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ABSTRACT

Introduction: Fever has been used as the presumptive marker for malaria in Kenya for a long 

time. The Kenya National Malaria Strategy 2001-2010 states that all fevers should be treated as 

early and as close to a patient’s home as possible, with acceptable quality and correct dosages of 

the first line anti-malarial and supportive treatment. The aetiology of fevers in malaria endemic 

areas has been the subject of considerable basic and applied public health research for many 

years. Plasmodium parasite is not the only cause of fever and only one of many pathogens that 

cause identical pyrogenic responses in Kenya. Although fever usually has a high sensitivity for 

the diagnosis of malaria it suffers from poor specificity and critically depends on the prevalence 

of both asymptomatic infection and the overall prevalence of fever

Objectives: The overall objective of this study was to model the risk of self-reported fever in 

Kenya and self-reported malaria and examine its relationship with the modeled estimates of P. 

falciparum parasite prevalence.

Methodology: This was a cross-sectional study that sought to model the risk of all self-reported 

reported fevers and self-reported malaria fevers in Kenya at district level against selected 

covariates for the study and their relationship with actual risk of malaria infection. Household 

level data assembled during the Kenya Integrated Household Budget Survey of 2005/06 was 

used. Data were aggregated at the districts level. Semi-parametric regression models which 

allowed joint analysis of nonlinear effects of some covariates, spatially structured variation, 

unstructured heterogeneity, and other fixed covariates were developed. Modeling and inference 

used fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulation techniques. 

Results: The risk of all fevers and self-reported fever increases with increase in distance to the 

health facility, parasite prevalence, proportion of people with no toilets and under-fives. The
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results also indicate that the risk of fever decreases with increase in the proportion of Male, the 

proportion of the people using protected sources of water. The results also indicate significant 

differences in both structured and unstructured spatial effects.

Conclusion: This study emphasizes that the methodological framework used provides a useful 

tool for analyzing the data at hand and of similar structure.
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DEFINITION OF OPERATIONAL TERMS

Burn-in period -  This is the adaptive phase of the Bayesian model. All iterations before a model 

convergence is achieved are eliminated from the sample in order to avoid the influence of the 

initial values. If the generated sample is large enough, the effect of this period on the calculation 

of posterior summaries is minimal.

Convergence of the algorithm - With the term convergence of an MCMC algorithm, refers to 

situations where the algorithm has reached its equilibrium and generates values from the desired 

target distribution. Generally it is unclear how much to run an algorithm to obtain samples from 

the correct target distributions. Several diagnostic tests have been developed to monitor the 

convergence of the algorithm.

Equilibrium distribution - This is called the stationary or target distribution of the MCMC 

algorithm. The notion of the equilibrium distribution is related to the Markov chain used to 

construct the MCMC algorithm. Such chains stabilize to the equilibriud stationary distribution 

after a number of time sequences t > B. Therefore, in a Markov chain, the distribution of 8 (t) 

and 8("') will be identical and equal to the equilibrium stationary distribution. Equivalently, once 

it reaches its equilibrium (distribution), an MCMC scheme generates dependent random values 

from the corresponding stationary distribution (Robert and Casella, 2004, pp. 206-207).

Fever - An increase in body temperature above the normal temperature i.e. above an oral 

temperature of 37.5°C. This is according to the national guidelines for the diagnosis, treatment 

and prevention of Malaria in Kenya 2010.
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Fixed Effects model: A statistical model that represents the observed quantities in terms of 

explanatory variables that are treated as if the quantities were non-random so that model is of the

form: Yy=/d+al +ev ; j  = \,2,..,nl, ^ j nl =nT,£y ~ N{Otcr2) the errors are i.i.d
i

Iteration - refers to a cycle of the algorithm that generates a full set of parameter values from the 

posterior distribution. It is frequently used to denote an observation of simulated values.

Iterations kept, T '. These are the number of the iterations retained after discarding the initial 

bum-in iterations (that is, T' - T  -  B). If we also consider a sampling lag L > 1, then the total 

number of iterations kept refers to the final independent sample used for posterior analysis. 

MCMC output. This refers to the MCMC generated sample. We often refer to the MCMC output 

as the sample after removing the initial iterations (produced during the bum-in period) and 

considering the appropriate lag. Output analysis. This refers to analysis of the MCMC output 

sample. It includes both the monitoring procedure of the algorithm’s convergence and analysis of 

the sample used for the description of the posterior distribution and inference about the 

parameters of interest;

Initial values of the chain - Starting values used to initialize the chain are simply called initial 

values. These initial values may influence the posterior summaries if they are far away from the 

highest posterior probability areas and the sample size of the simulated sample T is sufficient to 

eliminate its effect. To mitigate or avoid the influence of the initial values is done by removing 

the first iterations of the algorithm or letting the algorithm run for a large number of iterations or 

obtain different samples with different starting points.
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Malaria - An infectious disease characterized by cycles of chills, fever, and sweating, caused by 

a protozoan of the genus Plasmodium in red blood cells, which is transmitted to humans by the 

bite of an infected female anopheles mosquito.

Random Effects model: A statistical model that assumes that the dataset being analyzed 

consists of a hierarchy of different populations whose differences relate to that hierarchy. In 

random effects models the hierarchies are selected randomly so that inference is made about the 

population of factor levels.

Spatial Autocorrelation - ‘Spatial autocorrelation’ is the correlation among values of a single 

variable strictly attributable to their relatively close locational positions on a two-dimensional (2- 

D) surface, introducing a deviation from the independent observations assumption of classical 

statistics. In this study the topographical covariate is split into correlated (structured) and 

uncorrelated (unstructured) parts.

Thinning interval or sampling lag - the final MCMC generated sample is not independent. For 

this reason, there is need to monitor the autocorrelations of the generated values and select a 

sampling lag L > 1 after which the corresponding autocorrelation are low. Then, we can produce 

an independent sample by keeping the first generated values in every batch of L iterations. 

Hence, if we consider a lag (or thin interval) of three iterations then we keep the first every three 

iterations (that is, we keep observations 1, 4, 7,...). This tactic is also followed to save storage 

space or computational speed in high-dimensional problems.

Total number of iterations T. This refers to the total number of the iterations of the MCMC 

algorithm.
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CHAPTER ONE

1 INTRODUCTION

Fever, defined by Schaffner A. 2006, is a phylogcnctically ancient host reaction to invading 

microorganisms and other noxious stimuli. Poikylothermic organisms can reach febrile 

temperatures by seeking a hot environment in response to a higher set point in their 

thermoregulatory center. Endothermic organisms produce febrile temperatures through endogenous 

heat production at the expenditure of a higher metabolic rate. Fever is a complex physiological 

response that is aimed at facilitating survival of the host (Schaffner A. 2006). Other terms used 

synonymously with fever are pyrexia or controlled hyperthermia.

Fever is induced by endogenous inflammatory mediators, such as prostaglandins and pyrogenic 

cytokines that are released by immune cells activated by exogenous pyrogens. Although the 

pathways (humoral and/or neuronal) responsible for transfer of the pyretic signals from the blood to 

the brain are still under discussion, it is generally accepted that they act on the level of the anterior 

hypothalamus to raise the thermoregulatory set-point (Soszynski 2003).

Fever has traditionally served as the entry point for presumptive treatment of malaria in African 

community (Okiro and Snow 2010). However, recent downward transition in the epidemiology of 

malaria across many places in Africa would suggest that the predictive accuracy of a fever history 

as a marker of disease has changed prompting calls for the change to diagnosis-based treatment 

strategies (Okiro and Snow 2010).

According to Kenya National Malaria Strategy 2001-2010, all fevers should treated promptly and 

therefore as close to a patient’s home as possible, with acceptable quality and correct dosages of the
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first line anti-malarial and supportive treatment. The aetiology of fevers in malaria endemic areas 

has been the subject of considerable basic and applied public health research for many years.

Plasmodium falciparum, the main malaria parasite in sub-Saharan Africa, is not the only cause of 

fever (Kallander, el al., 2004). Although fever usually has a high sensitivity for the diagnosis of 

malaria it suffers from poor specificity and critically depends on the prevalence of both 

asymptomatic malaria infection and the overall prevalence of other fever conditions. Presumptive 

treatment of all fevers has, therefore, been the most risk-adverse approach to managing "malaria" 

across Africa and is enshrined in the recommendations proposed by the Integrated Management of 

Childhood Illnesses (IMCI) (Gove S 1997). There is, however, increasing evidence that the 

intensity of P. falciparum transmission is declining across many parts of Africa (Hay, et al., 2007). 

World Health Organization (WHO) Guidelines for the treatment of malaria (2010) has now moved 

away from presumptive treatment in Africa to one that recommends parasitological diagnosis 

(WHO 2010).

Interest in mapping the global distribution of malaria is motivated by a need to define populations at 

risk for appropriate resource allocation and to provide a robust framework for evaluating its global 

economic impact. A study done by Snow et al 2005, estimated that there were 515 (range 300—660) 

million episodes of clinical P. falciparum malaria in 2002. These global estimates are up to 50% 

higher than those reported by the World Health Organization (WHO) and 200% higher for areas 

outside Africa, reflecting the WHO’s reliance upon passive national reporting for these countries. 

Without an informed understanding of the cartography of malaria risk, the global extent of clinical 

disease caused by P. falciparum will continue to be underestimated. The WHO estimated that in
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2008 there were 250 million cases malaria leading to approximately 850,000 malaria deaths. While 

malaria is endemic within most tropical and subtropical regions of the world, 90 per cent of all 

malaria deaths currently occur in sub-Saharan Africa and most of these deaths are among children 

under five years of age. Approximately 1 in every 6 child deaths (16%) in Africa is due to malaria.

In Kenya, malaria is one of the leading causes of morbidity and mortality, particularly in children 

under five years of age in Kenya. Plasmodium falciparum is the commonest cause of malaria 

(National Guideline of Diagnosis, Treatment and Prevention of Malaria in Kenya 2010).The 

malaria disease is debilitating, affecting millions of Kenyans each year and fatal to many thousands. 

The toll it exacts must be viewed not only in terms of the physical, financial and emotional burden) 

but also by its macroeconomic impact. Malaria accounts for 30% of all outpatient attendance and 

19% of all admissions to our health facilities. An estimated 170 million working days arc lost to the 

disease each year (Kenya National Malaria Strategy 2001-2010). Approximately 25 million out of a 

population of 39 million people in Kenya in 2009 are at risk of malaria ((Noor, et al., 2009). An 

estimated 170 million working days are lost to the disease each year (MOH 2001).

As efforts to control malaria are expanded across the world, understanding the role of transmission 

intensity in determining the burden of clinical malaria is crucial to the prediction and measurement 

of the effectiveness of interventions to reduce transmission. Furthermore, studies comparing several 

endemic sites led to speculation that as transmission decreases morbidity and mortality caused by 

severe malaria might increase. A study done in Kilifi, Kenya, aimed at assessing the 

epidemiological characteristics of malaria in Kilifi during a period of decreasing transmission 

intensity with 18 years (1990-2007) of surveillance data from a paediatric ward in a malaria-
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endemic region of Kenya, found out that Hospital admissions for malaria decreased from 18-43 per 

1000 children in 2003 to 3 42 in 2007. Over the 18 year surveillance period, the incidence of 

cerebral malaria initially increased. However, malaria mortality decreased overall because of a 

decrease in incidence of severe malarial anaemia since 1997 (4-75 to 0-37 per 1000 children) and 

improved survival among children admitted with non-severe malaria. Parasite prevalence, the mean 

age of children admitted with malaria, and the proportion of children with cerebral malaria began to 

change 10 years before hospitalization for malaria started to fall (Okiro et al., 2008).

To align its strategy with the new international agenda the Government of Kenya has developed the 

10-year Kenyan National Malaria Strategy (KNMS) 2009-2017 which was launched 4th November 

2009. The National Malaria Strategy is based on and carries forward an inclusive partnership 

between the two ministries responsible for health, other line ministries of the Government of 

Kenya, and our development and implementing partners in malaria control. It is a product of 

extensive consultation and collaboration with all stakeholders and establishes a strategic framework 

for the delivery of malaria control interventions, along with monitoring and evaluating 

performance. National scale-up of parasitological diagnosis of febrile cases before treatment and the 

universal coverage of all vulnerable populations with malaria prevention interventions arc seen as 

key factors to achieve the strategic goals. Not only will diagnosis reduce the cost of treating malaria 

by cutting down on drug wastage but will also increase the chances of diagnosing other causes of 

infections among non-malarious patients and thereby offering appropriate treatment and decreasing 

the risk of severe and/or fatal outcomes.
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In this study the burden of general morbidity at the district level in Kenya is estimated by modeling 

self-reported fevers among all age groups using Bayesian geostatistical approaches. The burden of 

self-reported malaria fevers is then modeled similarly. District level estimates of self-reported 

fevers and self-reported malaria fevers are compared with estimated prevalence of confirmed 

malaria infections at the district level. Estimate of malaria infections were extracted for each district 

from a map developed by Noor et al (2009).
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CHAPTER TWO

2 LITERATURE REVIEW

2.1 Background Information on Fever and Malaria

Fever has been recognized as an accompaniment of infection since the time of the early Sumerians 

circa 4,000 B.C. The earliest surviving description of febrile illnesses was transcribed by 

Hippocrates circa 425 B.C. Fever is an elevation of temperature above the normal daily variation. It 

is commonly caused by infection, but noninfectious causes such as neoplastic and 

immunologically-mediated disease may also have fever as a primary clinical manifestation (Bricdis 

2008).

Individuals maintain their body temperature within a narrow range around 37°C despite wide 

variations in environmental temperatures. During a 24-hour period, body temperature varies (up to 

+/- 0.6°C) in a diurnal or circadian rhythm from a low point in the early morning to the highest 

levels in late afternoon or early evening. Most fevers are induced by polypeptide molecules called 

endogenous pyrogens. These are produced by the host in response to infection, injury, 

inflammation, or antigenic challenge. These polypeptides cause fever by triggering biochemical 

changes in the hypothalamus, particularly to stimulate hypothalamic prostaglandin synthesis 

(Briedis 2008).

At the beginning, gradual increase in body temperature is observed together with muscle shivering, 

vasoconstriction in the skin, and piloerection. This situation is called chills. Increased body 

temperature is achieved by lowered loss of heat. Vasoconstriction in the skin and subcutaneous 

tissue is the cause of pale color and dryness, the affected person has a feeling of coldness. At the
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same time the production of heat in the organism increases. The muscle tonus increases, the spasms 

occur. Spasms may occur mainly in children. When the vasodilatation starts in the skin, the feeling 

of warmth and sweating occurs (Bomstein, 1963).

