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Abstract

Our main focus in this project was to solve by Finite element method the advection-

diffusion equation as it appear in the climate model developed by Seller in (1969),which

incorporate both the atmospheric and oceanic fluid dynamics. Therefore,since the diffu-

sive term is more dominant when the altitude is not involved, we decided to use Budyko

climate model for our study.We have used finite element method with quadratic basis func-

tion with two,five and ten elements hoping to improve the results or atleast to see if we

obtain the same as what was obtained earlier.The results obtained confirm to some differ-

ences,the results of Warren and Schneider in (1979) for only two and five elements.Finally

for ten elements we have observed very large discrepancy.

xii



Chapter 1

INTRODUCTION

1.1 Climate

Climate has various number of meanings.To geologist or geomorphologist it is an external

agent which has many phenomena of interest.For an archaeologist, climate of an earlier

time might have lead to a crucial influence upon the people being studied.An agricul-

turalist may see climate and defines it as the background norm upon which weather of

a given year or day can be studied.Therefore for an average person he or she may de-

fines it as moving to a given location in search of good climate condition so as to earn

a living.Therefore to some of us when we talk of climate what come to our mind first is

temperature,even though rainfall and humidity may also be other factors that need to be

considered. Recently increasing atmospheric carbondioxide and other trace of greenhouse

gases has led to great impact upon the climate. [24]

Climate is a forcing agent as while as a feature which can be disturbed.This is perceived

by use of terms of the feature of the entire system which is either readily or more useful

in characterizing the phenomenon of our interest.It is defined as the average of weather at

a particular place over a given period of time.This average is performed for a period long

enough with respect to the time required for weather prediction.Therefore a satisfactory

definition of climate is not easy to obtain because climate system encompasses so many

variable.

1



1.1.1 What is climate modelling?

Climate model can be defined as a mathematical representation of the climate system

which involves physical,biological and chemical principles.The equation obtained from

these processes are so complex, therefore solution can be obtained by use of numerical

method.Thus,climate models provide solutions which are discrete in space and time mean-

ing that results obtained represent average over a given region for a particular period of

time.

Climate models therefore use various quantitative method to simulate it’s interactions

in the atmosphere,ocean,land surface and ice.They have a variety of purposes from the

study of dynamics of the weather and climate systems which enables one to project future

climate.This models balance or nearly balance the incoming energy from the sun in form

of shortwave radiation(visible and ultraviolet) to the earth surface with outgoing energy

from the earth surface in form of longwave(infrared) radiation .

Climate models are very important since they have been used quite often to reproduce

the main feature that influences the current climate of a particular place and the changes

in temperature for some given years.Therefore characteristic of climate of a particular re-

gion can be determined by a number of given factors with some of the mechanism which

constitute the climatic system.

1.1.2 The climate system

The climate system is composed of the following features the atmosphere,hydrosphere,cryosphere,land

surface and the biosphere.
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Figure 1.1: An illustration of the components of the climate system with there interac-

tions.

1.1.3 Component of the climate system

Atmosphere

The atmosphere as a set of seven basis equation that governs it with the following seven

unknowns;the three component of velocity V that is ( u,v,w),the pressure p,the tempera-

ture T ,the specific humidity q as well as the density ρ. [23]

These seven equations are as follows:

(i) Newton’s second law or conservation of momentum F = MA

(1-3)
dv

dt
= −1

ρ
~∇ρ− ~g + ~F − 2Ω ∗ ~V

Where d
dt

is the total derivatives, including a transport term.

3



~g is the apparent gravity vector.

~F is the force that is due to friction.

Ω is the angular velocity of the earth while the last term is the coriolis force.

(iv) the equation of continuity or the conservation of mass equation is given below;

∂ρ

∂t
= −∇.(ρ~v)

~v is the three-dimensional velocity

∇ is the three-dimensional nabla operator

D
Dt

= ∂
∂t

+ ~v.∇ is the material derivatives

(v) The equation of conservation of mass or water vapour equation is given has follows:

∂ρq

∂t
= −∇(ρ~vq) + ρ(E − C)

where E and C represents evaporation and condensation variables of water vapour.

(vi) The thermodynamics equation of the first law or the conservation of energy equation.

Thermodynamic equation expresses that if heat is applied to a parcel of air at a

rate of Q per unit mass then this heat can be used to increase the internal energy

and to produce work of expansion.

Q = Cp
dT

dt
− 1

ρ

dρ

dt

where Q is the heating rate per unit mass of air

Cp is the specific heat of air.

(vii) The equation of state also plays an important role in the atmosphere;

The atmosphere is assumed to be a perfect gas.Thus we have the equation.

P = ρRgT

where p is the pressure of air

4



ρ is the density of air

T is the temperature

R is the gas constant

Computing the heating rate requires a detailed analysis of the radiation in the atmosphere

that accounts for the longwave and shortwave radiation.

other components are

(i) Ocean

(ii) Sea ice

(iii) land surface

(iv) ice sheet

(v) marine biogeochemistry

The equations governing the climate system are differential equations that can be ex-

pressed both as partial differential equation and ordinary differential equations.Therefore

it is necessary to ensure that these equations obtained are well-posed that is the problem

must have a unique solution which depends on the initial and boundary conditions.

The transport of energy as well as matter in fluids are determined in nature by diffusion

and advection.These processes induce flux of energy and matter in which the mathemati-

cal description is derived by continuum mechanics.All processes that involves the climate

system are influenced by the advective and diffusive transport of substances. [9]

1.1.4 Diffusion

Diffusion is defined as a process that is caused by thermal motion of molecules.It is also

refer to as Brownian motion.This is caused by a positive thermodynamics temperature

T > 0 where the molecules are in constant motion.A good example is the diffusion of a

given perfume open in an empty room.

5



For example if a bottle of perfume is opened in an empty room and allowed to evaporate

into the surrounding air,the whole room will soon be scented. [9]

We then consider the one dimensional case where the concentration gradient involving y

and z direction are zero so as to obtained the equation as shown below,

∂C

∂t
= D

∂2C

∂x2

here C refers to a given concentration gradient while the quantity D is the coefficient of

diffusion.

1.1.5 Advection

Advection is defined as the horizontal transport of a given property in the atmosphere or

ocean such as heat,humidity or salinity [9].For example,if we consider a one dimensional

case we have advection equation given by the equation below;

∂C

∂t
= −∂(uC)

∂x

Where u is the velocity and C is the concentration gradient.

1.2 Advection-diffusion equation

To obtain advection-diffusion equation we combine both the advection and diffusion equa-

tion as mention above.This is because the two processes describe physical phenomena in

which particles,energy,or other quantities are transferred.For one dimensional case, we

have the following equation shown below; [9]

∂C

∂t
= −∂(uC)

∂x
+

∂

∂x
(D

∂C

∂x
) + P

The general equation in 3 dimensional is given has follows;

∂C

∂t
= −~∇.( ~uC) + ~∇.(D~∇C) + P

6



Where ∇ represent gradient operator and ~∇. is the divergence operator.

Here C is the concentration gradient.

D refers to coefficient of diffusion .

~u is the average velocity of the quantity in motion.

p refers to the source or sink of the our quantity C.

Given that C is the mass density. Furthermore, the diffusion variable and the sources or

sinks terms vanishes in our equation,then we have a special type of the equation shown

below;
∂ρ

∂t
= −∇.(~uρ)

This is the general form of continuity equation.These equations represents the basis for

the mathematical description of processes in the climate system where the solution ob-

tained constituents the climate modelling.

1.2.1 Application

Advection-diffusion equation(ADE) benefits from wide areas of application in such differ-

ent disciplines [21]:

• As environmental engineering

• Mechanical engineering

• soil science

• petroleum engineering

• chemical engineering

• Heat transfer

ADE interprets the spreading of scalar or non-scalar quantities under specified initial and

boundary conditions.This equation can either be solve by analytical or numerical meth-

ods.Heat transfer equation in climate modelling is our main research area of study and

we will solve the equation obtained by using finite element method.
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1.3 Background of the problem

Energy balance climate model(EBMs) are the simplest climate models developed ear-

lier by varies authors.They were introduced at the same time by both Budyko [1] and

seller’s [2].These models are easy to understand and therefore one can obtain both an-

alytical and numerical solution.Budyko brought up a type of energy balance model by

using the zonal and annual averaging but allowing the latitudinal dependence of surface

temperature, albedo and meridional heat transport.

