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Abstract

The goal of this dissertation, is to count branched covering of P1
. The formal count was

�rst instigated by A. Hurwitz in his landmark paper of 1981. Hence the numbers associated

to the count of branched covering are called Hurwitz numbers. The general idea is to count

the number of holomorphic functions to the complex projective line P1
by �xing some

geometrical conditions to guarantee the �nite count. It is shown in this thesis that this

number is always �nite and using combinatorial and representation theoretic techniques

we provide some examples.
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1 Introduction

The aim of this thesis is to compute topological invariants associated to curves called
Hurwitz numbers. This is a counting problem in algebraic geometry and the branch of
mathematics which deal with this kind of problems specifically is called enumerative
algebraic geometry. Indeed, one of the famous problem in this field is to find all
geometrical di�erent surfaces with the same Euler characteristic or genus branched over
a set of fixed points on the projective line. It turns out that there is no finite answer to
such kind of problem, but we can obtain a finite count if we care to fix some geometrical
condition: the degree d of branch maps, branch profile on each of the fixed branch points.
The approach to this was instigated by A. Hurwitz in 1891 in counting maps called branch
coverings.

The holomorphic function f : X→ P1 is called a meromorphic function. By considering
a meromorphic function f of degree d and a point q ∈ P1, we have an divisor f−1(q) =
λ1 p1 + λλ2 p2 + . . .+ λn pn, where p1, . . . pn are distinct points on X and λ1, . . .λn are
positive integers summing to d. The set (λ1, . . .λn) is called branch type of f at a point
q. If the branch type of f at q equals to (1,1, . . . ,1), then we say that f is not branched
over q and if the branch type corresponds to (2,1, . . . ,1) at q, we say that q is a simple
branch point of f . The datum listed above is determined uniquely by Riemann-Hurwitz

q0 q1 q2 . . . q∞
P1

. . .

Figure 1. Local Picture of a branched covering map

formula. We need a powerful toolkit of preliminaries material to achieve our goal which
we survey it in the following order:

Chapter 2: This chapter is dedicated to topological surfaces; the heart of the chapter is
the structure of the Riemann surfaces and maps between them.
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Chapter 3: Here we give a detailed view of combinatorics and representations of sym-
metric group Sd , we describe how partition and representation of Sd are linked. We also
survey the theory of irreducible representations of the symmetric group Sd which are
fundamental in the computation of Hurwitz numbers.

Chapter 4: Finally, we connect the required materials to calculate the Hurwitz numbers
and give examples to make this explicit.
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2 Surfaces

Topological surfaces or surfaces are compact, connected 2-dimensional real manifolds.
If in additional the surface has a complex structure, then it is called a compact Riemann
surface. For such surfaces their exists a discrete invariant usually denoted by g called
(topological) genus which uniquely characterize them. In fact, the topological classifica-
tion of compact Riemann surfaces [RM95], establishes that up to di�eomorphism, there
is exactly one compact Riemann surface for each g.

2.1 Topological surfaces

In this section, we will discuss topological surfaces, we start by reminding ourself some
basics properties of a topological space.

De�nition 2.1.1. A topological space is a set X together with a collection τ of subsets of X
(called open subsets of X ) such that

T1. /0 ∈ τ and X ∈ τ ,

T2. if U,V ∈ τ then U ∩V ∈ τ ,

T3. if Ui ∈ τ ∀i ∈ I then ∪i∈IUi ∈ τ .

Remark 2.1.2.

(i) X is called Hausdor� if whenever x,y ∈ X and x 6= y there are open subsets U , V of X
such that x ∈V and U ∩V = /0,

(ii) X is called compact if every open cover of X has a �nite subcover.

We can now give the precise definition of a topological surface.

De�nition 2.1.3. A topological surface (simply called a surface) is a Hausdor� topological
space X such that each point x ∈ X is contained in an open subset U which is homeomorphic
to an open subset V of R2. X is called a closed surface if it is compact.

Note that a surface is also sometimes called a 2-manifold i.e. a manifold of real dimension
2. One way of constructing surfaces is by identification at the boundary of a planar figure.
The best way to do this by using identification map. For example, in constructing the
torus from the square we define (x,0)∼ (x,1) and (0,y)∼ (1,y).
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Indeed, let X = [0,1]× [0,1] (or any rectangle). Define (x1,y1)∼ (x2,y2) if

(a) (x1,y1) = (x2,y2), with 0 < x1,y1 < 1.

(b) (x1,y1) = (0,y) and (x2,y2) = (1,y), with 0 < y < 1.

(c) (x1,y1) = (0,x) and (x2,y2) = (x,1), with 0 < x < 1.

(d) (x1,y1),(x2,y2) ∈ {(0,0),(1,0),(0,1),(1,1)}.

Thus the resulting space X = [0,1]× [0,1]/∼ is homeomorphic a torus.

The torus is the set of equivalence classes and we give this a topology as follows.

De�nition 2.1.4. Let ∼ be an equivalence relation on a topological space X . If x ∈ X let
[x]∼ = {y ∈ X : y∼ x} be the equivalence class of x and let

X/∼= {[x]∼ : x ∈ X}

be the set of equivalence classes. Let π : X → X/ ∼ be the quotient map which sends an
element of X to its equivalence class. Then the quotient topology on X/∼ is given by

{V ⊆ X/∼: π
−1(V )is an open subset of X}.

In other words a subset V of X/∼ is an open subset of X/∼ (for the quotient topology ) if
and only if its inverse image

π
−1(V ) = {x ∈ X : [x]∼ ∈V}

is an open subset of X .

The following are more examples by identification of a square:

.

.

..

.

. .
.
..

.

. . . .

The Möbius band is not closed, as the do�ed lines suggest. Here is its rigorous definition:

De�nition 2.1.5. A Möbius band (or Möbius strip) is a surface which is homeomorphic to

(0,1)× [0,1]/∼

with the quotient topology, where ∼ is the equivalence relation given by

(x,y)∼ (s, t)i� (x = s and y = t)or (x = 1− s and {y, t}= {0,1})
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2.1.1 Planar models and connected sums

In general, we can construct a closed surface so long as we prescribe the way to identify
the sides in pairs. By using arrows to identify sides in pairs systematically: going round
clockwise we give each side a le�er a say, and when we encounter the side to be identified
we call it a if the arrow is in the same clockwise direction and a−1 if it is the opposite. For
example, instead of

We simply have aa−1bb−1 which represent the sphere where the top side is represented
by a and the bo�om one by b. The same way, projective space is then abab,the Klein bo�le
abab−1 and the torus aba−1b−1. Note that there are lots of planar models which define
the same surfaces, for example the sphere can be defined also by aa−1, a 2-sided polygon.

Similarly the projective plane is aa. We can also get new surfaces by taking more sides,
but another nice way to construct new surfaces is to connect two existing surfaces by
taking a homeomorphism from the boundary of one disc to the boundary of the other
which is called connected sum wri�en A]B where A and B are two closed surfaces. For
more clarification let us take a look on the following example:

# =

Connected sum with the projective plane P is sometimes called a�aching a cross-cap.
In fact, removing a disc from P gives the Möbius band and we remark that the connected
sum P]P is the Klein bo�le.

This connected sum give us a chain of new surfaces as the next proposition lists.

Proposition 2.1.6. The connected sum of a torus T and the projective plane P is homeomor-
phic to the connected sum of three projective planes.

2.1.2 The classification of surfaces

Connected surfaces can be classified into the following categories:
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Figure 2. Klein bo�le

(i) Connected compact surfaces,

(ii) Connected non compact surfaces.

Our interest in this thesis will be connected compact surfaces. Note that we can still
classify our surfaces by whether they are orientable or non orientable.

2.1.3 Orientability of surfaces

One way of deciding what a connected sum is in the classification theorem is to check
the orientability of the surface.

De�nition 2.1.7. A surface X is orientable if it contains no open subset homeomorphic to a
Möbius band.

