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ABSTRACT 

In this paper response surface methodology was employed to investigate effectiveness of 

herbal medicine (Aqueous extract of Ganotech- from medicinal mushroom) in reducing the 

blood sugar level of a diabetic to acceptable level. In this setup, observations are made to 

investigate effectiveness for particular dosage at reducing the blood sugar level with time. 

The variance function comes in handy as a tool for discrimination between two points on the 

identified response surface. The most feasible of all the identified point of equal yield is the 

one in which the variance function is minimal. In this study we use the variance function of 

the difference two points to provide reliable advice on the range around which the dosage is 

desirable and time required to effectively reduce the blood sugar level to acceptable range. 

The analysis of the data from the experiment indicates that 46.2492 mg/dl concentration of 

the herbal medicine is effective in regulating blood sugar level in a diabetic within 136.1304 

minutes to acceptable range.  

Key words: Response surface; Variance function; Diabetes; Herbal-Medicine; Treatment. 

2000 Mathematics Subject Classification: 62K15, 62K20 

1. INTRODUCTION 

Medicinal herbs constitute an important source of raw materials for both the traditional and 

the conventional medicine. They have been in use world over, however over reliance on 

herbal drugs whose active ingredients have not been quantified results to different herbalist 

prescribing different concoctions depending on the flora availability. This may lead to 

resistance development, overdose or under dose which may lead to negative repercussion. 

There is need to standardize commonly used herbal drugs, by formulating a mathematical 

model that can be used to determine the best combination of herbs and best preparation 

practices in order to achieve the optimal response. By so doing, useful results and conclusions 

can be drawn by planned and designed experiment. 

The desire of any pharmaceutical process is to develop a formulation which is acceptable or 

effective in shortest time possible and at the same time using minimum number of man-hours 

and raw materials. Traditionally, pharmaceutical formulations are developed by changing one 

variable at a time by trial and error method which is time consuming. Further it requires a lot 

of imaginative efforts, Saeed Ghanbarzadeh etal (2013). Moreover, it may be difficult to 

develop an ideal formulation using this classical technique, since the joint effects of 

independent variables are not considered. It is therefore very essential to understand the 

complexity of pharmaceutical formulations by using a collection of mathematical and 

statistical technique which quantifies the functional relationship between a number of 
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measured response variables and several explanatory factors to obtain an optimal response by 

using a series of tests. The main advantage is to reduce the required experimental runs and to 

optimize formulation design in pharmaceutics studies.  

An experiment based on a herbal medicine extracted from Medicinal Mushrooms referred to 

as Aqueous extract of Ganotech, was carried out involving 21 albino rats. The rats were 

grouped into four groups all induced with diabetes as per standards and procedures required 

in a laboratory. After the recording of the Fasting Blood glucose the treatments were carried 

on the animals as per grouping and dosage levels effected using the herbal extract with varied 

concentrations of 25 mg/Kg, 50 mg/Kg and 75 mg/Kg. The fourth group (control group) was 

treated with conventional drug Metformin 500mg/Kg. The readings of the Oral Glucose 

Tolerance Test (OGTT) were undertaken at  and  minutes, which 

availed the data in use. 

2. THE MODEL 

In any treatment arrangement, we seek a treatment or treatment combination that can be used 

to either reverse a condition, eradicate or arrest a condition in order to minimize suffering or 

to help the patient bear a condition with less pain. The aim is to regulate the blood sugar level 

of a patient at that particular time to a level that is acceptable according to medical standards. 

Observations are made so as to note how effective the particular amount/concentration of the 

identified herbal drug is at reducing the blood sugar level with time. This investigation 

therefore is used to determine; 

i). The best possible level of concentration of the identified herbal medicine and 

ii). Time taken, to regulate the blood sugar level to within acceptable level in a diabetic. 

 

The results will provide the most reliable advice ( on the basis of the findings) on the range 

around which the dosage is desirable so as to make use of the information in maintenance of 

the desired level of glucose in a diabetic patient. 

In most Response Surface Methods (RSM) problems, the true response function  is 

unknown, we therefore need to approximate the function. In order to develop a proper 

approximation for , we model the data by starting with a low-order polynomial in some small 

region. If the response can be defined by a linear function of independent variables, then the 

approximating function is a first-order model. With reference to any order polynomial 

regression model (design) the general design for given observations is given as 

 

In general, a multiple-regression model with independent variable takes the form 
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The parameter  measures the expected change in response per unit increase in when the 

other independent variables are held constant. The -th observation and -th level of 

independent variable is denoted by . 

However, if a first order model is not sufficient and curvature exists, then a higher order 

model needs to be fitted to the data to explore the nature of the response surface. The data 

used suggested curvature and hence a higher order model is explored. One such model is the 

second order model which is of the form; 

 

 

Specifically with two predictor variables, equation (4) is of the form, 

 

   
 

where is the parameter associated with the interaction effect between concentration and 

time. 

