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Abstract  A major benefit of service composition is the 
ability to support agile global collaborative virtual 
organizations. However, being global in nature, 
collaborative virtual organizations can have several virtual 
industry clusters (VIC), where each VIC has hundreds to 
thousands of virtual enterprises that provide functionally 
similar services exposed as web services. These web services 
can be differentiated on a high dimensionality of quality of 
service attributes. The dilemma the virtual enterprise broker 
is faced with is how to dynamically select the best 
combination of component services to fulfill a complex 
consumer need within the shortest time possible. This 
composite service selection problem remains a 
Multi-Criteria Decision Making (MCDM) NP hard problem. 
Although existing MCDM methods based on local planning 
are linearly scalable for large problems, they lack 
capabilities to express critical intertask constraints that are 
practically relevant to service consumers. MCDM global 
planning methods on the other hand suffer exponential state 
space explosion making them severely limited for large 
problems of industrial relevance. This paper proposes 
HMSCM: Hierarchical Multi-Layer Service Composition 
Model. HMSCM is based on the theory of Layering as 
Optimization Decomposition [28-31]. We view the service 
selection process as a “two layer network” where each layer 
is a subproblem to be solved. The objective of one of the 
layers is to maximize a local utility function over a subset of 
web service QoS attributes from a service consumer 
perspective.  The objective of the other layer is to maximize 
a local utility function over another subset of web service 
QoS attributes from the perspective of the Virtual enterprise 
broker. We develop the algorithm: Service Layered Utility 
Maximization (SLUM) that extends the Mixed Integer 
programming model in [9]. We then formulate the problem 
at each layer in form of SLUM. Together, the two layers 
attempt to achieve the global optimization objective of the 
network. We show analytically how HMSCM overcomes the 
shortcomings of existing local planning and global planning 
service selection methods while retaining the strengths from 
each. i.e HMSCM is able to scale linearly with increasing 
number of QoS variables and number of web services while 
being able to enforce global intertask constraints.  
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1. Introduction 

1.1. Background and Context 

Global virtual organizations are increasingly relying on 
service oriented architecture (SOA) as an information 
technology framework to quickly create value added 
business services from simple loosely coupled distributed 
services. Studies such as those in [2], [3],[4] confirm this 
claim. From the existing simple services owned by 
geographically sparse enterprises, a virtual enterprise broker 
[1] can quickly setup a complex service that meets complex 
consumer needs that cannot be satisfied by any one of the 
simple services. On the other hand, through SOA, each of the 
virtual enterprise participating within the consortium of 
global virtual firms has the chance to be discovered and 
selected to contribute in the provision of a composite service. 
This form of business agility facilitated by SOA is made 
possible through the concept of service composition. Service 
composition involves combining many services to produce a 
high value added composite service capable of fulfilling 
complex consumer request that cannot be fulfilled by any 
single service provider [5]. Therefore, in the context of 
virtual organizations and virtual enterprises, service 
composition reduces the time required to react to an external 
time varying consumer demands by promoting reuse of 
existing services owned by different enterprises within the 
virtual organization. This degree of agility is critical if both 
virtual enterprise brokers and virtual enterprises were to 
remain relevant in globally competitive market. 

However, when applied to dynamical environments such 
as global virtual organizations, service composition is a 
difficult research problem that perennially remains open. 
How to efficiently select the best composite service to meet 
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complex service consumer needs is just one of the 
overarching problems in service composition that is under 
active research. This paper addresses the performance 
inefficiency issues that constantly plague the service 
composition process within complex global virtual business 
settings. The performance inefficiencies in service 
composition arise from the coupling of a myriad of factors. 
The most eminent issues are: 

1. The Large Scale of Services 
In a global virtual organization operating within a 

particular business domain, there are potentially hundreds to 
thousands of small to medium virtual enterprises offering 
competing functionally similar simple services. The total 
number of service providers summed from each category of 
services is even larger. Although in each cluster, the services 
may be functionally similar, they may be differentiated on 
some quality of service (QoS) criteria. Even when the 
differentiating factor is a single QoS parameter, the sheer 
numbers of services make the selection of the best composite 
service a challenge. To put this into perspective, consider a 
composite travel reservation product that contains four 
simple services: flight service, hotel service, insurance 
package and a taxi service. Assume further that for each of 
the simple services, there are 10 service providers. When a 
virtual enterprise broker is faced with a customer request 
enquiring for a trip, the VEB is required to select the best 
combination of four services, 1 from a pool of 10 candidate 
services. It’s easy to show that there are 104

  or 10,000 
possible composite services from which to select the best 
service. A marginal change from 10 to 20 services per 
category exponentially escalates the solution space to 
160,000 and 100000000 for 100 services per task. 
Algorithms that linearly scale with change in number of 
candidate services despite exponential growth in solution 
space are sought. 

2. High Dimensionality of QoS Decision Variables 
At the technology implementation layer, web services 

technology is the most widely used technology in realizing 
business services (in our case virtual enterprise services). 
Functionally equivalent web services (each web service 
provided by a different enterprise) can exhibit significant 
variations in quality of service along dozens of QoS 
parameters. A close examination of the number of papers on 
web service QoS such as [6], [7],[8],[9] reveal a wide range 
of important QoS parameters associated with web services.  

The combination of the dimensionality of QoS attributes 
with even a small number of services exponentially increases 
the combinatorial complexity of the service selection 
problem. Intuitively the problem is expected to worsen as the 
both the number of QoS attributes and the number of 
candidate services grows larger. The challenge to the virtual 
enterprise broker transforms from just how to select the best 
composite service from a large set services based on a single 
criterion to how to efficiently select the best combination  

service from a huge set of services on multiple criteria. 
Further, in this case, the selection should factor in constraints 
and preferences that are either explicitly stated by the service 
consumer or implied by user needs. 

The interaction of the above two issues makes the service 
selection problem a Multi-Criteria Knapsack NP hard 
problem. 

1.2 The Issues 

As pointed out earlier, service composition affords both 
virtual brokers and virtual enterprises the agility required to 
survive in a global virtual market dominated by cut throat 
competition.  

However, as is evident too, the flexibility provided by 
service composition comes at a heavy cost – intensive time 
consuming computations. The high dimensionality of the 
variables and constraints to be considered coupled with the 
large scale of services makes the selection of composite 
services to remain a Multi-Criteria Decision Making NP hard 
Knapsack problem [10],[11],[12]. This should be 
significantly worrying especially to virtual brokerage firms 
because: 
 From a service consumer’s view point response time is 

the most critical performance parameter. Empirical 
evidence shown in [13],[14],[15], [16] and [17] , all lead 
to the same conclusion that service or software 
application response time or performance efficiency in 
general has  the potential to attract or retain customers ; 
therefore it has the ability to cause significant gain or 
loss of  business revenue. Specifically, according to 
these studies, 0.1 seconds is considered by the user as 
instantaneous response, 2 seconds as the tolerable 
waiting time and anything beyond 10 seconds as 
annoying. As noted in [16] these usability results are 
valid for all families of software systems and hence 
service oriented applications are not escapable. 

So how to dynamically compose services that best satisfy 
every service consumer’s current needs efficiently remains a 
worthwhile research problem albeit a difficult one 

1.3. State of the Art Multi-Criteria Service Selection 
Strategies 

Existing solutions to the problem stated in 1.2 follow 
either local planning or global planning strategies. Both 
strategies are based on the Multiple Criteria Decision 
Making (MCDM) [18] method .The objective in both 
methods is to maximize some utility function over a set of 
decision variables that are constrained. The utilities are 
computed using the Simple Additive Weighting [18] model. 
The current formulation of the local planning strategy works 
as follows. For each workflow task, identify the set of 
candidate services. Then compute the utility of each service 
over the set of web service QoS variables and select the 
service with the highest utility subject to some constraints.  
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The loose assumption here is that selecting a service with the 
highest utility from each service class locally, aims at global 
optimality of the resultant composite service. Techniques 
following local planning have recorded impressive linear 
scalability results on embarrassingly large service 
composition problems involving thousands of services. 
Furthermore, local planning may be the only practical 
optimization technique applicable depending on the 
objective at hand. For instance, some QoS decision variables 
may only be specific to a specific class of services based on 
the type of task making it impossible to compare constraints 
on these variables across tasks. However, a major setback of 
local planning is its inability to capture intertask constraints 
on decision variables shared across workflow tasks [9]. This 
limitation does not end here- service consumers are denied 
the opportunity to express critical constraints such as: the 
total service execution (or access) cost should not exceed a 
particular budget. Similarly it’s infeasible to enforce 
constraints like the total execution duration of tasks should 
be less than some threshold value. Lastly, due to inability to 
express global constraints, local planning methods are only 
suboptimal.  Being suboptimal should not be a big concern 
though. This is so because for large scale problems of 
industrial relevance, often suboptimal but more efficient 
solutions are sought [19],[20]. Perhaps the question should 
be whether or not local planning solutions converge to global 
optimality. This is beyond the scope of this paper. 

