ASSESSMENT OF QUALITY OF DATA:

THE CASE OF THE 2008-09 KDHS

BY
MUGO EDWIN WAWERU
Q56/64546/2010

RF.SEARCH PRO.IECT SUBMITTED IN PARTAL FULFILMEN'I OF THE REQUIREMENTS FOR THE AWARD OF THF, DEGREF OF MASTER OF SCIENCE IN POPULATION STUDIES AT THE POPL:LATION STUDIES ANI) RESEARCH INSTITUTE (PSRI)

UNIVERSITY OF NAIROBI
P.O. BOX 30197

NAIROBI
IIIIIMIIII
NOVEMBER 2012

DECLARATION

I declare that this research project is my own original work. It is being submitted tor the degree of Master of Science in Population Studies at the University of Nairobi. To the best of my knowledge. it has nut been submitted before in part or in full for any degree or examination at this or any other university:

Candidate

MUGOEDWIN WAWERU
(Q56/64546/2010)

Signature

Date
Now 29, 2012

This research project has been submitted fur examination with our approval as University Supervisors:

Superisisor's Name

Dr. WANJIRL GICHIHI

Population Studies and Research Institute
University of Nairobi

Mr. BEN OLBONTO JARARI

29 November $20 / 2$

Population Studies and Research institute
University of Nairobi

DEDICATION

I dedicate this project to my wife Magdaline Chepchirchir, daughter Cicily Wanjiku and son Davidson Mugo Jnr. for your presence. encouragement and moral supporn, palience and understanding throughout the period when I wrote this report. Your constant cheer and prayers inspired me to push on.

To my parents Davidson Mugo and Patricia Wairimu, without whom I never wnuld have been you shaped my life through immense sacrilice, care and support. And through guidance and example, laught me muny a thing, values and virtues that conlinue to shape my character.

To my litele sister Purity Waringa and bruther Ren Ateku and your very own, Claire and Collins. for your loads of support and encouragement. Not even distance ever maltered.

And not to forget, to cucu Milka Wanjiku and cucu Lilizabeth Waringa, greal women who have had a big influence on my life. ever since.

ACKNOWIEDCEMENT

1 am greatly thankful to the Almighty God, my Wanderful Counsellor and ever present help, for whom 1 continue counting the blessings.

I am greally indebted to my supervisors. Dr Wanjiru Ciichuhi and Mr Ben Obnnyo Jarabi fur their inspirational guidance that made me realise the completion of this project. Your perseveranee and understanding is greally appreciated.

Special thanks go to PSRI staff, Dr Kimani Murungaru and Mr Andrew Mutuku who listened and ollered advice when it mattered most, and Dr Anne Khasakhala for her role at the formative stage of the study. I am also grateful to them and the rest of the slaff at PSRI: Prof John Oucho. Dr laurence Ikamari, Dr Aguanda Otieno, and Mr George Odipo for therr academic influence-cum-nourishment that moulded and pmovided me with strong background knouledge in Population Studies and Research during my master's degrec programme.

And to the PSRI library staff - Jane Ochieng. Mildred Namukoa and Alice Okong'o, thank you for your varied assistance and sacrifice to accord an extra minute and hour when it mathered most.

Many thanks to my colleague students at PSRI: Janet Naisoi. Victoria Amuoliza, Ifrancis Kamunya, Milan Adicri, Chris Agweyu, Irenc Macri, Charles Ogolla, Aeatrice Odat and Dhillon Nyachieo. Not to forget Fidelis Aluoch, Charles Obila, Cate Mbaire, Emma Watathi, Ken Lwaki, Janeth Nyarinda, Sharon Lidoro, Faith Alieno. Naomi Makau, Naomi Kiraka, Roy Meoly and W. Ohon. I treasure the valuable experiences shured in and out of clase and in those invaluable group discussions. To Dennis Odago. I still remember your humility. smiles and the moments shared, however short-lived. Sad yuu left us early; may yuur suul rest in peace brother, and as you would intonate, "My friend..."

To you all, I once again say. "Thanks and God hless you abundanly!"

Abstract

This sudy focused on the assessment of the quality of the Kenya Demographic llealth Survey (KDHS) data. specifically the 2008-09 survey. It sel out three objectives: to determine the extent of age heaping or digit greference for males and females in the $2008-09 \mathrm{KIDHS}$; to examine uge misreporting and transfers of respondents acrnss age boundaries: and to determine sex ratios by age in the 2008-09 KDIIS data. It utilised the Myers' Blended Method for data quality checks for ages given in single years and the age and sex ratios and the United Nations Joint Score methods to assess the quality of age reporing in five-ycar groups.

The study established that the 2008-09 KDIIS age data is highly inaccurate, with more women Ulan men having their ages reported as either unknown of nut given at all and age heaping rampant among males and lemales across the ages. Higher heaping was observed in even age groups compored to the odd age groups for buth sexes. Femules generally misrepurted their ages more compared to the males in the survey. Respondents had preferences tor ages ending in terminal digits 0 and 5 for the males and 0,5 and 8 for the femules, with the exception (for both sexes) of ages 5 and 15 years. Ages 55.48 and 68 years for the females were other exceptions to this observation. Overall, males and females avoided ages ending in terminal digits 1.7, and 9.

The data is also characterised by systematic entors brought about by age misreporting as is evidenced by age ratio values. For the males, there were preferences for the age groups $30-34$ and 70-74 years resulting in unusually more than the expected numbers while age groups 65-69 and 75.79 years were avoided giving way to unusually fewer than the expected numbers. On the other hand, females reported preference for the 10-14, 20-24, 50-54 and 70-74 years age groups. and avoided the 15-19, 55-59 and 75-79 years age groups. In terms of numbers, females outweighed males all through except at birth. This in turn suggests that individuals concerned had their ages carried across aye group boundarics, cither to the next lower or higher age group. a character more pronounced among lemales compared to males. The errurs detected in the 2008-09 KDIIS data are therefore likely to have compromised its quality and the accuracy of the various demographic measures derived out of it.

The study therefore calls for intensive training of KDIIS enumerators in order to reduce errors pertaining to respondents' ages in the future. Ofien, in estimation of ages, they base their figures on physical attributes, marital status among others. but it would be desirable if they sought documentary proof when in doubt. The study recommends too that populations be educated through mass medin on the need to report their eges as accurately as is possible. Culfures or traditions that influence misintormation on age should be discouraged.

It is prudent too that other methodology be employed to assess KDHS data to conlim the study findings and correct the errors for better and quality DHS data.

TABLFOF CONTENTS

DECLARATION ji
DEDICATION iii
ACKNOWLFDGEMENT iv
ABSTRACT. v
LIST OF TABLES ix
List OF FIGURES I
CIIAPTER ONE: INTRODI:CTION I
1.1: Background 1
1.2: Statement of the Problem 4
1.3: Research Questions 5
1.4: Objectives of the Srudy 6
1.5: Justification of the Study 6
1.6: Study Limitations and Assumptions 7
CIAAPTER TWO: LITERATURE REVIEW 8
2.1: Iniroduction 8
2.2: General Issucs on Data Quality 8
2.3: Age Reporting for Children 10
2.4: Reporting Age unong Males 11
2.5: Age Reporting among Females 12
2.6: Age Reporting Among the Fiderly (85* ycars) 13
CHAPTER THREE: DATA AND MEITIODOLOGV 14
3.1: Introduction 14
3.2: Data Sources 11
3.3: Sampling. 15
3.4: Assessing the Quality of the Data 15
3.5: Duta Analysis 16
3.6: Completeness of Data on Age 16
3.7: Measurement of Age and Digit Preference for Age Given in Single Years 17
3.7.1: Myers Blended Method 18
38: Measurement of Age Accuracy for Grouped Data Using Indices 19
3.8.1: Age Ratio 20
3.8.2: \quad Sex Ratio 21
3.8.3: United Nations (UN) Joint Score 21
3.9: Correcting Age Distributions 22
CHAPTER FOUR: RESULTS OF THF, ASSESSMENT 24
4.1: Completeness of Age Data 24
4.1.1: Completeness of Age Data. 24
4.1.2: Completeness of Information by Fducational I.cvel 25
4.2: Digit Preference in Single Years 26
4.3: Myers' Index 28
4.4: National Age Ralios, Sex ratios and Joint Score. 31
4.5: Regional Age and Scx Rntios and the UN Juint Score 35
4.6: Corrected Age Distributions. 35
CHAPTER FIVE: SLMMARY, CONCLI'SIONS AND RFCOMMENDATIONS 38
5.1: Summary 38
5.2: Conclusion 38
5.3: Recommendations 39
REFERENCES 10
APPENDIX 1: 2008-09 KIDHS Datu in Single Ycars, Kenya. 43
APPENDIX 2: 2008-09 KDHS Data in Five-Year Groups, Kenya $+4$

LIST OF TABLES

Table 4. 1: Distribution of Completeness of Age by Scx 24
Table 4.2: Types of Age Imputations for Men Aged 15-54 und Women Aged 15-49 Years 25
Table 4.3: Percent Completeness of Information by Ilighest Fducation Level 26
Table 4.4: Myers' Index for Males in the 2008-09 KDHS 29
Table 4.5: Deriving the Blended Male Population and Percent Deviations 30
Table 4.6: Myers' Index for liemales in the 2008-09 KDHS 30
Table 4.7: Deriving the Blended Female Population and Percent Deviations 31
Table 4.8: Computing Age and Sex Ratios 32
Table 4.9: Summary of Age und Sex Ratios and Age-Sex Accuracy Index by Province 35
Table 4.10: Reported and Smoothed Population of Males by Age und Sex, Kenya 36
Table 4.11: Reported and Smoothed Population of Females by Age and Sex, Kenya 37
Table 4.12: Summary of Indices Mcasuring the Accuracy of Duta 37

LIST OF FIGURES

Figure 4.1: Distribution of Male Population by Single Years 27
Figure 4.2: Distribution of Female Population by Single Years 28
Figure 4.3: Agc Ratios, 2008-09 KDHS 33
Figure 4.4: Sex Ratios. 2008-09 KDHS 34

CIIAPIER ONE

INTRODUC"IION

1.1: Background

The quality of any data is of paramount interest in that data is the foundation upon which all scientific research is built. Once data is processed. inferences, generalisations or conclusions are made and whose reliability or validity is dependent on the quality of data. Quality data is most likely to lead to objectivity in problem analysis which in tum will lead to reaching objective decisions. Poor quality data wit! most likely lead to incorrect inferences uhile decisions based upon such data will be misleading.