These authors came up with one layer thermodynamic models of the earth’s average sur-

face temperature fields where they consider a balance between the net energy coming in

from the sun into a strip around the earth and the energy going outside the strip.They

were described in terms of solar radiation that is absorbed by the earth surface, terrestrial

radiation that is emitted into the atmosphere and the divergence of heat for the given

strip.

For zero-dimensional EBMs,the temperature T is describe as global since it depend on

time only with not other variable in space included.Therefore the global temperature of

the earth depend on the following parameters,the planetary albedo and the reflection on

the land and sea surfaces.

Mathematically,for this case temperature T is expressed as an ordinary differential equa-

tion (ODE) where ∂T
∂t

is determined by the balance between the energy coming in from

the sun in form of shortwave radiation and the outgoing longwave radiation emitted from

the earth surface as shown by equation given below;

C
∂T

∂t
= Q(1− α(T ))− (A+BT ) (1.1)

Where Q = Q0/4 is the solar constant.

In this project, we are going to consider the (EBMs) that take into account the space vari-

able x as a function of temperature T .It is important to take into consideration advection

-diffusion equations that take into account change in temperature from pole to equator at

the same time respecting the overall radiative balance.We consider the following diffusive

symmetric annual energy balance climate models shown in the equation below;

C(x)
dT

dt
= QS(x)(1− α(x, µ))− (A+BT ) +

d

dx
(K(x)(1− x2)

dT

dx
) (1.2)

where Q is the averaged global solar insolation flux,
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K is the diffusive coefficient of the horizontal heat transport per latitude belt.

I = A+BT is the outgoing longwave radiation where A and B are the empirical data for

the radiation coefficient.

Eq.(1.2) is called a one-dimension energy balance climate model.In the given equation

we assumed that the temperature T depend on the space x only through a latitudinal

variable x ∈ (0, 1) which is symmetric across the equator with x = 0 at the equator and

x = 1 at the north pole.The variable x is the sine of the latitude.

To solve Eq.(1.2) it is important to consider following homogeneous boundary conditions

with x = 0 at the equator and x = 1 at the North pole.

(1−X2)
1
2
∂T

∂t
|x=0,1 = 0 (1.3)

Whereby at the equator and at the poles there is no heat transport. This model has very

many parameters.Therefore variation in this parameters lead to a temperature change in

each latitude zone. [29]

One of the heat transport processes not considered in Budyko model is convection or(advection).Though

these are very important processes which involve the movement of heat by transport of en-

ergetic mass in the atmosphere.This is because the convective process could have included

many parameters,as well as constants which could have complicated our climate model

equation.Due to the following reason the convective term is not taken into consideration

in our model.Thus we have use diffusive energy balance climate model. [22]

In the past various method have been use to solve the equation including the analyti-

cal studies that was done by Warren and Schneider (1979) and North (1981) by using

two-mode approximation method [7, 36] .Use of numerical schemes in solving advection-

diffusion equation in one dimension energy balance climate model has been on the rise.Thus

there has been a need to obtain efficient solution of this one dimension energy balance

climate model which in this study is by use of Finite element method.
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1.4 Problem statement

This involves the study of the numerical solution of steady state diffusive zonally sym-

metric mean annual energy balance climate model given below,

− d

dx
(k(x)(1− x2)

dT

dx
) + (A+BT ) = QS(x)(1− α(x, µ))

subject to the boundary conditions;

(1− x2)
1
2
dT

dx
|x=0,1 = 0

This is because the solutions to obtained and their efficiency will help other readers to

comprehend how the solution of this equation has been done over years.

1.5 Main objectives

1 To understand climate system and to study how to derive one dimensional energy

balance climate model given by the equation,

C(x)
dT

dt
= QS(x)(1− α(x, µ))− (A+BT ) +

d

dx
(K(x)(1− x2)

dT

dx
)

2 To study Galerkin finite element method use in solving this energy balance climate

model.

1.6 Specific objectives

1. To understand the main concept of FEM.

2. To list down steps used in solving problems by finite element method.

3. To determine the numerical solution for diffusive steady state symmetric one-dimensional

energy balance climate model equation using finite element method.

4. To obtained the algebraic linear systems of the problem by assemblying mass matrix

and stiffness matrix.Furthermore, to determine the load vectors.

5. To obtain solution of the linear systems of equation using Gaussian elimination

method.
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1.7 Literature review

Numerical solution of one dimension energy balance climate model based on either ana-

lytical or numerical method has not been dealt with in a wider perspective for a nonlinear

advection - diffusion equation in climate modelling.This is because the problem is based

on complex geometries and unstructured meshed point.

Gerald R.North in (1975) solved explicitly the ordinary diffusive thermal heat transfer cli-

mate model equation using hypergeometric functions and they used the results obtained

to study ice sheet latitude as a function of solar constant and stability analysis about the

equilibrium points [6].

Gerald R.North,Louis, H,David, P. and Bruce, W in (1979) did a variational evaluation

of Budyko-Seller model with a purpose to present a functional of the temperature field

which takes on the extreme value and they found that the stable solution represents local

minimum point while saddle point refer to unstable solution.They achieved this by use of

a spectral example. [41]

Stephen,W. and Stephen H.Schneider in (1979) further solved the one dimensional energy

balance climate model equation and they realist that annual change in radiation as a

function of averaged surface temperature is to be analyzed with data obtained seasonal

in order to evaluate there validity in term of climate changes experiment.They found that

the temperature coefficient for the different zones examined,differs from each other by as

much as a factor of 2 [36]. The spectral method earlier used to solved climate models

equation provided a framework in which numerical techniques can be used to solved this

energy balance climate model.

B.William and Gustar (2011) in [8] did a research on the equation of energy balance cli-

mate model versus the economic by taking into account climate change using two-mode

approximation method.They developed a two-mode solution of the problem by given the

human forcing function in terms of h(x, t) and they discovered that the discontinuous

function in terms of absorption create a strong nonlinearity where a small change in T0

leads to a large change which bring about damages in some given latitudes.Thus because

of the nonlinear property it was not easy to obtained the analytical solution.They then

used climate parametrization by North (1975) to solved nonlinearity of the problem [6].
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Bermejo,Carpio and Diaz (2009) in [8] solved two-dimensional climate model on nonlinear

parabolic problem by using compact Riemannian manifold with no boundary conditions

for the surface temperature.This numerical analysis by finite element method was solved

only for the spherical earth where the elements used was in terms of quasi-uniform spheri-

cal triangles.They also studied existences,uniqueness and the stability of the approximate

solution they obtained.

Rahmat,Ariwahjoedi and Suleiman (2011) [43] solved zero-dimension climate model by

using of numerical method known as Newton-Raphson and Steepest Descent method.They

realist that this method offers very good approximate solution for averaged surface tem-

perature of the earth and the atmosphere. Prof.T.Stocker(2014) in [9] solved the one

dimensional advection equation by explaining how to using difference method of centered

in time,centered in space (CTCS) and he observed that for a given time step from t = 0

to t = ∆t the CTCS scheme does not give good results and he then solved the same

equation by a method known as forward in time,centered in space (FTCS). This scheme

requires the computation of the new time step by using the solution obtained in the pre-

vious steps.He found that the amplitude increase with time,therefore |Cm,n | −→ ∞ for

n −→∞.Therefore solution explodes using this scheme.

He then applied the method of forward in time,upstream in space (FCUS) and he realized

that the method does not produce good numerical solution but leads to strong damping

and dispersion of the solution.He then solved the equation by using implicit trapezoidal

scheme and he obtained system of linear equation in which the matrix was to be inverted

in order to solve for the new time step given by equation shown below;

ACn +BCn+1 = o (1.4)

The solution at time n+ 1 was given by

Cn+1 = −B−1ACn (1.5)

The matrices obtained were sparse,thus to obtained this solution without inverting the

matrix was expensive.He then showed that the FTCS scheme was alway unstable and he

introduced a diffusive term by use of a method called Lax scheme to stabilized the FTCS

method.
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This scheme was not good enough to give appropriate solutions since it had some disad-

vantage and he introduced the Lax-Wendroff scheme to address this problem though the

scheme overestimated the values at maximum and show some oscillation of temperature

which was trailing.

Thus the current study is meant to solve diffusive steady state one-dimension climate

model equation with an efficient method that can solve problems arising by use of finite

difference method so that we obtained accurate solutions.Hence the use of finite element

method.

