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ABSTRACT 

The development of embedded analog mixed signal systems has been a challenge especially in 

understanding the specifications of the required components and functionality of the system 

under development during the development process. In addition, to understand the interaction of 

components operating with mixed signals has been a problem since there has been no way in 

which this can be handled effectively.   

Since the development of electronic systems start from the functional down to the 

implementation, a methodology that can be used in all the development levels is required.  In this 

work, a methodology that can be used to model and simulate embedded analogue mixed signal 

systems has been developed. This methodology, referred to as Model-Simulate-Refine-Synthesis 

(MSRS), has three stages – functional, non-functional and implementation. The three stages help 

the system developer to model and simulate in the three levels of system development. 

The MSRS methodology has been tested with two cases that are modeled and simulated using 

SystemC-AMS. The first case is the modeling and simulation of an oscilloscope. This case 

demonstrates the application of the methodology where analogue signals of different frequencies 

are sampled and displayed as digital waveforms. Among other things, architectural exploration 

seamlessly flows into implementation. In the second case, the same methodology has been used 

to model and simulate a signal generator. The simulation results are compared with a similar 

signal generator implemented in a Fusion FPGA. The waveforms produced by the Fusion FPGA 

are replicated by the simulated signal generator. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the study 

An Embedded Analog Mixed Signal (E-AMS) system is an electronic system integrated into a 

device or an appliance, aiming at making the behavior of the device more intelligent. It makes 

the device or appliance in question easier to operate or use, more energy efficient, safer, 

friendlier for the environment, and or perform better, (Broedes, 2010). To enlarge the flexibility 

and the maintainability, most E-AMS not only contain hardware but also contain software 

components (Mahne, 2011). The hardware components are either analog, digital or even both, 

depending on the requirements of the system. In most cases, the components are implemented as 

multi-processor systems on a single chip while others are a collection of discrete chips 

interconnected to form the embedded system. 

Developing E-AMS is generally complex. Gajski and Kuhn offer a way to deal with this 

complexity. In their approach, they propose four levels of domain abstractions and three levels of 

system development abstractions as shown in Figure 1.1 (Gajski & Kuhn, 1983). The Y-Chart 

explains the differences between different development tools and different development 

methodologies in which these tools are used.   

 
Figure 1.1: The Y-Chart (Gajski & Kuhn,  1983) 
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Behaviour is a representation of the system as a black box. This gives the functionality of the 

system where its outputs are described in terms of its inputs over a given time. This 

representation does not indicate in any way how the black box is build box or its structure. The 

stucture development presents the black box as a block diagram. The block diagram can be 

decomposed into a set of components and connections. The physical development brings in the 

element of dimensions to the structure. It specifies the physical size and the relative position of 

each component as well as the port and connection on the chip, printed circuit board or any other 

container. 

For the purpose of domain abstractions, the Y-Chart also empasizes circuit, logic, processor and 

system levels of abstraction shown by the concentric circles in Figure 1.1. The names of the 

abstraction levels are related to the kind of components generated at each particular level. This 

means that at circuit level, discrete components such as transistors, capacitors e.t.c. are 

generated. Logic gates and flip-flops are generated at logic level, special hardware components 

such as memory controllers at processor level and embedded systems consisting of processors, 

memories and other components generated at the system level. This framework provides a good 

starting point for system development. On top of this framework, methodologies have been 

developed to support modeling, automation and simulation (Gajski & Kuhn, 1983)  

Automation is most effective on standard E-AMS development. However automation relies on 

preconceived models and model transformations thus limiting innovation. On the other hand, 

modeling and simulation does not suffer those limitations. It is in this respect that a methodology 

based on modeling and simulation is chosen to be developed. Simulation of E-AMS requires the 

support of Analogue Mixed Signal (AMS) behavior at each level of abstraction. Due to this 

reason, the modeling formalisms should be based on models of computation that support the 

AMS behavior.  

In addition to modeling, architectural exploration is usually carried out in a simulation context. It 

involves the following steps: evaluation of the simulation results against specifications and 

adjustment of specifications. This may in turn lead to modification of architectural model. This is 

carried out for both functional and non-functional specifications.  
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System simulation requires developing and executing all the components of a system using a 

computer program before implementation of the system. Before the introduction of system 

simulation, developers used to development and fabricate the system before testing its 

functionality. This would lead to abandoning the system and developing a new system again in 

cases where the system fails to function as anticipated. This leads to wastage of resources and 

prolonged time to market (Gajski et al., 2009) (Barnasconi, et al., 2010).  System simulation and 

analysis helps the developer to ascertain the functionality of the system and the specifications of 

the components before implementation. For innovative systems, the behavior of the system may 

not be well understood. Simulation provides a preview of at least some of the behavior of the 

system. 

At the heart of every simulation is a simulation language. Some languages such as Electronic 

Circuit Analysis Program (ECAP) could simulate only hardware analog components (Jensen, 

1966), (Roberts & Harbourt, 1967). Simulation Program with Integrated Circuit Emphasis 

(SPICE) was developed and was capable of simulating and analyzing discrete analog 

components at circuit level of abstraction (Saxena, et al., 2012), (Dowell, 2011). Hardware 

Description Languages (HDLs) were developed to simulate discrete signals at Register Transfer 

Level (RTL) of abstraction (Gajski, et al., 2009), (Pedroni, 2004). These HDLs included Very 

High Speed Integrated Circuit Hardware Description Language (VHDL) (Ashenden, 2010) and 

Verilog. Later analog extensions were incoperated in VHDL (VHDL-AMS) and Verilog 

(Verilog-A) to handle analog hardware components simulation (Vachoux, 1998), (Zorzi, Franzk, 

& Speciale, 2003), (Thomas & Moorby, 2002), (Szermer, Daniel, & Napieralski, 2003). 

Although VHDL, Verilog, VHDL-AMS and Verilog-A could simulate both analog and digital 

hardware components (Pecheux, et al., 2005), the software components required in embedded 

systems were simulated using C and C++ languages (Black & Donovan, 2004). This led to 

failure of a common test bench which could be used in the simulation of both hardware and 

software components since the two categories of the simulation languages are different. Without 

a common test bench, the functionality of the hardware and software components of an 

embedded system could not be determined precisely.  
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A class library within C++ called SystemC was developed to be used in simulation of digital 

hardware components and software components of an embedded system (Black & Donovan, 

2004).  SystemC simulation kernel was not developed to handle modeling and simulation of 

analog and continuous-time systems but supports Transaction Level Modeling (TLM) (Cai & 

Gajski, 2003), (Ghenassia, 2005). TLM allows the developer to perform abstract modeling, 

simulation and development of discrete-event Hardware/Software (HW/SW) system 

architectures (Barnasconi et al., 2010), (Donlin, 2004). Although SystemC provides support for 

digital hardware and software integration simulation tests, it does not support analogue 

simulation tests. Therefore, SystemC lacks the support of describing analog behavior of 

embedded systems. Due to this challenge, Analog-Mixed-Signal (AMS) extensions has been 

introduced in SystemC (Barnasconi, et al., 2010) to generate SystemC class library called 

SystemC-AMS.   

SystemC-AMS extensions define language constructs with execution semantics for mixed-signal 

systems. The class definitions provided by the AMS language standard form the basis for the 

creation of a C++ class library implementation, used in combination with an Institute of 

Electrical and Electronics Engineering (IEEE) 1666-2005 compatible SystemC implementation. 

Such an implementation is used to create AMS system-level models to build an executable 

specification, to validate and optimize the E-AMS system architecture, to explore various 

algorithms, and to provide the development team with an operational virtual prototype of the 

entire E-AMS system. To support these use cases, the SystemC-AMS extensions define 

modeling formalisms to model E-AMS system-level behavior at discrete-time and continuous-

time levels of abstraction (Barnasconi, et al., 2010). The modeling formalisms include; Timed 

Data Flow (TDF), Linear Signal Flow (LSF), Electrical Linear Networks (ELN), Discrete Event 

(DE) and Discrete Time (DT). These modeling formalisms have defined execution semantics and 

therefore serve as models of computations (MoC). They guide development of executable E-

AMS models.  

1.2 Problem Statement 

There is a growing trend for tight interaction between embedded HW/SW systems and their 

analog physical environment. Consequently, systems in which digital HW/SW components are 
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interwoven with analog and mixed-signal components are realized. Such systems are called 

embedded systems or embedded analog mixed-signal systems (E-AMS).  Developing the E-

AMS systems becomes a challenge while trying to understand the interaction between the 

HW/SW and the analog and mixed-signal subsystems at the architectural level. Methodologies 

have been developed which are used to model and simulate these E-AMS system but they have 

some limitations. The limitations include lack of a common design tools to model both hardware 

and software components. They also lack the capability of modeling and simulation of E-AMS 

from the functional down to the implementation level. Due to these, new ways to develop the 

interacting HW/SW subsystems and the mixed-signal subsystems are required. SystemC-AMS 

provides an appropriate tool to support the modeling and simulation of interactions spanning 

functional level down to the implementation level and inclusive of software and both analogue 

and digital hardware (Barnasconi, et al., 2010), (Mähne, 2011). Therefore, a methodology that 

builds on these capabilities of SystemC-AMS is developed. 

1.3 Objectives 

1.3.1 General Objective 

The general objective of this work was to generate a methodology for modeling and simulation 

of Embedded Analog Mixed Signal (E-AMS) systems. 

1.3.2 Specific Objectives 

1. To generate functional, non-functional and system implementation models, each for its 

corresponding level in the design process 

2. To verify the functioning of each model through simulation process 

3. To validate the models by comparing its output with the stakeholders expectations 

4. To test the methodology through modeling and simulating an oscilloscope and a signal 

generator as case studies   

1.4 Justification and Significance 

System development process gives better results if  a methodology that helps the developers to 

model and simulate the system under development at all levels (functional level, architectural 

level and implementation level) and including both hardware (analog and digital) and software 
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components is used (Barnasconi, et al., 2010). Gajski et al, (2009) presents some methodologies 

which were developed to model and simulate electronic systems. These methodologies could 

make the system developers model and simulate the HW and SW components of the systems 

separately due to lack of a common design tools.  This could lead to the repeat of the design 

process if the HW and SW components failed to match and give the expected results.  

Also, the methodologies could help the system developer in modeling and simulation of the 

systems from the functional level down to the TLM level but not up to the implementation level. 

This would make the system developers repeat the design process if errors would occur at the 

implementation level where modeling and simulation was not being done.   

Therefore, in response to these limitations, this work provides system developers with a 

methodology that they can use in their development work to model and simulate analog, digital 

and software components concurrently. It also supports modeling and simulation from the 

system functional level down to the system implementation level. 

Further, the methodology readily supports architectural exploration, modeling and simulation 

seamlessly. This has been made possible by the use of SystemC-AMS as a support tool for this 

methodology. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Modeling and simulation is one of the fundamental processes required in development of E-

AMS systems. This chapter presents prior work done by different researchers on modeling and 

simulation methodologies used while developing E-AMS systems. 

2.2 Related research work 

In the development of E-AMS systems, modeling and simulation play a very important role in 

the development process. They are used to verify the functionality and properties of the whole 

system (Ptolemaeus, 2014), (Topper & Horner, 2013), (Karnane, Curtis & Goering, 2009) and 

further to that is part of the development process (Jeruchim, Balaban, & Shanmugan, 2006). 

Depending on the modeling and simulation tool, the simulation code can be used to verify the 

system and be downloaded into a Field Programmable Gate Array (FPGA) board for the 

implementation (Gajski et al., 2009). There have been different development methodologies 

since 1960s that explain the development process where simulation is involved (Sinha, et al., 

2001). Gajski et al. (2009) explains the evolution of the development methodologies since early 

1960s. In their discussion, three methodologies are presented which include Capture-and-

Simulate (CS), Describe-and-Synthesis (DS) and Specify-Explore-Refine (SER) methodology.  

In CS methodology, the software (SW) and hardware (HW) development was separated by a 

system gap. The system gap was a result of the SW developers and the HW developers using 

different tools. This gap was made worse by the fact that the developers could not work 

concurrently. The SW developers used to test algorithms and write the requirements document 

and the initial specification of the system under development. The specification used to be given 

to the HW developers to begin the hardware development. The HW developers used to start 

working with a block diagram based on the specification. In this case, the HW developers could 

not know if their development would meet the requirements on the specification until the gate-

level development was produced and simulated. Once the gate net-list was captured and 
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simulated, developers could determine whether the system worked as specified or not. 

Sometimes, the system did not work and the specification was changed to accommodate the 

desired behavior. Figure 2.1 shows a schematic diagram for the CS methodology. 

 
Figure 2.1: Capture-and-Simulate Methodology (Gajski et al.,2009) 

In 1980s, tools for logic synthesis were brought and significantly altered development flow by 

capturing both behavior and structure of the development at the logic level. The system 

developers specified first what they wanted in Boolean equations or Finite State Machines 

(FSM) descriptions and then the synthesis tools generated the implementation in terms of logic-

level net-lists. This formed the DS methodology presented in Figure 2.2. In this methodology the 

logic level net-list were automatically generated. Now, behavior could be simulated at 

function/specifications model and then after synthesis at the logic level net-list. This made it 

possible to verify by simulation the descriptions equivalence between function level and the gate 

level net-list. The FSM level of abstraction is however too low. It results in huge number of 

states for even moderately sized systems. In the late 1990s, the logic level had been abstracted to 

the RTL with the introduction of Cycle-Accurate (CA) modeling and synthesis. Even with the 

introduction of the two levels of abstraction (RTL and Logic) and two modeling abstractions on 

each level (behavioral and structural), the system gap found in the CS methodology was still 

existing since there was no relation between RTL and higher system level. 
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Figure 2.2: Describe-and-Synthesis Methodology (Gajski et al.,2009) 

Specify-Explore-Refine (SER) methodology presented in Figure 2.3 was introduced in early 

2000s and is still in use today. This methodology was aimed at closing the system gap existing in 

the CS and DS methodologies. To close the gap, a level of abstraction higher than both HW and 

SW level called the system level was devised and a methodology introduced that incorporates 

both SW and HW. Behavioral models are first devised at the System Level (SL). They are then 

synthesized to structural models and then simulated. 

 
Figure 2.3: Specify-Explore-Refine Methodology (Gajski et al.,2009) 
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The structural model is synthesized further to Cycle-Accurate (CA) model. The CA model 

represents the whole system under development and can be downloaded into an FPGA board or a 

microcontroller board using standard Computer Aided Development (CAD) tools provided by 

the board suppliers (Calva, et al., 2012). This leads to generation of system prototype. If all the 

synthesis and refinement tasks are automated, the prototype can be generated in a few weeks 

(Gajski, et al., 2009). This helps the system developer to save on time and effort (Najy, 2013), 

(Kodi, 2008). In addition, since the simulation helps the developer to ascertain the functionality 

of the system and the properties of any component to be used before implementation, then the 

system developer would not waste on resources by implementing a system with errors, which has 

to be abandoned. 

Besides the introduction of SER methodology and the CA model used in the implementation of 

the system prototype, simulation as part of the development process has other benefits as 

presented by different researchers. In a research done by Kelemenova et al. (2013), simulation 

plays a major role in performing development tradeoffs of the behavioral models of the mixed 

signal components of the system under development. This may be hard or even impossible to do 

on paper-based development reviews. Further, they emphasized on the point that the models used 

in the simulation, can be reused and elaborated to build and test more detailed developments. In 

their discussion, it comes out clear that the models used in the simulation can become the 

development artifacts from which hardware developers automatically generate Hardware 

Description Language (HDL) code. This is also presented by Mischkalla et al. (2010). 

Kelemenova et al. (2013) explain that, the developers learn more about system dynamics through 

simulation than from real systems because it provides details on some properties such as force, 

current, torque (just to mention but a few).  

Mathematical modeling and simulation tools provide an efficient approach for predicting 

operational behavior, correcting development errors, eliminating prototyping steps and reducing 

system components through component tradeoffs (Montealegre et al., 2013). This is essential to 

study the impact of cost and development modifications of E-AMS systems. Wilson and 

Mantooth (2013) explain that simulation of E-AMS helps the developer in analyzing many 

scenarios of electronic systems. It is also used in optimization of statistical context to evaluate 
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many variations and, further to that, helps in troubleshooting of the system as well as helping the 

developer to look inside the components within a development to enhance the developer’s 

understanding of the behavior of the system. 

To synopsize, it has been pointed out that the introduction of SER methodology was to close the 

system gap by rising of levels of abstraction to system level. Though the system gap problem 

was solved after introducing the SER methodology, it was only for the modeling and simulation 

of digital systems (Gajski, et al., 2009). E-AMS systems however embrace both analogue and 

digital subsystems. It is in this respect that the methodology is developed to provide a seamless 

modeling, architectural exploration and simulation support for E-AMS development.  
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CHAPTER THREE 

METHODOLOGY 

3.1. Introduction 

The development of any E-AMS system requires modeling, architectural exploration and 

simulation. This chapter presents a modeling, architectural exploration and simulation 

methodology that forms the basis of this work. A simple methodology that is similar to the one 

developed is presented in section 3.2. The purpose of section 3.2 is to provide a background 

helpful to understanding the Model-Simulate-Refine-Synthesis (MSRS) methodology that 

follows in section 3.3. Finally, in section 3.4, a modeling and simulation language called 

SystemC-AMS is presented. The modeling and simulation capabilities of this language are 

essential to the MSRS methodology.  

3.2. System Level Development Synthesis Methodology 

Gajski et al (2009) presents a system level development methodology that describes systems 

from behavioral level down to the architectural level. The methodology begins by describing the 

behavior of the system, which is presented as some model of computation such as a set of 

sequential and parallel processes communicating through message passing channels. The model 

executes on a platform defined after estimating some characteristics of the application. This 

executable code is also called application code. After defining the platform, it is partitioned and 

each partition assigned to a processor or Intellectual Property (IP) in the platform. The Model of 

Computation is mapped on the platform and a model that can be simulated is then generated. The 

model is simulated to verify that the application executes on the platform and satisfies the 

requirements of the system. This model is called the Transaction Level Model (TLM). 

After simulation, the results of the simulation are evaluated from which development 

optimization is carried out on the platform and/or the application code. It is also possible to 

change the mapping of the application to the platform. After satisfying the application code, 

platform and the mapping, each component is synthesized to generate an implementation level 

model. This model is called Pin Cycle-Accurate-Model (PCAM). The PCAM contains binaries 
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for downloading to processors and RTL descriptions for the HW parts in the platform. The 

PCAM is downloadable to standard FPGA boards for system prototyping whose results can be 

used for final optimization of the whole development. The methodology is presented in Figure 

3.1. 

 

Figure 3.1: System Level Development Synthesis Methodology (Gajski, et al., 2009) 

In the methodology presented in Figure 3.1, simulation is done only when TLM is generated. 

This approach may lead to development time wastage. If the development components are not 

meeting all the requirements, then the whole process has to be started again from the application 

model code, mapping and generation of the TLM. In addition, no simulation has been suggested 

for the PCAM model. This means that the errors in the model are detected during testing. While 

not all errors are detected by simulation, it is usually more economical to catch as many errors as 

possible at the earliest opportunity.  

Due to these limitations of the system level development methodology, Model-Simulate-Refine-

Synthesis (MSRS) methodology is developed. In this methodology, simulation and refining are 

done at every stage before moving to the next stage. The advantage of this methodology is that 
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the developer moves to the next stage only when sure of the current stage. This leads to saving 

development time. The developed methodology is presented in section 3.3. 

3.3 Model-Simulate-Refine-Synthesis Methodology 

The Model-Simulate-Refine-Synthesis (MSRS) is a methodology for developing E-AMS where 

modeling, simulation and architectural exploration are carried out. The methodology generates 

three main models, which include Functional model, Non-Functional model and Implementation 

model. The general view of the methodology is presented in Figure 3.2 and its details discussed 

in sections 3.3.1, 3.3.2 and 3.3.3. 