Data on age by sex are important for the description and analysis of various types of demographic data (mortality, lertility, nuptiality and migration), and for the evaluation of the quality (that is, completencss and accuracy) of the census counts on population (Shryock and Siegel, 1976; Siegel and Swanson, 2004). For example, social scientists have winterest in population's age stncture, planning for community institutions and services are dependent on age composition, and age is important in measuring potential manpower, school or voling population. Age dala are also required for preparing current population estimates and projections- such as of houscholds, school enrolment and health services requirements (Shryack and Siegel, 1976). A population's age data helps in calculating the dependency ratio, especially when the actual size of the working population is unknown (CBS, 2002).

According to Magadi (1990), data quality for censuses and surveys is influenced directly or indirectly by demographic, environmental, socio-economic and culluril factors; and demugraphic data compiled by national pmpulation consuses in devcioping countries such as Kenya are often subject to various limitations arising out of age misreporting and coverage errors. For example, Ewbank (1981) established that some Asian and African populatoons experienced overreporting of females in childbearing years, which indeed would have an effect on the quality of censuses and surveys through a tendency to exaggerate the ages of women

15-29 years - by pushing them inte the $25-34$ year age groups, probably to make their ages consistent with expectations regarding age at marriage and ferility. Fisewhere, a study in India by Ghosh (1967) pointed out that age misstatement was influenced by the age, sex and marital status of the person. Of the problems emanating from faulty data. Bairagi el. al. (1982) would acknuwledge, age misreporting stands out as major concem.

Complete and accurate repors of ages are critically important for demogruphic and health surveys (DHS) surveys. with eligibility for inclusion in the survey of women age 15.49. as well as most surveys of men and special surveys, dependent on the age given in the household survey. Both the numerators and the denominators of age-specific fenility rates, infant monality rates, and other rales depend on reported age. In addition. the quality of the reports of ages reflects on the quality of other information in the surveys (Pullum, 2006).

Errors on age may arise from failure to record age and misreporting (by respondent or erroneous estimation and/or allocation by enumerator and/or office respectively) of age (Shryock and Sicgel, 1976). The UN (1955) states that statislics classified by age groups may be affected hy errors in age reporting and by variations in completeness of enumeration. or of recording of vital events, for the different age groups.

The quality of DHS dala is of utmost importance to researchers. policymakers and programme managers as well as for planning purposes in developing countrics like Kenya (CBS, 1996b). Indeed, most of the statistics produced by DHS sun eys depend un accurate reporing of ages of women age 15-49 years and children (Pullum, 2006). Hut as the KNBS and ICF Macro (2010) aptly point out, estimates from a sample sun ey such as the DHS are affected by non-sampling etrors. Non-sampling errors - mistakes made in implementing dala collection and data processing - include the misunderstanding of the survey questions such as on age by either the interviewer or respondent and data entry errors; all which in turn compromise data quality. Though effors were made at implementation of the 2008 - 69 KDHS survey to rid it of non-sumpling errors, it was impossible to avoid them altugether (KNBS and ICF Macro, 2010).

Censuses and surveys may have problems that include not only vagueness, the icndency of respondents or enumerators to report certain ages al the expense of others. otherwise called age heaping or age preference or digit preference but also "complete ignorance" (Magadi, 1990; Shryock and Siegel, 1976). Indeed. there is low quality of age data in many censuses and surveys. largely due to a genuine inability of the respondent or the proxy to report the exact age(s) (UNFPA, 1993).

Systematic age preferences can couple with constant age biases to markedly diston age distributions (Barragi ct. al.. 1982). Indced, some African und Asian populations are marked by ar overreparting of females in the childbearing years with net transfiers out of the 10-14 and 454 or $49+$ age categorics (Fwbank, 1981). Such lurge net Iransfers of females into the childhearing years have an obvious harmfiul eflect on various fertility estimation procedures. Boih bias und random error in the age slatements for young children can also have great imporiance in demographic investigations (Bairagi el. al.. 1982).

In an analysis of three sets of demographic estimates for Pakistan, that is the Population Growth Surveys of 1968 and 1971; the Census of 1972 and: the 1973 Housing. Economic. and Demographic Sursey, Retherford and Mirza (1982) found systematic distortions in the estimates saused by parterns of age exaggeration that increased with age. They established that in Pukislan, there was very inaccurate reporing of ages of children for whom hirths werc estimated. Ior children aged 0-14, there was heaping noticeable particularly on ages 8,10 and 12 yearn, while for women, age heaping was systematically biased upward. in the form of age exaggeration that increased with age. Further, Retherford and Mirza (1982) state, in the Pakislan Fertility Survey of 1975, only 6 per cent of women knew their birth date. and ether the respondent or intervicwer had to guess the ages of the remaining 94 per cent.

One of the major difficulties in African censuses and surveys is age measurement (Magadi. 1990). In almost all African cultures. numerical aye has had no impurtance over the years. contributing to the many errors in African censuses and surveys (Kpedekpu, 1982). An analysis of Kenya's 1962, 1969. 1979. 1989 and 1999 Population and Housing censuses hay repeatedly
pointed at poor quality of age data generated. with improvenents on 1962, and only slightly between 1969 and 1989 (Central Bureau of Statistics, 1996a: CBS, 2002). In all the ycars. the Whipple's indices (measures the degree of heaping on ages ending in 0 and 5) obtained were high indicative of either "rough" or "very rough" age data for hoth male and lemale populations. For the 1989 census, the CBS (1996a) andysis of age repurting by sex found preferente for digits 0 and 5 by females that were higher than those of the males. Similarly. the 1999 census had higher concentration of age misplacement in ages 20, 30. 40. 50 and 60 years (CBS, 2002).

The age-ratio scores for the last three censuscs puinted al modest deterioration in age reporing. especially during the 1999 census (CBS, 2002). Analyses using the Unıted Nations index method (measures the fluctuations in age and sex ratios) found all the aforementioned censuscs" data ether "inaccurate" or "highly inaceurate" (CBS, 1996a; CBS, 2002).

Indeed. the CBS (undated) analysis of the 1979 Population Census cstablished that misreporting of ages distorted the reported age-sex distribution. The repon thereof states that in Kenya, many pcople do not know their ages precisely, implying that entrics made of their ages are guesswork. al times assisted by use of event calendars. Further, the evaluation established that among others. there was; a marked age heuping on round numbers ending in 0 or 5; oversatatement of ayes of young children: general exaggeration of ages among the middle aged and elderly. that is mure pronounced for men than for women, giving high sex ratios for the older age groups; and an overstatement of age among adolescent girls und young women, resulting in low sex ratios between the ages of 16 and 30 years (C.BS. undated).

1.2: Statement of the Problem

Age by sex data is important in that the estimates so oblatned ure specific to the population and are used for programmatic planning, policy, research purposes and planning for sacio-economic development. Consequently. owing to its inuportance, KDHS dala should be reported as precisely or concisely as possible. Otherwise. age misreporting can adversely affect various demographic measures. For example, children's age 0.5 should be accurate to ensure estimates such as neonatal and child mortality estimates are plausible; while females" ages must be as accurate as
possible to avoid unnecessarily transferring women into reproductive years which may in turn affect various fertility estimates Similarly, programmatic planning and its budgeling for children, adolescents. youths, men and women ages 15-49 years will require flawless data on age to inform on who in the population falls into these catcgories.

However. data on age in Kenya has had quality issues. Age is otten misreported owing to the fact that many people do not know their ages precisely, which implies that entries on age and therefore the reported age-sex distribution on census schedules and the KDHIS among others are likely to be distorted. This is manifested in age heaping around 0 and 5 , overstatement and/or exaggeration of ages of young children and of males and females in general.

Whice analyucal quality checks on the accuracy of reported ages are done for each censur, nu such efforts are evident for the 2008 -09 KDIIS, an exercise that is necessary 10 authenticate estimates so obtained. This study secks to establish the extent of age heaping/digit preferences, misreporting and/or misstatement at the household level and any irtegularities in age-sex destribution in the 2008-09 KDIIS.

1.3: Rescarch Questions

The study sought to answer the following questions:
a) What is the extent of aye heaping or digit preference and age misreporting in the 2008-09 KDHS?
b) Are there significant differentials in age heaping or digit preference by sex in the 2008-09 KDHS data?
c) How consistent are the sex ration from the $2008-09$ KDIIIS data?

1.4: Objectives of the Siudy

Ihe am of the study is: To carry out an assessment of the quality of data of the 2008-09 KDUIS"

Specific Objectives of the Siudy

The study specifically aims to:
a) Determine the extent of age heaping or digit prelerence for males and females in the 2008-09 KDHS
b) Examine age misteporting and transfers of respolidents across age boundaries.
c) Determine the sex ratios thmugh the different ages in the $2008-09 \mathrm{KDHS}$ data.

1.5: Justification of the Study

The age-sex structure determines a population's needs and the potential for fulure growth of the tutal population and of specific age groups. Consequently, information on age reporting is pivotal to effective development planning. programming and rescarch. as well as in policy formulation. Indeed, planning by and for privute and public sectors, such us the military, community institutions. and services like health and sales programmes require separate age by exx data. For example, the government will require age and sex classification of duta to plan for a rell out of a HIV and AIDS programme, while an hotelicr will require similar disaggregated data to guide market research and therefore estimate or project demand for services within a community. Consequenily, an evaluation of the extent of distortions in reported age by sex data will inform users of the data of its limitations and gude future censuses and surveys and specifically in our case, future DtISs in Kenya.

On the other hand, many demugraphic measures are age-specilic, such as estimates of agcspecific fertility ralcs. neonatal and child mortality. I'bat is. information on age is a basic variable in constructing many demographic parameters. Further, Inbulations on age are required in the computation of bavic measures relating to population change factors. in the analysis of labour supply factors and in economic dependence studies. Similarly, must indicators produced by DHS
surveys depend on ascurate reporting of ages of women and children. However, estimates of levels (or differentials) and Irends in such rales may be affected by misreporting of the ages of populations. affecting reliability of derived estimates. For example, since standard age intervals begin with (preferred) numbers ending in digits 0 and 5. misreporting can shift women infu the next higher age interval. Age displacement of women can seriously distor estimates of current levels and recent trends in fertility and mortality.