1.8 Project outline

This project is organized in the follows parts,chapter 2 deals mainly in derivation of

advection-diffusion equation in climate modelling.This equation is categorized as fol-

lows,first there is explanation of zero-dimensional climate model and finally one-dimensional

climate model including it’s parameters.

Chapter 3 discusses the finite element method and it’s procedures.Additionally,the selec-

tion of interpolation functions for finite element method and coefficient matrices construc-

tion for elements.Chapter 4 solving the problem by finite element method using quadratic

element.

Chapter 5 details the numerical solution obtained by using Galerkin finite element method

by showing it’s results.Finally,there is conclusion and recommendation for future work.
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Chapter 2

DERIVATION OF ADVECTION

DIFFUSSION EQUATION IN

CLIMATE MODELLING

2.1 What is climate modelling?

climate model can be defined as a mathematical representation of the climate system

in terms of physical,biological and chemical principles.The equation obtained from these

principles are complex thus it requires the use of numerical method in order to determine

the approximate solution.For a climate model to be complete some of the component

required are the solar radiation,the Earth’s radius and it’s period of rotation,the land-

scape,the ocean and some rock as well as soil properties. [23]
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2.2 Components of energy balance on the surface of

earth

The sun is the main source of energy in the atmosphere.Therefore the atmosphere is

considered as a vacuum, thus there is no medium for energy to be transfered through

kinetic collision and therefore cannot be lost by escape of energetically heated particle

since the atmosphere is bound to the surfaces. Therefore, radiation is the only process of

losing energy from the earth surface.Radiative processes can be explained in terms of the

principle of blackbody radiations which refers to the energy reaching the top of the earth

atmosphere surface from the sun, with an average of;

Q = 342.5W/M2

which corresponds to a quarter of the energy received Qo = 1370W/M2.
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Figure 2.1: Global energy flow in the atmosphere and earth surface. From the

Source of Kiehl and Trenberth,1997 :,with a title Earth’s Annual Global mean energy

budget.AM.Met.Soc.78, 197− 208

2.2.1 A Simple energy balance of climate

Radiation budget of the earth

The major characteristic of a physical- chemical systems of the climate systems are ex-

pressed in terms of its energy budget.This energy budget is governed by the shortwave

radiation Ri which coming into the top of the atmosphere from the sun and the longwave

radiation Ro which escaping back into the atmosphere.The balance obtained between Ri

and Ro gives us the mean temperature of the surface.

The energy distribution in terms of height,latitude and longitudes influences the distribu-

tion of temperature in the system.The study of spatially zero-dimension (O −D) model

has the global temperature as one of the only variable.
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The solar radiation dependences on reflection by ice-albedo feedback and infrared absorp-

tion on temperature.Thus average reflectivity of the earth-atmosphere system is called

the planetary albedo.

Global radiation budget

Climate is said to be global if it is determine by a radiation balance in the planet.The earth

absorbs incoming solar radiation from the sun which causes its warming and cooling by

radiating energy back into space through long wavelengths whereas some of it is absorbed

by the atmosphere.

The variable for the global surface temperature is given below;

T = T (t)(c)

This radiation is either absorbed by the atmosphere 22% or transmitted to and absorbed

by the ground 45% or reflected back to space 33%. A particular important role in both the

absorption and reflection of solar radiation is played by clouds:they cover on average 50%

of the earth surface.Clouds are very important in reflecting large amount of the short-wave

radiation while some are reflected by the earth’s surface and therefore absorbed by the

atmosphere.

2.3 The zero-dimensional energy balance model

If we characterize a column of the earth-atmosphere system a single number,say the sea

level temperature,we develop models leads to only horizontal dimension which is refers

to as zero-dimensional climate model.This model is the simplest of all the earth’s climate

system. [6] The earth obtain heat by absorbing solar radiation from the sun and is cooled

by radiating thermal energy through longwave radiation back into space.The shortwave

radiation coming into the top of the atmosphere from the sun is given has, Q = Q0

4

The solar constant, Q0 = 1370W/M2 refers to the radiative flux with a disk of earth’s

radius R = 6300KM perpendicular to the sun’s rays. This number 4 is obtained by taking

the average of this energy over the earth’s spherical surface area given by the equation

below;

A = 4πR2
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Figure 2.2: Heat absorbed and emitted by the earth

A disk of radius R from the sun ray’s has an area of πR2. Parts of the incoming radiation

is reflected back to space by either clouds or snow as well as ice cover on the ground.
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If we assume a steady state condition,the shortwave radiation absorbed by the earth

surface is given by the equation;

Fsw = Q(1− α)ΠR2 (2.1)

this equation should be the same as longwave radiation given below;

Fe = 4ΠR2σT 4
e (2.2)

At the equilibrium temperature we have the equation

(1− α)Q = σT 4
e (2.3)

here σ = 5 · 67 ∗ 10−8(W/M2K4) refers to the Stefan-Boltzmann coefficient and Q = Q0

4
.

Water vapour and CO2 in the Earth’s atmosphere are the main greenhouse gases which

absorb a lot of longwave radiation emitted from the surface.

2.3.1 Emitted radiation

The energy lost through longwave radiation is modelled in terms of a linear equation given

below. [20]

I(x) = A+BT (x) (2.4)

this equation represents values of Stephan-Boltzmann principles of blackbody radiation

and the effect of greenhouse gas on the earth’s atmosphere.

where A = 211.2Wm−2 and B = 1.55Wm−2.This Eq. (2.4) is assumed to hold for each

latitude x so that I(x) and T(x) are considered to be functions in x. [6]

Here I(x) is the outgoing infrared radiation flux (Wm−2).

T (x) the surface temperature(sea level)temperature.

2.3.2 Ice-Albedo feedback

Given that the extent of the snow and ice cover on the earth surface is large it causes low

temperatures since it reflected more of the solar radiation back to space.The greater the

Snow and ice cover on the surface,leads to high albedo reflectivity.This implies a positive

feedback. For example the snow and sea ice cover of the Northern hemisphere causes the

Planetary albedo feedback. [9]
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Therefore longwave radiation increases given that temperature also increases.A small

change of the temperature from equilibrium,let’s to a slight warming which results in cool-

ing through increased longwave radiation.If temperature drops future below the freezing

point snow and ice will cover the ground causing an increase of albedo on the surface.Thus

temperature will drop further since more of the sunlight is reflected back to the space.

2.3.3 Water vapour feedback

The water vapour feedback plays an important role in the climate system because it is

the main natural greenhouse gas.Therefore a warm atmosphere can be able to hold more

water vapour than a cold atmosphere.Thus with this additional water molecules in the

warm atmosphere it causes an improvement of natural greenhouse effect through increas-

ing of long-wave radiation.

2.3.4 Cloud feedback

Low cloud affect shortwave radiation from the sun through albedo while the high cloud

affects longwave radiation emitted by the surface of the earth.

2.3.5 A model for global temperature

The variable perceived most widely as defining climate is temperature T .It is also most

important in determining the component of radiation balance.From Eq(2.3) we obtain

the equation governing the model which is, [4]

C
∂T

∂t
= Fsw − Flw (2.5)

with heat capacity C > 0 and ∂T
∂t

is the rate of change of fixed latitude.

It expresses the approximate radiation balance between absorbed radiation and emitted

radiation.Therefore we have the equation;

C
∂T

∂t
= (1− α(T ))Q− (A+BT ) (2.6)
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where Q = Q0

4
is the solar insolation receive from the sun and α is the surface albedo.

Any slight imbalance between Fsw and Flm leads to changes in the temperature of the

system.This type of model was derive from the work of Budyko (1969) and Seller(1969).

2.4 One-dimensional energy balance climate model

2.4.1 Horizontal heat transport

The derivation of zero- dimensional energy balance model was based on vertical heat

transfer.The result we have obtained will guide us to derive one-dimensional climate

model.This model is a latitude- dependence one.There are three type of heat trans-

fer:radiative,conductive and convective.In radiactive transfer,energy passes between the

medium’s molecule by electromagnetic radiation due to photo emission.

In conduction,energy passes from one molecules to another by thermal agitation that

is,energy is transported from parts of the system with higher temperature to those of

lower temperature.