Malaria is a disease caused by parasites of the genus Plasmodium. Nationally, Plasmodium 

falciparum is the predominant species (98.2 per cent) while P. m alariaP.ovale  is 1.8 per cent 

often occurring as mixed infections. P.vivax may account for up to 40-50 per cent of infections 

(often mixed with P.falciparum) in the Northern and North Eastern parts of Kenya (Hamel et al., 

2001)

Kenya has four malaria epidemiological zones, with diversity in risk determined largely by altitude, 

rainfall patterns and temperature. The zones are:

Endemic: Areas of stable malaria have altitudes ranging from 0 to 1,300 metres around Lake 

Victoria in western Kenya and in the coastal regions. Rainfall, temperature and humidity are the 

determinants of the perennial transmission of malaria. The vector life cycle is usually short and 

survival rates are high because of the suitable climatic conditions. Transmission is intense 

throughout the year, with annual entomological inoculation rates between 30 and 100 (Kenya 

National Guidelines for the Diagnosis, Treatment and Prevention of Malaria 2010).

Seasonal transmission: Arid and semi-arid areas of northern and south-eastern parts of the country 

experience short periods of intense malaria transmission during the rainfall seasons. Temperatures 

are usually high and water pools created during the rainy season provide breeding sites for the 

malaria vectors. Extreme climatic conditions like the El Niflo southern oscillation lead to flooding 

in these areas, resulting in epidemic outbreaks with high morbidity rates owing to the low immune
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status of the population (Kenya National Guidelines for the Diagnosis, Treatment and Prevention of 

Malaria 2010).

Epidemic prone areas of western highlands of Kenya: Malaria transmission in the western 

highlands of Kenya is seasonal, with considerable year-to-year variation. Epidemics arc 

experienced when climatic conditions favor sustainability of minimum temperatures around 18°C. 

This increase in minimum temperatures during the long rains favours and sustains vector breeding, 

resulting in increased intensity of malaria transmission. The whole population is vulnerable and 

case fatality rates during an epidemic can be up to ten times greater than those experienced in 

regions where malaria occurs regularly.

Low risk malaria areas: This zone covers the central highlands of Kenya including Nairobi. The 

temperatures are usually too low to allow completion of the sporogonic cycle of the malaria parasite 

in the vector (Kenya National Guidelines for the Diagnosis, Treatment and Prevention of Malaria 

2010).

Malaria is a climate sensitive disease and climate information can be used to monitor and predict 

aspects of its spatial distribution seasonality year-to-year variability and longer term trends. 

Furthermore, climate information is increasingly recognized as necessary to enable accurate impact 

evaluations of malaria interventions. The biology of malaria transmission is markedly complex, 

involving interactions between multiple, constantly changing, extrinsic and intrinsic factors, many 

of which cannot be easily measured and are therefore challenging to model. Mathematical models 

of malaria transmission are highly sensitive to the non-linear response of both the vector and 

parasite to variations in temperature. Thus, the issue of temperature variability and change is often
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considered central to the discussion of whether malaria transmission is likely to increase if global 

temperatures rise (Hamel et al., 2001).

2.2 Modeling of Infectious Diseases in Africa

Bayesian statistical approaches have gained widespread use in infectious disease mapping, 

especially malaria. Bayesian inference was implemented via a Markov chain Monte Carlo algorithm 

using the model-based geostatistics framework of Diggle, et al., (1998). Prediction of risk based 

on point-referenced data presents some challenges when the data are sparsely distributed. Such data 

often exhibit autocorrelation, such that locations close to each other have similar risk. Models 

should allow for spatial correlation, failing which, the significance of risk factors is overstated 

(Thomsom, et al., 1999 and Boyd, et al.. 005). Analyses of point-referenced data have been carried 

out using geostatistical models (Cressie, et al., 1993), for optimal prediction. Recently, a model- 

based geostatistical (MBG) approach has been applied (Diggle, et al., 1998). The approach permits 

simultaneous modelling of related issues such as risk assessment, spatial dependence, prediction 

and quantification of uncertainty (Diggle, et al., 2002).

In the last decade, maps have been produced at different geographical scales in sub-Saharan Africa 

(Omumbo, et al., 2005), following the Mapping Malaria Risk in Africa (MARA) project (MARA 

1998), with the aim of identifying areas where greatest control effort should be focused. It is 

important to characterize malaria risk based on empirical evidence using a malaria-specific 

indicator, in this case, malaria prevalence of infection in children, and assess its relationship with 

environmental risk factors. A benchmark indicator by which malaria risk is modeled and mapped in 

Africa is the parasite rate (PfPR), which is the proportion of a random sample of population with
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malaria parasites in their peripheral blood, used frequently to define transmission intensity since the 

1950's and has a predictable mathematical relationship to the rarely sampled measures of 

entomological inoculation rate (EIR) and the basic reproductive number (/?„). The PfPR has 

therefore become the benchmark indicator by which malaria risk is modeled and mapped in Africa 

(Noor et al., 2009)

Mzolo (2008) used Bayesian approach in estimating risk determinants of infectious diseases. In his 

study the data was clustered at different level. By controlling for both fixed and random risk factors 

any excess association between HIV & TB was quantified. Bayesian methods require prior 

information to estimate the posterior distribution. These methods involved integrating high­

dimensional functions. The focus was on the MCMC methods of simulating data. The roots of the 

MCMC methods come from the Metropolis Algorithm (Metropolis & Ulam 1949; Metroplis 1953).

Mikael, et al., 2010 carried out a study on mapping malaria incidence distribution that accounted 

for environmental factors in Maputo Province -  Mozambique. This study formulated a Bayesian 

hierarchical model to malaria count data aggregated at district level over a two years period. This 

model made it possible to account for spatial area variations. The model was extended to include 

environmental covariates temperature and rainfall. Study period was then divided into two climate 

conditions: rainy and dry seasons. The incidences of malaria between the two seasons were 

compared. Parameter estimation and inference were carried out using MCMC simulation techniques 

based on Poisson variation. Model comparisons are made using DIC.

10



Moyeed, el al., 2005 used Bayesian geostatistical prediction to provide an explanation of the over 

dispersion in the data and in particular to assess whether the over-dispersion is spatially structured 

in his study on the intensity of infection with Schistosoma mansoni in East Africa. This study 

followed the approach of Alexander, et al., (2000). In this, the total egg count of each individual 

was modelled as a negative binomial variate with over-dispersion parameter k > 0 which 

incorporates extra-Poisson variation. Larger values of k indicate less variability, with the limiting 

case k = oo corresponding to the Poisson distribution. The logarithm of the mean of the distribution 

as an additive function of the individual-level covariatc sex, the two school-level covariates 

elevation and distance to nearest inland perennial water body and a spatially-structured school-level 

random-effect was modelled. The spatial random-effect was modelled as a stationary Gaussian

process with mean 0, variance a 2 and correlation function exp* d,, a), where dy is the distance 

between villages i and j and the parameter a measures the rate at which the spatial correlation 

decays over distance, with a log2 being a characteristic length, which we call the ‘half-distance’, 

over which the correlation reduces by half, and 3a being the distance at which the correlation 

reduces to 0.05.

Several studies have shown that malaria infection is influenced by environmental factors such as 

temperature, rainfall, humidity and elevation. Specifically, temperature and rainfall act as limiting 

factors on the development of Anopheles mosquitoes which are the intermediate hosts in the 

transmission of malaria parasites (Cox, et al., 1999). In tropical settings, temperature and rainfall 

conditions are nearly always favourable for transmission. Humidity is also suitable for transmission 

because it affects the survival rate of mosquitoes. Similarly, elevation above sea level (asl) is 

known to define the ecology of malaria transmission through temperature (Bodker, 2003). At
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certain altitudes malaria transmission does not occur because of extreme temperatures that inhibit 

the mosquito and parasite life-cycle. For small countries like Kenya, topography remains a single 

most important factor that defines large-scale differences in malaria risk because climatic variables 

change little over the limited range of latitude.

Zacarias, et al., 2010, analyzed the relationship between environmental factors and malaria cases, a 

Poisson model in Statistical Package R was fitted. A Bayesian hierarchical model to malaria count 

data aggregated at district level over a two year period wass formulated. This model made it 

possible to account for spatial area variations. The model was extended to include environmental 

covariates temperature and rainfall. Study period was then divided into two climate conditions: 

rainy and dry seasons. The incidences of malaria between the two seasons were compared. 

Parameter estimation and inference were carried out using MCMC simulation techniques based on 

Poisson variation. Model comparisons are made using DIC.

In the study on Spatial patterns of infant mortality in Mali: the effects of malaria endemicity by 

Gemperli, et al., 2000, Logistic regression models were fitted to infant mortality, using SAS version

8.2 software to identify significant socioeconomic, demographic, and birth-related covariatcs. 

Variables showing a significant bivariate association with infant mortality were selected for 

subsequent spatial multivariate analysis: type of region, mother’s education, sex, birth order, and 

preceding birth interval. Bayesian hierarchical models were fitted to estimate the amount of spatial 

heterogeneity in infant mortality as well as associations between risk factors and infant mortality in 

the presence of spatial correlation. Three spatial Bayesian models were fitted. A baseline model 

(model 0) included no covariates but overall constant and site-specific random effects. Model 1 was
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an extension of the baseline model with the inclusion of year of birth and socioeconomic and 

demographic variables as potential risk factors. Model 2 included the same parameters as did model 

1 but, in addition, adjusted for levels of malaria endemicity. In addition, a Bayesian non-spatial 

analog of model 2 was fitted for comparative purposes. The model-based gcostatistical methods 

were applied to analyze and predict malaria risk in areas where data were not observed. 

Topographical and climatic covariates were added in the model for risk assessment and improved 

prediction. A Bayesian approach was used for model fitting and prediction. It confirmed that 

mother’s education, birth order and interval, infant’s sex, residence, and mother’s age at infant’s 

birth had a strong impact on infant mortality risk in Mali (Gemperli, et ai, 2000). The residual 

spatial pattern of infant mortality showed a clear relation to well-known foci of malaria 

transmission, especially the inland delta of the Niger River. No effect of estimated parasite 

prevalence could be demonstrated. Possible explanations include confounding by unmeasured 

covariates and sparsity of the source malaria data. Spatial statistical models of malaria prevalence 

are useful for indicating approximate levels of endemicity over wide areas and, hence, for guiding 

intervention strategies. However, at points very remote from those sampled, it is important to 

consider prediction error.

Spatial prediction is a procedure for prediction at an unobserved location, using data at observed 

locations, optimized with reference to a specific error criterion. The criterion is the squared 

prediction error at the unobserved location -  averaged over a conceptual class of spatial prediction 

problems that have the same configuration of observed and unobserved locations. The specification 

of this averaging class is the model under which the optimization is carried out and the estimation 

error is reported. The usual model under which kriging calculations are done is that of a spatial
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stochastic process that generates spatial fields over the geographical region of interest. A stochastic 

process model is selected with characteristics that reflect characteristics of the available data. With 

this averaging model, the stated kriging properties are purely conceptual -  they refer to average 

prediction errors that would be seen if the same kriging procedure were applied to the same 

prediction problem on spatial fields generated repeatedly by the selected stochastic process. 

Locations of the observed sites within the geographical domain arc fixed under this averaging 

model, but not the values of the observations themselves (Cressie, N. 1988). The fact that the 

kriging averaging model does not fix the values of the observations can be seen as a limitation. An 

alternative to this stochastic process averaging model treats the whole spatial field as fixed and 

considers the configuration of observed and unobserved sites as one configuration from a specified 

class of possible configurations. The error associated with spatial estimation is then the average 

error associated with the entire class of specified configurations. However, for estimating 

(predicting) field values at specified sites, as in interpolation and mapping, an averaging model that 

uses only randomization of the observation sites would not be meaningful for the computation of 

estimation error (Neath & Cavanaugh 2010).

In spatial analysis and mapping of malaria risk in Malawi using point-referenced prevalence of 

infection data, Kazembe, et al., 2006, used Point-referenced prevalence ratio data of children aged 

1-10 years, obtained at 73 survey sites across the country. Data were abstracted from grey or 

published literature based on collection methods outlined in MARA technical report. Response 

Variable: Malaria Risk Predictor Variable: elevation, mean annual maximum temperature, PET and 

rainfall. The model-based geostatistical methods were applied to analyze and predict malaria risk in 

areas where data were not observed. Topographical and climatic covariates were added in the model 

for risk assessment and improved prediction. A Bayesian approach was used for model fitting and
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prediction. Bivariate models showed a significant association of malaria risk with elevation, annual 

maximum temperature, rainfall and potential evapotranspiration (PET). However in the prediction 

model, the spatial distribution of malaria risk was associated with elevation, and marginally with 

maximum temperature and PET. The resulting map broadly agreed with expert opinion about the 

variation of risk in the country, and further showed marked variation even at local level. High risk 

areas were in the low-lying lake shore regions, while low risk was along the highlands in the 

country.

In the study of estimating risk determinants of Infectious diseases using Bayesian approach in, 

University of KwaZulu (Mzolo 2008), used data from a household based second-generation 

surveillance survey of HIV conducted by HSRC in 2005. The survey design applied a multi-stage 

disproportionate, stratified sampling approach based on a master sample of 1000 EAs. The sample 

was stratified by province and locality type of the EAs whereas in urban areas race was used as a 

third stratification variable. The master sample allowed for reporting of results at the level of 

province, type of locality, age and race group. The data is clustered at an EA level. By controlling 

for both fixed and random risk factors we will be able to quantify any excess association between 

HIV & TB. Bayesian methods require prior information to estimate the posterior distribution. These 

methods involve integrating high-dimensional functions. The focus was on the MCMC methods of 

simulating data. The roots of the MCMC methods came from the Metropolis Algorithm (Metropolis 

& Ulam 1949; Metroplis 1953). The Gibbs sampler (Gcman & Geman 1984) is a MCMC method 

that was widely applicable. Priors for fixed effects were assumed multivariate normal centered at 

zero. Priors for random effects (EA) were assumed to follow a normal distribution. The bum-in
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period of 2000 iterations were allowed for both models. An estimated intraclass correlations for 

HIV and TB are HIV = 0.169 and _TB = 0.249, respectively.