Figure 3. A Möbius strip

Clearly, if X is orientable then any surface homeomorphic to X is also orientable. We saw
taking the connected sum with the projective plane means a�aching a Möbius band, so
the surfaces which are connected sums of projective plane are non-orientable, on other
hand the connected sums of tori are orientable.

Another important tool is the Euler characteristic/Euler number. The Euler character-
istic of a surface is a topological invariant used in the classification of surfaces.
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2.1.4 The Euler characteristic

Before we define Euler characteristic for any surface, we first give the following motiva-
tions.

De�nition 2.1.8. A triangulation or subdivision of a compact surface X is a partition of X
into:

(i) vertices (these are �nitely many point of X ),

(ii) edges (�nitely many disjoint subsets of X each homeomorphic to the open interval (0,1)),
and

(iii) faces (�nitely many disjoint open subsets of X each homeomorphic to the open disc
{(x,y) ∈ R2 : x2 + y2 < 1} in R2, such that:

(a) the faces are the connected components of X\{vertices and edges},

(b) no edge contains a vertex, and

(c) each edge begins and ends in a vertex(either the same vertex or di�erent vertices),
or more precisely, if e is an edge then there are vertices v0 and v1 (not necessarily
distinct) and a continuous map

f : [0,1]→ e∪{v0,v1}.

which restricts to a homeomorphism from (0,1) to e and satis�es f (0) = v0 and
f (1) = v1.

De�nition 2.1.9. The Euler characteristic of a compact surface X with a subdivision is

χ(X) =V −E +F,

where V is the number of vertices, E is the number of edges and F is the number of faces in the
subdivision.

The existence of triangulation for a closed surface guarantee its subdivision for which we
have the important fact.

Theorem 2.1.10. The Euler characteristic of a compact surface is independent of the subdi-
vision

For a finite polyhedron, the Euler characteristic is simply involves counting of vertices,
edges and faces for a given triangulation in terms of topological triangles. Topological
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triangle look like this:

. . .

We remark that topological triangles have 3-vertices, 3-edges and 1-face. The point now
is how we do counting of vertices edges and faces. Thus, the Euler characteristic of a
triangle T is given by

χ(T ) =V −E +F = 3−3+1 = 1

Note that subdividing the triangle “nicely” does not change the Euler characteristic.

Example 2.1.11.

χ = 6−9+4 = 1

i.e. we are adding 0 in “clever way” 3− (3+3)+3 = 0.

The Euler characteristic can give an information about shape of a surface because even
adding a triangle nicely does not change the Euler characteristic.

Example 2.1.12.

χ = 7−11+5 = 1

The Euler characteristic is a topological invariant. In other words, the Euler characteris-
tic can be used to distinguish between objects. Objects with the same Euler characteristic
need not be topologically equivalent.

Example 2.1.13. All of the following are topologically di�erent

6=
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But they have the same Euler characteristic.

Although, we have seen that the Euler characteristic is not a perfect topological invariant,
it can be used to identify surfaces. Below we indicate the Euler characteristic of all
orientable closed connected surfaces:

.
.

. . .

. . .

2 0 −2

. . . ... ...

2−2g

where g is the genus of the the surface. In the rest of this thesis by a surfaces, we mean
connected orientable compact surfaces.

Theorem 2.1.14. A closed surface is determined up to homeomorphism by its orientability
and its Euler characteristic.

Here we consider connected sums of spaces. Suppose a surface is made up of the union of
two spaces X and Y , such that the intersection X ∩Y has a subdivision which is a subset
of the subdivisions for X and for Y . Then since V , E and F are just counting the number
of elements in a set, we have immediately observe that

χ(X ∪Y ) = χ(X)+χ(Y )−χ(X ∩Y )

Therefore, for a connected sum, take a closed surface X and remove a disc D to get a space
X0. The disc has Euler characteristic 1 (a polygon has one face, n vertices and n sides) and
the boundary circle has Euler characteristics 0 (no face). We then apply the formula,

χ(X) = χ(X0∪D) = χ(X0)+χ(D)−χ(X0∩D) = χ(X0)+1

To get the connected sum we paste X0 to Y 0 along the boundary circle so

χ(X]Y ) = χ(X0)+χ(Y 0)−χ(X0∩Y 0) = χ(X)−1+χ(Y )−1−0 = χ(X)+χ(Y )−2.

In particular, χ(X]T ) = χ(X)−2 this again gives the value 2−2g for a connected g tori.

We close this discussion with a strong result about classification of surfaces.

Theorem 2.1.15. A closed, connected surface is either homeomorphic to:

1. aa−1, or

2. a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 . . .agbga−1
g b−1

g , where g is the genus.
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2.2 Fundamental group

The first and simplest homotopy group is the fundamental group, which records informa-
tion about loops in a space. To build this group we need the following ingredients.

De�nition 2.2.1. Let f ,g : X → Y be maps of topological spaces. A homotopy between f
and g is a continuous function

H : X× [0,1]→ Y

such that H(x,0) = f (x) and H(x,1) = g(x) for all x ∈ X .

Note that, if a homotopy H exists, we say that f and g are homotopic and write f :g.

Figure 4. Schematic picture of homotopy of maps

Example 2.2.2. For any topological space X , any two continuous maps f ,g : X → Rn are
homotopic. This can be seen by considering the straight line homotopy H : X× [0,1]→ Rn

given by
H(x, t) = (1− t) f (x)+ tg(x).

De�nition 2.2.3. Two topological spaces X ,Y are called homotopy eqivavlent (or simply
homotopic) and denoted X:Y , if there exist maps f : X → Y such that

g◦ f :IdX ,

f ◦g:IdY .

A topological space which is homotopy equivalent to a point is called contractible.

De�nition 2.2.4. Let X be a topological space and x0 ∈ X . A loop in X with base point x0 is
a continuous map γ : [0,1]→ X such that γ(0) = γ(1) = x0

Two loops γ,δ with base point x0 are said to be homotopic with respect to the base point
if there exists a homotopy H : [0,1]× [0,1]→ X between γ and δ such that for every
t ∈ [0,1] we have H(0,1) = H(1, t) = x0.
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De�nition 2.2.5. Given two loops γ1,γ2 in X with base point x0, we de�ne the loop γ1 ∗ γ2

in X with base point x0 as follows :

γ1 ∗ γ2(s) =

{
γ1(2s) if s ∈ [0,1/2]

γ2(2s−1) if s ∈ [1/2,1].

Theorem 2.2.6. Let X be a topological space and x0 ∈ X . Then the set of equivalence classes
of loops with base point x0 is a group under the binary operation ∗.

De�nition 2.2.7. Let X be a topological space and x0 ∈ X . The fundamental group of X
with base point x0, denoted π1(X ,x0) is the group of equivalence of loops based at x0, with
operation induced by concatenation of loops ∗

Given f : X → Y a continuous map, we now define a function π1( f ) between the funda-
mental groups:

π1( f ) : π1(X ,x0)→ π1(Y, f (x0))

[γ] 7→ [ f ◦ γ].

This function is called a functor Some fews examples of fundamental groups.

Example 2.2.8. Circle any loop on the circle S1 is homotopic to a loop that travels at
constant speed around the circle clock-wise(or counter clock-wise) an integer number times.
Furthermore, each loop can be seen as multiple iterations of a loop which travels around only
once. Thus

π(S1) = Z.

Example 2.2.9. Take g circles, label a point on each one, and glue them together at a chosen
points. The resulting space is called a �ower graph. The loop on such graph are generated by
the simple loops which go around each petal once, and there are no relation between them.
Thus, if the graph Γ has g petals, then π1(Γ) = Fg, the free group on g generators.

2.3 Riemann surfaces

In this section, we aim to study the classical surfaces called Riemann surface which
will remain our target in the rest of this work. Riemann surfaces are the particular class
of surfaces with complex structure. We follow the ideas of [CM15] for a quick view of
Riemann surface.

De�nition 2.3.1. A topological space X is said to be a Riemann surface if it satis�es the
following conditions.

1. X is a Hausdor� connected topological space.
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2. For all x ∈ X there exist a neighborhoodUx ⊂ X of x and homeomorphisms ϕx : Ux −→Vx

where Vx is on open set in C.