The solar radiation Q varies strongly with latitudes.The circulation of the Earth’s orbital

Figure 2.3: This is a representation of one-dimensional EBM whereby temperature is

given as an averaged over a zone of latitude.

parameters given together with a high albedo for a given higher latitude has lead a great

differences in the amount of solar received at a particular latitude.
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The net radiation receives at the top of the atmosphere between the absorbed solar radi-

ation and the outgoing longwave radiation given as follows Fsw−Flw is always positive at

low latitude and has a negative value at high latitude. Transport of energy and matter in

any given fluids is determined by both diffusion and advection processes.These processes

leads to an induction of fluxes of energy whereby in mathematical terms it is derived by a

process called continuum mechanics. [9] Diffusion is a random process which take place

at all times leading to a net transport when given some certain conditions.This process

is initiated by thermal motion of molecules. Advection is caused by ambient flow which

involves the transport energy.All processes involving the climate systems are influenced

by both advection and diffusion through the transport of mass,energy and momentum.

2.4.2 Meridional heat transport

Meridional heat transport takes into account the use of a diffusive parametrization [3].Thus

low latitude areas the earth while receives more heat than what its emits back to space,but

at high latitude it looses more energy through longwave radiation than what its receives

from the sun. Therefore given an integral of the net radiation from one pole to another its

yields a meridional heat transport by the climate from areas of low to high latitudes.Hence

Fm = −CK~∇T = −CK∂T

∂x
(2.7)

where K refers to diffusive coefficient and x refers to latitudinal variable of the North-

South directions in terms of Cartesian coordinates

where 5 is the gradient operator and Fm is meridional heat flux on a given latitude.

Conduction is the main form of heat transport in the earth hence temperature will change

in time only due to the divergence of the conductive heat flux at a given latitude.The

equation for temperature change at any given latitudinal belt is given in the equation

below;

C
∂T

∂t
= −~∇Fm + Fsw − Flw (2.8)

here the first term on the right hand sides is the divergence of the meridional heat trans-

port. The variablesT (θ),C(θ) and K(θ) depend entirely on latitude θ which ranges from

−Π
2

at the south pole to Π
2

at the north pole. Therefore since the earth is spherical we

have to write our equation obtained in Eq.(2.8) in terms of Laplace operator has given
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Figure 2.4: Mean latitudinal distribution of the earth’s radiations From:Briggs,Smithson

and Fall,Fundamental of physical Geography,(1989) Toronto:Copp Clarke and Pitmans

Canadian Edition.Copp Clark Pitman Ltd
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below in the equation;

~∇Tm = −~∇CK~∇T =
−1

R2COSθ

∂

∂θ
(CKCOSθ

∂T

∂θ
) (2.9)

2.4.3 Derivation of this energy balance climate model.

We have consider that the earth is a sphere [16].Let R be the radius,latitude to be θ,the

length of the latitude belt be 2ΠRCOSθ with latitude Rdθ and the area of latitude

belt,dA = 2ΠR2COSθdθ.Let the flux per unit length of longitude be given by the equa-

tion;

F =
−D
R2

∂T

∂x
= −D∂T

∂x
(2.10)

Flux is from hot to cold regions and increase in magnitude if the meridional temperature

gradient increases.Total flux per latitude θ is given by

F = F̃ × 2ΠRCOSθ = −2ΠDCOSθ
dT

dθ
(2.11)

We assume that shortwave radiation = longwave radiation at the latitude.This means

that,

SW ↓ +F |θ = LW ↑ +F |θ+dθ

This radiation fluxes are per unit area so need to be multiplied by the area of the latitude

belt.On rearranging and substituting for area we have

(SW ↓ −LW ↑) · 2ΠR2COSθdθ = F |θ+dθ − F |θ (2.12)

Using the Taylor’s of first order we get,

F |θ+dθ =
∂F

∂θ
|dθdθ

We know that

SW ↓= Q(1− α)S(θ)

And since we have linearize the longwave radiation we have

LW ↑= A+BT

Where T is the surface temperature

(1− α)QS(θ)− (A+BT ) · 2ΠR2COSθdθ =
dF

dθ
|dθdθ (2.13)
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substituting the value of F from Eq.(2.11) into Eq.(2.13) we have the equation,

(1− α)QS(θ)− (A+BT ) =
−1

2ΠR2COSθ

d

dθ
(2ΠDCOSθ

dT

dθ
) (2.14)

Using the transformation of variables.Let x = sinθ Then we have,

d

dθ
=
dX

dθ
· d
dX

= cosθ
d

dX
(2.15)

which gives

(1− α(θ))QS(θ)− (A+BT ) =
−D
R2

d

dX
(COS2θ)

dT

dX
(2.16)

since the temperature changes with time from Eq.(2.16) and using the fact that,

COS2θ = 1− SIN2θ

we obtained one dimensional energy balance climate model equation by using the fact

that X2 = SIN2θ

C(x)
dT

dt
= (1− α(x))QS(x)− (A+BT ) +

d

dx
(K(x)(1−X2)

dT

dX
) (2.17)

This equation summarizes radiactive,that is vertical heat flux and advective, that is hori-

zontal heat fluxes.The shortwave radiation and longwave radiation have become functions

of X and T rather than of the single,global variable T that was model for the zero dimen-

sional model. This Eq.(2.17) is a non-linear second order partial differential equation.It’s

solution can be obtained by solving the given equation subject to the Neumann bound-

ary conditions of zero heat flux at the pole and equator.The conditions at the poles is

natural,while that at the equator is equivalent to assuming the symmetry of the two hemi-

spheres;such a symmetry assumption is reasonable for the simplicity of the model.Since

we let x = sinθ and we know that 0 ≤ θ ≤ Π
2

then,

x = +1, x = −1 at the poles

x = 0 at the equator

By defining variable x = sinθ the equation governing steady state solution can be written

as follows
d

dx
(k(x)(1− x2)

dT

dx
) + (1− α(x))QS(x)− (A+BT ) = 0 (2.18)

Where S(x) represents the mean annual distribution of radiation at each latitude.This

equation has solution of the given form T = T (x, t) which is subject to following boundary

conditions.
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NEUMANN BOUNDARY CONDITION

(i) since there is no heat transport at the pole. [17]

(1− x2)
1
2
d

dx
T1(x)|x=1 = 0

(ii) No heat transport across the equator

(1− x2)
1
2
d

dx
T0(x)|x=0 = 0

This is a two -point boundary value problem.Thus climate is now characterized in terms

of annual, average and global mean surface temperature T .The steady-state equation be-

comes an nonlinear (ODE) of T which can therefore be solved numerically.

2.5 Budyko’s model as a difference equation.

To obtained a complete picture of the concepts pertaining ice albedo feedback mechanism

, we need to look at both space of the function used and the value of the ice line.Therefore

given that the two factors are achieved then Budyko model can be treated in terms of

dynamical systems hence becoming a mathematical equation to be studied. [35]

If we assume that all functions depending on latitude are symmetric in the equator then

we need only the Northern Hemisphere ranging from (0 ≤ θ ≤ π
2
).Therefore at any time t,

we let T (x, t) be the surface temperature on a given circle of latitude θ with x = sinθ.Thus

the following equation gives us diffusive zonal symmetric energy balance climate model

equation;

C
∂T

∂t
=

∂

∂x
(K(x)(1− x2)

∂T

∂x
) +QS(x)β(x, µ)− (A+BT ) (2.19)

where Q refers to amount of energy which is received at top of the atmosphere from the

sun.The S(x) is the distribution of energy per a given latitude zone which can be computed

by taking into consideration Earth’s orbital elements.Authors including Tung [34]and

North [17],use Legendre polynomial approximation function given by the equation below

to obtained this values;

S(x) = 1− 0.482.
3x2 − 1

2
(2.20)
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Therefore the fraction of the radiative energy by planet at a given latitude x,when the ice

line is given at a value µ,is expressed in the equation shown below;

β(x, µ) = 1− α(x, µ) (2.21)

We assume that the surface considered is covered by water or ice with only one ice line

µ.The albedo function α(x, µ) is smooth and it dependence on the ice-line.If the ice line is

given at µ and albedo at a latitude x then we have the following equation shown below; [35]

α(x, µ) =
α1 + α2

2
+
α2 − α1

2
.tanh[M.(x− µ)] (2.22)

where α1 = represents either ocean or water albedo for areas free of ice.

α2 = represents the ice albedo for area covered with ice.