 

Figure 3.2: Model-Simulate-Refine-Synthesis Methodology 

3.3.1 Functional Model Generation 

The functional model is in the top-most level of the system development. In the functional level, 

stakeholders provide their expectations on the output of the system, i.e., the functional attributes 

of the system under development. Since the methodology follows an innovative approach, it is 
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not required of the developer and the stakeholders to specify accurately the system functional 

requirements since they may change during the development process. The components needed 

for the development of the system are not of much interest – what matters most is the 

functionality of the system. Consequently, the components of the system are presented as black 

boxes whose input output behaviors are specified.   

The black boxes are modeled as functions when outputs are independent of previous inputs (i.e 

stateless machine) and state machines when outputs depend on previous states. The black boxes 

are then combined to form the application model of the system (Barnasconi, et al., 2010). The 

application model is simulated and the results compared with what is expected of the system 

under development. If the simulation results are not matching with the expected results, then 

refinement is done. During refinement, if major changes related with the system functionality are 

required, then the stakeholders are consulted to give their views and contributions. On the other 

hand, if no major changes are required, then, the functional model is refined further by refining 

the database input to the model generation, to give refined model.  

Once the simulation of the application model yields satisfying results on the functionality of the 

system under development, an optimal functional model is generated. A block diagram for 

generating the optimal functional model is presented in Figure 3.3. 

 

Figure 3.3: Optimal Functional Model Generation 
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3.3.2 Non-Functional Model Generation  

The non-functional model is generated by synthesizing the functional model through combining 

the non-functional attributes from the stakeholders and knowledge related to architectural styles, 

patterns, components, platforms and tools. The non-functional model is simulated and refined to 

the expectations of the stakeholders and an optimal non-functional model is generated. The block 

diagram of generating the optimal non-functional model is presented in Figure 3.4. 

 

Figure 3.4: Optimal Non-Functional Model Generation 

3.3.3 Implementation Model Generation 

The optimal non-functional model is combined with the technologies from the HW and SW 

component technologies and tools to synthesize the system implementation model. In the 

synthesis, components and subsystems are integrated under a technology specific style or pattern. 

Before the integration, the interfaces of all components and subsystems must be modeled 

accurately and the interfaces and data types used in the models should match the actual 

functionality expected. The abstract communication used within the application models are 

replaced with concrete signals such as electrical voltages and currents or digital signals. Generic 
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electrical nodes, pins and buses can be used for analog and digital circuits respectively. These 

can be made implementation specific if the need arises.  

The implementation components are varied. For example some are analogue while others are 

digital. Component behaviors are also varied. Some may be discrete time or event driven, while 

others may be continuous time. Thus, different MoCs such as Process State Machines (PSM), 

Linear Signal Flow (LSF), Timed Data Flow (TDF), Electrical Linear Network (ELN) and 

Discrete Event (DE) are required for modeling of component behavior. Once the components are 

modeled, they are integrated to form the system implementation model. The system 

implementation model is simulated and refined until it gives desirable results. At this point, the 

system developer obtains refined system implementation model, which can also be referred to as 

the system virtual prototype. The block diagram of generating the implementation model is 

presented in Figure 3.5. 

 

Figure 3.5: System Virtual Prototype Model Generation 

The modeling, architectural exploration and simulation of E-AMS systems following the Model-

Simulate-Refine-Synthesis methodology presented is supported by SystemC-AMS discussed in 
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3.4. SystemC-AMS 

SystemC-AMS is an extension of SystemC, which can be used in modeling, and simulation of 

electronic systems up to the register level. The systems that can be modeled and simulated up to 

register level are only digital systems. Since E-AMS have both analogue and digital components, 

SystemC cannot be used to simulate the analogue components. Due to this limitation, SystemC-

AMS, which has a capability to model and simulate E-AMS systems, was developed. SystemC-

AMS has some strengths that makes it a better tool to be used with the developed MSRS 

methodology. 

3.4.1 The strengths of SystemC-AMS 

SystemC-AMS can work with five primitive MoCs, which help it to model and simulate any E-

AMS component. The MoCs are Linear Signal Flow (LSF), Timed Data Flow (TDF), Electrical 

Linear Network (ELN), Discrete Time (DT) and Discrete Event (DE) (Barnasconi, et al., 2011), 

(Vachoux, et al., 2004).    

The LSF MoC allows modeling of AMS behavior which is defined as relations between 

variables of a set of linear algebraic equations and is mostly used at the functional level since the 

system components are presented as functions. On the other hand, TDF MoC considers data as 

signals sampled in time. The signals are tagged at discrete points in time, which carry discrete or 

continuous values like amplitudes. This MoC provides behavior descriptions between analogue 

and digital descriptions and is used at the architectural level where component architectures are 

modeled. Similarly, the ELN MoC introduces the use of electrical primitives and their 

interconnections to model the system electrical components. The ELN is mostly used at the 

implementation level (Barnasconi, et al., 2010), (Vasilevski, et al., 2007). DE and DT MoCs, 

which are purely found in SystemC, are developed to model and simulate digital components 

(Black & Donovan, 2004).  

It is important to remember that SystemC models and simulates digital components and 

SystemC-AMS extensions model and simulate both analogue and digital components. Due to 

this fact, SystemC-AMS provides seamless modeling and simulation of the analog and digital 

components found in E-AMS systems.  
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SystemC-AMS has converter classes that enable systems with mixed signals to be modeled and 

simulated. The converter classes are used to transit from one MoC to another hence helping them 

to communicate. The converter classes are summarized in Tables 3.1, 3.2, 3.3 and 3.4. 

Table 3.1: DE to TDF, LSF and ELN MoCs Converter Classes 

 

Signal converter Class 

Interconnected modules 

Signal in Signal out 

sca_tdf::sca_de::sca_in DE signal TDF signal 

sca_lsf::sca_de::sca_source DE signal LSF signal 

sca_eln::sca_de::sca_vsource DE signal ELN voltage signal 

sca_eln::sca_de::sca_isource DE signal ELN current signal 

 

Table 3.2: TDF to DE, LSF and ELN MoCs Converter Classes 

Signal converter Class Interconnected Modules 

Signal In Signal Out 

sca_tdf::sca_de::sca_out TDF signal DE signal 

sca_lsf::sca_tdf::sca_source TDF signal LSF signal 

sca_eln::sca_tdf::sca_vsource TDF signal ELN voltage signal 

sca_eln::sca_tdf::sca_isource TDF signal ELN current signal 

 

Table 3.3: ELN to TDF and DE MoCs Converter Classes 

Signal converter Class Interconnected Modules 

Signal In Signal Out 

sca_eln::sca_tdf::sca_vsink ELN voltage signal TDF signal 

sca_eln::sca_tdf::sca_isink ELN current signal TDF signal 

sca_eln::sca_de::sca_vsink ELN voltage signal DE signal 

sca_eln::sca_de::sca_isink ELN current signal DE signal 

 

Table 3.4: LSF to DE and TDF MoCs Converter Classes 

Signal converter Class Interconnected Modules 

Signal In Signal Out 

sca_lsf::sca_de::sca_sink LSF signal DE signal 

sca_lsf::sca_tdf::sca_sink LSF signal TDF signal 
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It should be worth of note that there are no direct converter classes from ELN MoC to LSF MoC 

and vice versa. This does not mean that there is no communication between the two MoCs since 

communication can be achieved through the TDF MoC. Therefore, to convert a signal from ELN 

to LSF, first the signal has to be converted from ELN to TDF and then from TDF to LSF. The 

reverse is also true. 

SystemC-AMS extensions also support time-domain and frequency-domain simulation. In time-

domain simulation, time-domain behavior of the overall system composed of different SystemC-

AMS MoCs and probably the discrete-event domain are described. On the other hand, 

frequency-domain simulation is applied on the cases where the analysis computes the small-

signal frequency-domain behavior of the overall system (Barnasconi, et al., 2010).  

Again, the use of SystemC-AMS with its MoCs - enables the developer to model and simulate 

any architecture at all levels. At the implementation level where the developer has variety of 

choices on the implementation options to make, modeling and simulation of any architecture can 

be made (Grimm, et al., 2008). 

3.4.2 The limitations of SystemC-AMS 

 SystemC-AMS like any other system has some limitations in system modeling and simulation. 

The TDF MoC has restrictions caused by its fixed time step mechanism. The MoC has fixed and 

constant time steps that cannot be changed dynamically. This limitation does not allow 

developers to easily model systems such as Voltage Controlled Oscillators (VCOs), clock 

recovery circuit’s etc., in which activation periods or frequencies change dynamically 

(Barnasconi, et al., 2011). Perhaps some of these limitations may be overcome in the future. 

To recapitulate, the Model-Simulate-Refine-Synthesis (MSRS) Methodology developed in this 

work builds on SystemC-AMS to support modeling, architectural exploration and simulation.  

Chapters four and five present case studies of two E-AMS systems that have been modeled and 

simulated using the MSRS methodology to verify and validate the methodology respectively. 
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CHAPTER FOUR 

 CASE STUDY 1: OSCILLOSCOPE 

4.1 Introduction 

This chapter presents the modeling and simulation of an oscilloscope as a case study. The 

oscilloscope is modeled and simulated following the MSRS methodology. For each level of the 

methodology, the results are presented. This case study is chosen to verify the methodology.  

4.2 The Oscilloscope Functional Model 

At the functional level, the main objective is to ascertain the functionality of the oscilloscope. 

The oscilloscope is presented as a block diagram in Figure 4.1.  

 

Figure 4.1: Oscilloscope Block Diagram 

The block diagram is a black box whose contents are of no interest at this level. The K presented 

on the black box indicates some processing (that may include attenuation, amplification and/or 

conversion from analogue to digital) taking place to generate the output Y(t) given the input S(t). 

The output can be either analog or digital signals depending on the kind of oscilloscope modeled. 

In this work, digital oscilloscope is modeled and simulated because digital oscilloscopes are 

mostly used today. Due to this choice, the block diagram in Figure 4.1 is synthesized to generate 

a more detailed block diagram presented in Figure 4.2. 

 

 

Figure 4.2: Detailed Oscilloscope Block Diagram 
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ADC Front-End ADC Memory Display 
S(t) KS(t) Sq[m] Sq[m] 



22 

 

The block diagram presented in Figure 4.2 shows the main components interconnected and also 

the signal flow. The signal flows from the input to the memory. The analogue signal, S(t), is 

connected to the Analog-to-Digital-Converter (ADC) front-end for scaling purposes which may 

involve attenuation or amplification of the signal. Once the signal is in the required range of the 

ADC, it is sampled and converted into digital values, Sq[m], which is stored in a memory. The 

digital values in the memory are displayed on a screen to show the equivalent signal.  The 

detailed block diagram in Figure 4.2 is then synthesized to generate the dataflow model for the 

oscilloscope presented in Figure 4.3 though the memory and display components found in Figure 

4.2 are not captured in Figure 4.3 because the signal vales after the ADC remain the same as they 

go through the memory and the display. 

 

Figure 4.3: Oscilloscope Dataflow Model  

The dataflow model presented in Figure 4.3 is converted to a simulation model. In the 

conversion, the processing elements translate to clusters presented by rectangular boxes. The 

connections translate to signals and ports as guided by SystemC-AMS (Barnasconi, et al., 2011). 

They are presented by arrows as shown in Figure 4.4. The simulation model has a test-bench, 

which comprises of a signal conditioner (K-source), test signal source (Signal source), sampling 

clock (Pulses) and a monitor. The signal source generates the simulated test-signal, signal 

conditioner amplifies or attenuates the simulated test-signal, sampling clock determines the 

sampling of the oscilloscope and the monitor is used to track the signals at every stage of 

interest. The test-bench and the Device Under Test (DUT) are presented in Figure 4.4. 
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Figure 4.4: Oscilloscope Simulation Functional model with Test-Bench  

The signal modulator, which amplifies or attenuates the signals, operates through multiplying the 

signal by a factor. The multiplication of a signal by a factor is directly supported by LSF model. 

Due to this fact, the signal modulator (whose code is presented in Appendix A.1) is modeled 

using the LSF MoC. The sampler samples the signal at given time intervals depending on the 

sampling clock. The sampling process brings in the idea of timed data and therefore, the sampler 

is modeled using the TDF MoC. Since the LSF output signal from the modulator serves as the 

input signal to the sampler (whose code is presented in Appendix A.2) modeled using the TDF 

MoC, then signal conversion from LSF to TDF is required. SystemC-AMS provides an LSF to 

TDF converter model for this purpose.  

The hold module is used to hold the sampled values until the ADC conversion is complete. Since 

the sampled values are in TDF form, the hold module is modeled using TDF MoC. The code for 

the hold module is presented in Appendix A.3. Similarly, the ADC is modeled using TDF MoC 

since TDF directly supports reading/writing of values from/to ports. 
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The analog TDF value from the hold module is a decimal value while the digital value generated 

by the ADC is a binary value. Therefore, the conversion process used in the ADC (whose code is 

in appendix A.4) is the decimal-to-binary base conversion. The oscilloscope ADC modeled at 

this level is 8-bit and therefore, the input values range from 0 to 255.  This means that the ADC 

introduces a quantization error (Gray, 2006). 

The analog-to-digital value conversion at the functional model stage is implemented using “for-

loop” as shown in the code section presented in Figure 4.5. 

 

 

Figure 4.5: Analog-to-digital value conversion 

The code presented in Figure 4.5 shows code statements used in the conversion of the analog 

values to digital values. Line 1 of the code reads the analog value and stores it in a variable, 

“samp”.  The analog value is divided by 2 and its remainder stored in a temporary variable, “r”, 

as given in code line 4. The statement in Line 5 divides the sampled value by 2 and stores the 

result in the variable “dev” for further conversion. The statement in line 6 stores the remainder 

after integer division presented in line 4 in an array “adcval[]”. Line 7 transfers the value sored 

in “dev” to the variable “intsampval” for further conversion. Line 8 writes the binary value to 

the output terminal of the signal generator module. This process is repeated until the simulation 

time is over. The binary values are used to generate the oscilloscope signal waveforms.  

The oscilloscope functional model is tested using a 10 KHz sine wave analogue signal. The 10 

KHz signal has been selected randomly just to test the functionality of the system with an 

assumption that it can work with other frequencies as it will be shown in section 4.3. The results 

1 samp = (anlgsigin.read()); 

  2 intsampval = (int) (samp); 

  3 for(i=0; i<8; i++) 

   { 

  4  r = intsampval % 2; 

  5  dev = intsampval / 2; 

  6  adcval[i] = r; 

  7  intsampval = dev; 

   } 

8 adcout.write(adcval); 
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of the oscilloscope functional model are presented in Figure 4.6. In the figure, the signal is 

monitored at different stages. The S(t) is the analogue signal generated by the signal source and 

connected to the gain module, KS(t) is the analogue signal after the gain and connected to the 

sampler. KS(nt) is the sampled analogue signal connected to the Hold, KH(t)S(nT) is the 

sampled analogue signal after the Hold, which is connected to the ADC, and D(n) [7:0] is the 

digital signal after the ADC. The oscilloscope modules (Modulator, Sampler, Hold and ADC) are 

wired together on a test bench whose code is presented in Appendix A.5. The functional model 

of the oscilloscope is simulated and the results presented in Figure 4.6. 

 

Figure 4.6: Oscilloscope Functional Model Waveforms 

Figure 4.6 presents the signal waveforms at different stages. The analogue signal, S(t), is the 

analog signal connected to the oscilloscope. The modulated signal, KS(t),  is of the same shape 

as the input signal S(t). The  amplitude is also the same because the modulating factor, K, is set 

at this stage to 1. The sampled signal, KS(nT), shows the sampled points of the analogue signal. 

From the Figure 4.6, it is evident that the sampling is synchronized to the clock pulses (Pulses). 

The sampled signal is connected to the hold module. The hold signal, KH(t)S(nT), is shown as a 

staircase waveform, which shows the hold effect on the signal. The hold signal is connected to 

the ADC for analogue-to-digital conversion. The binary signal, D[n] from the ADC is presented 

graphically as is typical of an oscilloscope. 

As can be seen in Figure 4.6 the input signal S(t) waveform is the similar as the output signal 

D[n] waveform. Also the waveforms at the various stages concur with the expected waveforms 

at those stages. This provides strong confidence in the simulation methodology for this stage.  
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Since the main objective of an oscilloscpe is to sample and reproduce the connected analogue 

signal, then the results in Figure 4.6 show that the objectives of ascertaing the sampling and 

reconstruction functionalities of the oscilloscope have been met since the signal sampling is 

giving credible results. Since the functionality of the oscilloscope is verrified, then the functional 

model can be synthesized further by considering the non-functional requirements to generate the 

non-functional model. 

4.3 The Oscilloscope Non-Functional Model 

Among other non-functional requirements, include resolution, amplitude range and sampling 

frequency. It is expected that resolution depends on the bit width of the ADC and amplitude 

range depends on modulation (amplification and/or attenuation). Therefore, the modeling and 

simulation objectives at this level are to determine the effect of ADC bit width on the resolution, 

the effect of signal modulation on amplitude range and demonstrate an automated gain control. 

To achieve the first objective, bit truncation is done. The least significant bits are truncated to 

generate the same signal but of different bit widths. For the case of signal modulation, signal 

amplification and attenuation modules are required. Nyquist’s theorem states that “the sampling 

frequency dependents on the signal frequency”. Thus, the signal frequency is first determined 

and then used to generate the sampling frequency. All these features have been used to 

synthesize the control unit. This unit also synchronizes and monitors the components of the 

oscilloscope. The oscilloscope non-functional model is presented in Figure 4.7.  

 

Figure 4.7: Oscilloscope Non-Functional Block Diagram 
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The oscilloscope non-functional block diagram is synthesized to generate the oscilloscope non-

functional simulation model presented in Figure 4.8. 

 

Key: The solid lines depict data flows. The dotted lines depict control signals 

Figure 4.8: Oscilloscope Non-Functional Simulation Diagram 

The oscilloscope non-functional simulation diagram presented in Figure 4.8 shows how the 

simulation takes place. It also shows different components of the oscilloscope and how they are 

controlled by the control unit. The control unit (whose code is in appendix A.6) has two 
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modules, one that determines the signal frequency and another that sets the sampling clock 

frequency. The relationship between the signal frequency and the sampling frequency is 

determined by the number of samples required in one signal cycle. In this case, 20 samples are 

taken since they give more realistic signals as compared to fewer samples. Equation 4.1 gives the 

relationship. 

                       (4.1) 

 Where:       is the sampling frequency and      is the signal frequency 

The control unit has a module that determines the signal amplitude and chooses the correct 

amplification factor, K. The K values are stored in a Look Up Table (LUT). From the Figure 4.8, 

once the signal amplitude range is determined, the LUT address that contains the correct 

amplifying or attenuating factor is determined and in return, the factor is used by the modulator. 

The model is simulated and tested using different signals. At first, the amplitude range is 

determined through fixing the signal frequency to 0 Hz (DC signal) and varying the amplitude to 

have 0V, 1mV, 3V, 200V and 330V. Also the signal frequency range is determined through 

fixing the amplitude to 3V (within the normal range, 1V <A<=3V) and varying the frequency by 

orders of magnitude to have 30KHz, 300KHz, 3MHz, 30MHz, 300MHz and 4 GHz.  

To determine the effect of bit resolution, ADC bit widths of 10, 8, 6, 4 and 2 bits but at the same 

frequency, 30MHz, and amplitude, 3V, are used. The ADC code is presented in Appendix A.7. 

Figures 4.9(a), 4.9(b), 4.9(c), 4.9(d) and 4.9(e) show DC (0 Hz) waveforms but of different 

amplitudes. The frequency is fixed and amplitude varied, to simulate varying input signal 

amplitudes. The modules in this level are wired together on a test bench presented in Appendix 

A.8.   



29 

 

 

Figure 4.9(a): 0V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

Figure 4.9(a) present DC signals for a 0 V, 0Hz signal. From the diagram, straight lines of 0 volts 

are shown. The 0 values are as a result of the 0 volts amplitude of the signal. This is an oversight 

in relying entirely on simulation and is a potential hazard of pure simulation. It is also observed 

that the K value is 0. This is consistent with the automatic range setting of the simulated scope 

since the signal amplitude is 0 which is below the range that he oscilloscope operates.  