3. For any Ux,Uy such that Ux∩Uy 6= /0 the transition function

τy,x := ϕy ◦ϕx
−1 : ϕx(Ux∩Uy)−→ ϕy(Ux∩Uy)

is holomorphic.

Remark 2.3.2. A Riemann surface is analytic manifold of complex dimension 1.

Example 2.3.3. The following is a couple of examples of Riemann surfaces.

1. Graphs of complex functions f (z). A graph of continuous complex functions give us a
class of Riemann surfaces. Let f (z) be a continuous function mapping C to C. The graph
of f is the set Γ f := (z, f (z)) : z ∈ C ⊂ C×C. We �rst note that Γ f is Hausdor� since
C×C is. The atlas of this structure is given by one chart which is all of Γ f with the local
coordinate function which is the �rst projection map φ := π1 \Γ f which sends (z, f (z)) to
z. Given that the above map φ is homeomorphic to its image and there is only one chart,
the holomorphicity of transition functions is trivially satis�ed. Thus Γ f is a Riemann
surface.

2) For any f (x,y) ∈ C[x,y],the set V ( f ) := {(x,y) | f (x,y) = 0} ⊂ C2 is called an a�ne
plane curve. We say that V ( f ) is smooth if there is no (x0,y0) ∈V ( f ) such that

∂ f
∂x

(x0,y0) = 0 =
∂ f
∂y

(x0,y0).

Note that a smooth a�ne plane curve is a Riemann surface.

2.3.1 Compact Riemann surfaces

Since compactness is a strong constraint on the geometry of surfaces, amongst all Riemann
surfaces the compact ones are especially important. We examine some examples of
compact Riemann surfaces.

1. Projective line P1: Let U1 = U2 := C and define g : U1�{0} −→U2\{0} by g(z) =
1
z where z ∈ C. For i = 1,2, we denote by [Ui] the image of the set Ui a�er the
identification by g, note that [Ui] is an open set in P1. Define the local coordinate
functions ϕ i : [Ui]−→Ui by ϕi(p) = zi, where zi ∈Ui such that [zi] = p. Both ϕ1 andϕ1

are homeomorphisms.

We now consider transition functions. First, start with τ21.The intersection [U1]∩ [U2] =

[U1\0] = [U2\0] and ϕ1([U1]∩ [U2]) = C\{0}. This is the domain of τ21 = ϕ2 ◦ϕ
−1
1
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and for z1 6= 0 we have

z1 7−→ [z1] = [z2 = g(z1) =
1
z1
] 7−→ z2 =

1
z1
.

Since τ21 has a pole only at z1 = 0, it is holomorphic on C \ {0}. Similarly τ12 is
holomorphic, and thus P1 is a Riemann surface.

2. Projective curves: Given P ∈C[X ,Y,Z] a homogeneous polynomial of degree d, the set

V (P) := {[X : Y : Z] ∈ P2(C) | P(X ,Y,Z) = 0}

is called a plane projective curve of degree d.

If {(X ,Y,Z) ∈ C3| ∂P
∂X = ∂P

∂Y = ∂P
∂Z = 0} ⊆ {(0,0,0)}, then V (P) is said to be smooth.

Note that a smooth projective plane curve V (P) is a compact Riemann surface in the
following sense. V (P) is compact since it is a closed set in CP2. To show that V (P) is a
Riemann surface, it is su�icient to show that its intersection with any of the coordinate
open sets of P2 is a Riemann surface. Consider without loss of generality the chart

UZ = {[X : Y : Z]|Z 6= 0} ⊆ CP2

with a�ine coordinates

(x,y) = ϕZ(X ,Y,Z) = (X/Z,Y/Z).

The set ϕZ(V (P)∩UZ) is equal toV (P), where p(x,y) : P(x,y,1) is called the dehomogenization
of P with respect to Z.
For any (x,y) ∈ C2,

∂ p
∂x

(x,y) =
∂P
∂X

(x,y,1),

∂ p
∂y

(x,y) =
∂P
∂Y

(x,y,1).

Claim: There can be no (x̄, ȳ) ∈ C2 such that f (x̄, ȳ) = ∂ f
∂x (x̄, ȳ) =

∂ f
∂y (x̄, ȳ) = 0. The

above claim implies that V ( f ) is a smooth a�ine plane curve and therefore a Riemann
surface as shown in projective line case in [1], part 2.

2.3.2 Maps of Riemann surfaces

The foundation of this section is to give a quick review of the invariant properties of maps
between Riemann surfaces. We begin this section with a couple of definitions.
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De�nition 2.3.4. Let X ,Y be Riemann surfaces and f : X → Y be a function. We say that
f is holomorphic at x ∈ X if every choice of charts ϕx,ϕ f (x) the function ϕ f (x) ◦ f ◦ϕ−1

x is
holomorophic at x.

Note that we say that f is a holomorphic map, if f is holomorhpic on U = X where
U ⊂ X is open. The function F = ϕ f (x) ◦ f ◦ϕ−1

x is called a local expression for f .

This project involves holomorphic maps f : X −→ P1, where X is a compact connected
Riemann surface. Such maps are called a meromorphic functions.

2.3.3 Meromorphic functions

We first recall that on a (compact) surface X , any continuous real function achieves its
maximum at some point. If X is a Riemann surface and f a holomorphic function, then
| f | is continuous, assume it has its maximum at x. The maximum modulus principle says
that f must be a constant in a neighborhood of x. If X is connected, then f is constant
everywhere.

Though there are no nonconstant holomorphic functions on a connected compact Riemann
surface X , there exist lots of meromorphic functions on X .

De�nition 2.3.5. A meromorphic function f on a Riemann surface X is a holomorphic map
to the Riemann sphere P1 = C∪{∞}.

We now provide some few examples of meromorphic functions below.

Example 2.3.6. A rational functional

f (z) =
p(z)
q(z)

where p and q are polynomials is a meromorphic function on the Riemann sphere P1.

For any two polynomials p(z),q(z) ∈ C[z] with no common roots, the rational function
f (z) = p(z)

q(z) defines a holomorphic map f : P1→ P1. The following result tell us that such
map is a rational function and hence a meromorphic function.

Theorem 2.3.7. If f : P1 → P1 is a holomorphic map of Riemann surfaces, then f is a
rational function: f (z) = p(z)

q(z) , with p(z),q(z) ∈ C[z].

The next example is using the algebraic approach of a meromorphic function on torus.
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Example 2.3.8. De�ne

℘(z) =
1
z2 +Σw6=0(

1
(z−w)2 −

1
w2 )

where the sum is over all non-zero w = mw1 +nw2. Since for 2|z|< |w|

| 1
(z−w)2 −

1
w2 |≤ 10

|z|
|w|

3

this converges uniformly on compact sets so long as

Σw6=0
1
|w|3

< ∞

But mw1 +nw2 is never zero if m,n are real so we have an estimate

|mw1 +nw2|≥ k
√

m2 +n2

so by the integral test we have convergence. Because the sum is essentially over all equivalence
classes

℘(z+mw1 +nw2) =℘(z)

so that this is a meromorphic function on the surface X called the Weierstrass P-function

2.4 Branched coverings

In topology, a map is a branched covering if it is a covering map everywhere except for a
nowhere-dense set known as the branch set. The general idea of the covering map is the
following. Let X ,Y be two topological spaces and p : X → Y be a map, with the following
properties:

i). For any y ∈ Y , p−1(y) is a disjoint union points.

ii). There is a nbhd Uy of y ∈ Y such that p−1 ⊆ X is disjoint union of space each
homeomorphic to U under p.

In this case Y is called the base space, x is covering space and p is called covering map.

The formal definition of covering map is the following,

De�nition 2.4.1. A covering is a continuous, surjective map p : X →Y such that for every
y ∈ Y and each xi ∈ p−1(y) there exists a neighborhood Uy of y whose inverse image p−1Uy

consists of disjoint neighborhood Vxi and each restriction of p to Vxi is a homeomorphism
p : Vxi → Yy.
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Figure 5. Covering map

For any covering p : X → Y and y ∈ Y we have that p−1(y) is a discrete set. Let us look at
the more examples.