An assessment of the quality of age reporting will therefore make aware users of the KDHS of its limitations. This is despite the of highly quality of training enumerators are taken through and which is aimed at bringing out DHS data of high quality. The study is indeed timely in that it will inform programmes on among others, child health as well as on reproductive health souching on women that include family planning needs for specific age groups.

1.6: Study Limitations and Assumptions

The study examoned the quality of age and sex reporting in the 2008 -09 KDHS data to identify evidence of heaping and misreporting of ages. The study was only limited to omission and misreporting of ages. And whereas Myers', Whipple. Bachi, Carrier and Ramachandran indices are often used to detect digit preferences or irregularities in reporting age in single years, this study only utilised Myers' index for which literature suggests is most preferable.

For the 2008-09 KDHS, a representative sample of 9.057 houschulds was drawn with a total of 38.515 persons anslysed for age reporing, which is only abuut a 0.10 per cent of the total pupulation of 38.6 million peuple (based on the 2009 population cstimates by KNBS). Of the total. 18.774 are male and 19,741 female. It is however assumed that the degree of reporting for those interviewed is the sume as for the rest of the national population. Otherwise, this will be a limitation if the assumption is not irue.

CHAPTER TWO

LITERATURE REVIEW

2.1: Intraduction

This chapter revicws findings of past research and studies on age by sex repuring. and the attendant data quality issucs. (iencrally, the same issues cutting across census data are lound in surveys like the Demographic and Health Surveys (DHS). The chapler discusses issues such as underreporting (avoidance of certain age with a consequent lower number of people than expected) or overstatement of age (stating an age higher than the actud), heaping, age misstatement and misreporting and their influences on dnta quality, starting with the general and moving through. the specific categorics of individual populations. Specifically, the chapler examines gencral issues of data quality. age reporting for children. males and females and among the aged.

2.2: General Issuex on Dala Quality

Sousces of errors in surveys and censuses are numerous. And whereas it is easy to obtain information on sex, this is not always the case in reporting of age. for there urises variuus forms of error and bias. According to Bairsgi cl. al. (1982) and UNFPA (1993). simple random age errurs develop from among others, design of the questionnaire. coding errors, data processing, the intervicwer and respondent's (or that of proxy) inaccuracies in reporting the correet age. In retrospective inquiries, recall lapses further contrihute to response errors.

Further, a large amount of random error is common in age dasa in developing countries (Bairagi and Rahman. 1974; You, 1959). whale questions on age may clicit different interpretations in diflerent cultures (UNFPA. 1993) In many developing countries, the UNFPA (1993) goes on, exact knowledge of age is not important and birth registration is rare, rendering it difficult io obtain information on age. In such scenarios, age is otten approximated or even non-numeric: whereas in situotions that a main respondent has to supply infurmation on houschold members*
ages, the proxy reporting weighs in to age misreporting. Mis is borne out of the proxy's ignorance of own and other household members' ages. Matters are not made any easier in such countries where literacy levels are still low. birthdays are rarely noted. and if noted, at times in local calendar systems (different from the westem "solar" calendar) and enumerators oficn guess respondents' ages.

Aocording to Wamai (2004), the importance of age as a variable in demographic analysis cannot be underrated. Poor quality of age data. she reckons. will cerlainl) and significantly reduce the accuracy of such importan pupulation estimates as ferility and murtality. She suggesis thul evaluation of age data quality be carried out prior to carrying out any analytical work. Further. Pardeshi (2010) states that age-related data oflen suffer from misstatements and irregularitics compromising accuracy in censuses and sureys. Age heaping which is one such irregularity is considered to be a measure of data quality and consistency. Heaping as well as other constant age biases. Barragı el. al. (1982) continue, act to shif age distribution either up or down contributing to gross movements in and out of specific age categorics trequently distorting the age distributions in population censuses and sample survey dala.

From age dnta collected during a communily suncy in the Yavatmal District, Maharashtra state in India. Pardeshi (2010) established that there was age heaping at ages with terminal digits ' 0 ' and ' 5 ', indicaling a preference in reporting such ages while 42 percent of the population in the six villages sampled reported ages with an incorrect final digit. A UNFPA (1993) report cites consudcrable heaping at pust censuses for digits ' 0 ' and ' 5 ', with digits ' 2 ' and ' 8 ' also evidencing some overstatement. Digit ' 1 ', the repurt says showed the greatest amount of understatement, with most of the preference for digit ' 0 ' seemingly due to digit ' I ' rather than dygit '9'. At the houschold level, Pullum (2006) states that the household head or spouse is expected to repon information more accurately about humself or herself than about other household members. Rut in his study of three Bangladesh's DIIS, it emerged that the level of heaping at digits ' 0 ' and ' 5 ' was very low when the respondent gave his or her own age. but very high level of four to six times higher when the same person reported the age of uther household members. On the other hand. early American censuses were found to suffier lirom underreporting
of infants, distinct overstatement among those at advanced ages, heaping and the reporting of some individuals as being of unknown age (UNFPA, 1993). Wamai (2004) points out that age misteporting errors in males are lower compared to in females due to the higher literacy level among males.

Such sclective under or overenumeralion hy age, Bairagı el. al. (1982) argues, is a form of aggregative age misreporting. Selective enumeration by age can adversely affect standard Bourgeois-Pichat and Brass fertility estimates and may also lead to peculiaritics in selecting stable or quasi-stahle populations.

2.3: Age Reporling for Children

In the analysis of age data for 3.393 children six ycars of age and under in rural Bangladesh for the level und pattern of age misstatement. Rairagi cl. al. (1982) found random error, age heaping at whole years, and preferences for particular ages in the data. Variation in age reporting was discovered to increase monotonically with age. Systematic crrors in age misstatement displayed modest overstatement for the first luur years of life and more pronounced understatement for ages 4, 5, und 6 years. Flsewhere, the UNFPA (1993) points out, carly American censuses characteristically suffered from underreporting of the number of children at ages ' 0 ' und ' 1 ' years.

In an analysis of Turkish censuses for 1935-40 and 1955-60. IDemeny and Shorter (1968) concluded that there was exaggeration of age of young children. They had established that there was a deficit at ages 0-4 years, which in tum resulted into an excess of both males and females in ages $5-9$ years. Further, and accurding to Ewbank (1981), an Oflice of Population Research at Princeton study directed by Anstey Coale und Puul Demeny based on stable population analysis of more than 150 age-sex distributions from censuses and surveys established that the ages of infants and children are "probably" reported more accurately than the age of adults. I his, he altributes to their reporting by parents or other adults who remember the birth and that the rapid physiological and psychological changes during childhood making it easier 10 guess the age with reasonable accuracy. However, and citing various studics, he points out that parents often
exaggerated the ages of their children through rounding off, rather than truncaling it to the number of completed years, that is, an overstatement by a year for those within 6 months of the repurted age. Indeed, the study by Coale and Demeny concluded that the distortions had the tendency to exaggerate the ages of children aged $0-4$ years. Varied data from Senegal. Gambia and Ghana showed higher chances of understating age than oversiating age above about age 6 years in some cases and 7 or 8 years in other cases.

There was consistency in various countries for preference for even-numbered ages above age 5. that is. for ages 6, 8, 10 and 12 years. Furiher. a simulation of Coale and Demeny's "North" model life table showed a clear preference for ages 4.6.7 and 10 years. In some inslances. preference for 7 replaced the usual preferences for 6 and 8 . A survey of 4 censuses from North Africa, 6 from South America, and 15 from Asia demonstrated that preference for evennumbered ages is very strong "almost everywhere" Countries also varied in the degree of underreporting of the population aged 0 years and in the degree of accuracy of age reporting among children aged 0 and I year. World Fertility Surveys attested to the great variation in the ralios of the population uged 0 years to that aged 1 year and the pupulation aged 1 to thut aged 2 years.

2.4: Reporting Age among Males

Accurding to Myers (1951), the percentage of men reported as being of unknown age is higher than that of women oving to the fact that in most cases. wives at home do most of the reporting and may nol know their spouses' exact ages.

In a study of the 1989 and 1999 Kenyan census datu, Wamai (2004) found that males had the tendency to heap on ages endrag in terminal digits 0 and 5 . except age 5 years in 1999. The highest heaping occurred in ages $60,70,50,40,30,45,35.25$ and 65 years Ages must avoided were 73, 66. 44, 74, 34, 33, 64. 31, 41 and 46 years, an indication of avoidance for ages ending with terminal digits $1,3,4$ and 6 . Characteristically, the report adds that there was a decrease in age heaping since there was no age heaping for age 5 und 6 years in 1999 compared to 1989.

Preference for terminal digits 7 and 8 was similar in both censuses whereas there was no avoidance of age 2 and 3 years in 1999 but preference for icrminal digits 1, 4.8 and 9 in 1999.

2.5: Age Reporting among Females

In a study of age at marriage in India's West Bengal. (ihosh (1967) established that unmarred women around age 15 years tended to underilate their age seriously distorting the age distribution of unmarried females. Coale and Demeny's Princeton study (Ewbank, 1981) established a so-called African pattem (Iypical of populations in Africa and Southem Asia) in which females were characterized by a "surplus" at $5-9$ years, and a deficit in the adolescent age intervals (IO-14 and 15-19 years), followed by a surplus in the central ages of child bearing (2534 years). This latter sludy found evidence of exaggeration of the ages of girla 10.14 years if they passed puberty and an understatement of the ages of those who had not reached puberty; and a tendency to exaggerate the ages of women $15-29$ years, "probably to make their ages consistent with age al marriage and fertility". Ihe study atributed this to the fact that in societies in which age is unimportant, ages of young women are frequently estimated by their physical maturity, their union status, or their purity, while migration and formation of nes huuseholds are thought to he responsible for the relalively large under-enumeration in the 15-29 years age group. On the other hand, the so-culled Latin American pattem had general preterence for age groups $25-29$ and $35-39$ years over the age groups $30-34$ and $40-44$ years, with homen surplus reported at 20-29 years.