Bayesian geostatistical prediction of the intensity of infection with Schistosoma mansoni in East 

Africa by Moyeed, et al, 2005 used Individual-level data on intensity of Schistosoma mansoni 

infection which were obtained from cross-sectional random samples of school children from 

dedicated school surveys conducted between 1999 and 2004 at 459 locations by national research 

teams under the auspices of the Schistosomiasis Control Initiative (SCI) in Tanzania (Clements et 

al., 2006) and in Uganda (Kabatereine, et al., 2004) and by research projects in western Kenya 

(Brooker, et al., 2001; Clarke, et al., 2005). A Bayesian geostatistical model was developed to 

predict the intensity of infection with Schistosoma mansoni in East Africa. Epidemiological data 

from purposively-designed and standardized surveys were available for 31,458 school children 

(90% aged between 6-16 years) from 459 locations across the region and used in combination with 

remote sensing environmental data to identify factors associated with spatial variation in infection 

patterns. The geostatistical model explicitly took into account the highly aggregated distribution of 

parasite distribution by fitting a negative binomial distribution to the data and accounted for spatial 

correlation. Results identified the role of environmental risk factors in explaining geographical 

heterogeneity in infection intensity and show how these factors can be used to develop a predictive 

map.

Gosoniu, et al., 2006 carried out a bayesian modeling of geostatistical malaria risk data in Angola. 

The model was based on the logistic regression method. The assumption was that the number of 

those found with malaria parasite in a blood sample aroused from a Binomial distribution, that is
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Y, -  Bin(N(9p t) with parameter pi measuring malaria risk at location st and modeled the relation 

between the malaria risk and environmental covariates X t via the logistic regression

log//(/J) = X f i

where /? = ( / ? , , are the regression coefficients. This model assumed independence

between the surveys. However, the geographical location introduced correlation since the malaria 

risk at nearby locations was influenced by similar environmental factors and therefore it was 

expected that the closer the locations the similar the way malaria risk varies. To account for spatial 

variation in the data, an error term (random effect) q>i was introduced at each location st . That is

log H(Pi) = X tT +  <p,

and modeled the spatial correlation on the q>i parameters Q .-M V N ^yE). The <p.'s arc not

independent but are derived from a distribution which models the correlation or equivalently the 

covariance between every pair of random effects. They adopted a Multivariate Normal distribution 

for the (p{’s since they represent error terms and therefore, are defined on a continuous scale. That

is, (pt = (<p̂ <p2,....<pn)' ~ N (0 ,Z ), where I  is a matrix with elements quantifying the covariance 

Cov(q>j9q>.) between every pair {(pn (pj )dX locations s, and s] respectively. The distribution of 

random effect ^defined Gaussian spatial process. Results indicate that the stationarity assumption 

is important because it influenced the significance of environmental factors and the corresponding 

malaria risk maps.

Bayesian Geostatistical Modeling of Malaria Indicator Survey Data in Angola showed that the 

categorical model was able to better capture the relationship between parasitacmia prevalence and 

the environmental factors. Model fit and prediction were handled within a Bayesian framework
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using Markov chain Monte Carlo (MCMC) simulations. Combining estimates of parasitacmia 

prevalence with the number of children under 5 were obtained estimates of the number of infected 

children in the country. The population-adjusted prevalence ranges from 3:76% in Namibe province 

to 32:65% in Malanje province. The odds of parasitaemia in children living in a household with at 

least 0:2 ITNs per person was by 41% lower (Cl: 14%, 60%) than in those with fewer ITNs. The 

estimates of the number of parasitaemic children produced in this paper are important for planning 

and implementing malaria control interventions and for monitoring the impact of prevention and 

control activities.

Spatial modeling and risk factors of malaria incidence in northern Malawi by Kazembe, et al., 2007 

used ecological spatial regression models to profile spatial variation of malaria risk and analyzed 

possible association of disease risk with environmental factors at sub-district level in northern 

Malawi. Using malaria incidence data collected between January 2002 and December 2003, applied 

and compared Bayesian Poisson regression models assuming different spatial structures. For each 

model environmental covariates were adjusted initially identified through bivariate non-spatial 

models. The model with both spatially structured and unstructured heterogeneity provided a better 

fit, guided by the model comparison criteria. Malaria incidence was associated with altitude, 

precipitation and soil water holding capacity. The risk increased with and precipitation. Smoothed 

map showed less spatial variation in risk, with slightly higher estimates of malaria risk (RR > I) in 

low-lying areas mostly situated along the lakeshore regions, in particular in Karonga and Nkhatabay 

districts, and low risk in high-lying areas along Nyika plateau and Vwaza highlands. The results 

suggested that the spatial variation in malaria risk in the region is a combination of various 

environmental factors, both observed and unobserved, and the map only highlighted the overall
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effect of these factors. The results also identified areas of increased risk, where further 

epidemiological investigations can be carried out.

2.3 Modeling of Infectious Diseases in Kenya

Kenya is one of very few countries that have a surplus of malaria risk data, spanning over 30 years. 

The earliest attempts to describe the spatial distribution of malaria risk in Kenya were based on 

expert opinion of malaria seasons and climate (Holtz, et al., 2002).

Hay, et al., 2010 states that a total of 174 sites in Kenya reported the presence of the An. 

gambiae complex without specification of the sibling species. One hundred and fifty three survey 

locations reported the presence of An. gambiae and these were largely located in areas of Western 

and Nyanza Provinces closest to Lake Victoria and in the Coast Province with few presences 

reported in the more central regions of the country. Out of these reports 17 An. gambiae were 

identified using morphology only and the remainder identified using species-specific chromosomal 

PCR and cytogenetic techniques involving analysis of polytene chromosome banding patterns 

(CBS). The majority (120, 78%) of reported An. gambiae presences were based on adult catches. 

Anopheles arabiensis was more ubiquitous in its reported distribution with observations along the 

coast, across Western Kenya and central Kenya including the arid areas of the northwest in Turkana 

district with 244 unique spatial incidences of this sibling species reported since 1990. Anopheles 

arabiensis larvae were sampled at 124 (51%) sites, adult catches were conducted at 110 (45%) sites 

and a combination of larval and adult sampling methods were used at ten (4%) sites.
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Omumbo, et al., 1998, reports that risks of infection with Plasmodium falciparum among Kenyan 

children, estimated from combinations of parasitological, geographical, demographic and climatic 

data in a GIS platform, appear to be low for 2.9 million, stable but low for another 1.3 million, 

moderate for 3.0 million and high for 0.8 million. (Estimates were not available for 1.4 million 

children.) Whilst the parasitological data were obtained from a variety of sources across different 

age-groups and times, these markers of endemicity remained relatively stable within the broad 

dentitions of high, moderate and low transmission intensity. Models relating ecological and climatic 

features to malaria intensity and improvements in our understanding of the relationships between 

parasite exposure and disease outcome will hopefully provide a more rational basis for malaria 

control in the near future.

A study done by Snow et al. (1998), states that climate operates to affect the vectorial capacity of P. 

falciparum transmission and this is particularly important in the Horn of Africa and parts of East 

Africa. A logic climate suitability model has been used to define areas of Kenya unsuitable for 

stable transmission. Kenya's unstable transmission areas can be divided into areas where 

transmission potential is limited by low rainfall or low temperature and, combined, encompass over 

8 million people. Among areas of stable transmission empirical data on P. falciparum infection rates 

among 124 childhood populations in Kenya has been used to develop a climate-based statistical 

model of transmission intensity. This model correctly identified 75% (95% confidence interval Cl
T0L

70-85) of 3 endemicity classes (low, < 20%; high, > or = 70%; and intermediate parasite 

prevalences). The model was applied to meteorological and remote sensed data using a 

geographical information system to provide estimates of endemicity for all of the 1080 populated 

fourth level administrative regions in Kenya. National census data for 1989 on the childhood
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populations within each administrative region were projected to provide 1997 estimates. 

Endemicity-specific estimates of morbidity and mortality were derived from published and 

unpublished sources and applied to their corresponding exposed-to-risk childhood populations. This 

combined transmission, population and disease-risk model suggested that every day in Kenya 

approximately between 72 and 400 children below the age of 5 years either die or develop clinical 

malaria warranting in-patient care, respectively. Despite several limitations, such an approach goes 

beyond 'best guesses' to provide informed estimates of the geographical burden of malaria and its 

fatal consequences in Kenya.

Snow et al. (1998) used an electronic and national search that was undertaken to identify 

community-based parasite prevalence surveys in Kenya. Data from these surveys were matched 

using ArcView 3.2 to extract spatially congruent estimates of the FCS values generated by the 

MARA model. Levels of agreement between three classes used during recent continental burden 

estimations of parasite prevalence (0%, >0 -  <25% and >25%) and three classes of FCS (0, >0 -  

<0.75 and >0.75) were tested using the kappa (/r) statistic and examined as continuous variables to

define better levels of agreement. Two hundred and seventeen independent parasite prevalence 

surveys undertaken since 1980 were identified during the search. Overall agreement between the 

three classes of parasite prevalence and FCS was weak although significant ( k = 0.367, p <

0.0001). The overall correlation between the FCS and the parasite ratio when considered as 

continuous variables was also positive (0.364, p < 0.001). The margins of error were in the stable, 

endemic (parasite ratio >25%) class with 42% of surveys represented by an FCS <0.75. Reducing 

the FCS value criterion to >0.6 improved the classification of stable, endemic parasite ratio surveys. 

Zero values of FCS were not adequate discriminators of zero parasite prevalence.
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Okara 2010 carried out a study on distribution of the main malaria vectors in Kenya. Survey 

locations were geo-positioned using national digital place name archives and on-line gco- 

referencing resources. The geo-located species-presence data were displayed and described 

administratively, using first-level administrative units (province), and biologically, based on the 

predicted spatial margins of Plasmodium falciparum transmission intensity in Kenya for the year 

2009. Each geo-located survey site was assigned an urban or rural classification and attributed an 

altitude value. A total of 498 spatially unique descriptions of Anopheles vector species across 

Kenya sampled between 1990 and 2009 were identified, 53% were obtained from published sources 

and further communications with authors. More than half (54%) of the sites surveyed were 

investigated since 2005. A total of 174 sites reported the presence of An. gambiae complex without 

identification of sibling species. Anopheles arabiensis and An. Funestus were the most widely 

reported at 244 and 265 spatially unique sites respectively with the former showing the most 

ubiquitous distribution nationally. Anopheles gambiae, An. arabiensis, An. funestus and An. 

pharoensis were reported at sites located in all the transmission intensity classes with more reports 

of An. gambiae in the highest transmission intensity areas than the very low transmission areas.

Kaya 2002 explored the Use of Radar Remote Sensing for Identifying Environmental Factors 

Associated with Malaria Risk in Coastal Kenya. Image analysis was performed using eCognition 

software - a classification analysis package that uses an object-based approach rather than the 

traditional pixel-based routine. Image data is classified based on parcels of pixels known as 

‘objects’ that are created using a segmentation routine, which separates significantly contrasted 

adjacent regions in an image based on image brightness values, and extracts the homogeneous
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regions as individual objects. Following segmentation, a classification was performed using the 

multi-temporal filtered and texture analysis images as input. A standard nearest neighbor 

classification was performed based on user-specified training objects. The resulting classification 

was validated with test sites. Classified polygons were extracted as GIS layers for use in the malaria 

risk map generation procedure. The premise for assessing areas at risk of malaria infection is based 

on the maximum distance a malaria-carrying mosquito can travel from its breeding ground to infect 

human hosts. The town of Mombasa (island in south part of image) is clearly identified as 

populated, smaller villages found in the middle part of the image. Forest type 1 (mangrove forests), 

were characterized by flooded areas with emergent vegetation. For this reason, backscattering 

characteristics, as well as textural information are similar to wetlands. Due to the similarities in 

environmental conditions, both landscape variables may be considered as high risk in terms of 

malaria breeding sites.

Omumbo, et al., 2005, used discriminant analysis to model environmental and human settlement 

predictor variables to distinguish between four classes of parasite ratio (PR) risk shown to relate to 

disease outcomes in the region. The data search identified 330 parasite survey data points that 

fulfilled the inclusion criteria. Discriminant analysis was performed initially without controlling for 

ecological zone or urbanization and the accuracy of the prediction tested. OA was 72.4% (j % 

0.502, s % 0.494). On visual comparison with historical (Government of Tanganyika 1956) and 

contemporary Modeled malaria risk maps, is significantly anomalous in southern Tanzania. The 

results were improved by stratifying the analysis according to two ccozone classes and by forcing 

the inclusion of urbanization as a predictor. These modifications marginally reduced OA in both 

ecozone 1 (OA % 64.0%; j % 0.483; s % 0.478; and ecozone 2 (OA % 61.4%; j % 0.45; s % 0.308;
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but provided an output with fewer large-area anomalies when compared with historical and more 

recent climate-driven maps. The OA for the combined ecozone/urban adjusted was 62.1% (j V* 

0.477, s % 0.495).

Noor, et al., 2009, in his study on the risks of malaria infection in Kenya used carried out a 

Bayesian space-time models using the Kenya 7yPR.2.io data and the selected covariates, a spatial- 

temporal Bayesian generalized linear geostatistical mode. This model was implemented to predict a 

malaria map of Kenya for 2009. The underlying assumption of the Kenya P/PR2.10 model was that 

the probability of prevalence at any survey location was the product of two factors. First, a 

continuous function of the time and location of the survey, modified by a set of covariatcs, and 

modelled as a transformation of a space-time Gaussian random Field. Second, a factor depending on 

the age range of individuals sampled in each survey. The distribution of the second factor was 

based on the procedure described by Smith, et al., 2007. The Bayesian spatial-temporal model was 

implemented in two parts starting with an inference stage in which a Markov Chain Monte Carlo 

(MCMC) algorithm was used to generate samples from the joint posterior distribution of the 

parameter set and the space-time random Field at the data locations. This was followed by a 

prediction stage in which samples were generated from the posterior distribution of /yPR.2.ioat each 

prediction location on a 1 * 1 km grid.

