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Abstract 

The aim of this study was to determine the relationship between natural frequency of 

vibration, the height of the structure, the stiffnesses of members and number bays of a 

structure. The relationship was to be developed based on data obtained using two methods. 

The methods were theoretical whereby Computer Modeling was undertaken based on 

structural theory, and experimental, whereby   physical prototypes of structures were 

subjected to free vibrations. 

In the theoretical method, a matrix approach to analysis was adopted to develop a computer 

program which generated structural models. A horizontal force would be applied at the top-

most joint of each model and deflection at the centre of mass was calculated, which was the 

amplitude of vibration. The overall stiffness of the structure was calculated using the 

structural amplitude obtained. The overall stiffness was then used to calculate the frequency 

of vibration for each structural model.  

In the experimental method, physical models of miniature structures were built with different 

heights, member stiffnesses and number of bays. Each model was subjected to free vibrations 

and the deflections against time were measured. To simulate a free vibration in a model, a 

measured horizontal force was applied at a joint located at the top of the structure to produce 

an initial deflection and then the force was withdrawn to allow free vibrations. The 

deflections at the centre of gravity for free vibrations were measured against time. 

The equipment used to measure the free vibrations was horizontal motion transducer. The 

instrument has a probe which gets depressed when anobject is pushed against it. The 

transducer was attached to a TDS 302 data-logger which printed deflection against time. 

The data obtained was analysed graphically. It was found that the theoretical values were 

very close to the experimental values, with very high positive correlation coefficients.A 

relationship between the natural frequency of vibration and the various parameters was 

developed. The relationship obtained will enable the engineering design of tall buildings 

against dangerous resonance with the forces they are subjected to. The relationship will be 

used to calculate the natural frequency of a proposed structure. If the frequency is found to 

the same of that of the forces expected to act on the structure, a change will be made in the 

dimensions of the structure to change its frequency. This way catastrophic resonance will be 

avoided. 
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CHAPTER 1: INTRODUCTION 

1.1Background 

Structures undergo free vibrations if oscillations are induced when there is no further energy 

input into the structure. The free vibrations occur under natural frequencies of the structure. 

When energy is input into a structure, for example, due to earthquakes or wind, forced 

vibrations occur. When an external force causing vibrations has the same frequency as the 

natural frequency of the structure, resonance occurs and the vibrations   can reach extreme 

levels leading to collapse of the structures. The forces acting on structures in catastrophic 

resonance situations include wind, earthquake, human movement and machinery. 

The parameters associated with vibration characteristics are; natural frequencies, modal 

shapes and modal damping ratios (Arakawa & Yamamoto, 2004). Variations on vibration 

characteristics reflect changes in the physical parameters of the structural system and indicate 

certain cracks or damages caused by failure of members in the system (Arakawa & 

Yamamoto, 2004). 

Winds have different frequencies ranging from 0.6Hz to over 70Hz. Wind tunnel simulations 

have been used to determine these frequencies. In the United States between 700 and 1100 

tornadoes occur each year (Ishizaki & Chiu, 1974). These tornadoes cause major destruction 

of lives and property. The destruction is more where the frequency of vibration of the 

building structure is the same as that of the tornado. A structure whose frequency of vibration 

is different from that of the tornado is sometimes left standing whereas a structure which has 

the same frequency as the tornado is destroyed. Speed plays an important role in governing 

the effects of resonance. Fast-moving tornadoes may affect stiffer or smaller buildings while 

slow-moving tornadoes with lower frequencies may affect taller or flexible buildings (Dutta , 

et al., 2002). An awareness of both tangential and translation speed may be essential to the 

understanding of damage caused by a specific tornado event on a building. 

The earthquake of September 1985 in Mexico City provides a striking illustration of how 

resonance can have catastrophic effects on structures. Most of the buildings which collapsed 

during the earthquake were on average 20 stories high. These had a natural frequency of 

vibration of about 0.5Hz. These 20 storey buildings were in resonance with the frequency of 

the earthquake. Other buildings, of different heights and with different natural frequencies, 

were often found undamaged even though they were located right next to the damaged 

buildings.There were five parameters that affected the seismic performance. These included 

the degree of regularity, redundancy of structure, relation between the effective natural period 

of the structure and the expected predominant period of the seismic motion, the real strength 
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of the structure, and the ability to sustain cycles of inelastic deformation without a loss in 

strength (Bertero, 1989). In Kenya earthquakes have occurred occasionally even though not 

of high magnitude.A moderate shallow earthquake meassuring magnitude 4.6 struck at only 

33 km from the capital of Kenya (thewatchers.adorraeli.com, 2012), Nairobi on April 

17,2012 at 02:01.  The epicenter was located 16km (9 miles) NE from Limuru, 22km (13 

miles) NNW from Kiambu and  33km (20 miles) NNW from Nairobi. The depth of the 

epicenter was at 10km (6,2 miles). The intensity of the shaking was not strong enough to 

inflict serious damage or injuries,  caused some cracks in walls of many houses as the houses 

in Kenya are mostly made of brick  and are therefore very vulnerable for damage when 

serious shaking is taking place. The otherwell built buildings could be affected if they had the 

same natural vibration frequency as the earthquake leading to resonance. The effect would be 

high if the vibrations under resonance took a long duration leading to a high gain in energy. 

A classic modern example of bridge collapse brought about by resonance is the failure of the  

Tacoma bridge 1940. On the morning of 7th November 1940, the amplitude of vibration 

increased until the bridge collapsed (Engineering.com, 2016). It was noted that higher wind 

speed favoured higher frequencies of vibration for the bridge. In a different case in 

Bangladesh, the collapse of a factory was partly attributed to resonance between the factory 

machines and the building (Schilling, 2013).   

The foregoing illustrates catastrophic resonance where the natural frequency of the structure 

is the same as that of the force acting on it. It is therefore necessary to gain a better 

understanding of the relationship between the natural frequency and the dimensions of a 

structure. Such a relationship will inform engineering design of structures for various forces 

expected to act on them. This way, destruction of property and lives will be reduced. 

Moreover, engineers will be able to detect structural deterioration based on changes of 

frequency of vibration. In addition engineers will also be able to minimize discomfort to 

users by avoiding resonance during vibrations in buildings. 

1.2 Problem statement 

In a past study where computer modeling was utilized (Verma & Ashish, 2011) it was found 

that the natural frequencies of vibration of structures decreased with increase in the height of 

the structure. The study was undertaken for structures where members were either vertical or 

horizontal. In the study, two-dimensional structures were considered instead of three-

dimensional as proposed in this research. Moreover, no formulation was done for the 

relationship between the natural frequency and horizontal length of the structure or the 
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stiffnesses of structural members.  This research aimed at derivation of the mathematical 

model for the relationships in three dimensional structures.  

1.3 Objective of the study 

The main objective of this study was to model the relationship between natural frequency of 

vibration of a structure , its height, the stiffnesses of its members and the number of bays.  

The specific objectives were: 

(i) To use stiffness matrix method to develop a software capable of 

analysing deflections for given initial horizontal forces acting on a 

structure. The software was to be used to simulate free vibrations 

and calculate the deflections against time. This was to be done for 

structures with different heights, number of bays and structural 

member stiffnesses. 

(ii) To make steel model structures and subject them to free vibrations 

by applying initial horizontal forces. The horizontal deflections 

against time for the free vibrations were to be measured. This was to 

be repeated for structures of different heights, number of bays and 

structural member stiffnesses. 

(iii) To model the relationship between natural frequency, the height of 

structure, the number of bays and the stiffnesses of the structural 

members.  

1.4 Justification of the study 

It is important to study natural frequencies of vibration in structures because excessive 

vibrations due to resonance have been known to cause collapse of the structures. If designers 

had information regarding the natural frequencies of vibration of the structures under design, 

there would be a reduced possibility of resonance of the structures under the forces they are 

likely to be subjected to in their life spans.  

1.5 Scope of the study 

The scope of the study is two dimensional vibration for the first mode of vibration. It is 

assumed that the maximum horizontal deflection is at the top of the structure. 
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CHAPTER 2:LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

2.1 Vibrations 

Vibrations are phenomena that are often unwanted in engineering (James, et al., 1989). When 

systems start vibrating at the wrong frequencies, there is very high likelihood of failure. In 

reality all systems are continuous systems, meaning that the displacements of their 

components depend on many different factors. To simplify the analysis, the system is often 

modeled as a discrete system whereby the system is split up in parts, which are then 

evaluated separately. 

Two types of vibrations can be distinguished as:  free vibrations and forced vibrations. In free 

vibrations, there is no energy input from the environment, while in forced vibrations there is a 

continuous energy input from the environment. 

Detailed consideration of the vibration of a linear single degree of freedom (SDOF) is 

essential to the complete understanding of vibration of more complex vibrating systems 

whether they are composed of lumped elements of mass and stiffness, or whether their mass 

and stiffness are distributed (Snowdon, 1968). 

2.2Free vibrations 

2.2.1 Stiffness of an Axially Loaded Rod 

To illustrate stiffness concept, the stiffness of an axially loaded rod of negligible mass, 

having a mass attached to its end is considered. The displacement of the mass is given by 

Equation 2.1 (Gerre and Goodno, 2008) as follows: 

 δ= FL/EA ------------------------------------------------------Equation 2.1 

Where F is the tensional force in the bar, L is the length of the bar, E is the Young’s modulus 

of elasticity and A is the cross-sectional area. The stiffness (k) is defined as the force needed 

to cause a unit displacement according to Equation 2.2. 

k = F/δ -----------------------------------------------------------Equation 2.2 

Therefore, for an axially loaded rod, the stiffness is as given by Equation 2.3. 

k = EA/L---------------------------------------------------------Equation 2.3 

The condition is modeled by replacing the bar by a spring with the stiffness of value k.  
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2.2.2Motion of an Axially Loaded Rod 

Information about the movement of the system is desired when it is a known initial 

displacement and velocity. To find this out, Newton’s second law is used; given by; F = Ma 

(Jacobsen, 1958), where M is mass and a is acceleration. When gravity is not considered, the 

only force acting on the mass is the spring force, Fs. The spring set up in such a case is shown 

below. 

 

The spring force varies linearly with the displacement “x” times the stiffness “k”. However, if 

the mass moves upward, the spring forces points downward. So there is a negative 

relationship between the two. The equation of this system becomes; Fs = −kx. If this 

relationship is combined with Newton’s second law, the relationship is described by 

equations 2.4 and 2.5 (Maurice,1990). 

	௠.ௗమ௫

ௗ௧మ
	ൌ ݏܨ ൌ െ݇ݔ    --------------------------------------------Equation 2.4 

	௠.ௗమ௫

ௗ௧మ
൅ ݔ݇ ൌ 0                    ---------------------------------------------Equation 2.5 

 

The solution is obtained by solving the differential equation to give  

ሻݐሺݔ 	ൌ ሻݐሺ√ሺ݇/݉ሻݏ݋ଵܿܥ	 ൅  ሻ--------------------Equation 2.6ݐሺ√ሺ݇/݉ሻ݊݅ݏଶܥ

Therefore, the system will start vibrating with a fixed angular frequency referred to as   

angular eigenfrequency, which is denoted by equation 2.7. 

௡ܹ ൌ √ሺ݇/݉ሻ------------------------------------------------------------Equation 2.7 

From equation 2.7, the eigenfrequency (f) and vibration period (T) can be derived, according 

to equations 2.8 and 2.9 (Thomson, 1993). 

݂	 ൌ 	 ௡ܹ/2ߨ ൌ ሺ1/2ߨሻሺ√ሺ݇/݉ሻሻ-------------------------------------Equation 2.8 

and	ܶ	 ൌ 1/݂ ൌ /ߨ2 ௡ܹ ൌ  ሺ݉/݇ሻ--------------------------------Equation 2.9√ߨ2

Figure 2.2.2-Spring set up with no gravity consideration 
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However a better expression of the solution of the displacement at a given time is described 

by equation 2.10. 

ሻݐሺݔ 	ൌ ሺ	݊݅ݏܣ	 ௡ܹݐ	 ൅  ---------------------------------------------Equation 2.10	ሻߔ	

 A is the amplitude (usually taken to be positive) and Φ is the phase, both of which follow 

from the boundary conditions. If the mass is given an initial displacement Xo and an initial 

velocity ଴ܸ, then the solutions for A and Φ are given by equation 2.11. 

A=√ ((ܺ଴) 2+ ( ଴ܸ/ ௡ܹ) 2) and Φ=tan-1( ௡ܹܺ଴/ ଴ܸ)------------------------Equation 2.11 

2.2.3 Effects of Gravity 

When gravity is considered on a vibrating system, the total force acting on the mass will be 

Fs + mg. This causes a modification on the differential equation into the relationship given by 

equation 2.12 

	௠.ௗమ௫

ௗ௧మ
൅ ݔ݇ ൌ ݉݃---------------------------------------------------------Equation 2.12 

When solving differential equations, the first step is to find the homogeneous solution which 

is obtained after modification of equation 2.12 into equation 2.13, whose solution is given by 

equation 2.14. 

m.d2x/dt 2+kx=0-----------------------------------------------------------------Equation 2.13 

ሻݐሺ݄ݔ ൌ 	ݐሺܹ݊	݊݅ݏܣ	 ൅  ሻ-----------------------------------------------------Equation 2.14ߔ	

Equation 2.14 is the homogeneous solution of the differential equation 2.12.  After the 

homogeneous solution is obtained, the particular solution xp(t) is required. Considering that 

the non-homogeneous term mg is a constant, the particular solution is expected to be a 

constant too. Therefore, the non-homogeneous term xp(t) is equal to (mg/k); that is: 

ሻݐሺ݌ݔ 	ൌ 	݉݃/݇      

Therefore the solution for the differential equation is the sum of the homogeneous and non-

homogenous term as given by equation 2.15. 

ሻݐሺݔ 	ൌ 		 ሻݐ௛ሺݔ ൅	ݔ௣ሺݐሻ 	ൌ ሺ	݊݅ݏܣ	 ௡ܹݐ	 ൅ ሻߔ	 	൅ 	݉݃/݇------------------Equation 2.15 

From statics if the amplitude A is zero, then the mass will just have a constant displacement 

of mg/k. In vibration engineering, the homogeneous solution ݔ௛ሺݐሻ is sometimes referred to 

as the transient solution ݔ௧௥(t) and the particular solution ݔ௣ሺݐሻ  is also referred to as the 

steady state solution ݔ௦௦(t). 
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2.2.4Motion of a Laterally Loaded Rod 

There are other kinds of vibrations apart from masses on axially loaded rods. For example a 

laterally loaded rod of a moment of inertia (I) and stiffness, k, when given displacement, δ, 

will vibrate with natural frequency ௡ܹ, as described by equations 2.16 to equation 2.18. 

δ ൌ	FL3/3EI---------------------------------------------------------------------Equation 2.16 

K=F/ߜ	3= EI/L3---------------------------------------------------------------- Equation 2.17 

௡ܹ ൌ √ሺ݇/݉ሻ--------------------------------------------------------------------Equation 2.18 

2.2.5Rotation of a Torsionally Loaded Rod 

A disk of mass (m), moment of inertia, J, and connected to a rod with polar moment of inertia 

 ௣, undergoes angular displacement, θ which depends on the moment, M, that is actingܫ

between the rod and the disk. If this moment is known, then the angular displacement is 

described by equation 2.19 and the torsional stiffness, k, by equation 2.20. 