Example 2.4.2.
a). Consider, the map p : R→ S1 de�ned by p(x) = exp2πit . i.e. a projection from the line to

the circle. This map p is a covering.

p

x

p(x)

R

S1

b). The map p : S1→ S1 de�ned by p(z) = zd is a covering of degree d.

S1
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c). Something which is not a covering map!

a b

(x,y)

x

2.5 Divisors on Riemann surface

Let X be a Riemann surface. A divisor D on X is a formal sum of points pi on X

D =
n

∑
i=1

ai pi

where ai ∈ Z. If ai ≥ 0 for all i, we say that D is e�ective and denote it by D ≥ 0. The
divisors on X form an additive group Div(X).

Consider a non constant mapping of Riemann surfaces f : X1→ X2, we can choose a local
parameter z at a point p ∈ X1, and w at f (p) ∈ X2. In these coordinates f can be wri�en
as

w = zng(z)

where n is some integer and the function g(z) is holomorphic in neighborhood of the
origin, with g(z) 6= 0.

Remark 2.5.1. The number n is called themultiplicity of f at p and is denoted bymult f.

De�nition 2.5.2. The order at p ∈ S of a meromorphic function f : X → P1 is de�ned as
follows:

ord f =


mult f if f (p) = 0,

−mult f if f (p) = ∞.

0 otherwise

.

For two regular functions g,h on X , we have

ord(gh) = ord(g)+ord(h).
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For a function f = g/h, we define

ord( f ) = ord(g)−ord(h).

If ord( f ) > 0, we say that f has a zero along Y. If ord( f ) < 0, we say that f has a pole
along Y. We also define the divisor associated to f by

( f ) = ∑
X

ord( f ),

as well as the divisor of zeros
( f )0 = ∑

X
ord(g),

and the divisor of poles

( f )∞ = ∑
X

ord(h),

They satisfy

( f ) = ( f )0− ( f )∞.

If D = ( f ) is the associated divisor of a global meromorphic function f , D is called a
principal divisor.

2.6 The Riemann-Hurwitz formula

A branched covering π : X → Y between two (compact, connected) Riemann surfaces is
a (surjective) holomorphic map (regular morphism). For a general point q ∈ Y,π−1(q)
consists of d distinct points. Call d the degree of π . Locally around p 7→ q, if the map is
given by

z→ w = zm,

where z,w are local coordinates of p,q, respectively, call m the vanishing order of π at p
and denote it by

ordp(π) = m.
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If ordp(π) > 1, we say that p is a ramification point. If π−1(q) contains a ramification
point, then q is called a branch point. Define the pullback

π
∗(q) = ∑

p∈π−1

(q)ordp(π) · p.

Note that π∗(q) is a degree d e�ective divisor on X .

We can interpret the Riemann-Hurwitz formula from a topological viewpoint. Let χ(X)

denote the topological Euler characteristic of X . If X is a Riemann surface of genus g, take
a triangulation of X and suppose the number of k−dimensional edges is ck for k = 0,1,2.
Then we have

χ(X) = c0− c1 + c2 = 2−2g.

Proposition 2.6.1. Let π : X → Y be a degree d branched cover between two Riemann
surfaces. Then we have

χ(X) = d ·χ(Y )− ∑
p∈X

(ordp(π)−1).

Proof. Take a triangulation of Y such that every branch point is a vertex. Pull it back

as a triangulation of X . Note that it pulls back a face to d faces, an edge to d edges and a

vertex v to |π−1(v)| vertices. Note that if

π
−1(v) =

k

∑
i=1

mi pi

for distinct points pi, then |π−1(v)|= m. In other words, we have

|π−1(v)|= d− ∑
p∈π−1(v)

(ordp(π)−1)

The Riemann-Hurwitz formula follows.

The numerical version below is usually handy in computations.
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Corollary 2.6.2. Let π : X → Y be a degree d branched covering between two Riemann
surfaces of genus g and h, respectively. Then we have

2g−2 = d(2h−2)+ ∑
p∈X

(ordp(π)−1).

In particular, if g < h, such branched covers do not exist.

One of the best fruit of Riemann-Hurwitz formula is to determine the genus of a given
Riemann surface as it is shown in the following example. Consider an elliptic curve
E =V (P), where f is a polynomial of the form:

f (X ,Y,Z) = Y 2Z− (X−a1Z)(X−a2Z)(X−a3Z)

as we have shown early E is a smooth curve which is a Riemann surface, we want to show
that an elliptic curve is a Riemann surface of genus 1.

Sketch of the proof. Consider the a�ne chart Uz = {Z 6= 0} ⊆ P2
, with coor-

dinates (x,y) = (X
Z ,

Y
Z ). The restriction of E to this chart is the a�ne curve EZ determined

by the equation y2 = (x−a1)(x−a2)(x−a3). The vertical projection map π : (x,y) 7→ x
restricts to a holomorphic map π : EZ → C. For every point x of C except for a′is π−1

consists of two points which implies that the degree of π is equal to 2. The branch locus

for π̃ is B = {a1,a2,a3,a4 = ∞}; denote r1,r2,3 ,r4 the corresponding rami�cation points.

Since for a map of degree two the only non-trivial rami�cation has di�erential length

equal to one,the Riemann-Hurwitz formula tell us:

2gE −2 = 2(−2)+ ∑
r1,r2,3,r4

1,

which gives gE = 1.

We now recall the following definitions which we will use time to time.

De�nition 2.6.3. Let f : X → Y be a degree d non constant holomorphic map of Riemann
surfaces.

i). Given a point x ∈ X , the integer kx such that there exist a local expression centered at
point x of the form F(z) = zkx is called the rami�cation index of f at x.

ii). The quantity vx = kx−1 is called the di�erential length of f at x.
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iii). If a point x has rami�cation index kx = 1, then we say that f is unrami�ed at x.

iv). A point x such that kx ≥ 2 is called a rami�cation point. The rami�cation locus R
is the set of X consisting of all rami�cation points.

v). If x is a rami�cation point, then f (x) ∈Y is called a branch point. The branch locus
B is the subset of Y consisting of all branch points.

Remark 2.6.4.

1). The branch locus is the image of the rami�cation locus, but the rami�cation locus is not
necessarily the inverse image of the branch locus.

2). The function f is unrami�ed at x ∈ X i.e.kx = 1 i� for any local expression F of f around
x (not necessarily centered at x) we have F

′
(ϕ(x)) 6= 0, i.e. f is locally invertible at x.

The following two results give us the link between ramification locus and branch locus.

Lemma 2.6.5. The rami�cation locus R is a discrete subset of X i.e there exist open sets
Ui ⊂ X such that each Ui contains exactly one x ∈ R.

Compactnesses have been always the strong property of our context. We examine the
impact of compact Riemann surface on the maps between them as mentioned in the
following results.

Lemma 2.6.6. If X is a compact Riemann surface and f : X → Y is a non constant holo-
morophic map of Riemann surfaces, then the rami�cation locus is a �nite set. Since the branch
locus is the image of R via f , it follows that the branch locus is also a �nite set.

2.7 Monodromy representations

Let f : X → Y be a degree d holomorphic map of connected Riemann surfaces with a
branch locus B = {b1, . . . ,bn} ⊂ Y . Choose a y0 /∈ B and consider a loop γ : [0,1]→ Y�B
based at y0 as shown in figure below.

Choosing a preimage x ∈ f−1(y0) γ li�s to a path γ ˜
x in X starting at x. Since γ(1) = y0,

the end point of γ ˜
x is a preimage of y0(possibly di�erent from x). We can thus associate to

γ a function

σγ : f−1(y0)→ f−1(y0)

defined by σγ(x) = γ ˜
x(1).
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Figure 6. Li�ing a generic loop

De�nition 2.7.1. A y0 labeled map is a pair ( f ,L), where f : X → Y is a degree d map of
Riemann surfaces and L : f−1(y0)→{1, . . . ,d} is a bijection. Note that this forces y0 to not
be a branch point for f . Then L is called a labeling of the inverse images of y0.

