernoulliNB.

The other target objective was to examine the classifier learning abilities for an increasing

number of documents. This was achieved by running the algorithms twice, first against 4,887

documents and the second run against 10,794 documents. For each of the runs, the scores

were output for analysis.

5.4. Limitations

One of the shortcomings of the project was the fact that we didn’t use another dataset, which

would have brought a clearer picture of the performance between the two classifiers. More of

a challenge was assembling the program to do the actual work of pre-processing, training and

testing the classifiers. This was overcome by utilizing the libraries and documentation

provided by Sckit-learn project.

5.5. Recommendations for further study

In the future, it would be interesting to investigate what makes each of the classifiers perform

as they do, may it be from the scores each classifier achieves in classifying the text, or the

resources it consumes; time, and computer memory during training and testing.

Investigate the impact of feature extraction and representation on the performance of each

classifier. E.g. Multinomial Naïve Bayes in this study performs much better than Multivariate

Naïve Bayes because of the bag of words approach used to represent the documents.

Preparation of a local dataset. This would lead to invaluable lessons and insight from the

process of preparing data for machine learning tasks, which constitutes a big part of

automating classification tasks. Especially an investigation of effects of pre-processing

methods on classification of Swahili text.

30

5.6. Conclusion

From this study, we found that as previous studies have shown, SVM does very well in text

classification. It should be noted that Naïve Bayes does achieve very good scores as well. In

short, given a text classification problem, any of the two could be used without a big

compromise on the classification accuracy. In addition, factoring in training time, in some

cases it would be advised to use Naïve Bayes instead of SVM.

31

REFERENCES

1) Andrew McCallum and Kamal Nigam. (1998) A comparison of event models for

naive Bayes text classification, AAAI-98 Workshop on Learning for Text

Categorization.

2) C. C. Aggarwal, S. C. Gates and P. S. Yu. (2004) On Using Partial Supervision for

Text Categorization, IEEE Transactions on Knowledge and Data Engineering, 16(2),

245–255.

3) C. Cortes and V. Vapnik. (1995) Support-vector networks, Machine Learning-20: pp.

273–297.

4) Charu C. Aggarwal and ChengXiang Zhai. (2012) Mining Text Data, Springer.

5) Chee-Hong Chan, Aixin Sun and Ee-Peng Lim. (2001) Automated Online News

Classification with Personalization, Nanyang Technological University: Center for

Advanced Information Systems.

6) D. Hardin, I. Tsamardinos and C. Aliferis. (2004) A theoretical characterization of

linear SVM-based feature selection, ICML Conference.

7) D. Lewis. (1992) An Evaluation of Phrasal and Clustered Representations for the

Text Categorization Task, ACM SIGIR Conference.

8) D. Mladenic, J. Brank, M. Grobelnik and N. Milic-Frayling. (2004) Feature selection

using linear classifier weights: interaction with classification models, ACM SIGIR

Conference.

9) E. Wiener, J. O. Pedersen and A. S. Weigend. (1995) A Neural Network Approach to

Topic Spotting, SDAIR, pp. 317–332.

10) E.-H. Han and G. Karypis. (2000) Centroid-based Document Classification: Analysis

and Experimental Results, PKDD Conference.

11) E.-H. Han, G. Karypis and V. Kumar. (2001) Text Categorization using Weighted-

Adjusted k-nearest neighbor classification, PAKDD Conference.

12) Fabian Pedregosa et al, (2011) Scikit-learn: Machine Learning in Python, Journal of

Machine Learning Research.

13) G. Karypis and E.-H. Han. (2000) Fast Supervised Dimensionality Reduction with

Applications to Document Categorization and Retrieval, ACM CIKM Conference.

14) George Forman. (2003) An Extensive Empirical Study of Feature Selection Metrics

for Text Classification, pp. 1-1.

32

15) H. Raghavan and J. Allan. (2007) An interactive algorithm for asking and

incorporating feature feedback into support vector machines, ACM SIGIR

Conference.

a. T. Jolliffee. (2002) Principal Component Analysis, Springer.

16) J.-T. Sun, Z. Chen, H.-J. Zeng, Y. Lu, C.-Y. Shi and W.-Y. Ma. (2004) Supervised

Latent Semantic Indexing for Document Categorization, ICDM Conference.

17) K. Dalal and A. Zaveri. (2011) Automatic Text Classification: A Technical Review.

18) Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom Mitchell. (1999) Text

classification from labeled and unlabeled documents using EM.

19) L. Baker and A. McCallum. (1998) Distributional Clustering of Words for Text

Classification, ACM SIGIR Conference.