The variable M represent the gradient of a given albedo function near the specified ice

line and is always expressed as a fixed quantity.We obtain albedo at the given ice line

by determining average of the ice and ocean albedo values.At the equator of the given

ice line,the albedo is always approximated in terms of ocean albedo,while at the poles we

expressed in terms of ice albedo.These values α1 and α2 have no dimensions.Using the

parameters the ice line has been taken as µ = 0.95. [17]

Therefore the values of β(x, µ),takes the following step function given below;

β(x, µ) =

α1 = 0.32 x > µ

α2 = 0.62 x < µ

The value of diffusive coefficient K(x) is given by;

K(x) = D
R2 here R refers to the radius of the earth surface.

D(θ) = (1.5 + 2.5 cos θ) ∗ 107 (2.23)
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Chapter 3

FINITE ELEMENT METHOD

3.1 Introduction

An equation which involving derivatives of one or more dependent variables with re-

spect to one or more independent variables are called a differential equation.Differential

equation is used to solve problem pertaining real life matters which cannot be solved di-

rectly,therefore solution can be obtained approximately by using numerical methods. [11]

Thus, a differential equation can be expressed as a relation between an unknown function

U with it’s derivatives uk,and the unknown is given by the equality below 1 ≤ K ≤
N ,where K and N are both integers.They are either in terms of partial differential equa-

tions(PDES) or ordinary differential equations(ODES). [10]

A differential equation which involving derivatives with respect to a single independent

variables is called an ordinary differential equations(ODES).They are broadly classified

according to the order of the highest derivative of the dependent variable with respect to

the independent variable that appears in the equation.If given the function U(x) which

depends on only one variable xε<, the equation is then is called an ordinary differential

equation (ODES).

A differential equation which involves partial derivatives with respect to two or more in-

dependent variables is called partial differential equations(PDES).

For example,

Ut(x, t)− Uxx(x, t) = 0
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is a good example since it has two independent variables and the equation is a homoge-

neous (PDE) of second order.
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Thus, if given the function U(x, t) that depends on more than one variable,the differen-

tial equation is then called a partial differential equation(PDE).A solution of any given

differential equation may be functions of the form; e.g U(x), U(x, t) or U(x, y).

The solution U cannot be expressed in the form of elementary functions but numerical

methods are the best way for solving the differential equation through construction of the

approximate solutions.

3.1.1 Ways of classifying a partial differential equations

Both ODES and PDES can be broadly classified in terms of linear and non-linear equa-

tions.A linear partial differential equation can be expressed in a form where all the partial

derivatives appear in linear form and none of the coefficient terms depends on the depen-

dent variable. [11]

For example

Uyy(x, y) + Uxx(x, y) = f(x, y)

is an example of linear non-homogeneous PDE which is of second order.

A non-linear PDE can be described as a partial differential equation which involves non-

linear term.For example

yUyy(x, y) + Uxx(x, y) = 0

is an good example of non-linear homogeneous PDE which is of second order.

3.1.2 Classification based on discriminant

Given a general second order PDE with constant coefficients in two independent variable

as shown below [10]

Auxx(x, y) + 2Buxy(x, y) + Cuyy(x, y) +Dux(x, y) + Euy(x, y) + Fu(x, y) = G (3.1)

The discriminant is given as d = AC −B2. Thus classification based on this discriminant

is as follows;

1 If d = AC −B2 > 0,we have an elliptic equation.

2 If d = AC −B2 = 0,we have parabolic equation
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3 If d = AC −B2 < 0,we have hyperbolic equation

Laplacian equation is a good example of elliptic equation

∂2u

∂x2
+
∂2u

∂y2
= 0

The heat equation given below,

Ut(x, t)− Uxx(x, t) = 0 (3.2)

is one of the parabolic equation.

The wave equation shown below

Uxx(x, y) + Uyy(x, y) = 0 (3.3)

reperesents good example of hyperbolic equation.

3.1.3 Types of problems governing differential equation

1 INITIAL VALUE PROBLEMS(IVP)

An initial value problem refers to one where the dependent variables and possible the

derivatives are specified initially(at time t = 0)or at the same value of independent

variables.

For example,for a given time dependent differential equation which is of second order

the initial values for t = 0 given by U(x, 0) and Ut(x, 0), are generally specified.That

is,
∂u

∂t
= α

∂2u

∂x2
, U(x, t0) = f(x)

.

2 BOUNDARY VALUE PROBLEMS(BVP)

A boundary value problem is one where the dependent variable with its derivatives

are specify at the extreme ends of the independent variable.

Therefore, to determine solution U uniquely for a differential equation we must have

the boundary conditions imposed at the boundary points
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THERE ARE THREE TYPES OF BOUNDARY CONDITIONS

1 DIRICHLET BOUNDARY CONDITIONS

Given a stationary heat equation in one dimension has shown below

∂2u

∂x2
= f(x)

in (a, b),the homogeneous Dirichlet boundary conditions is given has follows

u(a) = u(b) = 0

The value of the given function u is always specified on the boundary.The dependent

variable of PDE are prescribed in the domain at different points.

2 NEUMANN BOUNDARY CONDITIONS

A Neumann boundary condition which is imposed on either ODE or PDE always

specifies the derivatives of values of a solution it can take on the boundary of the

given domain.The heat equation in one dimension is a good example

∂u

∂t
=
∂2u

∂x2

∂u

∂n
= 0

u(x, 0) = u0(x), xε<

3 MIXED BOUNDARY CONDITIONS

If we combine both Dirichlet and Neumann boundary condition we shall obtained

mixed boundary condition hence it is a linear combination of the two terms:i.e A

stationary heat equation is a good example

∂2u

∂x2
= f(x), 0 < x < 1

u(0) = 0, a(1)
∂u

∂x
= g1

when we shall introduce finite element method ,we will show how these conditions

are important when obtaining weak formulation of the problem.
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3.1.4 Methods of solving differential equation

We consider the type of the physical problem and various corresponding mathematical

formulation that will allow use to apply different variety of method so as to obtain solution

.The common well know methods are the finite difference method,finite volume method

and finite element method.

Finite difference method expresses every occurrence of partial derivative in terms of dis-

crete approximation using a grid points.It is not very high in accuracy and does not

implement more complex geometry.

Finite element method is quite different from the finite difference when it comes to the

discretization of the domain of interest of the PDES. It is used now days to solve all kinds

of PDES.Therefore we will apply this method to the steady state one dimensional energy

balance climate model equation.

3.2 What is finite element method?

This is a numerical technique used in solving problems which are described in terms of

partial differential equation (PDE).The physics of phenomena encounter in mathematics

application is often modelled under the form of a boundary value problem.This method

has various procedures for solving PDES and is used in a variety of applications as follows;

(i) in structural mechanics

(ii) dynamics

(iii) heat transfers

(iv) fluid flow

(v) electric and magnetic fields

(vi) electromagnetic

The equation describing the evolution in time are called initial value problems and consist

of coupling of PDE in time with a boundary value problem in space.
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In this method we consider a given domain of interest which is represented in form of an

assembly of what is called finite element and therefore we approximate the given functions

in terms of nodal values to be determined.Iterative procedures are used so as to obtained

efficient the numerical solution of a problem in matrix equation.

This method use approximate technique to solve solution of differential equation by using

a piecewise interpolating polynomials.A numerical method arises due to the need of con-

verting a continuous problem into a discrete form.The continuous problem always have

infinitely many unknowns which cannot be solved using a computer to obtained exact

solution .Thus we have to approximated by using discrete form of the problem which has

many number of unknowns in terms of finite elements.The more we increased the number

of unknowns, we then improve the accuracy of the solution.

Functions are therefore expressed in terms of basis functions in which the equation to

be considered is solved in terms of weak form.Functions is approximated by the equation

shown below;

Uh =
∑

uiϕix.

here h is the step length and ui is the unknown to be determined.