In this study of the risks of malaria infection in Kenya, Plasmodium falciparum parasite rate data 

(PJPK) survey data was used as response variable which were identified using basic search 

principles and the following Predictor Variables: categorical forms of urbanization, rainfall, 

vegetation coverage, aridity, distance to water bodies, altitude and temperature. The relationships of
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the covariates in their continuous and categorical forms were first visually examined against PftRj- 

10 data using scatter and box plots. These were used to aggregate the covariates into suitable 

categories that corresponded to biologically appropriate definitions, previous applications of 

remotely sensed variables and retention of effective sample sizes. A univariate non-spatial binomial 

logistic regression model was then implemented for each covariate with /7 PR2-10 as the dependent 

variable in Stata/SE Version 10. The results of the univariate analyses were used to determine the 

relative strength of each candidate covariate as a predictor of PJPR2.10 and identify those which 

qualified for inclusion in the Bayesian geostatistical model. First, where there was more than one 

plausible way of categorizing a covariate, the size of the odds ratio, the Wald's p-value and the 

value of Akaike Information Criterion (AIC), were used to determine which approach resulted in 

categories with the strongest association with /yPR2.io. Once the best categorizations were 

determined, a collinearity test of all the covariates was undertaken and if a pair had a correlation 

coefficient > 0.9, the variable with the highest value of AIC was dropped from subsequent analysis. 

The selected covariates were then analyzed in a binomial multivariate logistic regression with 

/yPR.2-ioas the dependent variable. Using backwards variable elimination, covariatcs with Wald's P 

> 0.2 were removed step-wise until a fully reduced model was achieved. Using the Kenya AyPR.2-10 

data and the selected covariates, a spatial-temporal Bayesian generalized linear geostatistical model 

was implemented to predict a malaria map of Kenya for 2009.

2.4 The Basis of the Study

This study follows the methodology that was used by Kazcmbc, et al., 2008 in his study of 

applications of Bayesian approach in modeling risk of malaria-related hospital mortality. The 

studies response variables were distributed as a Bernoulli random variable. However the differences 

between the two studies were the area of application and number of covariate. Kazembe, et al.,
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2008 study used data from Malawi while this study uses data from Kenya. The number of 

covariates in Kazembe, et al., 2008 was six while this study used 13 covariates of which some were 

eliminated in the initial descriptive analysis.

Kazembe, et al., 2008 analyzed and compared the following four logistic models; M0, Ml, M2 and 

M3. Model M0 was a basic regression model of fixed covariates only. Model Ml assumed 

nonlinear functions for the continuous factors and tried to assess the gains of fitting a semi- 

parametric model. Model M2 considered all possible risk factors, i.e., simultaneously analysed 

nonlinear effects of age, time trend of calendar time, structured spatial effects, v, for 21 residential 

wards, unstructured spatial effects, u, heterogeneity effects, h, for 23 health facilities, and fixed 

effects, w'°, for categorical variables. In model M3, model M2 was extended to consider further 

temporal effects, whereby the effect of calendar time is decomposed into a time trend and seasonal 

component. The models were implemented in Bayes X version 1.4. For the four models, 40,000 

iterations were carried out after a bum-in sample of 10,000, thinning every 20th iteration, yielding 

2,000 samples for parameter estimation. It was observed that the risk of dying in hospital was lower 

in the dry season, and for children who travel a distance of less than 5 kms to the hospital, but 

increased for those who are referred to the hospital. The results also indicated significant 

differences in both structured and unstructured spatial effects, and the health facility effects 

revealed considerable differences by type of facility or practice. More importantly, the approach 

shows non-linearities in the effect of metrical covariatcs on the probability of dying in hospital. The 

study emphasized that the methodological framework used provided a useful tool for analyzing the 

data at hand and of similar structure.
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CHAPTER THREE

3 STATEMENT OF RESEARCH QUESTION

3.1 Research Problem and Justification

Current malaria control initiatives are aimed at reducing malaria burden by half by the year 2011. 

Effective control requires evidence-based utilization of resources. Characterizing spatial patterns of 

risk, through maps, is an important tool to guide control programmes. Maps of malaria infection 

and disease risks can help to select appropriate suites of interventions. Advances in model based 

geo-statistics and assembly of malaria parasite prevalence data have led to the development of the 

most comprehensive malaria risk map in Kenya (Noor et al 2009).

However, due to low level of availability of malaria diagnostic tools in most health facilities and 

because of the long standing recommendation of presumptive treatment, most of the patients in the 

health facilities that present fever symptoms are recorded and treated as malaria cases (MoH 2010). 

The advantage of this approach of clinical diagnosis of malaria is that it has a high sensitivity i.e. 

the likelihood of missing a malaria case is minimal. However recent downward transition in the 

epidemiology of malaria across Kenya would suggest that the proportion of fevers that are malaria 

has also reduced (Okiro & Snow 2010). In return this has led to overcstimation of malaria cases in 

the health facilities. Not only does result in wastage of antimalarial resources on treating non­

malaria fevers but also decreases the chances of diagnosing other diseases that patients may be 

suffering thereby increasing the likelihood of severe and/or fatal outcomes.

To this end an analysis was carried out to predict and map risk of self-reported overall fever and 

malaria fever in Kenya using secondary community survey data. Here a Bayesian model-based gco-
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statistical method was carried out to predict the risk of fever in Kenya. A comparison was carried 

out between the prevalence of fever and prevalence of self-reported Malaria in Kenya to determine 

if there is any correlation between the two.

As a new phase of malaria control in Kenya begins, the implications of the resulting malaria risk 

map in comparison to map of fever will inform the decision makers on the future case management 

of fever and malaria cases and also inform the prospects for the future of malaria control 

nationwide.

3.2 Broad Objective

To model the risk of self-reported fever and self-reported malaria fever in Kenya and determine 

their correlation with P. falciparum parasite prevalence modeled using empirical parasite rate data.

3.3 Specific Objectives

1. To determine the current distribution of self-reported fever in Kenya using Bayesian 

hierarchical modelling approaches.

2. To determine the current distribution of self-reported malaria fever in Kenya Bayesian 

hierarchical modelling approaches.

3. To determine the relationship of the distribution of self-reported fever and malaria fever 

against the P. falciparum parasite prevalence modeled using empirical parasite rate data.

3.4 Research Question

Is there a correlation between Bayesian geostatistical model of all reported levers and self-reported 

malaria fever with P. falciparum parasite prevalence modeled using empirical parasite rate data ?
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CHAPTER FOUR

4 METHODOLOGY

In this chapter, the methodology of this study is explained in details. It is divided into seven 

subsections. Section 4.1 which introduces the type of study, while Sections 4.2 -  4.7 focus on more 

specific matters such as the analysis of the sample, estimation of Monte Carlo variability measures, 

and convergence of the algorithm and section 4.8 outlines the limitations of the study.

4.1 Study Design

This was a study that sought to model the risk of all reported fevers and self-reported malaria in 

Kenya against selected covariates for the study and to determine if the two models correlated with 

P. falciparum parasite prevalence modeled using empirical parasite rate data. The data used was 

from a cross-sectional national survey called Kenya Integrated Household Budget Survey (KIHBS) 

undertaken by the Kenya National Bureau of Statistics (KNBS) from May 2005 to May 2006.

4.2 Study Area and Population

Kenya is situated in the eastern part of the African continent. The country lies between 5 degrees 

north and 5 degrees south latitude and between 24 and 31 degrees east longitude. It is almost 

bisected by the equator. Kenya is bordered by Ethiopia (north), Somalia (northeast), Tanzania 

(south), Uganda and Lake Victoria (west), and Sudan (northwest). It is bordered on the cast by the 

Indian Ocean. The 536-kilometre coastline, which contains swamps of East African mangroves and 

the port in Mombasa, enables the country to trade easily with other countries. The country is 

divided into 8 provinces and 158 districts (as of the 2009 Population and Housing Census). It has a 

total area of 582,646 square kilometres of which 571,466 square kilometres form the land area. 

Approximately 80 percent of the land area of the country is arid or semiarid, and only 20 percent is
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arable. The country has diverse physical features, including the Great Rift Valley, which runs from 

north to south; Mount Kenya, the second highest mountain in Africa; Lake Victoria, the largest 

freshwater lake on the continent; Lake Nakuru, a major tourist attraction because of its flamingos; 

Lake Magadi, famous for its soda ash; a number of rivers, including Tana, Athi, Yala, Nzoia, and 

Mara; and numerous wildlife reserves containing thousands of different animal species. The 

country falls into two regions: lowlands, including the coastal and Lake Basin lowlands, and 

highlands, which extend on both sides of the Great Rift Valley. Rainfall and temperatures arc 

influenced by altitude and proximity to lakes or the ocean. The climate along the coast is tropical 

with rainfall and temperatures being higher throughout the year. There arc four seasons in a year: a 

dry period from January to March, the long rainy season from March to May, followed by a long 

dry spell from May to October, and then the short rains between October and December.

Kenya’s population was 10.9 million in 1969, and by 1999 it had almost tripled to 28.7 million 

(Central Bureau of Statistics, 1994, 2001a. The crude birth rate increased from 50 births per 1,000 

populations in 1969 to 54 per 1,000 in 1979 but thereafter declined to 48 and 41 per 1,000 in 1989 

and 1999, respectively. The crude death rate increased from 11 per 1,000 population in 1979-1989 

to 12 per 1,000 for the 1989-1999 period. The infant mortality rate, which had steadily decreased 

from 119 deaths per 1,000 live births in 1969 to 88 deaths per 1,000 live births in 1979, and then to 

66 deaths per 1,000 live births in 1989, increased briefly in 1999 to 77 per 1,000 but then resumed 

its decline in 2009.
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Table 4-1: Basic Demographic Indicators

Selected demographic indicators for Kenya 1969, 1979, 1989, 1999 and 2009
Indicator 1969 1979

- ? --li-
1989 1999 2009

Population (millions) 10.9 16.2 23.2 28.7 39.4"
Density (pop/km2) 19.0 27.0 37.0 49.0 67.7'
Percent urban 9.9 15.1 18.1 19.4 21.0'
Crude birth rate 50.0 54.0 48.0 41.3 34.8b
Crude rate death rate 17.0 14.0 11.0 11.7 u
Inter-censal growth rate 3.3 3.8 3.4 2.9 2.8*
Total fertility rate 7.6 7.8 6.7 5.0 4.6b
Infant mortality rate (per l,000births) 119 88 66 77.3 52.0b
Life expectancy at birth 50 54 60 56.6 58.9“
3 Revised projection figures 
b KDHS results 
u unknown
Sources: CBS, 1970; CBS, 1981; CBS, 1994; CBS, 2002a

Malaria is the leading cause of morbidity and mortality in Kenya, with close to 70 percent (24 

million) of the population at risk of infection (Hamel, et al., 2010). Although malaria affects people 

of all age groups, children under five years of age and pregnant women living in malaria endemic 

regions are most vulnerable. The human toll that malaria exacts and the economic and social 

impacts are devastating: sick children miss school, working days are lost, and tourism suffers. 

Malaria becomes puts communities in vicious cycle of poverty, where the disease prevents growth 

of the human and economic capital necessary to bring the disease under control. Moreover, malaria 

disproportionately affects the rural poor, who can neither afford insecticide-treated bed nets for 

prevention nor access appropriate treatment when they fall sick.

The Kenya Vision 2030 goal for the health sector is to provide equitable, affordable, quality health 

services to all Kenyans. The goal also aims to restructure the health care delivery system to shift the 

emphasis from curative to preventive health care. The goal of the second National Health Sector
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Strategic Plan (NHSSP II 2005-2010) is to ‘reduce health inequalities and to reverse the downward 

trend in health-related outcome and impact indicators’ (Ministry of Health, 2004).

Malaria prevention and control activities in Kenya are guided by the National Malaria Strategy 

(NMS) 2009-2017 and the National Health Sector Strategic Plan 2005-2010. The NMS outlines 

malaria control activities based on the epidemiology of malaria in Kenya. The strategy aims to 

achieve national and international malaria control targets. The core interventions adopted in Kenya 

are the following:

• Vector control—using insecticide-treated nets (ITNs) and indoor residual spraying (IRS)

• Case management (using Artemisinin-based combination therapies (ACTs) and improved 

laboratory diagnosis)

• Management of malaria in pregnancy

• Epidemic preparedness and response

• Cross-cutting strategies including information, education, and communication (IEC) for 

behaviour change, as well as effective monitoring and evaluation

One of the objective of the Kenya National Malaria Strategy 2009-2017 is aimed to have 80 per 

cent of all self-managed fever cases receive prompt and effective treatment and 100 per cent of all 

fever cases who present to health facilities receive parasitological diagnosis and effective treatment 

by 2013. This is by strengthening capacity for malaria diagnosis and treatment; increasing access to 

affordable malaria medicines through the private sector; and strengthening home management of 

malaria. This initiative has not yet been scaled up in all the health facilities in Kenya.
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4.3 Sampling and Sample Size

The data used in this study was taken from the health section of the Kenya Integrated Household 

Budget Survey (KIHBS). The following is how the sampling was carried out. A total of 13,430 

households were randomly selected to comprise the KIHBS sample, which was designed to 

generate representative statistics at the national, provincial and district levels. The sampling design 

involved a number of stages.

Cluster selection: In the first stage, 1,343 clusters were stratified by district (and by both urban and 

rural areas within each district). The objective was to make the total sample representative and 

descriptive of the unequal distribution of the population across districts. In the KIHBS sample, 10 

households were randomly selected with equal probability in each cluster to give a total sample of 

13,430 households.

Strata: the urban and rural areas of all districts except Nairobi and Mombasa, which are entirely 

urban. However, in the six districts that contain municipalities, clusters in the urban sample were 

further stratified into six groups: five socio-economic classes in the municipality itself and other 

urban areas in the district. This ensured that different types of neighborhoods and social classes 

within municipal areas are all represented in the sample. The total sample sizes in rural and urban 

areas were 8,610 and 4,820 households respectively.

The KIHBS clusters are the Primary Sampling Units (PSUs) from the NASSEP IV sampling frame, 

which is designed to give nationally, and sub-nationally, representative household survey samples. 

The NASSEP IV sampling frame is composed of 1,800 clusters selected with probability
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proportional to size (pps) from a set of all Enumeration Areas (EA) used during the 1999 

Population and Housing Census (a cluster is either an EA or an EA segment of about 100 

households) The KIHBS clusters sampled in each district where selected with equal probability 

from the NASSEP IV frame. Therefore, the first stage consists of a defacto pps sub-sample of 

census EA segments. This sampling strategy produced an approximately self-weighted sample of 

households in each stratum.