Global planning based algorithms on the other hand 
overcome the limitations of local planning models by 
considering global constraints on workflow tasks. Given 
sufficient time, global planning is guaranteed to yield an 
optimal solution. Unfortunately, as demonstrated by 
Benatallah in [9], global planning methods severely suffer 
exponential state space explosion for large problems hence 
obtaining an optimal solution is computationally intractable. 
For instance the naïve global planning approach uses 
exhaustive search where it requires comparing generating mn  
candidate services and computing utilities for each where m  
are the number of candidate services per task for n tasks. An 
alternative to exhaustive global planning is to apply Mixed 
Integer Programming, MIP [21] for optimization of 
composite service selection. MIP is an efficient technique for 
many optimization problems in which some variables take 
on integer values while other variables are continuous [22]. 
In web service selection, Benatallah et al in [9] goes ahead to 
provide an alternative global planning formulation that is 
based on MIP. The author empirically shows improved 
performance results on MIP over the exhaustive search. 
However, the author notes that MIP is still susceptible to 
exponential state space explosion and thus still limited to 
small scale service composition problems. This observation 
is also made in [20].  

Another way of solving complex service composition 
problems is to cast the problem as a Satisfiability (SAT) 
Problem. In SAT, a problem is specified in form of 
propositional logic and derivative modelling formalisms 
such as Descriptive Disjunctive Logics (DDL). Although 

SAT problems are NP complete [23], many very efficient 
SAT algorithms exist today such as SATPlan [24], 
WalkSAT [25], and GraphPlan [26]. These algorithms are 
applicable to a large spectrum of practical problems. For 
instance within service composition research, SATPlan and 
SATPlan are recommended for complex operator large scale 
service selection [20]. Other closely related service selection 
optimization algorithms include A* and its variants, generic 
algorithms, Answer Set Programming (ASP). ASP is based 
on DDL and has been proven to be very efficient as 
exemplified by the work by Abert Rainer [27]. However, as a 
downside, SAT and other AI planning based approaches to 
service composition are limited in their scope of application 
in the following ways: - First, for most complex problems, 
it’s always difficult to model them efficiently as SAT 
problems [22]. Second, AI planning and SAT solutions are 
more naturally suited to semantic web services composition. 
The reason for this is because; semantic web services are 
semantically annotated using AI like languages easily 
allowing for automated reasoning. But to date, semantic web 
service composition is yet to bear any fruits in commercial 
use. On the contrary, workflow based service composition 
based on WSDL services continue to enjoy strong industry 
support as they permeate many business applications. Third, 
generally, SAT and Constraint Satisfiability Problems are 
plagued by the same inadequacy seen in mathematical 
programming techniques such as MIP- the plague is 
exponential state space explosion [19] 

As a last resort, one would aim for general purpose off the 
shelf mathematical programming and constraint 
programming solvers. However, general optimization 
packages are too generic to suit the specificities of different 
application contexts. 

The gaps identified and summarized in section 1.4 obviate 
the serious need for more efficient service selection models 
that are industrially applicable. 

1.4. Summary of the Gaps in the State of the Art 

From the foregoing discussions it’s irrefutable that 
existing methods for optimal service selection suffer a 
combination of the following issues:- 
I. Inability to address critical optimization concerns such 

as the ability to express global constraints on tasks as 
exemplified as observed in local planning approaches. 

II. Service consumers are required to specify their 
preferences by supplying weight values for all the set 
of available web service QoS parameters. When the 
dimension of such variables is large, it not only 
becomes too tedious for the user but the weight 
assignment process becomes less objective. For 
example it’s too tempting to ask the end user to specify 
relative weights on QoS attributes like throughput, 
reliability and availability etc ,first because any 
Internet user would always expect that their service 
request is going to be successfully responded (100% 
expected reliability), by implication 100% expected 
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availability . Secondly, even if hypothetically, users 
were willing to trade off reliability or availability for 
instance, the nuances of these technical QoS 
terminologies can be too blurry to an end user for them 
to objectively assign relative weights accordingly. 

III. Severely suffer from exponential combinatorial and 
state space explosion making them infeasible for 
ultra-low latency real-time industrial scale service 
based applications; the case of MIP, SAT and CSP. 

1.5. Purpose of this Study 

The main goal of this paper is to develop a more efficient 
composite service selection strategy which scales with the 
dimensionality of web service QoS decisions variables and 
increasing size of candidate web services without:- 
 Sacrificing the ability of service consumers to express 

critical constraints spanning workflow tasks. 
 Necessarily overburdening users to specify weight 

preferences on all web service QoS parameters. 

If this goal is achieved then the first three gaps in section 
1.4 will be filled. 

1.6. An Overview of Our Approach 

Towards this goal stated in 1.6, we propose a multi-layer 
service composition model dubbed HMSCM for hierarchical 
multi-layer service composition model.  From an 
algorithmic perspective, HMSCM extends the MIP model 
originally formulated in [9] which is the basis for present 
service selection models that are based on MIP. Our 
departure from the current philosophy and practice is our 
fundamental rethinking about the structure of the service 
selection within the service composition problem. Instead of 
viewing composite service selection as one monolithic 
complex problem as it’s the case today, we view it as a 
“network with multiple layers” in which each layer is a 
subproblem with a distinct objective function to be solved.   

Contrary to the norm where utility maximization in web 
service selection is either entirely from a service consumer 
perspective or entirely from an end user perspective, here, 
our model  supports the simultaneous maximization of both 
the end user utility and the utility of service provider ( the 
virtual enterprise broker in this case). This leads to two 
optimization objective functions to be solved in a 
coordinated manner as opposed to a single objective function 
as is the case with all current approaches. Therefore in 
HMSCM, one layer strives to maximize the local utility from 
the point of view of the service provider (virtual enterprise 
broker) and the other layer trying to maximize the local 
utility from the point of the service consumer. We show that 
together, the two layers attempt to solve the global 
optimization objective. This (architectural) thinking is 
inspired by the formal theory of layering as optimization 
decomposition as described in [28], [29],[30],[31]. 
This theory is one of its kind that provides a framework for  

rigorous and formal design and analysis of layered 
communication architectures.  The theory has led to the 
modularized and distributed reformulation of the Network 
Utility Maximization problem [32]. The reformulation of the 
NUM problem based on the theory has been applied to 
re-engineer the TCP/IP protocol stack with appreciable 
performance improvements. We refer the reader to section 2 
for more details on the theory of layering as optimization 
decomposition.  

Here, we argue that although layering as optimization 
decomposition formalism is rooted in the Network Utility 
Maximization problem, the complexity of issues involved in 
the web service selection problem closely resemble the 
NUM [32] problem. This argument sets the platform for us to 
extend layering as optimization decomposition to the web 
service selection problem. At a high level, in HMSCM, we 
map the composite service selection problem to NUM [32] 
problem as follows. 

1. The service selection problem is a network partitioned 
into two main layers as Layer 1 and Layer 2.. Like in 
NUM [32], we put the service consumer at the 
forefront and have that the objective of Layer 2 is to 
minimize the financial burden and financial risk of a 
service consumer while accessing a service and to 
minimize the time it takes the consumer to access a 
composite service that meets their needs. Thus the 
utility function at Layer 2 should be the weighted sum 
over QoS attributes such as service execution cost, 
reputation, security and service response time etc.  

2. We have that the objective of Layer 1 is to maximize 
the run time performance of the execution composite. 
Thus the utility function is the weighted sum of QoS 
values of QoS attributes such as service execution 
success, availability, response time, throughput etc. 