Remark 2.7.2. A y0-labeled map ( f : X → Y,L) gives a group homomorphism

Φ : π1(Y�B,y0)→ Sd

de�ned by Φ : γ 7→ σγ . These group homomorphisms are calledmonodromy representa-
tions.

De�nition 2.7.3. (Monodromy Representation). Let Y be a connected Riemann surface
of genus g and y0,b1, . . . ,bn ∈ Y . Let λ1, . . . ,λn be partitions of a positive integer d. A
monodromy representation of type (g,d,λ1, . . . ,λn) is a group homomorphism

Φ : π1(Y�{b1, . . . ,bn},y0)→ Sd

such that, if ρk is the homotopy class of small loop around bk, then the permutation Φ(ρk)

has cycle type λk.

If in addition the subgroup ImΦ ≤ Sd acts transitively on the set {1,2, . . . ,d}, we say that
Φ is a connected monodromy representation.

Example 2.7.4. We now describe the monodromy representations for Y = P1(C). Choose a
�nite subset B = {b1, . . .} ⊂ P1(C). The punctured sphere P1(C)�B is homotopic to a point
with n−1 loops attached to it. The fundamental group of this space is the free group Fn−1

generators ρ1, . . . ,ρn−1, representing loops that wind around each of the �rst n−1 branch
points. Thus, for a chosen d, a group homomorphism Φ : π(P1(C)�B,y0)→ Sd is given by
a choice of images Φ(ρk) ∈ Sd with no restrictions.
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3 Combinatorics and representations of symmetric
group

In this chapter, we survey a connection between representations of the symmetric group
Sd and combinatorial objects called Young tableaux and then we describe the irreducible
representation of the symmetric group Sd . To achieve this, we need to begin this section
with a set of some definitions and notations regarding partitions and Young diagrams by
considering the ideas of [CM15] and [Ful].

3.1 Partitions

A partition of a positive integer d is a sequence of integers λ = (λ1,λ2, . . .λl) satisfying
λ1 > λ2 > . . . > λl > 0 and d = λ1 +λ2 + . . .+λl . We write λ ` d to denote that λ is a
partition of d.

Example 3.1.1. The positive integer 4 has 5 partitions which are: (4), (3,1), (2,2), (2,1,1)
and (1,1,1,1). We can also represent partitions using Young diagrams.

De�nition 3.1.2. A Young diagram is a �nite collection of boxes arranged in left-justi�ed
rows, with the row sizes weakly decreasing. The Young diagram associated to the partition
λ = (λ1,λ2, . . .λl) is the one that has l rows, and λi boxes on the ith row.

De�nition 3.1.3. A standard Young tableau is a Young tableaux whose the entries are
{1,2, . . . ,d} increasing across each row and each column.

For instance, λ = (2,1,1), the number of standard Young tableaux with this shape is 2.

1 2
3
4

1 3
2
4 .

A nice observation is that if λ denotes our young diagram its conjugate is given by flipping
λ over its main diagram and is denoted by λ̄ .
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Example 3.1.4.

λ =

1 2
3
4 λ̄ =

1 3 4
2

3.2 Permutations

We denote the set consisting of the first d positive integers {1,2, · · · ,d} by [d]. Let Sd be
the group of all permutations on [d], that is, the set of all bijections from [d] to itself under
composition. The elements of σ ∈ Sd are called permutations and the group is called the
symmetric group on d words while its subgroup is referred to as a permutation group.
To conform with usually composition of functions, we take a convection that permutation
are multiplied from right to le�.

For a permutation σ ∈ Sd given by

1 7→ σ(1), 2 7→ σ(2), · · · , d 7→ σ(d).

We can represent σ in three di�erent ways. First as an array,

σ =

 1 2 · · · d

σ(1) σ(2) · · · σ(d)


usually called the two-line notation. As the top line is fixed, we can simply drop the
first row and write the one-line notation for the permutation as the as the sequence

σ =
(

σ(1) σ(2) · · · σ(d)
)

.

The simplest notation for representation of a permutation is the cycle notation. A
permutation α ∈ Sd is a cycle of length k or k−cycle if there exist numbers i1, i2, · · · , ik ∈
[d] such that

α(i1) = i2, α(i2) = i3, · · · , α(ik) = i1.

We can write α in the form (i1, i2, · · · , ik). A permutation of length two is called a trans-
position while a cycle of length two is called a cycle. The way to view this decomposition
is to consider a directed graph representing a permutation σ ∈ Sd with vertex set [d] and
arcs i ∈ σ(i) for each i ∈ [d].



25

A cycle of length k can be represented in k di�erent ways depedent on the element we
chose to be the first in the cycle. Not every permutation is a cycle but its bulding block of
a permutation are. If we write one representative for each cycle σ gives a disjoint cycle
representation for a permuation.

Example 3.2.1. Consider the permutation

σ =

1 2 3 4 5 6

2 6 5 4 3 1



Then σ has a cycle of length 3, a cycle of legtht 2 and another of length 1 by looking at
the associated directed graph in figure 8.

1 2

6

4 3

5
Figure 7. The directed graph of a permutation σ ∈ S6 as (126)(35)(4).

If we fix σ ∈ Sd, then σ can be decomposed uniquely into a set of disjoint cycles. Moreover,
every permutation can be expressed as a product of transpositions.

The sum of the cycle lengths of σ is equal to d, so the lenghts form a partition of d.

The cycle type of σ is an expression of the form

1m1 ·2m2 · · ·dmd

where the mi is the number of i−cycles in σ .

We are particularly interested in the products in transpositions in a permutation. A
sequence (a1,b1),(a2,b2), · · · ,(an,bn) such that the product (a1,b1)(a2,b2) · · ·(an,bn) is
equal to σ is called a transposition factorisarion of σ of length n. This factorisation is
not unique, For instance, (123) = (12)(13) = (13)(23). Given any transposition factoris-
arion, say

τ1τ2 · · ·τn = σ ∈ Sd,
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we can assign a corresponding decorated graph Gσ to it in the following way. Vertices are
labelled with the permuted elements [d] = {1,2, · · · ,d} and edges represent transpositions
such that for the transposition τi = (a,b) in the product, we label the edge by the index i.
For instance,

13 2

4 5

4

1 6

2 5
3

Figure 8. The decorated graph of a factorisation (1,3)(1,4)(4,5)(1,3)(2,4)(1,2) = (1,5,3,4,2) ∈ S6

If we fix σ ∈ Sd, then σ can be decomposed uniquely into a set of disjoint cycles. Moreover,
every permutation can be expressed as a product of transpositions. The sum of the cycle
lengths of σ is equal to d, so the lenghts form a partition of d. The cycle type of σ is an
expression of the form

1m1 ·2m2 · · ·dmd

where the mk is the number of k−cycles in σ .

Example 3.2.2. The permutation (12)(45)(368) ∈ S8 has cycle type {3,2,2,1} also written
as 1 ·22 ·3.

The number of k-cycles in symmetric group Sd is given by

d!
(d− k)!k

.

Theorem 3.2.3. Every permutation is uniquely expressible as a product of disjoint cycles.

3.2.1 Conjugate of the Symmetric Group

Finally, we denote the set of all elements conjugate to σ in the symmetric group Sd by
Cσ , that is

Cσ = {πσπ
−1 : π ∈ Sd}.

These are called conjugacy classes of Sd . An easy fact, two permutations are conjugate
if and only if they have the same cycle type.

Lemma3.2.4. Letα,τ ∈ Sd whereα is the k-cycle a1a2 . . .ak. Then τατ−1 =(τ(a1)τ(a2) . . .τ(ak)).
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This result tell us that any conjugate of a cycle is also a cycle of the same length. The
following results also asserts that the converse is also true. That is if two cycles have the
same length then they are conjugate.

Theorem 3.2.5. All cycles of the same length in Sd are conjugate.

