
A SIMULATION BASED METHODOLOGY FOR THE DEVELOPMENT OF

EMBEDDED-ANALOGUE-MIXED-SIGNAL SYSTEMS USING SYSTEMC-AMS

Benjamin Mulwa Kathale

I56/72438/2008

A thesis submitted in partial fulfillment for the degree in Master of Science in

Physics of University of Nairobi

August 2016

i

DEDICATION

To my treasured family, wife – Josephine, son – Samuel and daughter - Lydia

ii

DECLARATION

This thesis is my original work and has not been presented for award of any degree in any other

university.

Signature __________________ Date_______________

Benjamin Mulwa Kathale

University of Nairobi

This thesis has been submitted for examination with my approval as university supervisor.

Signature __________________ Date_______________

Mr. A.C.K. Mjomba

Department of Physics

University of Nairobi

Signature __________________ Date_______________

Dr. K.A. Kaduki

Department of Physics

University of Nairobi

iii

ABSTRACT

The development of embedded analog mixed signal systems has been a challenge especially in

understanding the specifications of the required components and functionality of the system

under development during the development process. In addition, to understand the interaction of

components operating with mixed signals has been a problem since there has been no way in

which this can be handled effectively.

Since the development of electronic systems start from the functional down to the

implementation, a methodology that can be used in all the development levels is required. In this

work, a methodology that can be used to model and simulate embedded analogue mixed signal

systems has been developed. This methodology, referred to as Model-Simulate-Refine-Synthesis

(MSRS), has three stages – functional, non-functional and implementation. The three stages help

the system developer to model and simulate in the three levels of system development.

The MSRS methodology has been tested with two cases that are modeled and simulated using

SystemC-AMS. The first case is the modeling and simulation of an oscilloscope. This case

demonstrates the application of the methodology where analogue signals of different frequencies

are sampled and displayed as digital waveforms. Among other things, architectural exploration

seamlessly flows into implementation. In the second case, the same methodology has been used

to model and simulate a signal generator. The simulation results are compared with a similar

signal generator implemented in a Fusion FPGA. The waveforms produced by the Fusion FPGA

are replicated by the simulated signal generator.

iv

TABLE OF CONTENTS PAGE

DEDICATION ... i

DECLARATION .. ii

ABSTRACT ... iii

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

LIST OF ALGORITHMS ... x

LIST OF ACRONYMS ... xi

ACKNOWLEDGEMENT ... xiii

CHAPTER ONE : INTRODUCTION

1.1 Background of the study ... 1

1.2 Problem Statement .. 4

1.3 Objectives ... 5

1.3.1 General Objective .. 5

1.3.2 Specific Objectives .. 5

1.4 Justification and Significance ... 5

CHAPTER TWO : LITERATURE REVIEW

2.1 Introduction ... 7

2.2 Related research work ... 7

CHAPTER THREE: METHODOLOGY

3.1. Introduction .. 12

3.2. System Level Development Synthesis Methodology .. 12

3.3 Model-Simulate-Refine-Synthesis Methodology ... 14

3.3.1 Functional Model ... 14

3.3.2 Non-Functional Model ... 16

3.3.3 Implementation Model ... 16

3.4. SystemC-AMS ... 18

v

3.4.1 The strengths of SystemC-AMS .. 18

3.4.2 The limitations of SystemC-AMS ... 20

CHAPTER FOUR: CASE 1 - OSCILLOSCOPE

4.1 Introduction ... 21

4.2 The Oscilloscope Functional Model ... 21

4.3 The Oscilloscope Non-Functional Model ... 26

4.4 The Oscilloscope Implementation Model ... 36

CHAPTER FIVE: CASE 2 - SIGNAL GENERATOR

5.1 Introduction ... 42

5.2 Signal Generator Functional Model .. 42

5.3 Signal Generator Non-Functional Model ... 49

5.3.1 Phase Increment Value generator and Phase Accumulator ... 49

5.3.2 Generator module... 50

5.4. Signal Generator Implementation Model .. 53

5.5 FPGA Signal Generator System Waveforms .. 56

CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusion .. 58

6.2 Recommendations for future work ... 59

REFERENCES .. 60

APPENDIX A: OSCILLOSCOPE CODES

A.1: Modulator Functional Model Code ... 65

A.2: Sampler Functional Model Code .. 65

A.3: Hold Functional Model Code ... 66

A.4: Functional ADC Model Code ... 67

A.5: Oscilloscope Functional model Test Bench code ... 67

A.6: Control Unit Module Code .. 69

vi

A.7: ADC Non Functional Module Code ... 71

A.8: None-Functional Model Test Bench Code ... 73

A.9: Buffer Implementation Model Code ... 75

A.10: Modulator Implementation Model Code .. 76

A.11: DC Shift Model Code ... 78

A.12: Sample and Hold Implementation Model Code ... 79

A.13: ADC Module Code ... 80

A.14: Oscilloscope Implementation model Test Bench Code .. 81

APPENDIX B: SIGNAL GENERATOR CODES

B.1: Digital Signal Generator Module Code .. 84

B.2: DAC Functional Model Code ... 86

B.3: Signal Generator Functional Model Test Bench Code ... 87

B.4: Phase Increment Value Generator module code ... 89

B.5: Phase Value Accumulator module code ... 89

B.6: Generator module code ... 90

B.7: DAC Non-Functional Model Code ... 91

B.8: Signal Generator None-Functional Test Bench Code ... 91

B.8: DAC Implementation Model Code ... 93

B.9: Signal Generator Implementation Model Test Bench Code ... 96

vii

LIST OF FIGURES

Figure 1.1: The Y-Chart (Gajski & Kuhn, 1983)... 1

Figure 2.1: Capture-and-Simulate Methodology (Gajski et al.,2009) .. 8

Figure 2.2: Describe-and-Synthesis Methodology (Gajski et al.,2009) ... 9

Figure 2.3: Specify-Explore-Refine Methodology (Gajski et al.,2009) ... 9

Figure 3.1: System Level Development Synthesis Methodology (Gajski, et al., 2009) 13

Figure 3.2: Model-Simulate-Refine-Synthesis Methodology ... 14

Figure 3.3: Optimal Functional Model Generation... 15

Figure 3.4: Optimal Non-Functional Model Generation .. 16

Figure 3.5: System Blueprint Model Generation .. 17

Figure 4.1: Oscilloscope Block Diagram .. 21

Figure 4.2: Detailed Oscilloscope Block Diagram ... 21

Figure 4.3: Oscilloscope Dataflow Model .. 22

Figure 4.4: Oscilloscope Simulation Functional model with Test-Bench 23

Figure 4.5: Analog-to-digital value conversion .. 24

Figure 4.6: Oscilloscope Functional Model Waveforms .. 25

Figure 4.7: Oscilloscope Non-Functional Block Diagram ... 26

Figure 4.8: Oscilloscope Non-Functional Simulation Diagram ... 27

Figure 4.9(a): 0V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 29

Figure 4.9(b): 1mV, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 29

Figure 4.9(c): 3 V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 30

Figure 4.9(d): 100V, 0 Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 30

Figure 4.9(e): 330V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 31

Figure 4.9(f): 3 V, 30KHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 32

Figure 4.9(g): 3 V, 30KHz Analogue and Digital time diagrams for 2, 4, 6, 8 and 10 bits 32

Figure 4.9(h): 3 V, 300KHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 33

Figure 4.9(i): 3 V, 3 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 33

Figure 4.9(j): 3 V, 30 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 34

Figure 4.9(k): 3 V, 300 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 34

Figure 4.9(l): 3 V, 4 GHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 35

viii

Figure 4.10: The Oscilloscope Implementation Model .. 37

Figure 4.11(a): 0 V, Analogue and 8-bit Digital signals at 0Hz ... 38

Figure 4.11(b): 3 V, Analogue and 8-bit Digital signals at 0 Hz .. 39

Figure 4.11(c): 330 V, Analogue and 8-bit Digital signals at 0Hz .. 39

Figure 4.11(d): 3 V, Analogue and 8-bit Digital signals at 30 KHz ... 40

Figure 4.11(e): 3 V, Analogue and 8-bit Digital signals at 4 GHz ... 40

Figure 5.1: Dataflow diagram for the Signal Generator ... 42

Figure 5.2: Signal Generator with Test Bench.. 43

Figure 5.3(a) 10 Hz Signal generator simulation waveform ... 48

Figure 5.3(b) 1 MHz Signal generator simulation waveforms ... 48

Figure 5.3(c) 5 MHz Signal generator simulation waveforms ... 48

Figure 5.4: Signal Generator Non-Functional model ... 49

Figure 5.5(a): 10 Hz, 2 V Signal Waveforms ... 52

Figure 5.5(b): 1 MHz, 10 V Signal Waveforms ... 52

Figure 5.5(c): 5 MHz, 10 V Signal Waveforms .. 52

Figure 5.6: Signal Generator Implementation Model ... 54

Figure 5.7: Signal Generator Implementation Model Waveforms ... 55

Figure 5.8(a): 1 MHz FPGA Sine wave (Muteithia, 2014) .. 56

Figure 5.8(b): 1 MHz Simulated Sine Wave .. 56

Figure 5.9(a): 1 MHz FPGA Square wave (Muteithia, 2014) .. 56

Figure 5.9(b): 1 MHz Simulated Square wave ... 56

Figure 5.10(a):1 MHz FPGA Saw tooth wave (Muteithia, 2014) .. 57

Figure 5.10(b):1 MHz Simulated Saw tooth wave ... 57

Figure 5.11(a):1 MHz FPGA Triangular wave (Muteithia, 2014).. 57

Figure 5.11(b):1 MHz Simulated Triangular wave ... 57

ix

LIST OF TABLES

Table 3.1: DE to TDF, LSF and ELN MoCs Converter Classes .. 19

Table 3.2: TDF to DE, LSF and ELN MoCs Converter Classes .. 19

Table 3.3: ELN to TDF and DE MoCs Converter Classes ... 19

Table 3.4: LSF to DE and TDF MoCs Converter Classes .. 19

Table 4.1: The effect of ADC bit-width on Resolution .. 32

Table 5.1: Instructions required per value for the respective signal waves 46

Table 5.2: Signal generator simulation analysis ... 47

Table 5.3: Some LUT values used in the signal generator ... 51

Table 5.4: Signal generator non-functional model simulation analysis .. 53

x

LIST OF ALGORITHMS

Algorithm 5.1: Algorithm to generate single sine wave value ... 44

Algorithm 5.2: Algorithm to generate single saw-tooth signal wave value 44

Algorithm 5.3: Algorithm to generate single triangular signal wave value 45

Algorithm 5.4: Algorithm to generate single square wave signal value 46

xi

LIST OF ACRONYMS

ADC - Analog-to-Digital-Converter

AMS - Analog-Mixed-Signal

CA - Cycle-Accurate

CAD - Computer Aided Development

CS - Capture-and-Simulate

DAC - Digital-to-Analog-Converter

DE - Discrete Event

DS - Describe and Synthesis

DT - Discrete Time

DUT - Device Under Test

E-AMS - Embedded Analog Mixed Signal

ECAP - Electronic Circuit Analysis Program

ELN - Electrical Linear Network

FPGA - Field Programmable Gate Array

FSM - Finite State Machines

HDL - Hardware Description Language

HDLs - Hardware Description Languages

HW - Hardware

IEEE - Institute of Electrical and Electronics Engineering

IP - Intellectual Property

LSF - Linear Signal Flow

LUT - Look Up Table

MoC - Models of Computation

MSB - Most Significant Bit

MSRS - Model-Simulate-Refine-Synthesis

PCAM - Pin Cycle-Accurate-Model

PSM - Process State Machines

RC - Resistor-Capacitor

RTL - Register Transfer Level

xii

SER - Specify-Explore-Refine

SL - System Level

SPICE - Simulation Program with Integrated Circuit Emphasis

SW - Software

TDF - Timed Data Flow

TLM - Transaction Level Modeling

VCD - Value Change Dump

VCO - Voltage Controlled Oscillators

VHDL - Very High Speed Integrated Circuit Hardware Description Language

xiii

ACKNOWLEDGEMENT

I am deeply indebted to a number of people who in one way or another helped during the period

of this work:

First, I wish to thank my supervisors, Mr. A. C. K. Mjomba and Dr. K. A. Kaduki for their

continued guidance and direction during the entire period of the research. The time they spent

guiding me all through and carefully reading and making suggestions on the manuscript at its

various stages deserves special mention.

Many thanks to my colleagues Mr. Walter Maina and Mr. Elias Gitau who gave useful

suggestions on the installation of SystemC, SystemC-AMS and other related programs is highly

appreciated. The positive contribution and discussions with Mr. Elias Gitau on the initial stages

of the working on SystemC-AMS deserves appreciation.

The support accorded by the technical staff of the Department of Physics and the entire

department is highly valued.

I owe much to my treasured family especially my dear wife, Josephine, and friends who

personally encouraged and prayed for me especially when things did not seem to go well. To my

dear pastor, Jonathan Nzola, his wife, Jenifer Ivuso, all the church members from JCC-Tassia,

Pst. Samuel Mutuku and Pst. Daniel Nzyuko who stood with me in prayer, I am grateful.

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the study

An Embedded Analog Mixed Signal (E-AMS) system is an electronic system integrated into a

device or an appliance, aiming at making the behavior of the device more intelligent. It makes

the device or appliance in question easier to operate or use, more energy efficient, safer,

friendlier for the environment, and or perform better, (Broedes, 2010). To enlarge the flexibility

and the maintainability, most E-AMS not only contain hardware but also contain software

components (Mahne, 2011). The hardware components are either analog, digital or even both,

depending on the requirements of the system. In most cases, the components are implemented as

multi-processor systems on a single chip while others are a collection of discrete chips

interconnected to form the embedded system.

Developing E-AMS is generally complex. Gajski and Kuhn offer a way to deal with this

complexity. In their approach, they propose four levels of domain abstractions and three levels of

system development abstractions as shown in Figure 1.1 (Gajski & Kuhn, 1983). The Y-Chart

explains the differences between different development tools and different development

methodologies in which these tools are used.

Figure 1.1: The Y-Chart (Gajski & Kuhn, 1983)

2

Behaviour is a representation of the system as a black box. This gives the functionality of the

system where its outputs are described in terms of its inputs over a given time. This

representation does not indicate in any way how the black box is build box or its structure. The

stucture development presents the black box as a block diagram. The block diagram can be

decomposed into a set of components and connections. The physical development brings in the

element of dimensions to the structure. It specifies the physical size and the relative position of

each component as well as the port and connection on the chip, printed circuit board or any other

container.

For the purpose of domain abstractions, the Y-Chart also empasizes circuit, logic, processor and

system levels of abstraction shown by the concentric circles in Figure 1.1. The names of the

abstraction levels are related to the kind of components generated at each particular level. This

means that at circuit level, discrete components such as transistors, capacitors e.t.c. are

generated. Logic gates and flip-flops are generated at logic level, special hardware components

such as memory controllers at processor level and embedded systems consisting of processors,

memories and other components generated at the system level. This framework provides a good

starting point for system development. On top of this framework, methodologies have been

developed to support modeling, automation and simulation (Gajski & Kuhn, 1983)

Automation is most effective on standard E-AMS development. However automation relies on

preconceived models and model transformations thus limiting innovation. On the other hand,

modeling and simulation does not suffer those limitations. It is in this respect that a methodology

based on modeling and simulation is chosen to be developed. Simulation of E-AMS requires the

support of Analogue Mixed Signal (AMS) behavior at each level of abstraction. Due to this

reason, the modeling formalisms should be based on models of computation that support the

AMS behavior.

In addition to modeling, architectural exploration is usually carried out in a simulation context. It

involves the following steps: evaluation of the simulation results against specifications and

adjustment of specifications. This may in turn lead to modification of architectural model. This is

carried out for both functional and non-functional specifications.

3

System simulation requires developing and executing all the components of a system using a

computer program before implementation of the system. Before the introduction of system

simulation, developers used to development and fabricate the system before testing its

functionality. This would lead to abandoning the system and developing a new system again in

cases where the system fails to function as anticipated. This leads to wastage of resources and

prolonged time to market (Gajski et al., 2009) (Barnasconi, et al., 2010). System simulation and

analysis helps the developer to ascertain the functionality of the system and the specifications of

the components before implementation. For innovative systems, the behavior of the system may

not be well understood. Simulation provides a preview of at least some of the behavior of the

system.

At the heart of every simulation is a simulation language. Some languages such as Electronic

Circuit Analysis Program (ECAP) could simulate only hardware analog components (Jensen,

1966), (Roberts & Harbourt, 1967). Simulation Program with Integrated Circuit Emphasis

(SPICE) was developed and was capable of simulating and analyzing discrete analog

components at circuit level of abstraction (Saxena, et al., 2012), (Dowell, 2011). Hardware

Description Languages (HDLs) were developed to simulate discrete signals at Register Transfer

Level (RTL) of abstraction (Gajski, et al., 2009), (Pedroni, 2004). These HDLs included Very

High Speed Integrated Circuit Hardware Description Language (VHDL) (Ashenden, 2010) and

Verilog. Later analog extensions were incoperated in VHDL (VHDL-AMS) and Verilog

(Verilog-A) to handle analog hardware components simulation (Vachoux, 1998), (Zorzi, Franzk,

& Speciale, 2003), (Thomas & Moorby, 2002), (Szermer, Daniel, & Napieralski, 2003).

Although VHDL, Verilog, VHDL-AMS and Verilog-A could simulate both analog and digital

hardware components (Pecheux, et al., 2005), the software components required in embedded

systems were simulated using C and C++ languages (Black & Donovan, 2004). This led to

failure of a common test bench which could be used in the simulation of both hardware and

software components since the two categories of the simulation languages are different. Without

a common test bench, the functionality of the hardware and software components of an

embedded system could not be determined precisely.

4

A class library within C++ called SystemC was developed to be used in simulation of digital

hardware components and software components of an embedded system (Black & Donovan,

2004). SystemC simulation kernel was not developed to handle modeling and simulation of

analog and continuous-time systems but supports Transaction Level Modeling (TLM) (Cai &

Gajski, 2003), (Ghenassia, 2005). TLM allows the developer to perform abstract modeling,

simulation and development of discrete-event Hardware/Software (HW/SW) system

architectures (Barnasconi et al., 2010), (Donlin, 2004). Although SystemC provides support for

digital hardware and software integration simulation tests, it does not support analogue

simulation tests. Therefore, SystemC lacks the support of describing analog behavior of

embedded systems. Due to this challenge, Analog-Mixed-Signal (AMS) extensions has been

introduced in SystemC (Barnasconi, et al., 2010) to generate SystemC class library called

SystemC-AMS.

SystemC-AMS extensions define language constructs with execution semantics for mixed-signal

systems. The class definitions provided by the AMS language standard form the basis for the

creation of a C++ class library implementation, used in combination with an Institute of

Electrical and Electronics Engineering (IEEE) 1666-2005 compatible SystemC implementation.

Such an implementation is used to create AMS system-level models to build an executable

specification, to validate and optimize the E-AMS system architecture, to explore various

algorithms, and to provide the development team with an operational virtual prototype of the

entire E-AMS system. To support these use cases, the SystemC-AMS extensions define

modeling formalisms to model E-AMS system-level behavior at discrete-time and continuous-

time levels of abstraction (Barnasconi, et al., 2010). The modeling formalisms include; Timed

Data Flow (TDF), Linear Signal Flow (LSF), Electrical Linear Networks (ELN), Discrete Event

(DE) and Discrete Time (DT). These modeling formalisms have defined execution semantics and

therefore serve as models of computations (MoC). They guide development of executable E-

AMS models.

1.2 Problem Statement

There is a growing trend for tight interaction between embedded HW/SW systems and their

analog physical environment. Consequently, systems in which digital HW/SW components are

5

interwoven with analog and mixed-signal components are realized. Such systems are called

embedded systems or embedded analog mixed-signal systems (E-AMS). Developing the E-

AMS systems becomes a challenge while trying to understand the interaction between the

HW/SW and the analog and mixed-signal subsystems at the architectural level. Methodologies

have been developed which are used to model and simulate these E-AMS system but they have

some limitations. The limitations include lack of a common design tools to model both hardware

and software components. They also lack the capability of modeling and simulation of E-AMS

from the functional down to the implementation level. Due to these, new ways to develop the

interacting HW/SW subsystems and the mixed-signal subsystems are required. SystemC-AMS

provides an appropriate tool to support the modeling and simulation of interactions spanning

functional level down to the implementation level and inclusive of software and both analogue

and digital hardware (Barnasconi, et al., 2010), (Mähne, 2011). Therefore, a methodology that

builds on these capabilities of SystemC-AMS is developed.

1.3 Objectives

1.3.1 General Objective

The general objective of this work was to generate a methodology for modeling and simulation

of Embedded Analog Mixed Signal (E-AMS) systems.

1.3.2 Specific Objectives

1. To generate functional, non-functional and system implementation models, each for its

corresponding level in the design process

2. To verify the functioning of each model through simulation process

3. To validate the models by comparing its output with the stakeholders expectations

4. To test the methodology through modeling and simulating an oscilloscope and a signal

generator as case studies

1.4 Justification and Significance

System development process gives better results if a methodology that helps the developers to

model and simulate the system under development at all levels (functional level, architectural

level and implementation level) and including both hardware (analog and digital) and software

6

components is used (Barnasconi, et al., 2010). Gajski et al, (2009) presents some methodologies

which were developed to model and simulate electronic systems. These methodologies could

make the system developers model and simulate the HW and SW components of the systems

separately due to lack of a common design tools. This could lead to the repeat of the design

process if the HW and SW components failed to match and give the expected results.

Also, the methodologies could help the system developer in modeling and simulation of the

systems from the functional level down to the TLM level but not up to the implementation level.

This would make the system developers repeat the design process if errors would occur at the

implementation level where modeling and simulation was not being done.