In the study by Wamai (2004), the highest age heaping umong females in the Kenyan censuses of 1989 and 1999 occurred in the ages 60. 70. 50. 40, 30. 45, 35, 20. 25, 65 and 10 years. an indicator of tendency to heap un ages ending with 0 and 5 , except in age 5 years. Ages most avorded were $73,66,74,34.44 .33,62,41.43 .53,51,72,63$ and 52 years, a pointer to avoidance for ages ending with lemminal digits 1, 2. 3, 4 and 7. However. preferences for terminal digits 7,8 and 9 were similar for the two censuses.

2.6: Age Reporting Among the Elderly (85+ years)

According to Hill et. al. (2000), age inconsistencies tend to increase slighly with age amung those aged 85 ycars and above. Although apparent for both sexes, this age pattem is more pronounced lor males. Myery (1951) agrees un this male-female comparison, saying that there is considerable amount of age overstatement among persons aged 90 years and over. In a study. Rosenwaike and Logue (1983) furher established that for the extreme old persons, the older the age al death reported on the death certificate. the greater the average error-the curve of average ertor plotied against reported age at death rises nearly exponentially

CHAPIER THREF

DATA AND METHODOLOGY

3.1: Introduction

This section examines the duta used for the study and methods uilized to analyse the data. It describes in detail the sources of data its composition and analysis of the quality using various methodologies Different methodologies are chosen depending on whether the age is in single years or five-year groups. Myers' blended methed is used to analyse for quality of age data in single years. This in iurn reveals preferences lor or avoidance of terminal digiss 0 to 9 . For age in grouped data the age and sex ratios and the UN Joint Score method are used to evaluate the quality.

3.2: Dala Sources

I he sludy utilized duta from the 2008.09 KDHIS. Specifically, the household lile was used. The dats was availed in the form of Statistical Package for Social Scientists (SPSS) softuare for mandows version 16.0. The Househald Questiunnaire was used to list ull the usual members and visitors. with basic inlormation collected on the characteristics of each person listed, including age and sex (KNBS and ICF Macro, 2010). The question that was asked during the enumeration was "How old is (NAME)?", where the NAME referred to cach of ull persuny who usually lived in the houschold and gucsis or temporary visitors of the household who stayed there the night before the suncy. Age was recorded in years.

Information on completeness of age data for males was derived from the male tile. The men eligible for the individual interviews were actually identitied using the Ilouschold Questionnaire. I he Men's Questionnaire was administered to all men age 15-54 yeurs living in every second household in the sample.

Notably, the questionnaires were iranslated from English to 10 other local languages- Kalenjin. Kamba, Kikuyu. Kisii, Luhya, Luo, Maasai, Meru, Mijikenda, and Somali- to ensure clarity and ease of understanding of questions by the respondents.

3.3: Sampling

A representative sample of 10,000 houscholds in the country was drawn for the 2008.09 KDHS The sample allowed for separate estimates for key indicators for each of the eight provinces in Kenya, and for rural and urban areas separately. liewer households and clusters were surveyed for North Lastem province owing to its sparse pupulation. while urban areas were oversampled to obtain enough cases for analysis.

The Kenya National Bureau of Statistics current master sampling firame for household based surveys- the fourth National Sumple Survey and Livaluation Programme (NASSEP IV) was developed (in 2002 from a list of enumeration areas covered in the 1999 population and housing census) on the platform of a (wo-stage sample design; and the 2008-09 KDHS adopted this design the first stage had selection of 400 data coltection puints (clusters) - 133 urban and 267 rural- from the national master sample frame. The second stage of selection involved systematic sampling of households from an updated list.

All women age $15-49$ years who were either usual residents or visitors present in sampled houscholds on the night before the survey were eligible to he interviewed in the survey. All men age $15-54$ years in every second household selected for the survey were eligible to be interviewed.

3.4: Assessing the Quality of the Dala

A total of 38,515 responses were analyzed for age reporting. that is. heaping and for cuidence of transfers oulside the age range of eligibility. Of this Iotal, 18.774 (about 49%) were male and 19,741 (or 51%) were female. the figures include each of all persions (children. men and
women), irrespective of age, who usually lived in the household and guests or tempurary visitors of the household present the night before the survey.

3.5: Dalu Analysis

Frequencics and percentages were be used to establish the proportions of incompleteness of data in the reporting of age. Age displacement acmss all ages for males and females was analyzed using age ratios und sex ratios. A graplical analysis of the respective age ratuos (plotted against age-groups) typically highlights the probability of any errors in the reported age data

Myers' Blended Index was be used for analysis of heaping and digit preferences or avoidances for each terminal digit. Ihe UN index of age-sex composition was also used to establish the extent of heaping.

3.6: Completeness of Data on Age

Completeness of any data is a very important indicator of its quatity. A person's age, was considered complete if age hus indicated and incomplete if the relums on age were missing or if it was not known. Such respunses could have been due in ignorance of age or lack of knowledge oi exact age and carelessness in reporling and recording (Kpedekpo. 1982: Pollard el al. 1974).

On the other hand, every DHS through the Household Questionnaire examines the completeness of reporting age and hirth date among others for women aged 15-49 ycars (Pullum, 2006). Similarly, the DHS' Men's Questionnarre addresses the completeness of age and date of birh (month and year) for men aged $15-54$ years. Ideally, cuch womm (and man) provides her (his) age in completed years, a year of birth, and a month of burth. Al a minimum. there should be an age or a birth year. Noting that some women do not provide all three items, and even if all information is provided. Pullum (2006) observes that there may be inconsistencies that require the imputation of one or even lwo of the items. As for women, men's age is also imputed for those values with inconsistencies or nut provided.

3.7: Measurement of Age and Digit Preference for Age Given in Single Years

Although age in single years is prone to different types of errors such as age misreporting, net underenumeration, and nonreporting or misassignment of age, age heaping remains oulslandingly rampant (Shryock and Sicycl, 1976). Populations with fow education slatus report high levels of age heaping while palterns for age or digit preicrence vary from one culture to another with preference for " 0 " and " 5 " digit endings for age. On the other hand. digit avoidance may be specific to a people, with the West avoiding 13 and the Orient shunning '4". Age "0" years is grossly underreported because parents often do not take newborns as regulars in the family and many people diseregard 0 as a number like any other
l'o obtain indices of age preferences. the arithmetic devices developed dejend on the assumprion of a true distribution of ponulation by age over a purt or all of the age range (Shryock and Sicgel, 1976). That is, that the true figures form un arithmetic progression or are rectangularly or linearly spread over this range (say 3-year, 5-year or any other age range) which includes and. preferably. is centred on the age under examination.

For example, over a 3 -ycar range, the index of heaping on age say 32 years will be calculated as the ratio of the enumerned population aged 32 years to one-third of the propulation aged 31, 32 and 33 years. Still, it may be calculated over a 5 -year range as the ratio of the enumerated population aged 32 years to one-filth of the pupulation aged $30,31,32,33$, and 34 years Usually. this index is otren calculated as a percentage.

Therefore, for any age x whose population is P_{x}, the index of heaping in a 3-year and 5 -year ranges rempectively will be:

$$
\frac{F_{y}}{\left.1 / x P_{z-1}+P_{z}+P_{x+1}\right)} \times 100 \quad \text { and } \quad \frac{F_{x}}{1 / 5\left(P_{x-2}+P_{y-1}+P_{x}+P_{x+1}+P_{x+1}\right)} \times 100
$$

Often, the two indexes are approximately the same, whether a 3-year or 5-year group is used (Shryack and Sicgel. 1976).

3.9.1: Myers' Blended Methend

Myers' blended method computes for preferences and avoidance of all terminal digits " 0 " 10 " 9 " where age is given in single years. The method derives a blended population that is essentally a weighted sum of the number of persons reporting ages ending in each of the 10 terminal digits (Kpedekpo. 1982, Yusuf F. 1967). It is assumed Uat barring any Imegularitics, the blended sum a each of the digits should be 10 percent of the total blended population. Therefore. any excess reflects preference while any shortfall implies avoidance. The Index of Preference, or the overall measure of the extent of digit preference or avoidance in a population is then oblained as the aboolute sum (or in sume case, half the sbsolute sum) of devintions for cach of the terminal digits In theory. Myers' index can vary between 0 for ages that are reponed accurately and 180. for where all ages are reported with the same terminal digit (Pollard et.al. 1974; Kpedekpn. 1982).

In computing the blended populations (Yusuf. 1967). a decision is made about the age range on which to base the computations. Usually, the limits are not less than 10 years and 80 years for the louer and the upper timit respectively. This is because the age-reporting at Jess than 10 and more than 80 years of age is affected by causes other than digital preference.

Taking the age range $10-79$ years. the Myers' Index involves the computation of two series of population folaly with a time lag of 10 years. In our case, one series will have a range 10-69 years while the second will have the range $20-79$ years. If $P(x)$ is the population at age x, the ten population tolals in the first series will be:

Total for digit 0	$=P(10)+P(20)+\ldots \ldots \ldots \ldots+P(60)$
Total for digit I	$=P(11)+P(21)+\ldots \ldots \ldots+P(61)$
.	
Total for digit 9	$=P(19)+P(29)+\ldots \ldots \ldots . .+P(69)$

Similarly, the ten population totals in the second series will be:

Total for digit 0	$=P(20)+P(30)+\ldots \ldots \ldots+. . .+P(70)$
Total for digit I	$=P(21)+P(31)+\ldots \ldots \ldots+P(71)$

Total for digit $9 \quad-P(29)+P(39)+\ldots \ldots \ldots \ldots+P(79)$

The fen population tolals (one for each digit) of the lirst scries (10-69) are then multiplied by weights 1.2. $3, \ldots \ldots . . .10$ while the tolals of the second serics (20-79) are multiplied by 9.8 . 7,....., $I, 0$ respectively. The two scis of products are then summed for each terminal digit to arrive at the blended population for that digit. Ihe blended populations for the ten digits are then converted into percent of the total blended population. Myers' Index is derived by summing the absolute differences of the percent blended populations for each terminal digit from 10 percent. This method effectively gives equal weights in each terminal digit. Algebraically, the sum of blended populations (age runge $10-79$ years) corresponding to the ten terminal digits is equal to the sum of the populations in the ranges 10-69. 11-70.12-71,..... 19.78 and 20-79 years.

To interpret the results, it is noted that the percent deviation for each digit will be a measure ul preference or avoidance for ages coding in each lerminal digit. Positive deviation will imply preference while negative deviation is synonymous with digit avoidance.