FEM is a one of the numerical method which resembles FDM although it is a general and

powerful method when used in application to solve real world problems that constitute

complicated physical geometry and as well as boundary conditions. Galerkin’s method is

one way of approximating solution of a given PDES and ODES. This approximate values

ares [10]

1 Easy to obtain differentiation and integration of the problem.

2 This method is spanned by a set of orthogonal basis function defined in a given finite

dimensional vector space.
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3.3 Steps in Finite Element Method

• DISCRETIZE THE CONTINUUM

We divide the domain of interest into smaller regions called elements.This elements

contain inside certain number of points called nodes and is based on partition of an

interval (a,b) into subinterval given below

a = x0 < x1 < x2 < . . . < xm < xm+1 = b

where hj = xj − xj−1 and j = 1, . . . ,m + 1 is a partition of the interval (a,b) into

m+1 subinterval.For each given node point x = ξi we can associate basis function

in the form ϕi(x),i = 0, 1, 2, . . . , q. Thus we obtained q + 1 basis functions.

• SELECT THE TYPE OF INTERPOLATION POLYNOMIAL TO USE

We select the kind of function we will take to describe the variation of the function

inside each element.This is done by use of polynomials.

A polynomial given in the form P ∈ P q(a, b), which has the value of Pi = P (ξi) at

the given nodes X = ξi for each value of i = 0, 1, 2, . . . , q, expressed in the form of

Lagrange basis is given by the equation;

P (x) = p0ϕ0(x) + p1ϕ1(x) + . . .+ pqϕq(x) (3.4)

where ϕi(x),i = 0, 1, 2, . . . , q is the basis function. This polynomial can either be

piecewise linear, quadratic or cubic.
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• THE FORMULATION

Given the PDE to solve we must find a system of algebraic equation for each element.

This is done by multiplying the initial problem of the PDE with a test function v

in a certain vector space V and we integrate by part over [a,b] thus we obtain weak

formulation of the problem.

If we assume that for a typical dependent variable U written in the form

U =
∑

uiϕi (3.5)

we then substitute it to the weak formulation of the problem so as to obtain equation

for each element in the form given below;

[Ae][U e] = [be] (3.6)

• ASSEMBLYING THE EQUATIONS FOR DIFFERENT ELEMENTS

We have to assemble the equation for all elements.If we have a total of q + 1 nodes

in the system then we must build up a global matrix [A] of size (q + 1) × (q + 1)

and a global vector [b] of size (q + 1)× 1.

Thus FEM reduce a problem into matrix form of the equation shown below,

[A][U ] = [b] (3.7)

• SOLVE THE SYSTEM OF EQUATION

One can use whatever method to solve this matrix.The more the number of nodes

the better the quality of the solution,it can either be a sparse matrix or a band

matrix.

We can solve this by using direct method, iterative method,LU factorization and

QR factorization.
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3.4 Formulation

3.4.1 Strong formulation

The set of governing PDE’s with a given boundary conditions is refer to as a classical or

a strong formulation of the problem.

Example 1. Consider a one dimension heat equation given by:

∂u

∂t
= C

∂2u

∂x2
, 0 ≤ X ≤ 1

subject to the following initial conditions

U(x, 0) = U0(x)

with the given boundary conditions

U(0) = U(1) = 0

This is called strong formulation.

3.4.2 Weak formulation

We then reformulate the strong form of the problem into the weak form.This form is

always a variation formulation of the given problem where we multiply the initial value

problem with a test function and we integrate by part over a given domain to obtained

weak formulation of the problem.This form relaxes the given problem whereby we obtain

the approximate solution instead of an exact solution that satisfies the strong form on a

given average of a domain.It is called a weaker statement of the problem because given a

solution of the strong form will always satisfy the weak form, but vice versa is not always

true.

Example 2. Consider Poisson equation in one dimension.

∇2U = P0, 0 ≤ x ≤ 1

subject to the following boundary conditions

u(0) = u(1) = 0
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We then multiply the given equation with a test function v and integrate by part over

the domain Ω. ∫
Ω

(∇2u− P0)v = 0

We then define a space of function and call it H1. This is a functional space where all the

function are bounded. Let also define X be a sub-space of H1 where we can determine

our solution U .Let u, v ∈ X.We know that from calculus we can obtain the equation given

has follows;

∇(V∇U) = ∇V.∇U + V∇2U

Then we can be able to write the equation in the form given below;∫
Ω

V∇2U =

∫
Ω

∇(V∇U)−
∫

Ω

∇V.p∇U

By use of Gauss’s theorem on the formula ∇(V∇U) given below we obtained the following

equation, ∫
Ω

(V∇U) =

∫
Ω

V∇U.n̂ds = 0

We then reduce our equation to∫
Ω

V∇2U = −
∫

Ω

∇V.∇U

Finally we obtained the equation has follows;

−
∫

Ω

∇V.∇U =

∫
Ω

POV dA

This is the weak formulation or variational problem of our equation given.The choose of

the test function should satisfies the type of the boundary condition given in terms of

Dirichlet,Neumann or Mixed boundary conditions.

For our example given homogeneous Dirichlet boundary condition;

U(0) = U(1) = 0

So we let,

V (0) = V (1) = 0

This integration by part results in boundary contribution, which can be replaced by either

using boundary conditions or using the restriction imposed on the test functions V .
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3.5 Polynomial interpolation

3.5.1 Element type

Given a continuous function we can approximate the function by an approximate function

and before we do that we need to consider the type of element we have to use.It is

important to take into consideration a given type of element which is suitable for the

problem to be solve numerically.For example,

(i) ONE- DIMENSIONAL ELEMENTS

Figure 3.1: Linear

Figure 3.2: Quadratic

Figure 3.3: Cubic
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(ii) TWO- DIMENSIONAL ELEMENTS

Figure 3.4: Linear triangular

Figure 3.5: Quadratic triangular

Figure 3.6: Cubic triangular

The regions is divided into smaller parts called nodes.The value of the fields variable com-

puted at the nodes are used to approximate the values at non- nodal points (that is,the

interior mesh points) by interpolation of the nodal values.

40



Element type depend on the following

1 shape .

2 the number and type of nodes of the elements.

3 type of the nodal variable of the elements.

4 type of the interpolating function.

Shape function or basis function are associated with element.

3.6 Basis function

3.6.1 Vector space of a piecewise linear function on given inter-

val

Given an interval I = [a, b],we let Iha = x0 < x2 < x3 . . . < xN−1 < xN = b to be

a partition of our interval I into subintervals Ij = [xi−i − xi] of hi = xi − xi−1, i =

1, 2, . . . , N .We then let Vh =v|v be a continuous piecewise linear function on Ih then Vh

is a vector space which has the hat functions given by (ϕ)Nj=0 known as basis function.Let

v be our approximation so we can be express as a linear combination of ϕi(x)′s. [10]

Then we can write v(x) in the form,

v(x) =
∑N

i=0 v(xi)ϕi(x),∀v ∈ vh

Let x = xj then φ′is has the property that

ϕi(xj) = δij =

1, i = j

0, i 6= j.

i.e

ϕi(x) =


x−xi−1

h
, xi−1 ≤ x ≤ xi

xi+1−x
hi+1

, xi ≤ x ≤ xi+1

0, x /∈ [xi−1, xi+1]

These functions are refer to as basis function since they are linearly independent thus it

is not always easier to make one out of a combination of another one.
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The graph below shows an example of linear basis function with three elements.

Figure 3.7: Linear hat function

3.6.2 Lagrange interpolation

Definition 1 (Definition of a cardinal functions). [10].Lagrange basis is refer to as the

set of polynomial λi
q
i=0 which are associated with the given q + 1 distinct points in the

given interval a = x0 < x1 < . . . < xq = b where [a,b] are closed and are determined by

the following requirement, for i = j we obtained the following λi(xj) = 1 with a value of

zero for i 6= j thus we have λi(xj) = 0.