ߠ ൌ  ௣------------------------------------------------------------------Equation 2.19ܫܩ/ܮܯ

Where G is the Modulus of Rigidity (Shear Modulus) 

݇ ൌ ߠ	/ܯ ൌ  Equation 2.20---------------------------------------------------------ܮ/௣ܫܩ

The difference between torsional stiffness and normal stiffness is in the definition. Torsional 

stiffness is a product of force and displacement (units are Nm per radian) where as normal 

stiffness is force per unit displacement (N/m). 

2.2.6 Modeling of a torsionally loaded rod 

Newton’s second law for rotations is described by equation 2.21 as follows; 

-k.	ߠ=j.d2ߠ/dt 2--------------------------------------------------------Equation 2.21 

This gives the differential equation; 

j.d2ߠ/dt 2+k	ߠ ൌ 0------------------------------------------------------Equation 2.22 

The solution to the differential equation is; 

ሻݐሺߠ ൌ .ܽߠ	 ܵ݅݊ሺ ௡ܹ. ݐ ൅ ߮ሻ---------------------------------------------Equation 2.23 

Where ௡ܹ is the angular natural frequency=√ (k/j) and ܽߠ is the amplitude of vibration, 

andφ	is	the	phase. 
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2.2.7Damped Vibrations 

If the energy of a free vibrating system is dissipated with time, the amplitude also decreases 

with time. The generalized equation for a damped vibration is according to equation 2.24. 

m.d2x/dt2+C.dx/dt+kx=0-----------------------------------------------Equation 2.24 

where C is the damping coefficient. 

Let cc=2m√(k/m),   Wdbe damped angular frequency, Wnbe natural angular frequency for 

undamped oscillation. The damping ratio, ζ,Wd, and Wnare described by equations 2.25 to 

2.27 below. 

ζ, damping ratio=C/cc, ---------------------------------------------------Equation 2.25 

ܹ݀ ൌ √ሺ1 െ  ------------------------------------------------------Equation 2.26	ሻ݊ݓ2ߞ	

௡ܹ=√(k/m)-------------------------------------------------------------------Equation 2.27 

If   the damping ration is less than 1 (ζ<1), the system is under-damped. In this case, the 

motion is described by equation 2.28. 

x(t)=A0 e -ζ Wnt(cos(Wdt- Φ0 )---------------------------------------------Equation 2.28 

 

If the damping ratio is equal to 1 ( ζ=1), the system is said to be critically damped.  In this 

case equation 2.29 describes the motion. 

x(t) =e-Wnt(x0+(v0+Wnx0)t)---------------------------------------------Equation 2.29 

If the damping ration is greater than (ζ >1), the system is said to be over-damped. In this case 

x(t)=x0+(v0/2 ζWn)(1-e2 ζWnt)--------------------------------------------Equation 2.30 

2.3 Forced Vibrations 

Free vibrations die away with time because the energy trapped in the vibrating system is 

dissipated by the damping. In order for the damping ratio to be less than zero (therefore 

negative), the opposite of damping occurs. In such a case energy is eternally added into the 

system instead of being removed. As energy is externally added into the system the amplitude 

grows. Such vibrations where energy is externally supplied are called forced vibrations.  

In engineering, many structures are prone to vibrate when excited at or near the natural 

frequency. This is a situation called resonance and can lead to catastrophic collapse of 

structures. It is this understanding that this thesis attempts to address. 
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2.4 Vibrations of Trees 

A study was conducted to measure frequencies of vibration of trees(Moore and Maguire, 

2003). They first reviewed and synthesized previous studies that measured the natural 

frequencies and damping ratios of conifer trees. In their analysis of natural frequency 

measurements from six hundred and two trees, belonging to eight different species, they 

showed that natural frequency was strongly and linearly related to the ratio of diameter at 

breast (DB) to total tree height (H) squared (DB/H2). After accounting for their size, pines 

were found to have a significantly lower natural frequency than both spruce and Douglas fir 

(Moore and Maguire, 2003). Natural sway frequencies of de-branched trees were 

significantly higher than those of the same trees with the branches intact, and the difference 

increased with increase in the ratio (DB/H2). Damping mechanisms were analysed and 

methods for measuring damping ratio were suggested (Moore and Maguire, 2003). It was 

found that internal damping ratios were typically less than 0.05 and were not related to tree 

diameter. It was also found that external damping was mainly due to aerodynamic drag on the 

foliage and contact between the crowns of adjacent trees. Analysis of data from previous 

wind-tunnel studies indicated that damping due to aerodynamic drag is a nonlinear function 

of velocity (Moore and Maguire, 2003). Damping due to crown contact has been suggested 

by a previous author to be a function of both the distance to and the size of adjacent trees 

(Moore and Maguire, 2003). It was found that  in uniformly spaced stands, it may be possible 

to model crown contact damping as a function of stand density index (SDI), a common 

forestry measure which incorporates both of these variables (Moore and Maguire, 2003). 

2.5Comparison of Structural Earthquake Response and Computer Modeling 

Maison and Neuss (1985), members of ASCE (American Society of Civil Engineers) 

performed the computer analysis of an existing forty four story steel frame high-rise building 

to study the influence of various modeling aspects on the predicted dynamic properties and 

computed seismic response behaviours. The predicted dynamic properties were compared to 

the building's true properties as previously determined from experimental testing. The 

seismic response behaviours were computed using the response spectrum and equivalent 

static load methods. It was found that the theoretical values were very close to the 

experimental values. 

Other researchers (Maison and Ventura, 1991)extensively computed dynamic properties and 

response behaviours of a thirteen-story building and the results were compared to the true 

values as determined from the recorded motions in the building during two actual 
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earthquakes and showed that state-of-practice design type analytical models can predict the 

actual dynamic properties. 

Previous studies have been carried out (Awkar and Lui, 1997) on responses of multi-story 

flexibly connected frames subjected to earthquake excitations using a computer model. The 

model incorporated connection flexibility as well as geometrical and material nonlinearities 

in the analysis. The conclusion was that the connection flexibility tends to increase upper 

stories' inter-storey drifts but reduce base shears and base overturning moments for multi-

storey frames. 

Vasilopoulos and Beskos (Vasilopoulos and Beskos, 2009) undertook study on rational and 

efficient seismic design methodology for plane steel frames using advanced methods of 

analysis in the framework of Eurocodes 8 and 3 (Vasilopoulos and Beskos, 2009). This 

design methodology employed an advanced finite element method of analysis that took into 

account geometrical and material nonlinearities and member and frame imperfections. It 

could sufficiently capture the limit states of displacements, strength, stability and damage of 

the structure. 

Ozyigit (Ozyigit, 2002) undertook study on free and forced in-plane and out-of-plane 

vibrations of frames. The beams had straight and curved parts and were of circular cross 

section. A concentrated mass was located at different points of the frame with different mass 

ratios. FEM (Finite Element Method) was used to analyse the problem. It was found that 

frequencies of vibration decreased as mass increased. 

2.6 Computer Modeling of Two Dimensional Multi-storey Frame Vibrations 

Generally the stress and deformation analysis of any structure is done by constructing and 

analysing a mathematical model of the structure. One such technique is Finite element 

method (FEM). A frame is subjected to both static and dynamic loading with dead load 

comprising the static load and all other time varying loads making up the dynamic load. In 

the past research was undertaken (Verma and Ashish, 2011) on vibrational analysis of 

frames, aimed at analysing two dimensional structural frame both statically and dynamically 

using the matrix approach of FEM. In that research, generalized codes in MATLAB software 

were developed and analysis was done for static loads and also for the variation of various 

parameters such as displacement and moment with increasing number of storeys.  Dynamic 

analysis was also undertaken whereby a code was developed to determine the natural 

frequency of the structure along with the various other parameters. The structures analysed 

had only vertical and horizontal members (beams and columns). The three findings of that 

research by Verma and Ashish were: 
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(i) After static analysis of single bay multi-storey frame, it was found that the deflection at 

any node increases with the increase in number of storeys. Also the sway or deflection 

of the topmost node increases steeply with increase in number of storeys. 

(ii) That the natural modal frequencies decrease as the numbers of storeys increased. 

(iii)  Both the static and dynamic formulations can be extended to any number of bays of a 

frames 

2.7 Relationship between Amplitude and Natural Frequency 

Some studies were undertaken in the past (Tamura, et al., 1993) using  the random decrement 

technique which have shown that for a given external load  the amplitude was depended upon 

natural frequency and modal damping ratio. The random decrement technique has been 

applied to structures such as buildings to evaluate structural damping under random 

excitation (Jeary, 1986). In a study on low frequency noise induced by lorries on bridges 

(Tsubomoto et al, 2015), it was found that concrete bridges produced lower volume noise 

than steel bridges but the resonance frequency was the same for both materials. The lower 

volume of noise was attributed to lower amplitudes of vibration. 

2.8 Damage Assessment in Structures using VibrationCharacteristics 

A research was conducted (Shih, 2009) which showed  that damage in structures can be 

established by detecting changes in vibration characteristics. The study used variation in 

vibration parameters to provide a multi-criteria method for damage assessment. It 

incorporated the changes in natural frequencies, modal flexibility and modal strain energy to 

detect damage in main load bearing structures in bridges.  Other related researches showed 

that the procedure to identify changes in parameters of structure must factor the following 

seven aspects (Aktan, et al., 1997): 

(i) Structural conceptualization 

(ii) Structural modeling (may include Finite Element method) 

(iii) Designing and executing various experiments 

(iv) Data processing and identifying modal and other characteristics 

(v) Model calibration and validation 

(vi) Simulation and interpretation 

(vii) Decisions and heuristics 

Classification of bridges (Baker and Puckett, 1997) can be done according to the structural 

layout, namely; single span, multi-span and cantilever. Modal analysis is an important tool in 

the analysis, diagnosis, design and control of vibration. Modal testing includes 
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instrumentation, signal processing, parameter estimation and vibration analysis (De Silva, 

2007). An experimental vibration system consists of three measurement mechanisms as 

follows: 

(i) The excitation mechanism 

(ii) The sensing mechanism 

(iii) The Data acquisition and Processing Mechanism 

It has been found that the damaged positions in structures experienced increased amplitudes 

(Baker and Puckett, 1997)). According to Beck and Jennings(Beck and Jennings, 1980), 

identification of system parameters of buildings is important for the structural monitoring or 

the damage detection of buildings due to some excitation or the passage of time. 

 

2.9Resonance between Structure and Ground 

Vibration resonance between a structure and the ground is possible (Navarro, et al., 2004). 

According to some past research the ground natural frequency is affected by water content 

and temperature in the soil (Clinton, et al., 2006). Data on probable resonance phenomena in 

Granada city, comparing predominant period of soil and natural period of Reinforced 

Concrete buildings, shows that a significant number of buildings have dominant periods close 

to the ground motion ones and consequently resonant phenomena would be able to appear if 

an earthquake occurred in the zone (Navarro, et al., 2004). 

The literature reviewed showed that the true behaviour of structures can be predicted using 

computer modeling. It was also found that there is need to come up with a formulation for 

prediction of frequency of structures. This research utilized the following tools to be able to 

analyse vibrations experimentally; 

(i) The excitation system 

(ii) The sensing system 

(iii) The data acquisition and processing system. 

 

2.11 Effect of  Height and Number of Floors on natural Frequency 

In a study carried out in the University of Gujarat (Nilesh and Desai, 2012) it was found that 

the natural frequency of vibration decreased as the number of storeys increased. They 

prepared computer models of reinforced concrete buildings ranging in height from 60m to 
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90m with number of storeys varying from 20 to 30. They calculated the natural frequency of 

vibration for each model and found the frequency decreased as number storeys decreased. 

2.12 Effect of Horizontal Member stiffness and Number of Bays on Natural Frequency 

In a study carried out in 1996 (Anwar and Hossain,1996), the effect of horizontal member 

stiffness and number of bays evaluated. In the study a software named  “ANYSYS” was used 

to analyse the effect of bay width and number of bays on the natural frequency of vibration. It 

was found that as the bay width increased in the direction of motion, and therefore horizontal 

member stiffness decreased, the natural frequency of vibration decreased. It was also found 

that as the bay width increased in the direction transverse to motion the frequency of 

vibration increased. In the same study, as the number of bays in the direction of motion 

increased, it was found that the frequency of vibration increased. Moreover, it was found that 

as the number of bays increased in the direction transverse to motion, the frequency of 

vibration decreased. 

2.13 Theoretical Framework 

The theoretical framework for this research is outlined in the remaining section of this 

Chapter. 

2.13.1 Theory and Code for Computer Modeling 

Based on the theory given in this Chapter, a software, named “Structuresoft”, was developed 

to simulate free vibrations and calculate deflections against time. The computer code is given 

in the appendix.  A three dimensional structure has six degrees of freedom at each joint which 

can fully move. Similarly, a structure with twelve fully movable joints has seventy two 

degrees of freedom at the fully movable joints. Such a structure has 72 natural frequencies at 

the joints.  However in this research a single degree of freedom (SDOF) at the centre of 

gravity is of interest. Therefore after analysing the structure for the initial deflection at all the 

degrees of freedom at the joints, interpolation was used to determine the idealized initial 

horizontal deflection at the centre of gravity of the structure. 

The stiffness matrix that was assembled to analyse structures was of the form; 

K1,1  K1,2 K1,3 -------------------K1,n 

K2,1 K2,2 K2,3--------------------K2,n 

Kn,1 Kn,2 -------------------------Kn,n 

Where K i j is the force in coordinate i due to a unit deflection in coordinate j 
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 and n is the total number of joints. 

The relationship between the external force, the stiffnesses, the deflections, and the internal 

forces at coordinates 1 and 2 is given by equations 2.31 and 2.32: 

 0=P1+P1’ +K 11 ∆1+K 12 ∆2+K13∆3----------------K1n∆n --------------------Equation 2.31 

0=P2+P2’ +K21∆1+K22∆2+K23∆3-----------K2n∆n ---------------------------Equation 2.32 

The equations at the other coordinates are similar. 

The general expression for equations 2.31 and 2.32 is given by equation 2.33; 

0=PJ+PJ’ +KJ1∆1+KJ2∆2+KJ3∆3--------------K Jn ∆n--------------------------Equation 2.33 

Where PJ is the external  force at coordinate J, PJ’ is the internal force at coordinate J and 

∆1,∆2,∆3-----------∆n are deflections at coordinates  1,2,3---- up to n. The force can be in kN 

or be a moment in kNm. 

2.13.2 Enumeration of Coordinates 

It is necessary to enumerate coordinates by considering the degrees of freedom at all the 

joints. The maximum number of degrees of freedom in space for any joint are six as 

described below: 

1. Linear displacement in X-direction 

2. Linear displacement in Y-direction  

3. Rotation about Z-axis 

4. Linear displacement in Z-direction 

5. Rotation about Y-xis 

6. Rotation about X-axis 

If a joint is a support, it has zero degrees of freedom unless restraint is removed in any of the 

above mentioned degrees of freedom. The none support joints were rigidly welded otherwise 

there would be some pin-joints above the base. If pin-joints arose above the base the number 

of degrees of freedom would increase per joint to be more than six(6). 
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2.13.3 Calculation of Stiffnesses for Various Coordinates  for  a Given Member 

Consider a member with two joints J1 and J2 at the left and right respectively. The XYZ axes 

are shown in Figure 2.2. The displacement coordinates at the two end joints are shown in 

Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 XYZ AXES 

Figure 2.3-The Displacement Coordinates at the 2 ends of
a Structural member 
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Joint 1 has coordinates 1 to 6. Coordinate 1 represents displacement in x –direction, 2 

represents deflection in y-direction, 3 represents rotation about z-axis,4 represent 

displacement in z-direction, 5 represents rotation about the y-axis and 6 represents rotation 

about the x-axis. 