3.8: Measurement of Age Accuracy for Grouped I)ata Using Indices

There are several indices for cvalualing the age and sex composition. The age. and sex ratios and indices for detecting digit preference in uge reporting are some of the principal indices used for evaluating the age and sex composition. They rely on an expected pattern reflecting the distribution of a population without migration and in which mortality and fertility have changed in only one direction. The rwo indices may be used either separalely or jointly in evaluating the quality of a census or survey returns by age groups (Kpedekpo, 1982).

3.8.1: Age Ratio

Aecording to Arriaga (1994), age ratios for 5 -year age grouns may be used as indices for detecting possible age misreporting in populations where fertility has not fluctuated greatly during the past and where intemational migration has not been signilicant. Age ratio is defined as the ratio of the population in the given age group to one half the population in the two adjacent age groups (Kpedekpo. 1982). Mathematically. if $\{P$, is the age group from age x years to age $x+5$ years., P_{x-g} and $s P_{n+1}$ the preceding and the following age groups respectively, then

$$
\text { Age Ratio }=\frac{\int \vec{r}_{x}}{1 / 2\left(\jmath P_{x-5}+, P_{x+5}\right)} \times 100
$$

However. Shryock and Siegel (1976) define the age ratio as the ratio of the population in the given age group to one-third of the sum of the populations in the age group itself and the preceding and following groups, times 100. Cunsequently for the same age group above.

$$
\text { Age Ratio }=\frac{{ }_{s} P^{1 / 3}\left(, P_{x-5}+, P_{x}+, P_{x+5}\right)}{100}
$$

However, in the UN procedure. the previous definition suffices for the age ratio.
The age ratios so computed are then compared with the expected value. usually 100.0 , with discrepancies at each age group the measure of net aye misrepurting. In both cases, the three aye groups form a nearly linear series. assuming no extreme fluctuations in past births, deaths or migration. By expecting a value of 100,0 , it is assumed that coverage errors are about the sume fos all age groups. The larger the fluctuations of age ratios, and the larger their deviation frum 100, the greater is the probahility of erorss in the data.

Shryock and Siegel (1976) furher came up with an overall age-accuracy index equivalent to taking the average deviation (irrespective of sign) from 100.0 of the age ratios over all ages. Mean deviations are separately calculated for males and females (by dividing the sum ol
deviations from 100.0 by the number of age groups) and the average of the two mean deviations agken as the overall accuracy of the particular age data.

3.8.2: Scy Ratio

The sex ratio is calculated by taking the number of males in a population and dividing it by the number of females in the same population, usually expressed as the number of males per 100 fenales (Pollard et.al., 1974). Scx ratios may be calculated separately for various ages or age groups to give age specific sex rasios, with the sex ratio at birth being fairly constant for most countries of the world at around 105 male birthe per 100 female births. Naturally, mortality is wsally higher for males than iemales, and the sex ratio is reduced continuously up to the oldest ages (Arriaga, 1994).

The age specific sex-matios oblained are then compared to expected values, the latter being carcfully developod cstimates (developed principally from vital satastics) or theuretical figures based on a populaliun model (Shrjock and Siegcl, 1976).

Sex ratios depend largely on the on the number of male and female births (Arriaga. 1994) and the relative mortality of the population and where there is substantial migration, on the age-sex distribution of the migrant infake or uuthou (Shryock and Siegel. 1976). In a study among populations with African origin in the US and Europe, Garenne (2003) Lsiablished that they had louer sex ratios compared with those from other parts of the world. The generyl pattern of the age specific sex ratios is such that they approximate to the sex ratio at birth in the younger ages, and fall gradually with advanced age (Kpedekpo, 1982). Further. Arriaga (1994) states that the larger the abrupt departure of this ratio from values close to 100 . the larger the possibility of errors in the data.

3.8.3: United Nuliuns (UN) Joint Score

The United Nations has further developed an index incorporating measures of accuracies of the age and sex ratios, otherwise called the UN gee-sex accuracy index, also referred to as the UN
joint score. In the index (Shryock and Siegel. 1976), the mean of the successive differences frum one age group to the next in reported sex ratios, irrespeclive of the sign, are laken as a measure of the accuracy of the obsen ed sex ratios, on the assumption that these age-to-age changes should approximate zero.

The UN age-sex accuracy index combines the sum of:
a) the mean deviation of the age ratios for males from 100.0 ;
b) the mean deviation of the age ratios for females from 100.0 . and:
c) three times the mean of the age-to-age differences in reported sex ratios.

That is.

$$
\text { Joint Score }-(3 \times\{\text { sex ratio score }\})+(\text { male age ratio scure })+(\text { fcmale age ratio score })
$$

According to the UN, the Joint Score is judged on the following scale: Data whose accuracy andex is below 20 is termed accurate, from 20 to 40 inaccurate and anything over 40 as highly inaccurate. The age ratios, sex ratios and the $1 / \sqrt[N]{ }$ age-ration scores for both male and female and the age-sex accuracy indices can be obtained using the computer sofiware programme AGESEX spreadsheet (Arriaga, 1994).

3.9: Correcting Age Distrihutions

To correct lor age misyeporting, smouthing or graduation techniques are uscd. I'echniques avalable cither slightly madify or not the total population size. The errors in the age distribution arising from the age heaping are corrected by assuming that the excesses should be redistributed to adjoining ages or age-groups, thereby preserving the unique shape of the age distribution cunc and eliminating the irregularities (Bogue and Arriaga, 1993).

Smoothing formulas include those that do not modify totals, that is, the Carrier-Farmg. Karup-King-Newton. and the Arriagn, all which give rather similar results (Arriagn. 1994). Ihe United Nations formula however slightly modifics the total population. In the cuse where age
misreporting is not severe, light smoothing is done to correct the not so significant irregularities, while in the cvent that there is age misreporting coupled with digit freferences, together leading to severe irregularities, strong smoothing procedures are encouraged. Compuler programmes available may be used to fonegn very extensive numerical computalions, one such being the spreadsheet AGESM'll that smoothes population age structure by 5 -ycar age groups (Arriaga et al. 1994).

Single age distribution may be smoothed and adjusted by among others; filting of a stable population; litting a succession of polynomials; comparisons with a standard uge disiribution (UN, 1983). In order to adjust the 2008-09 KDHS data, the spreadsheet AGESMTH was used to smooth age in 5 -year groups.

CHAPTER FOLR

RESULTS OF THE ASSESSMENT

In this chapter, results of the analysis of the quality of the $2008-09 \mathrm{KDHS}$ are discussed. Graphical methods, descripluve analysis and population analysis spreadsheets were used to come up with the results.

4.1: Completeness of Age Data

There were a total of 18,774 males and 19,74 I females lur whom age analysis was done. I'uble 4.1 presents the frequency distribution of males and females and data on persons whose ages were missing or who did nul know their ages.

	Frequenc:		
	Males	Females	Foral
Agereported	18.768	19.722	38.490
Dar'i Know	1	9	10
Misalne	5	10	15
Tula!	18.774	19,741	38,515

For the male population, it is evident that one person did not know ("DK"- don't know') his age while another five (5) had their ages missing. On the other hand, nine liemales did not knou their ages while 10 had their ages missing in the retums from the household questionnaire.

4.1.1: Completeness of Age I)a14

Demegraphic Health Surveys examine completeness of age data for women in the reproductive years $15-49$ and that of men in the years $15-54$. For the $2008-09 \mathrm{KDHS}$, the observalions in Table 4.2 were made un how age was separted and any subsequent impuiation danc. Notubly, all women and men in the 15.49 and $15-54$ age groups sampled for the survey had their ages lalling
into the categories shown in the table. Consequently, none had age reported in such a manner that; Year and age were ghen, year ignored; Year given age and month imputed; , fonth given. age and year imputed, and; None given. all imputed.

Table 4.2: Types of Aee Imputations for Men Aged 15-54 and Women Aged 15-49 Ycars

	Frequency		Percen	
	F	M	F	M
Age, month and year given and okay	6190	2588	69.24	74.69
Manth and age given, year imputed	94	8	1.05	0.23
Year and age given, month imputed	2145	850	23.99	24.53
Age given, year and month imputed	511	19	5.72	0.55
Talal	8940	3465	100	100

From Table 4.2. more males (ncarly 75\%) compared to females (at 69\%) had their responses on age fully complete such that no imputation had to be made. Responses that had aye and yeur given but month imputed had near equal proportions for both males and females (23.99% and $\mathbf{2 4 . 5 \%}$ respectively). That for which only age was given und year and month of birth being imputed had males proportionately outnumbering lemales 10 times: and the case for which month and age were given und only the year had to be imputed had the proportion of males outweigh females by nearly five times (1.05% and 0.23% respectively).

It can, therefore, be concluded that men had their ages reported more completely compared to females An assumption is made that the degrec of completeness in reporting the ages for both males and females is uniform throughout the ages, this considering that the 2008-09 KDHS considered completeness only for males aged $15-54$ ycars (in the men's file) and females aged $15-49$ years (household file) only.

4.1.2: Completencss of Information by Educulional Level

lable 4.3 below presents completeness of age information cross-labulaled by highest educational level The percentages represent the propurtions for males and females out of the respective
fotals for each. Ihat is, any percentage for males is taken out of the total number of males aged 15-54 ycars while percentages for males represent individual figures taken out of the total number of females aged $15-49$ years.

Table 4.3: Percent Completenesi of Information by Highes Education Level

	Hiphest Educational Level							
	No education		Primary		Secondar		Higher	
	Malc	Female	Miale	Female	Male	Female	Male	Female
Age, monih and year given and ukay	1.10	380	36.80	37.00	26.50	20.90	10.30	7.50
Month and age given, year impuled	0.00	0.10	0.20	0.60	0.10	0.20	0.00	0.10
Year and age given, month impuled	4.50	9.60	14.40	11.90	4.80	2.40	0.80	0.10
Age given, year and month impuled	0.40	1.30	0.10	2.50	0.00	1.20	0.00	0.50

It ean therefore be conctuded that for persons without any education. the proportion of females was higher than that of malcs in each of the four age reporting categories. It appears that overall. for persons with at least some education. men outnumbered women whose age, month und year were given in such a way that no imputation had to be made. And across all education levels. there were more women compured to men whose age duta was most incomplete, that is where age only was given and year and month of birth were imputed.