Therefore, in response to these limitations, this work provides system developers with a

methodology that they can use in their development work to model and simulate analog, digital

and software components concurrently. It also supports modeling and simulation from the

system functional level down to the system implementation level.

Further, the methodology readily supports architectural exploration, modeling and simulation

seamlessly. This has been made possible by the use of SystemC-AMS as a support tool for this

methodology.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Modeling and simulation is one of the fundamental processes required in development of E-

AMS systems. This chapter presents prior work done by different researchers on modeling and

simulation methodologies used while developing E-AMS systems.

2.2 Related research work

In the development of E-AMS systems, modeling and simulation play a very important role in

the development process. They are used to verify the functionality and properties of the whole

system (Ptolemaeus, 2014), (Topper & Horner, 2013), (Karnane, Curtis & Goering, 2009) and

further to that is part of the development process (Jeruchim, Balaban, & Shanmugan, 2006).

Depending on the modeling and simulation tool, the simulation code can be used to verify the

system and be downloaded into a Field Programmable Gate Array (FPGA) board for the

implementation (Gajski et al., 2009). There have been different development methodologies

since 1960s that explain the development process where simulation is involved (Sinha, et al.,

2001). Gajski et al. (2009) explains the evolution of the development methodologies since early

1960s. In their discussion, three methodologies are presented which include Capture-and-

Simulate (CS), Describe-and-Synthesis (DS) and Specify-Explore-Refine (SER) methodology.

In CS methodology, the software (SW) and hardware (HW) development was separated by a

system gap. The system gap was a result of the SW developers and the HW developers using

different tools. This gap was made worse by the fact that the developers could not work

concurrently. The SW developers used to test algorithms and write the requirements document

and the initial specification of the system under development. The specification used to be given

to the HW developers to begin the hardware development. The HW developers used to start

working with a block diagram based on the specification. In this case, the HW developers could

not know if their development would meet the requirements on the specification until the gate-

level development was produced and simulated. Once the gate net-list was captured and

8

simulated, developers could determine whether the system worked as specified or not.

Sometimes, the system did not work and the specification was changed to accommodate the

desired behavior. Figure 2.1 shows a schematic diagram for the CS methodology.

Figure 2.1: Capture-and-Simulate Methodology (Gajski et al.,2009)

In 1980s, tools for logic synthesis were brought and significantly altered development flow by

capturing both behavior and structure of the development at the logic level. The system

developers specified first what they wanted in Boolean equations or Finite State Machines

(FSM) descriptions and then the synthesis tools generated the implementation in terms of logic-

level net-lists. This formed the DS methodology presented in Figure 2.2. In this methodology the

logic level net-list were automatically generated. Now, behavior could be simulated at

function/specifications model and then after synthesis at the logic level net-list. This made it

possible to verify by simulation the descriptions equivalence between function level and the gate

level net-list. The FSM level of abstraction is however too low. It results in huge number of

states for even moderately sized systems. In the late 1990s, the logic level had been abstracted to

the RTL with the introduction of Cycle-Accurate (CA) modeling and synthesis. Even with the

introduction of the two levels of abstraction (RTL and Logic) and two modeling abstractions on

each level (behavioral and structural), the system gap found in the CS methodology was still

existing since there was no relation between RTL and higher system level.

9

Figure 2.2: Describe-and-Synthesis Methodology (Gajski et al.,2009)

Specify-Explore-Refine (SER) methodology presented in Figure 2.3 was introduced in early

2000s and is still in use today. This methodology was aimed at closing the system gap existing in

the CS and DS methodologies. To close the gap, a level of abstraction higher than both HW and

SW level called the system level was devised and a methodology introduced that incorporates

both SW and HW. Behavioral models are first devised at the System Level (SL). They are then

synthesized to structural models and then simulated.

Figure 2.3: Specify-Explore-Refine Methodology (Gajski et al.,2009)

10

The structural model is synthesized further to Cycle-Accurate (CA) model. The CA model

represents the whole system under development and can be downloaded into an FPGA board or a

microcontroller board using standard Computer Aided Development (CAD) tools provided by

the board suppliers (Calva, et al., 2012). This leads to generation of system prototype. If all the

synthesis and refinement tasks are automated, the prototype can be generated in a few weeks

(Gajski, et al., 2009). This helps the system developer to save on time and effort (Najy, 2013),

(Kodi, 2008). In addition, since the simulation helps the developer to ascertain the functionality

of the system and the properties of any component to be used before implementation, then the

system developer would not waste on resources by implementing a system with errors, which has

to be abandoned.

Besides the introduction of SER methodology and the CA model used in the implementation of

the system prototype, simulation as part of the development process has other benefits as

presented by different researchers. In a research done by Kelemenova et al. (2013), simulation

plays a major role in performing development tradeoffs of the behavioral models of the mixed

signal components of the system under development. This may be hard or even impossible to do

on paper-based development reviews. Further, they emphasized on the point that the models used

in the simulation, can be reused and elaborated to build and test more detailed developments. In

their discussion, it comes out clear that the models used in the simulation can become the

development artifacts from which hardware developers automatically generate Hardware

Description Language (HDL) code. This is also presented by Mischkalla et al. (2010).

Kelemenova et al. (2013) explain that, the developers learn more about system dynamics through

simulation than from real systems because it provides details on some properties such as force,

current, torque (just to mention but a few).

Mathematical modeling and simulation tools provide an efficient approach for predicting

operational behavior, correcting development errors, eliminating prototyping steps and reducing

system components through component tradeoffs (Montealegre et al., 2013). This is essential to

study the impact of cost and development modifications of E-AMS systems. Wilson and

Mantooth (2013) explain that simulation of E-AMS helps the developer in analyzing many

scenarios of electronic systems. It is also used in optimization of statistical context to evaluate

11

many variations and, further to that, helps in troubleshooting of the system as well as helping the

developer to look inside the components within a development to enhance the developer’s

understanding of the behavior of the system.

To synopsize, it has been pointed out that the introduction of SER methodology was to close the

system gap by rising of levels of abstraction to system level. Though the system gap problem

was solved after introducing the SER methodology, it was only for the modeling and simulation

of digital systems (Gajski, et al., 2009). E-AMS systems however embrace both analogue and

digital subsystems. It is in this respect that the methodology is developed to provide a seamless

modeling, architectural exploration and simulation support for E-AMS development.

12

CHAPTER THREE

METHODOLOGY

3.1. Introduction

The development of any E-AMS system requires modeling, architectural exploration and

simulation. This chapter presents a modeling, architectural exploration and simulation

methodology that forms the basis of this work. A simple methodology that is similar to the one

developed is presented in section 3.2. The purpose of section 3.2 is to provide a background

helpful to understanding the Model-Simulate-Refine-Synthesis (MSRS) methodology that

follows in section 3.3. Finally, in section 3.4, a modeling and simulation language called

SystemC-AMS is presented. The modeling and simulation capabilities of this language are

essential to the MSRS methodology.

3.2. System Level Development Synthesis Methodology

Gajski et al (2009) presents a system level development methodology that describes systems

from behavioral level down to the architectural level. The methodology begins by describing the

behavior of the system, which is presented as some model of computation such as a set of

sequential and parallel processes communicating through message passing channels. The model

executes on a platform defined after estimating some characteristics of the application. This

executable code is also called application code. After defining the platform, it is partitioned and

each partition assigned to a processor or Intellectual Property (IP) in the platform. The Model of

Computation is mapped on the platform and a model that can be simulated is then generated. The

model is simulated to verify that the application executes on the platform and satisfies the

requirements of the system. This model is called the Transaction Level Model (TLM).

After simulation, the results of the simulation are evaluated from which development

optimization is carried out on the platform and/or the application code. It is also possible to

change the mapping of the application to the platform. After satisfying the application code,

platform and the mapping, each component is synthesized to generate an implementation level

model. This model is called Pin Cycle-Accurate-Model (PCAM). The PCAM contains binaries

13

for downloading to processors and RTL descriptions for the HW parts in the platform. The

PCAM is downloadable to standard FPGA boards for system prototyping whose results can be

used for final optimization of the whole development. The methodology is presented in Figure

3.1.

Figure 3.1: System Level Development Synthesis Methodology (Gajski, et al., 2009)

In the methodology presented in Figure 3.1, simulation is done only when TLM is generated.

This approach may lead to development time wastage. If the development components are not

meeting all the requirements, then the whole process has to be started again from the application

model code, mapping and generation of the TLM. In addition, no simulation has been suggested

for the PCAM model. This means that the errors in the model are detected during testing. While

not all errors are detected by simulation, it is usually more economical to catch as many errors as

possible at the earliest opportunity.

Due to these limitations of the system level development methodology, Model-Simulate-Refine-

Synthesis (MSRS) methodology is developed. In this methodology, simulation and refining are

done at every stage before moving to the next stage. The advantage of this methodology is that

14

the developer moves to the next stage only when sure of the current stage. This leads to saving

development time. The developed methodology is presented in section 3.3.

3.3 Model-Simulate-Refine-Synthesis Methodology

The Model-Simulate-Refine-Synthesis (MSRS) is a methodology for developing E-AMS where

modeling, simulation and architectural exploration are carried out. The methodology generates

three main models, which include Functional model, Non-Functional model and Implementation

model. The general view of the methodology is presented in Figure 3.2 and its details discussed

in sections 3.3.1, 3.3.2 and 3.3.3.

Figure 3.2: Model-Simulate-Refine-Synthesis Methodology

3.3.1 Functional Model Generation

The functional model is in the top-most level of the system development. In the functional level,

stakeholders provide their expectations on the output of the system, i.e., the functional attributes

of the system under development. Since the methodology follows an innovative approach, it is

Stakeholders

Functional Model

Generation

Optimal Functional

model

Non-Functional Model

Generation

Optimal Non-

Functional model

Implementation Model

Generation

System Virtual Prototype

15

not required of the developer and the stakeholders to specify accurately the system functional

requirements since they may change during the development process. The components needed

for the development of the system are not of much interest – what matters most is the

functionality of the system. Consequently, the components of the system are presented as black

boxes whose input output behaviors are specified.

The black boxes are modeled as functions when outputs are independent of previous inputs (i.e

stateless machine) and state machines when outputs depend on previous states. The black boxes

are then combined to form the application model of the system (Barnasconi, et al., 2010). The

application model is simulated and the results compared with what is expected of the system

under development. If the simulation results are not matching with the expected results, then

refinement is done. During refinement, if major changes related with the system functionality are

required, then the stakeholders are consulted to give their views and contributions. On the other

hand, if no major changes are required, then, the functional model is refined further by refining

the database input to the model generation, to give refined model.

Once the simulation of the application model yields satisfying results on the functionality of the

system under development, an optimal functional model is generated. A block diagram for

generating the optimal functional model is presented in Figure 3.3.

Figure 3.3: Optimal Functional Model Generation

Stakeholders

Functional Specifications

Model Generation

Functional Model

Model Simulation

Simulation Results

Optimal Functional Model

Data types, Data

structures &

Algorithms

Ok? N

Y

16

3.3.2 Non-Functional Model Generation

The non-functional model is generated by synthesizing the functional model through combining

the non-functional attributes from the stakeholders and knowledge related to architectural styles,

patterns, components, platforms and tools. The non-functional model is simulated and refined to

the expectations of the stakeholders and an optimal non-functional model is generated. The block

diagram of generating the optimal non-functional model is presented in Figure 3.4.

Figure 3.4: Optimal Non-Functional Model Generation

3.3.3 Implementation Model Generation

The optimal non-functional model is combined with the technologies from the HW and SW

component technologies and tools to synthesize the system implementation model. In the

synthesis, components and subsystems are integrated under a technology specific style or pattern.

Before the integration, the interfaces of all components and subsystems must be modeled

accurately and the interfaces and data types used in the models should match the actual

functionality expected. The abstract communication used within the application models are

replaced with concrete signals such as electrical voltages and currents or digital signals. Generic

Stakeholders Optimal Functional Model

Constraints specifications

Model Generation

Non-Functional Model

Model Simulation

Simulation Results

Optimal Non-Functional Model

OK?

Architectural

styles, patterns,

component &

tools

Y

N

17

electrical nodes, pins and buses can be used for analog and digital circuits respectively. These

can be made implementation specific if the need arises.

The implementation components are varied. For example some are analogue while others are

digital. Component behaviors are also varied. Some may be discrete time or event driven, while

others may be continuous time. Thus, different MoCs such as Process State Machines (PSM),

Linear Signal Flow (LSF), Timed Data Flow (TDF), Electrical Linear Network (ELN) and

Discrete Event (DE) are required for modeling of component behavior. Once the components are

modeled, they are integrated to form the system implementation model. The system

implementation model is simulated and refined until it gives desirable results. At this point, the

system developer obtains refined system implementation model, which can also be referred to as

the system virtual prototype. The block diagram of generating the implementation model is

presented in Figure 3.5.

Figure 3.5: System Virtual Prototype Model Generation

The modeling, architectural exploration and simulation of E-AMS systems following the Model-

Simulate-Refine-Synthesis methodology presented is supported by SystemC-AMS discussed in

section 3.4.

Stakeholders
Optimal Non-Functional Model

Model Generation

Implementation Model

Model Simulation

Simulation Results

System Virtual Prototype

Functional & Constraint

Specifications

Ok?

Component

libraries and tools

of (HW/SW)

Analogue &

Digital

technologies

N

Y

18

3.4. SystemC-AMS

SystemC-AMS is an extension of SystemC, which can be used in modeling, and simulation of

electronic systems up to the register level. The systems that can be modeled and simulated up to

register level are only digital systems. Since E-AMS have both analogue and digital components,

SystemC cannot be used to simulate the analogue components. Due to this limitation, SystemC-

AMS, which has a capability to model and simulate E-AMS systems, was developed. SystemC-

AMS has some strengths that makes it a better tool to be used with the developed MSRS

methodology.

3.4.1 The strengths of SystemC-AMS

SystemC-AMS can work with five primitive MoCs, which help it to model and simulate any E-

AMS component. The MoCs are Linear Signal Flow (LSF), Timed Data Flow (TDF), Electrical

Linear Network (ELN), Discrete Time (DT) and Discrete Event (DE) (Barnasconi, et al., 2011),

(Vachoux, et al., 2004).

The LSF MoC allows modeling of AMS behavior which is defined as relations between

variables of a set of linear algebraic equations and is mostly used at the functional level since the

system components are presented as functions. On the other hand, TDF MoC considers data as

signals sampled in time. The signals are tagged at discrete points in time, which carry discrete or

continuous values like amplitudes. This MoC provides behavior descriptions between analogue

and digital descriptions and is used at the architectural level where component architectures are

modeled. Similarly, the ELN MoC introduces the use of electrical primitives and their

interconnections to model the system electrical components. The ELN is mostly used at the

implementation level (Barnasconi, et al., 2010), (Vasilevski, et al., 2007). DE and DT MoCs,

which are purely found in SystemC, are developed to model and simulate digital components

(Black & Donovan, 2004).

It is important to remember that SystemC models and simulates digital components and

SystemC-AMS extensions model and simulate both analogue and digital components. Due to

this fact, SystemC-AMS provides seamless modeling and simulation of the analog and digital

components found in E-AMS systems.

19

SystemC-AMS has converter classes that enable systems with mixed signals to be modeled and

simulated. The converter classes are used to transit from one MoC to another hence helping them

to communicate. The converter classes are summarized in Tables 3.1, 3.2, 3.3 and 3.4.

Table 3.1: DE to TDF, LSF and ELN MoCs Converter Classes

Signal converter Class

Interconnected modules

Signal in Signal out

sca_tdf::sca_de::sca_in DE signal TDF signal

sca_lsf::sca_de::sca_source DE signal LSF signal

sca_eln::sca_de::sca_vsource DE signal ELN voltage signal

sca_eln::sca_de::sca_isource DE signal ELN current signal

Table 3.2: TDF to DE, LSF and ELN MoCs Converter Classes

Signal converter Class Interconnected Modules

Signal In Signal Out

sca_tdf::sca_de::sca_out TDF signal DE signal

sca_lsf::sca_tdf::sca_source TDF signal LSF signal

sca_eln::sca_tdf::sca_vsource TDF signal ELN voltage signal

sca_eln::sca_tdf::sca_isource TDF signal ELN current signal

Table 3.3: ELN to TDF and DE MoCs Converter Classes

Signal converter Class Interconnected Modules

Signal In Signal Out

sca_eln::sca_tdf::sca_vsink ELN voltage signal TDF signal

sca_eln::sca_tdf::sca_isink ELN current signal TDF signal

sca_eln::sca_de::sca_vsink ELN voltage signal DE signal

sca_eln::sca_de::sca_isink ELN current signal DE signal

Table 3.4: LSF to DE and TDF MoCs Converter Classes

Signal converter Class Interconnected Modules

Signal In Signal Out

sca_lsf::sca_de::sca_sink LSF signal DE signal

sca_lsf::sca_tdf::sca_sink LSF signal TDF signal

20

It should be worth of note that there are no direct converter classes from ELN MoC to LSF MoC

and vice versa. This does not mean that there is no communication between the two MoCs since

communication can be achieved through the TDF MoC. Therefore, to convert a signal from ELN

to LSF, first the signal has to be converted from ELN to TDF and then from TDF to LSF. The

reverse is also true.

SystemC-AMS extensions also support time-domain and frequency-domain simulation. In time-

domain simulation, time-domain behavior of the overall system composed of different SystemC-

AMS MoCs and probably the discrete-event domain are described. On the other hand,

frequency-domain simulation is applied on the cases where the analysis computes the small-

signal frequency-domain behavior of the overall system (Barnasconi, et al., 2010).

Again, the use of SystemC-AMS with its MoCs - enables the developer to model and simulate

any architecture at all levels. At the implementation level where the developer has variety of

choices on the implementation options to make, modeling and simulation of any architecture can

be made (Grimm, et al., 2008).

3.4.2 The limitations of SystemC-AMS

 SystemC-AMS like any other system has some limitations in system modeling and simulation.

The TDF MoC has restrictions caused by its fixed time step mechanism. The MoC has fixed and

constant time steps that cannot be changed dynamically. This limitation does not allow

developers to easily model systems such as Voltage Controlled Oscillators (VCOs), clock

recovery circuit’s etc., in which activation periods or frequencies change dynamically

(Barnasconi, et al., 2011). Perhaps some of these limitations may be overcome in the future.

To recapitulate, the Model-Simulate-Refine-Synthesis (MSRS) Methodology developed in this

work builds on SystemC-AMS to support modeling, architectural exploration and simulation.

Chapters four and five present case studies of two E-AMS systems that have been modeled and

simulated using the MSRS methodology to verify and validate the methodology respectively.

21

CHAPTER FOUR

 CASE STUDY 1: OSCILLOSCOPE

4.1 Introduction

This chapter presents the modeling and simulation of an oscilloscope as a case study. The

oscilloscope is modeled and simulated following the MSRS methodology. For each level of the

methodology, the results are presented. This case study is chosen to verify the methodology.

4.2 The Oscilloscope Functional Model

At the functional level, the main objective is to ascertain the functionality of the oscilloscope.

The oscilloscope is presented as a block diagram in Figure 4.1.

Figure 4.1: Oscilloscope Block Diagram

The block diagram is a black box whose contents are of no interest at this level. The K presented

on the black box indicates some processing (that may include attenuation, amplification and/or

conversion from analogue to digital) taking place to generate the output Y(t) given the input S(t).

The output can be either analog or digital signals depending on the kind of oscilloscope modeled.

In this work, digital oscilloscope is modeled and simulated because digital oscilloscopes are

mostly used today. Due to this choice, the block diagram in Figure 4.1 is synthesized to generate

a more detailed block diagram presented in Figure 4.2.

Figure 4.2: Detailed Oscilloscope Block Diagram

K S(t) Y(t)

ADC Front-End ADC Memory Display
S(t) KS(t) Sq[m] Sq[m]

22

The block diagram presented in Figure 4.2 shows the main components interconnected and also

the signal flow. The signal flows from the input to the memory. The analogue signal, S(t), is

connected to the Analog-to-Digital-Converter (ADC) front-end for scaling purposes which may

involve attenuation or amplification of the signal. Once the signal is in the required range of the

ADC, it is sampled and converted into digital values, Sq[m], which is stored in a memory. The

digital values in the memory are displayed on a screen to show the equivalent signal. The

detailed block diagram in Figure 4.2 is then synthesized to generate the dataflow model for the

oscilloscope presented in Figure 4.3 though the memory and display components found in Figure

4.2 are not captured in Figure 4.3 because the signal vales after the ADC remain the same as they

go through the memory and the display.

Figure 4.3: Oscilloscope Dataflow Model

The dataflow model presented in Figure 4.3 is converted to a simulation model. In the

conversion, the processing elements translate to clusters presented by rectangular boxes. The

connections translate to signals and ports as guided by SystemC-AMS (Barnasconi, et al., 2011).

They are presented by arrows as shown in Figure 4.4. The simulation model has a test-bench,

which comprises of a signal conditioner (K-source), test signal source (Signal source), sampling

clock (Pulses) and a monitor. The signal source generates the simulated test-signal, signal

conditioner amplifies or attenuates the simulated test-signal, sampling clock determines the

sampling of the oscilloscope and the monitor is used to track the signals at every stage of

interest. The test-bench and the Device Under Test (DUT) are presented in Figure 4.4.

Modulate Sample Hold ADC
S(t)

K

KS(t)

23

Figure 4.4: Oscilloscope Simulation Functional model with Test-Bench

The signal modulator, which amplifies or attenuates the signals, operates through multiplying the

signal by a factor. The multiplication of a signal by a factor is directly supported by LSF model.

Due to this fact, the signal modulator (whose code is presented in Appendix A.1) is modeled

using the LSF MoC. The sampler samples the signal at given time intervals depending on the

sampling clock. The sampling process brings in the idea of timed data and therefore, the sampler

is modeled using the TDF MoC. Since the LSF output signal from the modulator serves as the

input signal to the sampler (whose code is presented in Appendix A.2) modeled using the TDF

MoC, then signal conversion from LSF to TDF is required. SystemC-AMS provides an LSF to

TDF converter model for this purpose.