 

Figure 4.9(b): 1mV, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

The DC signals presented in Figure 4.9(b) are for 1mV DC signal. The signals here are straight 

lines of 1mV. The values for the digital signals correspond to the equivalent voltages based on 

the ADC bits in each case. This shows the minimum voltage amplitude that can be amplified.  
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Figure 4.9(c): 3 V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

In the case of Figure 4.9(c), the signals are for a 3 V DC signal. They are also straight lines but 

of 3 volts, which, is within the normal range that do not required any amplification or 

attenuation. This signal is used to test the working of the oscilloscope at the normal signal range 

where attenuation or amplification is not required.   

 

Figure 4.9(d): 100V, 0 Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

Figure 4.9(d) shows a 100 V DC signals. It is shown that there is an attenuation by 100 since the 

K value is 0.01. This attenuates the signal amplitude from 100 V to 1 V. At the same time, just 

like in the case of Figure 4.9 (b) and (c), the digital signal values correspond to their equivalent 

values according to the ADC bits. 
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Figure 4.9(e): 330V, 0Hz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

In the Figure 4.9(e), a 330 V DC signal is presented. The figure shows attenuation by 100 done 

to the maximum signal amplitude in this case. Any signal, whose amplitude is above the 330 V, 

is treated as out of range. 

Figures 4.9(f), 4.9(g), 4.9(h), 4.9(i), 4.9(j) and 4.9(k) show waveforms for 3 V amplitude and 

different frequency signals. The fixed amplitude of 3 V is chosen because it is within the normal 

range but any other amplitude within 0.33mV and 330V could have been chosen since the 

oscilloscope can operate within that range. Different signal frequencies as presented in the 

figures are used to simulate the oscilloscope. In this simulation the effect of resolution on 

reconstruction of the signal and sampling frequency are explored and an automated gain control 

generated successfully.  

The different resolutions are achieved by having ADCs of different bits, 2, 4, 6, 8 and 10, 

sampling the same analogue signal. The relationship between the resolution and the bit-width is 

presented in Equation 4.2 and summarized in Table 4.1. 

               
           

 
 
           

    
       (4.2) 

Where n is the ADC bit-width 
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Table 4.1: The effect of ADC bit-width on Resolution  

Digital signal ADC Bits, n N = 2
n
-1 Resolution, r = A/N 

D10(n)[9:0] 10 1023 2.93mV 

D8(n)[7:0] 8 255 11.76mV 

D6(n)[5:0] 6 63 47.62mV 

D4(n)[3:0] 4 15 200mV 

D2(n)[1:0] 2 3 1000mV 

 

 

Figure 4.9(f): 3 V, 30KHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

 

Figure 4.9(g): 3 V, 30KHz Analogue and Digital time diagrams for 2, 4, 6, 8 and 10 bits 
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The time diagrams presented in Figure 4.9 (g) are for the waveforms presented in Figure 4.9 (f) 

and show how the same analogue signal is sampled at different ADC bits. For each digital signal, 

the signal is presented in binary and decimal forms for comparison purposes. 

 

Figure 4.9(h): 3 V, 300KHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

 

Figure 4.9(i): 3 V, 3 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 
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Figure 4.9(j): 3 V, 30 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

 

Figure 4.9(k): 3 V, 300 MHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 
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Figure 4.9(l): 3 V, 4 GHz Analogue and Digital signals for 2, 4, 6, 8 and 10 bits 

The waveforms presented in the Figures 4.9(f) to 4.9(l) show sampling and reconstruction of the 

oscilloscope signals. This shows that the modeled oscilloscope can sample signals of different 

frequencies and give faithful reconstruction as long as the resolution is appropriate. The Figure 

4.9(k) shows that oscilloscopes operating at frequencies as high as 4 GHz can be simulated. At 

20 samples per signal cycle, this will require a sampling frequency of 80 GHz. This emphasizes 

the importance of finding the minimum number of samples per signal cycle that are adequate for 

the reconstruction of the signal. 

Comparing the digital signals from the Figures 4.9(a) to 4.9(k), it is found that different bits are 

used to present signals of the same frequency. From the digital signals, especially in Figures 

4.9(f) to 4.9(l), it is evident that signals of higher bits are more faithfully reconstructed than 

signals of low bits. For each frequency, comparing the 10 bit digital signal and the 2 bit digital 

signal, the 10 bit signals have better reconstruction results in relation to the 2 bit counterparts. 

This can be explained by the fact that reducing the ADC bits increases quantization noise in 

proportion to the number of bits. This has the effect of making faithful reconstruction more 

difficult. 
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The reconstructed waveforms for 8 bit and 10 bit are adequately representative of the input 

signal. Therefore, for the optimal architectural model, the 8 bit resolution is chosen, as it is more 

efficient in storage than 10 bit resolution. 

4.4 The Oscilloscope Implementation Model 

The oscilloscope implementation model is a synthesis of the optimal architectural model and 

generic component libraries. The LSF and TDF models used in the oscilloscope functional model 

presented in Figure 4.4 are converted into ELN modules used at the implementation stage of the 

system. This is one of the main features that make SystemC-AMS attractive for this task. This 

generates the implementation model of the oscilloscope. The implementation model generated is 

simulated and the results compared with the results from the non-functional model. Therefore, 

the objectives at this level are; synthesis of the implementation model from the optimal 

architectural model and generic components libraries and the evaluation of the implementation 

model with reference to the optimal architectural model. In addition, the implementation model 

demonstrates automation frequency selection. Figure 4.10 shows the implementation model.  
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Figure 4.10: The Oscilloscope Implementation Model 

The interconnections of the modules forming the cluster simulated are used to generate its 

prototype. The prototype components consist of the modulator (the attenuator/buffer and the 

amplifier), signal DC shift (shifter), sample and hold (Sample and Hold) and the ADC (whose 

codes are in Appendix A.9, A.10, A.11, A.12 and A.13 respectively). The transistors numbered 1 

to 6 act as the switches for the amplifying and attenuating circuits of the DUT. When transistors 

5 and 6 are switched, they attenuate the signal by a factor of 10 and 100 respectively. Switching 

transistors 1, 2, 3 or 4, amplifies the signal by a factor of 1000, 100, 10 and 1 respectively. The 

Determine Amplitude, A, then switch K, generate DC shift
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Determine 𝐹𝑠𝑖𝑔, 
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signal shift circuit is used to shift the signal by some DC volts generated by the control unit. DC 

shift is usually required because, components such as ADCs generally work with only positive 

voltages. The sample and hold circuit is generated using operational amplifiers, FET transistor 

and a capacitor. The FET transistor and the capacitor serve as the switch and the sampled value 

storage respectively. The attenuator/buffer , amplifier, shifter, Sample and Hold and the ADC 

modules are wired together on a test bench presented in Appendix A.14.  

The oscilloscope system developed is simulated using different signals of different frequencies 

and amplitudes. The signal frequencies and amplitudes chosen at this level are to compare with 

the waveforms presented in section 4.3. In addition, the output ADC digital signal bit width is set 

to 8 bits. The modeling and simulation at this level is made for verification of the results.  

 

Figure 4.11(a): 0 V, Analogue and 8-bit Digital signals at 0Hz  

Figure 4.11(a) presents a 0 volts DC signal. The signals are presented as straight lines because 

they are DC signals. Again, from the figure, all the signals have zero values because the 

amplitude of the analogue signal is 0 volts. Comparing the 0 volts DC waveforms in Figure 

4.9(a) (for the non-functional model) with the waveforms presented in Figure 4.11(a) (for the 

implementation model), it is found that they are the same.    
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Figure 4.11(b): 3 V, Analogue and 8-bit Digital signals at 0 Hz 

The waveforms presented in Figure 4.11(b) are for a 3 volts DC signal. The straight lines are 

because of the DC analogue signal connected. The amplitude of the DC signal is found to be 3 

volts as shown by the values of the signals. Comparing this figure with the waveforms in Figure 

4.9(c) from the non-functional model, it is found that they are the same. 

 

Figure 4.11(c): 330 V,  Analogue and 8-bit Digital signals at 0Hz 

A 330V DC signal waveforms is presented in Figure 4.11(c). As the other DC waveforms 

presented, the waveforms in this figure are straight lines. Associating the DC signals in this 

figure with the DC signals in Figure 4.9(e) of the non-functional model, it is found that they are 

the same. 
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Figure 4.11(d): 3 V, Analogue and 8-bit Digital signals at 30 KHz 

Figure 4.11(d) presents a 3 volts 30 KHz signal. Comparing the waveforms with the waveforms 

on Figure 4.9(f) of the non-functional model, it is evident that they are similar. 

 

Figure 4.11(e): 3 V, Analogue and 8-bit Digital signals at 4 GHz 

As presented from the non-functional model results in Figure 4.9(k), the waveforms presented on 

Figure 4.11(e) show the same signal. The 4 GHz signal presented in the two figures reflect the 
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same waveforms, which is evidence that the implementation model simulated gives the same 

results as the non-functional model.   

The waveforms in this section, are the same as their counterparts presented in the non-functional 

model. This verifies the implementation model with reference to non-functional model. 

Therefore, the objectives of the implementation model at this level have been achieved. 

In summary, the modeling and simulation of a digital oscilloscope has been presented. The 

modeling and simulation is based on the developed modeling and simulation methodology. The 

simulation results of the functional model are used to validate the model. The simulation results 

of the implementation model are used to verify the model against the functional model. 

Therefore, this makes the methodology developed  viable in modeling and simulation of E-AMS 

systems. Lastly, aware of the apprehension of using simulation for validation, the simulations are 

compared with a real implementation in the next chapter. 
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CHAPTER FIVE 

CASE STUDY 2: SIGNAL GENERATOR 

5.1 Introduction 

This chapter presents the modeling and simulation of a signal generator as a case study. The 

signal generator is modeled and simulated following the MSRS methodology. The simulation 

results are compared with test results obtained from a similar signal generator developed and 

implemented in a Fusion FPGA by Muteithia (Muteithia, 2014). This is done to validate the 

methodology with a real implementation. 

5.2 Signal Generator Functional Model 

At the functional level, the signal generator is presented using a dataflow diagram as shown in 

Figure 5.1. The dataflow diagram shows different functional blocks used in generating the 

functional behavior of the physical system, in this case the signal generator. A signal generator is 

typically used to generate four different types of analog voltage signals, which include the sine 

wave, saw tooth wave, triangle wave and square wave as per the stakeholders attributes. The 

analogue signals are characterized by amplitude, frequency and DC shift values. Therefore, 

functions are used to manipulate the amplitude, frequency and DC shift values.  

 

Figure 5.1: Dataflow diagram for the Signal Generator 

In Muteithia’s work, the starting point at the theoretical background commits a priori to a 

specific architecture. This is considered a disadvantage. With MSRS methodology, no such 

commitment need to be made at this stage.  

 

Signal Generator 
S(t) Frequency val. 
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The dataflow diagram presented in Figure 5.1 presents the DUT and is connected to a test bench 

with the driver and the monitor as shown in Figure 5.2. Since Muteithia’s signal generator was 

digital, a digital signal generator is modeled in this work. 

 

 Figure 5.2: Signal Generator with Test Bench  

The signal generator module (whose code is in Appendix B.1) is used to generate the digital 

signals based on input frequency value f. the module defines mapping functions that use f to 

generate the required signals. For simplicity, amplitude and DC shift are fixed. Equation 5.1 

shows the mapping function used to generate sine wave signal digital values (Lyons, 2012).  

  [ ]  ∑  [    (     ( ))   ]          (5.1) 

  Where: 

        , sampling interval in radians and s is the number of samples per 

signal cycle 

    (       ),  f is the signal frequency and       is the sampling period 

A is the signal amplitude 

k is the DC shift  

mod is for modulo operation 

Ds[θ] is the equivalent sine wave digital signal value generated over one cycle 

The equation is used to generate an algorithm used to generate the simulation code. The 

algorithm is presented in Algorithm 5.1.  

Freq. 
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Algorithm 5.1: Algorithm to generate single sine wave value 

In the case of generating saw-tooth signal wave, a similar mapping equation, Equation 5.2, is 

used (Lyons, 2012).  

   [ ]  ∑  [     ( )   ]        (5.2) 

Where: 

    [ ] is the equivalent saw-tooth wave digital signal value generated 

       , sampling interval in radians and   is the number of samples per 

signal cycle 

    (       ),  f is the signal frequency and       is the sampling period 

k is the DC shift 

A is the signal amplitude 

The equation is used to generate an algorithm presented in Algorithm 5.2 used for the simulation 

code.  

 

 

Algorithm 5.2: Algorithm to generate single saw-tooth signal wave value 

Triangular wave signal values are generated using Equation 5.3. This equation is used to 

generate only the values used in the rising ramp of the signal. The falling ramp is generated 

through reproducing the values used in the rising ramp but in a reversed way. This means the 

Step 1: Multiply the product of 2 and 𝜋 by entered frequency value, f  

Step 2: Multiply the product in Step 1 by the instantaneous sampling period,𝑇𝑠𝑎𝑚𝑝  

Step 3: Add the DC shift, k, to the product in step 2 

Step 4: Get the equivalent sine wave value of the value obtained in Step 3 

Step 1: Multiply the incrementing integral value,𝑖, by the entered frequency, f 

Step 2: Multiply the product in Step 1 by the sampling period,𝑇𝑠𝑎𝑚𝑝  

Step 3: Add the DC shift, k, to the product value in step 2 

Step 4: Get the equivalent saw-tooth wave value of the value obtained in Step 3 



45 

 

values used in the rising ramp can be stored in an array while being produced so that they can be 

used in the falling ramp (Lyons, 2012). 

   [ ]  {
∑  [     ( )   ]          ( )  
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−  (    ( ) −
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   (5.3) 

  Where: 

   [ ] is the equivalent triangular wave digital signal value generated 

       , sampling interval in radians,   is an incrementing integral value 

and s is the number of samples per signal cycle 

    (       ),  f is the signal frequency and       is the sampling period 

  is the DC shift 

  is the signal amplitude 

The equation is used to generate an algorithm presented in Algorithm 5.3 used to generate the 

simulation code. 

 

 

Algorithm 5.3: Algorithm to generate single triangular signal wave value 

In the case of generating a square wave signal values, Equation 5.4, is used (Lyons, 2012). 

Step 1: Multiply the incrementing integral value, 𝑖, by 2 

Step 2: Multiply the product in Step 1 by the frequency entered, f 

Step 3: Multiply the product in Step 2 by the sampling period, 𝑇𝑠𝑎𝑚𝑝 

Step 4: Multiply the value obtained in step 3 by the modulus of n 

Step 5: Determine if mod(n) is less than s/2 or not 

Step 6: If step 5 is true, add k and output 

Step 7: If step 5 is not true, multiply the value of step 3 by s 

Step 8: Subtract value of step 4 from value of step 7 

Step 9: Add k to value of step 8 and the output 
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      (5.4) 

Where: 

 α is a constant 

  is the DC shift 

  is the signal amplitude 

The equation is used to generate an algorithm presented in Algorithm 5.4 used to generate the 

simulation code. 

 

Algorithm 5.4: Algorithm to generate single square wave signal value 

The Algorithms 5.1, 5.2, 5.3 and 5.4 shows the steps required to generate different signal waves. 

The steps in each algorithm can be used as a rough guide to the number of instructions required 

for each signal wave. Algorithm 5.1 shows the four steps required to generate a single value of 

the sine wave signal hence four instructions are required. Similarly, Algorithm 5.2 shows the 

four steps required to generate a single value of the saw-tooth wave. This leads to four 

instructions required to generate a single value of the signal. In the same way, Algorithm 5.3 

shows nine steps required to generate a single value of the triangular wave. This gives nine 

instructions required to generate a single value of the triangular wave. In the case of the square 

wave, Algorithm 5.4 shows the four steps required to generate a single value of the square wave. 

Consequently, a single value of the square wave requires four instructions to be generated.  

Table 5.1: Instructions required per value for the respective signal waves  

 Sine wave Saw-Tooth wave Triangular wave Square wave 

Required instruction(s) per 

value 

4 4 9 4 

 

Step 1: Determine if mod(n) is less than s/2 

Step 2: If step 1 is true, Add DC shift, k, to the constant, 𝛼 

Step 3: If step 1 is not true, Add - 𝛼 to the DC shift, k 

Step 4: Multiply the value in step 2 or step 3 by the signal gain, A then output 
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The Table 5.1 shows the four signals and their respective instructions required to generate a 

single value for each signal. Since the four signals are generated by the same signal generator, 

the instructions required for each value have the same period and frequency. For this reason, the 

nine instruction case is used to estimate the instruction period and frequency. The results are 

presented in Table 5.2.  

Table 5.2: Signal generator simulation analysis   

Signals 

freq.,      
Values per 

cycle,    
Sampling 

freq.,       
Instr. per 

value,    
Instruction Freq., 

          
Remarks 

10 Hz 20 200 Hz 9 1800 Hz Minimum 

1MHz 20 20 MHz 9 180 MHz Normal 

5 MHz 20 100MHz 9 900MHz Maximum 

 

The Table 5.2 shows the simulation values for 10 Hz, 1 MHz and 5 MHz frequency signals. For 

each signal frequency, nine instructions for each signal value and 20 values for each complete 

cycle of the signal waveform are required. Based on these values, it is evident from the table that 

the signal generating module should be sampling at a frequency between 200 Hz and 100 MHz. 

Sampling at a frequency less than 200 Hz was found to generate large (larger than 1.5 GB) Value 

Change Dump (VCD) file used to trace the AMS waveforms. The large VCD files are hard to 

open and sometimes they may fail to open completely (Barnasconi, et al., 2010) , hence the 

choice of the 200 Hz as the minimum sampling frequency. On the other hand, the 100 MHz 

sampling frequency was decided for the purpose of comparing the signal frequency and the 

sampling frequency. This is because in simulation, higher sampling frequencies can be achieved 

(Barnasconi, et al., 2010). Therefore, to generate a 5 MHz signal, the signal-generating module 

should be operating at the sampling clock speed, 100 MHz. These serve as some performance 

attributes of the signal generator, hence are presented at the non-functional level.  

Once the values are generated, they are used to generate signals through the Digital-to-Analog-

Converter (DAC) whose code is presented in Appendix B.2. the Signal Generator and DAC 

modules are wired together in a test bench whose code is presented in Appendix B.3. The results 

of the signal generator functional model are presented in Figures 5.3(a), 5.3(b) and 5.3(c) that 

show sine wave, saw-tooth wave, triangle wave and a square wave. The four waves are of the 
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same frequency as shown in each figure. Besides, each signal cycle is constructed using 20 

samples as this gives more realistic waveforms as compared to the use of fewer samples. 

Therefore, 20 samples number is taken as the least number of samples required to construct a 

single waveform.  

 

Figure 5.3(a) 10 Hz Signal generator simulation waveform 

 

Figure 5.3(b) 1 MHz Signal generator simulation waveforms 

 

Figure 5.3(c) 5 MHz Signal generator simulation waveforms 
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The Figures 5.3(a), 5.3(b) and 5.3(c) show that the mathematical functions and control structures 

used at the functional model generated the expected wave forms.  

5.3 Signal Generator Non-Functional Model 

Following the previous section (5.2), the number of instructions per cycle has a bearing on the 

frequency of the signal, which is a performance attribute. We explore a Look-Up-Table (LUT) as 

a way of reducing the number of instructions per cycle. The signal values in the LUT can be read 

and used to generate the signal of interest, depending on the choice made by the user.  This is 

similar to Muteithia’s approach (Muteithia, 2014). However, Muteithia uses SystemC for 

simulation and is therefore not able to accommodate the DAC in his simulation. This is not a 

problem in the MSRS methodology because SystemC-AMS is used. Figure 5.4 shows the 

synthesized non-functional model. In addition to the LUT, we have a Phase Increment Value 

generator (PIV) and a Phase Accumulator (PA).  