3. Layer 2 provides “services” to layer 1. i.e the 
optimization solution from Layer 2 becomes the 
candidate solution space to Layer 1. The output of 
Layer 1 constitutes the best solution to the global 
problem. We refer to this approach as “Top down 
service selection optimization”. 

4. In layered network design based on layering as 
optimization decomposition, the problem at each layer 
is formulated as some variant of the NUM [32] 
problem. In HMSCM, we develop “SLUM”: “Service 
Layered Utility Maximization”, a Layered version the 
MIP global planning model presented in [9]. Then 
each layer attempts to solve its local SLUM problem 
iterative over its local set of variables and problem 
inputs. 

5. Thus each layer pursues to maximize its local utility 
and together the two layers strive contribute to global 
utility maximization. 

Thus hence forth, we will interchangeably refer to Layer 1 
as “Lower Layer” or “Service Provider Utility Maximization 
(SPUM) layer and to Layer 2 as “Upper Layer” or “Service 
Consumer Utility Maximization (SCUM) layer. It should be 
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noted that the local utility maximization in HMSCM 
fundamentally differs from the local planning approach 
described in section 1.3. In HMSCM locality is with respect 
to the entire “network” and not with respect to an individual 
task while in the latter locality is with respect to a task. It 
should be intuitive to see that in HMSCM it’s still possible to 
express inter task constraints since optimization is being 
done by considering all “global” constraints within the scope 
of the layer. An elaborate discussion of the HMSCM model 
is in section 3.0 

In order to evaluate our HMSCM model, experiments are 
currently being conducted on two different sets of WSDL 
web service composition problems that we have developed–
one involving travel planning services and the other 
involving real time video streaming The performance 
efficiency and optimality are the metrics that will be used to 
compare HMSCM against the non-layered MIP solution. 

1.7. Contributions 

We fill the three gaps identified in section 1.4 by 
contributing the following knowledge to the state of the art:- 

1. Architectural, Design, Process and Practical 
Contributions 

We formulate a multilayer model for composite service 
selection based on the “theory” of layering as optimization 
decomposition as advanced by [28],[29],[30],[31]. Our 
architecture overcomes the three gaps identified in section 
1.4 as follows: 
 Like existing global planning techniques (but unlike 

existing local planning methods), in our approach, the 
service consumer is still able to express global task 
constraints within Layer 2. This closes the first gap. 

 However, unlike in both current local planning and 
global planning approaches, the set of optimization 
variables within our architecture for which the user is 
required to specify weight preferences and constraints 
over is drastically reduced due to decomposition of 
optimization objectives i.e in current practice of QoS 
aware service composition, end users are required to 
specify weight preferences and constraints on 
variables such as reliability, throughput and so on. In 
our approach, service consumers can benefit from 
improvements in reliability, throughput optimization 
initiatives in Layer 1 without necessarily being aware 
of the process. Instead end users concern themselves 
only in QoS parameters that directly affect their 
financial burden or risk and speed of accessing a 
composite service. This fills the second gap 

 Like in local planning (but unlike existing global 
planning strategies, this new model obtains the 
scalability benefit of the local planning models while 
filling the gap of the inability to express 
intertask constraints on one hand while overcoming the 

exponential state space explosion problem 
experienced in current global planning on the other 
hand. This is based on the observation that the 
problem complexity at each of the layers is drastically 
reduced when the initial set of optimization variables 
is decomposed. One may argue that the sequential 
nature of our layering approach introduces 
performance inefficiencies and hence, at least 
analytically, our approach may not be any better than 
non layered approaches. However, based on the 
theory that when decomposed subproblems are solved 
sequentially, improved performance results from the 
nonlinearity of problem complexity [21]. i.e a small 
change in the number of optimization variable leads 
to exponential change in the problem complexity. 
Thus the, the net effect of decomposition is larger 
than the inefficiencies introduced by sequential 
layering. This overcomes gap number 3 in section 1.4. 

 Beyond filling the three gaps, we introduce the QoS 
“service provider view” of QoS aware service 
composition. This is motivated by the structure of the 
NUM [32] problem which has both the ”network 
operator” optimization objectives and the “end user 
optimization objectives” at the core. We achieve the 
service provider view through the functions of Layer 
1. This approach differs from all existing works, 
where QoS aware service selection is entirely viewed 
from the end user perspective, the consequence being 
that the user is overburdened in specifying weights 
and preferences over a large set of QoS some of 
which are too technical to make direct sense to an 
average user. The result of this separation of concerns 
is that at Layer 1, the engineers at the service provider 
can objectively and skillfully fix weight preferences 
over QoS attributes like reliability, throughput, and 
availability. The ultimate benefit to the service 
consumer is that they enjoy improved overall 
improved system performance efficiency resulting 
from layer 1 in a transparent manner. On the other 
hand, service providers can achieve their system 
performance objectives such as increased throughput, 
reliability etc.  

We introduce two concepts: Bottom up Problem 
Specification and Top down Service selection optimization. 
The former refers to the process where the subproblems are 
defined starting at Layer 1 where service providers specify 
their optimization problem at design time by assigning 
weights to the various layer 1 QoS attributes and defining 
constraints on the optimization variables. This is followed by 
Layer 2 where at run time; end users specify their 
optimization objective by assigning weights on layer 2 QoS 
attributes and constraints on Layer 2 decision variables. In 
top down service selection optimization, we begin by solving 
for the utility maximization problem from Layer 2 (end user 
view point) followed by the utility maximization problem at 
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Layer 1 (service provider perspective). We explain our 
philosophy behind these two architectural decisions – 
bottom up problem specification and top down service 
selection optimization in section 3. 
2. Mathematical and Theoretical Contributions 

Multi-Objective formulation of the MIP problem for 
service selection. Informed by the structure of the model, we 
advance the original MIP model in [9] and related work that 
are single objective into two objective functions with the 
possibility of formulating any number of objective functions, 
each objective function addressing unique concerns in the 
service selection process. The result is an a mathematical 
model dub “Service Layered Utility Maximization (SLUM)” 

1.8. Scope of the Study 

HMSCM targets virtual enterprise brokers [1] operating 
within global virtual organizations dealing in ultra- low 
latency real time online services that are nowadays heavily 
driven by service oriented applications. Such virtual firms 
include but not limited to online travel planning, stock 
market and financial investment companies, virtual real time 
streaming multimedia content providers etc. The envisaged 
global virtual organization framework is that one in [1]. 
Although the proposed model is generic enough, in this 
paper, we assume workflow based service composition only 
as defined in Rao et al [33]. To simplify analysis without loss 
of generality, this paper will only focus on sequential 
workflows even though it should not be hard to extend it to 
other complex workflow patterns. 

1.9. Outline of the Paper 

The rest of this paper is organized as follows. In section 2 
we review fundamental concepts in layering as optimization 
decomposition within the context of the NUM [32] problem. 
In so doing, reference is made to the OSI model .The goal is 
to extract common properties of the network design 
optimization problem that are extensible to the service 
composition problem. This allows us to make a meaningful 
formulation of the layering as optimization decomposition 
on service composition. 

In section 3, we present the HMSCM model. First a 
qualitative description of the model is described emphasizing 
the mapping of the layering as optimization decomposition 
to our framework. Then, we go ahead to present the formal 
optimization model – the Service Layered Utility 
Maximization (SLUM) model. In section 4, closely related 
work is reviewed. We then finally make conclusions in 
section 5. 

2. Layering as Optimization 
Decomposition 

Given an original problem, decomposition entails 
restating the original problem into a set of independent or 
coordinated subproblems of smaller scale [34]. Because each 

subproblem is smaller than the original problem, 
decomposition yields more efficient solutions. The resultant 
subproblems can be solved either in parallel or in sequence. 
When the subproblems are sequentially solved, performance 
gain arises from that the observation that problem 
complexity is superlinear [21] i.e a small change in a factor 
such as the number of decision variables leads to 
disproportionate exponential change in the complexity of the 
problem. 

There are many generic decomposition strategies and 
specific decomposition algorithms each suited for a 
well-known class of problems. There are hundreds of papers 
that comprehensively address the state of art in 
decomposition as an optimization method as well those that 
advance the state of the art. For instance, [34] reviews over 
200 scholarly works on decomposition methods inclined to 
optimization problems in engineering but generally 
applicable to a wide range of scientific fields including 
computer science.  