The hold module is used to hold the sampled values until the ADC conversion is complete. Since

the sampled values are in TDF form, the hold module is modeled using TDF MoC. The code for

the hold module is presented in Appendix A.3. Similarly, the ADC is modeled using TDF MoC

since TDF directly supports reading/writing of values from/to ports.

K-source

Pulses

D[n]

DUT
Test-Bench

Modulator

(LSF)

Sampler

(TDF)
Hold H(t)

(TDF)

Monitor

ADC

(TDF)

Signal

source

24

The analog TDF value from the hold module is a decimal value while the digital value generated

by the ADC is a binary value. Therefore, the conversion process used in the ADC (whose code is

in appendix A.4) is the decimal-to-binary base conversion. The oscilloscope ADC modeled at

this level is 8-bit and therefore, the input values range from 0 to 255. This means that the ADC

introduces a quantization error (Gray, 2006).

The analog-to-digital value conversion at the functional model stage is implemented using “for-

loop” as shown in the code section presented in Figure 4.5.

Figure 4.5: Analog-to-digital value conversion

The code presented in Figure 4.5 shows code statements used in the conversion of the analog

values to digital values. Line 1 of the code reads the analog value and stores it in a variable,

“samp”. The analog value is divided by 2 and its remainder stored in a temporary variable, “r”,

as given in code line 4. The statement in Line 5 divides the sampled value by 2 and stores the

result in the variable “dev” for further conversion. The statement in line 6 stores the remainder

after integer division presented in line 4 in an array “adcval[]”. Line 7 transfers the value sored

in “dev” to the variable “intsampval” for further conversion. Line 8 writes the binary value to

the output terminal of the signal generator module. This process is repeated until the simulation

time is over. The binary values are used to generate the oscilloscope signal waveforms.

The oscilloscope functional model is tested using a 10 KHz sine wave analogue signal. The 10

KHz signal has been selected randomly just to test the functionality of the system with an

assumption that it can work with other frequencies as it will be shown in section 4.3. The results

1 samp = (anlgsigin.read());

 2 intsampval = (int) (samp);

 3 for(i=0; i<8; i++)

 {

 4 r = intsampval % 2;

 5 dev = intsampval / 2;

 6 adcval[i] = r;

 7 intsampval = dev;

 }

8 adcout.write(adcval);

25

of the oscilloscope functional model are presented in Figure 4.6. In the figure, the signal is

monitored at different stages. The S(t) is the analogue signal generated by the signal source and

connected to the gain module, KS(t) is the analogue signal after the gain and connected to the

sampler. KS(nt) is the sampled analogue signal connected to the Hold, KH(t)S(nT) is the

sampled analogue signal after the Hold, which is connected to the ADC, and D(n) [7:0] is the

digital signal after the ADC. The oscilloscope modules (Modulator, Sampler, Hold and ADC) are

wired together on a test bench whose code is presented in Appendix A.5. The functional model

of the oscilloscope is simulated and the results presented in Figure 4.6.

Figure 4.6: Oscilloscope Functional Model Waveforms

Figure 4.6 presents the signal waveforms at different stages. The analogue signal, S(t), is the

analog signal connected to the oscilloscope. The modulated signal, KS(t), is of the same shape

as the input signal S(t). The amplitude is also the same because the modulating factor, K, is set

at this stage to 1. The sampled signal, KS(nT), shows the sampled points of the analogue signal.

From the Figure 4.6, it is evident that the sampling is synchronized to the clock pulses (Pulses).

The sampled signal is connected to the hold module. The hold signal, KH(t)S(nT), is shown as a

staircase waveform, which shows the hold effect on the signal. The hold signal is connected to

the ADC for analogue-to-digital conversion. The binary signal, D[n] from the ADC is presented

graphically as is typical of an oscilloscope.

As can be seen in Figure 4.6 the input signal S(t) waveform is the similar as the output signal

D[n] waveform. Also the waveforms at the various stages concur with the expected waveforms

at those stages. This provides strong confidence in the simulation methodology for this stage.

26

Since the main objective of an oscilloscpe is to sample and reproduce the connected analogue

signal, then the results in Figure 4.6 show that the objectives of ascertaing the sampling and

reconstruction functionalities of the oscilloscope have been met since the signal sampling is

giving credible results. Since the functionality of the oscilloscope is verrified, then the functional

model can be synthesized further by considering the non-functional requirements to generate the

non-functional model.

4.3 The Oscilloscope Non-Functional Model

Among other non-functional requirements, include resolution, amplitude range and sampling

frequency. It is expected that resolution depends on the bit width of the ADC and amplitude

range depends on modulation (amplification and/or attenuation). Therefore, the modeling and

simulation objectives at this level are to determine the effect of ADC bit width on the resolution,

the effect of signal modulation on amplitude range and demonstrate an automated gain control.

To achieve the first objective, bit truncation is done. The least significant bits are truncated to

generate the same signal but of different bit widths. For the case of signal modulation, signal

amplification and attenuation modules are required. Nyquist’s theorem states that “the sampling

frequency dependents on the signal frequency”. Thus, the signal frequency is first determined

and then used to generate the sampling frequency. All these features have been used to

synthesize the control unit. This unit also synchronizes and monitors the components of the

oscilloscope. The oscilloscope non-functional model is presented in Figure 4.7.

Figure 4.7: Oscilloscope Non-Functional Block Diagram

ADC Front-End ADC
S(t) Ks(t)

Ks(t)

Sq[m]

Control Unit

Signal

source

27

The oscilloscope non-functional block diagram is synthesized to generate the oscilloscope non-

functional simulation model presented in Figure 4.8.

Key: The solid lines depict data flows. The dotted lines depict control signals

Figure 4.8: Oscilloscope Non-Functional Simulation Diagram

The oscilloscope non-functional simulation diagram presented in Figure 4.8 shows how the

simulation takes place. It also shows different components of the oscilloscope and how they are

controlled by the control unit. The control unit (whose code is in appendix A.6) has two

DUT

 𝛿(𝑡 − 𝑛𝑇)

𝑛

Sampler

(TDF)

Hold H(t)

(TDF)

ADC

(TDF) D[n]

Monitor

Signal

source

Control Unit

(TDF)

Test-Bench

K

K

Modulator

(LSF)

Determine 𝐹𝑠𝑖𝑔,

then Generate 𝐹𝑠𝑎𝑚𝑝

KAdrs 0 1 2 3 4 5 6

KVal 0.01 0.1 1 10 100 1000 0

Pulse Source

K-Source

Determine Amplitude, A, then select KAdrs

If 0<A<=0.33mV, Too low

If 0.33mV<A<=3.3mV, KAdrs = 5

If 3.3mV<A<=33mV, KAdrs = 4

If 33mV<A<=0.33V, KAdrs = 3

If 0.33V<A<=3.3V, KAdrs = 2

If 3.3V<A<=33V, KAdrs = 1

If 33V<A<=330V, KAdrs = 0

If A>330V, Too high

28

modules, one that determines the signal frequency and another that sets the sampling clock

frequency. The relationship between the signal frequency and the sampling frequency is

determined by the number of samples required in one signal cycle. In this case, 20 samples are

taken since they give more realistic signals as compared to fewer samples. Equation 4.1 gives the

relationship.

 (4.1)

 Where: is the sampling frequency and is the signal frequency

The control unit has a module that determines the signal amplitude and chooses the correct

amplification factor, K. The K values are stored in a Look Up Table (LUT). From the Figure 4.8,

once the signal amplitude range is determined, the LUT address that contains the correct

amplifying or attenuating factor is determined and in return, the factor is used by the modulator.

The model is simulated and tested using different signals. At first, the amplitude range is

determined through fixing the signal frequency to 0 Hz (DC signal) and varying the amplitude to

have 0V, 1mV, 3V, 200V and 330V. Also the signal frequency range is determined through

fixing the amplitude to 3V (within the normal range, 1V <A<=3V) and varying the frequency by

orders of magnitude to have 30KHz, 300KHz, 3MHz, 30MHz, 300MHz and 4 GHz.

To determine the effect of bit resolution, ADC bit widths of 10, 8, 6, 4 and 2 bits but at the same

frequency, 30MHz, and amplitude, 3V, are used. The ADC code is presented in Appendix A.7.

Figures 4.9(a), 4.9(b), 4.9(c), 4.9(d) and 4.9(e) show DC (0 Hz) waveforms but of different

amplitudes. The frequency is fixed and amplitude varied, to simulate varying input signal

amplitudes. The modules in this level are wired together on a test bench presented in Appendix

A.8.

29

Figure 4.9(a): 0V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

Figure 4.9(a) present DC signals for a 0 V, 0Hz signal. From the diagram, straight lines of 0 volts

are shown. The 0 values are as a result of the 0 volts amplitude of the signal. This is an oversight

in relying entirely on simulation and is a potential hazard of pure simulation. It is also observed

that the K value is 0. This is consistent with the automatic range setting of the simulated scope

since the signal amplitude is 0 which is below the range that he oscilloscope operates.

Figure 4.9(b): 1mV, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

The DC signals presented in Figure 4.9(b) are for 1mV DC signal. The signals here are straight

lines of 1mV. The values for the digital signals correspond to the equivalent voltages based on

the ADC bits in each case. This shows the minimum voltage amplitude that can be amplified.

30

Figure 4.9(c): 3 V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

In the case of Figure 4.9(c), the signals are for a 3 V DC signal. They are also straight lines but

of 3 volts, which, is within the normal range that do not required any amplification or

attenuation. This signal is used to test the working of the oscilloscope at the normal signal range

where attenuation or amplification is not required.

Figure 4.9(d): 100V, 0 Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

Figure 4.9(d) shows a 100 V DC signals. It is shown that there is an attenuation by 100 since the

K value is 0.01. This attenuates the signal amplitude from 100 V to 1 V. At the same time, just

like in the case of Figure 4.9 (b) and (c), the digital signal values correspond to their equivalent

values according to the ADC bits.

31

Figure 4.9(e): 330V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

In the Figure 4.9(e), a 330 V DC signal is presented. The figure shows attenuation by 100 done

to the maximum signal amplitude in this case. Any signal, whose amplitude is above the 330 V,

is treated as out of range.

Figures 4.9(f), 4.9(g), 4.9(h), 4.9(i), 4.9(j) and 4.9(k) show waveforms for 3 V amplitude and

different frequency signals. The fixed amplitude of 3 V is chosen because it is within the normal

range but any other amplitude within 0.33mV and 330V could have been chosen since the

oscilloscope can operate within that range. Different signal frequencies as presented in the

figures are used to simulate the oscilloscope. In this simulation the effect of resolution on

reconstruction of the signal and sampling frequency are explored and an automated gain control

generated successfully.

The different resolutions are achieved by having ADCs of different bits, 2, 4, 6, 8 and 10,

sampling the same analogue signal. The relationship between the resolution and the bit-width is

presented in Equation 4.2 and summarized in Table 4.1.

 (4.2)

Where n is the ADC bit-width

32

Table 4.1: The effect of ADC bit-width on Resolution

Digital signal ADC Bits, n N = 2
n
-1 Resolution, r = A/N

D10(n)[9:0] 10 1023 2.93mV

D8(n)[7:0] 8 255 11.76mV

D6(n)[5:0] 6 63 47.62mV

D4(n)[3:0] 4 15 200mV

D2(n)[1:0] 2 3 1000mV

Figure 4.9(f): 3 V, 30KHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

Figure 4.9(g): 3 V, 30KHz Analogue and Digital time diagrams for 2, 4, 6, 8 and 10 bits

33

The time diagrams presented in Figure 4.9 (g) are for the waveforms presented in Figure 4.9 (f)

and show how the same analogue signal is sampled at different ADC bits. For each digital signal,

the signal is presented in binary and decimal forms for comparison purposes.

Figure 4.9(h): 3 V, 300KHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

Figure 4.9(i): 3 V, 3 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

34

Figure 4.9(j): 3 V, 30 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

Figure 4.9(k): 3 V, 300 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

35

Figure 4.9(l): 3 V, 4 GHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits

The waveforms presented in the Figures 4.9(f) to 4.9(l) show sampling and reconstruction of the

oscilloscope signals. This shows that the modeled oscilloscope can sample signals of different

frequencies and give faithful reconstruction as long as the resolution is appropriate. The Figure

4.9(k) shows that oscilloscopes operating at frequencies as high as 4 GHz can be simulated. At

20 samples per signal cycle, this will require a sampling frequency of 80 GHz. This emphasizes

the importance of finding the minimum number of samples per signal cycle that are adequate for

the reconstruction of the signal.

Comparing the digital signals from the Figures 4.9(a) to 4.9(k), it is found that different bits are

used to present signals of the same frequency. From the digital signals, especially in Figures

4.9(f) to 4.9(l), it is evident that signals of higher bits are more faithfully reconstructed than

signals of low bits. For each frequency, comparing the 10 bit digital signal and the 2 bit digital

signal, the 10 bit signals have better reconstruction results in relation to the 2 bit counterparts.

This can be explained by the fact that reducing the ADC bits increases quantization noise in

proportion to the number of bits. This has the effect of making faithful reconstruction more

difficult.

36

The reconstructed waveforms for 8 bit and 10 bit are adequately representative of the input

signal. Therefore, for the optimal architectural model, the 8 bit resolution is chosen, as it is more

efficient in storage than 10 bit resolution.

4.4 The Oscilloscope Implementation Model

The oscilloscope implementation model is a synthesis of the optimal architectural model and

generic component libraries. The LSF and TDF models used in the oscilloscope functional model

presented in Figure 4.4 are converted into ELN modules used at the implementation stage of the

system. This is one of the main features that make SystemC-AMS attractive for this task. This

generates the implementation model of the oscilloscope. The implementation model generated is

simulated and the results compared with the results from the non-functional model. Therefore,

the objectives at this level are; synthesis of the implementation model from the optimal

architectural model and generic components libraries and the evaluation of the implementation

model with reference to the optimal architectural model. In addition, the implementation model

demonstrates automation frequency selection. Figure 4.10 shows the implementation model.

37

Figure 4.10: The Oscilloscope Implementation Model

The interconnections of the modules forming the cluster simulated are used to generate its

prototype. The prototype components consist of the modulator (the attenuator/buffer and the

amplifier), signal DC shift (shifter), sample and hold (Sample and Hold) and the ADC (whose

codes are in Appendix A.9, A.10, A.11, A.12 and A.13 respectively). The transistors numbered 1

to 6 act as the switches for the amplifying and attenuating circuits of the DUT. When transistors

5 and 6 are switched, they attenuate the signal by a factor of 10 and 100 respectively. Switching

transistors 1, 2, 3 or 4, amplifies the signal by a factor of 1000, 100, 10 and 1 respectively. The

Determine Amplitude, A, then switch K, generate DC shift

If 0<A<=0.33mV, Too low
If 0.33mV<A<=3.3mV, Kstch = 1, DC = A * 1000

If 3.3mV<A<=33mV, Kstch = 2, DC = A * 100
If 33mV<A<=0.33V, Kstch = 3, DC = A * 10

If 0.33V<A<=3.3V, Kstch = 4, DC = A * 1
If 3.3V<A<=33V, Kstch = 5, DC = A/10

If 33V<A<=330V, Kstch = 6, DC = A/100
If A>330V, Too high

Determine 𝐹𝑠𝑖𝑔,

then Generate 𝐹𝑠𝑎𝑚𝑝
Control Unit

(TDF)

5 6 4

3

1

2

Amplifier

FET

DC Shift

6

DUT

(ELN)

38

signal shift circuit is used to shift the signal by some DC volts generated by the control unit. DC

shift is usually required because, components such as ADCs generally work with only positive

voltages. The sample and hold circuit is generated using operational amplifiers, FET transistor

and a capacitor. The FET transistor and the capacitor serve as the switch and the sampled value

storage respectively. The attenuator/buffer , amplifier, shifter, Sample and Hold and the ADC

modules are wired together on a test bench presented in Appendix A.14.

The oscilloscope system developed is simulated using different signals of different frequencies

and amplitudes. The signal frequencies and amplitudes chosen at this level are to compare with

the waveforms presented in section 4.3. In addition, the output ADC digital signal bit width is set

to 8 bits. The modeling and simulation at this level is made for verification of the results.

Figure 4.11(a): 0 V, Analogue and 8-bit Digital signals at 0Hz

Figure 4.11(a) presents a 0 volts DC signal. The signals are presented as straight lines because

they are DC signals. Again, from the figure, all the signals have zero values because the

amplitude of the analogue signal is 0 volts. Comparing the 0 volts DC waveforms in Figure

4.9(a) (for the non-functional model) with the waveforms presented in Figure 4.11(a) (for the

implementation model), it is found that they are the same.

39

Figure 4.11(b): 3 V, Analogue and 8-bit Digital signals at 0 Hz

The waveforms presented in Figure 4.11(b) are for a 3 volts DC signal. The straight lines are

because of the DC analogue signal connected. The amplitude of the DC signal is found to be 3

volts as shown by the values of the signals. Comparing this figure with the waveforms in Figure

4.9(c) from the non-functional model, it is found that they are the same.

Figure 4.11(c): 330 V, Analogue and 8-bit Digital signals at 0Hz

A 330V DC signal waveforms is presented in Figure 4.11(c). As the other DC waveforms

presented, the waveforms in this figure are straight lines. Associating the DC signals in this

figure with the DC signals in Figure 4.9(e) of the non-functional model, it is found that they are

the same.

40

Figure 4.11(d): 3 V, Analogue and 8-bit Digital signals at 30 KHz

Figure 4.11(d) presents a 3 volts 30 KHz signal. Comparing the waveforms with the waveforms

on Figure 4.9(f) of the non-functional model, it is evident that they are similar.

Figure 4.11(e): 3 V, Analogue and 8-bit Digital signals at 4 GHz

As presented from the non-functional model results in Figure 4.9(k), the waveforms presented on

Figure 4.11(e) show the same signal. The 4 GHz signal presented in the two figures reflect the

41

same waveforms, which is evidence that the implementation model simulated gives the same

results as the non-functional model.

The waveforms in this section, are the same as their counterparts presented in the non-functional

model. This verifies the implementation model with reference to non-functional model.

Therefore, the objectives of the implementation model at this level have been achieved.

In summary, the modeling and simulation of a digital oscilloscope has been presented. The

modeling and simulation is based on the developed modeling and simulation methodology. The

simulation results of the functional model are used to validate the model. The simulation results

of the implementation model are used to verify the model against the functional model.

Therefore, this makes the methodology developed viable in modeling and simulation of E-AMS

systems. Lastly, aware of the apprehension of using simulation for validation, the simulations are

compared with a real implementation in the next chapter.

42

CHAPTER FIVE

CASE STUDY 2: SIGNAL GENERATOR

5.1 Introduction

This chapter presents the modeling and simulation of a signal generator as a case study. The

signal generator is modeled and simulated following the MSRS methodology. The simulation

results are compared with test results obtained from a similar signal generator developed and

implemented in a Fusion FPGA by Muteithia (Muteithia, 2014). This is done to validate the

methodology with a real implementation.

5.2 Signal Generator Functional Model

At the functional level, the signal generator is presented using a dataflow diagram as shown in

Figure 5.1. The dataflow diagram shows different functional blocks used in generating the

functional behavior of the physical system, in this case the signal generator. A signal generator is

typically used to generate four different types of analog voltage signals, which include the sine

wave, saw tooth wave, triangle wave and square wave as per the stakeholders attributes. The

analogue signals are characterized by amplitude, frequency and DC shift values. Therefore,

functions are used to manipulate the amplitude, frequency and DC shift values.

Figure 5.1: Dataflow diagram for the Signal Generator

In Muteithia’s work, the starting point at the theoretical background commits a priori to a

specific architecture. This is considered a disadvantage. With MSRS methodology, no such

commitment need to be made at this stage.

Signal Generator
S(t) Frequency val.

43

The dataflow diagram presented in Figure 5.1 presents the DUT and is connected to a test bench

with the driver and the monitor as shown in Figure 5.2. Since Muteithia’s signal generator was

digital, a digital signal generator is modeled in this work.

 Figure 5.2: Signal Generator with Test Bench

The signal generator module (whose code is in Appendix B.1) is used to generate the digital

signals based on input frequency value f. the module defines mapping functions that use f to

generate the required signals. For simplicity, amplitude and DC shift are fixed. Equation 5.1

shows the mapping function used to generate sine wave signal digital values (Lyons, 2012).

 [] ∑ [(())] (5.1)

 Where:

 , sampling interval in radians and s is the number of samples per

signal cycle

 (), f is the signal frequency and is the sampling period

A is the signal amplitude

k is the DC shift

mod is for modulo operation

Ds[θ] is the equivalent sine wave digital signal value generated over one cycle

The equation is used to generate an algorithm used to generate the simulation code. The

algorithm is presented in Algorithm 5.1.

Freq.

Value

Clock

Signal Gen.

(DE)

DAC

(TDF)

Monitor D[n] S (t)

DUT

Test Bench

44

Algorithm 5.1: Algorithm to generate single sine wave value

In the case of generating saw-tooth signal wave, a similar mapping equation, Equation 5.2, is

used (Lyons, 2012).

 [] ∑ [()] (5.2)

Where:

 [] is the equivalent saw-tooth wave digital signal value generated

 , sampling interval in radians and is the number of samples per

signal cycle

 (), f is the signal frequency and is the sampling period

k is the DC shift

A is the signal amplitude

The equation is used to generate an algorithm presented in Algorithm 5.2 used for the simulation

code.