 

Figure 5.4: Signal Generator Non-Functional model 

5.3.1 Phase Increment Value generator and Phase Accumulator 

The PIV generator (whose code is in appendix B.4) generates an integral value, phase increment, 

ΔP, stored in the Phase Accumulator (PA) (whose code is in appendix B.5). At each clock cycle, 
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the phase increment value is added to the data previously held in the PA hence resulting to a 

linearly increasing digital value. The frequency of the data generated by the PA depends on three 

main quantities, which are; reference clock frequency, the ΔP value and j, the length of PA. The 

generated frequency, the reference clock frequency, the phase value and the length of the phase 

accumulator are related using Equation 5.5 (Vankka & Halonen, 2013). 

        
       

  
         (5.5) 

  Where: 

  ΔP – is the phase increment value 

j – is the number of phase accumulator bits (length of PA) 

fclk –is the reference clock frequency 

fout -is the output frequency 

From the Equation 5.5, it is evident that increasing the phase increment word for a constant clock 

frequency and size of PA results in an increase in output frequency. The PIV generates the phase 

value based on the Equation 5.6 and feeds it to the PA. Equation 5.5 leads to Equation 5.6 

(Vankka & Halonen, 2013). 

   
       

 

    
         (5.6) 

The PA serves as storage of the phase value, which is connected to the Generator module. The 

phase value generated from the Phase Accumulator is 27 bits wide. As argued by Muteithia, the 

width of the phase value is the same as the width of the reference clock (100 MHz) when 

converted to binary value hence the choice of 27 bits (Muteithia, 2014). The PIV and the PA are 

discrete-event modules and therefore they are modeled using DE models. 

5.3.2 Generator module 

The Generator (whose code is in appendix B.6) has an array that serves as a register that stores 

amplitude values. The array is referred to as a LUT. For the sake of simplicity, only the sine 

wave is considered. The amplitude values, (    ), are generated using Equation 5.7 (Vankka & 

Halonen, 2013).  
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)))      (5.7) 

 Where:     –is the LUT amplitude value generated 

M – is the index of a given elements in the LUT 

     – is used to convert the computed value to an integer 

 N– is the total number of elements in the LUT 

 A – is the amplitude 

Table 5.3 shows some of the LUT values and their corresponding addresses used in the 

Generator. All the LUT values are shown as an array (given the name amplitude[N] ) as shown 

on Table 5.3.The value N is arrived at based on the bit width of the digital signal to be generated, 

in this case 8-bit digital signals. Table 5.3 shows a section of LUT values for 8-bit digital signal. 

Table 5.3: Some LUT values used in the signal generator  

index 0 1 2 3 4 5 6 7 8 9 

LUT0-9 100 102 105 107 110 112 115 117 120 122 

 

index 10 11 12 13 14 15 16 17 18 19 

LUT10-19 124 127 129 131 134 136 138 141 143 145 

 

index 20 21 22 23 24 25 26 27 28 29 

LUT20-29 147 149 151 153 156 158 160 162 163 165 

 

index 30 31 32 33 34 35 36 37 38 39 

LUT30-39 167 169 171 172 174 176 177 179 180 182 

 

As mentioned earlier, the phase values from the PA are 27 bits wide. Once a phase value from 

the PA is received by the Generator module, it is shifted to the right by 19 bits. The shifting is 

required to truncate the 19 Least Significant Bits (LSB) and remain with only 8 Most Significant 

Bits (MSB). The truncation of the bits is required in order to generate phase values that range 

from 0 to 255 (0 to 2
8
-1) which match the storage location addresses of the LUT. When the 

Generator receives a particular phase value, it extracts the value stored in the corresponding 

storage location of the LUT. The extracted values are connected to DAC (whose code is in 
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Appendix B.7) for conversion into analogue signals. The PIV, PA, Generator and the DAC 

modules are wired together in a test bench presented in Appendix B.8. The results are presented 

in Figures 5.5(a), 5.5(b) and 5.5(c) respectively.  

 

Figure 5.5(a): 10 Hz, 2 V Signal Waveforms 

 

Figure 5.5(b): 1 MHz, 10 V Signal Waveforms 

 

Figure 5.5(c): 5 MHz, 10 V Signal Waveforms 

The Figures 5.5(a), 5.5(b) and 5.5(c) show the expected wave forms which are the same as the 

wave forms in Figures 5.3(a), 5.3(b) and 5.3(c). The signal wave forms simulated can be 

analyzed as presented in Table 5.4 for comparison purposes. 
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Table 5.4: Signal generator non-functional model simulation analysis   

Signals 

freq.,      
Values per 

cycle,    
Sampling 

freq.,       
Instr. to 

Read & 

Write a 

value,    

Instruction Freq., 

          
Remarks 

10 Hz 20 200 Hz 2 400 Hz Minimum 

1MHz 20 20 MHz 2 40 MHz Normal 

5 MHz 20 100MHz 2 200MHz Maximum 

 

The analyses presented in Table 5.4 shows that the instruction frequency is reduced by more than 

four times due to the reduced number of instructions (Read and Write), required to generate a 

single signal value. As explained in section 5.2 and presented in Table 5.2, to generate a single 

value in the functional model, nine instructions are required. This improves the upper frequency 

limit of the signal generator.  

Muteithia (2014) separates functional and non-functional models which is similar to the 

approach used in this work. However, his simulation comes after the complete signal generator 

development is in place. This violates the preferred principle of catching errors at earliest 

opportunity. In the MSRS methodology, it is possible to model, simulate and evaluate the 

functional model before improving it with non-functional requirements and additional 

simulation.  

5.4. Signal Generator Implementation Model 

The main objective at this level is to model and simulate the DAC component that was not 

simulated by Muteithia (2014). The other components of the signal generator presented in the 

non-functional model in section 5.3, are not synthesized. This is because SystemC-AMS can 

simulate components at different levels of abstraction within the same system. Secondly, 

Muteithia demonstrated simulation using SystemC with the DAC excluded. The adapted 

implementation model is shown in Figure 5.6. 
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Figure 5.6: Signal Generator Implementation Model  

The signal generator components presented in Figure 5.6 shows mainly a possible R-2R resistor 

ladder DAC in detail. The purpose of this DAC circuit is to demonstrate simulation at the 

analogue level of implementation. The implementation code for the DAC is presented in 

Appendix B.8. the implementation components of the signal generator are wired together in a 

test bench whose code is presented in Appendix B.9. 

The signal generator system simulation has four different signals of the same frequency. The 

signals generated from the signal generator are sine wave, saw tooth wave, triangle wave and 
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square wave.  The four signals generated are of 1 MHz frequency since the wave forms need to 

be compared with the 1 MHz signal wave forms produced by the Fusion FPGA signal generator 

implemented by Muteithia. The signal generator is composed of both digital and analogue 

components. The digital part of the generator produces the digital values of the signals which are 

used to sketch the digital signals, D[n]_Sine, D[n]_Saw, D[n]_Triangle presented in Figure 5.7. 

The analog part of the signal generator is composed of the DAC which converts the digital 

signals to analog signals. The signals generated from the DAC, S(t)_Sine, S(t)_Saw, 

S(t)_Triangle are presented in Figure 5.7.  

 

Figure 5.7: Signal Generator Implementation Model Waveforms 

Figure 5.7 presents both digital signals and their analogue equivalent signals. The purpose of 

presenting the digital signals and analog signals waveforms is to compare them in order to justify 

the operation of the SystemC-AMS modeled and simulated DAC. For each wave form, 

comparing the digital and analogue signals, it is evident that they are the same. This shows that 

that the DAC component modeled and simulated using SystemC-AMS is viable. 

The simulated signal generator results are compared with waveforms generated by a signal 

generator system developed and implemented in a Fusion FPGA by Muteithia. Therefore, 

Muteithia’s test results are presented in the next section (5.5). 
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5.5 FPGA Signal Generator System Waveforms 

The waveforms from the FPGA signal generator presented here are for comparison purpose. In 

his work, Muteithia simulated only the digital components of his signal generator using 

SystemC. He could not simulate the DAC to be used in his development using SystemC because 

it can only model and simulate discrete event signals (Black & Donovan, 2004), (Bhasker, 2002), 

hence he ended up implementing the DAC without simulation (Muteithia, 2014). The FPGA 

signal generator waveforms from the DAC output in his implementation work are presented in 

Figures 5.8(a), 5.9(a), 5.10(a) and 5.11(a). For the purpose of comparison, the simulated 

waveforms for the respective signals are presented in Figures 5.8(b), 5.9(b), 5.10(b) and 5.11(b). 

 

Figure 5.8(a): 1 MHz FPGA Sine wave (Muteithia, 2014) 

 

Figure 5.8(b): 1 MHz Simulated Sine Wave 

 

Figure 5.9(a): 1 MHz FPGA Square wave (Muteithia, 2014) 

 

Figure 5.9(b): 1 MHz Simulated Square wave 
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Figure 5.10(a):1 MHz FPGA Saw tooth wave (Muteithia, 2014)   

 

Figure 5.10(b):1 MHz Simulated Saw tooth wave 

 

Figure 5.11(a):1 MHz FPGA Triangular wave (Muteithia, 2014) 

 

Figure 5.11(b):1 MHz Simulated Triangular wave 

As can be seen, the test results of the FPGA signal generator are replicated by the simulated 

signal generator. Therefore, these results are used to support the claim that the MSRS 

methodology is effective. 
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CHAPTER SIX 

 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK  

6.1 Conclusion 

A Model-Simulate-Refine-Synthesis (MSRS) methodology for modeling and simulation from 

functional level down to the implementation level has been developed and presented. The 

methodology helps the developer to model and simulate both analogue and digital components at 

functional, non-functional and implementation levels of abstraction by generating functional, 

non-function and implementation models corresponding to each level respectively, which is 

valuable for developing E-AMS systems.  

The methodology has been verified through modeling and simulation of an oscilloscope. The 

simulation results of the functional model are used to validate the model while for the 

implementation model are used to verify the model against the functional model. Comparing the 

waveforms from the functional model and the waveforms from the implementation model, it is 

found that they are similar. Therefore, this makes the methodology developed viable in modeling 

and simulation of E-AMS systems.  

Further, the methodology has been validated through modeling and simulation of a signal 

generator. The modeled and simulated signal generator simulation results are compared with test 

results obtained from a real similar signal generator developed and implemented in a Fusion 

FPGA. Comparing the waveforms, it is evident that the waveforms from the simulated signal 

generator and the waveforms from the FPGA signal generator are similar. Therefore, the 

methodology has been validated. 

Therefore, the methodology has been verified and validated and gives satisfactory results, the 

objectives of the work have been achieved.   

The MSRS methodology developed has several strengths: 

 The methodology provides a systematic way to develop E-AMS systems from the 

functional level down to the implementation level.  
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 The methodology allows multiple development paradigms such as evolutionary, iterative, 

and incremental (Larman & Basili, 2003). 

 It synchronizes system development and learning. Innovative system development 

usually intertwines learning and system development phases.  

 By simulation at every level of abstraction, there is a good opportunity to catch many 

errors at the earliest opportunity.  

On the other hand, the MSRS methodology has some drawbacks:  

 Knowledge of SystemC-AMS is required. This is a heavy undertaking considering that 

SystemC-AMS is built on top of C++ and extends SystemC. 

 At the time of this work, there are no specific component libraries from manufacturers. 

This hinders generation of blueprint models for implementation.    

6.2 Recommendations for future work 

Based on the drawbacks of the methodology, then: 

 Future work could explore combining modeling at the system level with automation to 

automatically generate blueprints (Mosterman & Vangheluwe, 2004). This would avoid 

knowledge of C++, SystemC and SystemC-AMS.  

 A component library standard to ensure interoperability among component libraries from 

different manufacturers. This will facilitate development of a blueprint as the last stage of 

the implementation model.  

 Some research may be done to use the MSRS methodology in designing and fabricating a 

real E-AMS system. 
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APPENDIX A: OSCILLOSCOPE CODES 

A.1: Modulator Functional Model Code 

#include "systemc.h" 

#include "systemc-ams.h" 

 

SC_MODULE(modulator) 

{ 

 //TDF input ports 

 sca_tdf::sca_in<double>  sig_in; 

 sca_tdf::sca_in<double>  k_in; 

 

 //TDF output port 

 sca_tdf::sca_out<double> cond_sign_out; 

 

 //TDF to LSF converter ports 

 sca_lsf::sca_tdf_source  conv_sign; 

 sca_lsf::sca_tdf_sink  conv_cond_sign; 

 

 //gain 

 sca_lsf::sca_gain   gain1; 

 

 //linking lsf signals 

 sca_lsf::sca_signal  sign_link; 

 sca_lsf::sca_signal  cond_link; 

 

 //Module constructor 

modulator(sc_core::sc_module_name, double k1 = 100.0) 

  : sig_in("sig_in"), k_in("k_in"), gain1("gain1", k1), 

cond_sign_out("cond_sign_out"), 

  conv_sign("conv_sign"), conv_cond_sign("conv_cond_sign") 

 { 

  //TDF to LSF conversion 

  conv_sign.inp(sig_in); 

  conv_sign.y(sign_link); 

 

  //gain connection 

  gain1.x(sign_link); 

  gain1.y(cond_link); 

 

  //LSF to TDF conversion 

  conv_cond_sign.x(cond_link); 

  conv_cond_sign.outp(cond_sign_out); 

 } 

}; 

A.2: Sampler Functional Model Code 

#include "systemc.h" 

#include "systemc-ams.h" 

 

SCA_TDF_MODULE(sampler) 

{ 
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 //TDF ports 

sca_tdf::sca_in<double>  ksin; 

 sca_tdf::sca_in<bool>  plsin; 

 sca_tdf::sca_out<double> smpld; 

 

 //module constructor 

sampler(sc_core::sc_module_name) 

  : ksin("ksin"), plsin("plsin"), smpld("smpld") 

 {} 

 void processing() 

 { 

  //Sampling when pulse is high else write 0 to the port 

if (plsin.read() == 1) 

  { 

   smpld.write(ksin.read()); 

  } 

  else 

  { 

   smpld.write(0); 

  } 

 } 

}; 

A.3: Hold Functional Model Code 

#include "systemc.h" 

#include "systemc-ams.h" 

 

SCA_TDF_MODULE(thefilter) 

{ 

 //TDF ports 

sca_tdf::sca_in<double>  sigin; 

 sca_tdf::sca_in<bool>  plsin; 

 sca_tdf::sca_out<double> sigout; 

 

 //module constructor 

thefilter(sc_core::sc_module_name) 

 : sigin("sigin"), plsin("plsin"), sigout("sigout") 

 {} 

 

 void processing() 

 { 

  //holds the sampled value when the pulse is high 

if (plsin.read() == 1) 

  { 

//Holds the value until the next sample 

sigout.write(sigin.read());  

 

  } 

 } 

}; 
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A.4: Functional ADC Model Code 

#include "systemc.h" 

#include "systemc-ams.h" 

 

SCA_TDF_MODULE(theadc) 

{ 

 //TDF input ports 

sca_tdf::sca_in<double> anlgsigin; 

 sca_tdf::sca_in<bool> pulsin; 

  

 //TDF-DE converter output port 

sca_tdf::sca_de::sca_out<sc_uint<8>> adcout; 

  

//variable declaration 

sc_uint<8> adcval; 

 float  samp; 

 int  intsampval, i, r, dev; 

  

//module constructor 

theadc(sc_core::sc_module_name) 

  : anlgsigin("anlgsigin"), adcout("adcout"),pulsin("pulsin") 

 {} 

 void processing() 

 { 

  //Process done when the pulse is high 

if (pulsin.read() == 1) 

  { 

   //Sampling 

   samp = (anlgsigin.read()); 

   intsampval = (int) (samp); 

 

   //conversion to binary 

   for(i=0; i<8; i++) 

   { 

    r = intsampval % 2; 

    dev = intsampval / 2; 

    adcval[i] = r; 

    intsampval = dev; 

   } 

 

   //Output the digital signal 

   adcout.write(adcval); 

  } 

 } 

}; 

A.5: Oscilloscope Functional model Test Bench code 

//include oscilloscope modules 

#include "driver.h" 

#include "signalsource.cpp" 

#include "enableunit.cpp" 

#include "controlunit.cpp" 

#include "modulator.cpp" 
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#include "sampler.cpp" 

#include "adc.cpp" 

#include "hold.cpp" 

 

int sc_main(int argc, char *argv[]) 

{ 

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", 

SC_DO_NOTHING); 

 

 //declaraing signals to link different modules 

 //1. DE signals 

sc_signal<double>   t_frequency; 

 sc_signal<double>   t_ampltd; 

 sc_signal<double>   t_enbl_ctrl; 

sc_signal<sc_uint<8> >  adcsign_8; 

 

 //2. TDF signals 

 sca_tdf::sca_signal<double>  t_enbl_s; 

 sca_tdf::sca_signal<double>  t_enbl_k; 

 sca_tdf::sca_signal<double>  t_enbl_pls; 

 sca_tdf::sca_signal<bool>  t_pls; 

 sca_tdf::sca_signal<double> t_sine_out; 

 sca_tdf::sca_signal<double> t_det_k; 

 sca_tdf::sca_signal<double> t_k_val; 

 sca_tdf::sca_signal<double> t_cond_sign; 

 sca_tdf::sca_signal<double> t_sampld_sign; 

 sca_tdf::sca_signal<double> t_filtered_sign; 

  

 // declare a time constant for the system clock 

 const sc_time t_period(20, SC_NS); 

 sc_clock clk("clk", t_period);  

 

 //Add modules 

 //1. Driver module 

syst_driver dr("Driver_Module"); 

 dr.d_frequency(t_frequency); 

 dr.d_ampl(t_ampltd); 

 dr.clock(clk); 

 dr.enbl_out(t_enbl_ctrl); 

 

 //2. Enable unit module 

enbl en("enable_Unit"); 

 en.infrq(t_frequency); 

 en.enabl(t_enbl_ctrl); 

 en.enb_s(t_enbl_s); 

 en.enb_k(t_enbl_k); 

 en.enb_pls_gen(t_enbl_pls); 

 

 //3. Signal source module 

sinewv sr("Signal_source"); 

 sr.inpenb(t_enbl_s); 

 sr.inpfrq(t_frequency); 

 sr.out(t_sine_out); 

 sr.det_k(t_det_k); 
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 //4. Modulator module 

theconditioner con("Modulator"); 

 con.sig_in(t_sine_out); 

 con.k_in(t_k_val); 

 con.cond_sign_out(t_cond_sign); 

 

 //5. Sampler module 

sampl sp("Sampler"); 

 sp.plsin(t_pls); 

 sp.ksin(t_cond_sign); 

 sp.smpld(t_sampld_sign); 

 

 //6. Hold module 

thefilter fl("HoldModule"); 

 fl.plsin(t_pls); 

 fl.sigin(t_sampld_sign); 

 fl.sigout(t_filtered_sign); 

 

 //7. ADC module 

theadc d("ADC"); 

 d.pulsin(t_pls); 

 d.anlgsigin(t_filtered_sign); 

 d.adcout(adcsign_8); 

  

 // Tracing waveforms 

 //1. creating a file to which values are to be stored 

sca_util::sca_trace_file *anatf = 

sca_util::sca_create_vcd_trace_file("WaveForms"); 

  

 //2. Storing different values in the file 

 cout << "Start tracing waveforms " << endl; 

 sca_util::sca_trace(anatf, t_sine_out, "S(t)"); 

 sca_util::sca_trace(anatf, t_cond_sign, "KS(t)"); 

 sca_util::sca_trace(anatf, t_pls, "Pulses"); 

 sca_util::sca_trace(anatf, t_sampld_sign, "KS(nT)"); 

 sca_util::sca_trace(anatf, t_filtered_sign, "KH(t)S(nT)"); 

 sca_util::sca_trace(anatf, adcsign_8, "D8(n)"); 

  

//simulation duration to be taken 

sc_start(100, SC_US); 

  

 //closing the file 

 sca_util::sca_close_vcd_trace_file(anatf); 

 cout << "Finished tracing waveforms" << endl; 

 return (0); 

} 

A.6:  Control Unit Module Code 

#include "systemc.h" 

#include "systemc-ams.h" 

SCA_TDF_MODULE(thectrl) 