Joint 2 has coordinates 7 to 12. Coordinate 7 is deflection in x-axis, coordinate 8 is deflection 

in y-axis, coordinate 9 is rotation about z-axis, and coordinate 10 is deflection in z-axis, 

coordinate 11 is rotation about y-axis and coordinate 12 is rotation about x-axis. The 

equilibrium condition of the members is described in equation 2.34. 

0=External load +Internal load+ sum of (stiffness x deflection) at any coordinate----------------

-----------------------------------------------------------------------------------------------Equation 2.34 

 

2.13.4 Simulation of  Vibrations 

The model structures were subjected to an initial horizontal force Fotat one of top most joints 

to cause deflection xot at the top and deflection xo at the centre of mass. The deflection at the 

centre of mass was calculated based on the deflection at the top using interpolation. The 

structures were thereafter released to undergo free vibrations. The overall stiffness of the 

structure Ko is defined as the force required at the top to cause a unit horizontal deflection at 

the centre of mass. Application of the force at the top results in the first mode of vibrations. 

For theoretical approach, the deflections at the centre of mass were determined by use of the 

model structure’s stiffness matrices. On the other hand, in the experimental approach the 

deflections were physically measured. The force applied at the top is divided by the 

deflection at the centre of mass to give the stiffness of the structure Ko. 

The relationship between the overall structure’s stiffness, Ko, the horizontal deflection, x, the 

acceleration, a and total mass of the structure, m is governed by Newton’s second law of 

motion (which states that force =mass * acceleration). 

Total Mass* acceleration=stiffness *deflection at centre of mass, which is given by equation 

2.35 below. 

m*a=Ko*x  ----------------------------------------------------------------------------Equation 2.35 

Which is also the same as equation 2.36 after inclusion of displacement and time in place of 

acceleration. 

m.d2x/dt2=-Kox ----------------------------------------------------------------------Equation 2.36 This 

is a second order differential equation 
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To determine Ko, a horizontal force Fotat a top joint of the structure is input in a computer 

programme and the deflection, xo, of the structure at the centre of mass is solved.  

The stiffness Ko is then calculated using equation 2.37 below; 

Ko=Fot/xo------------------------------------------------------------------------------Equation 2.37 

The angular velocity, W, is then calculated as follows; 

m.d2x/dt2=-Koxas shown in equation 2.35 

m.d2x/dt2+Kox=0 --------------------------------------------------------------------Equation 2.37(i) 

This a second order differential equation. The characteristic equation is: 

m.ʎ2+Ko=0--------------------------------------------------------------------------Equation 2.37(ii) 

The solution for the characteristic equation is: 

ʎ=ʎ1 or ʎ=ʎ2 where ʎ1= -√(Ko /m)jand ʎ2=+√(Ko /m)j--------------------Equation 2.37(iii) 

Therefore  x=c1e
ʎ1t+c2e

ʎ2t--------------------------------------------------------Equation 2.37(iv) 

Therefore x=d1cos(√(Ko /m))t+d2sin(√(Ko /m))t ----------------------------Equation 2.37(v) 

where d1,d2 are constants 

However if at timet=0, x=0 therefore d1=0  

Therefore final displacement equation is: 

x= d2sin(√(Ko /m))t-------------------------------------------------------------Equation 2.37(vi) 

where d2is the amplitude  deflection and W=(√(Ko /m)) is the angular velocity in radians per 

second. The equation is illustrated in Figure 2.4 

 

W=√(Ko/m)-------------------------------------------------------------------------Equation 2.38 

From equation 2.38, the eigen frequency f and vibration period T are derived, according to; 

	

݂ൌܹ/2ߨൌሺ1/2ߨሻሺ√ሺ݋ܭ	/݉ሻ------------------------------------------------------Equation 2.39 

 

and	ܶ	 ൌ 1/݂ ൌ ܹ/ߨ2 ൌ ሺ௠√ߨ2
௄௢
ሻ--------------------------------------------------Equation 2.40 
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At any time, t, the horizontal deflection, x(t) at centre of mass is given by  

ሻݐሺݔ 	ൌ 	ܿ݋ݔ	 ∗ ݐሺܹ	݊݅ݏ ൅  --------------------------------------------------------Equation 2.41	ሻߔ

where xoc  is the amplitude and also the initial deflection at centre of mass. ߔ is the phase 

difference which is 2/ߨ in the case where initial deflection is maximum deflection and equal 

to the amplitude at time t=0.This case applies for the experiments done for this thesis. The 

motion is illustrated by the red graph in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 –Displacement against time  for an oscillating system 

Figure2.5-Displacement against time  compared where there is a
phase difference of 90 degrees 
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CHAPTER 3: MATERIALS AND METHODOLOGY 

3.0 OVERVIEW OF THE METHODOLOGY 

The stiffness matrix method was used to develop a software capable of analysing deflections 

for given initial horizontal forces acting on a structure. The software was then used to 

simulate free vibrations and calculate the deflections against time. This simulation was done 

for structures with different heights, number of bays and structural member stiffnesses.Steel 

model structures were made and subjected to free vibrations by applying initial horizontal 

forces and releasing them. The horizontal deflections against time for the free vibrations were  

measured. This was  repeated for structures of different heights, number of bays and 

structural member stiffnesses.The logarithmic values of the natural frequencies obtained were 

plotted against the logarithmic values of the heights of the models, number of bays and 

stiffnesses.  The natural frequencies were the dependant variables and the heights of the 

models, the number of bays and the stiffnesses were the independent variables. The  

relationship between natural frequency, the height of structure, the number of bays and the 

stiffnesses of the structural members was determined using a graphical method.  

3.1Theoretical Simulation of Free Vibrations 

In the theoretical method, vibrations were simulated using a software, named Structuresoft”, 

developed in Visual Basic language using the stiffness matrix theory. The code for the 

programme is given in Appendices 1 to 6 whereby: 

 Appendix 1- is the code for enumerating the coordinates 

 Appendix 2- is the code for calculation of external loads at joints 

 Appendix 3- is the code for calculation of internal loads at joints 

 Appendix 4- is the code for generation of stiffnesses  

 Appendix 5- is the code for evaluating the stiffness matrix 

 Appendix 6- is the code for equilibrium equations and their solutions. 

 The theory is presented in earlier section 2.10 in Chapter 2. Each of the computer generated 

miniature structures was subjected to free vibrations by application of an initial force at a top 

joint. The deflection at the top joint where the force was applied was computed. The 

deflection at the top enabled estimation of deflection at the centre of mass. The deflection at 

centre of mass enabled determination of the stiffness of the structure (K), whereby, the 

structure stiffness, ܭ ൌ  The frequency, F,was calculated using .݊݋݅ݐ݈݂ܿ݁݁݀/݈݀݁݅݌݌ܣ݁ܿݎ݋ܨ

formula ܨ ൌ ሺ1/2ሺ3.14ሻሻ√ሺ/ܭ	ܯሻ where M= mass of structure.  
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3.2 ExperimentalFree Vibrations 

In the experimental method, three dimensional physical models of multi-storey structures 

were built using mild steel bars. The miniature structures had different heights and height to 

total horizontal length ratios. The miniature structures were subjected one at a time to an 

initial horizontal force at one of the highest joints and then released to vibrate freely. To 

avoid eccentricity due to horizontal loading where there was no top joint centrally placed 

horizontally, two equal initial forces were applied simultaneously to two top joints which 

were equidistant from the line of symmetry of the model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1-Diagram showing miniature structure and initial load (units are in 
millimeters) 

The deflections against time due to the free vibrations were measured at the centre of mass 

using horizontal motion transducers. The initial horizontal force was varied for each 

miniature structure. For each new initial horizontal force, the deflections against time were 

measured for each miniature structure. This enabled determination of the average frequency 

of vibration for each model. The initial force was applied using a magnet which would lose 

contact at a force of 0.05KN. The miniature structures were mounted on concrete base using 

stiffened base plates and bolts to ensure there was no movement at base joints.  The Data 

logger and horizontal motion transducer are shown in Figures 3.2 and 3.2b respectively. The 

strain gauge used, the transducer, was a static one. However it was connected to the Data 

Logger which could record strain values as time changed. The output was therefore dynamic. 
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The accuracy of the TDS Data Logger is 95%.  Some of the errors are due to temperature 

change. 

 

Figure 3.2-Data Logger 

 

 

Figure 3.2b –Horizontal motion Transducer 

The miniature structures subjected to free vibrations are tabulated below: 
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Table 3.1 Unbraced Miniature Structures Subjected to Free Vibrations 

Miniature 

Structure 

number 

Height(mm) Bay 
length 

(mm) 

Number 
of bays in 
x-
direction 

Number  

of bays in 
z-
direction 

Floor to 
floor 
height(mm) 

Member type and 
size 

1 2100 150 1 1 150 6mm by 6mm square 
section steel 

2 1800 150 1 1 150 6mm by 6mm square 
section steel 

3 1500 150 1 1 150 6mm by 6mm square 
section steel

4 1200 150 1 1 150 6mm by 6mm square 
section steel

5 900 150 1 1 150 6mm by 6mm square 
section steel 

6 1500 150 1 1 150 6mm by 6mm square 
section steel

7 1500 150 1 2 150 6mm by 6mm square 
section steel 

8 1500 150 1 3 150 6mm by 6mm square 
section steel 

9 1500 150 1 4 150 6mm by 6mm square 
section steel 

 

The miniatures structures were either 1 bay by 1bay or 1 bay in one direction and several 

bays in the other direction as shown in Table 3.1. It was not desirable to work with miniature 

structures with more than 1 bay in both x and z direction since such structures would be too 

stiff to achieve a measurable deflection given the equipment used. The miniature structures 

were properly bolted on reinforced concrete bases to avoid movement of the bottom most 

joints. 
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Figure 3.3 Sample of unbraced miniature structures 

Figure 3.3 above shows an unbraced structure. In an unbraced  structure all the structural members are 

either horizontal or vertical.  In a braced structure, some members are at an angle between 0 and 90 

degrees to the horizontal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3a-A sample of a braced  miniature structure 
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3.3Getting the Relationship Between Natural Frequencyand Various Parameters 

The output of the theoretical method utilized the computed frequencies of vibration for a 

sample of models of varying dimensions. The experimental method utilized values of 

deflection at the centre of mass at a given time for each model due to loading. The results 

were used to estimate the experimental frequencies of vibration (F).  

The data obtained was analysed using a graphical method. The natural frequencies obtained 

by the two methods described above for a given model horizontal length were plotted against 

the model height on a logarithmic scale. Moreover the frequencies were plotted against the 

vertical member stiffnesses, horizontal member stiffness and number of bays for a given 

model height and length on a logarithmic scale.  The model height was the dimension between 

the base and top of each miniature structure.  The model length was the horizontal 

dimensions of the structure. The number of bays was the number of beam spans in a given 

direction for the structures. The vertical members stiffnesses were values of I/L, where I was 

the Second Moment of Area and L was length of member, for vertical members. The 

horizontal members stiffnesses were values of I/L, where I was the Second Moment of Area 

and L was length of member, for horizontal members. The intercepts of the plotted curves on 

the vertical axis, and gradient of the graphs were used recorded. These intercepts and 

gradients were used to determine the relationship between the natural frequency of vibration, 

height of structure, members stiffnesses and number of bays. The results obtained by the two 

methods were compared. The results prediction based on the literature was that the frequency 

of vibration would decrease as the as the height of the structure increased. 
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CHAPTER 4: RESULTS 

4.1 Theoretical Results 

The theoretical results are based on natural frequencies of vibration from the developed 

software (“Structuresoft"). The theoretical Results are tabulated below 

4.1.1 Theoretical Results for 1 bay models –unbraced 

The natural frequencies for 1 bay models, which were unbraced, were calculated using the 

mentioned software. The natural frequency results obtained are listed in table 4.1.1 below. 

 

Table 4.1.1-Theoretical results for unbraced 1 bay models 

Structure 

No 

Number 

of Storeys 

Model 

Height‐

mm 

Length 

of  each 

member

‐mm 

Member type 

and size 

Mass‐

KG 

Deflection 

at  joint  of 

initial 

force 

(top)‐mm 

Frequency 

Calculated 
with 
software‐
Hertz 

Frequency 

adjusted 

for 

Constant 

mass  (of 

2.76Kg)‐

Hertz 

1  14  2100  150  6mm by 6mm 
square 

4.83  0.48  1.05  1.40 

2  12  1800  150  6mm by 6mm 
square 

4.14  0.24  1.55  1.89 

3  11  1650  150  6mm by 6mm 
square 

3.80  0.63  1.03  1.21 

4  10  1500  150  6mm by 6mm 

Square  

3.45  0.31  1.55  1.73 

5  8  1200  150  6mm by 6mm 
Square 

2.76  0.18  2.26  2.26 

It was found that for unbraced structures natural frequency generally decreased as height 

increased as shown in Figure 4.1.1 
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Figure 4.1.1- Natural Frequency, F, versus, Height, H, for 1 bay unbraced (theoretical) 

The frequency was adjusted to maintain miniature structure mass as 2.76KG as shown in the 

last column of table 4.1.1. The mass was made constant in order to study the effect of height 

without influence of change of mass. However the mass of any of the other structures could 

have been chosen for this purpose. The values were plotted against miniature structure height 

as shown in Figure 4.1.1b. 

 

 

Figure 4.1.1b –Adjusted Frequency against Miniature Structure Height for unbraced 
structures-Theoretical 

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500

N
at
u
ra
l F
re
q
u
e
n
cy
,H
e
rt
z

Height (mm)

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500A
d
ju
st
e
d
 N
at
u
ra
l F
re
q
u
e
n
cy
,F
, H

e
rt
z

Height, H, mm 



27 

 

4.1.2 Theoretical Results for braced 1 bay models 

The natural frequencies for 1 bay models, which were braced diagonally at each storey, were 

calculated using “Structuresoft”. The natural frequency results obtained are listed in table 

4.1.2 below. 

Table 4.1.2-Theoretical results for braced 1 bay models 

Structure 

No. 