Algorithm 5.2: Algorithm to generate single saw-tooth signal wave value

Triangular wave signal values are generated using Equation 5.3. This equation is used to

generate only the values used in the rising ramp of the signal. The falling ramp is generated

through reproducing the values used in the rising ramp but in a reversed way. This means the

Step 1: Multiply the product of 2 and 𝜋 by entered frequency value, f

Step 2: Multiply the product in Step 1 by the instantaneous sampling period,𝑇𝑠𝑎𝑚𝑝

Step 3: Add the DC shift, k, to the product in step 2

Step 4: Get the equivalent sine wave value of the value obtained in Step 3

Step 1: Multiply the incrementing integral value,𝑖, by the entered frequency, f

Step 2: Multiply the product in Step 1 by the sampling period,𝑇𝑠𝑎𝑚𝑝

Step 3: Add the DC shift, k, to the product value in step 2

Step 4: Get the equivalent saw-tooth wave value of the value obtained in Step 3

45

values used in the rising ramp can be stored in an array while being produced so that they can be

used in the falling ramp (Lyons, 2012).

 [] {
∑ [()] ()

∑ [(

− (() −

))] ()

 (5.3)

 Where:

 [] is the equivalent triangular wave digital signal value generated

 , sampling interval in radians, is an incrementing integral value

and s is the number of samples per signal cycle

 (), f is the signal frequency and is the sampling period

 is the DC shift

 is the signal amplitude

The equation is used to generate an algorithm presented in Algorithm 5.3 used to generate the

simulation code.

Algorithm 5.3: Algorithm to generate single triangular signal wave value

In the case of generating a square wave signal values, Equation 5.4, is used (Lyons, 2012).

Step 1: Multiply the incrementing integral value, 𝑖, by 2

Step 2: Multiply the product in Step 1 by the frequency entered, f

Step 3: Multiply the product in Step 2 by the sampling period, 𝑇𝑠𝑎𝑚𝑝

Step 4: Multiply the value obtained in step 3 by the modulus of n

Step 5: Determine if mod(n) is less than s/2 or not

Step 6: If step 5 is true, add k and output

Step 7: If step 5 is not true, multiply the value of step 3 by s

Step 8: Subtract value of step 4 from value of step 7

Step 9: Add k to value of step 8 and the output

46

 [] ∑ {
 [] ()

 [−] ()

 (5.4)

Where:

 α is a constant

 is the DC shift

 is the signal amplitude

The equation is used to generate an algorithm presented in Algorithm 5.4 used to generate the

simulation code.

Algorithm 5.4: Algorithm to generate single square wave signal value

The Algorithms 5.1, 5.2, 5.3 and 5.4 shows the steps required to generate different signal waves.

The steps in each algorithm can be used as a rough guide to the number of instructions required

for each signal wave. Algorithm 5.1 shows the four steps required to generate a single value of

the sine wave signal hence four instructions are required. Similarly, Algorithm 5.2 shows the

four steps required to generate a single value of the saw-tooth wave. This leads to four

instructions required to generate a single value of the signal. In the same way, Algorithm 5.3

shows nine steps required to generate a single value of the triangular wave. This gives nine

instructions required to generate a single value of the triangular wave. In the case of the square

wave, Algorithm 5.4 shows the four steps required to generate a single value of the square wave.

Consequently, a single value of the square wave requires four instructions to be generated.

Table 5.1: Instructions required per value for the respective signal waves

 Sine wave Saw-Tooth wave Triangular wave Square wave

Required instruction(s) per

value

4 4 9 4

Step 1: Determine if mod(n) is less than s/2

Step 2: If step 1 is true, Add DC shift, k, to the constant, 𝛼

Step 3: If step 1 is not true, Add - 𝛼 to the DC shift, k

Step 4: Multiply the value in step 2 or step 3 by the signal gain, A then output

47

The Table 5.1 shows the four signals and their respective instructions required to generate a

single value for each signal. Since the four signals are generated by the same signal generator,

the instructions required for each value have the same period and frequency. For this reason, the

nine instruction case is used to estimate the instruction period and frequency. The results are

presented in Table 5.2.

Table 5.2: Signal generator simulation analysis

Signals

freq.,
Values per

cycle,
Sampling

freq.,
Instr. per

value,
Instruction Freq.,

Remarks

10 Hz 20 200 Hz 9 1800 Hz Minimum

1MHz 20 20 MHz 9 180 MHz Normal

5 MHz 20 100MHz 9 900MHz Maximum

The Table 5.2 shows the simulation values for 10 Hz, 1 MHz and 5 MHz frequency signals. For

each signal frequency, nine instructions for each signal value and 20 values for each complete

cycle of the signal waveform are required. Based on these values, it is evident from the table that

the signal generating module should be sampling at a frequency between 200 Hz and 100 MHz.

Sampling at a frequency less than 200 Hz was found to generate large (larger than 1.5 GB) Value

Change Dump (VCD) file used to trace the AMS waveforms. The large VCD files are hard to

open and sometimes they may fail to open completely (Barnasconi, et al., 2010) , hence the

choice of the 200 Hz as the minimum sampling frequency. On the other hand, the 100 MHz

sampling frequency was decided for the purpose of comparing the signal frequency and the

sampling frequency. This is because in simulation, higher sampling frequencies can be achieved

(Barnasconi, et al., 2010). Therefore, to generate a 5 MHz signal, the signal-generating module

should be operating at the sampling clock speed, 100 MHz. These serve as some performance

attributes of the signal generator, hence are presented at the non-functional level.

Once the values are generated, they are used to generate signals through the Digital-to-Analog-

Converter (DAC) whose code is presented in Appendix B.2. the Signal Generator and DAC

modules are wired together in a test bench whose code is presented in Appendix B.3. The results

of the signal generator functional model are presented in Figures 5.3(a), 5.3(b) and 5.3(c) that

show sine wave, saw-tooth wave, triangle wave and a square wave. The four waves are of the

48

same frequency as shown in each figure. Besides, each signal cycle is constructed using 20

samples as this gives more realistic waveforms as compared to the use of fewer samples.

Therefore, 20 samples number is taken as the least number of samples required to construct a

single waveform.

Figure 5.3(a) 10 Hz Signal generator simulation waveform

Figure 5.3(b) 1 MHz Signal generator simulation waveforms

Figure 5.3(c) 5 MHz Signal generator simulation waveforms

49

The Figures 5.3(a), 5.3(b) and 5.3(c) show that the mathematical functions and control structures

used at the functional model generated the expected wave forms.

5.3 Signal Generator Non-Functional Model

Following the previous section (5.2), the number of instructions per cycle has a bearing on the

frequency of the signal, which is a performance attribute. We explore a Look-Up-Table (LUT) as

a way of reducing the number of instructions per cycle. The signal values in the LUT can be read

and used to generate the signal of interest, depending on the choice made by the user. This is

similar to Muteithia’s approach (Muteithia, 2014). However, Muteithia uses SystemC for

simulation and is therefore not able to accommodate the DAC in his simulation. This is not a

problem in the MSRS methodology because SystemC-AMS is used. Figure 5.4 shows the

synthesized non-functional model. In addition to the LUT, we have a Phase Increment Value

generator (PIV) and a Phase Accumulator (PA).

Figure 5.4: Signal Generator Non-Functional model

5.3.1 Phase Increment Value generator and Phase Accumulator

The PIV generator (whose code is in appendix B.4) generates an integral value, phase increment,

ΔP, stored in the Phase Accumulator (PA) (whose code is in appendix B.5). At each clock cycle,

Clock

PIV

(DE)
PA

(DE)

LUT

DAC

(TDF)

Monitor

∆p ∆ps

D[n]

S(t)

DUT

Test Bench

Input
Frequency

Waveform selector

Input

waveform

Input
Amplitude 𝑆

𝑆𝑇

𝑇𝑟𝑔

𝑆𝑞𝑟
Generator (DE)

50

the phase increment value is added to the data previously held in the PA hence resulting to a

linearly increasing digital value. The frequency of the data generated by the PA depends on three

main quantities, which are; reference clock frequency, the ΔP value and j, the length of PA. The

generated frequency, the reference clock frequency, the phase value and the length of the phase

accumulator are related using Equation 5.5 (Vankka & Halonen, 2013).

 (5.5)

 Where:

 ΔP – is the phase increment value

j – is the number of phase accumulator bits (length of PA)

fclk –is the reference clock frequency

fout -is the output frequency

From the Equation 5.5, it is evident that increasing the phase increment word for a constant clock

frequency and size of PA results in an increase in output frequency. The PIV generates the phase

value based on the Equation 5.6 and feeds it to the PA. Equation 5.5 leads to Equation 5.6

(Vankka & Halonen, 2013).

 (5.6)

The PA serves as storage of the phase value, which is connected to the Generator module. The

phase value generated from the Phase Accumulator is 27 bits wide. As argued by Muteithia, the

width of the phase value is the same as the width of the reference clock (100 MHz) when

converted to binary value hence the choice of 27 bits (Muteithia, 2014). The PIV and the PA are

discrete-event modules and therefore they are modeled using DE models.

5.3.2 Generator module

The Generator (whose code is in appendix B.6) has an array that serves as a register that stores

amplitude values. The array is referred to as a LUT. For the sake of simplicity, only the sine

wave is considered. The amplitude values, (), are generated using Equation 5.7 (Vankka &

Halonen, 2013).

51

 () (((

))) (5.7)

 Where: –is the LUT amplitude value generated

M – is the index of a given elements in the LUT

 – is used to convert the computed value to an integer

 N– is the total number of elements in the LUT

 A – is the amplitude

Table 5.3 shows some of the LUT values and their corresponding addresses used in the

Generator. All the LUT values are shown as an array (given the name amplitude[N]) as shown

on Table 5.3.The value N is arrived at based on the bit width of the digital signal to be generated,

in this case 8-bit digital signals. Table 5.3 shows a section of LUT values for 8-bit digital signal.

Table 5.3: Some LUT values used in the signal generator

index 0 1 2 3 4 5 6 7 8 9

LUT0-9 100 102 105 107 110 112 115 117 120 122

index 10 11 12 13 14 15 16 17 18 19

LUT10-19 124 127 129 131 134 136 138 141 143 145

index 20 21 22 23 24 25 26 27 28 29

LUT20-29 147 149 151 153 156 158 160 162 163 165

index 30 31 32 33 34 35 36 37 38 39

LUT30-39 167 169 171 172 174 176 177 179 180 182

As mentioned earlier, the phase values from the PA are 27 bits wide. Once a phase value from

the PA is received by the Generator module, it is shifted to the right by 19 bits. The shifting is

required to truncate the 19 Least Significant Bits (LSB) and remain with only 8 Most Significant

Bits (MSB). The truncation of the bits is required in order to generate phase values that range

from 0 to 255 (0 to 2
8
-1) which match the storage location addresses of the LUT. When the

Generator receives a particular phase value, it extracts the value stored in the corresponding

storage location of the LUT. The extracted values are connected to DAC (whose code is in

52

Appendix B.7) for conversion into analogue signals. The PIV, PA, Generator and the DAC

modules are wired together in a test bench presented in Appendix B.8. The results are presented

in Figures 5.5(a), 5.5(b) and 5.5(c) respectively.

Figure 5.5(a): 10 Hz, 2 V Signal Waveforms

Figure 5.5(b): 1 MHz, 10 V Signal Waveforms

Figure 5.5(c): 5 MHz, 10 V Signal Waveforms

The Figures 5.5(a), 5.5(b) and 5.5(c) show the expected wave forms which are the same as the

wave forms in Figures 5.3(a), 5.3(b) and 5.3(c). The signal wave forms simulated can be

analyzed as presented in Table 5.4 for comparison purposes.

53

Table 5.4: Signal generator non-functional model simulation analysis

Signals

freq.,
Values per

cycle,
Sampling

freq.,
Instr. to

Read &

Write a

value,

Instruction Freq.,

Remarks

10 Hz 20 200 Hz 2 400 Hz Minimum

1MHz 20 20 MHz 2 40 MHz Normal

5 MHz 20 100MHz 2 200MHz Maximum

The analyses presented in Table 5.4 shows that the instruction frequency is reduced by more than

four times due to the reduced number of instructions (Read and Write), required to generate a

single signal value. As explained in section 5.2 and presented in Table 5.2, to generate a single

value in the functional model, nine instructions are required. This improves the upper frequency

limit of the signal generator.

Muteithia (2014) separates functional and non-functional models which is similar to the

approach used in this work. However, his simulation comes after the complete signal generator

development is in place. This violates the preferred principle of catching errors at earliest

opportunity. In the MSRS methodology, it is possible to model, simulate and evaluate the

functional model before improving it with non-functional requirements and additional

simulation.

5.4. Signal Generator Implementation Model

The main objective at this level is to model and simulate the DAC component that was not

simulated by Muteithia (2014). The other components of the signal generator presented in the

non-functional model in section 5.3, are not synthesized. This is because SystemC-AMS can

simulate components at different levels of abstraction within the same system. Secondly,

Muteithia demonstrated simulation using SystemC with the DAC excluded. The adapted

implementation model is shown in Figure 5.6.

54

Figure 5.6: Signal Generator Implementation Model

The signal generator components presented in Figure 5.6 shows mainly a possible R-2R resistor

ladder DAC in detail. The purpose of this DAC circuit is to demonstrate simulation at the

analogue level of implementation. The implementation code for the DAC is presented in

Appendix B.8. the implementation components of the signal generator are wired together in a

test bench whose code is presented in Appendix B.9.

The signal generator system simulation has four different signals of the same frequency. The

signals generated from the signal generator are sine wave, saw tooth wave, triangle wave and

Clock

PV

(DE)
PA

(DE)

LUT

DAC

(ELN)

Monitor

∆p ∑ ∆p

D[n]

S(t)

DUT

Test Bench

Input
Frequency

Waveform selector

Input

waveform

Input
Amplitude 𝑆

𝑆𝑇

𝑇𝑟𝑔

𝑆𝑞𝑟
Generator (DE)

Signal from multiplexer

S(t)

DAC

55

square wave. The four signals generated are of 1 MHz frequency since the wave forms need to

be compared with the 1 MHz signal wave forms produced by the Fusion FPGA signal generator

implemented by Muteithia. The signal generator is composed of both digital and analogue

components. The digital part of the generator produces the digital values of the signals which are

used to sketch the digital signals, D[n]_Sine, D[n]_Saw, D[n]_Triangle presented in Figure 5.7.

The analog part of the signal generator is composed of the DAC which converts the digital

signals to analog signals. The signals generated from the DAC, S(t)_Sine, S(t)_Saw,

S(t)_Triangle are presented in Figure 5.7.

Figure 5.7: Signal Generator Implementation Model Waveforms

Figure 5.7 presents both digital signals and their analogue equivalent signals. The purpose of

presenting the digital signals and analog signals waveforms is to compare them in order to justify

the operation of the SystemC-AMS modeled and simulated DAC. For each wave form,

comparing the digital and analogue signals, it is evident that they are the same. This shows that

that the DAC component modeled and simulated using SystemC-AMS is viable.

The simulated signal generator results are compared with waveforms generated by a signal

generator system developed and implemented in a Fusion FPGA by Muteithia. Therefore,

Muteithia’s test results are presented in the next section (5.5).

56

5.5 FPGA Signal Generator System Waveforms

The waveforms from the FPGA signal generator presented here are for comparison purpose. In

his work, Muteithia simulated only the digital components of his signal generator using

SystemC. He could not simulate the DAC to be used in his development using SystemC because

it can only model and simulate discrete event signals (Black & Donovan, 2004), (Bhasker, 2002),

hence he ended up implementing the DAC without simulation (Muteithia, 2014). The FPGA

signal generator waveforms from the DAC output in his implementation work are presented in

Figures 5.8(a), 5.9(a), 5.10(a) and 5.11(a). For the purpose of comparison, the simulated

waveforms for the respective signals are presented in Figures 5.8(b), 5.9(b), 5.10(b) and 5.11(b).

Figure 5.8(a): 1 MHz FPGA Sine wave (Muteithia, 2014)

Figure 5.8(b): 1 MHz Simulated Sine Wave

Figure 5.9(a): 1 MHz FPGA Square wave (Muteithia, 2014)

Figure 5.9(b): 1 MHz Simulated Square wave

57

Figure 5.10(a):1 MHz FPGA Saw tooth wave (Muteithia, 2014)

Figure 5.10(b):1 MHz Simulated Saw tooth wave

Figure 5.11(a):1 MHz FPGA Triangular wave (Muteithia, 2014)

Figure 5.11(b):1 MHz Simulated Triangular wave

As can be seen, the test results of the FPGA signal generator are replicated by the simulated

signal generator. Therefore, these results are used to support the claim that the MSRS

methodology is effective.

58

CHAPTER SIX

 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusion

A Model-Simulate-Refine-Synthesis (MSRS) methodology for modeling and simulation from

functional level down to the implementation level has been developed and presented. The

methodology helps the developer to model and simulate both analogue and digital components at

functional, non-functional and implementation levels of abstraction by generating functional,

non-function and implementation models corresponding to each level respectively, which is

valuable for developing E-AMS systems.

The methodology has been verified through modeling and simulation of an oscilloscope. The

simulation results of the functional model are used to validate the model while for the

implementation model are used to verify the model against the functional model. Comparing the

waveforms from the functional model and the waveforms from the implementation model, it is

found that they are similar. Therefore, this makes the methodology developed viable in modeling

and simulation of E-AMS systems.

Further, the methodology has been validated through modeling and simulation of a signal

generator. The modeled and simulated signal generator simulation results are compared with test

results obtained from a real similar signal generator developed and implemented in a Fusion

FPGA. Comparing the waveforms, it is evident that the waveforms from the simulated signal

generator and the waveforms from the FPGA signal generator are similar. Therefore, the

methodology has been validated.

Therefore, the methodology has been verified and validated and gives satisfactory results, the

objectives of the work have been achieved.

The MSRS methodology developed has several strengths:

 The methodology provides a systematic way to develop E-AMS systems from the

functional level down to the implementation level.

59

 The methodology allows multiple development paradigms such as evolutionary, iterative,

and incremental (Larman & Basili, 2003).

 It synchronizes system development and learning. Innovative system development

usually intertwines learning and system development phases.

 By simulation at every level of abstraction, there is a good opportunity to catch many

errors at the earliest opportunity.

On the other hand, the MSRS methodology has some drawbacks:

 Knowledge of SystemC-AMS is required. This is a heavy undertaking considering that

SystemC-AMS is built on top of C++ and extends SystemC.

 At the time of this work, there are no specific component libraries from manufacturers.

This hinders generation of blueprint models for implementation.

6.2 Recommendations for future work

Based on the drawbacks of the methodology, then:

 Future work could explore combining modeling at the system level with automation to

automatically generate blueprints (Mosterman & Vangheluwe, 2004). This would avoid

knowledge of C++, SystemC and SystemC-AMS.

 A component library standard to ensure interoperability among component libraries from

different manufacturers. This will facilitate development of a blueprint as the last stage of

the implementation model.

 Some research may be done to use the MSRS methodology in designing and fabricating a

real E-AMS system.

60

REFERENCES

Ashenden, P. J. (2010). The designer's guide to VHDL (Vol. 3). Morgan Kaufmann.

Barnasconi, M., Einwich, K., Grimm, C., Maehne, T., & Vachoux, A. (2011). Advancing the

SystemC Analog/Mixed-Signal (AMS) Extensions. Open SystemC Initiative (OSCI).

Barnasconi, M., Grimm, C., Damn, M., Enwich, K., Louërat, M. M., Mähne, T., & Vachoux, A.

(2010). SystemC AMS extensions user’s guide. Open SystemC Initiative (OSCI). Mar, 8,

14-72.

Bhasker, J. (2002). A systems “Primer”. http://read.pudn.com/downloads92/ebook/359261/A

SystemC Primer.pdf , Accessed: 23 Feb 2015

Black, D. C., Donovan, J., Bunton, B., & Keist, A. (2009). SystemC: From the Ground Up:

From the Ground Up (Vol. 71). Springer Science & Business Media.

Broeders, J. Z. M. (2010). Extracting behavior and dynamically generated hierarchy from

SystemC models (Doctoral dissertation, TU Delft, Delft University of Technology).

Cai, L., & Gajski, D. (2003). Transaction level modeling in system level design.Center for

Embedded Computer Systems.

Calva, C. A., Rocha, M. F., Orozco, L., Gaso, M. R., Osnaya, M. R., Navarrete, R., & Solis, C.

(2012). Design of a Low Cost Electronic System for Automotive Steering

Controlling. International Journal of Computer and Communication Engineering, 1(4),

313.

Donlin, A. (2004, September). Transaction level modeling: flows and use models.

In Proceedings of the 2nd IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis (pp. 75-80). ACM.

Dowell, R. I. (2011). Hijacked by SPICE. IEEE Solid-State Circuits Magazine,2(3), 13-15.

61

Gajski, D. D., & Kuhn, R. H. (1983). Guest editors' introduction: New VLSI

tools. Computer, 16(12), 11-14.

Gajski, D. D., Abdi, S., Gerstlauer, A., & Schirner, G. (2009). Embedded system design:

modeling, synthesis and verification. Springer Science & Business Media.

Ghenassia, F. (2005). Transaction-level modeling with SystemC (pp. 153-183). Dordrecht, The

Netherlands: Springer.

Gray, N. (2006). ABCs of ADCs Analog-to-Digital Converter Basics. Gray, N., Data

Conversion System, Staff Applications Engineer, National Semiconductor Corp, 1-64.

Grimm, C., Barnasconi, M., Vachoux, A., & Einwich, K. (2008, June). An introduction to

modeling embedded analog/mixed-signal systems using SystemC AMS extensions.

In DAC2008 International Conference.

Jensen, R. W. (1966). Charge Control Transistor Model for the IBM Electronic Circuit Analysis

Program. Circuit Theory, IEEE Transactions on, 13(4), 428-437.

Jeruchim, M. C., Balaban, P., & Shanmugan, K. S. (2006). Simulation of communication

systems: modeling, methodology and techniques. Springer Science & Business Media.

Karnane, K., Curtis, G., & Goering, R. (2009). Solutions for mixed-signal SoC

verification. Cadence Design Systems.