With the basic sampling frame constructed, the next stage consisted of updating the NASSEP IV 

clusters through a cartographic and household listing exercise conducted in all urban and ASAL 

clusters as well as a portion of the rural clusters in which population was found to have changed 

significantly.

4.4 Data Collection

The data used for the project was taken from Kenya integrated household budget survey (KIHBS) 

2005/06. Data collection for KIHBS 2005/06 was undertaken for a period of 12 months starting 

16th May 2005. The Survey was conducted in 1,343 randomly selected clusters across all districts 

in Kenya and comprised 861 rural and 482 urban clusters. Following a listing exercise, 10 

households were randomly selected with equal probability in each cluster resulting in a total sample 

size of 13,430 households.

The year-long survey was organized into 17 cycles of 21 days each, during which enumerators 

conducted household interviews in the clusters. Further, the districts were grouped into 22 zones 

that were logistically convenient for field teams to operate. Seasonal variation was captured by
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randomising visits to the selected clusters so that in each cycle at least one cluster was visited in 

each zone. See Appendix 1 for more information.

4.5 Variables

Dependent Variable
Proportion of self-reported fever for each district (model 1)
Proportion of self-reported malaria fever for each district (model
2)

Predictor Variable
Topographical Covariates

POLYID(spatial,map=m)*
POLYID(random) **

Socioeconomic and demographic covariates
Proportion of Male
Proportion of Under 5s
Proportion of ever attended school
Proportion Diagnosed by Health Worker
Proportion of Chronically ill
Proportion who slept under treated net
Proportion with protected source of drinking water
Proportion with the main cooking fuel as electricity/Gas LPG
Proportion with main cooking fuel as firewood
Proportion with main lighting as electricity/Gas LPG
Proportion with no Toilet
Access to Health Facility
Proportion using Pit latrine
Mean P. falciparum Parasite Prevalence by district (Noor et al 

_____________________ 2009)_________________________________________________

The spatial effect o f the district was split up into a spatially correlated part (*) and an uncorrelated 

part (**) (Fahrmeir & Lang 2001b). The correlated part is modeled by a Markov random field 

prior, where the neighborhood matrix and possible weights associated with the neighbors are 

obtained from the map object m. The uncorrelated part is modeled by an i.i.d. Gaussian effect.
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Table 4-2: Response Variable Description

No. District Total No. 
Interviewe 

d

Total
Number of 

Fevers

Number 
with self- 
reported 
Malaria

Proportion 
of Fevers

Proportion
with

reported
malaria

fever
Baringo 1031 383 63 0.3715 0.10
Bomet 802 261 46 0.3254 0.10
Bondo 727 489 173 0.6726 0.25
Bungoma 1399 668 218 0.4775 0.14
Buret 898 328 88 0.3653 0.12
Busia 917 620 216 0.6761 0.12
Butere/Mumias 906 591 169 0.6523 0.24
Embu 730 407 87 0.5575 0.04
Garissa 975 381 85 0.3908 0.19
Gucha 830 341 85 0.4108 0.14
Homa Bay 751 567 204 0.755 0.12
Isiolo 1019 428 118 0.42 0.04
Kajiado 821 280 34 0.341 0.09
Kakamega 1011 462 159 0.457 0.27
Keiyo 844 161 19 0.1908 0.25
Kericho 834 171 66 0.205 0.14

Kiambu 1275 270 43 0.2118 0.29

Kilifi 885 133 56 0.1503 0.06
Kirinyaga 729 187 83 0.2565 0.09
Kisii 782 201 102 0.257 0.07

Kisumu 936 436 189 0.4658 0.02

Kitui 968 278 128 0.2872 0.13

Koibatek 950 196 32 0.2063 0.13

Kuria 899 209 112 0.2325 0.09

Kwale 1100 259 84 0.2355 0.12

Laikipia 702 127 19 0.1809 0.11

Lamu 843 220 119 0.261 0.24

Lugari 1004 398 125 0.3964 0.13

Machakos 1274 543 179 0.4262 0.03

Makucni 1263 573 224 0.4537 0.16

Malindi 1012 147 58 0.1453 0.12

Mandcra 1110 153 48 0.1378 0.03

Maragua 783 196 70 0.2503 0.15

Marakwet 803 172 33 0.2142 0.06

Marsabit 807 180 77 0.223 0.13

Mbeere 827 287 99 0.347 0.12
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Meru Central 808 292
Meru South 758 322
Migori 923 436
Mombasa 1066 228
Moyale 1223 301
Mt. Elgon 1186 481
Muranga 614 195
Mwingi 999 258
Nairobi 2554 599
Nakuru 1570 309
Nandi 978 293
Narok 894 115
Nyambene 946 367
Nyamira 889 230
Nyandarua 881 109
Nyando 838 445
Nyeri 924 137
Rachuonyo 893 525
Samburu 904 270
Siaya 836 425
Suba 771 467
Taita Taveta 716 248
Tana River 1147 252
Teso 965 467
Tharaka 859 276
Thika 980 270
Trans Mara 866 131
Trans Nzoia 1214 432
Turkana 1100 640
Uasin Gishu 1042 186
Vihiga 945 482
Wajir 1095 222
West Pokot 894 151

119 0.3614 0.12
117 0.4248 0.27
240 0.4724 0.09
93 0.2139 0.05
108 0.2461 0.09
155 0.4056 0.10
53 0.3176 0.18
102 0.2583 0.06
182 0.2345 0.02
81 0.1968 0.10
119 0.2996 0.09
60 0.1286 0.07
130 0.3879 0.18
89 0.2587 0.10
16 0.1237 0.08
180 0.531 0.26
22 0.1483 0.03
260 0.5879 0.21
93 0.2987 0.20
206 0.5084 0.09
207 0.6057 0.15
100 0.3464 0.07
141 0.2197 0.07
170 0.4839 0.10
96 0.3213 0.08
68 0.2755 0.11
85 0.1513 0.16
156 0.3558 0.02
274 0.5818 0.14
72 0.1785 0.10
148 0.5101 0.16
99 0.2027 0.06
84 0.1689 0.04

4.6 Data Processing and Analysis 

4.6.1 Data Preparation and Processing

Data processing included a number of important steps to prepare the raw data for analysis. The

initial steps in data processing included: selecting the variables and data that was needed from a
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larger database of KIHBS. The data was then transferred to MS Excel and all the entries were 

double checked to minimize human error. Once all the data needed for the study was compiled, data 

cleaning began. The first step was to ensure 100 percent verification using KIHBS database to 

resolve any discrepancies. Next, a series of consistency and range checks were used to identify any 

unreasonable responses. Out of the covariates that were available from the database, new covariates 

were formed from classifying the original covariates. Some of the covariates were dropped from the 

study depending on the previous knowledge of their effects on the response variable. Therefore, 14 

covariates were used for this study.

4.6.2 Statistical Analysis

4.6.2.1 Screening of Variables

Data analysis started with exploratory analysis to screen the variables to be used for the Bayesian 

analysis. The following exploratory analyses were carried out: collinearity analysis to assess 

correlation between the covariates for the study; Exploring linear relationship using scattcrplots to 

assess the relationship of the covariates with the response variable; univariate non-spatial binomial 

logistic regression to determine the covariates that have a statistical significant association with the 

response variable; Multivariate logistic regression to determine the covariates that have statistically 

significant association with the response variable collectively.

4.6.2.2 Model Description

Consider a set of binomial data y, which expresses the number of successes over Nni = 1,...,».

Hence >>~Binomial(/r, Nt), resulting to a likelihood given by

f(y\n) = n:=1([y;] - »)»<-« j./G'W = nr=,([y;)"n,'(i - *)*■"*).
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where N -  £,n=1 Nt is the total number of the Bernoulli experiments in the sample. For a beta prior 

distribution with parameters 6 = (a,b) \  denoted by Beta (a, b) and density function

'  '  r ( a + p )  v ’

The resulting posterior is also a beta distribution since

* * * ~ * ( i - * r * t* ‘

Thus i r \y~beta(ny+ a , N - n y  +0 ) ,  with the posterior parameter S = (ny + a,N — ny + b)T. 

The posterior mean and variance are respectively:

e {*\y) = i‘. =
ny + a 

N + a + p

and

r(*\y)=s\ =
(ny + a ) ( N - n y  +£)

( N + a + p f ( N  + a  + /} +1)'

4.6.2.3 Semi-parametric Bayesian Regression Model

Estimation of the model parameters was carried out through the Markov Chain Monte Carlo 

(MCMC) simulation techniques as implemented in BayesX version 2.0.1 with 100,000 iterations 

and discarded the initial 5,000 samples, and subsequently stored every 10th iteration, giving 9,500 

samples which were summarized for assessing convergence and parameter estimation.
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Given a set of observations (yjtw.),i = \ ..... n, where yi is a binary response such that y , -  \ if a

person had fever and y t — 0 a person did not have fever, and w( = ( »v,...., wip) are covariates. A 

logistic model to estimate the probability of getting fever, yt -1 versus the probability of not getting

fever, y. -  0 was implemented. The response is distributed as a Bernoulli random variable such

that:

f ( y ,  I",) = “  Pi )'~* = exp \y,n, -  log (1 + exp (nt))],

where pi -  p ( y f. = 1) p and nx log//(/?.) is a canonical parameter linked to the linear 

predictor^. = w(.y . Here y is a p-dimensional vector of unknown regression coefficients.

Since the observations are associated with district of residence, it was desirable to account for 

geographical differences. District level effects were incorporated in the model to allow expected 

spatial correlation and any unstructured area heterogeneity of fever, using a convolution prior. 

Mean distance to health facility per district was specified to permit variations to occur by the 

distance. An assumption of additional flexibility in the predictor was made to allow for nonlinear 

covariate effects.

Therefore some predictor variables were extended to a more general semi parametric predictor.

»,=v, + hl + f l (x,)+w'

wherev,, v2 {I, • • ■, V} arc spatially structured effects a n d { I ,  • • H} model unstructured 

heterogeneity at district level. J\ are unknown functions for nonlinear effects of continuous 

covariate xi. Note that the spatially structured effects and unobserved heterogeneity tries to capture
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all sources of unmeasured influential factors, some that occur locally or at large scale, or those that 

may vary with time.

4.6.2.4 Prior Distributions for Covariate Effects and Assumptions

Modelling and inference uses the fully Bayesian approach. In the Bayesian formulation, the 

specification of the proposed model is complete by assigning priors to all unknown parameters. For 

the fixed regression parameters, a suitable choice is the diffuse prior, but a weakly informative 

Gaussian prior is also possible.

In a Bayesian approach, unknown functions f i, j  = \....p,,f«nfunstr and parameters g as well as the

variance parameter S 2 are considered as random variables and have to be supplemented with 

appropriate prior assumptions. In the absence of any prior knowledge independent diffuse 

priors oc const, j  = 1 ...r, are assumed for the parameters of fixed effects.

The basic assumption behind the P-splines approach was that an unknown smooth function/of a 

particular covariate x could be approximated by a spline of degree / defined on a set of equally 

spaced knots £  = *min < £  <.... < < £  = xmjn within the domain of x. It is well known that such

a spline can be written in terms of a linear combination of m = r+l B-splinc basis functions B,, i.c.

/ W = I « W
/-i

The basic functions B, are defined locally in the sense that they are nonzero only on a domain

spanned by 2+1 knots. The vector b = (b,....b j  is unknown and must be estimated from the data.

In a simple regression spline approach the unknown regression coefficients arc estimated using
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standard methods for fixed effects parameters. However, a crucial point with simple regression 

splines is the choice of the number and the position of knots. For a small number of knots the 

resulting spline space may be not flexible enough to capture the variability of the data. For a large 

number of knots estimated curves may tend to over-fit the data. As a remedy to these problems 

Eilers and Marx (1996) suggest a moderately large number of knots (usually between 20 and 40) to 

ensure enough flexibility, and to define a roughness penalty based on differences of adjacent 

regression coefficients to guarantee sufficient smoothness of the fitted curves. In a Bayesian 

approach, we replace difference penalties by their stochastic analogues, i.e. first or second order 

random walk models for the regression coefficients

A = A -.+ M

with Gaussian errors /u, ~ N(0,t2) and diffuse priors /?, °c Const yor /?, and /?2 Const, 

values, respectively. A first order random walk penalizes abrupt jumps /?, between successive 

states and a second order random walk penalizes deviations from the linear trend 2/?,., -  .

Random walk priors may be equivalently defined in a more symmetric form by specifying the 

conditional distributions of parameters P  given its left and right neighbors, e.g. A-, *"d A ., * lhc 

case of a first order random walk. Then, random walk priors may be interpreted in terms of locally 

polynomial fits. A first order random walk corresponds to a locally linear and a second order 

random walk to a locally quadratic fit to the nearest neighbors, sec e.g. (Besag, el a/.. 1995). The 

amount of smoothness is controlled by the additional variance parameter r ; , which corresponds to 

the smoothing parameter in a frequentis. approach. The larger (smaller) the variance, the rougher

(smoother) is the estimated functions.
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For the spatially correlated effect f s,r(S)is=l,...,S, Markov random field priors are chosen common 

in spatial statistics (Besag, et al., 1991). These priors reflect spatial neighborhood relationships. For 

geographical data one usually assumes that two sites or regions s and r are neighbors if they share a 

common boundary. Then a spatial extension of random walk models leads to the conditional, 

spatially autoregressive specification

where Ns is the number of adjacent regions, and r e S s denotes that region r is a neighbor of region 

s. Thus the (conditional) mean offstr(s) is an average of function evaluations fstr(s) of neighboring 

regions. Again the variance r 2wr controls the degree of smoothness. For a spatially uncorrelated 

(unstructured) effect f unstr a common assumption is that the parameters f un.«r(s) are i.i.d. Gaussian

For a fully Bayesian analysis, variance or smoothness parameters r  y, j  = p,str,unstr, are also

considered as unknown and estimated simultaneously with corresponding unknown functions fj. 

Therefore, hyperpriors are assigned to them in a second stage of the hierarchy by highly dispersed 

inverse gamma distributions IG(aj,/3j)  with known hyperparametersctjyPr

4.6.2.5 Bayesian Geo-statistical Prediction

Spatial autocorrelation was estimated within a Bayesian framework based on a geostatistical model. 