As an example, let’s describe the conjugacy classes of the symmetric group S3.

Example 3.2.6. In S3, what are the conjugates of (12)? We make a table of π(12)π−1 for
all π ∈ S3.

π (1) (12) (13) (23) (123) (132)

π(12)π−1
(12) (12) (23) (13) (23) (13)

From this table, the conjugate of (12) in S3 is {(12),(13),(2,3)}. Similarly, you can check
that the conjugate of (123) is (132) and the conjugate of (1) is just (1). So S3 has three
conjugacy classes namely:

{(1)},{(12),(13),(23)},{(123),(132)}.

The following nice result summarize the concept of conjugacy classes in Sd .

Theorem 3.2.7. The conjugacy classes of any π ∈ Sd are determined by cycle type. That is,
if π has cycle type (k1,k2, . . . ,kl), then any conjugate of π has cycle type (k1,k2, . . .kl) and if
ρ is any other element of Sd with cycle type (k1,k2, . . .kl), then π is conjugate to ρ .

Thus from theorem 3.2.7, the partitions of d are in one-to-one correspondence with the
conjugacy classes of Sd .

3.3 Representations of the symmetric group Sd

The building blocks of a representation of any finite group are the irreducible representa-
tions. The number of irreducible representations over the complex numbers is equal to
the number of partition of d in the case of the symmetric group. The main ideas in this
section, is that the representations of a group Sd over a field C are the same as modules
over the group ring C[Sd].

3.3.1 Representations

In this work, we define representations in three equivalent ways.
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De�nition 3.3.1. A complex (�nite dimensional) representation ρ of Sd is, equivalently:

a). group action) A �nite dimensional vector space V together with a linear action of Sd , i.e.
a map

• : Sd×V →V

such that, for every σ ,σ1,σ2 ∈ Sd,v,w ∈V,λ ∈ C:

• e · v = v,

• σ2 · (σ1 · v) = (σ2σ1) · v,

• σ · (v+w) = σ · v+σ ·w,

• σ ·λv = λσ .

b). (module) A �nitely generated module over the group ring C[Sd].

c). (homomorphism) A group homomorphism

Φρ : Sd → GL(n,C).

Observe the following:

(i) The dimension of V (or the n in GL(n,C)) is called the diminsion of the representation
ρ .

(ii) A subrepresentation ρ ′ ≤ ρ is an invariant subspace (or a C[Sd] submodule) Uρ ′

of Vρ . The 0 vector, and Vρ itself are trivial examples of sub representations of ρ . A
representation ρ that does not contain any non-trivial subrepresentation is called
irreducible.

Example 3.3.2. The trivial representation. This is usually de�ned to be one dimensional
vector space C with trivial action of Sd :

σ · z = z

for all σ ∈ Sd,z∈C and it is denoted by ρ1. The trivial and sign representations are irreducible
because a one dimensional vector space does not have any proper subspace.

The sign representation is given by the group action on C as follows:

σ · z =

{
z if ρ is an even permutation

−z if ρ is an odd permutation
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De�nition 3.3.3. Consider a d-dimensional vector space V with basis {e1, . . .ed}. De�ne a
group action of Sd on V by extending by linearity the following action on the bases vectors:
σ · ei = eσ(i). This is called a permutation representation which is not irreducible.

The nice property of the group ring is that it is a module over itself and therefore it is a
representation of Sd called the regular representation. This is the victory of our target
because the regular representation contains all irreducible representations of Sd .
The following remark, recalls some few fundamental facts about representations.

Remark 3.3.4.
(i) Any �nite dimensional representation of Sd decompose uniquely (up to the order of the

factors) as direct sum of irreducible representations.

(ii) The number of irreducible representations of Sd equals the number of conjugacy classes of
Sd , which in turn are naturally indexed by partitions of the integer d.

(iii) Denote by ρ an irreducible representation of Sd , byVρ the corresponding vector space, and
understand a sum over the index ρ to mean the sum over all irreducible representations of
Sd . Then the regular representation decomposes as

C[Sd]∼=
⊕

ρ

V⊕dimρ

ρ

by equating the dimensions on either side of the above equation, we obtain

d! = ∑
ρ

(dimρ)2. (1)

The last formula, help us to describe all irreducible representation of subsets of Sd as in
the next example.

Example 3.3.5. Using the formula in 1, there are three irreducible representations of S3. The
two of them are known namely the trivial and the sign representations. Our formula tells that
the last one must be two-dimensional. This is called the standard representation.

It turns out that there is a deep connections between the description of irreducible
representations of Sd through Young tableaux. The three irreducible representations of S3,
can be described using Young diagrams as illustrated below.

trivial representation: ρ1
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sign representation: ρ−1

standard representation: ρs

The dimension of the irreducible representation corresponding to shape λ is determined
by hook-length formula denoted by kλ . In short, if (i, j) denoted the box in row i and
column j of the standard Young diagram corresponding to λ ; the hook length hi j is the
number of boxes directly to the right and directly below i, j including the box (i, j). Thus
the hook-length formula is given by:

kλ =
d!

Πhλ (i, j)
.

Example 3.3.6. The degree of the irreducible representation of S4 corresponding to partition
λ = (2,1,1) is

k(2,1,1) =
4!

4 ·2 ·1 ·1
= 3.

3.3.2 Characters

The main key in representation theory is to represent a given group as a matrix, thus the
function defined by the trace of that matrix is called a character. Characters caries many
remarkable information like it can tell us when two representations are equivalent, we
can decide whether or not a given representation is irreducible through its character etc.
Here is the definition of a character.

De�nition 3.3.7. Let ρ be a representation of Sd . The character of ρ is the function

χρ : Sd → C

de�ned as
χρ(σ) : trace(Φρ(σ)).

Note that the trace of a matrix is a coe�icient of the characteristic polynomial of the
associated linear transformation, therefore it is invariant under conjugation.

Remark 3.3.8. (1) The character of a representation does not depend on the choice of a basis
for Vρ (which gives rise to the matrices Φρ(σ) e.i if β ,β ′ are bases of Vρ , then

[ρ]β ′ = T−1[ρ]β T
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for some invertible matrix T and then

trace[ρ]β ′ = trace[ρ]β

for all ρ ∈ Sd);

(2) Characters are constant along conjugacy classes; functions with this property are called
class functions.

Example 3.3.9. We can compute the character of ZC[S3] and the following is its multiplica-
tion table .

Table 1. The character Table of S3

S3 Ce C(2,1) C(3)

ρ1 1 1 1

ρ−1 1 -1 1

ρs 2 0 1

3.3.3 The group ring and class algebra

De�nition 3.3.10. The group ring of the symmetric group Sd , denoted Z[Sd], has elements
formal Z-linear combinations of elements of Sd :

Z[Sd] = { ∑
σ∈Sd

aσ σ |aσ ∈ Z}.

In this structure, addition and multiplications are defined as follow:

∑
σ∈Sd

aσ σ + ∑
σ∈Sd

bσ σ = ∑
σ∈Sd

(aσ +bσ )σ

and
( ∑

σ∈Sd

aσ σ)( ∑
σ∈Sd

bdτ) = ( ∑
σ∈Sd

Cσ λ )

where Cλ ∈ Sd can be given in three di�erent ways:

Cλ = ∑
στ=λ

aσ bτ = ∑
σ∈Sd

aσ bσ−1λ = ∑
τ∈Sd

aλτ−1bτ .

The following example makes this more clearer.
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Example 3.3.11. For d = 3, x= 3(12)+5(123) and y= 4(13)−6(123)= 4(13)+(−6)(123)
are elements of Z[S3]. We have

x+ y = 3(12)+4(13)+(5−6)(123) = 3(12)+4(13)− (123)

and

x · y =(3(12)+5(123))(4(13)−6(123)

=12(12)(13)−18(12)(123)+20(123)(13)−30(123)(123)

=12(132)−18(23)+20(23)−30(132)

=2(23)−18(132).