Layering as optimization decomposition 
[28],[29],[30],[31] is the latest formalism that has 
revolutionized the formulation of the Network Utility 
Maximization problem leading to improved network 
optimization strategies. The framework has following 
properties: 

2.1. Properties of Layering as Optimization 
Decomposition [28-31] 

i. Each network layer is viewed as a local subproblem 
whereas the network itself is the global optimization 
problem. 

ii. Interfaces between layers represent either function of 
primal or dual variables. When two optimization 
problems are such that the there is a common 
variable, y in the objective functions of the two 
subproblems as in f(x,y) and f(x,z), then y is a primal 
or interface or complicating  variable [21].The  
problem : minimize f(x) = f1(u1,y1) + f2(u2,y2) s.t 
y1=y2  can be decomposed into two separate 
functions that are coupled by the constraint y1=y2  . 
y1, y2 are the Lagrange dual constraints. 

iii. The entire network is viewed as the “optimizer” 
iv. A Network protocol at each of the layers is viewed as 

“a distributed solution to some global optimization 
problem”. The global optimization problem is 
formulated in some form of the basic Network Utility 
Maximization problem. 

v. Each of the layers iterate over a distinct subset of the 
global set of variables to achieve individual or local 
optimality. Overally, the individual protocols 
attempt to achieve a global objective. 

vi. Each layer “serves” the layer above i.e  

Table 1 below, shows the different layers (subproblems) 
and their corresponding objectives and solutions (protocols) 
in the TCP/IP network model. 
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Table 1.  Multi-Layer Objectives in TCP/IP Network Design. Adapted 
from [31] 

Layer Optimization Objective Solution 

Application Minimize response time 

Various 
Application 
Protocols e.g 
HTTP,SFTP 

Transport Maximize Utility  TCP 

Network Minimize Path Cost  IP 

Link Reliability, Channel Access, Various MAC 
protocols 

Physical  Minimize Signal to Noise Ratio, 
Maximize Capacity etc 

Various Physical 
Layer protocols 

3. Hierarchical Multilayer Service 
Composition Model-HMSCM 

3.1. Qualitative Description of the HMSCM Model 

We cast the service selection problem onto the network 
utility maximization problem (NUM) based on the 
formalism of Layering as Optimization Decomposition as 
follows. First, we view the composite service composition 
as “a multi layered network” with each layer trying to 
achieve some local optimality towards to global 
optimization objective. In the case of network design, the 
global optimization problem is formulated as the basic 
NUM, generalized NUM or the stochastic NUM problem. 
Then based on the NUM global optimization problem, 
layered variants of the NUM [32] problem are formulated 
and solved. In the case of service composition, there is no 
universally agreed formulation of global “Service Utility 
Maximization” optimization model.  However, as stated in 
section, the MIP global optimization model by Benatallah et 
al [9] has been widely adopted in the formulation of MIP 
solutions to service selection problems. In the place of 
NUM therefore we have what we dub here as “basic Service 
Utility Maximization (SUM)” model, referring to the MIP 
model in [9]. Then, we adapt the basic SUM model to fit the 
proposed layered architecture leading to SLUM for Service 
Layered Utility Maximization Model. SLUM is described in 
more detail in section 3.2. 

Secondly, we have to identify the “layers” in our 
“network”. Unfortunately, unlike in network design where 
there are well established network models such as OSI and 
TCP/IP, no network model or layered network formulation 
of the service selection problem exists today. Luckily we 
can draw some analogies from the NUM problem and based 
on existing work on QoS aware web service selection, we 
work backwards to identify a minimum number of “layers” 
in the network. Here goes the analogy. The generalized 
NUM problem puts the end user at the forefront leading to 
two types of functions [28]: 1) maximizing end users sum 
of utility functions over variables like rate, reliability, delay , 
jitter and 2) a network wide cost function determined by the 
network operator that can be functions of congestion, power 

efficiency etc. Putting the service consumer at the forefront, 
we can see at least two similar objective functions naturally 
arising in service composition problem. The following 
objectives can be identified: The first objective is that the 
service consumer would like to get access to the composite 
service at the minimum possible cost within the shortest 
possible time. Therefore from a consumer perspective 
minimization of financial burden (which includes 
minimizing actual cost of accessing the service and 
minimizing the financial risk) and minimization of service 
response time are key concerns. Financial risk is associated 
with QoS factors like reputation and security .Thus from 
this perspective, we have that the end user objective 
function is a utility function over the following web service 
QoS attributes: service execution cost, reputation, security 
and response time. On the other hand, the most important 
performance parameter from a business perspective is 
throughput –how many customers can be served in unit 
time. By implication, this extends to response time, 
reliability, availability etc. Therefore in the global virtual 
organization case, the virtual enterprise broker key 
objective is maximizing webservice total utility over 
throughput and other performance factors that affect 
throughput including response time, reliability, and 
availability. From these two objectives, we work backwards 
to formulate the two “layers” (subproblems) of our 
“network”: Layer 1 and Layer 2. The objectives of these 
two layers were introduced in section 1 and here we 
summarize them in Table 2. 

Table 2.  Optimization Objective Functions in HMSCM  

Layer Optimization Objective Solution 

Layer  2 
Maximize the utility function over 

composite webservice execution cost, 
reputation, security and response time 

SCUM 

Layer 1 
Maximize the utility function over 
response time, service execution 
success, throughput ,availability 

SPUM 

Third, we need to establish which of the two layers 
“serves” the other. This is the same as asking the question: 
should the optimization process start at Layer 1 then Layer 
2 (bottom up service selection optimization) or from layer 2 
then layer 1 (top-down service selection optimization), does 
it matter which way? Starting with the last question, the 
answer is yes, the flow of information during the 
optimization process using the layered approach matters. 
Assume a top down approach is chosen. There is a 
possibility of selecting services with the lowest costs, 
lowest financial risk and lowest response time at Layer 2 
but that have the worst reliability, reliability and or 
throughput when evaluated at Layer 1. Two possibilities: 
First if none of the composites meets the constraints at 
Layer 1, then no solution is found. Second, a subset or all 
the services may meet the threshold constraints on 
reliability and availability but only marginally. The result is 
that such services will have a higher probability of failure 
during execution whereas potentially more reliable but 
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more costly and less efficient services were “prematurely” 
dropped at layer 1. Conversely, if a bottom up optimization 
approach is followed, there is a possibility that composite 
services with the highest throughput, availability, reliability  
are chosen but may fail to meet the test at Layer 2 i.e either 
they do not meet cost, financial risk or response time 
constraints. If they did meet only marginally, the execution 
of the composite service may result in one of the following. 
Non responsiveness (web service takes too long to respond), 
a higher cost burdens to user, or potential loss of cash due 
to less trusted services. The point is that bottom up and top 
down optimization approaches may each yield different 
values to global optimization objective resulting into 
different optimality values. So whether to follow the bottom 
up or top down optimization approach is a problem itself. 
This paper takes a top down up approach –solve the SCUM 
problem first then afterwards the SPUM problem. The 
reason is that end users objectives remain at the core. i.e 
reducing financial burden, financial risk and reducing the 
time taken to access a service. The worry that less costly 
and more efficient but less reliable and low throughput 
services that are more likely to fail during execution can 
resolved by making the following observations. First, web 
service reliability is a function of availability among factors. 
A service that often fails during execution due to 
unavailability is less reliable. Fortunately, availability is a 
QoS factor that can be captured as part of the service level 
agreements (SLAs) between the virtual enterprise broker 
and the various virtual enterprises within the global virtual 
firm. The SLAs will ensure that variability in service 
availability across virtual enterprises is within acceptable 
bounds, if the virtual enterprises were to remain within the 
global virtual market. Secondly, services that are less 
responsive (large response times) have double impact. One 
is that potential timeouts definitely ruin the reliability of the 
service- failure to execute successfully. Second, the delay 
negatively impacts the overall system throughput. However, 
the bottom up optimization approach automatically 
mitigates these drawbacks – since the utility function 
accepts response time as part of the inputs and its output 
value is also restricted by the constraints on response time, 
it means that resultant services are not only of low financial 
burden but of high efficiency thus leading to overall 
increased throughput and reliability of the composition 
system. Even more, our proposed MIP optimization 
algorithm at Layer 2 attempts to find all feasible solutions 
that are then promoted to Layer 1. This is done so as to 
avoid early elimination of otherwise candidate web services 
with higher reliability, availability and throughput values. 
Thus the conclusion becomes that “Layer 2 serves Layer 1”. 