Kelemenová, T., Kelemen, M., Miková, Ľ., Maxim, V., Prada, E., Lipták, T., & Menda, F.

(2013). Model based design and HIL simulations. American Journal of Mechanical

Engineering, 1(7), 276-281.

Kodi, A. K., & Louri, A. (2008). Optisim: A system simulation methodology for optically

interconnected HPC systems. IEEE micro, (5), 22-36.

62

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief

history. Computer, (6), 47-56.

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief

history. Computer, (6), 47-56.

Lyons, R. G. (Ed.). (2012). Streamlining digital signal processing: a tricks of the trade

guidebook. John Wiley & Sons.

Mähne, T. (2011). Efficient Modelling and Simulation Methodology for the Design of

Heterogeneous Mixed-Signal Systems on Chip.

Mischkalla, F., He, D., & Mueller, W. (2010, March). Closing the gap between UML-based

modeling, simulation and synthesis of combined HW/SW systems. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2010(pp. 1201-1206).

IEEE.

Montealegre Lobo, L., Dufour, C., & Mahseredjian, J. (2013, September). Real-time simulation

of More-Electric Aircraft power systems. In Power Electronics and Applications (EPE),

2013 15th European Conference on (pp. 1-10). IEEE.

Mosterman, P. J., & Vangheluwe, H. (2004). Computer automated multi-paradigm modeling: An

introduction. Simulation, 80(9), 433-450.

Muteithia, W. M. (2014). Design And Development Of An FPGA Based DDFS Signal

Generator (MSc. Thesis, University of Nairobi).

Najy, R. J. (2013). The Role of ComputerAided Design (CAD) in the Manufacturing and Digital

Control (CAM). Contemporary Engineering Sciences,6, 297-312.

Pêcheux, F., Allard, B., Lallement, C., Vachoux, A., & Morel, H. (2005). Modeling and

simulation of multi-discipline systems using bond graphs and VHDL-AMS.

63

In Proceedings of the International Conference on Bond Graph Modeling and Simulation

(ICBGM) (No. LSM-CONF-2005-003).

Pedroni, V. A. (2004). Circuit design with VHDL. MIT press.

Ptolemaeus, C. (2014). System Design, Modeling, and Simulation: Using Ptolemy II. Berkeley,

CA, USA: Ptolemy. org.

Roberts Jr, B. D., & Harbourt, C. O. (1967). Computer models of the field-effect

transistor. Proceedings of the IEEE, 55(11), 1921-1929.

Saxena, R. S., Panwar, A., Semwal, S. K., Rana, P. S., Gupta, S., & Bhan, R. K. (2012). PSPICE

circuit simulation of microbolometer infrared detectors with noise sources. Infrared

Physics & Technology, 55(6), 527-532.

Sinha, R., Paredis, C. J., Liang, V. C., & Khosla, P. K. (2001). Modeling and simulation methods

for design of engineering systems. Journal of Computing and Information Science in

Engineering, 1(1), 84-91.

Szermer, M., Daniel, M., & Napieralski, A. (2003, February). Modeling and simulation sigma-

delta analog to digital converters using VHDL-AMS. In CAD Systems in

Microelectronics, 2003. CADSM 2003. Proceedings of the 7th International Conference.

The Experience of Designing and Application of (pp. 331-333). IEEE.

Thomas, D. E., & Moorby, P. R. (2002). The Verilog® Hardware Description Language (Vol.

2). Springer Science & Business Media.

Topper, J. S., & Horner, N. C. (2013). Model-Based Systems Engineering in Support of

Complex Systems Development. Johns Hopkins Apl Technical Digest, 32(1).

Vachoux, A. (1998). Analog and mixed-signal extensions to VHDL. In Analog VHDL (pp. 97-

112). Springer US.

64

Vachoux, A., Grimm, C., & Einwich, K. (2004, January). Towards analog and mixed-signal

SOC design with systemC-AMS. In Field-Programmable Technology, 2004.

Proceedings. 2004 IEEE International Conference on (pp. 97-102). IEEE.

Vankka, J., & Halonen, K. A. (2013). Direct digital synthesizers: theory, design and

applications (Vol. 614). Springer Science & Business Media.

Vasilevski, M., Pecheux, F., Aboushady, H., & De Lamarre, L. (2007, September). Modeling

heterogeneous systems using SystemC-AMS case study: A wireless sensor network node.

In Behavioral Modeling and Simulation Workshop, 2007. BMAS 2007. IEEE

International (pp. 11-16). IEEE.

Wilson, P., & Mantooth, H. A. (2013). Model-based Engineering for Complex Electronic

Systems: Techniques, Methods and Applications. Newnes.

Zorzi, M., Franze, F., & Speciale, N. (2003). Construction of VHDL-AMS simulator in

MatlabTM. In Proceedings of the 2003 International Workshop on Behavioral

Modeling (pp. 113-117).

65

APPENDIX A: OSCILLOSCOPE CODES

A.1: Modulator Functional Model Code

#include "systemc.h"

#include "systemc-ams.h"

SC_MODULE(modulator)

{

 //TDF input ports

 sca_tdf::sca_in<double> sig_in;

 sca_tdf::sca_in<double> k_in;

 //TDF output port

 sca_tdf::sca_out<double> cond_sign_out;

 //TDF to LSF converter ports

 sca_lsf::sca_tdf_source conv_sign;

 sca_lsf::sca_tdf_sink conv_cond_sign;

 //gain

 sca_lsf::sca_gain gain1;

 //linking lsf signals

 sca_lsf::sca_signal sign_link;

 sca_lsf::sca_signal cond_link;

 //Module constructor

modulator(sc_core::sc_module_name, double k1 = 100.0)

 : sig_in("sig_in"), k_in("k_in"), gain1("gain1", k1),

cond_sign_out("cond_sign_out"),

 conv_sign("conv_sign"), conv_cond_sign("conv_cond_sign")

 {

 //TDF to LSF conversion

 conv_sign.inp(sig_in);

 conv_sign.y(sign_link);

 //gain connection

 gain1.x(sign_link);

 gain1.y(cond_link);

 //LSF to TDF conversion

 conv_cond_sign.x(cond_link);

 conv_cond_sign.outp(cond_sign_out);

 }

};

A.2: Sampler Functional Model Code

#include "systemc.h"

#include "systemc-ams.h"

SCA_TDF_MODULE(sampler)

{

66

 //TDF ports

sca_tdf::sca_in<double> ksin;

 sca_tdf::sca_in<bool> plsin;

 sca_tdf::sca_out<double> smpld;

 //module constructor

sampler(sc_core::sc_module_name)

 : ksin("ksin"), plsin("plsin"), smpld("smpld")

 {}

 void processing()

 {

 //Sampling when pulse is high else write 0 to the port

if (plsin.read() == 1)

 {

 smpld.write(ksin.read());

 }

 else

 {

 smpld.write(0);

 }

 }

};

A.3: Hold Functional Model Code

#include "systemc.h"

#include "systemc-ams.h"

SCA_TDF_MODULE(thefilter)

{

 //TDF ports

sca_tdf::sca_in<double> sigin;

 sca_tdf::sca_in<bool> plsin;

 sca_tdf::sca_out<double> sigout;

 //module constructor

thefilter(sc_core::sc_module_name)

 : sigin("sigin"), plsin("plsin"), sigout("sigout")

 {}

 void processing()

 {

 //holds the sampled value when the pulse is high

if (plsin.read() == 1)

 {

//Holds the value until the next sample

sigout.write(sigin.read());

 }

 }

};

67

A.4: Functional ADC Model Code

#include "systemc.h"

#include "systemc-ams.h"

SCA_TDF_MODULE(theadc)

{

 //TDF input ports

sca_tdf::sca_in<double> anlgsigin;

 sca_tdf::sca_in<bool> pulsin;

 //TDF-DE converter output port

sca_tdf::sca_de::sca_out<sc_uint<8>> adcout;

//variable declaration

sc_uint<8> adcval;

 float samp;

 int intsampval, i, r, dev;

//module constructor

theadc(sc_core::sc_module_name)

 : anlgsigin("anlgsigin"), adcout("adcout"),pulsin("pulsin")

 {}

 void processing()

 {

 //Process done when the pulse is high

if (pulsin.read() == 1)

 {

 //Sampling

 samp = (anlgsigin.read());

 intsampval = (int) (samp);

 //conversion to binary

 for(i=0; i<8; i++)

 {

 r = intsampval % 2;

 dev = intsampval / 2;

 adcval[i] = r;

 intsampval = dev;

 }

 //Output the digital signal

 adcout.write(adcval);

 }

 }

};

A.5: Oscilloscope Functional model Test Bench code

//include oscilloscope modules

#include "driver.h"

#include "signalsource.cpp"

#include "enableunit.cpp"

#include "controlunit.cpp"

#include "modulator.cpp"

68

#include "sampler.cpp"

#include "adc.cpp"

#include "hold.cpp"

int sc_main(int argc, char *argv[])

{

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",

SC_DO_NOTHING);

 //declaraing signals to link different modules

 //1. DE signals

sc_signal<double> t_frequency;

 sc_signal<double> t_ampltd;

 sc_signal<double> t_enbl_ctrl;

sc_signal<sc_uint<8> > adcsign_8;

 //2. TDF signals

 sca_tdf::sca_signal<double> t_enbl_s;

 sca_tdf::sca_signal<double> t_enbl_k;

 sca_tdf::sca_signal<double> t_enbl_pls;

 sca_tdf::sca_signal<bool> t_pls;

 sca_tdf::sca_signal<double> t_sine_out;

 sca_tdf::sca_signal<double> t_det_k;

 sca_tdf::sca_signal<double> t_k_val;

 sca_tdf::sca_signal<double> t_cond_sign;

 sca_tdf::sca_signal<double> t_sampld_sign;

 sca_tdf::sca_signal<double> t_filtered_sign;

 // declare a time constant for the system clock

 const sc_time t_period(20, SC_NS);

 sc_clock clk("clk", t_period);

 //Add modules

 //1. Driver module

syst_driver dr("Driver_Module");

 dr.d_frequency(t_frequency);

 dr.d_ampl(t_ampltd);

 dr.clock(clk);

 dr.enbl_out(t_enbl_ctrl);

 //2. Enable unit module

enbl en("enable_Unit");

 en.infrq(t_frequency);

 en.enabl(t_enbl_ctrl);

 en.enb_s(t_enbl_s);

 en.enb_k(t_enbl_k);

 en.enb_pls_gen(t_enbl_pls);

 //3. Signal source module

sinewv sr("Signal_source");

 sr.inpenb(t_enbl_s);

 sr.inpfrq(t_frequency);

 sr.out(t_sine_out);

 sr.det_k(t_det_k);

69

 //4. Modulator module

theconditioner con("Modulator");

 con.sig_in(t_sine_out);

 con.k_in(t_k_val);

 con.cond_sign_out(t_cond_sign);

 //5. Sampler module

sampl sp("Sampler");

 sp.plsin(t_pls);

 sp.ksin(t_cond_sign);

 sp.smpld(t_sampld_sign);

 //6. Hold module

thefilter fl("HoldModule");

 fl.plsin(t_pls);

 fl.sigin(t_sampld_sign);

 fl.sigout(t_filtered_sign);

 //7. ADC module

theadc d("ADC");

 d.pulsin(t_pls);

 d.anlgsigin(t_filtered_sign);

 d.adcout(adcsign_8);

 // Tracing waveforms

 //1. creating a file to which values are to be stored

sca_util::sca_trace_file *anatf =

sca_util::sca_create_vcd_trace_file("WaveForms");

 //2. Storing different values in the file

 cout << "Start tracing waveforms " << endl;

 sca_util::sca_trace(anatf, t_sine_out, "S(t)");

 sca_util::sca_trace(anatf, t_cond_sign, "KS(t)");

 sca_util::sca_trace(anatf, t_pls, "Pulses");

 sca_util::sca_trace(anatf, t_sampld_sign, "KS(nT)");

 sca_util::sca_trace(anatf, t_filtered_sign, "KH(t)S(nT)");

 sca_util::sca_trace(anatf, adcsign_8, "D8(n)");

//simulation duration to be taken

sc_start(100, SC_US);

 //closing the file

 sca_util::sca_close_vcd_trace_file(anatf);

 cout << "Finished tracing waveforms" << endl;

 return (0);

}

A.6: Control Unit Module Code

#include "systemc.h"

#include "systemc-ams.h"

SCA_TDF_MODULE(thectrl)

{

 //TDF ports

70

sca_tdf::sca_in<double> enabl;

 sca_tdf::sc_in<double> inpfrq;

 sca_tdf::sc_in<double> inpamp;

 sca_tdf::sca_out<double> k_valout;

 sca_tdf::sca_out<bool> pulsout;

 //LUT

 float lut[6] = {0.01,0.1,1,10,100,1000,0};

 float ampltd;

 //Module constructor

 thectrl(sc_core::sc_module_name,

 sca_core::sca_time tm_ = sca_core::sca_time(10.0,

sc_core::SC_PS))

: inpfrq("infrq"), enabl("enabl"), k_valout("k_valout"), tm(tm_),

pulsout("pulsout"), inpamp("inpamp")

 {}

 //setting time steps

void set_attributes()

 {

 set_timestep(tm);

 }

 void processing()

 {

 //process once enabled

if (enabl.read() == 1)

 {

 if(inpfrq.read()==0)

 {

 pulsout.write(1);

 }

 else

 {

 //Generating the sampling clock based on the system clock

 //and signal frequency

x = x + 1;

 fsyst = 100000000000; //system clk frequency

 stot = (int)(fsyst / inpfrq.read());

 s = 20; //samples required in a single cycle

 n = (int)(stot / s);

 r = x % n;

 if (r == 0)

 {

 pulsout.write(1); //generate a HIGH state

 }

 else

 {

 pulsout.write(0); //generate a LOW state

 }

 //Choosing k value depending on the signal amplitude

ampltd = inpamp.read();

 if(ampltd >= 33)

 {

 k_valout.write(lut[0]);

 }

 else if(ampltd >= 3.3)

 {

71

 k_valout.write(lut[1]);

 }

 else if(ampltd >= 0.33)

 {

 k_valout.write(lut[2]);

 }

 else if(ampltd >= 0.033)

 {

 k_valout.write(lut[3]);

 }

 else if(ampltd >= 0.0033)

 {

 k_valout.write(lut[4]);

 }

 else if(ampltd >= 0.00033)

 {

 k_valout.write(lut[5]);

 }

else

 {

 k_valout.write(lut[6]);

}

}

 }

 }

private:

 double stot, s, fsyst;

 int x, r, n;

 double freqval, sigperiod, sampperiod;

 sca_core::sca_time tm;

};

A.7: ADC Non Functional Module Code

#include "systemc.h"

#include "systemc-ams.h"

#define A 3

SCA_TDF_MODULE(theadc)

{

 //TDF input ports

 sca_tdf::sca_in<double> anlgsigin;

 sca_tdf::sca_in<bool> pulsin;

 //TDF-DE output ports

 sca_tdf::sca_de::sca_out<sc_uint<10>> adcout10;

 sca_tdf::sca_de::sca_out<sc_uint<8>> adcout8;

 sca_tdf::sca_de::sca_out<sc_uint<6>> adcout6;

 sca_tdf::sca_de::sca_out<sc_uint<4>> adcout4;

 sca_tdf::sca_de::sca_out<sc_uint<2>> adcout2;

 //Variable declaration

 sc_uint<10> adcval10;

 sc_uint<8> adcval8;

 sc_uint<6> adcval6;

 sc_uint<4> adcval4;

 sc_uint<2> adcval2;

72

 int samp;

 int intsampval10, i10, r10, dev10;

 int intsampval8, i8, r8, dev8;

 int intsampval6, i6, r6, dev6;

 int intsampval4, i4, r4, dev4;

 int intsampval2, i2, r2, dev2;

 //Module constructor

 theadc(sc_core::sc_module_name)

 : anlgsigin("anlgsigin"),

 adcout10("adcout10"),

 adcout8("adcout8"),

 adcout6("adcout6"),

 adcout4("adcout4"),

 adcout2("adcout2"),

 pulsin("pulsin")

 {}

 void processing()

 {

 //process when the pulse is in H state

if (pulsin.read() == 1)

 {

 //sampling and conversion to digital signals

samp = (int)(anlgsigin.read());

//Determine equivalent integral value depending on the ADC

//bits required

 intsampval10 = (int) (samp * 1024 / (2 * A)); //for 10 bits

 intsampval8 = (int) (samp * 256 / (2 * A)); //for 8 bits

 intsampval6 = (int) (samp * 64 / (2 * A)); //for 6 bits

 intsampval4 = (int) (samp * 16 / (2 * A)); //for 4 bits

 intsampval2 = (int) (samp * 4 / (2 * A)); //for 2 bits

 //10 bit conversion

for(i10=0; i10<10; i10++)

 {

 r10 = intsampval10 % 2;

 dev10 = intsampval10 / 2;

 adcval10[i10] = r10;

 intsampval10 = dev10;

 }

 //8 bit conversion

for(i8=0; i8<8; i8++)

 {

 r8 = intsampval8 % 2;

 dev8 = intsampval8 / 2;

 adcval8[i8] = r8;

 intsampval8 = dev8;

 }

 //6 bit conversion

for(i6=0; i6<6; i6++)

 {

 r6 = intsampval6 % 2;

 dev6 = intsampval6 / 2;

 adcval6[i6] = r6;

 intsampval6 = dev6;

 }

73

//4 bit conversion

for(i4=0; i4<4; i4++)

 {

 r4 = intsampval4 % 2;

 dev4 = intsampval4 / 2;

 adcval4[i4] = r4;

 intsampval4 = dev4;

 }

 //2 bit conversion

for(i2=0; i2<2; i2++)

 {

 r2 = intsampval2 % 2;

 dev2 = intsampval2 / 2;

 adcval2[i2] = r2;

 intsampval2 = dev2;

 }

 //output the digital signals

adcout10.write(adcval10);

 adcout8.write(adcval8);

 adcout6.write(adcval6);

 adcout4.write(adcval4);

 adcout2.write(adcval2);

 }

 }

};

A.8: None-Functional Model Test Bench Code

//include modules

#include "driver.h"

#include "signalsource.cpp"

#include "enableunit.cpp"

#include "controlunit.cpp"

#include "modulator.cpp"

#include "sampler.cpp"

#include "adc.cpp"

#include "hold.cpp"

int sc_main(int argc, char *argv[])

{

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",

SC_DO_NOTHING);

 //defining signals to connect modules

sc_signal<double> t_frequency;

 sc_signal<double> t_ampltd;

 sc_signal<double> t_enbl_ctrl;

 sca_tdf::sca_signal<double> t_enbl_s;

 sca_tdf::sca_signal<double> t_enbl_k;

 sca_tdf::sca_signal<double> t_enbl_pls;

 sca_tdf::sca_signal<bool> t_pls;

 sca_tdf::sca_signal<double> t_sine_out;

 sca_tdf::sca_signal<double> t_det_k;

 sca_tdf::sca_signal<double> t_k_val;

 sca_tdf::sca_signal<double> t_cond_sign;

74

 sca_tdf::sca_signal<double> t_sampld_sign;

 sca_tdf::sca_signal<double> t_filtered_sign;

 sc_signal<sc_uint<10> > adcsign_10;

 sc_signal<sc_uint<8> > adcsign_8;

 sc_signal<sc_uint<6> > adcsign_6;

 sc_signal<sc_uint<4> > adcsign_4;

 sc_signal<sc_uint<2> > adcsign_2;

 // declare a time constant for the system clock

 const sc_time t_period(100, SC_PS);

 sc_clock clk("clk", t_period);

 //Driver module

syst_driver dr("Driver_Module");

 dr.d_frequency(t_frequency);

 dr.d_ampl(t_ampltd);

 dr.clock(clk);

 dr.enbl_out(t_enbl_ctrl);

 //Eneble unit module

enbl en("enable_Unit");

 en.infrq(t_frequency);

 en.enabl(t_enbl_ctrl);

 en.enb_s(t_enbl_s);

 //Signal source module

sinewv sr("Signal_source");

 sr.inpenb(t_enbl_s);

 sr.inpfrq(t_frequency);

 sr.inpampltd(t_ampltd);

 sr.out(t_sine_out);

 //Control unit module

thectrl ct("TheControlUnit");

 ct.enabl(t_enbl_s);

 ct.inpfrq(t_frequency);

 ct.inpamp(t_ampltd);

 ct.k_valout(t_k_val);

 ct.pulsout(t_pls);

 //modulator module

themodulator con("modulator");

 con.sig_in(t_sine_out);

 con.k_in(t_k_val);

 con.cond_sign_out(t_cond_sign);

 //sampler module

sampl sp("Sampler");

 sp.plsin(t_pls);

 sp.ksin(t_cond_sign);

 sp.smpld(t_sampld_sign);

 //Hold module

thehold fl("Hold");

 fl.plsin(t_pls);

75

 fl.sigin(t_sampld_sign);

 fl.sigout(t_filtered_sign);

 //ADC module

theadc d("ADC");

 d.pulsin(t_pls);

 d.anlgsigin(t_filtered_sign);

 d.adcout10(adcsign_10);

 d.adcout8(adcsign_8);

 d.adcout6(adcsign_6);

 d.adcout4(adcsign_4);

 d.adcout2(adcsign_2);

 // Tracing waveforms

 sca_util::sca_trace_file *anatf =

sca_util::sca_create_vcd_trace_file("WaveForms");

 cout << "Start tracing waveforms " << endl;

 sca_util::sca_trace(anatf, t_sine_out, "S(t)");

 sca_util::sca_trace(anatf, t_k_val, "K");

 sca_util::sca_trace(anatf, t_cond_sign, "KS(t)");

 sca_util::sca_trace(anatf, t_sampld_sign, "KS(nT)");

 sca_util::sca_trace(anatf, t_filtered_sign, "KH(t)S(nT)");

 sca_util::sca_trace(anatf, adcsign_10, "D10(n)");

 sca_util::sca_trace(anatf, adcsign_8, "D8(n)");

 sca_util::sca_trace(anatf, adcsign_6, "D6(n)");

 sca_util::sca_trace(anatf, adcsign_4, "D4(n)");

 sca_util::sca_trace(anatf, adcsign_2, "D2(n)");