Remark 3.3.12. We denote by C[Sd] the set of formal linear combinations of group elements
where the coe�cients aσ are complex numbers. Together with addition and multiplication
de�ned as above, there is a natural way to multiply elements of C[Sd] by scalars t ∈ C as
follows

t( ∑
σ∈Sd

aσ σ) = ∑
σ∈Sd

(taσ )σ ,

which gives C[Sd] also the structure of a vector space, with a natural basis given by σ ∈ Sd . A
set with operations that make it simultaneously a ring and a vector space is called an algebra,
and C[Sd] is called the group algebra of Sd .

In any group G, the center of the group G denoted Z(G) is the set of elements that
commute with every element of G, we introduce a commutative subalgebra of C[Sd],
which plays a central role in our journey.

De�nition 3.3.13. The class algebra of Sd is the center of the group ring,

ZC[Sd] =
{

x ∈ C[Sd] | yx = xy ∀ y ∈ C[Sd]
}
.

We note some few things for a class algebra in the remark below.

Remark 3.3.14. For λ ` d (a partition of the positive integer d) denote by Cλ ∈ C[Sd] the
sum of all elements of cycle type λ .

1. Cλ consists of the sum of all permutations in a particular conjugacy class;

2. For any λ ,Cλ ∈ ZC[Sd];

3. The Cλ ’s form a basis for ZC[Sd] as a vector space:

ZC[Sd] =
⊕
λ`d

〈Cλ 〉C
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We also remind ourself that the conjugacy class basis is a very natural basis for ZC[Sd].
The following result describe another basis, naturally indexed by the irreducible represen-
tations of Sd .

Theorem 3.3.15. (Maschké). The class algebra ZC[Sd] is a semi-simple algebra, i.e. there is
a basis {eρ1, . . .eρn} (where the ρi’s are all irreducible representations of Sd ) of idempotent
elements. This means:

eρi · eρ j =

{
eρi if eρi = eρ j

0 otherwise.

Furthermore the following change of basis formulas hold

eρ =
dimρ

d! ∑
λ

χρ(λ )Cλ ,

Cλ =|Cλ |∑
ρ

χρ(λ )

dimρ
eρ ,

where the summation index λ denotes all partitions λ of d, and the summation index ρ

denotes all irreducible representations of Sd .

Example 3.3.16. We can now compute the class algebra ZC[S3] which is a three dimensional
vector space, with basis

Ce = e

C(2,1) = (12)+(13)+(23)

C(3) = (123)+(132).

We can display the multiplication table for ZC[S3] If e1,e−1,es denote the vectors of the

Table 2. Multiplication Table of ZC[S3]

Ce C(2,1) C(3)

Ce Ce C(2,1) C(3)

C(2,1) C(2,1) 3(Ce +Ce) 2C(2,1)

C(3) C(3) 2C(2,1) 2Ce +C(3)

semi-simple basis for ZC[Sd], the Theorem 3.3.15 give us the change of basis as follows.

e1 = 1/6(Ce +C(2,1)+C(3))

e−1 = 1/6(Ce−C(2,1)+C(3))
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es = 1/3(Ce +C(2,1)+C(3))

Solving this system of linear equation, we get

Ce = e1 + e−1 + es,

C(2,1) = 3e1 + e−1−3e−1,

C(3) = 2e1 +2e−1− es.
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4 Hurwitz Theory

In chapter 2, we were friends of maps of Riemann surfaces. At this time round, we will
introduce the counting problem for maps of Riemann surfaces. This number is always
finite and is called Hurwitz number, it count genus g, degree d covers of P1 with fixed
branch locus and ramification profile. We will follow the treatment given in [CM15].

De�nition 4.0.1. Two holomorphic maps of Riemann surfaces f : X → Y and g : X̃ → Y
are called isomorphic if there is an isomorphism of Riemann surfaces φ : X → X̃ such
that f = g◦φ . An automorphism of f : X → Y is an isomorphism ψ : X → X such that
f = f ◦ψ . The group of automorphisms of f is denoted Aut( f ).

We can now give a formulation for counting problem for maps of Riemann surfaces when
Y = P1, the complex projective line.

De�nition 4.0.2 (Hurwitz number). Fix points b1, . . . ,bn ∈ P1 and let λ1, . . . ,λn be parti-
tions of a positive integer d. We de�ne the Hurwitz number as

Hd
g (λ1, . . . ,λn) = ∑

[ f ]

1
|Aut( f )|

;

this sum runs over each isomorphism class of f : X → P1 where

1. f is a holomorphic map of Riemann surfaces,

2. X is connected, compact, and has genus h,

3. the branch locus of f is B = {b1, . . . ,bn},

4. the rami�cation pro�le of f at bi is λi.

We now focus on double Hurwitz numbers Hg(µ,ν) (where the partitions λi of d are of
the form (2,1, . . . ,1) apart from the branch points at 0 and ∞) by looking at the connections
between the following four equivalent definitions as detailed in [PJ13].

Example 4.0.3. Let Y = P1 and set b1 = 0,b2 = ∞. Choose d > 0 and let λ1 = λ2 = (d).
We compute

H0 d−→0((d),(d) =
1
d
.
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4.1 Topological definition of double Hurwitz numbers

De�nition 4.1.1. (Hurwitz cover). A (µ,ν ,g)-Hurwitz cover is a degree d map f : X→ P1

from a genus g connected Riemann surfaces X to P1, satisfying

1. f has rami�cation pro�le µ over 0 and ν over ∞,

2. f has simple rami�cation over r additional �xed points pi ∈ P1,

3. f has no other rami�cation,

4. the m elements of f−1(0) and the n elements of f−1(∞) are labeled.

De�nition 4.1.2. The double Hurwitz number Hg(µ,ν) is the count of (µ,ν ,g)-Hurwitz
covers, where each cover f is counted with weight 1

|Aut( f )| .

4.2 Definition of double Hurwitz numbers in terms of permutations

First, we need to define a labeled permutation. If the cycle decomposition of σ has k cycles,
then a labeling of σ is a bijection between the cycles and the set {1, . . . ,k}. Therefore, we
can talk about ith cycle of a labeled permutation.

De�nition 4.2.1. (Permutations). A (µ,ν ,g)- monodromy set is an element

(σ0,τ1, . . . ,τrσ∞) ∈ Sr+2
d ,

together with a labeling of σ0 and σ∞, satisfying :

1. σ0 and σ∞ are permutation of Sd with cycle types µ and ν respectively,

2. The τi are all transpositions,

3. σ0× (Π r
i=1τi)×σ∞ = 1,

4. The group generated by the τi and σ j acts transitively on {1, . . . ,d}.

Proposition 4.2.2. Hg(µ,ν) is 1
d! times the number of µ,ν ,g-monodromy sets

Example 4.2.3. If g = 1,d = 3. We show that

H1
3 ((2,1),(2,1)) = 40.

Note that in this case g= 1, d = 3, then by Riemann-Hurwitz formula give us 2g−2+2+2=
4 points plus two extra ones(i.e 0 and ∞). We will have 6 permutations, σ0,σ1,σ2,σ3,σ4,σ∞..
Hence, by fundamental theorem of enumeration we

H1
3 ((2,1),(2,1)) =

(3×3×3×3×3×1)−3
3!

= 40.
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4.2.1 Cut and join equation

A product of a permutation and a transposition leads to the counting branching graphs.
The cut and join equations are a collection of recursions among Hurwitz numbers. The
construction of the two equation is here below:
Let σ ∈ Sd be a fixed element of cycle type η = (n1, . . . ,nl), wri�en as a composition of
disjoint cycles as σ = c1, . . . ,cl . Let τ = (i, j) ∈ Sd vary among all transpositions. The
cycle types of the composite elements τσ are described below.

m

n
m+n

JOIN

or

n

m
m+n

CUT

Cut: if i, j belong to the same cycle (say cl), then this cycle gets cut into two: τσ has cycle
type η ′ = (n1, . . . ,nn−l,m′,m′′), with m′+m′′ = nl . If m′ 6= m′′, there are nl transpositions
giving rise to an element of cycle type η ′ . If m′ = m′′ = nl/2, then there are nl/2.