Fourth, we need to identify primal or Langrage dual 
variables between Layer 1 and Layer 2, if at all there are. We 
observe that response time is a “coupling or primal or 
interfacing variable” connecting Layer 1and Layer 2. We 
can eliminate the primal variable by maintaining this 
variable at only one of the two layers. Since optimization is 

done top down, we have that this variable is maintained at 
Layer 2 only. There are two main reasons for doing this. 
The first one is to maintain the validity of our choice of the 
bottom up optimization approach as explained in the 
preceding paragraph. The other and perhaps the most 
important reason is premised on the empirical evidence the 
response time for distributed software components exhibits 
time varying multimodal statistical distributions. We make 
allusions to [35]. By implication, the distribution of 
response time of web services is a stochastic process. 
Therefore, to increase chances of more efficient services 
being promoted from Layer 2 to Layer 1, response time 
must be one of the decision variables at Layer 2. In the end, 
Layer 1 and Layer 2 are decoupled in decision variables but 
coupled by data dependencies i.e Layer 1 has to wait for 
data from Layer 2. 

Fifth, we model the flow of data or information from one 
network layer to the next layer as the flow of the web 
service composition Bipertite graph. The original graph 
contains all candidate web services. As the graph flows 
through Layer 2 and Layer 1, some services are eliminated. 

3.2. Mathematical Formulation of the HMSCM Model 

3.2.1. Problem Formalization 
We formally restate the composite service selection 

problem as follows:  
Given the tuple,〈𝑅𝑅, 𝐹𝐹, 𝐺𝐺〉 
Find: Pb∈ G   that can execute F to satisfy R 
Where; 
 R is the complex service request such that R = 

〈𝑟𝑟1, 𝑟𝑟2, . . . , 𝑟𝑟𝑛𝑛 〉 where 𝑟𝑟𝑘𝑘  is an atomic service request 
within R. 

 F is a sequential abstract workflow such that F = 
〈𝑡𝑡1, 𝑡𝑡2. . , 𝑡𝑡𝑛𝑛〉  where 𝑡𝑡𝑘𝑘 is a workflow task within F 
such that the execution of tk leads to the fulfillment of 
rk. The tasks are sequentially ordered as t1 → t2→,.., 
→tn , 

 G is the web service composition Bipertite graph such 
that G is the N-tuple 〈𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑛𝑛〉  where Vk is a 
vertex set containing a list of functionally similar 
concrete web services that can execute the task tk . 
Therefore Vk is the data structure List<Wkj> where Wkj 
is the jth

 service in Vk.. Each Wkj can be defined by the 
tuple 〈I, O, Q〉 where I is the set of input parameters, O 
is the set of output parameters and Q is the set of QoS 
values associated with Wkj. Any complete path 
constituted by a service drawn from V1, and another 
service from V2 , ..., and finally another service from Vn 
constitutes a candidate solution. If m is the number of 
services in every Vk.. then as shown earlier in section 1, 
there exists mn

 such candidate solutions or candidate 
composite services. Therefore we need to find Pb, the 
best path (composite service) that satisfies R. 

This paper is about solving for Pb
.  In section 3.2.2 we 

elaborate how our HMSCM model finds Pb using the Service 
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Layered Utility Maximization (SLUM) algorithm. 

3.2.2. The Service Layered Utility Maximization Solution 

Table 3.  The set Q of Web service QoS Attributes 

QoS Name Layer Absolute 
Symbol 

Atomic 
Service 
Symbol 

Composite 
Service 
Symbol 

Reliability  1 r r
s rc 

Availability  1 a as ac 

Throughput  1  h hs hc 

Execution 
Duration  2 d ds dc 

Execution Cost  2 c cs cc 

Reputation  2 u us uc 

Security  2 z zs zc 

Table 4.  Composite Service QoS Aggregation Functions based on 
Sequential Workflows 

QoS Name Aggregation Function 

Reliability rc 
=   ∏ 𝑟𝑟𝑠𝑠𝑖𝑖=𝑁𝑁

𝐼𝐼=1  

Availability ac
=    ∏ 𝑎𝑎𝑠𝑠𝑖𝑖=𝑁𝑁

𝐼𝐼=1  

Throughput hc
=   1/𝑁𝑁(∑ ℎ𝑠𝑠𝑖𝑖=𝑁𝑁

𝐼𝐼=1  ) 

Execution Duration dc
=   ∑ 𝑑𝑑𝑠𝑠𝑖𝑖=𝑁𝑁

𝐼𝐼=1  

Execution Cost cc
=    ∑ 𝑐𝑐𝑠𝑠𝑖𝑖=𝑁𝑁

𝐼𝐼=1  

Reputation uc
=  1/𝑁𝑁�∑ 𝑢𝑢𝑠𝑠𝑖𝑖=𝑁𝑁

𝐼𝐼=𝑁𝑁 �   

Security zc = 1/𝑁𝑁(∑ 𝑧𝑧𝑠𝑠𝑖𝑖=𝑁𝑁
𝑖𝑖=1  

Table 3 above contains some of the relevant web service 
QoS attributes as defined in various literature sources such as 
[6-9]. We have also assigned operational absolute symbol, 
symbol of QoS parameter when referring to an atomic 
service as well as when referring to a composite service. 
Hence forth, we will use these QoS variables to define our 
model although the methods presented based on this sample 
of QoS parameters are general enough to be applicable 
beyond the sample parameters used in this paper. In Table 4, 
we provide aggregation functions for computing the overall 
QoS of a composite service or a plan assuming sequential 
workflows. 

SLUM contains three major phases: QoS vector 
decomposition phase, Bottom Up Problem Specification 
phase and the Top Down Service Selection phase. Bottom up 
problem specification entails defining preferences on QoS 
parameters, formulating an optimization objective function 
and defining optimization constraints starting with Layer 1 
then Layer 2. The Top down service selection phase involves 
solving the Service Consumer Utility Maximization (SCUM) 
subproblem at Layer 2 followed by a solution to the Service 
Provider Utility Maximization (SPUM) subproblem at Layer 
1. 

1. Decomposition of the Set of Quality Attributes 
The original set of web service QoS attributes, Q is 

divided initially into two disjoint partially layered sets of 
QoS attributes, Q1 and Q2, such that Q1 is in Layer 1 and Q2 

is assigned to Layer 2. Q2 contains all web service QoS 
parameters related to the financial burden and financial risk 
to be borne by the service consumer and one performance 
QoS parameter – response time. Q1  contains the set of all 
performance parameters except response time. In practical 
SOA applications, this step should be performed by the 
Virtual Enterprise Broker. 

2. Bottom Up Problem Specification  

I. SPUM Problem Specification at Layer 1 
A. Layer 1 Weight Assignment to QoS Parameters 

As a first step, the Virtual Enterprise Broker should define 
a weight vector W1  in which the ith element corresponds to 
a weight assigned to the ith QoS element in Q1  such that 
∑ 𝑊𝑊1

𝑗𝑗𝑗𝑗=𝑛𝑛
𝑗𝑗=1 = 1. A weight value assigned to a Qos parameter 

in Q1 indicates the relative priority of that QoS attribute from 
a service providers point of view. Suppose W1 = [0.5, 0.2, 
and 0.3] for reliability, availability and throughput 
respectively, then it means that the service provider is 
concerned about service reliability more than any other QoS 
attribute. From the same example, the virtual enterprise 
broker prefers services with a higher throughput than service 
which may have a higher availability with smaller 
throughput values. The weights can be adjusted as service 
performance statistics evolve over time. 

B. Layer 1 Objective Function Definition 

At layer 1, the objective function of the SUM problem, F1 is 
to maximize the utility function U1 over the set Q1, given the 
initial web service graph G, the weight vector W1, the set 
decision variables X1 subject to a set of constraints C1. X1   
contains the set of decision variables at Layer 1, while C is 
the set of constraints on X1. The objective is captured 
according (1) and refined according to (2). 