The individual fever status is considered a binary outcome variable K, with T/ 1 for individuals 

with fever and 0 for non-fever individuals. The model assumed a conditional Bernoulli model for 

the binary outcome variable where the probability p of an individual / being infected, given 

location j  of the individual was:

Y(j  ~  Bemouihiptj)
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p
lo g it ip ij) -  «  + S ' *

where yiy is the infectious status of an individual in location y, pij  is the probability of an individual 

being a case in location j, a is the intercept, X/jis a matrix of covariates, (i is a vector of coefficients 

and Ui is a geostatistical random effect defined by an isotropic exponential spatial correlation

function:

exP[<tdeb)]>

where dab are the distances between pairs of points a and b, and ft is the rate of decline in the 

spatial correlation per unit distance. Non-informative priors were used for a (uniform prior with 

bounds -oo and oo) and the coefficients (normal prior with mean = 0 and precision = 1 x 10 ). The 

prior distribution of ft had a minimum of 1 and a maximum of 600, ft ~ 1,600). The precision

of fJi was given a non-informative gamma distribution (r — dgamma(\,0.05))

The prediction of the prevalence of infection was performed by the geostatistical random

effect and adding it to the sum of the products of the coefficients for the fixed effects and the va 

o f the fixed effects at each prediction location. A bum-in of 5,000 iterations was used, followed by 

100,000 iterations where values for the intercept, coefficients and predicted probability of fever a. 

the prediction locations were stored. Diagnostic tests for eonvergence of the stored variables were 

undertaken by use of autocorrelation plots; convergence was successfully achieved . to r  .00,000 

iterations. The outputs of Bayesian models including parameter estimates and spatial prediction arc

termed posterior distributions.
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\laps of the posterior distributions of predicted fever prevalence were developed in BaycsX version 

2-0.1. Samples of the posterior distributions of the coefficients from the model were used to 

produce prediction maps.

Effects o f the covariates on fever were accessed using plots posterior distributions ot the predicted 

values. The following covariates were plotted: Access to health facility, Parasite prevalence and 

Proportion of who slept under Treated Nets.

4.7 Limitations and Validity of the Study

Given that the study was based on secondary data from KIHBS, there were several limitations that 

were bound to arise inherent in variable selection biasness. Assuming districts are homogenous 

one limitation but it was not possible to conduct cluster level analysis cluster coordinates

lacking in the data.

The study in based on the self-reported fevers and self-reported malaria fever data from KIHBS. 

This is likely to introduce recall error from the respondents and therefore may not represent the

exact figures on the ground.
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CHAPTER: FIVE

5*1 Results

5 RESULTS AND DISCUSSION

5*1.1 Exploratory Analyses

The following exploratory analyses were carried out.

1* A collinearity analysis to assess correlation between the covariates for the study.

2. Exploring linear relationship using scatterplots to assess the relationship of the covariates 

with the response variable.

3. A univariate non-spatial binomial logistic regression to determine the covariates that have a 

statistical significant association with the response variable.

4. A multivariate logistic regression to collectively determine the covariates that have 

statistically significant association with the response variable.

5.1.2 Collinearity Analysis between Covariates

Collinearity was assessed between all possible pairs of predictor variables, and if a correlation 

coefficient of greater than 0.9 was observed, the variable with the lowest AIC score was selected 

from the correlated covariates. The table below shows the correlation coefficients and AIC score of 

the correlated variables.
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fa b le  5 -1 : C o rre la t io n  Coeffic ien ts A 1C  Score o f the Correlated \  ariab les

Variables Correlation coefficients AIC

proportion with no Toilet 

Proportion using Pit latrine
0.88 = = 0.9

-58.20442

-58.56771

5.1.3 Modeling Linear Relationships

Logit transformation was carried out on the response variable then linear relationships with the 

predictor variables were assessed using scatterplots in R project. Univariate analysis was carried out 

for the predictor variables that showed a linear relationship with the response variable. See

Appendix 1 for scatter plots.

5.1.4 Univariate Analysis

A univariate non-spatial binomial logistic regression model was carried out for each covanate w.th 

risk o f  fever as the dependent variable in R project. The results of the univariate analyses were used 

to determine the relative strength of eaeh candidate covariate as a predictor of fever and identify 

those which qualified for inclusion in the Bayesian geostatistica. model. All covariates significant a, 

P < 0.05 were included in the multivariate analysis and the subsequent analysis.
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The following variables showed a significant association with the response variable. 

Table 5-2: Univariate Non-Spatial Binomial Logistic Regression Model Output

Variable

Proportion of Male 
Proportion of Under 5s 
Proportion of ever attended school 
Proportion Diagnosed by Health Worker 
Proportion of Chronically ill 
Proportion who slept under treated net 
Proportion with protected source of drinking water 
Proportion with main cooking fuel as electricity/Gas 
Proportion with main cooking fuel as firewood 
Proportion with main lighting as electricity/Gas LPG 
Proportion with no Toilet 
Access to Health Facility
Parasite Prevalence ___

Descriptive Statistics P value
Minimum Maximum Mean Std. Dev.
0.45 0.53 0.49 0 .02

0.09 0 .2 0 0.15 0.02

0.27 0.87 0.71 0.14
0.02 0.26 0 .1 2 0.05
0.01 0.16 0.06 0.03

0.00 0.47 0.21 0 .1 2

0 .00 0.23 0.06 0.05
0 .00 0.11 0.01 0.01

0.13 0.26 0.19 0.03
0 .00 0 .2 0 0.03 0.03
0 .00 0.14 0.04 0.04

1.41 24.54 6.69 6.13

0 .0 0 0.49 0.09 0.13

5.1.5 Multivariate Analysis
The selected covariates were then analyzed in a binomial multivariate logistic regression with 

response variable as the dependent variable. Using both backward and forward variable elimination, 

covariates with Wald’s P > 0.2 were removed step-wise until a fully reduced model was achieved.

Table 5-3: Multivariate Analysis Non-Spatial Binomial Logistic Regression Model Output

Intercept
Proportion of Male
Proportion of Under 5s
Proportion of ever attended school
Proportion Diagnosed by Health Worker
Proportion who slept under treated net
Proportion with main cooking fuel as firewood
Proportion with no Toilet
Access to Health Facility
Parasite P r e v a l e n c e ______________

Odds LL UL P Value
0.03 0.01 0.07 < 0.001

4.70 1.40 15.82 0.01

13.77 4.02 47.22 0 .0 0

1.23 0.96 1.58 0 .1 0

8.60 5.43 13.62 < 0.001

1.72 1.42 2.09 0 .0 0

19.18 6.90 53.31 0 .0 0

0.63 0.33 1.18 0.15

1.01 1.01 1.02 0 .0 0

3.27 2.72 3.94 < 0.001
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5.1.6 Spatial-temporal Bayesian Generalized Linear Geostatistical Model

Estimation of the model parameters was carried out through the Markov Chain Monte C arlo 

(MCMC) simulation techniques as implemented in BayesX version 2.0.1 with 100,000 iterations 

and discarded the initial 5,000 samples, and subsequently stored every 10th iteration, giving 9,500 

samples which were summarized for assessing convergence and parameter estimation.

Given a set of observations(yn w,),/ = wherey, is a binary response such that >,

person had fever and y.=  0 a person did not have fever, and w, =(w,.......,w(p) are covanatcs. A

logistic model to estimate the probability of getting fever, *  «1 versus the probability of not 

getting fever, y, =0 was implemented. The response is distributed as a Bernoulli random variable

such that: / ( x J « 0  = A M 1- A ) ,' ' ' = exP[>,/,,/ " log(1 + eXP^ ,W  WherC P, = P ^ , = ^ and

— log it (Pj) is a canonical parameter linked to the linear predictor n, = w ',y . Here y is a p

dimensional vector of unknown regression coefficients.

Since the observations are associated with district 

geographical differences. District level effects were

of residence, it was desirable to account for 

incorporated in the model to allow expected

spatial correlation and any unstructured area heterogeneity of fever, using a convolution prior. 

Mean distance to health facility per district was specified to permit variations to occur by the

distance.
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5.1.6.1 A u to co rre la tio n  Plots

Convergence of the algorithm is a term that refers to whether the algorithm has reached its 

equilibrium (target) distribution. If this is true, then the generated sample comes from the correct 

target distribution. Hence, monitoring the convergence of the algorithm is essential for producing 

results from the posterior distribution of interest. Monitoring autocorrelations is also very useful 

since low or high values indicate fast or slow convergence, respectively. If all values arc within a 

zone without strong periodicities and (especially) tendencies, then it is assumed convergence. There

are many ways to monitor convergence.

Autocorrelation plots and time trace plots were used to determine if the MCMC algorithm 

converged. Convergence was monitored by plotting autocorrelation plots of the samples. Quantiles, 

median, mean and standard deviation for all parameters, estimated from the posterior distributions, 

were used to assess model fit. In particular, credible intervals were used to assess the significance ol 

parameters. From the autocorrelation plots in figure 5-1 below and specific autocorrelation plots for 

the covariates are in appendix 3 shows that that the convergence was achieved. Trace plots are plots 

of the iterations versus the generated values. If all values are within a zone without strong 

periodicities and (especially) tendencies, then convergence is assumed. Trace plots were also used 

to confirm convergence of MCMC algorithm and as shown in Appendix 4, the convergence was

achieved.
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Figure 5-1: Autocorrelation Plots to test MCMC Algorithm Converged

Posterior deviance was monitored and a set of plausible models were compared using the Deviance 

Information Criterion (DIC) (Spiegelhalter, et al., 2002). Specifically, model with all fever as a 

response variable and model with self-reported malaria fever as the response variable were 

compared. The two models had similar covariates. The DIC is given by DIC -  D + p D , where D 

is the posterior mean of the deviance, which is a measure of goodness of fit, and pD is the effective 

number of parameters, which is a measure of model complexity and penalizes over fitting. Since
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small values of D indicate good fit while small values of pD indicate a parsimonious model, small 

values of DIC indicate a better model. Models with differences in DIC of < 3 compared with the 

best model cannot be distinguished, while those between 3 and 7 can be weakly differentiated 

(Spiegelhalter, et al., 2003).

5.1.6.2 Model Assessment:

Comparing the goodness of fit of two models, it was noted that the model of malaria was more 

preferred model to model of all the fevers. Indeed, assuming a semi-parametric model and random 

effects of the districts improved the models fitness. Evidently, modeling the impact of known 

factors alone is not sufficient to produce a satisfactory fit to the observations, and random effects at 

district level is needed to improve fit and account for heterogeneity and that the inclusion of random 

effects reduce the effect size of some variable .

T able 5-4: Com parison of the Fitted Models using the Deviance Information C riteria

Models
Model of All Fevers Model of Malaria

Model f i t
D
pD
DIC
ADIC*

21.124229 21.537995 
47.641519 47.20772 
124.40727 115.95343 
8.87297 ___________ —

sDifferen<;e of the best fitting model against the other
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5.1 -6.3 Fixed Effects

Tables 5-5 and 5-6 below give posterior means standard deviation and 2.5%, 50% and 97.55 

quintiles of the covariates. According to tables 5-5 and 5-6 below, shows that the increase of 

proportion of males decreases the fevers. Increase of proportion of under-fives increases the fever. 

Increase in the distance to the health facility and prevalence of the malaria parasites also increases 

the risk of fever. The other covariates that are proxy of the socio-economic status show that there 

increase of risk of fever with poor socio-economic status.

Table 5-5: Effect of Covariates on F e v e r ___________ _______________
ariable Mean Std. Dev. 2.5% 

quant.
Median 97.5%

q u an t
*
instant 0.31 0.64 -0.95 0.31 1.57

^portion o f Male -0.12 1.07 -2.25 -0.12 1.97

^portion o f Under 5s 0.09 0.20 0.15 0.02 0.09

^portion o f ever attended school 0.26 0.23 -0.19 0.26 0.70

^portion Diagnosed by Health Worker 0.75 0.42 -0.08 0.75 1.59

^portion with protected source of drinking
vater -0.09 0.66 -1.21 -0.09 1.38

^portion with firewood as main cooking fuel 0.60 2.83 -4.97 0.60 6.16

^portion who slept under treated net 0.76 0.69 -0.58 0.77 2.08

Toportion with no Toilet 0.01 0.02 0.00 0.00 0.05

lean distance to Health Facility 0.01 0.03 0.00 0.00 0.00

lean Parasite Prevalence 0.01 0.03 0.00 0.00 0.05

Table 5-6: Effect of Covariates on Malaria Fever

triable Mean Std. Dev.
2.5%
quant.

'onstant
Proportion of Male
Proportion of Under 5s
Proportion of ever attended school
Proportion Diagnosed by Health Worker
Proportion with protected source of drinking water
Proportion with firewood as main cooking fuel
Proportion with no Toilet
Proportion who slept under treated net
Mean distance to Health Facility
Mean Parasite Prevalence ______

0.17
-0.27
0.02
0.11

0.55
-0.17
-0.15
0.55
0.0001
0.0000
0.0001

0.24
0.40
0.41
0.08
0.16
0.25
0.31
0.23
0.0002
0.0001
0.0003

-0.29
-1.06
-0.82
-0.05
0.24
-0.67
-0.76
0.09
0.0000
0.0000
0.0000

Median
97.5%
quant

0.17
-0.27
0.02
0.11
0.55
-0.17
-0.15
0.56
0.0000
0.0000
0.0000

0.64
0.52
0.80
0.27
0.87
0.32
0.45
1.01
0.0004
0.0002
0.0003
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Figures 5-2 and 5-3 display linear effects of distance to the health facility on the risk is fever and 

self-reported malaria fever respectively. The effect of both all fevers and self-reported malaria 

fever is estimated to be almost linear, with the posterior means increasing with increasing all 

fevers and self-reported malaria fever. In other words the risk is lower for the people who are 

near the health facilities but increases for those who are further to the health facilities.

5.1.6.4 Linear Effects

Figure 5-2: Effect of Access to Health Facility on 
the Risk of All Fevers in Kenya

Figure 5-3: Effect of Access to Health Facility on 
the risk of Self-reported Malaria Fever in Kenya

Figures 5-4 and 5-5 also display linear effect malaria parasite prevalence on the risk of all fevers 

and self-reported malaria fever. This means that every unit increase in parasite prevalence 

increases the risks of all fevers and self-reported malaria fever by 0.01.

Figure 5-4: Effect of Parasite Prevalence on Figure 5-5: Effect of Parasite Prevalence on the
the Risk of All Fever in Kenya Risk of Malaria Fever in Kenya
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Figures 5-6 and 5-7, display the effect of proportion of people who slept under the net on the risk 

of all fever and malaria fever. In contrast to what is expected the figures below shows that 

increase of proportion of people who have treated nets increases the risk of all fevers and malaria

fever by 0.76.