//Simulation period

 sc_start(60, SC_US);

 sca_util::sca_close_vcd_trace_file(anatf);

 cout << "Finished tracing waveforms" << endl;

 return (0);

}

A.9: Buffer Implementation Model Code

#include "systemc.h"

#include "systemc-ams.h"

SC_MODULE(buff)

{

 //Defining ports

 sca_tdf::sca_in<double> sigin;

 sca_tdf::sca_out<double> sigout;

 sca_tdf::sca_in<bool> swtch10;

 sca_tdf::sca_in<bool> swtch100;

 sca_eln::sca_tdf_vsource sigtdf2eln; // TDF to ELN converter

 sca_eln::sca_tdf_vsink eln2tdf; // ELN to TDF converter

 sca_eln::sca_nullor opamp1; //Operational amplifier

 sca_eln::sca_r r1, r2, r3; //Resistors

76

 //ELN-TDF signal controlled switches

sca_eln::sca_tdf::sca_rswitch rswth10, rswth100;

 //Module constructor

buff(sc_core::sc_module_name)

 : sigin("sigin"), sigout("sigout"),

 sigtdf2eln("sigtdf2eln"), eln2tdf("eln2tdf"),

 opamp1("opamp1"), r1("r1", 3.3e6), r2("r2", 336e3),

r3("r3", 33.3e2),

 swtch10("swtch10"), swtch100("swtch100"),

 rswth10("rswth10", 0.0, 1e20, 0),

 rswth100("rswth100", 0.0, 1e20, 0),

 gnd("gnd")

 {

 //convert the TDF to ELN signal

 sigtdf2eln.inp(sigin);

 sigtdf2eln.p(n1);

 sigtdf2eln.n(gnd);

 //ELN signals

 r1.n(n1); r1.p(n2);

 //Attenuate by 10

 rswth10.p(n2);

 rswth10.ctrl(swtch10);

 rswth10.n(n3);

 r2.n(n3); r2.p(gnd);

 //Attenuate by 100

 rswth100.p(n2);

 rswth100.ctrl(swtch100);

 rswth100.n(n4);

 r3.n(n4); r3.p(gnd);

 //operational amplifier

opamp1.nip(n2);

 opamp1.nin(n5);

 opamp1.nop(n5);

 opamp1.non(gnd);

 eln2tdf.p(n5);

 eln2tdf.n(gnd);

 eln2tdf.outp(sigout); //output connection

 }

public:

 sca_eln::sca_node n1, n2, n3, n4, n5;

 sca_eln::sca_node_ref gnd;

};

A.10: Modulator Implementation Model Code

#include "systemc-ams.h"

#include "systemc.h"

77

SC_MODULE(modgain)

{

 //Module Ports

 sca_tdf::sca_in<double> vin;

 sca_tdf::sca_in<bool> amp1;

 sca_tdf::sca_in<bool> amp10;

 sca_tdf::sca_in<bool> amp100;

 sca_tdf::sca_in<bool> amp1000;

 sca_eln::sca_terminal vout;

 //Resistors

 sca_eln::sca_r r, rc, rf;

 //ELN-TDF controlled variable resistor

 sca_eln::sca_r r1, r10, r100, r1000;

 //ELN-TDF controlled switches

 sca_eln::sca_tdf::sca_rswitch rswt1, rswt10, rswt100, rswt1000;

 //operational amplifiers

sca_eln::sca_nullor opamp1, opamp2;

//TDF to ELN converter

 sca_eln::sca_tdf::sca_vsource convs;

 //Module constructor

SC_CTOR(modgain)

 : vin("vin"), vout("vout"), opamp1("opamp1"), gnd("gnd"),

 rc("rc", 1e3), rf("rf", 1e3), opamp2("opamp2"), convs("conv"),

r("r", 1e3), r1("r1", 1e3), r10("r10", 10e3), r100("r100",

100e3), r1000("r1000", 1e6),amp1("amp1"), amp10("amp10"),

amp100("amp100"), amp1000("amp1000"),

 rswt1("rswt1", 0.0, 1e15, 0), rswt10("rswt10", 0.0, 1e15, 0),

 rswt100("rswt100", 0.0, 1e15, 0),

rswt1000("rswt1000", 0.0, 1e15, 0)

 {

 //signal conversion

convs.inp(vin);

 convs.p(n1);

 convs.n(gnd);

 r.n(n1);

 r.p(n2);

 //switches

 rswt1.p(n2);

 rswt1.ctrl(amp1);

 rswt1.n(n3);

 r1.n(n3); r1.p(n7);

 rswt10.p(n2);

 rswt10.ctrl(amp10);

 rswt10.n(n4);

 r10.n(n4); r10.p(n7);

78

 rswt100.p(n2);

 rswt100.ctrl(amp100);

 rswt100.n(n5);

 r100.n(n5); r100.p(n7);

 rswt1000.p(n2);

 rswt1000.ctrl(amp1000);

 rswt1000.n(n6);

 r1000.n(n6); r1000.p(n7);

 opamp1.nip(gnd);

 opamp1.nin(n2);

 opamp1.nop(n7);

 opamp1.non(gnd);

 rc.n(n7);

 rc.p(n8);

 opamp2.nip(gnd);

 opamp2.nin(n8);

 opamp2.nop(vout);

 opamp2.non(gnd);

 rf.n(n8);

 rf.p(vout);

 }

private:

 sca_eln::sca_node n1, n2, n3, n4, n5, n6, n7, n8;

 sca_eln::sca_node_ref gnd;

};

A.11: DC Shift Model Code

#include "systemc.h"

#include "systemc-ams.h"

SC_MODULE(shft)

{

 //Module ports

 sca_tdf::sca_in<double> dcin;

 sca_eln::sca_terminal sigin;

 sca_eln::sca_terminal sigout;

 sca_eln::sca_r r1, r2, r3, r4; //Resistors

 sca_eln::sca_tdf_vsource shfttdf2eln; //Converter

 sca_eln::sca_nullor opamp1; //Operational amplifier

 //Module constructor

shft(sc_core::sc_module_name)

 : dcin("dcin"), sigin("sigin"), sigout("sigout"),

 shfttdf2eln("shfttdf2eln"), opamp1("opamp1"),

 r1("r1", 1e3), r2("r2", 1e3), r3("r3", 2e3), r4("r4", 2e3)

79

 {

 //components connections

r1.n(sigin); r1.p(n1);

 opamp1.nip(n1);

 opamp1.nin(n3);

 opamp1.nop(sigout);

 opamp1.non(gnd);

 shfttdf2eln.inp(dcin);

 shfttdf2eln.p(n4);

 shfttdf2eln.n(gnd);

 r2.n(n4); r2.p(n1);

 r4.n(gnd); r4.p(n3);

 r3.n(n3); r3.p(sigout);

 }

public:

 sca_eln::sca_node n1, n3, n4;

 sca_eln::sca_node_ref gnd;

};

A.12: Sample and Hold Implementation Model Code

#include "systemc.h"

#include "systemc-ams.h"

SC_MODULE(samphold)

{

 //Module ports

 sca_eln::sca_terminal vin;

 sca_tdf::sca_out<double> vout;

 sca_tdf::sca_in<bool> pulsin;

 sca_eln::sca_c holdcap; //ELN capacitor

 sca_eln::sca_tdf::sca_rswitch swth; //Switch

 sca_eln::sca_nullor opamp1, opamp2; //Operational amplifiers

 sca_eln::sca_tdf_vsink conv1; //Converter port

 //Module constructor

SC_CTOR(samphold)

 : vin("vin"), vout("vout"), opamp1("opamp1"), opamp2("opamp2"),

gnd("gnd"), conv1("conv1"),

 holdcap("holdcap", 1e1, 0.0),

 swth("swth", 0.0, 1e15, 0)

 {

 //omponent connections

 opamp1.nip(vin);

 opamp1.nin(n1);

 opamp1.nop(n1);

 opamp1.non(gnd);

80

 swth.p(n1);

 swth.ctrl(pulsin);

 swth.n(n2);

 holdcap.p(n2);

 holdcap.n(gnd);

 opamp2.nip(n2);

 opamp2.nin(n3);

 opamp2.nop(n3);

 opamp2.non(gnd);

 conv1.p(n3);

 conv1.n(gnd);

 conv1.outp(vout);

 }

private:

 sca_eln::sca_node n1, n2, n3;

 sca_eln::sca_node_ref gnd;

};

A.13: ADC Module Code

#include "systemc.h"

#include "systemc-ams.h"

SCA_TDF_MODULE(theadc)

{

 //Module ports

sca_tdf::sca_in<double> anlgsigin;

 sca_tdf::sca_in<bool> pulsin;

 //TDF-DE output port

sca_tdf::sca_de::sca_out<sc_uint<8>> adcout8;

 //variable declarations

sc_uint<8> adcval8;

 float samp;

 int intsampval8, i8, r8, dev8;

 //Module constructor

theadc(sc_core::sc_module_name)

 : anlgsigin("anlgsigin"),

 adcout8("adcout8"),

 pulsin("pulsin")

 {}

 void processing()

 {

 if (pulsin.read() == 1)

 {

 //Sampling

 samp = (anlgsigin.read());

 intsampval8 = (int) (samp * 256 / 6);

 //Conversion

 for(i8=0; i8<8; i8++)

 {

 r8 = intsampval8 % 2;

81

 dev8 = intsampval8 / 2;

 adcval8[i8] = r8;

 intsampval8 = dev8;

 }

 //Output the digital values

 adcout8.write(adcval8);

 }

 }

};

A.14: Oscilloscope Implementation model Test Bench Code

//Include modules

#include "driver.h"

#include "signalsource.cpp"

#include "buffer.cpp"

#include "modulator.cpp"

#include "shifter.cpp"

#include "controlunit.cpp"

#include "ksource.cpp"

#include "pulsesource.cpp"

#include "sampleandhold.cpp"

#include "adc.cpp"

int sc_main(int argc, char *argv[])

{

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",

SC_DO_NOTHING);

 //decaring signals for module connection

sc_signal<double> t_frequency;

 sc_signal<double> t_amp;

 sc_signal<double> t_enbl_ctrl;

 sca_tdf::sca_signal<double> t_enbl_k;

 sca_tdf::sca_signal<double> t_enbl_pls;

 sca_tdf::sca_signal<bool> t_pls;

 sca_tdf::sca_signal<bool> t_att, t_att10, t_att100;

 sca_tdf::sca_signal<bool> t_amp1, t_amp10, t_amp100, t_amp1000;

 sca_tdf::sca_signal<double> t_sine_out;

 sca_tdf::sca_signal<double> t_buff_sig;

 sca_tdf::sca_signal<double> t_k_val;

 sca_tdf::sca_signal<double> t_shftsig;

 sc_signal<sc_uint<8>> adcsign_8;

 sca_eln::sca_node t_modsignal;

 sca_eln::sca_node t_shftsignal;

 sca_tdf::sca_signal<double> t_SHsignal;

 //Setting system clock

const sc_time t_period(10, SC_PS);

 sc_clock clk("clk", t_period);

 //Driver module

syst_driver dr("Driver_Module");

82

 dr.d_frequency(t_frequency);

 dr.d_ampl(t_amp);

 dr.clock(clk);

 dr.enbl_out(t_enbl_ctrl);

 //Control unit module

ctrl ct("Control_Unit");

 ct.infrq(t_frequency);

 ct.enabl(t_enbl_ctrl);

 ct.enb_k(t_enbl_k);

 ct.enb_pls_gen(t_enbl_pls);

 ct.k_val(t_k);

 //Signal source module

 sinewv sr("Signal_source");

 sr.inpfrq(t_frequency);

 sr.inpamp(t_amp);

 sr.att10(t_att10);

 sr.att100(t_att100);

 sr.amp1(t_amp1);

 sr.amp10(t_amp10);

 sr.amp100(t_amp100);

 sr.amp1000(t_amp1000);

 sr.out(t_buff_sig);

 sr.shiftsig(t_shftsig);

 //Buffer module

buff b("Buffer");

 b.sigin(t_buff_sig);

 b.swtch10(t_att10);

 b.swtch100(t_att100);

 b.sigout(t_sine_out);

 //K value source module

kvals ks("K_source");

 ks.enbl_in(t_enbl_k);

 ks.frein(t_sine_out);

 ks.k_val(t_k_val);

 //Modulator module

modgain md("Modulator");

 md.vin(t_sine_out);

 md.amp1(t_amp1);

 md.amp10(t_amp10);

 md.amp100(t_amp100);

 md.amp1000(t_amp1000);

 md.vout(t_modsignal);

 //Shifter module

shft sh("Shifter");

 sh.dcin(t_shftsig);

 sh.sigin(t_modsignal);

 sh.sigout(t_shftsignal);

83

 //Pulse generator module

pulses p("Pulse_Generator");

 p.enb(t_enbl_pls);

 p.inpfrq(t_frequency);

 p.pulsout(t_pls);

 //Sample and Hold module

 samphold sp("SampleAndHold");

 sp.vin(t_shftsignal);

 sp.vout(t_SHsignal);

 sp.pulsin(t_pls);

 //ADC module

theadc dc("ADC");

 dc.pulsin(t_pls);

 dc.anlgsigin(t_SHsignal);

 dc.adcout8(adcsign_8);

 // Tracing waveforms

 sca_util::sca_trace_file *anatf =

sca_util::sca_create_vcd_trace_file("WaveForms");

 cout << "Start tracing waveforms " << endl;

 sca_util::sca_trace(anatf, t_buff_sig, "S(t)");

 sca_util::sca_trace(anatf, t_modsignal, "KS(t)_Mod_out");

 sca_util::sca_trace(anatf, t_pls, "Pulses");

 sca_util::sca_trace(anatf, t_SHsignal ,"KS(t)H(nT)");

 sca_util::sca_trace(anatf, adcsign_8, "D8(n)");

 sca_util::sca_trace(anatf, t_att10, "Attenuate_by_10");

 sca_util::sca_trace(anatf, t_att100, "Attenuate_by_100");

 sca_util::sca_trace(anatf, t_amp1, "Amplify_by_1");

 sca_util::sca_trace(anatf, t_amp10, "Amplify_by_10");

 sca_util::sca_trace(anatf, t_amp100, "Amplify_by_100");

 sca_util::sca_trace(anatf, t_amp1000, "Amplify_by_1000");

 //Simulation period

sc_start(1, SC_US);

 sca_util::sca_close_vcd_trace_file(anatf);

 cout << "Finished tracing waveforms" << endl;

 return (0);

}

84

APPENDIX B: SIGNAL GENERATOR CODES

B.1: Digital Signal Generator Module Code

//Include header files

#include "systemc-ams.h"

#include "systemc.h"

#include "math.h"

SCA_TDF_MODULE(siggen)

{

 //Module ports

 sca_tdf::sc_in<double> inpfrq;

 sca_tdf::sca_in<double> theclock;

 sca_tdf::sc_out< sc_uint<8> > sineout;

 sca_tdf::sc_out< sc_uint<8> > swthout;

 sca_tdf::sc_out< sc_uint<8> > trgout;

 sca_tdf::sca_out<bool> sqrout;

 //Module constructor

siggen(sc_core::sc_module_name nm, double swthval_ = 0.0,

double trgval_ = 0.0, double myclkT_ = 0.00, double i_ = 0,

int itr_ = 0, int j_ = 0, int x_ = 0, int cycls_ = 0,

 sca_core::sca_time tm_ = sca_core::sca_time(10.0, sc_core::SC_NS))

: sineout("sineout"), inpfrq("inpfrq"), trgout("trgout"),

sqrout("sqrout"), tm(tm_),swthout("swthout"),

theclock("theclock"),i(i_), itr(itr_), j(j_), x(x_),

cycls(cycls_), myclkT(myclkT_)

 {}

 void set_attributes()

 {

 set_timestep(tm);

 }

 void processing()

 {

 //process done when pulse is high

if (theclock.read() == 1)

 {

 //Generate signals

 int sampls, samplstr;

 double trgval1;

 double freq = (inpfrq.read());

 s = 20;

 sf = s / 2;

 sampls = 1 / ((20e-9) * freq);

 myclkT = 1 / (10 * freq);

 samplstr = sampls / 2;

 double t = get_time().to_seconds();

 sinval = (100 + (100 * std::sin(2.0 * 3.142 * freq * t)));

 cycls = cycls + 1;

 //saw tooth wave

85

 if (i <= s)

 {

 swthval = i * 100 / s;

 i = i + 1;

 }

 else

 {

 swthval = 0.0;

 i = 0;

 x = x + 1;

 if (x == 4)

 {

 i_time = get_time().to_seconds();

 cycls = 0;

 }

 if (x == 14)

 {

 f_time = get_time().to_seconds();

 time_diff = f_time - i_time;

 avtimepc = time_diff / cycls;

 int y = x - 4;

 double avtmpercycl = ((time_diff) / y);

 double totalsampls = (sampls * 4);

 double instpercycle = ((samplstr * 117) +

(samplstr * 121));

 double tmprinst = avtmpercycl / instpercycle;

 double oprtgfrq = 1 / tmprinst;

 }

 }

 //Triangle and square waves

 if (itr <= sf)

 {

 trgval = itr * 100 / sf;

 sqrout.write(1);

 trgvals[itr] = trgval;

 itr = itr + 1;

 j = j + 1;

 }

 else

 {

 if (itr <= s)

 {

 trgval = trgvals[j - 1];

 sqrout.write(0); //square wave

 itr = itr + 1;

 j = j - 1;

 }

 else

 {

 trgval = 0;

 itr = 0;

 j = 0;

 }

 }

86

 //generate digital signals

 for (int i = 0; i < 8; i++)

 {

 //sinewave conversion

 rsn = ((int)sinval) % 2;

 dsn = (int)sinval / 2;

 binsinval[i] = rsn;

 sinval = dsn;

 //sawtooth conversion

 rsw = ((int)swthval) % 2;

 dsw = (int)swthval / 2;

 binswval[i] = rsw;

swthval = dsw;

 //triangle conversion

 rtg = ((int)trgval) % 2;

 dtg = (int)trgval / 2;

 bintgval[i] = rtg;

 trgval = dtg;

 }

//output signals

 sineout.write(binsinval);

 swthout.write(binswval);

 trgout.write(bintgval);

 }

 }

private:

 double swthval, trgval, trgvals[1000];

 double sinval, swval, tgval;

 double i, x;

 double i_time, f_time, time_diff;

 double frqval, avtimepc;

 int j, itr;

 int rsn, dsn;

 int rsw, dsw;

 int rtg, dtg;

 int cycls, s, sf;

 sc_uint<8> binsinval, binswval, bintgval;

 sca_core::sca_time tm;

 double myclkT, myclk;

};

B.2: DAC Functional Model Code

#include "systemc-ams.h"

#include "systemc.h"

#include "math.h"

SCA_TDF_MODULE (dac)

{

 //Module ports

87

 sca_tdf::sc_in< sc_uint<8> > sine_in;

 sca_tdf::sc_in< sc_uint<8> > saw_in;

 sca_tdf::sc_in< sc_uint<8> > triangle_in;

 sca_tdf::sca_out<double> sine_out;

 sca_tdf::sca_out<double> saw_out;

 sca_tdf::sca_out<double> triangle_out;

 //module constructor

dac(sc_core::sc_module_name nm,

 double sval_ = 0.0, double swval_ = 0.0, double tgval_ = 0.0,

 sca_core::sca_time tm_ = sca_core::sca_time(20.0, sc_core::SC_NS))

 : sine_in("sine_in"), saw_in("saw_in"), triangle_in("triangle_in"),

 sine_out("sine_out"), saw_out("saw_out"),

triangle_out("triangle_out"),

 sval(sval_), swval(swval_), tgval(tgval_),

 tm(tm_)

 {}

 void set_attributes()

 {

 set_timestep(tm);

 }

 void processing()

 {

 //convert signals

 sinval = sine_in.read();

 sawval = saw_in.read();

 trgval = triangle_in.read();

 for (int i = 0; i<8; i++)

 {

 sval = sval + (sinval[i]* (pow(2,i)));

 swval = swval + (sawval[i]* (pow(2,i)));

 tgval = tgval + (trgval[i]* (pow(2,i)));

 }

 //Output signals

 sine_out.write(sval);

 saw_out.write(swval);

 triangle_out.write(tgval);

 sval = 0;

 swval = 0;

 tgval = 0;

 }

private:

 double sval, swval, tgval;

 sc_uint<8> sinval, sawval, trgval;

 sca_core::sca_time tm;

};

B.3: Signal Generator Functional Model Test Bench Code

//Include modules

#include "systemc-ams.h"

#include "thedriver.h"

#include "theClkGen.cpp"

#include "signalgen.cpp"

88

#include "theDAC.cpp"

int sc_main(int argc, char *argv[])

{

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",

SC_DO_NOTHING);

 //define signals for module connection

sc_signal<double> t_frequency;

 sca_tdf::sca_signal<double> t_sine;

 sca_tdf::sca_signal<double> t_swth;

 sca_tdf::sca_signal<double> t_trgl;

 sca_tdf::sca_signal<bool> t_sqr;

 sc_core::sc_signal<double> t_desine;

 sc_core::sc_signal<double> t_deswth;

 sc_core::sc_signal<double> t_detrgl;

 sca_tdf::sca_signal<double> t_sampclk;

 sc_signal<sc_uint<8> > t_dgsine;

 sc_signal<sc_uint<8> > t_dgswth;

 sc_signal<sc_uint<8> > t_dgtgth;

 sca_tdf::sca_signal<double> t_anasine;

 sca_tdf::sca_signal<double> t_anaswth;

 sca_tdf::sca_signal<double> t_anatrgl;