3. PARAMETER ESTIMATES 

The method of least squares is practically employed to estimate the regression coefficients in 

(5). However, using statistical software, Design of Experiment (DoE) for the regression 

analysis, the same results will be easily obtained.  

In this case (for a second order model) the parameter estimates, the degrees of freedom, the 

corresponding standard error of the estimates as well as the 95% confidence interval of the 

parameters generated by the design of experiment software are as in the following table. 
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Table 1.1 Parameter Estimates for the Quadratic model 

Factor Estimate d.f S. Error 95 % LCL 95 % UCL 

Intercept 0.3371 1 0.052 0.23 0.44 

Time   0.1591 1 0.027 0.10 0.21 

Concentration  0.0535 1 0.026 0.001389 0.11 

 0.0687 1 0.031 0.003348 0.13 

 0.1102 1 0.044 0.021 0.20 

 -0.00144 1 0.050 -0.100 0.100 

 

The regression equation generated is 

 

where the variables as time represented by A and the  as concentration respectively. The   

corresponding analysis of variance table generated from this data is as follows: 

Table 1.2 ANOVA for Response Surface Quadratic model 

Source Sum of 

Squares 

Degrees of 

freedom 

Means sum 

of squares 

F-Value p-Value 

Model  1.00 5 0.20 9.02 <0.0001 

Time   0.76 1 0.76 34.38 <0.0001 

Concentration  0.095 1 0.095 4.28 0.0444 

 0.11 1 0.11 4.92 0.0316 

 0.14 1 0.14 6.19 0.0166 

 0.00001829 1 0.00001829 0.0001829 0.9772 

Residual 1.00 45    

Cor. Total 2.00 50    
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4.1 Tests of hypotheses-Model Adequacy 

Using these results of Table 1.2 for the second order model obtained in (5), the test of 

hypothesis can be carried out for this model as well as the parameter estimates. The 

hypothesis for the model is stated as: 

, against 

 for at least one . 

The calculated value of the test statistic . We thus reject the 

null hypothesis. Therefore model is significant. Alternatively using the generated -value we 

confidently state that the Model F-value of 9.02 implies the model is significant and there is 

only a 0.01% chance that an F-value which is this large could occur due to error (noise). 

The coefficient of determination is , indicates that 50.06 % of the variation in 

the sugar level is accounted for by the model (or is due to the variation in time and 

concentration). 

4.2 Test of hypothesis on individual parameter estimates 

We compute the test statistic for each parameter estimate and compare the resulting values 

with the table values at the desired level of significance ( ) and accompanying degrees of 

freedom from the model used. However, this can equivalently be achieved by using the 

  confidence interval in which we find that provided that the confidence 

interval does not include zero then the parameter estimate is significant otherwise it is not. 

The test hypothesis for individual parameter estimates is stated as 

, against 

 

Using the confidence interval approach we find that the parameter estimates that are 

significant are the ones corresponding to the variables  and  That is to imply 

that the variables which contribute to the reduction of blood sugar level are time, 

concentration, time squared and interaction of concentration with time. The parameter 

estimate corresponding to concentration squared is not significant, which implies that the 

accompanying variables do not explain the variation of blood sugar level individually. 

5. ANALYSIS OF THE STATIONARY POINT OF THE SECOND-ORDER MODEL 

When there is a curvature in the response surface the first-order model is not sufficient. Thus, 

a second-order model becomes useful in approximating a portion of the true response surface 

with parabolic curvature. Using statistical software (Design of Experiments-DoE) in analysis 

of a quadratic response, we get the following three dimension plots for the two continuous 

factors time and concentration; 
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Figure 1. Three d-surface plot View 

 

The accompanying contour plot for the three dimension view is as follows: 

Figure 2. Contour plot 
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The three dimension plot suggest that curvature exists and hence justification for having 

fitted the second order model. The second-order model is flexible, as it takes a variety of 

functional forms and approximates the response surface locally which is a good estimation of 

the true response surface. 

From the above results we conclude that response surface is explained by the second-order 

model. We now determine the optimum setting and recommend it for the effective 

management of average sugar level in a diabetic patient. Graphical visualization of contour 

plots helps in understanding the second-order response surface. Specifically, three 

dimensional surface plot and their accompanying contour plots help characterize the shape of 

the surface, and through these we will be able to approximately locate the optimum response. 

Using the fit of the second-order models, we illustrate quadratic response surfaces such as 

minimum, maximum, ridge, and saddle point. In the case that an optimum exits, then this 

point is a stationary point which can result in any of the aforementioned four possibilities. 

The stationary point in response surface models is the combination of design variables, where 

the surface is at either a maximum or a minimum in all directions. If the stationary point is a 

maximum in some direction and minimum in another direction, then the stationary point is a 

saddle point. When the surface is curved in one direction but is fairly constant in another 

direction, then this type of surface is called ridge system (Oehlert 2000). 