I

Figure 5-7: The Effect of Proportion of who slept 
under Treated Nets on risk of all Fevers

Figure 5-6: The Effect of Proportion of who slept 
under Treated Nets on the Risk of Malaria Fever

5.1.6.5 Spatial Effects

Figures 5-8 and 5-9 show the spatial effects on the risk of all fevers and malaria fever. There is 

evidence of spatial variation in risk of fever and self-reported malaria fever. It is clear those areas 

on the low lands like Nyanza province, which have high temperatures, report increased risk,
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5-8: Map of Proportion of All Fevers by District

Figure 5-11: Predicted Mean of All Fevers by 
District

Figure 5-9: Map of Proportion ol Self-reported 
fever by District

Figure 5-10: Predicted Mean of by Self- 
reported Malaria Fever District
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5 1.6.6 Sensitivity Analysis

Tables 5-7 and 5-8 reports on the results investigating the influence of hyper-priors since the 

performance of the model can be sensitive to the choice of the variance components priors 

(Gelman A 2006). Alternative specifications were considered, and carried out sensitivity of all 

fevers and Malaria fever models assuming an IG with scale and shape parameters a and b 

respectively. Four alternatives were assumed: a = 0.5, b = 0.0005; a = 1, b = 0.005; a = 0.001, b 

= 0.001 and a = 0.01, b = 0.01. The first specification was suggested by Kelsall and Wakefield 

1999, for modelling the precision of the spatial effects in an MRF model. The second alternative 

was proposed in Besag and Kooperberg 1995. The remaining two priors with equal scale and 

shape parameters, especially a = b = 0.001, have often been used as standard choice on the 

variances of random effects (Spiegelhalter, et al.t 2003). Re-running MCMC simulations based 

on these specifications, using Malaria model, yield relatively similar inference on risks of fever, 

variance components and model fit. Therefore final choice of IG (a = 0.5, b = 0.0005) was 

appropriate for all the analyses.

I
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Table 5-7: Sensitivity Analysis of all Fevers Model: Relative change of fixed effects, deviance inform ation criterion, and 

variance component for different choices of hyper-param eter for T£ TZ

Hyperparam eters for
Model fit a=0.5, b=0.0005 a =1, b =0.005 a = 0.001, b = 0.001 a = 0.01, b = 0.01
D -128.52254 -263.172 -203.622 -230.705
pD 7.3640865 8.304392 -25.9086 -26.9373
D1C -113.79436 -246.563 -255.44 -284.58
F ixed  E ffects  
Intercept
Proportion of Male 
Proportion of Under 5s 
Proportion of ever attended school 
Proportion Diagnosed by Health Worker 
Proportion with protected source of drinking water 
Proportion with firewood as main cooking fuel 
Proportion with main lighting as electricity/GAS 
Proportion with no Toilet

Proportion who slept under treated net 

Mean distance to Health Facility 

Mean Parasite Prevalence

0.38 (-0.84,1.60)
-0.40 (-2.41,1.62) 
-0.02 (-2.11,2.07)
0.22 (-0.19,0.64)
0.73 (-0.07,1.53)
0.02 (-1.24,1.27)
0.07 (-1.42,1.55)
-0.95 (-2.81,0.91) 
0.56 (-0.58,1.70) 
7.85E-05(-3E-04,5E- 
04)
6.84E-05(-4E-04,5 E- 
04)
6.88E-05(-5E-04,6E-
04)

0.19 (-0.27,0.66)
-0.35 (-1.12,0.42)
0.05 (-0.75,0.84)
0.10 (-0.06,0.26)
0.52 (0.21,0.83)
-0.20 (-0.69,0.28)
-0.06 (-0.64,0.52)
-0.18 (-0.90,0.53)
0.54 (0.11,0.97)
2.17E-05 (-8E-05,1E-
04)
1.03E-05 (-5E-05/7E-
05)
1.32E-05 (-8E-05,1E- 
04)

0.35 (-0.87,1.57)
-0.27 (-2.31,1.76)
-0.20 (-2.31,1.91)
0.24 (-0.19,0.66)
0.72 (-0.11,1.55)
-0.01 (-1.30,1.29)
-0.03 (-1.59,1.52)
-0.94 (-2.83,0.96)
0.60 (-0.63,1.83) 
2.72E-04 (- 
0.001,0.002)
2.53E-04 (. 
0.001,0.002)
3.98E-04 (- 
0.004,0.005)

0.31 (-0.94,1.56)
-0.15 (-2.23,1.93)
-0.34 (-2.49,1.81)
0.24 (-0.20,0.68)
0.73 (-0.13,1.59)
-0.05 (-1.37,1.27)
-0.09 (-1.70,1.53)
-0.85 (-2.79,1.08)
0.68 (-0.60,1.96)

7.28E-04(-0.002,0.003) 

7.70E-04(-0.003,0.004) 

1.25E-03(-0.007,0.009)

R andom  E ffects  
District: Structured 
District: Unstructured

1.08E-03 (-0.01,0.01) 
1.42E-03 (-0.01,0.01)

7.26E-04 (-0.01,0.01) 
1.01E-03 (-0.00,0.01)

8.01E-03 (-0.02,0.036) 
6.21E-03 (-0.01,0.02)

0.010149 (-0.017,0.038) 
0.007186 (-0.003,0.018)
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Table 5-8: Sensitivity Analysis of self-reported Malaria Fever Model: Relative change of fixed effects, deviance inform ation

2 2 2criterion, and variance component for different choices of hyper-parameter for T* r:

H yperparam eters for r 2r 2r 2
Model fit a=0.5, b=0.0005 a=0.5, b=0.0005 a=0.5, b=0.0005 a=0.5, b=0.0005
D
pD
DIC

-263.172
8.304392
-246.563

-264.03381
13.726812
-236.58019

-332.719
-18.5211
-369.761

-365.169
-20.7275
-406.624

F ixed  E ffects  
Intercept
Proportion of Male
Proportion of Under 5s
Proportion of ever attended school
Proportion Diagnosed by Health Worker
Proportion with protected source of drinking water
Proportion with firewood as main cooking fuel
Proportion with main lighting as electricity/GAS
Proportion with no Toilet
Proportion who slept under treated net
Mean distance to Health Facility

Mean Parasite Prevalence

0.19 (-0.27,0.66)
-0.35 (-1.12,0.42)
0.05 (-0.75,0.84)
0.10 (-0.06,0.26)
0.52 (0.21,0.83)
-0.20 (-0.69,0.28)
-0.06 (-0.64,0.52)
-0.18 (-0.90,0.53)
0.54 (0.11,0.97) 
2.17E-05 (-8E-05,lE-04) 
1.03E-05 (-5E-05,7E-05)

1.32E-05 (-8E-05,lE-04)

0.19 (-0.28,0.65)
-0.33 (-1.09,0.44)
0.01 (-0.79,0.81)
0.11 (-0.05,0.27)
0.56 (0.25,0.88)
-0.18 (-0.67,0.31)
-0.12 (-0.71,0.46)
-0.20 (-0.91,0.52)
0.57 (0.13,1.01) 
4.07E-05 (-7E-05,2E-04) 
2.72E-05 (-6E-05,2E-04) 
2.99E-05 (-8E-05,2E-04)

0.17 (-0.29,0.64)
-0.28 (-1.06,0.51)
-0.01 (-0.82,0.79)
0.11 (-0.05,0.27)
0.56 (0.24,0.88)
-0.17 (-0.67,0.32)
-0.15 (-0.75,0.46)
-0.22 (-0.93,0.50)
0.56 (0.10,1.02) 
7.72E-05 (-3E-04,4E-04) 
3.78E-05 (-2E-04,3E-04) 
5.48E-05 (-4E-04,5E-04)

0.16 (-0.31,0.63)
-0.22 (-1.02,0.58) 
-0.07 (-0.88,0.74)
0.12 (-0.05,0.28)
0.58 (0.26,0.91)
-0.14 (-0.65,0.36) 
-0.23 (-0.85,0.39) 
-0.24 (-0.98,0.49)
0.57 (0.09,1.05) 
1.7E-04 (-4E-04,7E-04) 
1.3E-04 (-6E-04,8E-04) 
1.59E-04(-6E-04,lE- 
03)

R andom  E ffec ts  
District: Structured

District: Unstructured

1.09E-04(-9E-04,0.001) 
0.00023 (-8E-04,0.001)

1.13E-04 (-8E-04,0.002) 
1.88E-04(-7E-04,0.002)

8.26E-04 (-0.002,0.004) 
9.08E-04 (-7E-04,0.003)

1.30E-03 (-0.002,0.005) 
1.05E-03 (-4E- 
04,0.003)
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5.2 D is c u s s io n

This study applied Bayesian techniques to analyze patterns and risk factors of fever. Logistic 

regression models was developed to have an in-depth understanding of factors associated with 

the probability of having fever, building on the existing methodological contributions by 

(Fahrmeir and Lang 2001) and (Fahrmeir, et al., 2004).

A number of variables were used to explain the variation in the response and included spatial, 

continuous and heterogeneity terms. The spatially structured variation and unstructured 

heterogeneity were modeled using convolution prior and zero mean Gaussian heterogeneity 

priors as proposed by Besag, et al. The continuous variables are estimated non-paramctrically by 

applying second order binomial random walk prior, which permits enough flexibility while 

avoiding over-fitting the data. The proposed methodology allowed all these factors to be 

estimated in a single framework. Because the models were highly parameterized and analytically 

intractable, the maximum likelihood approach was not feasible. Thus, the Bayesian inference, 

making use of MCMC simulation techniques, offered a viable alternative.

In this study it was found out that the risk of getting fever increased with increase of the distance 

to the health facility, parasite prevalence, proportion of under-fives, proportion diagnosed by 

health professional, chronically ill. However there was risk of fever increased with increase of 

the number of people who slept under the net until the relationship reaches a threshold where 

further increase of number of people who slept under the risk of fever decreases.
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These results seem to suggest that when health care is accessible or available risk of fever goes 

down. Fever is a preventable disease, but delayed treatment or lack of effective treatment can

I lead severe cases or complications.

Children who are under the age of 5 are particularly vulnerable because of lack of immunity 

against the disease (Breman, et al., 2004). The risk decreases with age. The increase in risk for 

those aged 6-14 years, although these are supposed to be protected through acquired immunity, 

may reflect some aspects of health seeking behavior, and emphasize the need for prompt and 

effective management of fever for all children including those aged over five years even if such 

cases may not frequently occur in the general population (Kazembe, et al., 2008).

It is evident that treated bed net ownership alone is a poor indicator of fever control, and despite 

good distribution points in the country, does not translate into use and retreatment. Yet, usage 

and re-treatment are important indicators in the RBM campaign because these prevent contact 

with biting mosquitoes, and hence are critical to reducing infection and interruption of

transmission.

The lower risk in the dry season should be interpreted with care. While the risk of infection is 

reduced during this period, this effect is directly linked to few cases being hospitalized, hence 

low number of fever. Another possible explanation is that during the dry season access to the 

hospital is easier than during rainy season, leading to early treatment, and therefore fewer 

avoidable fevers.
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The spatial effects are often a surrogate of underlying unobserved information, and may give 

leads for further epidemiological research or assist in designing fever interventions. For example, 

the increased risk in rural areas may be an influence of different factors, such as unavailability or 

inaccessibility of health facilities resulting in increased risk for such children. These effects may 

also reflect health seeking behavior, which plays a critical role in accessing prompt and effective 

care. Scaling-up of interventions such as insecticide-treated nets or health promotions on 

appropriate and effective treatment in home or community based care should be emphasized in 

rural areas (World Health Organization 2004).

The data-driven approach we have taken in this analysis has a greater advantage in that the 

nonlinear effects of continuous variables are estimated, and avoids ad hoc categorizations. 

Indeed, the methodological framework applied provides useful tools for handling this type ot 

data, and in similar conditions.

The application demonstrates that spatial and temporal analysis may reveal some salient features 

of the data, which may be overstepped by the classical regression. Flexible modeling, via 

nonparametric or semi-parametric model enabled to establish a better epidemiological 

relationship existing between the response and continuous explanatory variables.

A model diagnostic tool based on the posterior predictive distribution can be used to assess 

model adequacy by comparing the observed data with the samples drawn from the posterior 

predictive distribution.
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In most African countries, most malaria cases occur at home, and the pattern may be biased 

towards urban areas that are well covered by health facilities. Moreover, one may argue that 

much of this data represent severe forms of fever, because studies on health seeking behavior for 

fever report that biomedical care is sought when the disease is nearly fatal (De Savigny, et al., 

2004). Health facility data can best be described as providing proxies for prevalence or 

morbidity and hence health need. A more representative data is through cross-sectional 

household surveys, e.g. the demographic and health surveys (DHS), however, these are often 

carried out every four years, thus the periodicity is not frequent enough for surveillance and to 

inform immediate decision making (De Savigny, et al., 2004).
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CHAPTER SIX

6  CONCLUSIONS AND RECOMMENDATIONS

In many resource-poor African countries, collection of population-based health data is a 

challenge and hospital data provide a critical source of information for decision making. This 

study set out to analyze risk factors of self-reported malaria and all fevers, using data from 

KHBS. This model, using the Bayesian approach, shows that risk of all self-reported fever and 

self-reported malaria fever is varied among gender, age, and socio-economic status. Fevers 

exhibit spatial variation.

From a public health perspective, with a goal of prevention and control, our results highlight that 

reducing malaria burden may require integrated strategies encompassing improved availability 

and access to health facilities; improving economic and social status and management of malaria 

parasite levels. Methodologically, this model can easily be adapted to analyze and compare other 

health indicator of similar structure and in like settings.

The model showed that there is a difference in the prevalence and spatial distribution of all self- 

reported fevers and self-reported malaria fever. This therefore translates to inefficient use of 

government funds in management of all fevers as Malaria fever.

The maps in this study provided a description of the geographic variation of self-reported malaria 

risk in Kenya,, and might help in the choice and design of interventions, which is crucial for 

reducing the burden of malaria in Kenya.
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Appendix 2: Kenya Integrated Household Budget Survey-Health Section Questionnaire 

5ECTIQN D; HEALTH, FERTILITY AND HQU$EHQLD DEATHS

[ASK OF ALL PERSONS IN THE HOUSEHOLD. MOTHERS OR GUARDIANS TO ANSWER FOR CHILDREN UNDER 10 YEARS OF AGE.]