λi(x) =
(x− x0)(x− x1) . . . (x− xi−1) ↓ (x− xi+1) . . . (x− xq)

(xi − x0)(xi − x1) . . . (xi − xi−1) ↑ (xi − xi+1) . . . (xi − xq)
By use of arrows ↓, ↑ we wanted to highlight the fact that λi(x) = Π( x−xi

xi−xj ) cannot be

expressed in the following singular factor shown x−xi
xi−xi

Example 3. If we let q = 2,then we obtained an interval of the form a = x0 < x1 < x2 =

b,here we have

i = 1, j = 2 =⇒ δ12 = λ1(x2) =
(x2 − x0)(x2 − x2)

(x1 − x0)(x1 − x2)
= 0
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i = j = 1 =⇒ λ1(x1) =
(x1 − x0)(x1 − x2)

(x1 − x0)(x1 − x2)
= 1

A polynomial P (X) ∈ P q(a, b) with the following values Pi = P (Xi) at the given nodes

xi, i = 0, 1, 2, . . . , q,can therefore be represented in terms of Lagrange basis shown below;

P (x) = p0λ0(x) + p1λ1(x) + . . .+ pqλq(x)

Definition 2. let [a,b] be a closed interval with the partition shown a ≤ ξ0 < ξ1 < . . . < ξq

where q + 1 are distinct interpolation nodes on the given interval.Thus Πqf ∈ P q(a, b)

interpolate f(x) at the given nodes ξi,if given that

Πqf(ξi) = f(ξi), i = 0, 1, . . . , q

therefore the Lagrange formula Πqf(x) can be written as follows;

Πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + . . .+ f(ξq)λq(x)

Example 4. let the variable x be given has follows x = ξi, then our linear Lagrange basis

functions for q = 1 is given by the equations shown below;

λ0(x) =
ξ1 − x
ξ1 − ξ0

λ1(x) =
x− ξ0

ξ1 − ξ0

thus the Lagrange formula given that q = 1 is shown below;

Πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x)

One-dimensional element has the following basis function.

• Linear basis function

• Quadratic basis function

• Cubic basis function
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xj−1 xje1

Figure 3.8: Linear element

We will only give a explanation of linear and quadratic basis function. Lets consider a

polynomial of one-dimensional case given by the equation shown below;

P (x) = α0 + α1(x) + α2(x2) + . . .+ αn(xn)

This is a polynomial of degree n. To obtain a linear basis function we consider a linear

element as shown above with two nodes and one element. Lets consider a polynomial of

degree (1) in (a, b)

P (x) = α0 + α1(x)

Using these two nodes we can obtain polynomial at each node.Therefore we have the

following

P (x) = α0 + α1(xj−1) = f(xj−1)

P (x) = α0 + α1(xj) = f(xj)

We can find that

α0 = f(xj−1)
xj

xj−xj−1
+ f(xj)

−xj−1

xj−xj−1

α1(x) = f(xj−1) −x
xj−xj−1

+ f(xj)
x

xj−xj−1
.

Then our polynomial becomes

P (x) = α0 + α1x = f(xj−1)
xj − x
xj − xj−1

+ f(xj)
x− xj−1

xj − xj−1

= f(xj−1)λj−1(x) + f(xj)λj((x)

Hence for the value of xj−1 ≤ x ≤ xj we have that j = 1.

Therefore we can imposed restriction on λj−1(x) and λj(x) on the given piecewise linear

basis function φj−1(x) and φj(x). These values φj−1 and φj are linear basis function.

REMARKS

It is noted that,instead of global coordinate x,one can use normalized coordinate ξ in

Lagrange interpolation function.
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xj−1 xj

φj−1
φj

Figure 3.9: Linear Lagrange basis function

ξ0 ξ1 ξk ξn

Figure 3.10: Normalized coordinate

1-dimensional quadratic element

Example 5. If we wish to have an approximate solution of a function U(x) defined in

the following closed interval [a,b] then we expressed the set of basis function φi as shown

below;

u(x) =
n∑
i=1

ciφi

where i refer to the number of a given nodes points. Let our local coordinate be given by

ξ =
x− xj
xj+1 − xj

thus the elements can also be expressed in the form x = [0, 1].

Given our function of interest in terms of u(x) we can obtained the approximate solution

by using the quadratic basis function given in the equation below;

u(ξ) = c1 + c2ξ + c3ξ
2

0

ξ1

1

ξ2

2

ξ3
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Our three nodes points therefore can be defined as shown ξ1,2,3 = 0, 1
2
, 1 and we obtained

the values of u1, u2 and u3 has follows;

u1 = c1

u2 = c1 + 0.5c2 + 0.25c3

u3 = c1 + c2 + c3

By solving the equations simultaneously we obtained the following equations;

c2 = −3u1 + 42 − u3

c3 = 2u1 − 4u2 + 2u3

c1 = u1

We can therefore express our approximated function as a sum of all the basis function

obtained by the values at the given 3 nodes.Thus we have the following equation;

u(ξ) = u1 + (−3u1 + 4u2 − u3)ξ + (2u1 − 4u2 + 2u3)ξ2

u(ξ) = u1(1− 3ξ + 2ξ2) + u2(4ξ − 4ξ2) + u3(−ξ + 2ξ2)

We finally obtained

u(ξ) = u1N1(ξ) + u2N2(ξ) + u3N3(ξ)

where N1ξ,N2ξ,N3ξ are quadratic basis functions.

Accuracy can be improve by the following properties; [14]:

• decreasing the size of the height between elements as small as possible.

• by increasing the given order of the interpolating polynomials.

• by doing both of the properties at the same time.
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3.7 Quadrature rule

3.7.1 Simpson’s rule

Given an interval [a,b] we can therefore approximate its integral as shown I =
∫ b
a
f(x)dx

by use of a partition of I into a given subintervals so that in each subinterval of a function

f is approximate by a degree 2 polynomial. This rule use the values of f at the two

given end points a and b with the midpoint in the form a+b
2

.We determines the values of

f(a), f(b) and f(a+b
2

) at each point.

The area given by the equation y = f(x) refers to the approximate values under the graph

expressed by a polynomial of degree 2 given by the equation P2(x) where these values are

represented as follows;P2(a) = f(a), P2(a+b
2

) = f(a+b
2

) finally P2(b) = f(b).To determine

P2(x) by using the Lagrange interpolation for q = 2 we let x0 = a, x1 = a+b
2

and x2 = b

and we obtained the equation shown below;

P2(x) = f(x0)λ0(x) + f(x1)λ1(x) + f(x2)λ2(x).


λ0(x) = (x−x1)(x−x2)

(x0−x1)(x0−x2)
,

λ1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

,

λ2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

.

Thus

I =

∫ b

a

f(x)dx ≈
∫ b

a

P2(x)dx =
2∑
i=0

f(x)

∫ b

a

λi(x)dx

We can easily compute the integrals∫ b

a

λ0(x)dx =

∫ b

a

λ2(x)dx =
b− a

6
,

∫ b

a

λ1(x)dx =
4(b− a)

6
.

Hence

I =

∫ b

a

f(x)dx ≈ b− a
6

[f(x0) + 4f(x1) + f(x2)].

This is the simple Simpson’s rule. [10]
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3.7.2 Composite Simpson’s rule

This rule is based on the following approximate values of the integral given below;

I =

∫ b

a

f(x)dx.

• We divide the closed interval [a,b] into uniform N subintervals shown below;

a = x0 < x1 < x2 < . . . < xN−1 < XN = b

• Then we can expressed the integral given above as follows;∫ b

a

f(x)dx =

∫ x1

x0

f(x)dx+ . . .+

∫ xN

xN−1

f(x)dx =
k∑
k−1

∫ xk

xk−1

f(x)dx

here each subinterval is given as Ik = [xk−1, xk],where k = 1, 2, . . . , N

For our simple Simpson’s rule on each subinterval we have∫ b

a

f(x)dx =

∫ xk

xk−1

f(x)dx ≈
N∑
k=1

h

6
[f(xk−1) + 4f

xk−1 + xk
2

+ f(xk)]

This is the composite Simpson’s rule. [10]
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3.8 Matrix assemblying

We assemble mass and stiffness matrix for all the elements as shown below in the diagram

and with the help of Gaussian elimination method we can obtain the solution of our

problem.[12]

Figure 3.11: Shows matrices assembly for more element
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Chapter 4

FEM FOR SOLVING ONE

DIMENSIONAL STEADY STATE

ENERGY BALANCE CLIMATE

MODEL

4.1 Derivation of the problem

We consider the Galerkin finite element method for solving one dimensional steady state

energy balance climate model equation.From Eq.(2.19) to obtained steady state equation

we let ∂T
∂t

= 0 and we have the following equation;

− ∂

∂x
(K(x)(1− x2)

∂T (x)

∂x
) + A+BT (x) = QS(x)(1− α(x, µ)) (4.1)

subject to the boundary conditions

(1− x2)
1
2
∂T (x)

∂x
|x=0,1 = 0 (4.2)

The Galerkin problem is based on the variation formulation,where we multiply Eq. (4.1)

with a given test function v and integrate over the open interval (0, 1).