{ 

 //TDF ports 
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sca_tdf::sca_in<double>  enabl;  

 sca_tdf::sc_in<double>   inpfrq;  

 sca_tdf::sc_in<double>   inpamp;  

 sca_tdf::sca_out<double> k_valout;  

 sca_tdf::sca_out<bool>  pulsout;  

 //LUT 

 float lut[6] = {0.01,0.1,1,10,100,1000,0};  

 float ampltd; 

 //Module constructor 

 thectrl(sc_core::sc_module_name,  

 sca_core::sca_time tm_ = sca_core::sca_time(10.0, 

sc_core::SC_PS)) 

: inpfrq("infrq"), enabl("enabl"), k_valout("k_valout"), tm(tm_), 

pulsout("pulsout"), inpamp("inpamp") 

  {} 

 //setting time steps 

void set_attributes() 

 { 

  set_timestep(tm); 

 } 

 void processing() 

 { 

  //process once enabled 

if (enabl.read() == 1) 

  { 

  if(inpfrq.read()==0) 

  { 

   pulsout.write(1); 

  } 

  else 

  { 

   //Generating the sampling clock based on the system clock 

   //and signal frequency 

x = x + 1; 

   fsyst = 100000000000; //system clk frequency 

   stot = (int)(fsyst / inpfrq.read());  

   s = 20; //samples required in a single cycle  

   n = (int)(stot / s);  

   r = x % n; 

   if (r == 0) 

   { 

    pulsout.write(1); //generate a HIGH state 

   } 

   else 

   { 

    pulsout.write(0); //generate a LOW state 

   } 

   //Choosing k value depending on the signal amplitude 

ampltd = inpamp.read(); 

   if(ampltd >= 33) 

   { 

    k_valout.write(lut[0]); 

   } 

   else if(ampltd >= 3.3) 

   { 
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    k_valout.write(lut[1]); 

   } 

   else if(ampltd >= 0.33) 

   { 

    k_valout.write(lut[2]); 

   } 

   else if(ampltd >= 0.033) 

   { 

    k_valout.write(lut[3]); 

   } 

   else if(ampltd >= 0.0033) 

   { 

    k_valout.write(lut[4]); 

   } 

   else if(ampltd >= 0.00033) 

   { 

    k_valout.write(lut[5]); 

   } 

else 

   { 

 k_valout.write(lut[6]); 

} 

} 

  } 

 } 

private: 

 double stot, s, fsyst; 

 int x, r, n; 

 double freqval, sigperiod, sampperiod; 

 sca_core::sca_time tm; 

}; 

A.7: ADC Non Functional Module Code 

#include "systemc.h" 

#include "systemc-ams.h" 

#define A 3 

SCA_TDF_MODULE(theadc) 

{ 

 //TDF input ports 

 sca_tdf::sca_in<double> anlgsigin; 

 sca_tdf::sca_in<bool> pulsin; 

 //TDF-DE output ports 

 sca_tdf::sca_de::sca_out<sc_uint<10>> adcout10; 

 sca_tdf::sca_de::sca_out<sc_uint<8>> adcout8; 

 sca_tdf::sca_de::sca_out<sc_uint<6>> adcout6; 

 sca_tdf::sca_de::sca_out<sc_uint<4>> adcout4; 

 sca_tdf::sca_de::sca_out<sc_uint<2>> adcout2; 

 //Variable declaration 

 sc_uint<10> adcval10; 

 sc_uint<8> adcval8; 

 sc_uint<6> adcval6; 

 sc_uint<4> adcval4; 

 sc_uint<2> adcval2; 
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 int samp; 

 int intsampval10, i10, r10, dev10; 

 int intsampval8, i8, r8, dev8; 

 int intsampval6, i6, r6, dev6; 

 int intsampval4, i4, r4, dev4; 

 int intsampval2, i2, r2, dev2; 

 //Module constructor 

 theadc(sc_core::sc_module_name) 

  : anlgsigin("anlgsigin"),  

  adcout10("adcout10"), 

  adcout8("adcout8"), 

  adcout6("adcout6"), 

  adcout4("adcout4"), 

  adcout2("adcout2"), 

  pulsin("pulsin") 

 {} 

 void processing() 

 { 

  //process when the pulse is in H state 

if (pulsin.read() == 1) 

  { 

   //sampling and conversion to digital signals  

samp = (int)(anlgsigin.read()); 

//Determine equivalent integral value depending on the ADC 

//bits required 

   intsampval10 = (int) (samp * 1024 / (2 * A)); //for 10 bits 

   intsampval8 = (int) (samp * 256 / (2 * A)); //for 8 bits 

   intsampval6 = (int) (samp * 64 / (2 * A)); //for 6 bits 

   intsampval4 = (int) (samp * 16 / (2 * A)); //for 4 bits 

   intsampval2 = (int) (samp * 4 / (2 * A)); //for 2 bits 

   //10 bit conversion 

for(i10=0; i10<10; i10++) 

   { 

    r10 = intsampval10 % 2; 

    dev10 = intsampval10 / 2; 

    adcval10[i10] = r10; 

    intsampval10 = dev10; 

   } 

   //8 bit conversion 

for(i8=0; i8<8; i8++) 

   { 

    r8 = intsampval8 % 2; 

    dev8 = intsampval8 / 2; 

    adcval8[i8] = r8; 

    intsampval8 = dev8; 

   } 

   //6 bit conversion 

for(i6=0; i6<6; i6++) 

   { 

    r6 = intsampval6 % 2; 

    dev6 = intsampval6 / 2; 

    adcval6[i6] = r6; 

    intsampval6 = dev6; 

   } 
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//4 bit conversion 

for(i4=0; i4<4; i4++) 

   { 

    r4 = intsampval4 % 2; 

    dev4 = intsampval4 / 2; 

    adcval4[i4] = r4; 

    intsampval4 = dev4; 

   } 

   //2 bit conversion 

for(i2=0; i2<2; i2++) 

   { 

    r2 = intsampval2 % 2; 

    dev2 = intsampval2 / 2; 

    adcval2[i2] = r2; 

    intsampval2 = dev2; 

   } 

   //output the digital signals 

adcout10.write(adcval10); 

   adcout8.write(adcval8); 

   adcout6.write(adcval6); 

   adcout4.write(adcval4); 

   adcout2.write(adcval2); 

  } 

 } 

}; 

A.8: None-Functional Model Test Bench Code 

//include modules 

#include "driver.h" 

#include "signalsource.cpp" 

#include "enableunit.cpp" 

#include "controlunit.cpp" 

#include "modulator.cpp" 

#include "sampler.cpp" 

#include "adc.cpp" 

#include "hold.cpp" 

 

int sc_main(int argc, char *argv[]) 

{ 

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", 

SC_DO_NOTHING); 

 //defining signals to connect modules 

sc_signal<double>  t_frequency; 

 sc_signal<double>  t_ampltd; 

 sc_signal<double>  t_enbl_ctrl; 

 sca_tdf::sca_signal<double> t_enbl_s; 

 sca_tdf::sca_signal<double> t_enbl_k; 

 sca_tdf::sca_signal<double> t_enbl_pls; 

 sca_tdf::sca_signal<bool>  t_pls; 

 sca_tdf::sca_signal<double> t_sine_out; 

 sca_tdf::sca_signal<double> t_det_k; 

 sca_tdf::sca_signal<double> t_k_val; 

 sca_tdf::sca_signal<double> t_cond_sign; 



74 

 

 sca_tdf::sca_signal<double> t_sampld_sign; 

 sca_tdf::sca_signal<double> t_filtered_sign; 

 sc_signal<sc_uint<10> >  adcsign_10; 

 sc_signal<sc_uint<8> >  adcsign_8; 

 sc_signal<sc_uint<6> >  adcsign_6; 

 sc_signal<sc_uint<4> >  adcsign_4; 

 sc_signal<sc_uint<2> >  adcsign_2; 

 

 // declare a time constant for the system clock 

 const sc_time t_period(100, SC_PS); 

 sc_clock clk("clk", t_period);  

 

 //Driver module 

syst_driver dr("Driver_Module"); 

 dr.d_frequency(t_frequency); 

 dr.d_ampl(t_ampltd); 

 dr.clock(clk); 

 dr.enbl_out(t_enbl_ctrl); 

 

 //Eneble unit module 

enbl en("enable_Unit"); 

 en.infrq(t_frequency); 

 en.enabl(t_enbl_ctrl); 

 en.enb_s(t_enbl_s); 

  

 //Signal source module 

sinewv sr("Signal_source"); 

 sr.inpenb(t_enbl_s); 

 sr.inpfrq(t_frequency); 

 sr.inpampltd(t_ampltd); 

 sr.out(t_sine_out); 

  

 //Control unit module 

thectrl ct("TheControlUnit"); 

 ct.enabl(t_enbl_s); 

 ct.inpfrq(t_frequency); 

 ct.inpamp(t_ampltd); 

 ct.k_valout(t_k_val); 

 ct.pulsout(t_pls); 

 

 //modulator module 

themodulator con("modulator"); 

 con.sig_in(t_sine_out); 

 con.k_in(t_k_val); 

 con.cond_sign_out(t_cond_sign); 

 

 //sampler module 

sampl sp("Sampler"); 

 sp.plsin(t_pls); 

 sp.ksin(t_cond_sign); 

 sp.smpld(t_sampld_sign); 

 

 //Hold module 

thehold fl("Hold"); 

 fl.plsin(t_pls); 
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 fl.sigin(t_sampld_sign); 

 fl.sigout(t_filtered_sign); 

 

 //ADC module 

theadc d("ADC"); 

 d.pulsin(t_pls); 

 d.anlgsigin(t_filtered_sign); 

 d.adcout10(adcsign_10); 

 d.adcout8(adcsign_8); 

 d.adcout6(adcsign_6); 

 d.adcout4(adcsign_4); 

 d.adcout2(adcsign_2); 

 

 // Tracing waveforms 

 sca_util::sca_trace_file *anatf = 

sca_util::sca_create_vcd_trace_file("WaveForms"); 

 

 cout << "Start tracing waveforms " << endl; 

 sca_util::sca_trace(anatf, t_sine_out, "S(t)"); 

 sca_util::sca_trace(anatf, t_k_val, "K"); 

 sca_util::sca_trace(anatf, t_cond_sign, "KS(t)"); 

 sca_util::sca_trace(anatf, t_sampld_sign, "KS(nT)"); 

 sca_util::sca_trace(anatf, t_filtered_sign, "KH(t)S(nT)"); 

 sca_util::sca_trace(anatf, adcsign_10, "D10(n)"); 

 sca_util::sca_trace(anatf, adcsign_8, "D8(n)"); 

 sca_util::sca_trace(anatf, adcsign_6, "D6(n)"); 

 sca_util::sca_trace(anatf, adcsign_4, "D4(n)"); 

 sca_util::sca_trace(anatf, adcsign_2, "D2(n)"); 

  

//Simulation period 

 sc_start(60, SC_US); 

 

 sca_util::sca_close_vcd_trace_file(anatf); 

 cout << "Finished tracing waveforms" << endl; 

 

 return (0); 

} 

A.9: Buffer Implementation Model Code 

#include "systemc.h" 

#include "systemc-ams.h" 

 

SC_MODULE(buff) 

{ 

 //Defining ports 

 sca_tdf::sca_in<double>  sigin; 

 sca_tdf::sca_out<double> sigout; 

 sca_tdf::sca_in<bool>  swtch10; 

 sca_tdf::sca_in<bool>  swtch100; 

 sca_eln::sca_tdf_vsource sigtdf2eln; // TDF to ELN converter 

 sca_eln::sca_tdf_vsink  eln2tdf; // ELN to TDF converter 

 sca_eln::sca_nullor  opamp1; //Operational amplifier 

 sca_eln::sca_r   r1, r2, r3; //Resistors 
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 //ELN-TDF signal controlled switches 

sca_eln::sca_tdf::sca_rswitch rswth10, rswth100;  

 //Module constructor 

buff(sc_core::sc_module_name) 

  : sigin("sigin"), sigout("sigout"), 

  sigtdf2eln("sigtdf2eln"), eln2tdf("eln2tdf"), 

  opamp1("opamp1"), r1("r1", 3.3e6), r2("r2", 336e3),  

r3("r3", 33.3e2), 

  swtch10("swtch10"), swtch100("swtch100"),  

  rswth10("rswth10", 0.0, 1e20, 0), 

  rswth100("rswth100", 0.0, 1e20, 0), 

  gnd("gnd") 

 { 

  //convert the TDF to ELN signal 

  sigtdf2eln.inp(sigin); 

  sigtdf2eln.p(n1); 

  sigtdf2eln.n(gnd); 

 

  //ELN signals 

  r1.n(n1); r1.p(n2); 

 

  //Attenuate by 10 

  rswth10.p(n2); 

  rswth10.ctrl(swtch10); 

  rswth10.n(n3); 

  r2.n(n3); r2.p(gnd); 

 

  //Attenuate by 100 

  rswth100.p(n2); 

  rswth100.ctrl(swtch100); 

  rswth100.n(n4); 

  r3.n(n4); r3.p(gnd); 

 

  //operational amplifier 

opamp1.nip(n2); 

  opamp1.nin(n5); 

  opamp1.nop(n5); 

  opamp1.non(gnd); 

 

  eln2tdf.p(n5); 

  eln2tdf.n(gnd); 

  eln2tdf.outp(sigout); //output connection 

 } 

public: 

 sca_eln::sca_node n1, n2, n3, n4, n5; 

 sca_eln::sca_node_ref gnd; 

}; 

 

A.10: Modulator Implementation Model Code 

#include "systemc-ams.h" 

#include "systemc.h" 
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SC_MODULE(modgain) 

{ 

 //Module Ports 

 sca_tdf::sca_in<double> vin; 

 sca_tdf::sca_in<bool> amp1; 

 sca_tdf::sca_in<bool> amp10; 

 sca_tdf::sca_in<bool> amp100; 

 sca_tdf::sca_in<bool> amp1000; 

 sca_eln::sca_terminal vout; 

 

 //Resistors 

 sca_eln::sca_r  r, rc, rf; 

 

 //ELN-TDF controlled variable resistor 

 sca_eln::sca_r   r1, r10, r100, r1000; 

 

 //ELN-TDF controlled switches 

 sca_eln::sca_tdf::sca_rswitch rswt1, rswt10, rswt100, rswt1000; 

  

 //operational amplifiers 

sca_eln::sca_nullor opamp1, opamp2; 

 

//TDF to ELN converter 

 sca_eln::sca_tdf::sca_vsource convs;  

 

 //Module constructor 

SC_CTOR(modgain) 

  : vin("vin"), vout("vout"), opamp1("opamp1"), gnd("gnd"), 

  rc("rc", 1e3), rf("rf", 1e3), opamp2("opamp2"), convs("conv"), 

r("r", 1e3), r1("r1", 1e3), r10("r10", 10e3), r100("r100", 

100e3), r1000("r1000", 1e6),amp1("amp1"), amp10("amp10"), 

amp100("amp100"), amp1000("amp1000"), 

  rswt1("rswt1", 0.0, 1e15, 0), rswt10("rswt10", 0.0, 1e15, 0), 

  rswt100("rswt100", 0.0, 1e15, 0),  

rswt1000("rswt1000", 0.0, 1e15, 0) 

 { 

  //signal conversion 

convs.inp(vin); 

  convs.p(n1); 

  convs.n(gnd); 

 

  r.n(n1); 

  r.p(n2); 

 

  //switches 

  rswt1.p(n2); 

  rswt1.ctrl(amp1); 

  rswt1.n(n3); 

  r1.n(n3); r1.p(n7); 

 

  rswt10.p(n2); 

  rswt10.ctrl(amp10); 

  rswt10.n(n4); 

  r10.n(n4); r10.p(n7); 
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  rswt100.p(n2); 

  rswt100.ctrl(amp100); 

  rswt100.n(n5); 

  r100.n(n5); r100.p(n7); 

 

  rswt1000.p(n2); 

  rswt1000.ctrl(amp1000); 

  rswt1000.n(n6); 

  r1000.n(n6); r1000.p(n7); 

 

  opamp1.nip(gnd); 

  opamp1.nin(n2); 

  opamp1.nop(n7); 

  opamp1.non(gnd); 

 

  rc.n(n7); 

  rc.p(n8); 

 

  opamp2.nip(gnd); 

  opamp2.nin(n8); 

  opamp2.nop(vout); 

  opamp2.non(gnd); 

 

  rf.n(n8); 

  rf.p(vout); 

 } 

 

private: 

 sca_eln::sca_node n1, n2, n3, n4, n5, n6, n7, n8; 

 sca_eln::sca_node_ref gnd; 

};  

A.11: DC Shift Model Code 

#include "systemc.h" 

#include "systemc-ams.h" 

 

SC_MODULE(shft) 

{ 

 //Module ports 

 sca_tdf::sca_in<double> dcin; 

 sca_eln::sca_terminal sigin; 

 sca_eln::sca_terminal sigout; 

 sca_eln::sca_r r1, r2, r3, r4; //Resistors 

 

 sca_eln::sca_tdf_vsource shfttdf2eln; //Converter 

 sca_eln::sca_nullor opamp1; //Operational amplifier 

 

 //Module constructor 

shft(sc_core::sc_module_name) 

  : dcin("dcin"), sigin("sigin"), sigout("sigout"), 

  shfttdf2eln("shfttdf2eln"), opamp1("opamp1"), 

  r1("r1", 1e3), r2("r2", 1e3), r3("r3", 2e3), r4("r4", 2e3) 
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 { 

  //components connections 

r1.n(sigin); r1.p(n1); 

 

  opamp1.nip(n1); 

  opamp1.nin(n3); 

  opamp1.nop(sigout); 

  opamp1.non(gnd); 

 

  shfttdf2eln.inp(dcin); 

  shfttdf2eln.p(n4); 

  shfttdf2eln.n(gnd); 

  r2.n(n4);  r2.p(n1); 

 

  r4.n(gnd);  r4.p(n3); 

  r3.n(n3);  r3.p(sigout); 

 } 

public: 

 sca_eln::sca_node n1, n3, n4; 

 sca_eln::sca_node_ref gnd; 

}; 

A.12: Sample and Hold Implementation Model Code 

#include "systemc.h" 

#include "systemc-ams.h" 

 

SC_MODULE(samphold) 

{ 

 //Module ports 

 sca_eln::sca_terminal  vin; 

 sca_tdf::sca_out<double> vout; 

 sca_tdf::sca_in<bool>  pulsin; 

 

 sca_eln::sca_c holdcap; //ELN capacitor 

 sca_eln::sca_tdf::sca_rswitch swth; //Switch 

 

 sca_eln::sca_nullor opamp1, opamp2; //Operational amplifiers 

 

 sca_eln::sca_tdf_vsink conv1; //Converter port 

 

 //Module constructor 

SC_CTOR(samphold) 

  : vin("vin"), vout("vout"), opamp1("opamp1"), opamp2("opamp2"),  

gnd("gnd"), conv1("conv1"), 

  holdcap("holdcap", 1e1, 0.0), 

  swth("swth", 0.0, 1e15, 0)  

 { 

  //omponent connections 

  opamp1.nip(vin); 

  opamp1.nin(n1); 

  opamp1.nop(n1); 

  opamp1.non(gnd); 
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  swth.p(n1); 

  swth.ctrl(pulsin); 

  swth.n(n2); 

 

  holdcap.p(n2); 

  holdcap.n(gnd); 

 

  opamp2.nip(n2); 

  opamp2.nin(n3); 

  opamp2.nop(n3); 

  opamp2.non(gnd); 

 

  conv1.p(n3); 

  conv1.n(gnd); 

  conv1.outp(vout); 

 } 

private: 

 sca_eln::sca_node n1, n2, n3; 

 sca_eln::sca_node_ref gnd; 

}; 

A.13: ADC Module Code 

#include "systemc.h" 

#include "systemc-ams.h" 

 

SCA_TDF_MODULE(theadc) 

{ 

 //Module ports 

sca_tdf::sca_in<double> anlgsigin; 

 sca_tdf::sca_in<bool> pulsin; 

 //TDF-DE output port 

sca_tdf::sca_de::sca_out<sc_uint<8>> adcout8;  