 𝐹𝐹1= maximize⟦𝑈𝑈1(𝑀𝑀1
𝑐𝑐 , 𝑊𝑊1)  ⟧           (1) 

The objective function  𝐹𝐹1  in (1) is translated as : 
maximize the value of the utility function U1 which takes as 
input, the QoS matrix M1

c  and the weight vector W1. M1
c
  is 

the matrix containing normalized aggregate QoS values for 
each candidate composite service (plan) on every QoS 
attribute in Q1. i.e by adopting a notation similar the one 
used in [9], the rows represent a candidate execution plan 
and the columns represent the jth QoS attribute and M1

cij
  is 

the raw aggregate jth QoS value of the ith
 execution plan . To 

compute Mk
cij

,  the aggregation functions given in Table 4 
are used accordingly. 

 Note that some QoS parameters can be positive while 
others negative. The QoS of positive parameters increase 
with increasing values of the parameter. The QoS of a 
negative parameter decline with increasing value of the 
attribute. For example in Table 3 above, execution duration 
and execution cost are both negative QoS attributes and the 
rest are positive parameters. For this reason, the matrix 𝑀𝑀1

𝑐𝑐 
needs to be normalized. If 𝑀𝑀𝑘𝑘

𝑐𝑐𝑖𝑖𝑗𝑗  is a positive parameter, we 
denote the normalized image of 𝑀𝑀𝑘𝑘

𝑐𝑐𝑖𝑖𝑗𝑗  by 𝑀𝑀𝑘𝑘
𝑐𝑐𝑖𝑖𝑗𝑗+  or  
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𝑀𝑀𝑘𝑘
𝑐𝑐𝑖𝑖𝑗𝑗−otherwise. 𝑀𝑀𝑘𝑘

𝑐𝑐𝑖𝑖𝑗𝑗+ and 𝑀𝑀𝑘𝑘
𝑐𝑐𝑖𝑖𝑗𝑗− are computed according 

to the scaling functions given in (2) and (3) respectively. 

𝑀𝑀𝑘𝑘
𝑐𝑐𝑖𝑖𝑗𝑗+ = �𝑀𝑀𝑘𝑘

𝑐𝑐𝑖𝑖𝑗𝑗 − 𝑀𝑀𝑘𝑘
𝑐𝑐𝑗𝑗𝑐𝑐𝑖𝑖𝑛𝑛�/�𝑀𝑀𝑘𝑘

𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑀𝑀𝑘𝑘
𝑐𝑐𝑗𝑗𝑐𝑐𝑖𝑖𝑛𝑛�     (2) 

𝑀𝑀𝑘𝑘
𝑐𝑐𝑖𝑖𝑗𝑗− = �𝑀𝑀𝑘𝑘

𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑀𝑀𝑘𝑘
𝑐𝑐𝑖𝑖𝑗𝑗�/�𝑀𝑀𝑘𝑘

𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑀𝑀𝑘𝑘
𝑐𝑐𝑗𝑗𝑐𝑐𝑖𝑖𝑛𝑛�      (3) 

    In both (2) and (3) : 
 If 𝑀𝑀𝑘𝑘

𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑀𝑀𝑘𝑘
𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐 = 0 ,1 is returned. 

 𝑀𝑀𝑘𝑘
𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐 is the maximum value in the jth column 

 𝑀𝑀𝑘𝑘
𝑐𝑐𝑗𝑗𝑐𝑐𝑖𝑖𝑛𝑛 is the minimum value in the jth column 

 𝑘𝑘, as usual is the optimization layer 1 or layer 2 

We will denote the resultant matrix after scaling the 
matrix 𝑀𝑀𝑘𝑘

𝑐𝑐 by 𝑀𝑀𝑘𝑘
𝑐𝑐′.Thus the optimization objective function 

at layer 1 is revised to (4). 

𝐹𝐹1= maximize⟦𝑈𝑈1(𝑀𝑀1
𝑐𝑐′, 𝑊𝑊1)  ⟧        (4) 

By applying the Simple Additive Weighting, SAW [18] to 
(4) as our utility function, (5) holds. 

𝐹𝐹1 = 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑚𝑚⟦𝑀𝑀1
𝑐𝑐′ ∗  𝑊𝑊1⟧         (5) 

Equation (5) can be expanded to (6). (6) holds because in 
our case all layer 1 QoS variables are positive. 

𝐹𝐹1 = 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑚𝑚�∑ [  𝑀𝑀1
𝑐𝑐𝑖𝑖𝑗𝑗+𝑗𝑗=3

𝑗𝑗=1 ∗ 𝑊𝑊1
𝑗𝑗]�         (6)  

A. Definition of  Layer 1 Optimization Constraints 
Let R, A and H be the reliability, availability and 
throughput thresholds set by the virtual enterprise 
broker on every execution plan. We use the notation 
𝐶𝐶𝑘𝑘𝑖𝑖  to denote the 𝑚𝑚𝑡𝑡ℎ  constraint at the 𝑘𝑘𝑡𝑡ℎ  layer. 
When k=1, the following constraints are enforced. We 
have: 

         𝐶𝐶11
:    𝑟𝑟𝑐𝑐 ≥ 𝑅𝑅   or ∏ 𝑟𝑟𝑠𝑠    ≥ 𝑅𝑅𝑖𝑖=𝑁𝑁

𝐼𝐼=1            (7) 

Since𝐶𝐶11
:     is nonlinear, we linearize it by taking the 

logarithms on both the L.H.S and R.H.S of (7) to get (8). 

      𝐶𝐶11: :log 𝑟𝑟𝑐𝑐 = ∑ log (𝑟𝑟𝑠𝑠𝑖𝑖=𝑁𝑁  
𝑖𝑖=1    ) ≥ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑅𝑅         (8) 

𝐶𝐶11
 , as represented in (8) is the constraint on composite 

service reliability. 
Similar to      𝐶𝐶11

,       𝐶𝐶12
, the availability constraint on 

composite service availability is expressed according to (9). 

         𝐶𝐶12: :log 𝑎𝑎𝑐𝑐 =  ∑ log (𝑎𝑎𝑠𝑠𝑖𝑖=𝑁𝑁  
𝑖𝑖=1    ) ≥ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐴𝐴             (9) 

The constraint on composite service throughput at the 
SPUM layer is captured in (10). 

         𝐶𝐶13: ℎ𝑐𝑐 = 1/𝑁𝑁(∑ ℎ𝑠𝑠𝑖𝑖=𝑁𝑁  
𝑖𝑖=1    ) ≥ 𝐻𝐻         (10) 

We need a binary variable to indicate whether or not a web 
service 𝑊𝑊𝑊𝑊𝑗𝑗𝑖𝑖  is selected from the vertex set 𝑉𝑉𝑖𝑖   ∈ 𝐺𝐺  to 
execute a workflow task, 𝑡𝑡𝑖𝑖. Conventionally this variable is 
represented as 𝑦𝑦𝑖𝑖𝑗𝑗   . In this work, we will represent this 
variable as 𝑦𝑦𝑘𝑘

𝑖𝑖𝑗𝑗  to reflect our layered architecture, where k is 
the layer number. At k=1, constraints   𝐶𝐶14 and    𝐶𝐶15 hold. 
         𝐶𝐶14 indicates that a service can assume 𝑦𝑦1

𝑖𝑖𝑗𝑗  value of 1 
or a 𝑦𝑦1

𝑖𝑖𝑗𝑗  value of zero. In (12),    𝐶𝐶15
  dictates that only one 

service can be selected from each vertex set 𝑉𝑉𝑖𝑖   to execute a 
task 𝑡𝑡𝑖𝑖 in the set F of workflow tasks. 

         𝐶𝐶14: 0 ≤ 𝑦𝑦1
𝑖𝑖𝑗𝑗 ≤ 1                (11) 

         𝐶𝐶15: ∑ 𝑦𝑦1
𝑖𝑖𝑗𝑗 = 1, 𝑚𝑚 ∈ 𝑉𝑉𝑖𝑖 , ∀𝑚𝑚 ∈ F          (12) 

In addition to the above constraints, at layer 2, we 
introduce the binary variable𝑙𝑙2

𝑖𝑖𝑗𝑗. 𝑙𝑙2
𝑖𝑖𝑗𝑗 indicates whether or not 

the service 𝑊𝑊𝑊𝑊𝑖𝑖𝑗𝑗  was selected during layer 2 SCUM 
optimization process. We enforce the constraint in (13) to 
imply that only services previously selected during layer 2 
optimization should be selected. 