No. of 

Floors 

Model 

Height 

(mm) 

Length 

of each 

member 

(mm) 

Member type 

and size 

Mass 

(Kg) 

Deflection 

at joint of 

initial load 

(top)-mm 

Frequency 

Calculated 

with 

software-

Hertz 

Frequency 

Adjusted 

for constant 

mass-Hertz 

1 14 2100 150 6mm by 6mm 

Square 

8.26 0.117 1.62 2.47 

2 12 1800 150 6mm by 6mm 

Square 

7.07 0.122 1.71 2.42 

3 10 1500 150 6mm by 6mm 

Square  

5.90 0.12 1.86 2.40 

4 8 1200 150 6mm by 6mm 

Square 

4.72 2.16*10-2 4.96 5.73 

5 6 900 150 6mm by 6mm 

square 

3.54 1.06*10-2 

 

8.18 8.18 

The natural frequency of vibration decreased as height increased for braced structures as shown in 

Figure 4.1.2 

 

 

 

 

 

 

 

 

Figure 4.1.2 Theoretical frequency,F, versus Height for braced
structures 
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The Frequencies were adjusted for constant mass as shown in last column of table 4.1.2. The 

adjusted Frequencies were plotted against height of miniature structure as shown in Figure 

4.1.2b 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.2b- Theoretical Adjusted frequencies against Height for braced structures 

 

 

 

 

 

Figure 4.1.2-Theoretical Log 10 (F) vs Log 10 (H) for braced 1 bay structures 
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4.1.3 Theoretical Results for  1 bay, 2bay, 3bay, 4bay,5bay models in the stiffer direction 

The natural frequencies for 1 bay, 2bay, 3bay and 4 bay models, which were unbraced, were 

computed for stiffer direction using “Structuresoft”. The results are listed in table 4.1.3 

below. 

Table 4.1.3-Theoretical results for 1bay, 2bay, 3bay and 4bay in the stiffer direction 

Structure 

No 

Model 

Height-

mm 

Number 

of Bays 

Length 

of each 

member-

mm 

Member 

type and 

size 

Mass-

Kg 

Deflection 

at initial 

force 

joint 

(top)-mm 

Frequency 

Calculated 

with 

software-

Hertz 

Adjusted 

Frequency for 

constant Mass 

of 3.45Kg, 

Hertz 

1 1500 1 150 6mm by 
6mm 
Square 

3.45 0.31 1.55 1.55 

2 1500 2 150 6mm by 
6mm 
Square 

5.62 1.56*10-2 
 

5.36 6.84 

3 1500 3 150 6mm by 
6mm 
Square  

7.96 2.39*10-2 
 

3.68 5.58 

4 1500 4 150 6mm by 
6mm 
Square 

8.94 3.64*10-2 
 

2.41 3.88 

5 1500 5 150 6mm by 
6mm 
Square 

12.1 0.52 3.6 6.7 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.3-Frequency versus number of bays (stiffer direction motion) 

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Fr
e
q
u
e
n
cy
, F

Number of bays, Npr



30 

 

The natural frequency was plotted against the number of bays as shown in Figure 4.1.3.  

There was a general increase in frequency for motion in the stiffer direction as the number of 

bays increased as shown by the trend line generated by the Excel software. 

 

 

 

 

Figure 4.1.3b  Adjusted Theoretical Frequencies against Number of Bays (Stiffer 
Direction Motion) 
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Figure 4.1.3c-Theoretical log 10 F against Log 10 Npr in  stiffer directionmotion 

The relationship between Log 10 F and Log 10 N where the number of bays increased and 

motion is parallel to the stiffer direction is shown in Figure 4.1.3c 

4.1.4 Theoretical Results for 1 bay,2bay,3bay, 4bay,5baymodels - Less stiff direction 

motion 

The natural frequencies for 1 bay, 2bay, 3bay and 4 bay models, which were unbraced, were 

calculated for the less stiff direction motion using the mentioned software. The natural 

frequency results obtained are listed in table 4.1.4 below. 

Table 4.1.4-Theoretical results for 1bay, 2bay, 3bay , 4bay& 5bays in the less stiff 
direction 
Structure 

No 

Model Height-

mm 

Number of  

Bays 

Length of each 

member-mm 

Member type 

and size 

Mass-KG Deflection at 

initial force joint 

(top)-mm  

Frequency 

Calculated with 

software-Hertz 

Frequency

Adjusted for 

constant  

Mass-Hertz 

1 1500 1 150 6mm by 6mm 

Square 

3.45 0.31 1.55 1.55

2 1500 2 150 6mm by 6mm 

Square 

5.62 7.69*10-2

 

2.40 3.05

3 1500 3 150 6mm by 6mm

Square  

7.96 0.106 1.73 2.64

4 1500 4 150 6mm by 6mm

Square  

9.94 0.23 1.05 1.79

5 1500 5 150 6mm by 6mm

Square  

12.1 1.0 0.46 0.86
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The frequency of vibration was plotted against the number of bays as shown in Figure 4.1.4. 

There was a general decrease in the natural frequency of vibration in the less stiff direction as 

the number of bays increased as shown in the trend line generated by Excel software. 

 

 

 

 

 

Figure 4.1.4 –Natural frequency against number of bays, Npp, in direction transverse to 
motion (theoretical). 

The natural frequencies were adjusted for constant miniature structure mass as shown in the 

last column of Table 4.1.4.  The adjusted frequencies were plotted against number of bays as 

shown in Figure 4.1.4b. 
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Figure 4.1.4b-Adjusted Frequencies against the number of bays in direction transverse 
to motion-Theoretical 

 

 

 

 

The relationship between Log 10 (F) and Log 10 (Npp) where the number of bays increased 

and motion is parallel to less stiff direction is shown in Figure 4.1.4c 

 

 

 

Figure 4.1.4c-Log 10 F against log 10 Npp as number of bays increase in one direction-
Motion parallel to less stiff direction-Theoretical 
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Figure 4.1.4c-Log 10F against log 10 Npp as number of bays increase in one direction-
Motion parallel to less stiff direction-Theoretical 

4.1.5 Theoretical Results for 1 bay models with same overall height but varying stiffness   

of vertical members 

The natural frequencies for 1 bay models, with the same overall height but different storey 

were calculated using the mentioned software. All members in the miniature structure were 

6mm square. The natural frequency results obtained are listed in table 4.1.5 below. 
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Table 4.1.5-Theoretical Results for 1bay models as vertical member stiffnesses varied 

Model 
no. 

Number 
of 
storeys 

Model 
height
-mm 

Length 

of  

vertical 

members-
mm 

Mass
-Kg 

Deflection 
at joint of 
initial 
force 

Frequency 

Calculated 
with 
software-
Hertz 

Frequency 

Modified 
for 
constant 
mass of 
3.45Kg, F-
Hertz 

Column 
stiffness 
ratio 
(I/L),Sv –
(mm 3 ) 

1  8  1500  187.5  3.28    1.30  1.27  0.58 

2  10  1500  150  3.45  0.49  1.55    1.55  0.72 

3  15  1500  100  4.32 5.4*10‐2 3.27 3.66  1.08 

4  20  1500  75  5.18  3.6*10‐2  3.69  4.52  1.44 

5  26  1500  57.7  6.96  6.51*10‐3  7.47  10.6  1.87 

 

 

 

 

 

 

 

 

 

Figure 4.1.5-Theoretical frequencies against stiffness of columns 

The natural frequency of vibration was plotted against the miniature structure stiffness ratio 

(I/L) for a fixed overall structure height as shown in Figure 4.1.5. The frequency increased as 

the stiffness increased. 

4.1.6 Theoretical Results for 1 bay models as stiffness of horizontal members varies 

parallel to the direction of the initial force. 

The natural frequencies for 1 bay models, with the same overall height but different 

stiffnesses for horizontal members parallel to direction of force was calculated using the 

mentioned software. All members were 6mm square. The vertical members and member 
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perpendicular to motion were 150mm long. The natural frequency results obtained are listed 

in table 4.1.6 below. 

 

Table 4.1.6-Theoretical results as horizontal members stiffnesses varied parallel to 
initial force 

Model 

no. 

No. of 

storeys 

Model 

Height 

(mm) 

No. 

of 

Bays 

Horizontal 

member 

length 8- 

Deflection 

at joint of 

initial 

force(top) 

Frequency 

Calculated 

with 

software-

(Hertz) 

Mass

(Kg) 

Frequency 

Modified 

for 

Constant 

Mass of 

2.53KG,F-

Hertz 

Horizontal 

member stiffness 

ratio (I/L)-

mm3,Spl 

1 8 1200 1 100 0.44 1.51 2.53 1.51 1.08 

2 8 1200 1 150 0.18 2.24 2.76 2.34 0.72 

3 8 1200 1 200 
9.15*10-2 

 

3.03 3.00 3.30 0.54 

4 8 1200 1 250 
2.88*10-2 

 

5.20 3.23 5.87 0.43 

4 8 1200 1 300 1.1*10-2 

 

8.1 3.49 9.51 0.36 

The natural frequency of vibration increased as the horizontal member stiffness decreased 

parallel to direction of motion as shown in Figure 4.1.6. 

 

Figure 4.1.6 Frequency F, against Stiffness, Spl, of horizontal member parallel to motion-
Theoretical 
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4.1.7 Theoretical Results for 1 bay models as stiffness of horizontal members varies 

perpendicular to the motion. 

The natural frequencies for 1 bay models, with the same overall height but different 

stiffnesses for horizontal members perpendicular to direction of initial force was calculated 

using the mentioned software. All members were 6mm square. The vertical members and 

member parallel to motion were 150mm long. The natural frequency results obtained are 

listed in table 4.1.7 below. 

 

 

Table 4.1.7-Natural frequencies for 1bay models (1200mm high) as stiffness of 
horizontal members varies perpendicular to motion-theoretical 

Model 

no. 

Number 

of 

storeys 

Number 

of Bays  

Length of 

horizontal 

members 

perpendicular 

to initial 

force-mm 

Mass 

(Kg) 

Deflection 

at joint of 

initial 

force(top) 

Frequency 

Calculated 

with 

software -

Hertz 

Frequency 

modified for 

constant 

mass of 

2.53Kg, F-

Hertz 

Stiffness of 

member 

perpendicul

ar to 

motion, Spp 

1 8 1 100 2.53 0.19 2.28 2.28 1.08 

2 8 1 150 2.76 0.18 2.24 2.14 0.72 

3 8 1 250 3.22 0.325 1.55 1.38 0.54 

4 8 1 300 3.46 0.167 2.09 1.79 0.43 

5 8 1 350 3.68 1.3 1.57 0.31 
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Figure 4.1.7-Theoretical Natural Frequency against the horizontal member stiffness 
perpendicular to the direction of motion 

The natural frequency generally increased as the stiffness of the horizontal members 

perpendicular motion  increased as shown in Figure 4.1.7. 

4.1.8 Theoretical Results for 1 bay models with varying scale factors 

The natural frequencies for 1 bay models with varying scale factors were calculated using the 

mentioned software. The natural frequency results obtained are listed in table 4.1.8 below. 