 //variable declarations 

sc_uint<8>  adcval8; 

 float samp; 

 int intsampval8, i8, r8, dev8; 

 //Module constructor 

theadc(sc_core::sc_module_name) 

  : anlgsigin("anlgsigin"),  

  adcout8("adcout8"), 

  pulsin("pulsin") 

 {} 

 void processing() 

 { 

  if (pulsin.read() == 1) 

  { 

   //Sampling 

   samp = (anlgsigin.read()); 

   intsampval8 = (int) (samp * 256 / 6); 

   //Conversion  

   for(i8=0; i8<8; i8++) 

   { 

    r8 = intsampval8 % 2; 
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    dev8 = intsampval8 / 2; 

    adcval8[i8] = r8; 

    intsampval8 = dev8; 

   } 

 

   //Output the digital values 

   adcout8.write(adcval8); 

  } 

 } 

}; 

A.14: Oscilloscope Implementation model Test Bench Code 

//Include modules 

#include "driver.h" 

#include "signalsource.cpp" 

#include "buffer.cpp" 

#include "modulator.cpp" 

#include "shifter.cpp" 

#include "controlunit.cpp" 

#include "ksource.cpp" 

#include "pulsesource.cpp" 

#include "sampleandhold.cpp" 

#include "adc.cpp" 

 

int sc_main(int argc, char *argv[]) 

{ 

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", 

SC_DO_NOTHING); 

 

 //decaring signals for module connection 

sc_signal<double>   t_frequency; 

 sc_signal<double>   t_amp; 

 sc_signal<double>   t_enbl_ctrl; 

 sca_tdf::sca_signal<double>  t_enbl_k; 

 sca_tdf::sca_signal<double>  t_enbl_pls; 

 sca_tdf::sca_signal<bool>  t_pls; 

 sca_tdf::sca_signal<bool>  t_att, t_att10, t_att100; 

 sca_tdf::sca_signal<bool>  t_amp1, t_amp10, t_amp100, t_amp1000; 

 sca_tdf::sca_signal<double> t_sine_out; 

 sca_tdf::sca_signal<double> t_buff_sig; 

 sca_tdf::sca_signal<double> t_k_val; 

 sca_tdf::sca_signal<double> t_shftsig; 

 sc_signal<sc_uint<8>>  adcsign_8; 

 sca_eln::sca_node   t_modsignal; 

 sca_eln::sca_node   t_shftsignal; 

 sca_tdf::sca_signal<double> t_SHsignal; 

 

 //Setting system clock 

const sc_time t_period(10, SC_PS); 

 sc_clock clk("clk", t_period);  

 

 //Driver module 

syst_driver dr("Driver_Module"); 
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 dr.d_frequency(t_frequency); 

 dr.d_ampl(t_amp); 

 dr.clock(clk); 

 dr.enbl_out(t_enbl_ctrl); 

 

 //Control unit module  

ctrl ct("Control_Unit"); 

 ct.infrq(t_frequency); 

 ct.enabl(t_enbl_ctrl); 

 ct.enb_k(t_enbl_k); 

 ct.enb_pls_gen(t_enbl_pls); 

 ct.k_val(t_k); 

 

 //Signal source module 

 sinewv sr("Signal_source"); 

 sr.inpfrq(t_frequency); 

 sr.inpamp(t_amp); 

 sr.att10(t_att10); 

 sr.att100(t_att100); 

 sr.amp1(t_amp1); 

 sr.amp10(t_amp10); 

 sr.amp100(t_amp100); 

 sr.amp1000(t_amp1000); 

 sr.out(t_buff_sig); 

 sr.shiftsig(t_shftsig); 

 

 //Buffer module 

buff b("Buffer"); 

 b.sigin(t_buff_sig); 

 b.swtch10(t_att10); 

 b.swtch100(t_att100); 

 b.sigout(t_sine_out); 

 

 //K value source module 

kvals ks("K_source"); 

 ks.enbl_in(t_enbl_k); 

 ks.frein(t_sine_out); 

 ks.k_val(t_k_val); 

 

 //Modulator module 

modgain md("Modulator"); 

 md.vin(t_sine_out); 

 md.amp1(t_amp1); 

 md.amp10(t_amp10); 

 md.amp100(t_amp100); 

 md.amp1000(t_amp1000); 

 md.vout(t_modsignal); 

 

 //Shifter module 

shft sh("Shifter"); 

 sh.dcin(t_shftsig); 

 sh.sigin(t_modsignal); 

 sh.sigout(t_shftsignal); 
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 //Pulse generator module 

pulses p("Pulse_Generator"); 

 p.enb(t_enbl_pls); 

 p.inpfrq(t_frequency); 

 p.pulsout(t_pls); 

 

 //Sample and Hold module 

 samphold sp("SampleAndHold"); 

 sp.vin(t_shftsignal); 

 sp.vout(t_SHsignal); 

 sp.pulsin(t_pls); 

 

 //ADC module 

theadc dc("ADC"); 

 dc.pulsin(t_pls); 

 dc.anlgsigin(t_SHsignal); 

 dc.adcout8(adcsign_8); 

  

 // Tracing waveforms 

 sca_util::sca_trace_file *anatf = 

sca_util::sca_create_vcd_trace_file("WaveForms"); 

 

 cout << "Start tracing waveforms " << endl; 

 sca_util::sca_trace(anatf, t_buff_sig, "S(t)"); 

 sca_util::sca_trace(anatf, t_modsignal, "KS(t)_Mod_out"); 

 sca_util::sca_trace(anatf, t_pls, "Pulses"); 

 sca_util::sca_trace(anatf, t_SHsignal ,"KS(t)H(nT)"); 

 sca_util::sca_trace(anatf, adcsign_8, "D8(n)"); 

 sca_util::sca_trace(anatf, t_att10, "Attenuate_by_10"); 

 sca_util::sca_trace(anatf, t_att100, "Attenuate_by_100"); 

 sca_util::sca_trace(anatf, t_amp1, "Amplify_by_1"); 

 sca_util::sca_trace(anatf, t_amp10, "Amplify_by_10"); 

 sca_util::sca_trace(anatf, t_amp100, "Amplify_by_100"); 

 sca_util::sca_trace(anatf, t_amp1000, "Amplify_by_1000"); 

 

 //Simulation period 

sc_start(1, SC_US); 

 

 sca_util::sca_close_vcd_trace_file(anatf); 

 cout << "Finished tracing waveforms" << endl; 

 

 return (0); 

} 
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APPENDIX B: SIGNAL GENERATOR CODES 

B.1: Digital Signal Generator Module Code 

//Include header files 

#include "systemc-ams.h" 

#include "systemc.h" 

#include "math.h" 

 

SCA_TDF_MODULE(siggen) 

{ 

 //Module ports 

 sca_tdf::sc_in<double>   inpfrq;   

 sca_tdf::sca_in<double>  theclock;  

 sca_tdf::sc_out< sc_uint<8> > sineout; 

 sca_tdf::sc_out< sc_uint<8> >  swthout;   

 sca_tdf::sc_out< sc_uint<8> >  trgout;   

 sca_tdf::sca_out<bool>    sqrout;   

 

 //Module constructor 

siggen(sc_core::sc_module_name nm, double swthval_ = 0.0,  

double trgval_ = 0.0, double myclkT_ = 0.00, double i_ = 0,  

int itr_ = 0, int j_ = 0, int x_ = 0, int  cycls_ = 0, 

 sca_core::sca_time tm_ = sca_core::sca_time(10.0, sc_core::SC_NS)) 

: sineout("sineout"), inpfrq("inpfrq"), trgout("trgout"), 

sqrout("sqrout"), tm(tm_),swthout("swthout"), 

theclock("theclock"),i(i_), itr(itr_), j(j_), x(x_), 

cycls(cycls_), myclkT(myclkT_) 

 {} 

 

 void set_attributes() 

 { 

  set_timestep(tm); 

 } 

 

 void processing()     

 { 

  //process done when pulse is high 

if (theclock.read() == 1) 

  { 

   //Generate signals 

   int sampls, samplstr; 

   double trgval1; 

   double freq = (inpfrq.read()); 

   s = 20; 

   sf = s / 2; 

   sampls = 1 / ((20e-9) * freq); 

   myclkT = 1 / (10 * freq); 

   samplstr = sampls / 2; 

   double t = get_time().to_seconds();  

   sinval = (100 + (100 * std::sin(2.0 * 3.142 * freq * t)));  

   cycls = cycls + 1; 

 

   //saw tooth wave 
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   if (i <= s) 

   { 

    swthval = i * 100 / s; 

    i = i + 1; 

   } 

   else 

   { 

    swthval = 0.0; 

    i = 0; 

    x = x + 1; 

    if (x == 4)  

    { 

     i_time = get_time().to_seconds(); 

     cycls = 0; 

    } 

    if (x == 14)  

    { 

     f_time = get_time().to_seconds();  

 

     time_diff = f_time - i_time; 

     avtimepc = time_diff / cycls; 

     int y = x - 4; 

     double avtmpercycl = ((time_diff) / y);  

     double totalsampls = (sampls * 4);   

 double instpercycle = ((samplstr * 117) + 

(samplstr * 121));  

     double tmprinst = avtmpercycl / instpercycle; 

     double oprtgfrq = 1 / tmprinst; 

    } 

   } 

   //Triangle and square waves 

   if (itr <= sf) 

   { 

    trgval = itr * 100 / sf; 

    sqrout.write(1);   

    trgvals[itr] = trgval;   

    itr = itr + 1; 

    j = j + 1; 

   } 

   else 

   { 

    if (itr <= s) 

    { 

     trgval = trgvals[j - 1]; 

     sqrout.write(0); //square wave 

     itr = itr + 1; 

     j = j - 1; 

    } 

    else 

    { 

     trgval = 0; 

     itr = 0; 

     j = 0; 

    } 

   } 
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   //generate digital signals 

   for (int i = 0; i < 8; i++) 

   { 

    //sinewave conversion 

    rsn = ((int)sinval) % 2;  

    dsn = (int)sinval / 2;   

    binsinval[i] = rsn;    

    sinval = dsn;     

 

    //sawtooth conversion 

    rsw = ((int)swthval) % 2;  

    dsw = (int)swthval / 2;   

    binswval[i] = rsw; 

swthval = dsw;     

 

    //triangle conversion 

    rtg = ((int)trgval) % 2; 

    dtg = (int)trgval / 2; 

    bintgval[i] = rtg; 

    trgval = dtg; 

   } 

//output signals 

   sineout.write(binsinval); 

   swthout.write(binswval); 

   trgout.write(bintgval); 

  } 

 } 

 

private: 

 double  swthval, trgval, trgvals[1000]; 

 double  sinval, swval, tgval; 

 double i, x; 

 double i_time, f_time, time_diff; 

 double frqval, avtimepc; 

 int j, itr; 

 int rsn, dsn; 

 int rsw, dsw; 

 int rtg, dtg; 

 int cycls, s, sf; 

 sc_uint<8> binsinval, binswval, bintgval; 

 sca_core::sca_time tm;  

 double myclkT, myclk; 

}; 

B.2: DAC Functional Model Code 

#include "systemc-ams.h" 

#include "systemc.h" 

#include "math.h" 

 

SCA_TDF_MODULE (dac) 

{ 

 //Module ports 
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 sca_tdf::sc_in< sc_uint<8> > sine_in; 

 sca_tdf::sc_in< sc_uint<8> >  saw_in; 

 sca_tdf::sc_in< sc_uint<8> >  triangle_in; 

 sca_tdf::sca_out<double> sine_out; 

 sca_tdf::sca_out<double> saw_out; 

 sca_tdf::sca_out<double> triangle_out; 

 

 //module constructor 

dac(sc_core::sc_module_name nm, 

 double sval_ = 0.0, double swval_ = 0.0, double tgval_ = 0.0, 

 sca_core::sca_time tm_ = sca_core::sca_time(20.0, sc_core::SC_NS)) 

 :  sine_in("sine_in"), saw_in("saw_in"), triangle_in("triangle_in"), 

    sine_out("sine_out"), saw_out("saw_out"),  

triangle_out("triangle_out"),  

    sval(sval_), swval(swval_), tgval(tgval_), 

    tm(tm_) 

 {} 

 void set_attributes() 

 { 

  set_timestep(tm); 

 } 

 void processing() 

 { 

  //convert signals 

  sinval = sine_in.read(); 

  sawval = saw_in.read(); 

  trgval = triangle_in.read(); 

  for (int i = 0; i<8; i++) 

  { 

   sval = sval + (sinval[i]* (pow(2,i))); 

   swval = swval + (sawval[i]* (pow(2,i))); 

   tgval = tgval + (trgval[i]* (pow(2,i))); 

  } 

  //Output signals 

  sine_out.write(sval); 

  saw_out.write(swval); 

  triangle_out.write(tgval); 

  sval = 0; 

  swval = 0; 

  tgval = 0; 

 } 

private: 

 double sval, swval, tgval; 

 sc_uint<8> sinval, sawval, trgval; 

 sca_core::sca_time tm; 

}; 

B.3: Signal Generator Functional Model Test Bench Code 

//Include modules 

#include "systemc-ams.h" 

#include "thedriver.h" 

#include "theClkGen.cpp"  

#include "signalgen.cpp" 
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#include "theDAC.cpp" 

 

int sc_main(int argc, char *argv[]) 

{ 

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", 

SC_DO_NOTHING); 

 

 //define signals for module connection 

sc_signal<double>   t_frequency; 

 sca_tdf::sca_signal<double>  t_sine; 

 sca_tdf::sca_signal<double>  t_swth; 

 sca_tdf::sca_signal<double>  t_trgl; 

 sca_tdf::sca_signal<bool>  t_sqr; 

 sc_core::sc_signal<double>  t_desine; 

 sc_core::sc_signal<double>  t_deswth; 

 sc_core::sc_signal<double>  t_detrgl; 

 sca_tdf::sca_signal<double> t_sampclk; 

 sc_signal<sc_uint<8> >  t_dgsine; 

 sc_signal<sc_uint<8> >  t_dgswth; 

 sc_signal<sc_uint<8> >  t_dgtgth; 

 sca_tdf::sca_signal<double>  t_anasine; 

 sca_tdf::sca_signal<double>  t_anaswth; 

 sca_tdf::sca_signal<double>  t_anatrgl; 

 

 // declare a time constant for the system clock 

 const sc_time t_period(10, SC_NS); 

 sc_clock clk("clk", t_period);  

 

//Driver module 

syst_driver dr("Driver_Module"); 

 dr.d_frequency(t_frequency); 

 dr.clock(clk); 

 

 //Sampling clock generator module 

sampclk scl("SamplingClock"); 

 scl.d_frequency(t_frequency); 

 scl.spclk(t_sampclk); 

 

 //Signal generator module 

 siggen sg("SignalGen"); 

 sg.inpfrq(t_frequency); 

 sg.theclock(t_sampclk); 

 sg.sineout(t_dgsine); 

 sg.swthout(t_dgswth); 

 sg.trgout(t_dgtgth); 

 sg.sqrout(t_sqr); 

 

 //DAC module 

theDAC dc("DAC"); 

 dc.sine_in(t_dgsine); 

 dc.saw_in(t_dgswth); 

 dc.triangle_in(t_dgtgth); 

 dc.sine_out(t_anasine); 

 dc.saw_out(t_anaswth); 

 dc.triangle_out(t_anatrgl); 
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 // Tracing waveforms 

 sca_util::sca_trace_file *anatf = 

sca_util::sca_create_vcd_trace_file("WaveFormsFile"); 

 

 cout << "Start tracing waveforms " << endl; 

 sca_util::sca_trace(anatf, clk, "SystemClock"); 

 sca_util::sca_trace(anatf, t_sampclk, "SamplingClock"); 

 sca_util::sca_trace(anatf, t_sqr, "Square"); 

 sca_util::sca_trace(anatf, t_anasine, "S(t)_Sine"); 

 sca_util::sca_trace(anatf, t_anaswth, "S(t)_Sawtooth"); 

 sca_util::sca_trace(anatf, t_anatrgl, "S(t)_Triangle"); 

 

 //Simulation period 

 sc_start(250, SC_MS); 

 

 //sc_close_vcd_trace_file (digtf); 

 sca_util::sca_close_vcd_trace_file(anatf); 

 cout << "Finished tracing waveforms\a\a" << endl; 

 

 return (0); 

} 

B.4: Phase Increment Value Generator module code 

#include "the_phase_increment.h" 

#include "math.h" 

 

void calc_pinc::prc_calc_pinc() 

{ 

 //Variable declaration 

 Double frequency_var; 

 double  pinc_var; 

 double  val1, val2, val3; 

 

 frequency_var = frequency.read(); 

 

 val1 = frequency_var / 200000000;//200000000 is the sampling frequency 

 val2 = val1 * 268435456; //268435456 = 2^28 

 val3 = val2 + 0.5; 

 pinc_var = val3; 

 pinc.write(pinc_var); //phase value output 

} 

B.5: Phase Value Accumulator module code 

#include "the_phase_accumulator.h" 

#include <iostream> 

void ph_acc::prc_phase_accumulation() 

{ 

 sc_uint<28> x;   // used to avoid writing to port before if statement 

 x = ((ph_acc_reg.read()) + (pinc.read())); 

 ph_acc_reg.write(x); 

} 
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B.6: Generator module code 

#include "systemc-ams.h" 

#include "the_digital_signal_generator.h" 

void ph_to_amplitude::prc_ph_to_amplitude() 

{ 

 //Look-Up-Table 

sc_uint<32> amplitude[256] = 

 { 

  100, 102, 105, 107, 110, 112, 115, 117, 

  120, 122, 124, 127, 129, 131, 134, 136, 

  138, 141, 143, 145, 147, 149, 151, 153, 

  156, 158, 160, 162, 163, 165, 167, 169, 

  171, 172, 174, 176, 177, 179, 180, 182, 

  183, 184, 186, 187, 188, 189, 190, 191, 

  192, 193, 194, 195, 196, 196, 197, 198, 

  198, 199, 199, 199, 200, 200, 200, 200, 

  200, 200, 200, 200, 200, 199, 199, 199, 

  198, 198, 197, 196, 196, 195, 194, 193, 

  192, 191, 190, 189, 188, 187, 186, 184, 

  183, 182, 180, 179, 177, 176, 174, 172, 

  171, 169, 167, 165, 163, 162, 160, 158, 

  156, 153, 151, 149, 147, 145, 143, 141, 

  138, 136, 134, 131, 129, 127, 124, 122, 

  120, 117, 115, 112, 110, 107, 105, 102, 

  100, 98, 95, 93, 90, 88, 85, 83, 

  80, 78, 76, 73, 71, 69, 66, 64, 

  62, 59, 57, 55, 53, 51, 49, 47, 

  44, 42, 40, 38, 37, 35, 33, 31, 

  29, 28, 26, 24, 23, 21, 20, 18, 

  17, 16, 14, 13, 12, 11, 10, 9, 

  8, 7, 6, 5, 4, 4, 3, 2, 

  2, 1, 1, 1, 0, 0, 0, 0, 

  0, 0, 0, 0, 0, 1, 1, 1, 

  2, 2, 3, 4, 4, 5, 6, 7, 

  8, 9, 10, 11, 12, 13, 14, 16, 

  17, 18, 20, 21, 23, 24, 26, 28, 

  29, 31, 33, 35, 37, 38, 40, 42, 

  44, 47, 49, 51, 53, 55, 57, 59, 

  62, 64, 66, 69, 71, 73, 76, 78, 

  80, 83, 85, 88, 90, 93, 95, 98, 

 }; 

 

 sc_uint<28> quantized_ph_acc_var; 

 sc_uint<8> sine_amp_out; 

 sc_uint<8>  ph_acc; 

 sc_uint<8>  ph_acc1; 

 quantized_ph_acc_var = ph_acc_reg.read(); 

 ph_acc1 = quantized_ph_acc_var >> 20; //shifts to get the 8 MSB 

 sine_amp_out = (amplitude[ph_acc1]); 

 sine_out8 = (sine_amp_out);  //sine wave output 

 

} 
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B.7: DAC Non-Functional Model Code 

#include "systemc-ams.h" 

#include "systemc.h" 