         𝐶𝐶16: 0 ≤ 𝑚𝑚2
𝑖𝑖𝑗𝑗 = 1              (13) 

Thus the set of optimization constraints          𝐶𝐶1 at layer 1 
contains         𝐶𝐶11,  𝐶𝐶12 ,  𝐶𝐶13

   ,  𝐶𝐶14 ,  𝐶𝐶15,    𝐶𝐶16:    

II. SCUM Problem Specification at Layer 2 

A. Layer 2 Weight Assignment to QoS Parameters 
As a first step, the service consumer should define a 

weight vector W2  in which the ith element corresponds to a 
weight assigned to the ith QoS element in Q2  such that 
∑ 𝑊𝑊2

𝑗𝑗𝑗𝑗=𝑛𝑛
𝑗𝑗=1 = 1. A weight value assigned to a Qos parameter 

in Q2 indicates the relative priority of that QoS attribute from 
a service consumer point of view. Suppose W2 = [0.1, 0.4, 0.3, 
and 0.2] for execution duration, execution Cost, reputation 
and security respectively, then it means that the service 
consumer cares about cost more than any other QoS attribute. 
Recall that this differs from the state of the art where the end 
user is always assumed to be responsible for specifying 
weight preferences over all QoS attributes. With our 
approach, the end user can benefit from the optimization of 
parameters such as throughput, reliability and availability 
without necessarily being aware of the optimization process 
surrounding these parameters, just in the same way in the 
NUM problem, the end user can benefit from improved 
physical layer forward error correcting codes while such 
details are abstracted from them. After all, all service 
consumers always expect that whenever they access a 
service it’s available and that it will execute successfully all 
the time. Consequently with our methodology, end users 
have fewer QoS attributes over which to specify weights. 

B. Layer 2 Objective Function Definition 
At layer 2, the objective function of the SCUM problem, 

F2 is to maximize the utility function U2 over the set Q2, 
given the web service graph G1, the set decision variables X2 
subject to a set of constraints C2. X2   contains the set of 
decision variables at Layer 2 and C2 is the set of constraints 
on X2. G1⊑G i.e G1

 is the set of feasible solutions from Layer 
1 or the set of candidate solutions at Layer 2. G1

 may contain 
all or just a subset of paths from the original graph, G. This 
objective function is stated according to (14). 

𝐹𝐹2= maximize⟦𝑈𝑈2(𝑀𝑀2
𝑐𝑐, 𝑊𝑊2)  ⟧           (14) 

By applying (2) and (3) and using the conventions adopted 
in this paper, (14) transforms to (15). The objective function 
in (15) holds since at layer 2 duration and cost are negative 
parameters while reputation and security are positive 
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parameters. 

𝐹𝐹2 = 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑚𝑚�∑ [  𝑀𝑀2
𝑐𝑐𝑖𝑖𝑗𝑗−𝑗𝑗=2

𝑗𝑗=1 ∗ 𝑊𝑊2
𝑗𝑗] + ∑ [  𝑀𝑀2

𝑐𝑐𝑖𝑖𝑗𝑗+𝑗𝑗=4
𝑗𝑗=3 ∗

𝑊𝑊2
𝑗𝑗] �                      (15) 

C . Layer 2 Definition of Optimization Constraints 
Let D, C, U and Z be the extreme values set by the service 

consumer on composite service execution response time, 
execution cost, reputation and security in that order.  Here 
we define the constraints on composite service execution 
duration, execution cost, reputation and security in (16), (17), 
(18) and (19) respectively. 

  𝐶𝐶21: 𝑑𝑑𝑐𝑐 = �∑ 𝑑𝑑𝑠𝑠𝑖𝑖=𝑁𝑁  
𝑖𝑖=1    �  ≤  𝐷𝐷              (16)  

 𝐶𝐶22: 𝑐𝑐𝑐𝑐 = �∑ 𝑐𝑐𝑠𝑠𝑖𝑖=𝑁𝑁  
𝑖𝑖=1    �  ≤  𝐶𝐶               (17) 

 𝐶𝐶23: 𝑢𝑢𝑐𝑐 = �∑ 𝑢𝑢𝑠𝑠𝑖𝑖=𝑁𝑁  
𝑖𝑖=1    � ≥  𝑈𝑈               (18)   

 𝐶𝐶24: 𝑧𝑧𝑐𝑐 = �∑ 𝑧𝑧𝑠𝑠𝑖𝑖=𝑁𝑁  
𝑖𝑖=1    � ≥  𝑍𝑍             (19) 

In (16), (17),(18) and (19) the service consumer expects 
the best composite service:- 
• Not to take more than 𝐷𝐷 seconds before the consumer 

gets the final results to their service request as 
conveyed by   𝐶𝐶21 

• To cost them not more than C units of money to access 
the business service provided by the technical 
composite service as captured by  𝐶𝐶22 

• To have an average reputation of at least 𝑈𝑈  on the 
interval [1, 5]. 

• To have a security rating of not less Z on the average. 
The security associated with accessing the business 
service in this case is the average of the each service 
provided by each virtual enterprise.  

Just like with Layer 1, constraint on the allocation 
constraint 𝑦𝑦𝑖𝑖𝑗𝑗   are defined. Adopting our notation, we have 
(20) and (21) with the usual meanings. 

         𝐶𝐶16: 0 ≤ 𝑦𝑦2
𝑖𝑖𝑗𝑗 ≤ 1                (20) 

         𝐶𝐶17: ∑ 𝑦𝑦2
𝑖𝑖𝑗𝑗 = 1, 𝑚𝑚 ∈ 𝑉𝑉𝑖𝑖 , ∀𝑚𝑚 ∈ F                   (21) 

Top Down Service Selection  

A. SCUM Optimization Process at Layer 2 
At layer 2, all feasible solutions are determined i.e all 

combination of services that can fulfill the objective function 
𝐹𝐹1 subject to the constraints set 𝐶𝐶1 are returned in a solution 
pool. The reason for obtaining all feasible solutions as 
opposed to the optimal solution is so as to prevent possibility 
of prematurely dropping a service which would have 
otherwise scored better than a majority of the selected 
services. 

We define a Web service to Task Assignment Matrix 
(STAM. At layer 2, we will denote this matrix by L1.As an 
example, consider a two task workflow. Suppose initially 
before selection there were 3 candidate services per task.  

Before layer 1 evaluation, this matrix is represented in 
tabular form as in table 5 and after Layer 1 Optimization the 

matrix L1 is represented as shown in table 6 below. 

Table 5.  An example Web service to Task Assignment Matrix for m=3, 
n=2 before Layer 1 Optimization 

Workflow Task, i 
Candidate Web service, j 

1 2 3 

1 0 0 0 

 0 0 0 

Table 6.  An example Web service to Task Assignment Matrix for m=3, 
n=2, after Layer 1 Optimization 

 
Workflow Task, i 

Web service, j 

1 2 3 

1 1 1 0 

2 1 0 1 

During optimization at layer 1, for each service sij that is 
selected and assigned to a task i , yij  is updated to 
1.Suppose the resultant web service to task assignment 
matrix after layer 2 optimization is as shown in table 6. The 
Web Service to Task Assignment matrix, L1 in table 6 
indicates that:- 
• That services S11, S12 were selected for task 1 while 

service S13 was not selected for task 1 after phase 1 
optimization. 

• Service S21 and S23 were selected for task 2 while 
service S22 was left out 

• Out of 9 candidate solutions, only 4 feasible solutions 
were found. In this case only the paths < S11, , S21 >, < 
S11, S23 >,  <S12, S21 > and  <S12, S23 >  will be 
evaluated for performance at layer 2.  

Thus during SPUM optimization process at Layer 1, the 
𝑚𝑚2

𝑖𝑖𝑗𝑗values of S11, , S12,  S21, S23 will 1 and only these services 
will be evaluated at Layer 2. 

B. Layer 1 -SPUM Selection Optimization Process 
Having selected services whose combination maximizes 

the utility of user preferences on service execution cost, 
reputation etc and that meet the constraints defined on cost, 
reputation , at layer 1 the goal is to  select the  service 
combination that maximizes utility on performance related 
QoS subject to constraints defined on the performance QoS 
variables. The output of layer 1 optimization process is 
therefore a set of service combinations that fulfill 
requirements of both layer 1 and layer 2. The solution at 
Layer 2 therefore constitutes Pb

.  