Table 4.1.8-Natural frequencies for 1bay models with varying scale factors 

``````1 No. of 

storeys 

Model  

Height 

(mm) 

No. 

of 

Bays 

Length of 

horizontal 

members 

(mm) 

Length 

of  

Vertical 

member 

(mm) 

Member type 

and size 

Mass 

(Kg) 

Deflection 

at joint of 

initial force 

(top)-mm 

Frequency 

Calculated 

with 

software-

Hertz 

1 6 900 1 150 150 6mm by 6mm 
Square 

1.58 0.16 2.25 

2 6 1200 1 200 200 6mm by 6mm 
Square 

2.76 0.22 1.43 

3 6 1500 1 250 250 6mm by 6mm 
Square 

3.45 0.50 0.86 

4 6 1800 1 300 300 6mm by 6mm 
Square 

4.15 0.88 0.59 

5 6 2100 1 350 350 6mm by 6mm 
Square 

4.84 1.35 0.44 
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Table 4.1.8b –Miniatures Structure Scale Factor, Sc, Vs Frequency, F 

Model No. Model  

Height 

Scale Factor, compared to 

model of height 900mm 

Mass 

(Kg) 

Frequency Frequency adjusted for Constant 

Mass of 1.58Kg, F-(Hertz) 

1 900 1 1.58 2.25 2.25 

2 1200 1.33 2.1 1.43 1.65 

3 1500 1.67 3.45 0.86 1.27 

4 1800 2.00 4.15 0.59 0.96 

5 2100 2.33 4.84 0.44 0.77 

The natural frequencies of vibration increased as the scale factor increased as shown in 

Figure 4.1.8. 

 

 

 

Figure 4.1.8-Frequency against Scale Factor 

 

The relationship between Log 10 (F) and Log 10 (Sc) where F is the frequency and Sc is the 

scale factor is shown in Figure 4.1.8b. 
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4.2 Experimental Results 

The experimental results were based on data-logger readings. The vibration periods of the 

sine waves generated by the vibrating miniature structures were measured in seconds. The 

periods were used to calculate the frequencies. The photos showing sample data-logger 

readings on vibrations are presented in Figures 4.2a, 4.2b and 4.2c below: 
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Figure 4.2a-Vibration result for 1500 High Unbraced Model with 1 bayas seen on Data 
Logger Monitor 
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Figure 4.2b-Vibration Results for 1200mm High Unbraced model 
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Figure 4.2c-Vibration Results for 900mm High Unbracedmodel structure with 1 bay 

4.2.1 Experimental Results for unbraced 1 bay models 

The experimental results for unbraced 1 bay models are presented in tables below: 

Table 4.2.1-Values of natural frequencies against the structure height-experimental case-

unbraced  

Model 

No. 

Model 

Height 

(mm) 

(H) 

Number 

of Bays 

Mean 

Value of 

frequency 

Standard 

deviation of 

frequencies 

Mass 

(Kg) 

Frequency 

modified for 

constant mass, 

F 

Log10

H 

 

Log10F 

 

1 1800 1 1.13 0.047 4.14 1.60 3.26 0.053 

2 1500 1 1.22 0.087 3.45 1.58 3.17 0.087 

3 1200 1 2.02 0.037 2.76 2.33 3.08 0.305 

4 900 1 2.45 0.05 2.07 2.45 2.95 0.39 

The frequency of vibration decreased as the height of the structure increased as shown in Figure 4.2.1. 
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Figure 4.2.1. Average Frequency,F, against Miniature structure height, H-
Experimental(Unbraced) 

 

 

4.2.2 Experimental Results for braced 1 bay models 

Table 4.2.2-Values of natural frequencies against the structure height-experimental case-braced  

Model 

No. 

Model 

Height 

(mm) H 

No. 

of 

Bays 

Mean 

Value of 

frequency 

Standard 

deviation of 

frequencies 

Mass 

(Kg) 

Frequency modified 

for constant mass of 

4.72Kg, F 

Log10H 

 

Log10F 

 

1 2100 1 2.67 0.215 8.25 3.53 3.32 0.55 

2 1800 1 1.33 0.047 7.07 1.63 3.25 0.21 

2 1500 1 3.77 0.063 5.9 4.21 3.17 0.62 

3 1200 1 4.06 0.38 4.72 4.06 3.08 0.61 
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Figure 4.2.2-Average Frequency versus Height of miniature structure, H, braced case-
Experimental. 

The frequency of vibration decreased as the height of the miniature structure increased as shown in 

Figure 4.2.2. 

4.2.3-Experimental Results for models with more than 1bay where vibration is parallel 

to longer side. 

The Results of Natural frequency where horizontal motion is parallel to the longer side are 

presented in Table 4.2.3 

Table 4.2.3-Values of natural frequencies against the number of bays for motion parallel to 

stiffer direction  

Model 

No. 

Model 

Height 

(mm) H 

Number 

of Bays 

Mean 

Value of 

frequency 

(F) 

Standard 

deviation of 

frequencies 

Mass 

(Kg) 

Frequency 

adjusted for 

Constant mass 

of 3.45KG,F 

Log10H 

 

Log10F 

 

1 1500 1 1.22 0.087 3.45 1.22 0 0.086 

2 1500 2 3.0 7 0.12 5.62 3.92 0.301 0.593 

3 1500 3 3.43 0.07 7.96 5.20 0.477 0.718 

4 1500 4 4.52 0.07 9.94 7.67 0.0602 0.88 
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Figure 4.2.3-Frequency,F, against number of Bays, Npr in stiffer direction motion -
experimental 

4.2.4 Experimental Results for models with more than 1bay where vibration is 

perpendicular to longer side. 

In this set of experiments the number of bays were increased in one direction (stiffer 

direction) while the number bays remained 1 in number in the less stiff direction. 

Table 4.2.4. Values of Natural Frequencies against number of bays for motion 
perpendicular to stiffer direction. 

Model 

No. 

Model 

Height 

(mm) (H) 

No. 

of 

bays 

Mean 

value of 

frequency 

(F) 

Standard 

deviation 

of 

frequency 

Mass 

(Kg) 

Frequency 

modified for 

Constant Mass of 

3.45KG, F 

Log10Npp 

 

Log10F 

 

1 1500 1 1.22 0.087 3.45 1.22 0 0.086 

2 1500 2 3.1 0.14 5.62 3.96 0.301 0.49 

3 1500 3 2.5 0.47 7.96 3.8 0.477 0.39 

4 1500 4 0.87 0.047 9.94 1.48 0.0602 -0.06 

 

The natural frequency of vibration, before modification to make mass constant, generally 

decreased as the number of bays increased as shown in Figure 4.2.4. 
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Figure 4.2.4-Natural Frequency against number of Bays increase Transverse to Motion 
-Experimental 

The frequency, after modification for constant mass, generally increased as number of bays 

increased as shown in Figure 4.2.4b. 

 

 

 

Figure 4.2.4b-Modified Frequency, F, against the number of Bays, Npp 
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4.2.5 Experimental Results for miniature structures with varying column stiffnesses 

Table 4.2.5-Values of natural frequencies against the column stiffnesses for 1.5m high models  

Model 

No. 

Model 

Height 

(mm) 

(H) 

No. 

of 

Bays 

Mean 

Value of 

frequency

(F) 

Standard 

deviation of 

frequencies 

Mass 

(Kg) 

Frequency 

Modified 

for 

Constant 

mass of 

Kg, F 

Flexural 

stiffness 

ratio 

(I/L), S-

in mm3 

Log10S Log10F 

1 1500 1 1.22 0.087 3.45 1.22 0.72 -0.143 0.086 

2 1500 1 3.07 0.13 4.32 3.44 1.08 0.033 0.297 

3 1500 1 3.43 0.094 5.18 4.20 1.44 0.150 0.467 

4 1500 1 4.52 0.22 6.96 6.42 1.87 0.27 0.687 

 

 

Figure 4.2.5-Modified Frequency, F, against Stiffness of columns (Sv)-Experimental 

 

The frequency increased as the stiffness of columns increased as shown in Figure 4.2.5 
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4.2.6 Experimental Results for models where the horizontal member stiffness varies 

parallel to the direction of motion. 

The natural frequencies of miniature structures where the horizontal member stiffnesses 

parallel to the direction of motion were varying were measured. The model where the 

members were all 150mm long was used as a control and the members parallel to motion 

were varied in length. The number of storeys in the miniature structures were maintained as 

eight (8).  

 

In the experimental case, the values of vibration frequency as horizontal member stiffness 

parallel to motion varied is presented in table 4.2.6.   

           

Table 4.2.6-Summary of effect of changing stiffness of horizontal members parallel to 
motion 

Length of 

member parallel 

to motion 

Stiffness 

ratio 

(I/L), 

Spl-mm3 

Average 

frequency, 

F 

Standard 

deviation 

Mass

(Kg) 

Frequency 

modified for 

Constant mass of 

2.53Kg 

Log10Spl 

 

Log10F 

 

100 1.08 1.73 0.05 2.53 1.73 0.033 0.24 

150 0.72 1.22 0.087 2.76 1.27 -0.143 0.11 

200 0.54 2.0 0.09 3.00 2.18 -0.268 0.34 

250 0.43 3.68 0.41 3.23 4.16 -0.365 0.62 
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The natural Frequency of vibration decreased as the stiffness of horizontal members parallel to motion 

increased as shown in Figure 4.2.6. 

 

Figure 4.2.6 Frequency F, against Horizontal member stiffness parallel to motion 

 

4.2.7 Experimental Results where the horizontal member stiffness varied perpendicular 

to the direction of motion. 

The natural frequencies of miniature structures where the horizontal member stiffnesses 

perpendicular to the direction of motion were varying were measured. The model where the 

members were all 150mm long was used as a control and the members perpendicular to 

motion were varied in length. The number of storeys in the miniature structures were 

maintained as eight (8). In the experimental case, the values of vibration frequencies as  

horizontal member stiffness perpendicular to motion changed are presented in table 4.2.7.  
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Table 4.2.7-Summary of effect of changing stiffness of horizontal members 
perpendicular to motion 

Length of 

member 

parallel to 

motion 

Stiffness, 

Spp-mm3 

Average 

frequency, 

F 

Standard 

deviation 

Mass 

(Kg) 

Frequency 

Modified for 

Constant Mass 

of 2.53Kg 

Log10Spp 

  

Log10F 

 

100 1.08 2.1 0.13 2.53 2.1 0.033 0.32 

150 0.72 1.1 0.087 2.76 1.15 -0.143 0.060 

200 0.54 1.5 0.06 3.00 1.63 -0.268 0.213 

250 0.43 1.4 0.08 3.23 1.58 -0.365 0.20 

 

In the experimental case, the natural frequency of vibration increased as the stiffness of  

the horizontal members perpendicular to motion increased as in Figure 4.2.7. 

 

4.2.8 Experimental Results for Natural frequency of models which differ by scale factor. 

Miniature structures which differed in scale and were of 6 storey each where tested for 

natural frequency. The models had the following member configuration: 

Figure 4.2.7-Experimental Natural frequency against Horizontal
Members Stiffness Perpendicular to motion 
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(i) 150mm member lengths each 6mm square in section 

(ii) 200mm member lengths each 6mm square in section 

(iii) 250 mm member lengths each 6mm square in section 

(iv) 300 mm member lengths each 6mm square in section 

In the experimental case, the values of vibration frequency as scale of models changed are 

presented in table 4.2.8. 

Table 4.2.8-Effect on frequency due to scale change 

Member 

length 

(mm) 

Average 

frequency, F 

Standard 

Deviation 

of 

frequency 

Scale Mass 

(Kg) 

Frequency 

Modified for 

Constant mass 

of 1.58 Kg 

Log10Sc Log10F 

 

150 2.45 0.05 1 1.58 2.45 0 0.39 

200 2.07 0.1 1.33 2.1 2.38| 0.12 0.32 

250 1.2 0.11 1.67 3.45 1.77 0.22 0.08 

300 0.9 0.17 2 4.15 1.46 0.30 -0.046 

   

The Frequency was found to decrease as the scale factor increased as shown in Figure 5.1.8. 

Figure 5.1.8-Frequency, F, against Scale Factor,Sc 
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CHAPTER5:DISCUSSION 

The results obtained experimentally and theoretically,which were presented in the previous 

chapter, are discussed in this chapter. 

5.1 Discussion of Relationship between Frequency and various parameters 

5.1.1 NaturalFrequency against Height for Unbraced single bay frames 

 

The relationship between the natural frequency and height of unbraced single bay structures 

in the theoretical case in shown in Figure 5.1.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.1 -Log10F against Log10H for unbraced 1 bay miniature structures-
Theoretical 
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Figure 5.1.1b-Log10(F) Versus Log10(H) for unbraced miniature structures-
experimental 

In the theoretical case Log10F=C10-0.72Log10Hbased on Figure 5.1.1. Therefore in the 

theoretical case F=C2/H
0.72 with r2 value of 0.42. In the experimental case the relationship 

formula based on the graph in Figure 5.1.1b is:log10 (F) =C1-0.75log10 (H) where C1 is a 

constant. Therefore frequency, F=C2/H
0.75 with r2 value of 0.95 where C2 is a constant and H 

is the height of the structure. This is valid for given stiffness of members and given number 

of bays and given mass of structure.  The findings in both approachesare in line with the 

finding (Nilesh and Desai, 2012) that the natural frequency decreased with increase in 

number of storeys. 
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5.1.2 Braced single bay frames 

 

 

Figure 5.1.2-Theoretical Log 10 (F) vs Log 10 (H) for braced 1 bay structures 

In the theoretical,based on Figure 5.1.2,  Log10F=C3-1.53Log10H where C3 is a constant. Therefore in 

the theoretical case F=C4/H
1.53 with r2 value of 0.44where C4is a constant. Similarly, in the 

experimental case it was found that log10 (F) =C3-0.8log10 (H) where C3 is a constant from 

Figure 5.1.2b. Therefore for braced case F=C4/H
0.8 with r2 value of 0.19 where C4 is a 

constant.  The findings in both approachesare in line with the finding (Nilesh and Desai, 

2012) that the natural frequency decreased with increase in number of storeys. 

5.1.3 Increase in number of bays (N) Parallel to direction of vibration 

 

Figure 5.1.3-Theoretical log 10 F against Log 10 Npr as Bays increase in the  direction 
motion 
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In the theoretical case the relationship between Log 10 F and Log 10 N where the number of 

bays increased and motion is parallel to the stiffer direction is shown in Figure 5.1.3. The 

relationship for the experimental case is shown in Figure 5.1.3b. 

 

 

Figure 5.1.3b- Log10 (Frequency,F) VsLog10 (Number of bays,Npr), as Bays increase in  
the Direction of  Motion-Experimental 

In the theoretical case, Log10F=C9+0.68Log10Npr. Therefore F=C10*Npr0.68 with r2 value 

of 0.23 based on Figure 5.1.3. In the experimental case, based on the graph in Figure 5.1.3b, 

log 10(F) =C9+0.68 log10 (Npr) with r2value of 0.19 where C9 is a constant. This means that 

in the experimental case F=C10*(Npr0.68) where C10 is a constant. The findings in both 

approaches are in line with the finding (Anwar and Hossain, 1996) that the frequency of 

vibration increases as the number of bays in the direction of motion increase. 
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5.1.4 Increase in Number of bays (Npp) perpendicular to direction of vibration. 

 

Figure 5.1.4-Log 10F against log 10 Npp as number of bays increase in the direction 
Transverse to Motion -Theoretical 

 

 

Figure 5.1.4b-Log10 (F) against Log10 (Npp) for increase in bays in direction 
perpendicular to motion-Experimental 
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theoretical approach are in line with the finding (Anwar and Hossain, 1996) that the 