20) L. Cai and T. Hofmann. (2003) Text categorization by boosting automatically

extracted concepts, ACM SIGIR Conference.

21) N. Slonim and N. Tishby. (2001) The power of word clusters for text classification,

European Colloquium on Information Retrieval Research (ECIR).

22) R. Bekkerman, R. El-Yaniv, Y. Winter and N. Tishby. (2001) On Feature

Distributional Clustering for Text Categorization, ACM SIGIR Conference.

23) Rong-En Fan et al, (2012) LIBLINEAR: A Library for Large Linear Classification.

24) S. Chakrabarti, S. Roy and M. Soundalgekar. (2003) Fast and Accurate Text

Classification via Multiple Linear Discriminant Projections, VLDB Journal, 12(2),

pp. 172–185.

25) S. Chakraborti, R. Mukras, R. Lothian, N. Wiratunga, S. Watt and D. Harper. (2007)

Supervised Latent Semantic Indexing using Adaptive Sprinkling, IJCAI.

26) S. Deerwester, S. Dumais, T. Landauer, G. Furnas and R. Harshman. (1990) Indexing

by Latent Semantic Analysis, JASIS, pp. 391–407.

27) S. Dumais and H. Chen. (2000) Hierarchical Classification of Web Content, ACM

SIGIR Conference.

28) S. Dumais, J. Platt, D. Heckerman and M. Sahami. (1998) Inductive learning

algorithms and representations for text categorization, CIKM Conference.

29) T. Hofmann. (1999) Probabilistic latent semantic indexing, ACM SIGIR Conference.

30) T. Salles, L. Rocha, G. Pappa, G. Mourao, W. Meira Jr. and M.Goncalves. (2010)

Temporally-aware algorithms for document classification, ACM SIGIR Conference.

33

31) Thorsten Joachims. (1998) Text categorization with Support Vector Machines:

Learning with many relevant features, Tenth European Conference on Machine

Learning.

32) V. Sindhwani and S. S. Keerthi. (2006) Large scale semi-supervised linear SVMs,

ACM SIGIR Conference.

33) W. Lam and C. Y. Ho. (1998) Using a generalized instance set for automatic text

categorization, ACM SIGIR Conference.

34) Y. Li and A. Jain. (1998) Classification of text documents, The Computer Journal,

41(8), pp. 537–546.

35) Y. Yang and L. Liu. (1999) A re-examination of text categorization methods, ACM

SIGIR Conference.

36) Y. Yang. (1995) Noise Reduction in a Statistical Approach to Text Categorization,

ACM SIGIR Conference.

37) Y. Yang. (2001) A Study on Thresholding Strategies for Text Categorization, ACM

SIGIR Conference.

38) Yiming Yang. (1997) An Evaluation of Statistical Approaches to Text Categorization,

Journal of Information Retrieval.

34

APPENDICES

Source Code

#Classification of text documents#

#Authour: Muchai, with references from Sckit-Learn#

from __future__ import print_function

import logging

import numpy as np

from optparse import OptionParser

import sys

from time import time

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.feature_extraction.text import HashingVectorizer

from sklearn.feature_selection import SelectKBest, chi2

from sklearn.svm import LinearSVC

#from sklearn.ensemble import RandomForestClassifier

from sklearn.naive_bayes import BernoulliNB,MultinomialNB

from sklearn.utils.extmath import density

from sklearn import metrics

#Load some categories from the training set

if opts.all_categories:

categories = None

else:

categories = [

'comp.graphics',

'rec.autos',

'sci.space',

'soc.religion.christian',

'talk.politics.mideast',

'sci.med',

'comp.os.ms-windows.misc',

'comp.sys.ibm.pc.hardware',

'comp.sys.mac.hardware',

'comp.windows.x',

'rec.sport.hockey',

]

if opts.filtered:

remove = ('headers', 'footers', 'quotes')

else:

remove = ()

print("Loading 20 newsgroups dataset for categories:")

35

print(categories if categories else "all")

data_train = fetch_20newsgroups(subset='train', categories=categories,

shuffle=True, random_state=42,

remove=remove)

data_test = fetch_20newsgroups(subset='test', categories=categories,

shuffle=True, random_state=42,

remove=remove)

print('data loaded')

categories = data_train.target_names #for case categories == None

def size_mb(docs):

return sum(len(s.encode('utf-8')) for s in docs) /1e6

data_train_size_mb = size_mb(data_train.data)

data_test_size_mb = size_mb(data_test.data)

print("%d documents - %0.3fMB (training set)" % (

len(data_train.data), data_train_size_mb))

print("%d documents - %0.3fMB (test set)" % (

len(data_test.data), data_test_size_mb))

print("%d categories" % len(categories))

print()

split a training set and a test set

y_train, y_test = data_train.target, data_test.target

print("Extracting features from the training dataset using a sparse vectorizer")

t0 = time()

if opts.use_hashing:

vectorizer = HashingVectorizer(stop_words='english', non_negative=True,

n_features=opts.n_features)