4.2: Digit Preference in Single Years

To examine the extent of digit preference for age in single years. a summary of responses on age and sex distribution is presented in graphical form. l'his is done separstely for males and females. From the graphs below (figures 4.1 and 4.2), evidence of heaping may be deduced from the sharp peaks. while digit avoidance is noted where the truughs are sharpest.

Tigure 4.1: Disiribuition of Male Papulation by Sla Ie Yeary

Age

For the male population. heaping is observed in the ages $0.2,6,8,10,12,16,18,20,22,25.28$. $30,32,35,38,40,42,45,50,60,65,70,80$ years. the highest or major heuping is observed in the ages $0,6,8,10,30,35,40,45,50,60,65,70$ and 80 . Hence it can be argucd that from the general heaping, males covered in the 2008-09 KDHS had a preference for ages ending in 0, 1. 2. 5,6 and 8. flowever. Ionking at the ages with the highest heaping, it emerges that ages with terminal digit 0 and 5 were the must preferred with the notable exception at ages 5 and 15 that were actually avoided altogether. Further, the results indicate thal males avoided ages 1, 7.9.11. 17, 19, 21, 29, 31, 33, 37, 39, 41, 51, 61. It can therefore be argued that there was a tendency by the males 10 avoid age ending with terminal digits 1,7 and 9 .

A similar plat for the distribution of females yielded the graph shown in Figure 4.2. From this graph, it can be deduced that females on the other hand had their ages heaping on $0,6,8,10,12$. $16,18,20,22,25,28,30,32,35,38,40,45,50,56,58,60,65,70,72,75,78$ and 80 years. The bighest heaping occurred at ages $0,6,8,10,12,16,18,20,22,25,28,30,32,35,38,45,50,60$. 65. 70 and 80 years.

Figure 4.2: Distribullon of Female Populailon by Single Y'ears

Age

Like their male counterparts, it is apparent that the females covered in the 2008-09 KDHS generally preferred ages ending with $0,2,5,6$ and 8 . Bul even as it emerges that the most preferred terminal digil was 0.5 and 8, there was notably an exceplion for ages 5, 15,55. 48 and 68 years. The females, it is ubserved, ulso avoided ages 1, 7, 9, I1, 14, 17, 19, 21, 27, 29, 31, 37. 53 and 57 years. This reflects avoidance for terminal digits 1.7 and 9 .

4.3: Myers' Index

The computational procedures (adapted from Pollard cl. al (1974)) were done scparately using the 2008-09 KDHS data for males and females. An age range $10-79$ years over which the extent of digital preference is measured is divided into two party overlapping sub-ranges 10-69 und $20-$ 79. Population lotaly are then computed for ages ending in each of the ten terminal digits as shown in Table 4.4.

The population totals (columns 2 and 5) are the multiplied by cocflicients in columns 3 and 6 to abtain products in columns 4 and 7 and whose sum is indeed the blended population in column 8 (see Table 4.5).

Table 4.4: Myeri' Indes for Males in the 2008-09 KDIIS

$\begin{aligned} & \text { Teral } \\ & \text { anl } \\ & \text { Dlall } \end{aligned}$	Numbers al ngea apeelifed							Sum of Ages 10-69	Siun of Age 20-79
	10-19	20-29	30-39	40-49	50-59	60-69	70-79		
0	619	370	363	297	193	155	111	1997	1489
1	408	262	178	89	56	43	21	1036	$6-18$
2	559	312	247	137	94	71	41	1420	902
3	491	238	154	114	66	49	23	1112	644
4	527	265	213	113	85	41	27	1244	744
5	366	323	265	221	112	77	40	1364	1038
6	435	240	131	133	110	41	28	1130	723
7	341	212	109	91	78	37	9	868	536
8	441	267	194	101	71	53	31	1127	717
9	319	192	135	95	57	36	9	834	524

For each of the digits, it is apparent as seen in lable 4.5 that the sum of the coefficients in columns 3 and 6 is 10 . Multiplication by these cocflicients is done to ensure that each digit has equal weight. In the casc of an age distribution with no digital preference or avoidance, the blended population total for each digit would be approximately 10 percent of the total population for all digits. The percentage for each final digit and deviations from 10 percent are shown in columns 9 and 10 respectively. 'The total of absolute deviations gives Mycrs' Index.

From Fable 4.5, for the males. Myers' Index results suggest preference for terminal digits 0 and 5. owing to the high values of the postive percent deviation. There is avoidance for ages with the terminal digits 1.3 .7 and 9 . Overall. the percentages suggest that the terminal digits in the order of preference are $0,5,8,2,6,4,9,3,7$ and 1 .

Table 4.5: Deriving the Bleaded Mule Papulation and Percent Deviailans

$\begin{aligned} & \text { Digil } \\ & \text { arlal } \\ & \text { and } \end{aligned}$	Age group 10-69			Age gronp 20-79			Blended Pupulation $(4)+(7)$	\% disiribul log	Deviatio n from 10\%
	Sum	Coeff cien 1	Produci (2) \times (3)	Sum	CoeT icient	Producl (5)ㅍ(6)			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0	1997	1	1197	1489	9	13401	14598	14.55	4. 53
1	1036	2	2072	648	8	5184	7256	7.23	-2.77
2	1420	3	4260	902	7	6314	10574	10.54	0.54
3	1112	4	4448	6.44	6	$386-4$	8312	8.29	-1.71
4	1244	5	6220	744	5	3720	99.40	9.91	-0.69
5	1364	6	8184	1038	\downarrow	4152	12336	12.30	2.30
6	1130	7	7910	723	3	2169	10079	10.05	0.05
7	868	8	6944	516	2	1072	8016	7.99	-2.01
8	1127	9	10143	717	1	717	10860	10.83	0.83
9	83	10	8341	524	0	0	8340	8.31	-1.69
8am							100.311		16.53*

-Represents sum of ahsolute dewiations

The procedures above are repeated for the female population, giving the results presented in Tables 4.6 and 4.7.

Table 4.6: Myers' Index for Females in the 2008-09 KDHS

Terminal Digil	Numbers al ages specificd (Females)							Sum of Ages 10--69	Sum of Ages 20-79
	10-19	20-29	30-39	40-44	50-39	60-69	70-79		
0	653	459	107	254	196	138	108	2127	1582
1	447	300	160	119	118	44	25	1188	766
2	597	404	269	151	143	53	47	1617	1069
3	499	330	196	128	95	56	30	1304	835
4	492	370	217	125	105	60	25	1369	902
5	366	389	275	212	119	86	44	1447	1125
6	444	289	205	135	143	47	24	1263	843
7	330	237	129	107	43	48	10	894	574
8	415	348	207	139	87	63	37	1259	881
9	327	234	154	109	56	39	13	919	605

1able 4.7: Deriving the Blended Female Population and Percent Deviailons

$\begin{aligned} & \text { Termal } \\ & \text { ball } \\ & \text { Digit } \end{aligned}$	Age group 10-69			Age group 20-79			Hlended I'opulatio - (4) $+(7)$	\% distributio n	besfali on from 10%
	Sum	Coeffi clent	Producl (2) (3)	Sum	Cocflici ent	Product $(5) \times(6)$			
(1)	(2)	(3)	(4)	(5)	(6)	17)	(8)	(9)	(10)
0	2127	1	2123	1582	9	14238	16365	14.48	4.48
1	1188	2	2376	766	8	6128	8504	7.52	-2.48
2	1617	3	4851	1067	7	7469	12320	10.90	0.90
3	1304	4	5216	835	6	5010	10226	9.05	-0.95
4	1369	5	6845	902	5	4510	11355	10.05	0.05
5	1447	6	8682	1125	4	4500	13182	11.66	1.66
6	1263	7	8841	843	3	2529	11370	10.06	0.06
7	894	8	7152	574	2	1148	8300	3.34	-2.66
8	1259	9	11331	881	1	881	12212	10.80	0.80
9	919	10	9190	605	0	0	9190	8.13	-1.87
Sum							113.024		15.91*

-Represents the sum of absolute devations

It is clear from Table 4.7 that females prelerred stating ages with terminal digits 0 and 5 and avuided ages with terminal digits 1,7 , and 9 . This is as evidenced by the very high values for the deviations, with a positive deviation implying preference while a ncgative value signifies avoidance of a digit. The percentage distribution in culumn 9 suggests that the terminal digits in the order of preference for females in the 2008 -09 KDH1S are $0.5,2,8,6,4,3.9 .1$ and 7 .

4.4: National Age Ratios, Sex ratios and Joint Score

For the 2008-09 KDIIS data. the computation for age rutios by sex and the sex ratios is done as shown in rable 4.8. This together with a computation lor the deviations from 100 of respective age ratios and the sex ratio differences are utilized in the calculation for age and sex ratio scores and the UN Joint Accuracy Index.

Toble 4.8: Compailas Ase and Sex Ratlon

Malea				Female:				
Age (ira!p	Numhe r	Age Ralio	Deviations from 100	Numbe r	Age Ralio	Deviations Irom 100	Sex Rallo	Firs! differencen
0-4	3180			3011			105.61	.1.87
5-9	2960	102.35	2.35	2754	96.65	-3.35	107.48	10.61
10-14	2604	107.12	7.12	2688	115.96	15.96	96.88	-4.19
15.19	1902	93.90	-6.10	1882	82.71	-17.29	101.06	23.39
20-24	1443	92.28	-7.72	1863	110.27	10.27	77.67	-4.76
25-29	1234	94.85	-5.15	1497	96.21	. 3.79	82.43	. 10.04
30-34	1155	109.58	9.58	1249	101.26	1.26	92.47	2.37
35-39	874	91.76	-8.24	970	95.76	-d. 24	90.10	.6.42
40-44	750	99.01	. 0.99	777	92.94	-7.06	96.53	5.21
45-49	641	103.05	3.05	702	97.91	-2.09	91.31	16.12
50-54	494	92.42	-7.58	657	114.26	14.26	75.10	. 20.35
55-59	428	100.35	0.35	448	87.16	-12.84	95.54	-1.23
60-64	159	106.85	6.85	371	101.50	1.50	96.77	10.55
65-69	244	83.85	-16.19	283	93.40	-6.60	86.22	-8.67
70-74	223			235			94.89	
75+	273			335				
Tatal	18768			19722				
Abralul - Talal			81.23			100,53		125.79
Mena			6.25			3.73		8.98

In the above I'able 4.8 ,
Age Ratio Score for males (ARSM) $=6.25$
Age Ratio Score for lemales (ARSF) $=7.73$

Sex Ralio Scurc (SRS) $\quad \mathbf{8 . 9 8}$

The age and sex ratios in T'able 4.8 may he represented graphically as below:

Flaure 4.3: Age Ratios, 2008-09 KDHS

From the age ratio curve, it emerges that compared to the expected value of 100 . the levet of misreporing appears more prunounced for females compared 10 males in the 2008-09 KDIIS. Males tended to markedly "overreport" (highly prefer or heap) their ages in the age-groups 30-34 and 70-74 years and "underteported" (avnided) their ages in the $65-69$ year age group. The females on the other hand had their ages concentrated in the 10-14. 20-24. 50-54 and 70-74 age groups, while they avoided stating ages in the 15-19, 55-59 ycar age groups. Fiurther, hoth males and liemales showed a very big dislike of avoidance of ages in the 75.79 year group.