The stationary point is evaluated by use of matrix algebra for which the fitted second order 

model (5) in matrix form is expressed as follows: 

     

The derivative of  with respect to the elements of the vector  is given by 

 

Therefore, the solution to stationary point is 

 

where  is a  vector of the first-order regression coefficients and  is a  

symmetric matrix whose main diagonal elements are the quadratic coefficients  and 

whose off diagonal elements are one-half the mixed quadratic coefficients , 

Montgomery (2005). As a result, the estimated response value for the fitted model at the 

identified stationary point is obtained as: 

       

while 
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One of the points of interest in this study is the minimum condition for the explanatory 

variables. The results used above are for a maximum condition, modifying equation  for a 

minimum condition by negating it so as to achieve our desired results, the stationary point 

solution with this modification is found to be as follows: 

       

We now find the stationary point in terms of the natural variables, time and concentration 

from the coding concept adopted earlier. For time as a variable, we have 

 

 

 

 

This implies that the time taken to reduce the blood sugar level to within acceptable range is 

136.1304 minutes. With respect to concentration we have, 

 

 

 

 

Thus 46.2492 mg/dl of the herbal formula is to be used to regulate the blood sugar level to 

within the acceptable range. 

As a result, the estimated response value at the stationary point is given as 

     

which gives us 
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where  is the mean response given in equation (15),   is as in equation (12) and        is 

provided in equation (11). The reversed transformation for the amount of blood sugar level 

coded gives us 

 

 

) 

This is the estimated minimum blood sugar level for the given predictor variables. 

6.1 Variance of Estimated Response 

The variance function of the fitted model in a general case is used to evaluate competing 

designs, whereby the best design is one which has the smallest possible variance. The 

variance of estimated response  at a point on the sphere of radius ρ where,             

is 

 

 

here  is assumed to be unknown but constant and  are taken to be non-

stochastic. The prediction variance of the estimated response at a point say  is given by, 

 

where is the vector of co-ordinates of a point in the design space expanded to model form. 

Mostly, experimenters opt to use scaled predicted variance (SPV) arrived at by multiplying 

(18) by the design size and then dividing through by the process variance , that is 

 

This scaling is widely used to facilitate comparisons among designs of various sizes and 

eliminates the need to know the value of . 

Using the observations vector for the stationary point given in equation (12) 

 

The corresponding observation vector generally constructed from  for the quadratic model 

is 
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From (20), the variance is computed using 

 

Thus, 

 

       

    

 

We now show that       is minimum by comparing it with variance of another point on the 

same response surface. We take point  which is different from the stationary point, but in 

the neighbourhood of this stationary point, where, 

 

The variance for this estimated response using this vector   is found to be, 
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Comparing the results of equation (22) and (24), it clearly shows that the variance of the 

estimated response arising from the vector in equation (21) that is generated from the 

estimated response in (12) is a minimum as compared to that generated by the vector of (23) 

on the same response surface. Thus   is minimum. 

6.2 Variances Function of the Difference between two Estimated Responses 

Suppose that  and  are two row vectors of the form of a row of           but which arise 

from two distinct points identified on two estimated response surfaces of different radii. Then 

 

Similarly 

 

Let 

 

denote the variance of the difference between the two estimated responses (25) and (26) at 

the points  and . This variance simplifies to 

 

When the design is rotatable, then  has a special form (Box and Hunter (1957) and the 

variance as stated in equation (28) is invariant under orthogonal rotations in the predictor 

space, Herzberg (1967). 

Taking the expression of (25) and that of (26) to be the points described in  and 

 of (21) and (23) respectively, then the variance in (28) for this specific test run is 

computed for  as follows; 

 

 

 

 

This is the variance of the difference between two estimated responses for a second order 

model from the test run involving a herbal medicine extracted from medicinal mushrooms. 
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7. CONCLUSION 

It was found that equation (30) yields the variance function of the difference between two 

estimated responses and the difference of the variance functions between two estimated 

responses for the herbal drug extract from medicinal mushrooms. However, by selecting the 

one that provides a minimum we emphasize that the variance function of the difference 

between two estimated responses should be used in selecting an optimal model in the 

effective management of diabetes using herbal drug extract from medicinal mushrooms. The 

selection of any vector other than that of the stationary point will provide the region within 

which the factors of interest can be varied provided that the variance is minimize. Hence, this 

would act as a suitable guide to determine the range within which factors of interest should be 

varied.  

If we consider points close together in the factor space, an optimal design with regard to 

rotatable design in two dimensions from this approach will be chosen on the basis of 

minimum variance function criterion as emphasized by Herzberg (1967), Box and Draper 

(1980), and, Huda and Mukerjee (1984). 

Research funded by the National Commission for Science, Technology and Innovation. 
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