frequency of vibration decreases as the number of bays in the direction transverse to motion 

increase. The findings in the experimental  approach are not in line with the finding (Anwar 

and Hossain, 1996) that the frequency of vibration decreases as the number of bays in the 

direction transverse to motion increase. This differencemay due to errors introduced due to 

damping in the experimental approach. 

 

5.1.5 Change of Natural frequency as the Column Stiffness Increases 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.5 Log10 (F) against Log10 (Sv) -Theoretical 

In the theoretical case, the relationship between log10 (F) and log10(Sv) is shown in Figure 

5.1.5 where F is the frequency and Sv is the column stiffness ratio (I/L). 

 

0

0.2

0.4

0.6

0.8

1

1.2

‐0.3 ‐0.2 ‐0.1 0 0.1 0.2 0.3

Lo
g 

1
0
F

Log 10 Sv



59 

 

In the theoretical case Log10F=C10+1.4Log10Sv based on Figure 5.1.5 where C10 is a 

constant.Therefore in the theoretical case F=C11*Sv1.4 with r2 value of 0.94.In the 

experimental case the relationship between Log10 (F) and Log10 (S) is log10(F) =C10+1.7Log10 

(Sv) where C10 is a constant as shown in Figure 5.1.5b. Therefore in experimental case 

F=C11*Sv1.7 with r2 value of 0.92 where C11 is a constant.  The results in both approaches are 

in line with the literature with gives frequency, f, is given by݂ൌܹ/2ߨൌሺ1/2ߨሻሺ√ሺ݋ܭ	/݉ሻas	

shown	 in	 equation	 2.37	 since	 as	 column	 stiffnesses	 increase	 the	 overall	 structure	

stiffness,݋ܭ,	increases. 

5.1.6 Change in horizontal stiffness parallel to motion 

 

 

 

Figure 5.1.5b- Log 10(Frequency,F) against log10 (Column stiffness,
Sv)-Experimental 
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Figure 5.1.6-Theoretical Log10 (F) against log10 (Spl) where stiffness of horizontal 
members varies parallel to horizontal deflection 
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Figure 5.1.6b-Experimental Log10(F) VS Log10(Spl) for motion parallel to change in 
horizontal member stiffness 

In the theoretical case Log10F=C15-1.59Log10Spl where C15 is constant base on Figure 5.1.6. 

Therefore, in the theoretical case F=C16/(Spl1.59) with r2 value of 0.96. In the experimental case the 

relationship between log10 (F) and Log10 (Spl) is shown in Figure 5.1.6b.The relationship is: 

log10(F)=C15-1.83*Log10(Spl) with r2 value of 0.58 where C15 is a constant. Therefore 

F=C16/((Spl)1.83). The findings in both approaches  are in line with the finding (Anwar and Hossain, 

1996) that the frequency of vibration increases as the stiffnesses of horizontal members  in the 

direction of motion increase. 

 

       

5.1.7 Change Horizontal Member Stiffness Perpendicular to motion 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.7-Theoretical Log10(F) against Log10(Spp) where stiffness of
horizontal member stiffness varies perpendicular to motion. 
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Figure 5.1.7b-Experimental Log 10(Frequency, F) against Log10 (Stiffness, Spp) 

In the theoretical case Log10F=C18+0.33Log10Spp where C18 is a constant based on Figure 

5.1.7.Therefore  in the theoretical case F=C19*spp0.33 with r2 value of 0.6. In the experimental case 

the relationship between Log 10(F) and log 10(Spp) is shown in Figure5.1.7b. The relationship is: 

Log10 (F) =C18+0.23*Log10 (Spp) where C18 is a constant. Therefore in the experimental case 

F=C19*Spp0.23   with r2 value of 0.12. The findings in both approaches  are in line with the finding 

(Anwar and Hossain, 1996) that the frequency of vibration decreases as the stiffnesses of horizontal 

members  in the direction transverse to motion increase. 
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5.1.8 Change in scale of miniature structure 

 

Figure 5.1.8-Theoretical Log 10 (F) against Log 10 (Sc) 

 

Figure 5.1.8b- Log 10(Frequency,F)Vs Log10(Scale ,Sc) 
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stiffnesses	 increase	 the	 overall	 structure	 stiffness,	 	,݋ܭ increases.	 When	 the	 scale	

increases	the	stiffnesses	decrease	and	therefore	the	frequency	of	vibration	is	expected	

to	decrease. 

 

5.2 Relationship between the Experimental and Theoretical Values 

The theoretical values of natural frequencies had the same trend of variation with number of 

bays and stiffness as the experimental. However the experimental values were higher in most 

cases. 

5.2.1 Relationship between Theoretical and Experimental results for unbraced 1 bay 

miniature structures as Height increased. 

The experimental and theoretical values of natural frequencies for 1bay unbraced frames are 

presented in Table 5.2.1. The values in the tables are based on the trend lines in the various 

graphs presented earlier in this thesis. 

 

 

 

Table 5.2.1 Comparison of Theoretical and Experimental Natural Frequencies for 
Unbraced 1 bay miniature structures 

Height of miniature structure 1800 1500 1200 900 

Theoretical Natural Frequency (Hertz) 1.6 1.8 2.1 2.6 

Experimental Natural Frequency (Hertz) 1.5 1.75 2.2 2.4 

Percentage variation -6.25% -2.7% 4.8% -7.7% 

 

The relationship is shown graphically below. 
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Figure 5.2.1-Comparison of Theoretical and Experimental frequencies for unbraced 1 
bay structures as Height increased. 

The experimental values of natural frequencies for 1 bay unbraced frames were lower than 

the theoretical values as shown in Figure 5.2.1. The difference is mainly due to errors which 

are discussed in section 5.3. However, the frequencies for experimental case are expected to 

be lower than the theoretical ones due to damping. There was positive correlation between 

the two sets of values. The correlation coefficient was 0.99. The findings in both approaches  

are in line with the finding (Nilesh and Desai, 2012) that the natural frequency decreased with 

increase in the number of storeys. 

5.2.2Relationship between Theoretical and Experimental results for braced 1 bay 

miniature structures. 

The theoretical and experimental values of natural frequencies for 1bay braced frames are 

presented in Table 5.2.2. The values are based on the trend lines. 

 

Table 5.2.2 Comparison of Theoretical and Experimental Natural Frequencies For 
braced 1 bay miniature structures 

Height of miniature structure 1800 1500 1200 900 

Theoretical Natural Frequency (Hertz) 1.5 2.4 3.5 5.0 

Experimental Natural Frequency (Hertz) 2.9 3.3 3.8 4.5 

Percentage Variation 93% 37.5% 4.8% -3.7% 
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The relationship is shown graphically below 

 

Figure 5.2.2-Comparison of Theoretical and Experimental frequencies for braced 1 bay 
structures 

The experimental values of natural frequencies for 1 bay braced frames were lower than the 

theoretical values as shown in Figure 5.2.2. The difference is mainly due to errors which are 

discussed in section 5.3. However, the frequencies for the experimental case frequencies are 

expected to be lower than the theoretical ones due to damping. There was positive correlation 

between the two sets of values. The correlation coefficient was 0.99. The findings in both 

approaches are in line with the finding (Nilesh and Desai, 2012) that the natural frequency 

decreased with increase in number of storeys. 

 

5.2.3Relationship between Theoretical and Experimental results as number of bays 
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Table 5.2.3 Comparison of Theoretical and Experimental Natural Frequencies as 
Number of Bays increased in the direction of motion. 

Number of Bays 1 2 3 4 

Theoretical Natural Frequency (Hertz) 1.8 2.3 3.2 4 

Experimental Natural Frequency (Hertz) 1.2 2.7 5 8.7 

Percentage Variation -50% 14% 36% 54% 

 

The experimental valuesof vibration frequency were mostly lower than the theoretical values 

as the number bays increased in the direction of motion as shown in Figure 5.2.3. The 

difference is mainly due to errors which are discussed in section 5.3. However the 

experimental case frequencies are expected to be lower than the theoretical ones due to 

damping. There was positive correlation between the two sets of values. The correlation 

coefficient was 0.99.   The findings in both approaches cases are in line with the finding 

(Anwar and Hossain, 1996) that the frequency of vibration increases as the number of bays in 

the direction of motion increase. 

 

 

Figure 5.2.3-Comparison of Theoretical and Experimental frequencies as number of 
bays increased in the direction of motion. 
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5.2.4 Relationship between Theoretical and Experimental results as number of bays 

increased  Transverse to direction of motion. 

The experimental and  theoretical values of natural frequencies  as  the number of bays 

increased in one direction are presented in Table 5.2.4. The values are based on the trend 

lines. 

 

Table 5.2.4 Comparison of Theoretical and Experimental Natural Frequencies as 
Number of Bays  increased Transverse to Motion 

Number of Bays 1 2 3 4 

Theoretical Natural Frequency (Hertz) 2.4 1.75 1.25 1 

Experimental Natural Frequency (Hertz) 2.3 2 1.8 1.7 

Percentage Variation -42% 14.3% 4.4% 70% 

 

The experimental values of natural frequencies, as number bays increased in one direction, 

were generally lower than the theoretical values as shown in Figure 5.2.4. The difference is 

mainly due to errors which are discussed in section 5.3. However, the experimental case 

frequencies are expected to be lower than the theoretical ones due to damping. There was 

positive correlation between the two sets of values. The correlation coefficient was 0.99. 

However after modifying the frequencies for constant mass there was a negative correlation. 

The modified frequency decreased as the number of bays increased in the direction transverse 

to motion in the theoretical approach. The modified frequency increased as the number of 

bays increased in the direction transverse to motion in the experimental approach.  The 

findings in the theoretical approach are in line with the finding (Anwar and Hossain, 1996) 

that the frequency of vibration decreases as the number of bays in the direction transverse to 

motion increase. The findings in the experimental  approach are not in line with the finding 

(Anwar and Hossain, 1996) that the frequency of vibration decreases as the number of bays in 

the direction transverse to motion increase. This difference may due to errors in the 

experimental approach. 
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Figure 5.2.4-Comparison of Theoretical and Experimental frequencies as number of 
bays increased Transverse to Motion (before modifying for constant mass). 

 

 

5.2.5 Relationship between Theoretical and Experimental results as stiffness  of columns  

increased 

The values of natural frequencies obtained theoretically and values of natural frequencies 

obtained by experiment as column stiffness increased are presented in Table 5.2.5. The values 

are based on the trend lines. 

 

Table 5.2.5 Comparison of Theoretical and Experimental Natural Frequencies as 
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0.72 1.08 1.44 1.87 

Theoretical Natural Frequency (Hertz) 1.55 3 5.2 10.2 

Experimental Natural Frequency (Hertz) 1.5 3.4 4.2 7.2 

Percentage Variation -3.2% 13.3% -19.2% -29.4% 

The experimental values of natural frequencies were lower than the theoretical values as 

shown in Figure 5.2.5. The difference is mainly due to errors which are discussed in section 
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5.3. However, the experimental case frequencies are expected to be lower than the theoretical 

ones due to damping.  There was positive correlation between the two sets of values. The 

correlation coefficient was 0.98.The results in both approaches are in line with the literature 

with gives frequency, f, is given by݂ൌܹ/2ߨൌሺ1/2ߨሻሺ√ሺ݋ܭ	/݉ሻas	shown	in	equation	2.37	

since	as	column	stiffnesses	increase	the	overall	structure	stiffness,݋ܭ,	increases. 

 

 

Figure 5.2.5-Comparison of Theoretical and Experimental frequencies as column 
stiffness increased for unbraced miniature structures. 

 

5.2.6 Relationship between Theoretical and Experimental results  as stiffness  of 

horizontal   increased parallel to initial force direction 

The  experimental and  theoretical values of natural frequencies as horizontal member 

stiffnesses increased parallel to initial force direction are presented in Table 5.2.6. The values 

are based on the trend lines. 
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Table 5.2.6 Comparison of Theoretical and Experimental Natural Frequencies as 
stiffnesses of horizontal member parallel to initial force increased. 

Stiffness of horizontal Members parallel to initial force 

direction, Spl (mm3) 

1.08 0.72 0.54 0.43 

Theoretical Natural Frequency (Hertz) 
1.4 2.7 3.8 4.7 

Experimental Natural Frequency (Hertz) 
1.7 1.2 2.7 3.2 

Percentage Variation 
21.4% -55.5% -28.9% -31.9% 

 

The relationship is shown  graphically below. 

 

Figure 5.2.6-Comparison of Theoretical and Experimental frequencies as   stiffnesses 
for horizontal members parallel to initial force direction increased. 

The experimental values of natural frequencies were lower than the theoretical ones as shown 

in Figure 5.2.6. The difference is mainly due to errors which are discussed in section 5.3. 

However, the experimental case frequencies are expected to be lower than the theoretical 

ones due to damping. There was positive correlation between the two sets of values. The 

correlation coefficient was 0.88. The findings in both approaches  are in line with the finding 

(Anwar and Hossain, 1996) that the frequency of vibration increases as the stiffnesses of 

horizontal members  in the direction of motion increase. 
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5.2.7 Relationship between Theoretical and Experimental results  as stiffness  of 

horizontal   increased perpendicular to initial force direction 

The  experimental and  theoretical  values of natural frequencies  as horizontal member 

stiffnesses increased perpendicular to initial force direction are presented in Table 5.2.7. The 

values are based on the trend lines. 

 

Table 5.2.7 Comparison of Theoretical and Experimental Natural Frequencies as 
stiffnesses of horizontal members perpendicular to initial force increased. 

Stiffness of horizontal Members perpendicular to initial 

force direction, Spp (mm3) 
1.08 0.72 0.54 0.43 

Theoretical Natural Frequency (Hertz) 2.3 1.8 1.75 1.6 

Experimental Natural Frequency (Hertz) 1.8 1.6 1.5 1.35 

Percentage Variation -21.7% -11.1% -14.3% -15.6% 

 

The experimental values of natural frequencies were lower than the theoretical ones as shown 