#include "math.h" 

 

SCA_TDF_MODULE (dac) 

{ 

 //Module ports 

 sca_tdf::sc_in< sc_uint<8> > sine_in; 

 sca_tdf::sca_out<double> sine_out; 

  

//Module Constructor 

dac(sc_core::sc_module_name nm, 

 double sval_ = 0.0, double swval_ = 0.0,  

 sca_core::sca_time tm_ = sca_core::sca_time(20.0, sc_core::SC_NS)) 

 :  sine_in("sine_in"),sine_out("sine_out"),  

    sval(sval_), swval(swval_), tm(tm_) 

 {} 

 void set_attributes() 

 { 

  set_timestep(tm); 

 } 

 void processing() 

 { 

  //convert waves 

  sinval = sine_in.read(); 

  for (int i = 0; i<8; i++) 

  { 

   sval = sval + (sinval[i]* (pow(2,i))); 

  } 

  sine_out.write(sval); 

  sval = 0; 

 } 

private: 

 double sval; 

 sc_uint<8> sinval; 

 sca_core::sca_time tm; 

}; 

B.8: Signal Generator None-Functional Test Bench Code 

//Include modules 

#include "systemc-ams.h" 

#include "thedriver.h" 

#include "theSamplingClockGen.cpp" 

#include"the_phase_accumulator.h" 

#include"the_phase_increment.h" 

#include "the_digital_signal_generator.h" 

#include "theDAC.cpp" 

 

int sc_main(int argc, char *argv[]) 

{ 

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", 

SC_DO_NOTHING); 
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 //Declaration of signals 

 sc_signal<sc_uint<28> > t_frequency; 

 sc_signal<double>  t_amp, t_sel, t_tmr; 

 sc_signal<sc_uint<28> > t_phsincr; 

 sc_signal<sc_uint<28> > t_ph_acc_reg; 

 sc_signal<sc_uint<8> > t_sine_out; 

 sc_signal<bool>   t_sampclk; 

  

 //System clock definition 

 const sc_time t_period(10, SC_NS); 

 sc_clock clk("clk", t_period);  

 

 //Driver module 

syst_driver dr("Driver_Module"); 

 dr.d_frequency(t_frequency); 

 dr.d_ampl(t_amp); 

 dr.d_signsel(t_sel); 

 dr.clock(clk); 

 

 //Sampling clock generator module 

samp_clk sclk("SamplingClock"); 

 sclk.clock(clk); 

 sclk.d_frequency(t_frequency); 

 sclk.d_sampclk(t_sampclk); 

 

 //Phase increment module 

calc_pinc phsinc("PhaseIncrement"); 

 phsinc.clock(clk); 

 phsinc.frequency(t_frequency); 

 phsinc.pinc(t_phsincr); 

 

 //Phase accumulator module 

ph_acc phsacum("PhaseAccumulator"); 

 phsacum.clock(clk); 

 phsacum.pinc(t_phsincr); 

 phsacum.ph_acc_reg(t_ph_acc_reg); 

 

 //Phase value to amplitude module 

ph_to_amplitude pamp("Phase_to_Amplitude"); 

 pamp.ph_acc_reg(t_ph_acc_reg); 

 pamp.clock(t_sampclk); 

 pamp.sine_out8(t_sine_out); 

  

 //DAC module 

 theDAC dc("The_DAC"); 

 dc.sine_in(t_sine_out); 

 dc.ampl_in(t_amp); 

 dc.sign_sel(t_sel); 

 dc.samp_in(t_sampclk); 

 dc.sign_out(t_anlgsig); 

 

 // Tracing waveforms 

 sca_util::sca_trace_file *anatf = 

sca_util::sca_create_vcd_trace_file("WaveForms"); 
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 cout << "Start tracing waveforms " << endl; 

 

 sca_util::sca_trace(anatf, t_sampclk, "Samp_Clock"); 

 sca_util::sca_trace(anatf, t_anlgsig, "S(t)"); 

 //Simulation period 

 sc_start(10, SC_MS); 

 

 sca_util::sca_close_vcd_trace_file(anatf); 

 cout << "Finished tracing waveforms\a\a" << endl; 

 

 return (0); 

}   

B.8: DAC Implementation Model Code 

#include "systemc-ams.h" 

#include "systemc.h" 

 

SC_MODULE(dac) 

{ 

 //input terminals  

sca_eln::sca_terminal  swdc0, swdc1, swdc2, swdc3, swdc4, swdc5;  

sca_eln::sca_terminal  swdc6, swdc7;  

 sca_eln::sca_terminal  stdc0, stdc1, stdc2, stdc3, stdc4, stdc5;  

sca_eln::sca_terminal  stdc6, stdc7; 

 sca_eln::sca_terminal  tgdc0, tgdc1, tgdc2, tgdc3, tgdc4, tgdc5;  

sca_eln::sca_terminal  tgdc6, tgdc7; 

 

 //output terminals 

 sca_eln::sca_terminal  swdacout;       

 sca_eln::sca_terminal  stdacout;       

 sca_eln::sca_terminal  tgdacout;       

 

 //Resistor declarations 

 sca_eln::sca_r  swr10, swr11, swr12, swr13, swr14, swr15, swr16;  

sca_eln::sca_r  swr17; 

 sca_eln::sca_r  str10, str11, str12, str13, str14, str15, str16;  

sca_eln::sca_r  str17; 

 sca_eln::sca_r  tgr10, tgr11, tgr12, tgr13, tgr14, tgr15, tgr16;  

sca_eln::sca_r  tgr17; 

 sca_eln::sca_r  swr2in, swr20, swr21, swr22, swr23, swr24, swr25;  

sca_eln::sca_r  swr26, swr27, swr2f; 

 sca_eln::sca_r  str2in, str20, str21, str22, str23, str24, str25;  

sca_eln::sca_r  str26, str27, str2f; 

 sca_eln::sca_r  tgr2in, tgr20, tgr21, tgr22, tgr23, tgr24, tgr25;  

sca_eln::sca_r  tgr26, tgr27, tgr2f; 

 

 //Operational Amplifier declarations 

 sca_eln::sca_nullor  swnull1, stnull1, tgnull1; 

 

 //Module Constructor connections 

SC_CTOR(dac) 

  : swdc0("sw5V_input0"), swdc1("sw5V_input1"), 

swdc2("sw5V_input2"), swdc3("sw5V_input3"), 
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swdc4("sw5V_input4"),swdc5("sw5V_input5"), 

swdc6("sw5V_input6"),swdc7("sw5V_input7"), 

  swdacout("swsinewaveput_terminal"), 

 

  stdc0("st5V_input0"), stdc1("st5V_input1"), stdc2("st5V_input2"),  

stdc3("st5V_input3"), stdc4("st5V_input4"),stdc5("st5V_input5"), 

stdc6("st5V_input6"),stdc7("st5V_input7"), 

  stdacout("stsinewaveput_terminal"), 

 

  tgdc0("tg5V_input0"), tgdc1("tg5V_input1"), tgdc2("tg5V_input2"),  

tgdc3("tg5V_input3"), tgdc4("tg5V_input4"), tgdc5("tg5V_input5"),  

tgdc6("tg5V_input6"),tgdc7("tg5V_input7"), 

  tgdacout("tgsinewaveput_terminal"), 

 

  swr10("swr10", 10.0e3), swr11("swr11", 10.0e3), swr12("swr12",  

10.0e3), swr13("swr13", 10.0e3), swr14("swr14", 10.0e3),  

swr15("swr15", 10.0e3),swr16("swr61", 10.0e3), swr17("swr17", 

10.0e3), 

 

  str10("str10", 10.0e3), str11("str11", 10.0e3), str12("str12",  

10.0e3), str13("str13", 10.0e3), str14("str14", 10.0e3), 

str15("str15", 10.0e3), str16("str61", 10.0e3), str17("str17", 

10.0e3), 

 

tgr10("tgr10", 10.0e3), tgr11("tgr11", 10.0e3), tgr12("tgr12", 

10.0e3), tgr13("tgr13", 10.0e3), tgr14("tgr14", 10.0e3), 

tgr15("tgr15", 10.0e3),tgr16("tgr61", 10.0e3), tgr17("tgr17", 

10.0e3), 

 

swr2in("swr2in", 20.0e3), swr20("swr20", 20.0e3), swr21("swr21", 

20.0e3), swr22("swr22", 20.0e3), swr23("swr23", 20.0e3), 

swr24("swr24", 20.0e3), swr25("swr25", 20.0e3), 

  swr26("swr26", 20.0e3), swr27("swr27", 20.0e3), swr2f("swr2f",  

-20.0e3), 

 

str2in("str2in", 20.0e3), str20("str20", 20.0e3), str21("str21", 

20.0e3), str22("str22", 20.0e3), str23("str23", 20.0e3), 

str24("str24", 20.0e3), str25("str25", 20.0e3), 

str26("str26", 20.0e3), str27("str27", 20.0e3), str2f("str2f", -

20.0e3), 

 

tgr2in("tgr2in", 20.0e3), tgr20("tgr20", 20.0e3), tgr21("tgr21", 

20.0e3), tgr22("tgr22", 20.0e3), tgr23("tgr23", 20.0e3), 

tgr24("tgr24", 20.0e3), tgr25("tgr25", 20.0e3), 

tgr26("tgr26", 20.0e3), tgr27("tgr27", 20.0e3), tgr2f("tgr2f", -

20.0e3), 

 

swnull1("swNullator"), stnull1("stNullator"), 

tgnull1("tgNullator"),swn("swn"), swn0("swn0"), swn1("swn1"), 

swn2("swn2"), swn3("swn3"), swn4("swn4"), swn5("swn5"), 

swn6("swn6"), swn7("swn7"), stn("stn"), stn0("stn0"), 

stn1("stn1"), stn2("stn2"), stn3("stn3"), stn4("stn4"), 

stn5("stn5"), stn6("stn6"), stn7("stn7"),tgn("tgn"), 

tgn0("tgn0"), tgn1("tgn1"), tgn2("tgn2"), tgn3("tgn3"), 

tgn4("tgn4"), tgn5("tgn5"), tgn6("tgn6"), tgn7("tgn7"), 
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  gnd("Ground") 

 { 

  //Component connections 

swr2in.n(gnd); swr10.n(swn); swr11.n(swn0);   

 swr12.n(swn1); swr13.n(swn2); swr14.n(swn3);    

swr15.n(swn4); swr16.n(swn5); swr17.n(swn6); 

  swr2in.p(swn); swr10.p(swn0); swr11.p(swn1);  

swr12.p(swn2); swr13.p(swn3); swr14.p(swn4);

 swr15.p(swn5); swr16.p(swn6); swr17.p(swn7); 

 

  swr2f.n(swn7); 

  swr2f.p(swdacout); 

 

  swr20.p(swn0); swr21.p(swn1); swr22.p(swn2);  

swr23.p(swn3); swr24.p(swn4); swr25.p(swn5);

 swr26.p(swn6); swr27.p(swn7); swr20.n(swdc0);

 swr21.n(swdc1); swr22.n(swdc2); swr23.n(swdc3);

 swr24.n(swdc4); swr25.n(swdc5); swr26.n(swdc6);

 swr27.n(swdc7); 

 

  //Op Amp null1 connections 

  swnull1.nip(swn7);    

  swnull1.nin(gnd);    

  swnull1.nop(swdacout); 

  swnull1.non(gnd);    

 

  str2in.n(gnd); str10.n(stn); str11.n(stn0);  

str12.n(stn1); str13.n(stn2); str14.n(stn3);

 str15.n(stn4); str16.n(stn5); str17.n(stn6); 

  str2in.p(stn); str10.p(stn0); str11.p(stn1);  

str12.p(stn2); str13.p(stn3); str14.p(stn4);

 str15.p(stn5); str16.p(stn6); str17.p(stn7); 

 

  str2f.n(stn7);   

  str2f.p(stdacout);  

 

  str20.p(stn0); str21.p(stn1); str22.p(stn2);  

str23.p(stn3); str24.p(stn4); str25.p(stn5);

 str26.p(stn6); str27.p(stn7); 

  str20.n(stdc0); str21.n(stdc1); str22.n(stdc2);  

str23.n(stdc3); str24.n(stdc4); str25.n(stdc5);

 str26.n(stdc6); str27.n(stdc7); 

 

  //Op Amp null1 connections 

  stnull1.nip(stn7);    

  stnull1.nin(gnd);    

  stnull1.nop(stdacout);   

  stnull1.non(gnd);    

 

  tgr2in.n(gnd); tgr10.n(tgn); tgr11.n(tgn0);  

tgr12.n(tgn1); tgr13.n(tgn2); tgr14.n(tgn3);

 tgr15.n(tgn4); tgr16.n(tgn5); tgr17.n(tgn6); 

  tgr2in.p(tgn); tgr10.p(tgn0); tgr11.p(tgn1);  

tgr12.p(tgn2); tgr13.p(tgn3); tgr14.p(tgn4);

 tgr15.p(tgn5); tgr16.p(tgn6); tgr17.p(tgn7); 
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  tgr2f.n(tgn7); 

  tgr2f.p(tgdacout); 

 

  tgr20.p(tgn0); tgr21.p(tgn1); tgr22.p(tgn2);  

tgr23.p(tgn3); tgr24.p(tgn4); tgr25.p(tgn5);

 tgr26.p(tgn6); tgr27.p(tgn7); 

  tgr20.n(tgdc0); tgr21.n(tgdc1); tgr22.n(tgdc2);  

tgr23.n(tgdc3); tgr24.n(tgdc4); tgr25.n(tgdc5);

 tgr26.n(tgdc6); tgr27.n(tgdc7); 

 

  //Op Amp null1 connections 

  tgnull1.nip(tgn7);    

  tgnull1.nin(gnd);    

  tgnull1.nop(tgdacout);  

  tgnull1.non(gnd);    

 } 

private: 

 sca_eln::sca_node swn, swn0, swn1, swn2, swn3, swn4, swn5, swn6, swn7;  

 sca_eln::sca_node stn, stn0, stn1, stn2, stn3, stn4, stn5, stn6, stn7;  

 sca_eln::sca_node tgn, tgn0, tgn1, tgn2, tgn3, tgn4, tgn5, tgn6, tgn7;  

 sca_eln::sca_node ncon; 

 sca_eln::sca_node_ref  gnd;  

}; 

B.9: Signal Generator Implementation Model Test Bench Code 

//Include modules 

#include "systemc-ams.h" 

#include "thedriver.h" 

#include"thephase_accumulator.h" 

#include"thephase_increment.h" 

#include "theDigital_signal_generator.h" 

#include "thedcsource.cpp" 

#include "thetdf2lsfconverter.cpp" 

#include "thelsf2elnconverter.cpp" 

#include "theDACmultiplexer.cpp" 

#include "theDAC.cpp" 

 

int sc_main(int argc, char *argv[]) 

{ 

 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", 

SC_DO_NOTHING); 

  

 //Signal declarations 

 sc_signal<sc_uint<28> > t_frequency; 

 sc_signal<sc_uint<28> > t_phsincr; 

 sc_signal<sc_uint<28> > t_ph_acc_reg; 

 sc_signal<double>  t_amp; 

 sc_signal<bool>  t_square_out; 

 sc_signal<sc_uint<8> > t_saw_out; 

 sc_signal<sc_uint<8> > t_sine_out; 

 sc_signal<sc_uint<8> > t_triangle_out; 

 sc_signal<sc_uint<8> > t_sel_sign_to_DACMUX; 
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 //Sine wave connecting signals 

 sca_tdf::sca_signal<double> t_swtdfdc05, t_swtdfdc15, t_swtdfdc25; 

sca_tdf::sca_signal<double> t_swtdfdc35, t_swtdfdc45, t_swtdfdc55; 

sca_tdf::sca_signal<double> t_swtdfdc65, t_swtdfdc75; 

sca_tdf::sca_signal<double> t_swtdfdc00, t_swtdfdc10, t_swtdfdc20; 

sca_tdf::sca_signal<double> t_swtdfdc30, t_swtdfdc40, t_swtdfdc50; 

sca_tdf::sca_signal<double> t_swtdfdc60, t_swtdfdc70; 

sca_lsf::sca_signal<double> swlsfconvsig00, swlsfconvsig10; 

sca_tdf::sca_signal<double> swlsfconvsig20, swlsfconvsig30; 

sca_tdf::sca_signal<double> swlsfconvsig40, swlsfconvsig50; 

sca_tdf::sca_signal<double> swlsfconvsig60, swlsfconvsig70; 

sca_lsf::sca_signal<double> swlsfconvsig05, swlsfconvsig15; 

sca_tdf::sca_signal<double> swlsfconvsig25, swlsfconvsig35; 

sca_tdf::sca_signal<double> swlsfconvsig45, swlsfconvsig55; 

sca_tdf::sca_signal<double> swlsfconvsig65, swlsfconvsig75; 

sca_lsf::sca_signal <double> swlsfdc0, swlsfdc1, swlsfdc2, swlsfdc3; 

sca_lsf::sca_signal <double> swlsfdc4, swlsfdc5, swlsfdc6, swlsfdc7; 

sc_signal<bool> t_swb0, t_swb1, t_swb2, t_swb3, t_swb4, t_swb5; 

sc_signal<bool> t_swb6, t_swb7; 

 sca_eln::sca_node  t_sinDACout; 

 sca_eln::sca_node  t_swelndc0, t_swelndc1, t_swelndc2, t_swelndc3; 

sca_eln::sca_node  t_swelndc4, t_swelndc5, t_swelndc6, t_swelndc7; 

 

 //SawTooth connecting signals 

 sca_tdf::sca_signal<double> t_sttdfdc00, t_sttdfdc10, t_sttdfdc20; 

sca_tdf::sca_signal<double> t_sttdfdc30, t_sttdfdc40, t_sttdfdc5; 

sca_tdf::sca_signal<double> t_sttdfdc60, t_sttdfdc70; 

sca_tdf::sca_signal<double> t_sttdfdc05, t_sttdfdc15, t_sttdfdc25; 

sca_tdf::sca_signal<double> t_sttdfdc35, t_sttdfdc45, t_sttdfdc55; 

sca_tdf::sca_signal<double> t_sttdfdc65, t_sttdfdc75; 

sca_lsf::sca_signal  stlsfconvsig00, stlsfconvsig10, stlsfconvsig20; 

sca_lsf::sca_signal  stlsfconvsig30, stlsfconvsig40, stlsfconvsig50; 

sca_lsf::sca_signal  stlsfconvsig60,stlsfconvsig70; 

sca_lsf::sca_signal  stlsfconvsig05, stlsfconvsig15, stlsfconvsig25; 

sca_lsf::sca_signal  stlsfconvsig35, stlsfconvsig45, stlsfconvsig55; 

sca_lsf::sca_signal  stlsfconvsig65, stlsfconvsig75; 

sca_lsf::sca_signal  stlsfdc0, stlsfdc1, stlsfdc2, stlsfdc3; 

sca_lsf::sca_signal  stlsfdc4, stlsfdc5, stlsfdc6, stlsfdc7; 

sc_signal<bool> t_stb0, t_stb1, t_stb2, t_stb3, t_stb4, t_stb5; 

sc_signal<bool> t_stb6, t_stb7; 

 sca_eln::sca_node t_sawthDACout; 

 sca_eln::sca_node t_stelndc0, t_stelndc1, t_stelndc2, t_stelndc3; 

sca_eln::sca_node t_stelndc4, t_stelndc5, t_stelndc6, t_stelndc7; 

 