The sex ratios obsened in Table 4.8 are plotted against respective age groups and presented in Figure 4.4 below. As an analytical too, the larger the abrupt departure of this matio from valucs close to 100 . the larger the possibility of errors in the data.

Figure 4.4: Sex Ratios, 2008-09 KDHS

From the graph (Figure 4.4), it is obscrved that sex ratio at birth is reasonably normal (that is. slightly over (00), while uther sex ratios suggest men only outnumber women at birth up to age nine only to be outnumbered all through the years aller with the exception of near equal numbers for the age groups $10-14,15-19$ and $40-44$. Frmors in the 2008-09 KDIIS data may be deemed 10 be in the age gmoups $\mathbf{2 0 - 2 4}, 50-54$ and $80-84$ where the abrupt departure of sex ratio from values close to 100 is largest

The UN Joint Accuracy Index of the Joint Scure is culculated as foilows;

$$
\begin{aligned}
\text { Joint Score } & =3 \times(\text { sex ratio scure })+(\text { male and female uge ratio scores }) \\
& =3 \times S R S+A R S M+\text { ARSF } \\
& =(3 \times 8.98)+(6.25+7.73)=26.94+13.98=40.92
\end{aligned}
$$

According to the UN suggestions (Arriaga. 1994). a Juint Score index value below 20 indicates that the data is accurate, while for a value belween 20 and 40 . the data is inaccurate. and for an Index value above 40 the duta is highly inaccurate. In our case. the Index value of 45.86 is tow bigh suggesting highly inaccurate 2008-09 KDHS data.

4.5: Regional Age and Sex Ratias and the UN Joint Score

Regional population distribution, split into males and females is used as input in the AGLESEX computer soflware programme. (See Appendtr 2 for population disiribution at the rational and reginnal levels). A summary of the outpul is presented in 「able 4.9.

Table 4.9: Summan of Age and Sex Ratios and Age-Scx Accuracy Index by Province

	Hepios								
	Kenya	Naırobi	Central	Civas	F.astern	Nyanza	RVP ${ }^{\text {a }}$	Westem	NEP=
Age Katio Score for Males	6.95	15.45	11.04	846	13.76	5.46	8.08	11.50	27.90
Age Ratio Score for Females	7.73	19.60	8.44	14.52	9.18	10.70	11.60	7.93	24.00
Sca Ratio Score	898	28.26	11.69	18.09	11.58	13.80	12.62	10.12	29.03
Age-Sex Accuracy Inder	40.93	119.82	54.54	77.25	57.68	57.55	57.54	49.77	$\begin{array}{r} 139.0 \\ y \end{array}$

From Table 4.9, it can be concluded that regionwise. Western province's data appear better when compared with the rest of the regions. folloued by Central. Rift Valley. Nyanza and Fastern provinces in that order. However, Coast, Nairubi and North Fantern provinces (in that order) have the norst age by sex dala. As per the UN suggestion. it is evident that the age-sex data used in the 2008-09 KDHS is highly inaccurate. calling for strong smoothing.

4.6: Corrected Age Distributions

Table 4.10 presents results obtained from using the AGESMTH Soflware Programme/ spreadsheet to correct the male age data in the 2008-09 KDIIS. It shows that the smoothed population fur males using various methods is almost the same. Ilowever, it is observed that the variation from the repurted data is characteristically different for the age groups $10-14$ and 15 19. This implies age misreporting in these age categories by the males.

Table 4.10: Reparted and Smaathed Papalatian af Malan In Ageand Sex, Keny

		Smoolled				
Are	Reporied	Carrier Farrag	K.-King Newlon	Arriaga	Uni1ed Nations	Sirong
Totm, 0-79	18.612			18.612		18.612
Total, 10-69	12.132	12,132	12.132	12.132	12.130	12,132
0-4	3.180			3.266		3,311
5-9	2,960			2,874		2.829
10--14	2.604	2,486	2,469	2.473	2.554	2.364
15-19	1,902	2,020	2,037	2,033	1.939	1.972
20-24	1,447	1,474	1,495	1.471	1,453	1,58]
29-29	1,234	1,207	1,186	1.210	1,248	1.310
30-34	1,155	1.098	1.095	1.095	1.112	1,035
35-39	874	931	934	934	905	902
40-44	750	764	765	761	744	760
45-49	641	627	626	630	630	63.4
50-54	494	509	510	507	507	513
55-59	428	413	412	415	425	420
60-64	359	339	338	337	348	336
65-69	244	264	265	266	264	264
70.74	223			201		144
75.79	117			139		141
$80+$	162					

Simila conection procedure was performed tor the female population. Results presented in Table 4.11 show that the smoothed population fier the females using the five methods is nearly the same. However, it is observed that the variation of the sanoothed population from the reported is noticeably different for the age groups $10-14$. $15-19$ and $50-54$ years. This implies age misreporting in these age categories for the females in 2008-09 KDHS.

Table 4.II: Reporied and Smoalhed Papulation of Females hy Age and Sex, Keny a

Age	Reparted	Smeothed				
		Carrier Parral	K.-Kirg Nenlor	Arriaga	Uniled Nations	Strome
Total, 0-79	19,515			19,515		19.515
Total, 10-69	13.387	13.387	13.387	13,387	13,335	13,387
0.4	3.011			3.031		3,046
5.9	2,754			2,734		2.719
10.14	2.688	2.439	2.435	2.436	2.534	2.395
15-19	1.887	2.131	2,135	2,134	2.048	2.095
20.24	1,863	1.831	1.827	1.826	1,763	1,796
25-29	1.497	1,529	1.533	1.535	1.535	1,525
30-34	1,249	1,223	1,227	1.219	1.232	1,245
35-30	970	996	442	1,000	975	1.036
40.44	777	804	819	802	785	842
45-49	702	675	670	678	709	702
50.54	657	609	604	606	626	586
55.59	448	496	501	499	475	482
60-64	371	372	373	370	359	383
65-69	283	282	281	284	292	294
70-74	235			211		219
75-79	128			152		$1+1$
$80+$	226					

Consolidating the various indices for the 2008 -09 KDHS data, a summary of the findings is made in Table 4.12 below.

Table 4.12: Summary of Indices Measuring the Accuracy of Dala

Inder	Reparied	Smoulhed				
		Carrier Farrie	$\text { K. }-\mathbf{K} \ln \mathrm{L}$ Nicutam	Arriag	Uniled Nullumen	Sirang
Sex ratio scote	9.51	5.58	5.98	5.58	6.33	1.96
Male age ratio score	5.56	2.78	3.07	2.99	2.94	1.64
Femalc age ratio score	7.46	2.29	2.43	2.53	3.70	1.28
Accuracy index	41.56	21.79	23.44	22.25	25.62	8.70

It is observed that all the smouthing methods bring down the accuracy index by nearly half, with the exception of the strong method that is very accurate compared to the rest of the methods. 1he imputed accuracy indices based on the smoothed data lrom the vurious methods fall between 8.39 for the Strong Method to 25.62 for the United Nations method. Ihis implies that the smoothed data is only of fairly good quality. The 2008-09 KDHS dala may nol be deemed as satisfactory reporling.

CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1: Summary

The study focuses on assessment of the quality of 2008-09 KDIIS dats. While the main ubjective was to carry out the assessment of the quality of dala with a panticular focus on the 2008-09 KDIIS, specifically the study aimed at determining the extent of age heaping or digit prelierence for males and females in DHS, examining the age misreporting and determining the sex ratins through the different ages in the 2008-(0) KDIIS.

It emerged from the study that heaping of ages was rumpant in the 2008.09 KDHIS with a similur pattern for both males and females. Preference was ubserved in even age groups compared to the odd age groups for both sexes. Females were found to gencrally misrepor their ages compared to the males in the 2008-09 KDHS. Males overreported their ages at 30-34 and 70-74 and underreported their ages in the 65-69 and 75-79 age groups. Females on the other hand overreported their yyes in the $10-14,20-24,50-54$ and $70-74$ age groups. while they underreponed in the 15-19, 55-59 und 75-79 age groups. In terms of numbers, females outweighed males all through except al birth.

Wumen were also characteristically found to trail males in literacy as evidenced by the analysis on education. lor example, females without any education liar uutnumber males, while on the overall, males with at least secondary education and higher outweigh the females in the same category.

5.2: Conclusion

It is clear that the 2008-09 KDHS data is characterised by age misreporting errors. Age heaping is widespread with preferences for ages ending in terminal digits 0 and 5 for malers and 0,5 and 8 for females, but with exception for ages 5 and 15. Both males and females avoid ages ending in
terminal digits 1. 7. and 9. The 0 and $\mathbf{5}$ preferences are in tandem with the trends in reporting ages across countrics, giving credibility to the methodalogies used in this project. Compared to results from the Kenya Population and Flousing Censuses, the 2008-09 KDHIS data may not be deemed as salisfactory reporing For example, an analysis of the 1979, 1989 and 1999 national censuses had reported accuracy indices of 28.1. 24.9 and 26.4 respectively. The 2008-09 KDHIS data's Accuracy Index would attain values in this range only after smoothing.