DOI 1>02 1>03 D04 >05 006 007 DOS D09 DIO Dll
D NO. OF Was Was NAME’S What sort of sickncss/injury did NAME suffer from? Who diagnosed How many Did NAME What kind of health How many times Did
PERSON NAME sickness / the illness? days of consult a provider did NAME did NAME use NAME
REPORTING sick or injury work work/scho health provider visit? UP TO TWO any health service visit a
llll njurcd in related? :EVER, MALARIA................. ol did on these VISITS BY ORDER due to health

D NFORMATI the last 4 ...................01 SEXUALLY TRANSMITTED MEDICAL NAME sicknesses OF PROBLEM. sickncss/injury in provider
ON FOR THE weeks?

HARRHEA DISEASE1 WORKER miss due /injury in the the last 4 weeks? for any
NDIVIDUAL to last 4 weeks? other

c iTOMACH ACHE BURN (DOCTOR. illness/inju health

D /OMITING FRACTURE CLINICAL ry in the related
last 4 rc*M>nE UPPER WOUND OFFICER, weeks? (not sick)

(ESPIRATORY(SINUSES) POISONING NURSE) FOR in the last
LOWER RESPIRATORY PERSONS

(CHEST. LUNGS 06 PREGNANCY RELATED AT HOSPITAL 3YR REFERAL HOSPITAL

PLU UNSPECIFIED LONG-TERM MEDICAL S D1STRICT/PRO VINCI AL
ILLNESS? AN /HOSPITAL

\STHM A WORKER AT
HIV/AIDS D PUBLIC DISPENSARY

HEADACHE OTHER HEALTH abTYPHOID PUBLIC HEALTH
>KIN PROBLEM OTHER (SPECIFY)

FACILITY OV
E

CENTER
DENTAL PROBLEM TRADITIONAL PRIVATE
EYE PROBLEM HEALER DISPENSARY/

N/A. 99 HOSPITAL
EAR/NOSE/THROAT NON-HII MEMBER

PRIVATE CLINIC
3ACKACHE (NOT MEDICAL)

PROBLEM 2 DAYS TRADITIONAL
HEART PROBLEM HH MEMBER HEALER

WRITE JLOOD PRESSURE SELF YES...................  1 MISSIONARY
Yes. . J HOSP./DISP

YFS 1 PAIN W HEN PASSING HERBALISTM EMBER
NO 2

No .........2 JRINE FAITH HEALER [IF N O .D ll)
PHARMACY/CHEMIST

NUM YES. . . . .

(,.1)1 1 )
DIABETES OTHERS (specify) KIOSK BER . . J  NO .
CENTAL DISORDER 9 FAITH HEALER

TB .................................. x HERBALIST
(IF NO

OTHER (SPECIFY) .DID)
PROBLEM 1 PROBl E

PROBLEM 1 M 2
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HEALTH

D O l

1

D

C

0
D

E

D I 2

W h a t k in d  o f  h e a l th  

p r o v id e r  d id  N A M E  

v is i t ?  U P  T O  T W O  

P R O V ID E R S  B Y  

O R D E R  O F  V IS IT S .

R E F E R A L  H O S P IT A L  

D IS T R IC T /P R O V IN C IA L  

/H O S P IT tA L  P U B L IC  

D IS P E N S A R Y  P U B L IC  

03

H E A L T H  C E N T E R  

P R IV A T E
D IS P E N S A R Y / H O S P 1 0 5  

P R IV A T E  C L IN IC

T R A D IT IO N A L
H E A L E R

M IS S IO N A R Y
H O S P ./D IS P

P H A R M A C Y /C H E M IS T

K IO S K

F A IT H  H E A L E R  

P R O V ID E R  1 P R O V I

0 1 3

D u r in g  th e  la s t 

12 m o n th s , w a s  

N A M E  

h o s o ita l iz e d  o r  

had  an  

o v e r n ig h t  

s ta y ( s )  in  a  

m e d ic a l  

f a c i l i ty ?

Y E S .................... J .

N O ......................... 2

( I F N O » D I 6 )

D 14

D id  N A M E  o r  

o th e r  m e m b e r s  

o f  h o u s e h o ld  

(rave to  b o r r o w  

m o n e y  in o r d e r  

to  p a y  fo r  

h o s p ita l iz a t io n
7

Y E S ........................  1

N O ...... ...................  2

D 15

D id  N A M E  o r  

o th e r

m e m b e r s  o f  

h o u s e h o ld  

h a v e  to  s e ll  

a s s e ts  in  o r d e r  

to  p a y  fo r  

h o s p i ta l ­

iz a t io n ?

D 1 6

D u r in g  th e  

la s t 12 

m o n th s ,  d id  

N A M E  s ta y  

o v e r - n ig h t  a t a  

t r a d i t io n a l  

h e a le r ’s  , 

h e rb a l is t  o r  

fa i th  h e a le r 's  
d w e l l in g ?

D 1 7

D id

N A M E

o r

o th e r  

m e m b e  

rs  o f  

h o u s e h  

o ld

h a v e  to  
b o r ro w  

m o n e y  

in  o r d e r  

to  p a y  

fo r

t r a d it io

n a l

h e a le r ,  

h e rb a l is  

t  o r  

fa i th  
h e a le r ?

D I 8

D id

N A M E  

o r  o th e r  

m e m b e r s  

o f

h o u s e h o l  

d  h a v e  to  

s e ll

a s s e ts  in  

o r d e r  to  

p a y  fo r  

t r a d it io n a  

1 h e a le r ,  

h e rb a l is t  

o r  fa i th  

h e a le r ?

D 1 9

Is N A M E  

p h y s ic a l ly  

h a n d ic a p p e  

d  in  a n y  

w a y  w h ic h  

l im i t s  o r  

p r e v e n ts  

a c t iv i t ie s  o r  

w o rk ?

Y E S . 1 .

N O ..............
. . .  2

(IF
N O

» D 2 S )

D 2 0

W a s

N A M E ’S

h a n d ic a p

w o rk

r e la te d ?

Y E S . ..................
____ l

N O ......................
. . . . 2

( IF  N O  
» D 2 4 )

D 2 I

W a s  N A M E  

c o m p e n s a te d  

fo r  h a n d ic a p ?

Y E S ........................

. . .  .L  N O ............

.................... 2

( IF  N O  
» D 2 4 )

D 2 2

W a s  N A M E  

c o m p e n s a te d  u n d e r  

a n y  o f  th e  

fo l l o w in g ?

W O R K M A N ’S

C O M P E N S A T I O N

O W N  IN S U R A N C E  
C O V E R ............2

O T H E R
C O M P E N S A T I O N .. .
. . .  3

E M P L O Y E R .  A R  
R A N G E M E N T . . .4

D 2 3

H o w  m u c h  

d id  N A M E  

r e c e iv e  in  

c o m p e n s a t io  

n  fo r  th e  

h a n d ic a p ?

K S H S .

l

2

3
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D01

I D

C O D
E

D24
n w h at w ay(s) 
s N A M E  
lan d ic a p p e d ?

M IS S IN G  
H A N D  1 
M IS S IN G  
F O O T  2 
L A M E  3 
B L IN D  4 
D E A F  5 
U N A B L E  T O  
S P E A K  
(D U M B ) 6 
M E N T A L L Y  
D IS A B L E D

D25
f  N A M E  had  to  

sw eep th e  floo r 
j f  the  hou se , 
:o u ld  h e /sh e  do  
so easily , w ith  
difficulty , o r  no t 
it a ll?

E A SILY  1 
W ITH
D IF F IC U L T Y  2 
N O T  A T  A L L

3

D 26
I f  N A M E  had  to  
w alk  fo r 2 
c ilom eters on  a 
l a t  pa th , cou ld  
le /sh e  do  so 
easily , w ith  
d ifficu lty , o r  no t 
at a ll?

E A S IL Y  1 
W IT H
D IF F IC U L T Y

2
N O T  A T  A L L

3

D 27
D oes N A M E  
su ffe r from  a 
ch ron ic  illn ess?

Y E S .....................
....................... 1.

N O .....................
..........................2.

D 28
W h at ch ro n ic  illn ess  
d o es  N A M E  
su ffe r  fro m ? L IS T  U P 
T O  2.
C H R O N IC
M A L A R IA /F E V E R O
1
T U B E R C U L O S IS 0 2  
H IV /A ID S  03 
S T D s 04  
D IA B E T E S  05 
A S T H M A  06 
B IL H A R Z IA /S C H IS  
T O S O M IA S IS  07 
A R T H R IT IS /R H E U  
M A T IS M  08 
N E R V E  D IS O R D E R  

09
S T O M A C H  
D IS O R D E R  10 
S O R E S  T H A T  D O
N O T  H E A L ................
...........1.1. C A N C E R . .

.................. 12
P N E U M O N IA ..........

D 29
H ow  long  has 
N A M E  su ffe red  
from  th is  illness 
(these  
illn esses)?

D O  N O T  
K N O W  98 
N O T  S T A T E D  

99

..........

3

9

D 30
W ho d iag n o sed
NAM E'S
chron ic  illn ess?
M E D IC A L
W O R K E R
(D O C T O R ,
C L IN IC A L
O F F IC E R ,
N U R S E )
AT
H O S P IT A L

1
M E D IC A L  
W O R K E R  A T 
O T H E R  
H E A L T H  
FA C IL IT Y  

2
T R A D IT IO N A
L
H E A L E R

3
N O N -H H
M E M B E R
(N O T
M E D IC A L )

D31
D id N A M E  
sleep  under 
a bed  net to  
p ro tect 
against 
m osq u ito s  
last n ig h t?

D 32
H ave the  bed  
nets(s) ev e r 
been trea ted  
w ith
insec tic ide  to 
p rotect 
against 
m osq u ito s  in 
the past six 
m on ths?

F IR S T  S E C O  
N D

(» D 3 1) 
IL L N E SS  1

IL L N E S S  2 Y E A R S M O N T
HS

1

2

2_____
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FERTILITY

D01 D33

PUT A 1 ' FOR ALL 
FEMALES WHO 
ARE AGED LESS 
THAN 12 YRS AND 
MORE THAN 
49YRS AND ALL 
MALES. 
OTHERWISE 
CODE 2.

DO NOT
ADMINISTER THIS 
MODULE TO ALL 
INDIVIDUALS 
CODED 1.

D34 D35 D36 D37 D38 D39 D40 D41
Has NAME 
ever given

How many 
children have

How many 
children has

How many 
children has

How many 
children has

When was 
NAME'S last

Sex of last child(ren) 
born

Is this last born child(ren) still 
alive?

birth to live you borne NAME borne NAME borne NAME borne child born?
births? alive? alive who alive who alive who have

usually live in 
the household

usually live 
elsewhere

died?

YES i  

NO 2

(IF NO >042)
MALE 1 YES 1

FEMALE 2 NO 2

MALE TWINS 3 ONE OF THE TWINS 3

FEMALE TWINS 4 TWO OF THE MULTIPLE BIRTHS 4

MULTIPLE BIRTHS 5 ONE OF THE MULTIPLE BIRTHS 5

MALE - FEMALE TWINS 6 DK 8

MALES FEMALES MALES FEMALES MALES FEMALES MALES FEMALES MONTH YEAR

Sneak

Snick
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DEATHS IN THE HOUSEHOLD
D01

1
D

C
O
D
E

D42

n the last 24 
months has 
any household 
member died? 
ask HH head 

or any other 
responsible 
member)

YES 1 

NO 2 

|NEXT SECTION)

D43
Sex of person 
who died

MALE 1 

FEMALE 2

D44

Age of person who died

OVER 97 YEARS 97 

DON'T KNOW 98 

NOT STATED 99

YEARS MONTHS

D45
Cause of Death

MALARIA 01 

PNEUMONIA 02 

AIDS 03 

TETANUS 04 

TUBERCULOSIS 05 

MALNUTRITION 06 

ANAEMIA 07 

CHILD BIRTH/PREGNANCY 08 

SUDDEN DEATH 09 

ASTHMA 10 

CANCER 11 

URINARY OBSTRUCTION 12 

POISONING 13 

SUICIDE 14 

ACCIDENT 15 

MEASELS 16 

OTHERS SPECIFY 17

D46
Where did NAME die ?

HOME 1 

HEALTH FACILITY 2 

OTHERS SPECIFY 3

1

2

3
J_________
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SECTION P; HEALTH. FERTILITY AND HOUSEHOLD DEATHS

DEATHS IN THE HOUSEHOLD

D42
In the last 24 
months has 
any household 
member died? 
(ask HH head 
or any other 
responsible 
member)

YES i  

NO 2 

NEXT S E C T IO N )

D43
Sex of person 
who died

MALE 1 

FEMALE 2

D44
Age of person who died

OVER 97 YEARS 97 

DON'T KNOW 98 

NOT STATED 99

TEARS MONTHS

D45
Cause of Death

MALARIA 01 

PNEUMONIA 02 

AIDS 03 

TETANUS 04 

TUBERCULOSIS 05 

MALNUTRITION 06 

ANAEMIA 07 

CHILD BIRTH/PREGNANCY 08 

SUDDEN DEATH 09 

ASTHMA 10 

CANCER 11 

URINARY OBSTRUCTION 12 

POISONING 13 

SUICIDE 14 

ACCIDENT 15 

MEASELS 16 

OTHERS SPECIFY 17

D46
Where did NAME die ?

HOME 1 

HEALTH FACILITY 2 

OTHERS SPECIFY 3
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SECTION E: LABOUR

|ASK ALL HOUSEHOLD MEMBERS AGED 5 YEARS AND OLDER.] IF DID NOT DO TASK, WRITE ZERO; 
LESS THAN 1/2 HOUR, WRITE *0.5*;__________________________________________________________________

EOI E E 0 3 E EOS E 0 6 E 0 7 E 0 8 E 0 9 E 1 0 E l l
0 W h a t w a s  N A M E  m a in ly  d o in g  in  th e 0 D u rin g  th e D u r in g  th e D u r in g  th e R E V IE W E v e n  th o u g h W h a t  is  th e  m a in  re a s o n In th e  p a s t  4
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Appendix 3: Autocorrelation Plots
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Appendix 4: Trace Plots MC.MC Algorithm
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