4. Related Work 
As stated earlier the selection of the best composite 

service from a large pool of services based on many QoS 
attributes is a Multi-Criteria Decision Making NP hard 
problem. Thus many researchers are attempting to attack the 
problem from a MCDM perspective using different 
techniques. We divide prior work into two categories – the 



102 A Hierarchical Multilayer Service Composition Model for Global Virtual Organizations  
 

first one consisting of approaches that do not use any 
decomposition technique here in called monolithic 
Multi-Criteria Optimization Models and strategies which 
employ some decomposition strategy herein referred to 
Decomposed Multi-Criteria Optimization models. 

4.1. Monolithic Multi-Criteria Optimization Models 

In [40] QoS based service composition method based on 
constraint programming using simple additive weights and 
mixed integer programming is presented. Like the MIP 
model presented in [9], this method can be shown to be more 
efficient than exhaustive search planning approaches. 
However, still, it remains unscalable for large scale service 
composition and where many QoS attributes are considered. 

A planning graph based approach based on multiple 
criteria is proposed in [42]. Here the composition problem is 
specified using the PDDL language. OWL-S plan is then 
used to generate all possible execution path where each path 
is possible solution (composite service) satisfying the service 
composition goal. Then the SAW [18] is used to compute the 
overall score of each plan and the best plan generated. As 
pointed out in section 1, optimization based on propositional 
logic is limited; not all problems for instance can be 
modelled in PDDL efficiently. More, the algorithm 
presented here uses exhaustive search to generate all plans 
making exponential time in nature. 

In [39] a multiple criteria method for service selection 
based on Fuzzy logic is presented. Here users express 
constraints as Fuzzy rules. A weighting approach is also used 
where a user assigns what the authors call a Confidence 
Factor (CF) on the range [0, 1] where the CF denotes the 
importance of each fuzzy rule. Thus rules that are more 
important from a user’s point of view are assigned a higher 
CF value than the less important ones.  In real life 
applications, having users encode their preferences on QoS 
attributes in form of Fuzzy rules is far from practical. Also 
this method severely suffers combinatorial sate space 
explosion when the number of QoS attributes increases, the 
rule base grows exponentially. 

Virginie G. et al in [41] provide a linear programming 
method for QoS web service composition. However, the 
method is still based on monolithic optimization models that 
are not scalable with increasing number of web service QoS 
attributes as well as the size of web services. 

A global optimization method using Taylor expansion 
based on MIP is presented by Fan Yan [43].However; neither 
do the authors provide a justification of the use of the Taylor 
expansion nor results to back up their model. More as 
explained earlier, the scalability of MIP models are limited to 
small scale service composition [20], [22.]  

Shiang Chia Liu in [36] proposes a genetic algorithm for 
composite service selection. The advantage this has over 
MIP based models is that Genetic Algorithms (GA) are more 
efficient for ultra large problem sizes. However, GAs require 
configuration and tuning of extra parameters such as the 
population size [44]. 

The main innovation by Ngoko Y et al [44] is a MIP 
global optimization model for workflow based service 
compositions involving multiple cooperating abstract 
composite service services. Moreover, the optimization 
model takes into account service level agreement constraints. 
Generally the authors empirically show that their MIP global 
planning model is more desirable than local planning in 
terms of optimality of solutions. However, only two QoS 
attributes are considered during optimization so it remains 
unknown how the model can behave as the number of QoS 
factor s grow larger. 

All the foregoing algorithms suffer from the following. 
They are single objective and all assume that all weighting 
and preferences over QoS attributes is end user guided. This 
is too burdensome to the user. Secondly, the methods have a 
single objective or utility function iterating over the entire 
global set of variables. As we saw earlier, this leads to 
combinatorial explosion. 

4.2. Decomposed Multi-Criteria Optimization Models 

Singh et al [11] provides a decomposition method for 
service selection based on mixed integer programming. User 
global constraints are transformed into local constraints. 
Although the authors claim reduced MIP model that can be 
solved in linear time, no details are provided on how the 
decomposition method works. 

A phased approach to MIP optimization closer to ours is 
presented in Alrifai Mohamad [37]. The method is based on 
decomposition of global constraints into local constraints 
that then used during a local optimization phase. In phase 1 
one each QoS attribute value into quantity levels for each 
service in each service class. Then the objective is to find the 
best combination values that will be used as upper bound 
constraints within the second phase that employs a local 
planning approach. MIP is applied to find the best 
combination of values that satisfy the constraint. In phase2, 
local search is used to select the best services. The challenge 
with this approach is that expressing global constraints that 
will not be violated by local constraints is a challenge. 
Further, the performance of the model is affected by the 
number of quantity levels d . The larger the d the less 
efficient the model becomes and vice versa. The value of d  
or range of d for which the model can perform better than 
conventional MIP remains unknown.  

We take a different approach to decomposition of the MIP 
approach to optimizing service selection. We base our work 
on a well-founded theory “Layering as Optimization 
Decomposition”. Here we are not only decomposing 
constraints but decomposing the network level objective into 
layerwise local objective functions that address both the 
concerns of the service provider and the service consumer. 
Like in [37], our approach is a two-step process. However 
unlike in [37] and others, our optimization in step (layer in 
our case) is based on global planning method in [9] (no task 
level local planning service selection is done). Thus we use 
global planning at each layer guaranteeing no violation of 
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global constraints, while enjoying improved performance 
due to smaller set of optimization variables at each layer. 

To the best of our knowledge, this first model: 1) that 
jointly considers service consumer utility maximization and 
service provider utility maximization under a single 
framework. 2) that extends formal theory of Layering as 
optimization decomposition [28-31] to the joint service 
provider and service consumer utility maximization in the 
web service selection problem. 

5. Conclusion and Ongoing Work 
Service composition continues to be acknowledged as the 

most agile technology approach to support dynamic 
business to business collaborations such as those found in 
global virtual organizations. The high demand on VEs to 
respond reliably and in time to consumer requests cannot be 
overemphasized. Yet, composing services efficiently in 
dynamic environments such as global Virtual Organizations 
still remains a formidable challenge. Current approaches 
besides being too sophisticated for industrial adoption often 
introduce performance overheads due to combinatorial 
explosion and severely fall short in large scale composition 
contexts. We have contributed to body of knowledge by 
proposing three key approaches to services composition 
considering end user objectives and service provider 
objectives 1) A Generic Layered Incremental Model that 
partitions the composition problem into 2 layers based on 
the theory of layering as optimization decomposition – one 
layer maximizing local utility of the service consumer while 
the other maximizing the local utility of the service provider. 
Together both layers attempt to achieve a global objective 
which is efficient service composition meeting user needs, 2) 
We develop a MIP optimization model called the Service 
Layered Utility Maximization (SLUM) extending the MIP 
model in [9] and formulate the problem at each layer in 
form of SLUM. Particularly, we introduce two submodels 
of SLUM – Service Consumer Utility Maximization 
(SCUM) and Service Provider Utility Maximization (SUM) 
addressing consumer and provider needs respectively. By 
dividing the problem into separate but interdependent layers, 
the combinatorial space explosion problem is attacked by 
reduced the number of variables to be combined. Further 
the model still supports global constraints. 3).Motivated by 
the NUM [32], the portioning of QoS variables into service 
provider facing and user facing, relieves the end user of the 
unnecessary burden of weighting QoS factors while still 
giving them to opportunity to maximize their own utilities 
on QoS attributes that matter to them. On the other hand, 
using our model, service providers such as the virtual 
enterprise brokers, have the opportunity to objectively 
influence the service selection process by controlling low 
level performance factors such as throughput, reliability and 
availability. The benefits of such an objective tuning of the 
service selection is passed over transparently to the end 
users. 

Currently we are working on validating the visibility of 

our models quantitatively using prototypes we have 
developed internally. We target to publish our preliminary 
results within the next two months. We hope that these 
results will shape the future direction on the applicability of 
the theory of layering as optimization decomposition to 
what we have coined the “Service Utility Maximization 
(SUM)” problem within the web services research arena. 
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