 //Triangle wave connecting signals 

 sca_tdf::sca_signal<double> t_tgtdfdc05, t_tgtdfdc15, t_tgtdfdc25; 

sca_tdf::sca_signal<double> t_tgtdfdc35, t_tgtdfdc45, t_tgtdfdc55; 

sca_tdf::sca_signal<double> t_tgtdfdc65, t_tgtdfdc75; 

sca_tdf::sca_signal<double> t_tgtdfdc00, t_tgtdfdc10, t_tgtdfdc20; 

sca_tdf::sca_signal<double> t_tgtdfdc30, t_tgtdfdc40, t_tgtdfdc50; 

sca_tdf::sca_signal<double> t_tgtdfdc60, t_tgtdfdc70; 

sca_lsf::sca_signal tglsfconvsig00, tglsfconvsig10, tglsfconvsig20; 

sca_lsf::sca_signal tglsfconvsig30, tglsfconvsig40, tglsfconvsig50; 

sca_lsf::sca_signal tglsfconvsig60, tglsfconvsig70; 
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sca_lsf::sca_signal tglsfconvsig05, tglsfconvsig15, tglsfconvsig25; 

sca_lsf::sca_signal tglsfconvsig35, tglsfconvsig45, tglsfconvsig55; 

sca_lsf::sca_signal tglsfconvsig65, tglsfconvsig75; 

sca_lsf::sca_signal tglsfdc0, tglsfdc1, tglsfdc2, tglsfdc3, tglsfdc4; 

sca_lsf::sca_signal tglsfdc5, tglsfdc6, tglsfdc7; 

sc_signal<bool> t_tgb0, t_tgb1, t_tgb2, t_tgb3, t_tgb4, t_tgb5; 

sc_signal<bool> t_tgb6, t_tgb7; 

 sca_eln::sca_node t_tgDACout; 

 sca_eln::sca_node t_tgelndc0, t_tgelndc1, t_tgelndc2, t_tgelndc3; 

sca_eln::sca_node t_tgelndc4, t_tgelndc5, t_tgelndc6, t_tgelndc7; 

  

 //Declaring system clock 

const sc_time t_period(20, SC_NS); 

 sc_clock clk("clk", t_period);  

 

 //Driver module 

syst_driver dr("Driver_Module"); 

 dr.d_frequency(t_frequency); 

 dr.clock(clk); 

 

 //Phase increment module 

calc_pinc phsinc("PhaseIncrement"); 

 phsinc.clock(clk); 

 phsinc.frequency(t_frequency); 

 phsinc.pinc(t_phsincr); 

 

 //Phase accumulator module 

ph_acc phsacum("PhaseAccumulator"); 

 phsacum.clock(clk); 

 phsacum.pinc(t_phsincr); 

 phsacum.ph_acc_reg(t_ph_acc_reg); 

 

 //Phase value to amplitude module 

ph_to_amplitude pamp("Phase_to_Amplitude"); 

 pamp.ph_acc_reg(t_ph_acc_reg); 

 pamp.clock(clk); 

 pamp.sine_out(t_sine_out); 

 pamp.saw_out(t_saw_out); 

 pamp.triangle_out(t_triangle_out); 

pamp.swb0(t_swb0); pamp.swb1(t_swb1); pamp.swb2(t_swb2); 

pamp.swb3(t_swb3); pamp.swb4(t_swb4); 

 pamp.swb5(t_swb5); pamp.swb6(t_swb6); pamp.swb7(t_swb7); 

pamp.stb0(t_stb0); pamp.stb1(t_stb1); pamp.stb2(t_stb2); 

pamp.stb3(t_stb3); pamp.stb4(t_stb4); 

 pamp.stb5(t_stb5); pamp.stb6(t_stb6); pamp.stb7(t_stb7);  

pamp.tgb0(t_tgb0); pamp.tgb1(t_tgb1); pamp.tgb2(t_tgb2); 

pamp.tgb3(t_tgb3); pamp.tgb4(t_tgb4); 

 pamp.tgb5(t_tgb5); pamp.tgb6(t_tgb6); pamp.tgb7(t_tgb7);  

 

 //Square wave binding 

 pamp.square_out(t_square_out); 

 

 //DC source module connections 

 tgdcsrc tgdc("DC_Source"); 

 tgdc.swout05(t_swtdfdc05); tgdc.swout00(t_swtdfdc00); 
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 tgdc.swout15(t_swtdfdc15); tgdc.swout10(t_swtdfdc10); 

 tgdc.swout25(t_swtdfdc25); tgdc.swout20(t_swtdfdc20); 

 tgdc.swout35(t_swtdfdc35); tgdc.swout30(t_swtdfdc30); 

 tgdc.swout45(t_swtdfdc45); tgdc.swout40(t_swtdfdc40); 

 tgdc.swout55(t_swtdfdc55); tgdc.swout50(t_swtdfdc50); 

 tgdc.swout65(t_swtdfdc65); tgdc.swout60(t_swtdfdc60); 

 tgdc.swout75(t_swtdfdc75); tgdc.swout70(t_swtdfdc70); 

 tgdc.stout05(t_sttdfdc05); tgdc.stout00(t_sttdfdc00); 

 tgdc.stout15(t_sttdfdc15); tgdc.stout10(t_sttdfdc10); 

 tgdc.stout25(t_sttdfdc25); tgdc.stout20(t_sttdfdc20); 

 tgdc.stout35(t_sttdfdc35); tgdc.stout30(t_sttdfdc30); 

 tgdc.stout45(t_sttdfdc45); tgdc.stout40(t_sttdfdc40); 

 tgdc.stout55(t_sttdfdc55); tgdc.stout50(t_sttdfdc50); 

 tgdc.stout65(t_sttdfdc65); tgdc.stout60(t_sttdfdc60); 

 tgdc.stout75(t_sttdfdc75); tgdc.stout70(t_sttdfdc70); 

 tgdc.tgout05(t_tgtdfdc05); tgdc.tgout00(t_tgtdfdc00); 

 tgdc.tgout15(t_tgtdfdc15); tgdc.tgout10(t_tgtdfdc10); 

 tgdc.tgout25(t_tgtdfdc25); tgdc.tgout20(t_tgtdfdc20); 

 tgdc.tgout35(t_tgtdfdc35); tgdc.tgout30(t_tgtdfdc30); 

 tgdc.tgout45(t_tgtdfdc45); tgdc.tgout40(t_tgtdfdc40); 

 tgdc.tgout55(t_tgtdfdc55); tgdc.tgout50(t_tgtdfdc50); 

 tgdc.tgout65(t_tgtdfdc65); tgdc.tgout60(t_tgtdfdc60); 

 tgdc.tgout75(t_tgtdfdc75); tgdc.tgout70(t_tgtdfdc70); 

  

 //TDF to LSF conversion module connections 

 tgtdf2lsf tt("TDF2LSF_Converter"); 

 tt.swtdfin00(t_swtdfdc00); tt.swtdfin10(t_swtdfdc10); 

 tt.swtdfin20(t_swtdfdc20); tt.swtdfin30(t_swtdfdc30); 

 tt.swtdfin40(t_swtdfdc40); tt.swtdfin50(t_swtdfdc50); 

 tt.swtdfin60(t_swtdfdc60); tt.swtdfin70(t_swtdfdc70); 

 tt.swtdfin05(t_swtdfdc05); tt.swtdfin15(t_swtdfdc15); 

 tt.swtdfin25(t_swtdfdc25); tt.swtdfin35(t_swtdfdc35); 

 tt.swtdfin45(t_swtdfdc45); tt.swtdfin55(t_swtdfdc55); 

 tt.swtdfin65(t_swtdfdc65); tt.swtdfin75(t_swtdfdc75); 

 tt.sttdfin00(t_sttdfdc00); tt.sttdfin10(t_sttdfdc10); 

 tt.sttdfin20(t_sttdfdc20); tt.sttdfin30(t_sttdfdc30); 

 tt.sttdfin40(t_sttdfdc40); tt.sttdfin50(t_sttdfdc50); 

 tt.sttdfin60(t_sttdfdc60); tt.sttdfin70(t_sttdfdc70); 

 tt.sttdfin05(t_sttdfdc05); tt.sttdfin15(t_sttdfdc15); 

 tt.sttdfin25(t_sttdfdc25); tt.sttdfin35(t_sttdfdc35); 

 tt.sttdfin45(t_sttdfdc45); tt.sttdfin55(t_sttdfdc55); 

 tt.sttdfin65(t_sttdfdc65); tt.sttdfin75(t_sttdfdc75); 

 tt.tgtdfin00(t_tgtdfdc00); tt.tgtdfin10(t_tgtdfdc10); 

 tt.tgtdfin20(t_tgtdfdc20); tt.tgtdfin30(t_tgtdfdc30); 

 tt.tgtdfin40(t_tgtdfdc40); tt.tgtdfin50(t_tgtdfdc50); 

 tt.tgtdfin60(t_tgtdfdc60); tt.tgtdfin70(t_tgtdfdc70); 

 tt.tgtdfin05(t_tgtdfdc05); tt.tgtdfin15(t_tgtdfdc15); 

 tt.tgtdfin25(t_tgtdfdc25); tt.tgtdfin35(t_tgtdfdc35); 

 tt.tgtdfin45(t_tgtdfdc45); tt.tgtdfin55(t_tgtdfdc55); 

 tt.tgtdfin65(t_tgtdfdc65); tt.tgtdfin75(t_tgtdfdc75); 

 tt.swy00(swlsfconvsig00); tt.swy10(swlsfconvsig10); 

 tt.swy20(swlsfconvsig20); tt.swy30(swlsfconvsig30); 

 tt.swy40(swlsfconvsig40); tt.swy50(swlsfconvsig50); 

 tt.swy60(swlsfconvsig60); tt.swy70(swlsfconvsig70); 

 tt.swy05(swlsfconvsig05); tt.swy15(swlsfconvsig15); 
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 tt.swy25(swlsfconvsig25); tt.swy35(swlsfconvsig35); 

 tt.swy45(swlsfconvsig45); tt.swy55(swlsfconvsig55); 

 tt.swy65(swlsfconvsig65); tt.swy75(swlsfconvsig75); 

 tt.sty00(stlsfconvsig00); tt.sty10(stlsfconvsig10); 

 tt.sty20(stlsfconvsig20); tt.sty30(stlsfconvsig30); 

 tt.sty40(stlsfconvsig40); tt.sty50(stlsfconvsig50); 

 tt.sty60(stlsfconvsig60); tt.sty70(stlsfconvsig70); 

 tt.sty05(stlsfconvsig05); tt.sty15(stlsfconvsig15); 

 tt.sty25(stlsfconvsig25); tt.sty35(stlsfconvsig35); 

 tt.sty45(stlsfconvsig45); tt.sty55(stlsfconvsig55); 

 tt.sty65(stlsfconvsig65); tt.sty75(stlsfconvsig75); 

 tt.tgy00(tglsfconvsig00); tt.tgy10(tglsfconvsig10); 

 tt.tgy20(tglsfconvsig20); tt.tgy30(tglsfconvsig30); 

 tt.tgy40(tglsfconvsig40); tt.tgy50(tglsfconvsig50); 

 tt.tgy60(tglsfconvsig60); tt.tgy70(tglsfconvsig70); 

 tt.tgy05(tglsfconvsig05); tt.tgy15(tglsfconvsig15); 

 tt.tgy25(tglsfconvsig25); tt.tgy35(tglsfconvsig35); 

 tt.tgy45(tglsfconvsig45); tt.tgy55(tglsfconvsig55); 

 tt.tgy65(tglsfconvsig65); tt.tgy75(tglsfconvsig75); 

  

 //DAC multiplexer module connections 

 DACmux tgx("DAC_Multiplexer"); 

 tgx.swx00(swlsfconvsig00); tgx.swx10(swlsfconvsig10); 

 tgx.swx20(swlsfconvsig20); tgx.swx30(swlsfconvsig30); 

 tgx.swx40(swlsfconvsig40); tgx.swx50(swlsfconvsig50); 

 tgx.swx60(swlsfconvsig60); tgx.swx70(swlsfconvsig70); 

 tgx.swx05(swlsfconvsig05); tgx.swx15(swlsfconvsig15); 

 tgx.swx25(swlsfconvsig25); tgx.swx35(swlsfconvsig35); 

 tgx.swx45(swlsfconvsig45); tgx.swx55(swlsfconvsig55); 

 tgx.swx65(swlsfconvsig65); tgx.swx75(swlsfconvsig75); 

 tgx.stx00(stlsfconvsig00); tgx.stx10(stlsfconvsig10); 

 tgx.stx20(stlsfconvsig20); tgx.stx30(stlsfconvsig30); 

 tgx.stx40(stlsfconvsig40); tgx.stx50(stlsfconvsig50); 

 tgx.stx60(stlsfconvsig60); tgx.stx70(stlsfconvsig70); 

 tgx.stx05(stlsfconvsig05); tgx.stx15(stlsfconvsig15); 

 tgx.stx25(stlsfconvsig25); tgx.stx35(stlsfconvsig35); 

 tgx.stx45(stlsfconvsig45); tgx.stx55(stlsfconvsig55); 

 tgx.stx65(stlsfconvsig65); tgx.stx75(stlsfconvsig75); 

 tgx.tgx00(tglsfconvsig00); tgx.tgx10(tglsfconvsig10); 

 tgx.tgx20(tglsfconvsig20); tgx.tgx30(tglsfconvsig30); 

 tgx.tgx40(tglsfconvsig40); tgx.tgx50(tglsfconvsig50); 

 tgx.tgx60(tglsfconvsig60); tgx.tgx70(tglsfconvsig70); 

 tgx.tgx05(tglsfconvsig05); tgx.tgx15(tglsfconvsig15); 

 tgx.tgx25(tglsfconvsig25); tgx.tgx35(tglsfconvsig35); 

 tgx.tgx45(tglsfconvsig45); tgx.tgx55(tglsfconvsig55); 

 tgx.tgx65(tglsfconvsig65); tgx.tgx75(tglsfconvsig75); 

 tgx.swy0(swlsfdc0); tgx.swy1(swlsfdc1); 

 tgx.swy2(swlsfdc2); tgx.swy3(swlsfdc3); 

 tgx.swy4(swlsfdc4); tgx.swy5(swlsfdc5); 

 tgx.swy6(swlsfdc6); tgx.swy7(swlsfdc7); 

 tgx.sty0(stlsfdc0); tgx.sty1(stlsfdc1); 

 tgx.sty2(stlsfdc2); tgx.sty3(stlsfdc3); 

 tgx.sty4(stlsfdc4); tgx.sty5(stlsfdc5); 

 tgx.sty6(stlsfdc6); tgx.sty7(stlsfdc7); 

 tgx.tgy0(tglsfdc0); tgx.tgy1(tglsfdc1); 
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 tgx.tgy2(tglsfdc2); tgx.tgy3(tglsfdc3); 

 tgx.tgy4(tglsfdc4); tgx.tgy5(tglsfdc5); 

 tgx.tgy6(tglsfdc6); tgx.tgy7(tglsfdc7); 

 

tgx.swb0(t_swb0); tgx.swb1(t_swb1); tgx.swb2(t_swb2); tgx.swb3(t_swb3); 

tgx.swb4(t_swb4); tgx.swb5(t_swb5); tgx.swb6(t_swb6); tgx.swb7(t_swb7);  

 

tgx.stb0(t_stb0); tgx.stb1(t_stb1); tgx.stb2(t_stb2); tgx.stb3(t_stb3); 

tgx.stb4(t_stb4); tgx.stb5(t_stb5); tgx.stb6(t_stb6); tgx.stb7(t_stb7);  

 

tgx.tgb0(t_tgb0); tgx.tgb1(t_tgb1); tgx.tgb2(t_tgb2); tgx.tgb3(t_tgb3); 

tgx.tgb4(t_tgb4); tgx.tgb5(t_tgb5); tgx.tgb6(t_tgb6); tgx.tgb7(t_tgb7);  

 

 //LSF to ELN conversion module connections 

 tglsf2eln tgl("LSF_2_ELN_Converter"); 

 tgl.lsfswin0(swlsfdc0); tgl.lsfswin1(swlsfdc1); 

 tgl.lsfswin2(swlsfdc2);  tgl.lsfswin3(swlsfdc3); 

 tgl.lsfswin4(swlsfdc4);  tgl.lsfswin5(swlsfdc5); 

 tgl.lsfswin6(swlsfdc6);  tgl.lsfswin7(swlsfdc7); 

 tgl.lsfstin0(stlsfdc0);  tgl.lsfstin1(stlsfdc1); 

 tgl.lsfstin2(stlsfdc2);  tgl.lsfstin3(stlsfdc3); 

 tgl.lsfstin4(stlsfdc4);  tgl.lsfstin5(stlsfdc5); 

 tgl.lsfstin6(stlsfdc6);  tgl.lsfstin7(stlsfdc7); 

 tgl.lsftgin0(tglsfdc0);  tgl.lsftgin1(tglsfdc1); 

 tgl.lsftgin2(tglsfdc2);  tgl.lsftgin3(tglsfdc3); 

 tgl.lsftgin4(tglsfdc4);  tgl.lsftgin5(tglsfdc5); 

 tgl.lsftgin6(tglsfdc6);  tgl.lsftgin7(tglsfdc7); 

 tgl.elnswout0(t_swelndc0); tgl.elnswout1(t_swelndc1); 

 tgl.elnswout2(t_swelndc2); tgl.elnswout3(t_swelndc3); 

 tgl.elnswout4(t_swelndc4); tgl.elnswout5(t_swelndc5); 

 tgl.elnswout6(t_swelndc6); tgl.elnswout7(t_swelndc7); 

 tgl.elnstout0(t_stelndc0); tgl.elnstout1(t_stelndc1); 

 tgl.elnstout2(t_stelndc2); tgl.elnstout3(t_stelndc3); 

 tgl.elnstout4(t_stelndc4); tgl.elnstout5(t_stelndc5); 

 tgl.elnstout6(t_stelndc6); tgl.elnstout7(t_stelndc7); 

 tgl.elntgout0(t_tgelndc0); tgl.elntgout1(t_tgelndc1); 

 tgl.elntgout2(t_tgelndc2); tgl.elntgout3(t_tgelndc3); 

 tgl.elntgout4(t_tgelndc4); tgl.elntgout5(t_tgelndc5); 

 tgl.elntgout6(t_tgelndc6); tgl.elntgout7(t_tgelndc7); 

  

 //DAC module connections 

 theDAC tdac("The_DAC"); 

tdac.swdc0(t_swelndc0); tdac.swdc1(t_swelndc1); tdac.swdc2(t_swelndc2); 

tdac.swdc3(t_swelndc3); tdac.swdc4(t_swelndc4); tdac.swdc5(t_swelndc5); 

tdac.swdc6(t_swelndc6); tdac.swdc7(t_swelndc7); 

tdac.swdacout(t_sinDACout); 

 

tdac.stdc0(t_stelndc0); tdac.stdc1(t_stelndc1); tdac.stdc2(t_stelndc2); 

tdac.stdc3(t_stelndc3); tdac.stdc4(t_stelndc4);tdac.stdc5(t_stelndc5); 

tdac.stdc6(t_stelndc6); tdac.stdc7(t_stelndc7);  

 tdac.stdacout(t_sawthDACout); 

 

tdac.tgdc0(t_tgelndc0); tdac.tgdc1(t_tgelndc1); tdac.tgdc2(t_tgelndc2); 

tdac.tgdc3(t_tgelndc3); tdac.tgdc4(t_tgelndc4); tdac.tgdc5(t_tgelndc5); 

tdac.tgdc6(t_tgelndc6); tdac.tgdc7(t_tgelndc7);  
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 tdac.tgdacout(t_tgDACout); 

 

 // Tracing waveforms 

 sca_util::sca_trace_file *anatf = 

sca_util::sca_create_vcd_trace_file("WaveForms"); 

 

 cout << "Start tracing waveforms " << endl; 

 sca_util::sca_trace(anatf, t_saw_out, "D(n)_Saw"); 

 sca_util::sca_trace(anatf, t_sine_out, "D(n)_Sine"); 

 sca_util::sca_trace(anatf, t_triangle_out, "D(n)_Triangle"); 

 sca_util::sca_trace(anatf, t_square_out, "Square"); 

 sca_util::sca_trace(anatf, t_sawthDACout, "S(t)_Saw"); 

 sca_util::sca_trace(anatf, t_sinDACout, "S(t)_Sine"); 

 sca_util::sca_trace(anatf, t_tgDACout, "S(t)_Triangle"); 

  

 //Simulation period 

sc_start(100, SC_US); 

 

 sca_util::sca_close_vcd_trace_file(anatf); 

 cout << "Finished tracing waveforms" << endl; 

 return (0); 

} 