 // declare a time constant for the system clock

 const sc_time t_period(10, SC_NS);

 sc_clock clk("clk", t_period);

//Driver module

syst_driver dr("Driver_Module");

 dr.d_frequency(t_frequency);

 dr.clock(clk);

 //Sampling clock generator module

sampclk scl("SamplingClock");

 scl.d_frequency(t_frequency);

 scl.spclk(t_sampclk);

 //Signal generator module

 siggen sg("SignalGen");

 sg.inpfrq(t_frequency);

 sg.theclock(t_sampclk);

 sg.sineout(t_dgsine);

 sg.swthout(t_dgswth);

 sg.trgout(t_dgtgth);

 sg.sqrout(t_sqr);

 //DAC module

theDAC dc("DAC");

 dc.sine_in(t_dgsine);

 dc.saw_in(t_dgswth);

 dc.triangle_in(t_dgtgth);

 dc.sine_out(t_anasine);

 dc.saw_out(t_anaswth);

 dc.triangle_out(t_anatrgl);

89

 // Tracing waveforms

 sca_util::sca_trace_file *anatf =

sca_util::sca_create_vcd_trace_file("WaveFormsFile");

 cout << "Start tracing waveforms " << endl;

 sca_util::sca_trace(anatf, clk, "SystemClock");

 sca_util::sca_trace(anatf, t_sampclk, "SamplingClock");

 sca_util::sca_trace(anatf, t_sqr, "Square");

 sca_util::sca_trace(anatf, t_anasine, "S(t)_Sine");

 sca_util::sca_trace(anatf, t_anaswth, "S(t)_Sawtooth");

 sca_util::sca_trace(anatf, t_anatrgl, "S(t)_Triangle");

 //Simulation period

 sc_start(250, SC_MS);

 //sc_close_vcd_trace_file (digtf);

 sca_util::sca_close_vcd_trace_file(anatf);

 cout << "Finished tracing waveforms\a\a" << endl;

 return (0);

}

B.4: Phase Increment Value Generator module code

#include "the_phase_increment.h"

#include "math.h"

void calc_pinc::prc_calc_pinc()

{

 //Variable declaration

 Double frequency_var;

 double pinc_var;

 double val1, val2, val3;

 frequency_var = frequency.read();

 val1 = frequency_var / 200000000;//200000000 is the sampling frequency

 val2 = val1 * 268435456; //268435456 = 2^28

 val3 = val2 + 0.5;

 pinc_var = val3;

 pinc.write(pinc_var); //phase value output

}

B.5: Phase Value Accumulator module code

#include "the_phase_accumulator.h"

#include <iostream>

void ph_acc::prc_phase_accumulation()

{

 sc_uint<28> x; // used to avoid writing to port before if statement

 x = ((ph_acc_reg.read()) + (pinc.read()));

 ph_acc_reg.write(x);

}

90

B.6: Generator module code

#include "systemc-ams.h"

#include "the_digital_signal_generator.h"

void ph_to_amplitude::prc_ph_to_amplitude()

{

 //Look-Up-Table

sc_uint<32> amplitude[256] =

 {

 100, 102, 105, 107, 110, 112, 115, 117,

 120, 122, 124, 127, 129, 131, 134, 136,

 138, 141, 143, 145, 147, 149, 151, 153,

 156, 158, 160, 162, 163, 165, 167, 169,

 171, 172, 174, 176, 177, 179, 180, 182,

 183, 184, 186, 187, 188, 189, 190, 191,

 192, 193, 194, 195, 196, 196, 197, 198,

 198, 199, 199, 199, 200, 200, 200, 200,

 200, 200, 200, 200, 200, 199, 199, 199,

 198, 198, 197, 196, 196, 195, 194, 193,

 192, 191, 190, 189, 188, 187, 186, 184,

 183, 182, 180, 179, 177, 176, 174, 172,

 171, 169, 167, 165, 163, 162, 160, 158,

 156, 153, 151, 149, 147, 145, 143, 141,

 138, 136, 134, 131, 129, 127, 124, 122,

 120, 117, 115, 112, 110, 107, 105, 102,

 100, 98, 95, 93, 90, 88, 85, 83,

 80, 78, 76, 73, 71, 69, 66, 64,

 62, 59, 57, 55, 53, 51, 49, 47,

 44, 42, 40, 38, 37, 35, 33, 31,

 29, 28, 26, 24, 23, 21, 20, 18,

 17, 16, 14, 13, 12, 11, 10, 9,

 8, 7, 6, 5, 4, 4, 3, 2,

 2, 1, 1, 1, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 1, 1, 1,

 2, 2, 3, 4, 4, 5, 6, 7,

 8, 9, 10, 11, 12, 13, 14, 16,

 17, 18, 20, 21, 23, 24, 26, 28,

 29, 31, 33, 35, 37, 38, 40, 42,

 44, 47, 49, 51, 53, 55, 57, 59,

 62, 64, 66, 69, 71, 73, 76, 78,

 80, 83, 85, 88, 90, 93, 95, 98,

 };

 sc_uint<28> quantized_ph_acc_var;

 sc_uint<8> sine_amp_out;

 sc_uint<8> ph_acc;

 sc_uint<8> ph_acc1;

 quantized_ph_acc_var = ph_acc_reg.read();

 ph_acc1 = quantized_ph_acc_var >> 20; //shifts to get the 8 MSB

 sine_amp_out = (amplitude[ph_acc1]);

 sine_out8 = (sine_amp_out); //sine wave output

}

91

B.7: DAC Non-Functional Model Code

#include "systemc-ams.h"

#include "systemc.h"

#include "math.h"

SCA_TDF_MODULE (dac)

{

 //Module ports

 sca_tdf::sc_in< sc_uint<8> > sine_in;

 sca_tdf::sca_out<double> sine_out;

//Module Constructor

dac(sc_core::sc_module_name nm,

 double sval_ = 0.0, double swval_ = 0.0,

 sca_core::sca_time tm_ = sca_core::sca_time(20.0, sc_core::SC_NS))

 : sine_in("sine_in"),sine_out("sine_out"),

 sval(sval_), swval(swval_), tm(tm_)

 {}

 void set_attributes()

 {

 set_timestep(tm);

 }

 void processing()

 {

 //convert waves

 sinval = sine_in.read();

 for (int i = 0; i<8; i++)

 {

 sval = sval + (sinval[i]* (pow(2,i)));

 }

 sine_out.write(sval);

 sval = 0;

 }

private:

 double sval;

 sc_uint<8> sinval;

 sca_core::sca_time tm;

};

B.8: Signal Generator None-Functional Test Bench Code

//Include modules

#include "systemc-ams.h"

#include "thedriver.h"

#include "theSamplingClockGen.cpp"

#include"the_phase_accumulator.h"

#include"the_phase_increment.h"

#include "the_digital_signal_generator.h"

#include "theDAC.cpp"

int sc_main(int argc, char *argv[])

{

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",

SC_DO_NOTHING);

92

 //Declaration of signals

 sc_signal<sc_uint<28> > t_frequency;

 sc_signal<double> t_amp, t_sel, t_tmr;

 sc_signal<sc_uint<28> > t_phsincr;

 sc_signal<sc_uint<28> > t_ph_acc_reg;

 sc_signal<sc_uint<8> > t_sine_out;

 sc_signal<bool> t_sampclk;

 //System clock definition

 const sc_time t_period(10, SC_NS);

 sc_clock clk("clk", t_period);

 //Driver module

syst_driver dr("Driver_Module");

 dr.d_frequency(t_frequency);

 dr.d_ampl(t_amp);

 dr.d_signsel(t_sel);

 dr.clock(clk);

 //Sampling clock generator module

samp_clk sclk("SamplingClock");

 sclk.clock(clk);

 sclk.d_frequency(t_frequency);

 sclk.d_sampclk(t_sampclk);

 //Phase increment module

calc_pinc phsinc("PhaseIncrement");

 phsinc.clock(clk);

 phsinc.frequency(t_frequency);

 phsinc.pinc(t_phsincr);

 //Phase accumulator module

ph_acc phsacum("PhaseAccumulator");

 phsacum.clock(clk);

 phsacum.pinc(t_phsincr);

 phsacum.ph_acc_reg(t_ph_acc_reg);

 //Phase value to amplitude module

ph_to_amplitude pamp("Phase_to_Amplitude");

 pamp.ph_acc_reg(t_ph_acc_reg);

 pamp.clock(t_sampclk);

 pamp.sine_out8(t_sine_out);

 //DAC module

 theDAC dc("The_DAC");

 dc.sine_in(t_sine_out);

 dc.ampl_in(t_amp);

 dc.sign_sel(t_sel);

 dc.samp_in(t_sampclk);

 dc.sign_out(t_anlgsig);

 // Tracing waveforms

 sca_util::sca_trace_file *anatf =

sca_util::sca_create_vcd_trace_file("WaveForms");

93

 cout << "Start tracing waveforms " << endl;

 sca_util::sca_trace(anatf, t_sampclk, "Samp_Clock");

 sca_util::sca_trace(anatf, t_anlgsig, "S(t)");

 //Simulation period

 sc_start(10, SC_MS);

 sca_util::sca_close_vcd_trace_file(anatf);

 cout << "Finished tracing waveforms\a\a" << endl;

 return (0);

}

B.8: DAC Implementation Model Code

#include "systemc-ams.h"

#include "systemc.h"

SC_MODULE(dac)

{

 //input terminals

sca_eln::sca_terminal swdc0, swdc1, swdc2, swdc3, swdc4, swdc5;

sca_eln::sca_terminal swdc6, swdc7;

 sca_eln::sca_terminal stdc0, stdc1, stdc2, stdc3, stdc4, stdc5;

sca_eln::sca_terminal stdc6, stdc7;

 sca_eln::sca_terminal tgdc0, tgdc1, tgdc2, tgdc3, tgdc4, tgdc5;

sca_eln::sca_terminal tgdc6, tgdc7;

 //output terminals

 sca_eln::sca_terminal swdacout;

 sca_eln::sca_terminal stdacout;

 sca_eln::sca_terminal tgdacout;

 //Resistor declarations

 sca_eln::sca_r swr10, swr11, swr12, swr13, swr14, swr15, swr16;

sca_eln::sca_r swr17;

 sca_eln::sca_r str10, str11, str12, str13, str14, str15, str16;

sca_eln::sca_r str17;

 sca_eln::sca_r tgr10, tgr11, tgr12, tgr13, tgr14, tgr15, tgr16;

sca_eln::sca_r tgr17;

 sca_eln::sca_r swr2in, swr20, swr21, swr22, swr23, swr24, swr25;

sca_eln::sca_r swr26, swr27, swr2f;

 sca_eln::sca_r str2in, str20, str21, str22, str23, str24, str25;

sca_eln::sca_r str26, str27, str2f;

 sca_eln::sca_r tgr2in, tgr20, tgr21, tgr22, tgr23, tgr24, tgr25;

sca_eln::sca_r tgr26, tgr27, tgr2f;

 //Operational Amplifier declarations

 sca_eln::sca_nullor swnull1, stnull1, tgnull1;

 //Module Constructor connections

SC_CTOR(dac)

 : swdc0("sw5V_input0"), swdc1("sw5V_input1"),

swdc2("sw5V_input2"), swdc3("sw5V_input3"),

94

swdc4("sw5V_input4"),swdc5("sw5V_input5"),

swdc6("sw5V_input6"),swdc7("sw5V_input7"),

 swdacout("swsinewaveput_terminal"),

 stdc0("st5V_input0"), stdc1("st5V_input1"), stdc2("st5V_input2"),

stdc3("st5V_input3"), stdc4("st5V_input4"),stdc5("st5V_input5"),

stdc6("st5V_input6"),stdc7("st5V_input7"),

 stdacout("stsinewaveput_terminal"),

 tgdc0("tg5V_input0"), tgdc1("tg5V_input1"), tgdc2("tg5V_input2"),

tgdc3("tg5V_input3"), tgdc4("tg5V_input4"), tgdc5("tg5V_input5"),

tgdc6("tg5V_input6"),tgdc7("tg5V_input7"),

 tgdacout("tgsinewaveput_terminal"),

 swr10("swr10", 10.0e3), swr11("swr11", 10.0e3), swr12("swr12",

10.0e3), swr13("swr13", 10.0e3), swr14("swr14", 10.0e3),

swr15("swr15", 10.0e3),swr16("swr61", 10.0e3), swr17("swr17",

10.0e3),

 str10("str10", 10.0e3), str11("str11", 10.0e3), str12("str12",

10.0e3), str13("str13", 10.0e3), str14("str14", 10.0e3),

str15("str15", 10.0e3), str16("str61", 10.0e3), str17("str17",

10.0e3),

tgr10("tgr10", 10.0e3), tgr11("tgr11", 10.0e3), tgr12("tgr12",

10.0e3), tgr13("tgr13", 10.0e3), tgr14("tgr14", 10.0e3),

tgr15("tgr15", 10.0e3),tgr16("tgr61", 10.0e3), tgr17("tgr17",

10.0e3),

swr2in("swr2in", 20.0e3), swr20("swr20", 20.0e3), swr21("swr21",

20.0e3), swr22("swr22", 20.0e3), swr23("swr23", 20.0e3),

swr24("swr24", 20.0e3), swr25("swr25", 20.0e3),

 swr26("swr26", 20.0e3), swr27("swr27", 20.0e3), swr2f("swr2f",

-20.0e3),

str2in("str2in", 20.0e3), str20("str20", 20.0e3), str21("str21",

20.0e3), str22("str22", 20.0e3), str23("str23", 20.0e3),

str24("str24", 20.0e3), str25("str25", 20.0e3),

str26("str26", 20.0e3), str27("str27", 20.0e3), str2f("str2f", -

20.0e3),

tgr2in("tgr2in", 20.0e3), tgr20("tgr20", 20.0e3), tgr21("tgr21",

20.0e3), tgr22("tgr22", 20.0e3), tgr23("tgr23", 20.0e3),

tgr24("tgr24", 20.0e3), tgr25("tgr25", 20.0e3),

tgr26("tgr26", 20.0e3), tgr27("tgr27", 20.0e3), tgr2f("tgr2f", -

20.0e3),

swnull1("swNullator"), stnull1("stNullator"),

tgnull1("tgNullator"),swn("swn"), swn0("swn0"), swn1("swn1"),

swn2("swn2"), swn3("swn3"), swn4("swn4"), swn5("swn5"),

swn6("swn6"), swn7("swn7"), stn("stn"), stn0("stn0"),

stn1("stn1"), stn2("stn2"), stn3("stn3"), stn4("stn4"),

stn5("stn5"), stn6("stn6"), stn7("stn7"),tgn("tgn"),

tgn0("tgn0"), tgn1("tgn1"), tgn2("tgn2"), tgn3("tgn3"),

tgn4("tgn4"), tgn5("tgn5"), tgn6("tgn6"), tgn7("tgn7"),

95

 gnd("Ground")

 {

 //Component connections

swr2in.n(gnd); swr10.n(swn); swr11.n(swn0);

 swr12.n(swn1); swr13.n(swn2); swr14.n(swn3);

swr15.n(swn4); swr16.n(swn5); swr17.n(swn6);

 swr2in.p(swn); swr10.p(swn0); swr11.p(swn1);

swr12.p(swn2); swr13.p(swn3); swr14.p(swn4);

 swr15.p(swn5); swr16.p(swn6); swr17.p(swn7);

 swr2f.n(swn7);

 swr2f.p(swdacout);

 swr20.p(swn0); swr21.p(swn1); swr22.p(swn2);

swr23.p(swn3); swr24.p(swn4); swr25.p(swn5);

 swr26.p(swn6); swr27.p(swn7); swr20.n(swdc0);

 swr21.n(swdc1); swr22.n(swdc2); swr23.n(swdc3);

 swr24.n(swdc4); swr25.n(swdc5); swr26.n(swdc6);

 swr27.n(swdc7);

 //Op Amp null1 connections

 swnull1.nip(swn7);

 swnull1.nin(gnd);

 swnull1.nop(swdacout);

 swnull1.non(gnd);

 str2in.n(gnd); str10.n(stn); str11.n(stn0);

str12.n(stn1); str13.n(stn2); str14.n(stn3);

 str15.n(stn4); str16.n(stn5); str17.n(stn6);

 str2in.p(stn); str10.p(stn0); str11.p(stn1);

str12.p(stn2); str13.p(stn3); str14.p(stn4);

 str15.p(stn5); str16.p(stn6); str17.p(stn7);

 str2f.n(stn7);

 str2f.p(stdacout);

 str20.p(stn0); str21.p(stn1); str22.p(stn2);

str23.p(stn3); str24.p(stn4); str25.p(stn5);

 str26.p(stn6); str27.p(stn7);

 str20.n(stdc0); str21.n(stdc1); str22.n(stdc2);

str23.n(stdc3); str24.n(stdc4); str25.n(stdc5);

 str26.n(stdc6); str27.n(stdc7);

 //Op Amp null1 connections

 stnull1.nip(stn7);

 stnull1.nin(gnd);

 stnull1.nop(stdacout);

 stnull1.non(gnd);

 tgr2in.n(gnd); tgr10.n(tgn); tgr11.n(tgn0);

tgr12.n(tgn1); tgr13.n(tgn2); tgr14.n(tgn3);

 tgr15.n(tgn4); tgr16.n(tgn5); tgr17.n(tgn6);

 tgr2in.p(tgn); tgr10.p(tgn0); tgr11.p(tgn1);

tgr12.p(tgn2); tgr13.p(tgn3); tgr14.p(tgn4);

 tgr15.p(tgn5); tgr16.p(tgn6); tgr17.p(tgn7);

96

 tgr2f.n(tgn7);

 tgr2f.p(tgdacout);

 tgr20.p(tgn0); tgr21.p(tgn1); tgr22.p(tgn2);

tgr23.p(tgn3); tgr24.p(tgn4); tgr25.p(tgn5);

 tgr26.p(tgn6); tgr27.p(tgn7);

 tgr20.n(tgdc0); tgr21.n(tgdc1); tgr22.n(tgdc2);

tgr23.n(tgdc3); tgr24.n(tgdc4); tgr25.n(tgdc5);

 tgr26.n(tgdc6); tgr27.n(tgdc7);

 //Op Amp null1 connections

 tgnull1.nip(tgn7);

 tgnull1.nin(gnd);

 tgnull1.nop(tgdacout);

 tgnull1.non(gnd);

 }

private:

 sca_eln::sca_node swn, swn0, swn1, swn2, swn3, swn4, swn5, swn6, swn7;

 sca_eln::sca_node stn, stn0, stn1, stn2, stn3, stn4, stn5, stn6, stn7;

 sca_eln::sca_node tgn, tgn0, tgn1, tgn2, tgn3, tgn4, tgn5, tgn6, tgn7;

 sca_eln::sca_node ncon;

 sca_eln::sca_node_ref gnd;

};

B.9: Signal Generator Implementation Model Test Bench Code

//Include modules

#include "systemc-ams.h"

#include "thedriver.h"

#include"thephase_accumulator.h"

#include"thephase_increment.h"

#include "theDigital_signal_generator.h"

#include "thedcsource.cpp"

#include "thetdf2lsfconverter.cpp"

#include "thelsf2elnconverter.cpp"

#include "theDACmultiplexer.cpp"

#include "theDAC.cpp"

int sc_main(int argc, char *argv[])

{

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",

SC_DO_NOTHING);

 //Signal declarations

 sc_signal<sc_uint<28> > t_frequency;

 sc_signal<sc_uint<28> > t_phsincr;

 sc_signal<sc_uint<28> > t_ph_acc_reg;

 sc_signal<double> t_amp;

 sc_signal<bool> t_square_out;

 sc_signal<sc_uint<8> > t_saw_out;

 sc_signal<sc_uint<8> > t_sine_out;

 sc_signal<sc_uint<8> > t_triangle_out;

 sc_signal<sc_uint<8> > t_sel_sign_to_DACMUX;

97

 //Sine wave connecting signals

 sca_tdf::sca_signal<double> t_swtdfdc05, t_swtdfdc15, t_swtdfdc25;

sca_tdf::sca_signal<double> t_swtdfdc35, t_swtdfdc45, t_swtdfdc55;

sca_tdf::sca_signal<double> t_swtdfdc65, t_swtdfdc75;

sca_tdf::sca_signal<double> t_swtdfdc00, t_swtdfdc10, t_swtdfdc20;

sca_tdf::sca_signal<double> t_swtdfdc30, t_swtdfdc40, t_swtdfdc50;

sca_tdf::sca_signal<double> t_swtdfdc60, t_swtdfdc70;

sca_lsf::sca_signal<double> swlsfconvsig00, swlsfconvsig10;

sca_tdf::sca_signal<double> swlsfconvsig20, swlsfconvsig30;

sca_tdf::sca_signal<double> swlsfconvsig40, swlsfconvsig50;

sca_tdf::sca_signal<double> swlsfconvsig60, swlsfconvsig70;

sca_lsf::sca_signal<double> swlsfconvsig05, swlsfconvsig15;

sca_tdf::sca_signal<double> swlsfconvsig25, swlsfconvsig35;

sca_tdf::sca_signal<double> swlsfconvsig45, swlsfconvsig55;

sca_tdf::sca_signal<double> swlsfconvsig65, swlsfconvsig75;

sca_lsf::sca_signal <double> swlsfdc0, swlsfdc1, swlsfdc2, swlsfdc3;

sca_lsf::sca_signal <double> swlsfdc4, swlsfdc5, swlsfdc6, swlsfdc7;

sc_signal<bool> t_swb0, t_swb1, t_swb2, t_swb3, t_swb4, t_swb5;

sc_signal<bool> t_swb6, t_swb7;

 sca_eln::sca_node t_sinDACout;

 sca_eln::sca_node t_swelndc0, t_swelndc1, t_swelndc2, t_swelndc3;

sca_eln::sca_node t_swelndc4, t_swelndc5, t_swelndc6, t_swelndc7;