in Figure 5.2.7. The difference is mainly due to errors which are discussed in section 5.3. 

However, the experimental case frequencies are expected to be lower than the theoretical 

ones due to damping. There was positive correlation between the two sets of values. The 

correlation coefficient was 0.97. The findings in both approaches  are in line with the finding 

(Anwar and Hossain, 1996) that the frequency of vibration decreases as the stiffnesses of 

horizontal members  in the direction transverse to motion increase. 
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Figure 5.2.7-Comparison of Theoretical and Experimental frequencies as horizontal   
stiffnesses increased perpendicular to initial force direction. 

5.2.8 Relationship between Theoretical and Experimental results  as scale factor 

increased 

The experimental and  theoretical values of natural frequencies as scale factor of miniature 

structure increased are presented in Table 5.2.8. The values are based on the trend lines. 
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Figure 5.2.8:Comparison of Theoretical and Experimental frequencies as scale factor 
increased. 

The experimental values of natural frequencies were lower than the theoretical values as 

shown in Figure 5.2.8. The difference is mainly due to errors which are discussed in section 

5.3. There was positive correlation between the two sets of values. The correlation coefficient 

was 0.99.The results in both approaches are in line with the literature with gives frequency, f, 

is given by݂ൌܹ/2ߨൌሺ1/2ߨሻሺ√ሺ݋ܭ	/݉ሻas	 shown	 in	 equation	 2.37	 since	 as	 column	

stiffnesses	 increase	 the	 overall	 structure	 stiffness,	 	,݋ܭ increases.	 When	 the	 scale	

increases	the	stiffnesses	decrease	and	therefore	the	frequency	of	vibration	is	expected	

to	decrease. 
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(iii) It was assumed that damping was zero but in reality there was some damping even from 

the air around and internal structural damping. The damping reduced experimental 

frequencies. 

(iv) Data entry errors in the theoretical case as a large quantity of data had to be entered. 

(v) Temperature variation errors 

(vi) Voltage variation errors 

There was about 10% margin of error due to wave length reading accuracy, 10% error due to 

voltage variation and a maximum possible error of 0.6% due to temperature variation. 

However temperatures did not vary greatly during the experiments.  However these errors 

may not have been concurrent or additive. 

5.4 Resulting Relationship 

The following relationships were found: 

(i) The relationship between natural frequency, F, and Height of structure, H, for given 

column and beam length or column and beam stiffness  as: F=C2/H
0.735 which is an 

average between the theoretical and experimental value. 

(ii) The relationship between natural frequency, F, and number of bays, parallel to motion, 

Npr, as F=C10*(Npr0.74)which is an average between the theoretical and experimental 

value. 

(iii) The relationship between natural frequency, F, and number of bays, perpendicular to 

motion, Npp, as F=C6*Npp0.445which is an average between the theoretical and 

experimental value. 

(iv) The relationship between natural frequency, F, and stiffness of vertical members, Sv, as 

F=C11*(Sv1.55) which is an average between the theoretical and experimental value. 

(v) The relationship between natural frequency, F, and stiffness of horizontal members 

parallel to motion, Spl, as F=C16/(Spl1.71)which is an average between the theoretical 

and experimental value. 

(vi) The relationship between natural frequency, F, and stiffness of horizontal members 

perpendicular to motion, Spp, as F=C19*(Spp0.28)which is an average between the 

theoretical and experimental value. 

 

Therefore a comprehensive formula for natural frequency for unbraced structures is 

F=C*(1/H0.735)*(Npr0.74))*(Npp0.445)*(Sv1.55)*(1/(Spl1.71))*Spp0.28 where C is a constant 

depending on material type. This is equation is based on the theoretical model. 
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In the theoretical case by taking a particular case where there is 10 storeys unbraced model of 

150mm long members, H=1500mm, Npr =1, Npp=1, Sv=0.72mm3   Spl=0.72mm3 , 

Spp=0.72mm3 and frequency=1.73 Hertz, gives an approximate value of C=389 in the case of 

steel structures. In the experimental case taking the same parameters of a structure 

frequency=1.58 Hertz and C= 354. Therefore average  value of C=371.The formula is in line 

with the existing literature on natural frequencies. However no formula has been given like 

this before. 
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CHAPTER 6 :CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

It can be concluded that there exists a relationship between the natural frequency of vibration 

and the height of a structure, the number of bays, and the stiffnesses of structural members. 

The natural frequency of vibration varies as below: 

 It decreases as the height of structure increases. 

  It increases as the stiffness of columns increases.  

 It increases as the number of bays increase in the direction of motion. 

 It decreases as the number of bays increase in the direction transverse to motion. 

  It decreases as the stiffnesses of horizontal members parallel to motion increase.  

 It increases as the stiffnesses of horizontal members transverse to motion increase.  

 It decreases as the scale factor increases. 

The specific objectives were met as follows: 

 The theoretical approach helped to predict the changes in natural frequencies as 

the parameters under study changed. 

 The experimental approach helped to validate the theoretical approach. 

 The relationship developed was between the natural frequency as the dependant 

variable and the height of structure, number of bays, and stiffnesses as the 

independent variables. 

6.2Recommendations 

There is need to conduct further studies for other modes of vibrations and more bays in both 

directions. There is also need to determine the K value for other materials other than steel. 

There is need to conduct further research using Finite Element Method where deflections at 

centre of mass are estimated more accurately. Moreover, data should be gathered of 

earthquake frequencies in various geographical regions to guide design against resonance of 

structures to earthquake vibrations. 
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APPENDIX 

Appendix 1:Code for enumerating the coordinates 

The code for enumerating the coordinates due to non-foundation joints is presented below. 

NCO = (NCO - NCO) 

For i = 1 To NJ 

If SC(i) = 0 Then 

For k = 1 To 6 

NCO = NCO + 1 

CORDSOURCE(NCO) = i 

If k = 1 Then CORDTYPE(NCO) = 1 

If k = 2 Then CORDTYPE(NCO) = 2 

If k = 3 Then CORDTYPE(NCO) = 3 

If k = 4 Then CORDTYPE(NCO) = 4 

If k = 5 Then CORDTYPE(NCO) = 5 

If k = 6 Then CORDTYPE(NCO) = 6 

Next k 

End If 

Next i 

The code below is for enumerating additional coordinates due to release of foundation joints in x-

direction. The code for release in y-direction and z-direction is done in a similar manner. 

For J = 1 To NJ 

If SC(J) = 1 And Not (RX(J) <> 1) Then 

NCO = NCO + 1 

CORDSOURCE(NCO) = J 

CORDTYPE(NCO) = 1 

End If 

Next J 
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Appendix 2:Code for calculation of external loads at joints. 

The code below is for input of external loads in x-direction (Coordinate Type 1) at joints. The 

external loads at the rest of the coordinates are input in a similar manner. 

For CORD = 1 To NCO 

For J = 1 To NJ 

If CORDSOURCE(CORD) = J Then 

If CORDTYPE(CORD) = 1 Then 

EL(CORD) = APX(J) 

End If 

End If 

Next J 

 

Appendix 3:Code for calculation of internal loads at joints 

The code below is for input of internal loads at joints due to axial loads along x-direction . 

This applied on coordinate type 1 at various joints. 

For CORD = 1 To NCO 

For M = 1 To NM 

For J = 1 To NJ 

If CORDSOURCE(CORD) = J Then 

If CORDTYPE(CORD) = 1 Then 

If LJ(M) = J Then 

IL(CORD) = IL(CORD) + AMJ(M, J, 1) 

End If 

End If 

End If 

Next J 

Next M 
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Next CORD 

The code below is for input of internal loads at joints due to moment about z-axis. This is 

applied on coordinate type 3 at various joints. 

 For CORD = 1 To NCO 

For M = 1 To NM 

For J = 1 To NJ 

If LJ(M) = J Then 

If CORDSOURCE(CORD) = J Then 

If CORDTYPE(CORD) = 3 Then 

IL(CORD) = IL(CORD) + AMJ(M, J, 3) 

End If 

End If 

End If 

Next J 

Next M 

 

Appendix 4:Generation of stiffnesses 

Let S1 = Sin (θxy): C1 = Cos (θxy):  S2 = Sin ((θyz): C2 = Cos ((θyz): S3 = Sin ((θxz): C3 = 

Cos ((θxz) 

Consider a unit deflection in coordinate 1. The following stiffnesses are generated: 

If Lxy(M) <> 0 Then KM(M, 1, 1) = (12 * EIz(M) * (S1) ^ 2) / (Lxy(M)) ^ 3 + EA(M) / 

Lxy(M) * ((C1) ^ 2) 

If Lxz(M) <> 0 Then KM(M, 1, 1) = KM(M, 1, 1) + 12 * EIy(M) * (S3 ^ 2) / (Lxz(M)) ^ 3 + 

(EA(M) / Lxz(M)) * (C3 ^ 2) 

If Lxy(M) <> 0 Then KM(M, 2, 1) = (-12 * EIz(M) * (S1 * C1) / (Lxy(M)) ^ 3 + (EA(M) * 

C1 * S1) / Lxy(M)) 

If Lxy(M) <> 0 Then KM(M, 3, 1) = -(6 * EIz(M) * S1) / ((Lxy(M) ^ 2)) 

If M = 1 Then 
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'ShowToUser "KM (1,1,1)" & KM(1,1,1) 

'ShowToUser "KM (1,2,2)" & KM(1,2,2) 

End If 

If Lxz(M) <> 0 Then KM(M, 4, 1) = (-12 * EIy(M) * (S3 * C3) / ((Lxz(M)) ^ 3) + (EA(M) * 

C3 * S3) / Lxz(M)) 

If Lxz(M) <> 0 Then KM(M, 5, 1) = -(6 * EIy(M) * S3) / ((Lxz(M)) ^ 2) 

KM(M, 6, 1) = 0 

If Lxy(M) <> 0 Then KM(M, 7, 1) = (-12 * EIz(M) * (S1) ^ 2) / (Lxy(M)) ^ 3 - EA(M) / 

Lxy(M) * ((C1) ^ 2) 

If Lxz(M) <> 0 Then KM(M, 7, 1) = KM(M, 7, 1) - 12 * EIy(M) * (S3 ^ 2) / ((Lxz(M)) ^ 3) - 

EA(M) * (C3 ^ 2) / (Lxz(M)) 

 If Lxy(M) <> 0 Then KM(M, 8, 1) = ((12 * EIz(M) * (S1 * C1) / (Lxy(M)) ^ 3) - (EA(M) * 

C1 * S1) / Lxy(M)) 

 If Lxy(M) <> 0 Then KM(M, 9, 1) = (6 * EIz(M) * S1) / ((Lxy(M)) ^ 2) 

If Lxz(M) <> 0 Then KM(M, 10, 1) = (12 * EIy(M) * (S3 * C3) / ((Lxz(M)) ^ 3) - (EA(M) * 

C3 * S3) / Lxz(M)) 

If Lxz(M) <> 0 Then KM(M, 11, 1) = (6 * EIy(M) * S3) / ((Lxz(M)) ^ 2) 

'Consider a unit displacement(rotation) in coordinate 3, the following stiffnesses are 

generated.  

If Lxy(M) <> 0 Then KM(M, 1, 3) = -6 * EIz(M) / (Lxy(M)) ^ 2 

If Lxy(M) <> 0 Then KM(M, 2, 3) = 6 * EIz(M) / (Lxy(M) ^ 2) 

If Lxy(M) <> 0 Then KM(M, 3, 3) = 4 * EIz(M) / Lxy(M) 

If Lxz(M) <> 0 Then KM(M, 3, 3) = KM(M, 3, 3) + GJz(M) * S3 / Lxz(M) 

If Lyz(M) <> 0 Then KM(M, 3, 3) = KM(M, 3, 3) + GJz(M) * S2 / Lyz(M) 

KM(M, 4, 3) = 0 

KM(M, 5, 3) = 0 

KM(M, 6, 3) = 0 

If Lxy(M) <> 0 Then KM(M, 7, 3) = -6 * EIz(M) / (Lxy(M) ^ 2) 
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If Lxy(M) <> 0 Then KM(M, 8, 3) = 6 * EIz(M) / (Lxy(M) ^ 2) 

If Lxy(M) <> 0 Then KM(M, 9, 3) = 2 * EIz(M) / Lxy(M) 

KM(M, 10, 3) = 0 

KM(M, 11, 3) = 0 

KM(M, 12, 3) = 0 

The rest of the stiffnesses are generated in a similar manner 

 

Appendix 5:Code for evaluating the stiffness matrix elements 

The code for summing the stiffnesses will be as below: 

For CORD = 1 To NCO 

For CORD2 = 1 To NCO 

If LJ(M) = i Then 

If RJ (M) = J Then 

If (CORDTYPE(CORD) = 1 And CORDTYPE(CORD2) = 1) Then 

If CORDSOURCE(CORD) = i Then 

If CORDSOURCE(CORD2) = J Then 

stiffcord(CORD, CORD2) = KM(M, 1, 7) 

stiffcord(CORD2, CORD) = KM(M, 7, 1) 

End If 

End If 

End If 

End If 

End If 

Next CORD2 

Next CORD 

Stiffcord (CORD, CORD2) is the force in coordinate “CORD” due to unit deflection in 

coordinate” CORD2”. The value above is force caused in x-direction due to x-direction 
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displacement on the right member joint. The rest of the stiffnesses are evaluated in a similar 

way. 

 

 

 

Appendix6: Code for   equilibrium equations and their solution 

Equilibrium equations to be solved 

The equations to be solved will be based on the relationship that at any coordinate, External 

load(EL) + Internal load(IL)+Sum of (stiffness times deflection)=0 for equilibrium. 

Solution of the equations: 

Solution of the resulting simultaneous equations is by Gaussian method forward elimination 

and backward substitution. The code is given below: 

Public Sub Gausian eliminate () 

On Error Resume Next 

For I1 = 1 To NCO 

ELDASH(I1) = EL(I1) +IL(I1) 

Next I1 

For CORD = 1 To NCO 

For CORD2 = 1 To NCO 

STIFFDASH (CORD, CORD2) = stiffcord (CORD, CORD2) 

Next CORD2 

Next CORD 

NCODASH = NCO - 1 

For I1 = 1 To NCODASH 

IHIGHER = I1 + 1 

For J = I HIGHER To NCO 

For COLL = I HIGHER To NCO 
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STIFFDASH(J, COLL) = STIFFDASH(J, COLL) - ((STIFFDASH (J, I1) / STIFFDASH(I1, 

I1)) * STIFFDASH(I1, COLL)) 

Next COLL 

ELDASH(J) = ELDASH(J) - (STIFFDASH(J, I1) / STIFFDASH(I1, I1)) * ELDASH(I1) 

CONTDIF: 

Next J 

 

Next I1 

For i = 1 To NCO 

STIFFDIFSUM(i) = 0 

Next i 

stiffoNCO = STIFFDASH(NCO, NCO) 

ELDONCO = ELDASH(NCO) 

If 

 Not (ELDONCO <> 0) Then 

DIFCORD(NCO) = 0 

GoTo CONTDIF2 

End If 

DIFCORD(NCO) = ELDONCO / stiffoNCO 

CONTDIF2: 

For i = NCO To 2 Step -1 

IDASH = i - 1 

For J = NCO To i Step -1 

JDASH = J - 1 

STIFFO = STIFFDASH(i, i) 

ELDO = ELDASH(i) 



88 

 

STIFFDIFSUM(IDASH) = STIFFDIFSUM(IDASH) + (STIFFDASH(IDASH, J)) * 

DIFCORD(J) 

CONTDIF1: 

stiffda = STIFFDASH(IDASH, IDASH) 

If stiffda<> 0 Then 

If J = i Then 

ELDASHO = ELDASH(IDASH) 

stiffda = STIFFDASH(IDASH, IDASH) 

STIFFDIFFOSUM = STIFFDIFSUM(IDASH) 

eldoCORD = (ELDASHO - STIFFDIFFOSUM) 

'DIFCORD(IDASH) = eldoCORD / stiffda 

End If 

End If 

Next J 

If Not (eldoCORD<> 0) Then 

DIFCORD(IDASH) = 0 

GoTo contdif3 

End If 

DIFCORD(IDASH) = eldoCORD / stiffda 

contdif3: 

Next i 

For CORD = 1 To NCO 

ShowToUser "cord.... " & CORD & "DEFLECTION." & "" & "" &DIFCORD(CORD) 

If CORDTYPE(CORD) = 1 Then ShowToUser "LINEAR IN X-DIRECTION" 

If CORDTYPE(CORD) = 2 Then ShowToUser "LINEAR IN Y-DIRECTION" 

If CORDTYPE(CORD) = 3 Then ShowToUser "ROTATION ABOUT   Z-AXIS" 

If CORDTYPE(CORD) = 4 Then ShowToUser "LINEAR IN Z-DIRECTION" 
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If CORDTYPE(CORD) = 5 Then ShowToUser "ROTATION ABOUT IN Y-AXIS" 

If CORDTYPE(CORD) = 6 Then ShowToUser "ROTATION ABOUT IN X-AXIS" 

 

Next CORD 

Exit Sub 

End Sub 

Appendix 7-Experimental Data 

A. Experimental data for unbraced 1bay models 

Table 8.2.1a-Experimental Results for 1 bay models of height 1800mm (unbraced) 

 

 

 

Table 8.2.1b- Experimental Results for 1 bay models of height 1500mm (unbraced) 

 

Data no. Model  Height 

(mm) 

Number  

of  Bays 

Length of each 

member (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 1800 1 150 6mm Square  7/2/2015 1.1 