X_train = vectorizer.transform(data_train.data)

else:

vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,

stop_words='english')

X_train = vectorizer.fit_transform(data_train.data)

duration = time() - t0

print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration))

print("n_samples: %d, n_features: %d" % X_train.shape)

print()

print("Extracting features from the test dataset using the same vectorizer")

t0 = time()

X_test = vectorizer.transform(data_test.data)

duration = time() - t0

print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration))

print("n_samples: %d, n_features: %d" % X_test.shape)

print()

36

if opts.select_chi2:

print("Extracting %d best features by a chi-squared test" %

opts.select_chi2)

t0 = time()

ch2 = SelectKBest(chi2, k=opts.select_chi2)

X_train = ch2.fit_transform(X_train, y_train)

X_test = ch2.transform(X_test)

print("done in %fs" % (time() - t0))

print()

def trim(s):

"""Trim string to fit on terminal (assuming 80-column display)"""

return s if len(s) <= 80 else s[:77] + "..."

mapping from integer feature name to original token string

if opts.use_hashing:

feature_names = None

else:

feature_names = np.asarray(vectorizer.get_feature_names())

#Benchmark classifiers

def benchmark(clf):

print('_' * 80)

print("Training: ")

print(clf)

t0 = time()

clf.fit(X_train, y_train)

train_time = time() - t0

print("train time: %0.3fs" % train_time)

t0 = time()

pred = clf.predict(X_test)

test_time = time() - t0

print("test time: %0.3fs" % test_time)

#F-score

score = metrics.f1_score(y_test, pred)

print("f1-score: %0.3f" % score)

#Precision score

pscore = metrics.precision_score(y_test, pred)

print("precision-score: %0.3f" % pscore)

#Recall

rscore = metrics.recall_score(y_test, pred)

print("recall-score: %0.3f" % rscore)

#Accuracy

#ascore = metrics.accuracy_score(y_test, pred)

#print("accuracy-score: %0.3f" % ascore)

if hasattr(clf, 'coef_'):

print("dimensionality: %d" % clf.coef_.shape[1])

print("density: %f" % density(clf.coef_))

if opts.print_top10 and feature_names is not None:

print("top 10 keywords per class:")

for i, category in enumerate(categories):

37

top10 = np.argsort(clf.coef_[i])[-10:]

print(trim("%s: %s"

% (category, " ".join(feature_names[top10]))))

print()

if opts.print_report:

print("classification report:")

print(metrics.classification_report(y_test, pred,

target_names=categories))

if opts.print_cm:

print("confusion matrix:")

print(metrics.confusion_matrix(y_test, pred))

print()

clf_descr = str(clf).split('(')[0]

return clf_descr, score, pscore, rscore, train_time, test_time

results = []

for penalty in ["l2", "l1"]:

print('=' * 80)

print("%s penalty" % penalty.upper())

Train Liblinear model

results.append(benchmark(LinearSVC(loss='l2', penalty=penalty,

dual=False, tol=1e-3)))

Train sparse Naive Bayes classifiers

print('=' * 80)

print("Naive Bayes")

results.append(benchmark(MultinomialNB(alpha=.01)))

results.append(benchmark(BernoulliNB(alpha=.01)))

make some plots

indices = np.arange(len(results))

results = [[x[i] for x in results] for i in range(6)]

clf_names, score, pscore, rscore, training_time, test_time = results

training_time = np.array(training_time) / np.max(training_time)

test_time = np.array(test_time) / np.max(test_time)

plt.figure(figsize=(12, 9))

plt.title("Scores, comparison of SVM and Naive Bayes Classifiers using 20 Newsgroups

Dataset")

plt.barh(indices, score, .15, label="f1-score", color='r')

plt.barh(indices + .15, pscore, .15, label="precision score", color='y')

plt.barh(indices + .3, rscore, .15, label="recall score", color='c')

plt.barh(indices + .45, training_time, .15, label="training time", color='g')

plt.barh(indices + .6, test_time, .15, label="test time", color='b')

plt.yticks(())

plt.legend(loc='best')

plt.subplots_adjust(left=.25)

plt.subplots_adjust(top=.95)

plt.subplots_adjust(bottom=.05)

38

for i, c in zip(indices, clf_names):

plt.text(-.15, i, c)

plt.show()