Join: If i, j belong to di�erent cycles (say cl−1 and cl), then these cycles are, joined: τσ

has cycle type η ′ = (n1, . . . ,nn−l +nl). There are nl−1nl transpositions giving rise to cycle
type η ′

Example 4.2.4. Let d = 4. There are 6 transpositions in S4. If σ = (12)(34) is of cycle type
(2,2), then there are 2 transpositions (12) and (34) that, cuts σ to give rise to a transposition
and 2×2 transpositions ((13), (14), (23), (24)) that joins σ into a four-cycle.

More generally, if we know the lengths of the cycles that are being cut and joined, we
can count the number of possibilities for τ . There always kl transpositions that join a k
cycle and an l cycle into k+ l cycle, there are k+ l di�erent transpositions that split a
k+ l cycle into a k cycle and an l cycle when k 6= l, and there are k transpositions that
split a 2k cycle into two cycles of length k.

4.2.2 Branched graphs

We recall some definition and basics facts for Hurwitz numbers
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De�nition 4.2.5. Fix r+ s points p1, . . . , pr,q1, . . . ,qs on P1, and η1, . . . ,ηr partitions of
the integer d. The double Hurwitz number:

Hg
d (η1, . . . ,ηr) := weighted number ofdegree d covers π : C→ P1

such that:

1. C is a Riemann surfcace of genus g;

2. π is unrami�ed over P1 \{p1, . . . , pr,q1, . . . ,qs};

3. π rami�es with pro�le ηi over pi;

4. π has simple rami�cation over qi.

Each cover π is weighted by 1/ | Aut(π). We note that this is independent of the locations
of the pi and qi. For a partition η , let l(η) denote the number of parts of η . By the
Riemann-Hurwitz formula, we have that

2−2g = 2d−dr− s+
r

∑
i=1

l(ηi).

hence s is determined by g, d and η1, . . . ,ηr. We note that the use of Hurwitz number
for the generic case Hg

d when all ramification is simple.

Remark 4.2.6. A rami�ed cover is essentially equivalent information to a monodromy
representation it induces; thus, an equivalent de�nition of Hurwitz number counts the number
of homomorphisms φ from the fundamental group Π1(P1 \ {p1, . . . , pr,q1, . . . ,qs}) to the
symmetric group Sd such that :

i) the image of a loop around pi has cycle type ηi;

ii) the image of a loop around qi is a transposition;

iii) the subgroup φ(Π1) acts transitively on the set {1, . . . ,d}.

This number is divided by |Sd|, to account both for automorphisms and for di�erent
monodromy representations corresponding to the same cover.
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Hurwitz numbers and weighted branch graph sums

We want to compute Hurwitz numbers in terms of a weighted sum over graphs, the idea is
to start at one of the special points, and count all possible monodromy representations as
each transposition gets added until one gets to the second special point with the specified
cycle type.

Let us make it clearer, fix g and let η = (n1, . . . ,nk) and µ = (m1, . . . ,ml) be two partitions
of d. Denote by s = 2g−2+ l + k the number of non-special branch points, determined
by the Riemann-Hurwitz formula.

De�nition 4.2.7. Branched graphs project to the segment [0,s+ 1] and are constructed
according to the following procedure:

a) Start with k small segments over 0 labeled n1, . . . ,nk . We call these n’s the weights of the
strands,

b) Over the point 1 create a 3-valent vertex by either joining two strands or splitting one
with weight strictly greater than 1. In case of a join, label the new strand with the sum of
the weights of the edges joined. In case of a cut, label the two new strands in all possible
(positive) ways adding to the weight of the split edge.

c) Consider only one representative for any isomorphism class of labeled graphs.

d) Repeat (b) and (c) for all successive integers up to s.

e) Retain all connected graphs that, terminate with l points of weight m1, . . . ,ml .

Lemma 4.2.8. The Hurwitz number Hg
d (η ,ν)is computed as a weighted sum over mon-

odromy graphs. Each monodromy graph is weighted by the product of the following factors:

(i) The number ε(η) of elements of Sd of cycle type η ,

(ii) | Aut(η) |,

(iii) For every vertex, the product of the degrees of edges coming into the vertex from the left,

(iv) A factor of 1/2 for any balanced fork or wiener.

(v) 1/d!.

We simplify the above lemma in the following formula

Hg
d (η ,ν) = ∑

Γ

1
| Aut(Γ) |

Πw(e),
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where we take the product of all the interior edge weights; the factors of 1/2 coming from
the balanced forks and wieners amount to the size of the automorphism group of our
decorated graphs.

We illustrate this in the following example by finding the corresponding weighted graphs
arising from cubic coverings. Note in some cases we are multiplying by 2 to compensate
for the new graph obtained by reflecting along the y-axis.

0 1 2 3 4 ∞

∏w(e)
Aut(G) =

1·1·2·3
2 = 3

# = 3 ·2

2 2 3 2

1
1

1

1

0 1 2 3 4 ∞

∏w(e)
Aut(G) =

1·1·2·1
2 = 1

# = 1 ·2

2 2
1

1

1
2

1

1

0 1 2 3 4 ∞

∏w(e)
Aut(G) =

1·1·2·3
1 = 6

# = 6 ·2

2
2

3 2

1

1
1

1
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0 1 2 3 4 ∞

∏w(e)
Aut(G) =

1·1·2·1
1 = 2

# = 2 ·1

2

2
1

1 1

1
1

2

0 1 2 3 4 ∞

∏w(e)
Aut(G) =

3·2·1·3
1 = 18

# = 18 ·1

2 3 3 2
1 1

2

1

Thus by the algorithm and the formula, we also find

H1
3 ((2,1)(2,1)) = 3 ·2+1 ·2+6 ·2+2 ·1+18 ·1 = 40.

The representation theory give us another way to compute double Hurwitz numbers.
Namely, the character theory of the group ring Z(C[Sd]).

In this case, we use the Burnside character formula.

Hg
d (λ1, · · · ,λm) = ∑

σ

(
dimσ

d!

)2 m

∏
i=1

|Cλi χσ (λi)|
dimσ

.

For example, let us compute H0
1 ((3),(2,1)

4) using the same formula. The existence of

a point with full ramification guarantee all the covers to be connected. Thus using the
above results on representations of S3 we get
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H0
1 ((3),(2,1)

4) =

(
dimσ1

3!

)2 |Cλ1|χσ1(λ1)

dimσ1

( |Cλ2|χσ1(λ2)

dimσ1

)4

+

(
dimσ−1

3!

)2

|Cλ1|χσ−1(λ1)

( |Cλ2|χσ−1(λ2)

dimσ−1

)4

+

(
dimσs

3!

)2

|Cλ1|χσs(λ1)

( |Cλ2|χσs(λ2)

dimσs

)4

=

(
1
6

)2 2×1
1

(
3×1

1

)4

+

(
1
6

)2 2×1
1

(
3× (−1)

1

)4

+

(
1
6

)2 2×1
1

(
3×0

1

)4

= 9.

Observe that the dimensions of the irreducible representations is easily calculated using
the hook length formula.

4.3 Future Research

I will be working to establish the needed bridge between Hurwitz numbers and Tauto-
logical classes. Hurwitz numbers are purely combinatorial objects which count branched
coverings of Riemann surfaces with prescribed monodromy. Tautological classes, on the
other hand, are distinguished classes in the intersection ring of the moduli spaces of
Riemann surfaces of a given genus, and are thus “geometric.” Localization computations
in Gromov-Wi�en theory provide non-obvious relations between the two.

My project will involve tautological classes in the moduli space of curves and its Hurwitz
loci. A natural question is whether there are good formulas to express the class of Hurwitz
loci (loci of curve admi�ing covers with specified ramification data) in terms of standard
tautological classes (boundary, ψ , λ , κ). A. Bertram et al have worked on the hyperelliptic
case, and have reduced the ratios of certain tautological classes to the pure combinatorics
of Hurwitz numbers [ACG]. In particular, I will seek to extend similar computation in
hyperelliptic case to the other cases.
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