2 1800 1 150 6mm Square 7/2/2014 1.2 

3 1800 1 150 6mm Square  7/2/2015 1.1 

4 1800 1 150 6mm  Square 7/2/2014 1.1 

5 1800 1 150 6mm  Square 9/2/2015 1.2 

6 1800 1 150 6mm Square 9/2/2015 1.1 

Data no. Model Height 

 (mm) 

Number 

of Bays 

Length of each 

member (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 1500 1 150 6mm Square  5/7/2014 1.2 

2 1500 1 150 6mm  Square 5/7/2014 1.3 

3 1500 1 150 6mm  Square 5/7/2014 1.2 

4 1500 1 150 6mm Square 5/7/2014 1.2 

5 1500 1 150 6mm Square 5/7/2014 1.2 

6 1500 1 150 6mm Square 5/7/2014 1.2 
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Table 8.2.1c-Experimental Results for 1 bay models of height 1200mm (unbraced) 

 

 

Table 8.2.1d-Experimental Results for 1 bay models of height 900mm (unbraced) 

 

 

B. Experimental data for braced 1 bay miniature structures 

The experimental Results for braced 1 bay models are presented in the tables below: 

Table 8.2.2a-Experimental Results for 1 bay models of height 2100mm (braced) 

Data no. Model Height 

(mm) 

Number 

of Bays 

Length of each 

member (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 1200 1 150 6mm Square  5/4/2014 2.0 

2 1200 1 150 6mm Square 5/4/2014 2.1 

3 1200 1 150 6mm  Square 5/4/2014 2.0 

4 1200 1 150 6mm  Square 5/4/2014 2.0 

5 1200 1 150 6mm Square 5/4/2014 2.0 

6 1200 1 150 6mm Square 5/4/2014 2.0 

Data no. Model 

Height (mm) 

Number 

of Bays 

Length of each 

member (mm) 

Member type and 

size 

Date Measured 

Frequency 

1 900 1 150 6mm Square  5/7/2014 2.5 

2 900 1 150 6mm Square 5/7/2014 2.4 

3 900 1 150 6mm  Square 5/4/2014 2.5 

4 900 1 150 6mm  Square 5/4/2014 2.5 

5 900 1 150 6mm  Square 5/4/2014 2.4 

6 900 1 150 6mm  Square 5/4/2014 2.4 

Data no. Model 

Height (mm) 

Number of 

Bays 

Length of each 

member (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 2100 1 150 6mm Square  23/4/2015 2.6 

2 2100 1 150 6mm Square 23/4/2015 2.7 

3 2100 1 150 6mm Square  24/4/2015 2.6 

4 2100 1 150 6mm  Square 24/4/2015 2.7 

5 2100 1 150 6mm  Square 25/4/2015 2.7 

6 2100 1 150 6mm Square 25/4/2015 2.7 
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Table 8.2.2b- Experimental Results for 1 bay models of height 1800mm (braced) 

 

 

Table 8.2.2c- Experimental Results for 1 bay models of height 1500mm (braced) 

Table 8.2.2d -1200 mm high Miniature Structure-braced 

Data No. Model 

Height (mm) 

No. of bays Length of each 

member (mm) 

Member 

type and size 

Date Measured 

Frequency 

1 1200 1 150 6mm square 16/10/2014 3.3 

2 1200 1 150 6mm square 16/10/2014 3.3 

3 1200 1 150 6mm square 16/10/2014 3 

4 1200 1 150 6mm square 16/10/2014 3 

5 1200 1 150 6mm square 9/10/2014 3 

6 1200 1 150 6mm square 9/10/2014 3 

 

C.Experimental Data  For increasing number of Bays in Direction of Motion 

 

Data no. Model 

Height (mm) 

Number of  

Bays 

Length of each 

member (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 1800 1 150 6mm Square  7/7/2015 1.3 

2 1800 1 150 6mm Square 7/7/2015 1.4 

3 1800 1 150 6mm Square  7/7/2015 1.4 

4 1800 1 150 6mm  Square 7/7/2015 1.3 

5 1800 1 150 6mm  Square 7/7/2015 1.3 

6 1800 1 150 6mm Square 7/7/2015 1.3 

Data No. Model 

Height (mm) 

Number of 

Bays 

Length of each 

member (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 1500 1 150 6mm Square  9/10/2014 3.86 

2 1500 1 150 6mm Square 9/10/2014 3.86 

3 1500 1 150 6mm Square  17/10/204 3.75 

4 1500 1 150 6mm Square 17/10/2014 3.75 

5 1500 1 150 6mm Square 9/10/2014 3.71 

6 1500 1 150 6mm Square 9/10/2014 3.71 
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Table 8.2.3a Experimental Results for 2x1 bays models (vibration parallel to longer 
side) 

Data 

No. 

Model 

Height 

(mm) 

No. 

of 

Bays 

Length of 

member 

(mm) 

Member 

type and size 

Direction of 

vibration 

Date Measured 

Frequency 

1 1500 2 150 6mm Square  Parallel to longer side 17/2/2015 2.9 

2 1500 2 150 6mm Square Parallel to longer side 17/2/2015 3.3 

3 1500 2 150 6mm  Square Parallel to longer side 17/2/2015 3.1 

4 1500 2 150 6mm  Square Parallel to longer side 18/2/2015 3.0 

5 1500 2 150 6mm  Square Parallel to longer side 18/2/2015 3.1 

6 1500 2 150 6mm  Square Parallel to longer side 18/2/2015 3.0 

 

 

Table 8.2.3b-Experimental results for 10 storey model with 3x1 bays-(vibration parallel 
to longer side)-below 

 

 

 

 

Table 8.2.3c-Experimental Frequencies for 10storey model with 4 bays-(vibration 
parallel to longer side) 

Data 

No. 

Model 

Height 

(mm) 

No. 

of 

Bays 

Length of 

each 

member 

(mm) 

Member 

type and 

size 

Direction of vibration Date Measured 

Frequency 

 

1 1500 4 150 6mm Square  Parallel to longer side 17/2/2015 4.5 

Data 

No. 

Model 

Height 

(mm) 

No. 

of 

Bays 

Length of 

each 

member 

(mm) 

Member 

type and size 

Direction of vibration Date Measured 

Frequency 

 

1 1500 3 150 6mm Square  Parallel to longer side 17/2/2015 3.4 

2 1500 3 150 6mm  Square Parallel to longer side 17/2/2015 3.3 

3 1500 3 150 6mm Square  Parallel to longer side 17/2/2015 3.5 

4 1500 3 150 6mm Square Parallel to longer side 18/2/2015 3.5 

5 1500 3 150 6mm  Square   Parallel to longer side 18/2/2015 3.4 

6 1500 3 150 6mm  Square   Parallel to longer side 18/2/2015 3.5 
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2 1500 4 150 6mm Square Parallel to longer side 17/2/2015 4.6 

3 1500 4 150 6mm  

Square 

 Parallel to longer side 18/2/2015 4.4 

4 1500 4 150 6mm Square  Parallel to longer side 18/2/2015 4.6 

5 1500 4 150 6mm Square Parallel to longer side 19/2/2015 4.5 

6 1500 4 150 6mm Square  Parallel to longer side 19/2/2015 4.5 

 

D. Experimental Data for increasing number of Bays Perpendicular to motion 

Table 8.2.4a- Experimental Frequencies for 10storey model with 2 bays-Less stiff 
direction motion(below) 

Data 

No. 

Model 

Height 

(mm) 

No. 

of 

bays 

Length 

of each  

Member 

(mm) 

Member 

Type & 

Size 

Direction of Vibration Date Measured 

Frequency 

(Hertz) 

1 1500 2 150 6mm square Perpendicular to longer 

side  

17/2/2015 2.5 

2 1500 2 150 6mm square Perpendicular to longer 

side 

17/2/2015 2.5 

3 1500 2 150 6mm square Perpendicular to longer 

side 

17/2/2015 2.2 

4 1500 2 150 6mm square Perpendicular to longer 

side 

17/2/2015 2.2 

5 1500 2 150 6mm square Perpendicular to longer 

side 

19/2/2015 2.2 

6 1500 2 150 6mm square Perpendicular to longer 

side 

19/2/2015 2.2 

 

Table 8.2.4b- Experimental Frequencies for 10storey model with 3 bays-Less 
stiffdirection motion (below) 

Data 

No. 

Model 

Height 

(mm) 

No. 

of 

Bays 

Length 

of each 

Member 

(mm) 

Member 

type and  

size 

Direction of Vibration Date Measured 

Frequency

(Hertz) 

1 1500 3 150 6mm square Perpendicular to longer 

side  

17/2/2015 2.5 

2 1500 3 150 6mm square Perpendicular to longer 

side 

17/2/2015 2.5 
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3 1500 3 150 6mm square Perpendicular to longer 

side 

17/2/2015 2.5 

4 1500 3 150 6mm square Perpendicular to longer 

side  

17/2/2015 2.5 

5 1500 3 150 6mm square Perpendicular to longer 

side 

18/2/2015 2.6 

6 1500 3 150 6mm square Perpendicular to longer 

side 

18/2/2015 2.5 

 

 

 

 

Table 8.2.4c-1500mm Miniatures Structure with 4x1 bays-Vibration in Less Stiff 
Direction 

Data 

No. 

Model 

Height 

(mm) 

No. 

of 

Bays 

Length 

of each 

member 

Member 

Type and 

size 

Direction  

of Vibration 

Date Measured 

Frequency

 

1 1500 4 150 6mm square Perpendicular to longer 

side 

19/2/2015 0.9 

2 1500 4 150 6mm square Perpendicular to longer 

side 

19/2/2015 0.9 

3 1500 4 150 6mm square Perpendicular to longer 

side 

18/2/2015 0.9 

4 1500 4 150 6mm square Perpendicular to longer 

side 

18/2/2015 0.9 

5 1500 4 150 6mm square Perpendicular to longer 

side 

18/2/2015 0.8 

6 1500 4 150 6mm square Perpendicular to longer 

side 

18/2/2015 0.8 

 

E.Experimental Data for Varying Column Stiffnesses 

The experimental Results for miniature structures with varying column stiffnesses are 

presented in the tables below: 

 

Table 8.2.5a Experimental Results for varying column stiffenesses-15 storey 

100mm floor height 
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Data 

No. 

Model 

Height (mm) 

Number of 

floor 

Floor to Floor 

Height (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 1500 15 100 6mm Square  6/2/2015 2 

2 1500 15 100 6mm square 6/2/2015 1.9 

3 1500 15 100 6mm  Square 7/2/2015 1.9 

4 1500 15 100 6mm  Square 7/2/2015 1.8 

5 1500 15 100 6mm Square  9/2/2015 2.2 

6 1500 15 100 6mm Square  9/2/2015 2.1 

 

 

 

 

 

 

 

Table 8.2.5b-Experimental results for varying stiffness of columns 20 storey 75mm floor 
height 

Data 

No. 

Model 

Height (mm) 

Number of 

Floors 

Floor to Floor 

Height (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 1500 20 75 6mm Square  6/2/2015 2.8 

2 1500 20 75 6mm Square  6/2/2015 2.9 

3 1500 20 75 6mm Square 7/2/2015 2.9 

4 1500 20 75 6mm Square 7/2/2015 2.9 

5 1500 20 100 6mm Square  9/2/2015 3.1 

6 1500 20 100 6mm Square  9/2/2015 3.0 

 

Table 8.2.5c-Experimental Results for varying column height 26 storey 

57.7mm floor height case 

Data 

No. 

Model Height 

(mm) 

Number of 

Floors 

Floor to Floor 

Height (mm) 

Member type 

and size 

Date Measured 

Frequency 

1 1500 26 57.7 6mm Square  6/2/2015 4.4 

2 1500 26 57.7 6mm Square  6/2/2015 4.9 

3 1500 26 57.7 6mm Square 7/2/2015 5.0 

4 1500 26 57.7 6mm Square 7/2/2015 4.8 

5 1500 26 57.7 6mm Square  9/2/2015 5.1 

6 1500 26 57.7 6mm Square  9/2/2015 4.9 
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F. Experimental Data  for Varying horizontal member  Stiffnesses parallel  to Direction of 

Motion 

Table 8.2.6a-Experimental finding where horizontal member parallel to motion was 
100mm long and the rest were 150mm 

Data 

No. 

Model 

Height 

(mm) 

No. of 

Floors 

Floor to 

Floor Height 

(mm) 

Member 

type and 

size 

Length of Member 

Parallel to Motion 

(mm) 

Date Measured 

Frequency 

(Hertz) 

1 1200 8 150 6mm Square 100 5/5/2015 1.7 

2 1200 8 150 6mm Square 100 5/5/2015 1.8 

3 1200 8 150 6mm Square 100 6/5/2015 1.8 

4 1200 8 150 6mm Square 100 6/5/2015 1.7 

5 1200 8 150 6mm Square 100 7/5/2015 1.7 

6 1200 8 150 6mm Square 100 7/5/2015 1.7 

 

Table 8.2.6b-Experimental finding where horizontal member parallel to motion was 
200mm long and the rest were 150mm 

Data 

No. 

Model 

Height 

(mm) 

No. of 

Floors 

Floor to 

Floor Height 

(mm) 

Member 

type and 

size 

Length of Member 

Parallel to Motion 

(mm) 

Date Measured 

Frequency 

(Hertz) 

1 1200 8 150 6mm Square 200 5/5/2015 2.1 

2 1200 8 150 6mm Square 200 5/5/2015 2.0 

3 1200 8 150 6mm Square 200 6/5/2015 2.2 

4 1200 8 150 6mm Square 200 6/5/2015 2.0 

5 1200 8 150 6mm Square 200 7/5/2015 2.0 

6 1200 8 150 6mm Square 200 7/5/2015 2.0 

Table 8.2.6c-Experimental finding where horizontal member parallel to motion was 
250mm long and the rest were 150mm 

Data 

No. 

Model 

Height 

(mm) 

Number 

of 

Floors 

Floor to 

Floor Height  

(mm) 

Member 

type and 

size 

Length of Member 

Parallel to Motion 

(mm) 

Date Measured 

Frequency 

(Hertz) 

1 1200 8 150 6mm Square 250 5/5/2015 4.1 

2 1200 8 150 6mm Square 250 5/5/2015 4.0 

3 1200 8 150 6mm Square 250 6/5/2015 4.2 
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4 1200 8 150 6mm Square 250 6/5/2015 4.0 

5 1200 8 150 6mm Square 250 7/5/2015 4.1 

6 1200 8 150 6mm Square 250 7/5/2015 4.1 

G‐Experimental Data for horizontal Momber Stiffnesses Perpendicular to Motion 

            
   

Table 8.2.7a-Experimental finding where horizontal member perpendicular to motion 
was 100mm long and the rest were 150mm 

 

Data 

No. 

Model 

Height 

(mm) 

Number 

of Floor 

Floor to 

Floor Height 

(mm) 

Member 

type and 

size 

Length of Member 

Perpendicular 

To Motion (mm) 

Date Measured 

Frequency 

-Hertz 

 

1 1200 8 150 6mm Square 100 5/5/2015 2.0 

2 1200 8 150 6mm Square 100 5/5/2015 2.2 

3 1200 8 150 6mm Square 100 6/5/2015 2.1 

4 1200 8 150 6mm Square 100 6/5/2015 2.3 

5 1200 8 150 6mm Square 100 7/5/2015 2.3 

6 1200 8 150 6mm Square 100 7/5/2015 2.1 

 

Table 8.2.7b-Experimental finding where horizontal member perpendicular to motion 
was 200mm long and the rest were 150mm 

Data 

No. 

Model 

Height 

(mm) 

Number 

of 

Floors 

Floor to 

Floor Height 

(mm) 

Member 

type and 

size 

Length of Member 

Perpendicular to 

Motion (mm) 

Date Measured 

Frequency 

(Hertz) 

1 1200 8 150 6mm Square 200 5/5/2015 1.5 

2 1200 8 150 6mm Square 200 5/5/2015 1.4 

3 1200 8 150 6mm Square 200 6/5/2015 1.5 

4 1200 8 150 6mm Square 200 6/5/2015 1.5 

5 1200 8 150 6mm Square 200 7/5/2015 1.4 

6 1200 8 150 6mm Square 200 7/5/2015 1.5 

 

Table 8.2.7c-Experimental finding where horizontal member perpendicular to motion 
was 250mm long and the rest were 150mm 

Data Model Number Floor to Member Length of Member Date Measured 
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No. Height 

(mm) 

of 

Floors 

Floor Height 

(mm) 

type and 

size 

Perpendicular to 

Motion (mm) 

Frequency 

(Hertz) 

1 1200 8 150 6mm Square 250 5/5/2015 1.4 

2 1200 8 150 6mm Square 250 5/5/2015 1.3 

3 1200 8 150 6mm Square 250 6/5/2015 1.4 

4 1200 8 150 6mm Square 250 6/5/2015 1.3 

5 1200 8 150 6mm Square 250 7/5/2015 1.4 

6 1200 8 150 6mm Square 250 7/5/2015 1.3 

     

G. Experimental Data where Scale Factor Changes for 1 bay 6 storey miniature structures 

Table 8.2.8a-Experimental Results for 1 bay models of height 900mm (unbraced) 

 

 

Table 8.2.8b-Results on miniature structure with 6storeys and member length 200mm 

Length of Members (mm) Number of storeys Date of test Frequency 

200 6 6/5/2015 2.2 

200 6 6/5/2015 2.1 

200 6 7/5/2015 2.2 

200 6 7/5/2015 2.1 

200 6 8/5/2015 2.1 

200 6 8/5/2015 2.2 

 

 

 

 

Data no. Model 

Height (mm) 

Number 

of Bays 

Length of each 

member (mm) 

Member type and 

size 

Date Measured 

Frequency 

1 900 1 150 6mm Square  5/7/2014 2.5 

2 900 1 150 6mm Square 5/7/2014 2.4 

3 900 1 150 6mm  Square 5/4/2014 2.5 

4 900 1 150 6mm  Square 5/4/2014 2.5 

5 900 1 150 6mm  Square 5/4/2014 2.4 

6 900 1 150 6mm  Square 5/4/2014 2.4 
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Table 8.2.8c-Results on miniature structure with 6storeys and member length 250mm 

Length of Members (mm) Number of storeys Date of test Frequency 

250 6 6/5/2015 1.1 

250 6 6/5/2015 1.0 

250 6 7/5/2015 1.2 

250 6 7/5/2015 1.1 

250 6 8/5/2015 1.1 

250 6 8/5/2015 1.2 

 

Table 8.2.8d-Results on miniature structure with 6storeys and member length 300mm 

Length of Members (mm) Number of Storeys Date of test Frequency 

300 6 6/5/2015 0.8 

300 6 6/5/2015 0.7 

300 6 7/5/2015 0.7 

300 6 7/5/2015 0.8 

300 6 8/5/2015 0.7 

300 6 8/5/2015 0.7 

 

 