 //SawTooth connecting signals

 sca_tdf::sca_signal<double> t_sttdfdc00, t_sttdfdc10, t_sttdfdc20;

sca_tdf::sca_signal<double> t_sttdfdc30, t_sttdfdc40, t_sttdfdc5;

sca_tdf::sca_signal<double> t_sttdfdc60, t_sttdfdc70;

sca_tdf::sca_signal<double> t_sttdfdc05, t_sttdfdc15, t_sttdfdc25;

sca_tdf::sca_signal<double> t_sttdfdc35, t_sttdfdc45, t_sttdfdc55;

sca_tdf::sca_signal<double> t_sttdfdc65, t_sttdfdc75;

sca_lsf::sca_signal stlsfconvsig00, stlsfconvsig10, stlsfconvsig20;

sca_lsf::sca_signal stlsfconvsig30, stlsfconvsig40, stlsfconvsig50;

sca_lsf::sca_signal stlsfconvsig60,stlsfconvsig70;

sca_lsf::sca_signal stlsfconvsig05, stlsfconvsig15, stlsfconvsig25;

sca_lsf::sca_signal stlsfconvsig35, stlsfconvsig45, stlsfconvsig55;

sca_lsf::sca_signal stlsfconvsig65, stlsfconvsig75;

sca_lsf::sca_signal stlsfdc0, stlsfdc1, stlsfdc2, stlsfdc3;

sca_lsf::sca_signal stlsfdc4, stlsfdc5, stlsfdc6, stlsfdc7;

sc_signal<bool> t_stb0, t_stb1, t_stb2, t_stb3, t_stb4, t_stb5;

sc_signal<bool> t_stb6, t_stb7;

 sca_eln::sca_node t_sawthDACout;

 sca_eln::sca_node t_stelndc0, t_stelndc1, t_stelndc2, t_stelndc3;

sca_eln::sca_node t_stelndc4, t_stelndc5, t_stelndc6, t_stelndc7;

 //Triangle wave connecting signals

 sca_tdf::sca_signal<double> t_tgtdfdc05, t_tgtdfdc15, t_tgtdfdc25;

sca_tdf::sca_signal<double> t_tgtdfdc35, t_tgtdfdc45, t_tgtdfdc55;

sca_tdf::sca_signal<double> t_tgtdfdc65, t_tgtdfdc75;

sca_tdf::sca_signal<double> t_tgtdfdc00, t_tgtdfdc10, t_tgtdfdc20;

sca_tdf::sca_signal<double> t_tgtdfdc30, t_tgtdfdc40, t_tgtdfdc50;

sca_tdf::sca_signal<double> t_tgtdfdc60, t_tgtdfdc70;

sca_lsf::sca_signal tglsfconvsig00, tglsfconvsig10, tglsfconvsig20;

sca_lsf::sca_signal tglsfconvsig30, tglsfconvsig40, tglsfconvsig50;

sca_lsf::sca_signal tglsfconvsig60, tglsfconvsig70;

98

sca_lsf::sca_signal tglsfconvsig05, tglsfconvsig15, tglsfconvsig25;

sca_lsf::sca_signal tglsfconvsig35, tglsfconvsig45, tglsfconvsig55;

sca_lsf::sca_signal tglsfconvsig65, tglsfconvsig75;

sca_lsf::sca_signal tglsfdc0, tglsfdc1, tglsfdc2, tglsfdc3, tglsfdc4;

sca_lsf::sca_signal tglsfdc5, tglsfdc6, tglsfdc7;

sc_signal<bool> t_tgb0, t_tgb1, t_tgb2, t_tgb3, t_tgb4, t_tgb5;

sc_signal<bool> t_tgb6, t_tgb7;

 sca_eln::sca_node t_tgDACout;

 sca_eln::sca_node t_tgelndc0, t_tgelndc1, t_tgelndc2, t_tgelndc3;

sca_eln::sca_node t_tgelndc4, t_tgelndc5, t_tgelndc6, t_tgelndc7;

 //Declaring system clock

const sc_time t_period(20, SC_NS);

 sc_clock clk("clk", t_period);

 //Driver module

syst_driver dr("Driver_Module");

 dr.d_frequency(t_frequency);

 dr.clock(clk);

 //Phase increment module

calc_pinc phsinc("PhaseIncrement");

 phsinc.clock(clk);

 phsinc.frequency(t_frequency);

 phsinc.pinc(t_phsincr);

 //Phase accumulator module

ph_acc phsacum("PhaseAccumulator");

 phsacum.clock(clk);

 phsacum.pinc(t_phsincr);

 phsacum.ph_acc_reg(t_ph_acc_reg);

 //Phase value to amplitude module

ph_to_amplitude pamp("Phase_to_Amplitude");

 pamp.ph_acc_reg(t_ph_acc_reg);

 pamp.clock(clk);

 pamp.sine_out(t_sine_out);

 pamp.saw_out(t_saw_out);

 pamp.triangle_out(t_triangle_out);

pamp.swb0(t_swb0); pamp.swb1(t_swb1); pamp.swb2(t_swb2);

pamp.swb3(t_swb3); pamp.swb4(t_swb4);

 pamp.swb5(t_swb5); pamp.swb6(t_swb6); pamp.swb7(t_swb7);

pamp.stb0(t_stb0); pamp.stb1(t_stb1); pamp.stb2(t_stb2);

pamp.stb3(t_stb3); pamp.stb4(t_stb4);

 pamp.stb5(t_stb5); pamp.stb6(t_stb6); pamp.stb7(t_stb7);

pamp.tgb0(t_tgb0); pamp.tgb1(t_tgb1); pamp.tgb2(t_tgb2);

pamp.tgb3(t_tgb3); pamp.tgb4(t_tgb4);

 pamp.tgb5(t_tgb5); pamp.tgb6(t_tgb6); pamp.tgb7(t_tgb7);

 //Square wave binding

 pamp.square_out(t_square_out);

 //DC source module connections

 tgdcsrc tgdc("DC_Source");

 tgdc.swout05(t_swtdfdc05); tgdc.swout00(t_swtdfdc00);

99

 tgdc.swout15(t_swtdfdc15); tgdc.swout10(t_swtdfdc10);

 tgdc.swout25(t_swtdfdc25); tgdc.swout20(t_swtdfdc20);

 tgdc.swout35(t_swtdfdc35); tgdc.swout30(t_swtdfdc30);

 tgdc.swout45(t_swtdfdc45); tgdc.swout40(t_swtdfdc40);

 tgdc.swout55(t_swtdfdc55); tgdc.swout50(t_swtdfdc50);

 tgdc.swout65(t_swtdfdc65); tgdc.swout60(t_swtdfdc60);

 tgdc.swout75(t_swtdfdc75); tgdc.swout70(t_swtdfdc70);

 tgdc.stout05(t_sttdfdc05); tgdc.stout00(t_sttdfdc00);

 tgdc.stout15(t_sttdfdc15); tgdc.stout10(t_sttdfdc10);

 tgdc.stout25(t_sttdfdc25); tgdc.stout20(t_sttdfdc20);

 tgdc.stout35(t_sttdfdc35); tgdc.stout30(t_sttdfdc30);

 tgdc.stout45(t_sttdfdc45); tgdc.stout40(t_sttdfdc40);

 tgdc.stout55(t_sttdfdc55); tgdc.stout50(t_sttdfdc50);

 tgdc.stout65(t_sttdfdc65); tgdc.stout60(t_sttdfdc60);

 tgdc.stout75(t_sttdfdc75); tgdc.stout70(t_sttdfdc70);

 tgdc.tgout05(t_tgtdfdc05); tgdc.tgout00(t_tgtdfdc00);

 tgdc.tgout15(t_tgtdfdc15); tgdc.tgout10(t_tgtdfdc10);

 tgdc.tgout25(t_tgtdfdc25); tgdc.tgout20(t_tgtdfdc20);

 tgdc.tgout35(t_tgtdfdc35); tgdc.tgout30(t_tgtdfdc30);

 tgdc.tgout45(t_tgtdfdc45); tgdc.tgout40(t_tgtdfdc40);

 tgdc.tgout55(t_tgtdfdc55); tgdc.tgout50(t_tgtdfdc50);

 tgdc.tgout65(t_tgtdfdc65); tgdc.tgout60(t_tgtdfdc60);

 tgdc.tgout75(t_tgtdfdc75); tgdc.tgout70(t_tgtdfdc70);

 //TDF to LSF conversion module connections

 tgtdf2lsf tt("TDF2LSF_Converter");

 tt.swtdfin00(t_swtdfdc00); tt.swtdfin10(t_swtdfdc10);

 tt.swtdfin20(t_swtdfdc20); tt.swtdfin30(t_swtdfdc30);

 tt.swtdfin40(t_swtdfdc40); tt.swtdfin50(t_swtdfdc50);

 tt.swtdfin60(t_swtdfdc60); tt.swtdfin70(t_swtdfdc70);

 tt.swtdfin05(t_swtdfdc05); tt.swtdfin15(t_swtdfdc15);

 tt.swtdfin25(t_swtdfdc25); tt.swtdfin35(t_swtdfdc35);

 tt.swtdfin45(t_swtdfdc45); tt.swtdfin55(t_swtdfdc55);

 tt.swtdfin65(t_swtdfdc65); tt.swtdfin75(t_swtdfdc75);

 tt.sttdfin00(t_sttdfdc00); tt.sttdfin10(t_sttdfdc10);

 tt.sttdfin20(t_sttdfdc20); tt.sttdfin30(t_sttdfdc30);

 tt.sttdfin40(t_sttdfdc40); tt.sttdfin50(t_sttdfdc50);

 tt.sttdfin60(t_sttdfdc60); tt.sttdfin70(t_sttdfdc70);

 tt.sttdfin05(t_sttdfdc05); tt.sttdfin15(t_sttdfdc15);

 tt.sttdfin25(t_sttdfdc25); tt.sttdfin35(t_sttdfdc35);

 tt.sttdfin45(t_sttdfdc45); tt.sttdfin55(t_sttdfdc55);

 tt.sttdfin65(t_sttdfdc65); tt.sttdfin75(t_sttdfdc75);

 tt.tgtdfin00(t_tgtdfdc00); tt.tgtdfin10(t_tgtdfdc10);

 tt.tgtdfin20(t_tgtdfdc20); tt.tgtdfin30(t_tgtdfdc30);

 tt.tgtdfin40(t_tgtdfdc40); tt.tgtdfin50(t_tgtdfdc50);

 tt.tgtdfin60(t_tgtdfdc60); tt.tgtdfin70(t_tgtdfdc70);

 tt.tgtdfin05(t_tgtdfdc05); tt.tgtdfin15(t_tgtdfdc15);

 tt.tgtdfin25(t_tgtdfdc25); tt.tgtdfin35(t_tgtdfdc35);

 tt.tgtdfin45(t_tgtdfdc45); tt.tgtdfin55(t_tgtdfdc55);

 tt.tgtdfin65(t_tgtdfdc65); tt.tgtdfin75(t_tgtdfdc75);

 tt.swy00(swlsfconvsig00); tt.swy10(swlsfconvsig10);

 tt.swy20(swlsfconvsig20); tt.swy30(swlsfconvsig30);

 tt.swy40(swlsfconvsig40); tt.swy50(swlsfconvsig50);

 tt.swy60(swlsfconvsig60); tt.swy70(swlsfconvsig70);

 tt.swy05(swlsfconvsig05); tt.swy15(swlsfconvsig15);

100

 tt.swy25(swlsfconvsig25); tt.swy35(swlsfconvsig35);

 tt.swy45(swlsfconvsig45); tt.swy55(swlsfconvsig55);

 tt.swy65(swlsfconvsig65); tt.swy75(swlsfconvsig75);

 tt.sty00(stlsfconvsig00); tt.sty10(stlsfconvsig10);

 tt.sty20(stlsfconvsig20); tt.sty30(stlsfconvsig30);

 tt.sty40(stlsfconvsig40); tt.sty50(stlsfconvsig50);

 tt.sty60(stlsfconvsig60); tt.sty70(stlsfconvsig70);

 tt.sty05(stlsfconvsig05); tt.sty15(stlsfconvsig15);

 tt.sty25(stlsfconvsig25); tt.sty35(stlsfconvsig35);

 tt.sty45(stlsfconvsig45); tt.sty55(stlsfconvsig55);

 tt.sty65(stlsfconvsig65); tt.sty75(stlsfconvsig75);

 tt.tgy00(tglsfconvsig00); tt.tgy10(tglsfconvsig10);

 tt.tgy20(tglsfconvsig20); tt.tgy30(tglsfconvsig30);

 tt.tgy40(tglsfconvsig40); tt.tgy50(tglsfconvsig50);

 tt.tgy60(tglsfconvsig60); tt.tgy70(tglsfconvsig70);

 tt.tgy05(tglsfconvsig05); tt.tgy15(tglsfconvsig15);

 tt.tgy25(tglsfconvsig25); tt.tgy35(tglsfconvsig35);

 tt.tgy45(tglsfconvsig45); tt.tgy55(tglsfconvsig55);

 tt.tgy65(tglsfconvsig65); tt.tgy75(tglsfconvsig75);

 //DAC multiplexer module connections

 DACmux tgx("DAC_Multiplexer");

 tgx.swx00(swlsfconvsig00); tgx.swx10(swlsfconvsig10);

 tgx.swx20(swlsfconvsig20); tgx.swx30(swlsfconvsig30);

 tgx.swx40(swlsfconvsig40); tgx.swx50(swlsfconvsig50);

 tgx.swx60(swlsfconvsig60); tgx.swx70(swlsfconvsig70);

 tgx.swx05(swlsfconvsig05); tgx.swx15(swlsfconvsig15);

 tgx.swx25(swlsfconvsig25); tgx.swx35(swlsfconvsig35);

 tgx.swx45(swlsfconvsig45); tgx.swx55(swlsfconvsig55);

 tgx.swx65(swlsfconvsig65); tgx.swx75(swlsfconvsig75);

 tgx.stx00(stlsfconvsig00); tgx.stx10(stlsfconvsig10);

 tgx.stx20(stlsfconvsig20); tgx.stx30(stlsfconvsig30);

 tgx.stx40(stlsfconvsig40); tgx.stx50(stlsfconvsig50);

 tgx.stx60(stlsfconvsig60); tgx.stx70(stlsfconvsig70);

 tgx.stx05(stlsfconvsig05); tgx.stx15(stlsfconvsig15);

 tgx.stx25(stlsfconvsig25); tgx.stx35(stlsfconvsig35);

 tgx.stx45(stlsfconvsig45); tgx.stx55(stlsfconvsig55);

 tgx.stx65(stlsfconvsig65); tgx.stx75(stlsfconvsig75);

 tgx.tgx00(tglsfconvsig00); tgx.tgx10(tglsfconvsig10);

 tgx.tgx20(tglsfconvsig20); tgx.tgx30(tglsfconvsig30);

 tgx.tgx40(tglsfconvsig40); tgx.tgx50(tglsfconvsig50);

 tgx.tgx60(tglsfconvsig60); tgx.tgx70(tglsfconvsig70);

 tgx.tgx05(tglsfconvsig05); tgx.tgx15(tglsfconvsig15);

 tgx.tgx25(tglsfconvsig25); tgx.tgx35(tglsfconvsig35);

 tgx.tgx45(tglsfconvsig45); tgx.tgx55(tglsfconvsig55);

 tgx.tgx65(tglsfconvsig65); tgx.tgx75(tglsfconvsig75);

 tgx.swy0(swlsfdc0); tgx.swy1(swlsfdc1);

 tgx.swy2(swlsfdc2); tgx.swy3(swlsfdc3);

 tgx.swy4(swlsfdc4); tgx.swy5(swlsfdc5);

 tgx.swy6(swlsfdc6); tgx.swy7(swlsfdc7);

 tgx.sty0(stlsfdc0); tgx.sty1(stlsfdc1);

 tgx.sty2(stlsfdc2); tgx.sty3(stlsfdc3);

 tgx.sty4(stlsfdc4); tgx.sty5(stlsfdc5);

 tgx.sty6(stlsfdc6); tgx.sty7(stlsfdc7);

 tgx.tgy0(tglsfdc0); tgx.tgy1(tglsfdc1);

101

 tgx.tgy2(tglsfdc2); tgx.tgy3(tglsfdc3);

 tgx.tgy4(tglsfdc4); tgx.tgy5(tglsfdc5);

 tgx.tgy6(tglsfdc6); tgx.tgy7(tglsfdc7);

tgx.swb0(t_swb0); tgx.swb1(t_swb1); tgx.swb2(t_swb2); tgx.swb3(t_swb3);

tgx.swb4(t_swb4); tgx.swb5(t_swb5); tgx.swb6(t_swb6); tgx.swb7(t_swb7);

tgx.stb0(t_stb0); tgx.stb1(t_stb1); tgx.stb2(t_stb2); tgx.stb3(t_stb3);

tgx.stb4(t_stb4); tgx.stb5(t_stb5); tgx.stb6(t_stb6); tgx.stb7(t_stb7);

tgx.tgb0(t_tgb0); tgx.tgb1(t_tgb1); tgx.tgb2(t_tgb2); tgx.tgb3(t_tgb3);

tgx.tgb4(t_tgb4); tgx.tgb5(t_tgb5); tgx.tgb6(t_tgb6); tgx.tgb7(t_tgb7);

 //LSF to ELN conversion module connections

 tglsf2eln tgl("LSF_2_ELN_Converter");

 tgl.lsfswin0(swlsfdc0); tgl.lsfswin1(swlsfdc1);

 tgl.lsfswin2(swlsfdc2); tgl.lsfswin3(swlsfdc3);

 tgl.lsfswin4(swlsfdc4); tgl.lsfswin5(swlsfdc5);

 tgl.lsfswin6(swlsfdc6); tgl.lsfswin7(swlsfdc7);

 tgl.lsfstin0(stlsfdc0); tgl.lsfstin1(stlsfdc1);

 tgl.lsfstin2(stlsfdc2); tgl.lsfstin3(stlsfdc3);

 tgl.lsfstin4(stlsfdc4); tgl.lsfstin5(stlsfdc5);

 tgl.lsfstin6(stlsfdc6); tgl.lsfstin7(stlsfdc7);

 tgl.lsftgin0(tglsfdc0); tgl.lsftgin1(tglsfdc1);

 tgl.lsftgin2(tglsfdc2); tgl.lsftgin3(tglsfdc3);

 tgl.lsftgin4(tglsfdc4); tgl.lsftgin5(tglsfdc5);

 tgl.lsftgin6(tglsfdc6); tgl.lsftgin7(tglsfdc7);

 tgl.elnswout0(t_swelndc0); tgl.elnswout1(t_swelndc1);

 tgl.elnswout2(t_swelndc2); tgl.elnswout3(t_swelndc3);

 tgl.elnswout4(t_swelndc4); tgl.elnswout5(t_swelndc5);

 tgl.elnswout6(t_swelndc6); tgl.elnswout7(t_swelndc7);

 tgl.elnstout0(t_stelndc0); tgl.elnstout1(t_stelndc1);

 tgl.elnstout2(t_stelndc2); tgl.elnstout3(t_stelndc3);

 tgl.elnstout4(t_stelndc4); tgl.elnstout5(t_stelndc5);

 tgl.elnstout6(t_stelndc6); tgl.elnstout7(t_stelndc7);

 tgl.elntgout0(t_tgelndc0); tgl.elntgout1(t_tgelndc1);

 tgl.elntgout2(t_tgelndc2); tgl.elntgout3(t_tgelndc3);

 tgl.elntgout4(t_tgelndc4); tgl.elntgout5(t_tgelndc5);

 tgl.elntgout6(t_tgelndc6); tgl.elntgout7(t_tgelndc7);

 //DAC module connections

 theDAC tdac("The_DAC");

tdac.swdc0(t_swelndc0); tdac.swdc1(t_swelndc1); tdac.swdc2(t_swelndc2);

tdac.swdc3(t_swelndc3); tdac.swdc4(t_swelndc4); tdac.swdc5(t_swelndc5);

tdac.swdc6(t_swelndc6); tdac.swdc7(t_swelndc7);

tdac.swdacout(t_sinDACout);

tdac.stdc0(t_stelndc0); tdac.stdc1(t_stelndc1); tdac.stdc2(t_stelndc2);

tdac.stdc3(t_stelndc3); tdac.stdc4(t_stelndc4);tdac.stdc5(t_stelndc5);

tdac.stdc6(t_stelndc6); tdac.stdc7(t_stelndc7);

 tdac.stdacout(t_sawthDACout);

tdac.tgdc0(t_tgelndc0); tdac.tgdc1(t_tgelndc1); tdac.tgdc2(t_tgelndc2);

tdac.tgdc3(t_tgelndc3); tdac.tgdc4(t_tgelndc4); tdac.tgdc5(t_tgelndc5);

tdac.tgdc6(t_tgelndc6); tdac.tgdc7(t_tgelndc7);

102

 tdac.tgdacout(t_tgDACout);

 // Tracing waveforms

 sca_util::sca_trace_file *anatf =

sca_util::sca_create_vcd_trace_file("WaveForms");

 cout << "Start tracing waveforms " << endl;

 sca_util::sca_trace(anatf, t_saw_out, "D(n)_Saw");

 sca_util::sca_trace(anatf, t_sine_out, "D(n)_Sine");

 sca_util::sca_trace(anatf, t_triangle_out, "D(n)_Triangle");

 sca_util::sca_trace(anatf, t_square_out, "Square");

 sca_util::sca_trace(anatf, t_sawthDACout, "S(t)_Saw");

 sca_util::sca_trace(anatf, t_sinDACout, "S(t)_Sine");

 sca_util::sca_trace(anatf, t_tgDACout, "S(t)_Triangle");

 //Simulation period

sc_start(100, SC_US);

 sca_util::sca_close_vcd_trace_file(anatf);

 cout << "Finished tracing waveforms" << endl;

 return (0);

}