The 2008.09 KDHS data is also characterised by systematic errors brought about by age overreporting and underreporting. This in tum is suggestive of the individuals concerned having their ages carried across age gmup boundaries. either to the next lower or higher age group. a character more pronounced for the female lot. The errors delected in the 2008 - 09 KDHS data are likely to have compromised its quality and the accuracy of the various demographic measures derived out of it. Further, differentials in education between males and females also influenced completeness of information or the way different sexes reported their ages.

5.3: Recommendations

It is recommended that the Iraining of KDIIS enumerators is intensified to reduce crrors. Often, in estimation of ages, they base their ligures on physical atrabutes. marital statur umong others. but it would be desirable they endeavour to use documentary prool when in doubt. Similarly, the masses should be educated through mass media on the need to repurt their ages as accurately as is possible. That nomen are the "bigger culpriss" could be bome out of lack of education, culture or tradition that intluences them to wish to conform to certain "accepted" ages. Other methodologies should be employed to assess KDHS data to confim these lindings and correct the efrors thereby yielding belter quality DIIS data

Further studies should also be carried across various KDHS data and varied methods of analysis utilised to assess data quality as uell as to adjust the KDHS data. Noting that the various indices computed are useful mainly in comparative analyses. it would be prudent to calculale the indices for various KDHS for this historical series would indicate whether the quality of the population age and sex reporting is improving or deteriorating.

RFFERENCES

Arizga, E. 1994. Population Analysis with Microcomputers; Presentation of Techuiques, Vol 1. US Census Bureau. Washington.
\qquad P. Johnson and E. Jamison. 1994. Population Analysis with Mierocomputers Vol 1I. US Census Bureau. Washington.

Bairagi, R., K. Aziz, M. Chuwdhury, and B. Edmonston. 1982. Age Misstatement for Young Children in Rural Bangludesh: In: Demography. Vol. I9, No. 4, pp. 147-458.

Bairagi, R., and A. Rahman. 1974. Age Reporting in Rural Rangladesh. Rural Demogruphy 1(1):65-85.

Boguc, J. and E. Arriaga. 1993. Correction, Graduation, and Interpolation of population Data. In Readings in Population Rescarch Methodnlogy. INFPA. Illinois.

Central Rureau of Statistics, 1996a. 1989 Population Census, Analytical Report: Volume III. The Population Dynamics of Kenya. Nairobi.
\qquad 1996b. 1989 Kényu Pupulatiun Censur, A Popular Report. Nairobi.
\qquad 2002. Kenya 1999 Population and Ilousing Census, Ihe Popular Report. Nairobi.
\qquad Undated. 1979 Population Census. Analylical Report, Volume II. Nairobi.

Ewbank, D. 1981. Typical Patterns of Distortions in Reported Age Distrihutions: In. Ake Misreporting and Age Selective Underencmuration Sources. Patterns and Consequences for Demographic Amalysis. Report No. 4. Commitiee on Pupulation and Demography. Washington DC. National Academy Press, pp 46.69.

Garenne, M. 2003. Sex Ratios al Birth in African Populations: A Review of Survey Data. Detroit, Michigan: Wayne State University Press.

Ghos, A. 1967. Demographic I'rends in West Benyali During 1901-1950. Census of India. Monograph No. 5. New Delhi, India. In, Bairagi R. el. al., 1982. Age Misstatement for Young Children in Rural Bangladesh: In: Demography, Vol. 19, No. 4, pp. 147-458.

Hill. M., S. Preston and 1. Rosenwaike 1. 2000. Age Reporting among White Americans Aged 85+: Results of a Record Linkage Study. Demugraphy, Vol. 37. No. 2. pp. 175-186.

Kenya National Bureau of Statistics (KNBS) and ICF Macro, 2010. Kenya Demographic and Healih Survey 2008-09. Calverton. Maryland: KNBS and ICF Macro.

Kpedekpo, G. 1982. Lissentials of Demographic Analysis for Africa. London
Magadi, M. 1990. Estimation of Age Distributions, Census Coverage and Death Regisiration Complereness in Kenya. Unpublished Masters Thesis. PSRI

Myers, R., 1951. Errors and Fias in the Reporting of Ages in Census Data.ln Jaffe, A.J. Hendbook of Statistical Methods for Demographers. Washingion. pp. 395-414.

Oucho, J., 1985. Some Demographic Measures of Rural Migrants in Kenya Based un Survey data. Genus, Vol 41, No I/2. Pp 77-95. Universita degli Studi di Roma "La Sapienza".

Pardeshi, G. (2010). Age Heaping and Accuracy of Age Data Collected During a Communiry Survey in the Yovatmal District. Afaharashtra, Indian ل Community Med. Vol 35(3): 391-395.

Pollard, A., F. Yusuf and G. Pollard, 1974. Demographic Techniques. Sydney,

Pullum, I. 2006. An Assessment of Age and Date Reporting in the DIIS Surveys, 1985-200). Methodological Reports No. S. Calverton. Maryland: Macro Intemational Inc.

Retherlord. K. and G. Mirza. 1982. Evidence of Age Exaggeration in Demographic Estimates for Pakistan. Population Studies. Vol 36. London.

Rosenwaike, I. and B. Logue. 1983. Accuracy of Death Cerificate Ages for the Extreme Aged. Demograply, Vol. 20, No. 4. pp 569-585

Shryock, H. and J. Siegel. 1976. The Meshods and Materiak of Demography Sen Diego, Califurnia. Academic Press Inc.

Siegel, J. and D. Swianson (Eds). 2004. The Methods and Materials of Demography. Lilsevier Science (USA).

UNFPA. 1993. Readings in Population Research Mcthodology. Social Development Centre. Chicago, Illinois.

United Nations, 1955. Methods of Appraisal of Quality of Basic Data for Population Estimates, Manual II. Population Siudies No. 23.

Wamai, A., 2004. Detection and Correction of Errors: A C'are Study of 1989 and 1999 Census Data. Unpublished Masters Thesis. PSRI.

You, P. 1959. Errors in Age Reporting in Statistically Underdeveloped Countries. Population Studics 12(2): 164-182.

Yusuf, F. 1967. On the Extent of Digital Preference in Reporting of Ages in Pakistan. The Pakistan Development Review: pp $\$ 19.532$

APPENDICES

APPENDIX 1: 2008-09 KDHS Dala in Single Years, Kerya

Age	Males	Females	Are	Males	Females	Age	Males	Females	Ase	Males	Females	Are	Malcs	Females
\bullet	69	619												
1	590	557	21	262	300	41	89	119	61	43	4	11	10	14
2	646	608	12	312	404	42	137	151	62	11	53	8	13	22
3	610	621	23	238	330	43	118	128	63	40	96	13	7	11
4	639	606	24	265	370	4	113	125	6	41	60	s	13	15
5	534	50\%	25	323	389	45	221	212	65	7	86	\pm	13	11
6	695	660	26	240	289	46	133	135	6	41	47	s	11	8
7	541	481	27	212	237	47	91	107	67	37	48	87	3	7
8	6\%	624	28	269	348	4	101	139	6	53	63	81	5	5
-	491	4 SJ	29	192	234	4	9	109	68	36	39	85	2	9
10	619	653	4	36]	407	50	193	196	70	111	108	9	16	17
11	101	417	31	178	160	31	56	118	71	21	25	91	,	1
12	559	597	32	249	269	52	9	143	72	41	47	92	2	1
13	191	699	33	159	196	53	66	95	73	23	10	ง	3	1
14	577	492	30	213	217	So	85	105	94	27	25	*	1	-
15	366	366	36	265	275	s8	112	119	7	40	4	*	1	6
16	435	444	36	171	205	5	110	143	76	2	24	DK	1	-
17	341	330	37	109	129	57	78	43	7	9	10	Misodng	5	10
18	41	413	8	19	207	0	71	87	7	31	37			
19	319	327	3	135	154	9	57	56	73	9	13			
$1{ }^{1}$	370	499	0	291	254	4	199	158	\pm	31	6			

APPENDIX 2：2008－09 KDHS Daia in Five－Year Giraups，Kenya

Exalay																		
	Nalmel		Caniral		Canm		Emine		Nvา．		Efer		＊＊erime		Nan＋		Imal	
	M	F	M	F	M	F	4	F	M	F	M	F	M	F	M	F	M	P
0－4	140	205	号1	266	457	418	392	187	558	305	59	934	436	430	311	21	1180	3011
5－9	147	145	2悤	249	392	181	435	427	490	410	\＄3n	111	39	371	357	247	2900	2754
10－14	114	112	260	268	297	350	170	166	429	403	43	\＄95	144	374	315	317	2604	269
15－19	新	137	18	203	226	245	285	262	379	114	280	312	27	299	181	150	1902	159
20.24	167	252	103	187	194	263	$\underline{108}$	1\％	226	330	274	288	173	27	15	120	147	$1{ }^{4} 3$
25－29	191	24	138	170	155	193	134	1\％	19月	247	214	1988	147	165	64	112	1234	1497
10－34	$19]$	145	130	145	167	172	143	191	153	102	16	198	141	131	6	11	1153	1204
15－34	129	115	118	112	126	133	95	141	118	136	139	134	93	113	54	4	174	970
10－44	91	71	39	129	99	8	97	107	99	100	119	121	4	107	62	51	750	77
43－44	11	62	7	102	81	49	103	107	82	107	$1{ }^{\text {d }}$	106	6	84	41	45	61	32
50－54	54	A11	15	16	61	103	71	93	65	92	73	81	$\%$	75	5	46	404	657
55－59	60	12	49	69	68	59	99	15	S6	65	57	51	41	62	3	35	421	48
60，－4	41	29	43	S4	50	418	60	71	45	41	46	46	43	49	29	30	359	371
65.48	17	13	4	52	33	30	40	5	34	37	30	15	32	39	12	17	14	21
70－34	9	10	11	18	24	26	43	41	28	40	23	11	28	17	57	2	123	235
75－89	4	12	19	13	13	15	25	23	17	24	14	11	II	18	1	\＄	117	128
－1．8	4	－	12	24	10	16	16	26	14	10	16	17	13	15	9	14	98	130
AS＊	1	7	16	13	1	4	15	20	9	5	4	1	4	10	t	10	6	7
10.	1599	I为！	1900	1170	1451	2631	1991	272	2 SO	3031	3048	3200	2412	24 ${ }^{\text {en }}$	1343	1659	1娄76	1972