From Eq. (4.1) let

u(x) = (1− x2)
∂T (x)

∂x
(4.3)
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Then we have the following equation by substituting the value of Eq.4.3 into Eq.4.1;

−∂(K(x)u(x))

∂x
+ A+BT (x) = QS(x)(1− α(x, µ)) (4.4)

We re-arrange Eq.(4.4) to obtain

−∂u(x)

∂x
+
B

K
T (x) =

QS(x)(1− α(x, µ))− A
K

(4.5)

Here ∂K
∂x
u = 0 since K(x) are constant values of x ∈ (0, 1).

We multiply Eq. (4.5) with a test function say v and integrate over the interval (0, 1) as

shown below;∫ 1

0

(−∂u
∂x

+
B

K
T (x))v(x)dx =

QS(x)(1− α(x, µ))− A
K

∫ 1

0

v(x)dx (4.6)

We then perform the integration by part on the first term on the left of Eq.(4.6) and we

obtained the following equation.

−
∫ 1

0

∂u

∂x
v(x)dx = −u(x)v(x)|10 +

∫ 1

0

u(x)v′(x)dx (4.7)

Therefore applying the following boundary conditions in Eq.(4.2) we obtained the equation

shown below,

−
∫ 1

0

u′(x)v(x)dx =

∫ 1

0

u(x)v′(x)dx (4.8)

By substituting Eq.(4.8) into Eq.(4.6) we have,∫ 1

0

u(x)v′(x)dx+
B

K

∫ 1

0

T (x)v(x)dx =
QS(x)(1− α(x, µ))− A

K

∫ 1

0

v(x)dx (4.9)

Here S(x) solar insolation constant and (1 − α(x, µ)) are constant values depending on

x ∈ (0, 1). Therefore by Substituting Eq.(4.3) into Eq.(4.9) we obtained the following

equation shown below;∫ 1

0

(1− x2)
∂T

∂x
v′(x) +

B

K

∫ 1

0

T (x)v(x)dx =
QS(x)(1− α(x, µ)− A

K

∫ 1

0

v(x)dx (4.10)

This is the weak formulation of the problem.

We then determine Tj = T (xj) using the approximate values of T (x) at the nodes

xj,1 ≤ j ≤M .
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Using the basis function ϕj(x),we write

T (x) =
M∑
j=1

Tjϕj(x) (4.11)

which implies that

T ′(x) =
M∑
j=1

Tjϕ
′
j(x) (4.12)

Thus by substituting the values of Eq.(4.11) and Eq.(4.12) into Eq.(4.10) we obtained the

following equation.

M∑
j=1

Tj

∫ 1

0

(1− x2)ϕ′j(x)v′(x)dx+
B

K

M∑
j=1

Tj

∫ 1

0

ϕj(x)v(x)dx

=
QS(x)(1− α(x, µ))− A

K

∫ 1

0

v(x)dx

(4.13)

Since v(x) can also be expressed as a linear combination of the basis functions ϕi(x) ,we

then write the equation for v(x) in the following form;

v(x) =
M∑
i=1

ϕi(x) (4.14)

By substituting the values of Eq.(4.14) into Eq.(4.13) we have the following equation;

M∑
i,j=1

Tj

∫ 1

0

(1− x2)ϕ′j(x)ϕ′i(x)dx+
B

K

M∑
i,j=1

Tj

∫ 1

0

ϕj(x)ϕi(x)dx

=
QS(xi)(1− α(xi, µ)− A)

K

M∑
i=1

∫ 1

0

ϕi(x)dx

(4.15)
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This set of equation can be expressed in matrix form shown below;

A~T = ~F (4.16)

while the value of A is given in the equation shown A = S +M

Here

S = Sij =

∫ 1

0

(1− x2)ϕ′j(x)ϕ′i(x)dx (4.17)

M = Mij =
B

K

∫ 1

0

ϕj(x)ϕi(x)dx (4.18)

F =
QS(xi)(1− α(xi, µ))− A

K

∫ 1

0

ϕi(x)dx (4.19)

Where S is refers to the stiffness matrix of the equation.

M is refers to the mass matrix of the equation.

F is refers to the load vector of the equation.

From Eq.(4.16) we then solve the temperature per latitude belt for two ,five and ten

elements.
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4.2 Evaluation of stiffness matrix S,mass matrix M

and load vector F two elements.

From the following equations Eq.(4.17),Eq.(4.18) and Eq.(4.19) we evaluated values for

these matrices by using quadratic basis function derived below.

4.2.1 Quadratic basis function for two elements.

We let hi = 0.25

We partition the interval I = (0, 1) into subinterval,

0 < 0.5 < 1

0 0.25 0.5 0.75 1

e1 e2

Figure 4.1: Quadratic finite elements for two elements

(1) Quadratic basis functions for element one (e1) are:

ϕ
(1)
0 (x) =

(x− 0.25)(x− 0.5)

(0− 0.25)(0− 0.5)
=
x2 − 0.75x+ 0.125

0.125

ϕ
(1)
1 (x) =

x(x− 0.5)

(0.25− 0)(0.25− 0.5)
=
x2 − 0.5x

−0.0625

ϕ
(1)
2 (x) =

x(x− 0.25)

(0.5− 0)(0.5− 0.25)
=
x2 − 0.25x

0.125
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(2) Quadratic basis functions for element two (e2) are:

ϕ
(2)
0 (x) =

(x− 0.75)(x− 1)

(0.5− 0.75)(0.5− 1)
=
x2 − 1.75x+ 0.75

0.125

ϕ
(2)
1 (x) =

(x− 0.5)(x− 1)

(0.75− 0.5)(0.75− 1)
=
x2 − 1.5x+ 0.5

−0.0625

ϕ
(2)
2 (x) =

(x− 0.5)(x− 0.75)

(1− 0.5)(1− 0.75)
=
x2 − 1.25x+ 0.375

0.125

To obtained the stiffness matrix S for the each element we solve the matrix,

S =


∫ 1

0
(1− x2)ϕ′0(x)ϕ′0(x)dx

∫ 1

0
(1− x2)ϕ′0(x)ϕ′1(x)dx

∫ 1

0
(1− x2)ϕ′0(x)ϕ′2(x)dx∫ 1

0
(1− x2)ϕ′1(x)ϕ′0(x)dx

∫ 1

0
(1− x2)ϕ′1(x)ϕ′1(x)dx

∫ 1

0
(1− x2)ϕ′1(x)ϕ′2(x)dx∫ 1

0
(1− x2)ϕ′2(x)ϕ′0(x)dx

∫ 1

0
(1− x2)ϕ′2(x)ϕ′1(x)dx

∫ 1

0
(1− x2)ϕ′2(x)ϕ′2(x)dx


To determine the mass matrix for each element we solve the matrix shown below,

M =


∫ 1

0
ϕ0(x)ϕ0(x)dx

∫ 1

0
ϕ0(x)ϕ1(x)dx

∫ 1

0
ϕ0(x)ϕ2(x)dx∫ 1

0
ϕ1(x)ϕ0(x)dx

∫ 1

0
ϕ1(x)ϕ1(x)dx

∫ 1

0
ϕ1(x)ϕ2(x)dx∫ 1

0
ϕ2(x)ϕ0(x)dx

∫ 1

0
ϕ1(x)ϕ1(x)dx

∫ 1

0
ϕ2(x)ϕ2(x)dx


4.2.2 Stiffness and mass matrix for element one (e1)

Thus solutions for stiffness matrix is has follows,

64
∫ 0.5

0
(1− x2)(2x− 0.75)2dx = 137

30

−128
∫ 0.5

0
(1− x2)(2x− 0.75)(2x− 0.5)dx = −77

15

64
∫ 0.5

0
(1− x2)(2x− 0.75)(2x− 0.25)dx = 17

30

256
∫ 0.5

0
(1− x2)(2x− 0.5)2dx = 48

5

−128
∫ 0.5

0
(1− x2)(2x− 0.5)(2x− 0.25)dx = −67

15

64
∫ 0.5

0
(1− x2)(2x− 0.25)2dx = 39

10

(4.20)
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This matrix is given by

S1
ij =

 4.566666667 −5.133333333 0.566666666

−5.133333333 9.6 −4.466666667

0.566666666 −4.466666667 3.9


The solution for the mass matrix of element one is has follows;

1.55
0.85
∗ 64

∫ 0.5

0
(x2 − 0.75x+ 0.125)2dx = 0.121568627

1.55
0.85
∗ 128

∫ 0.5

0
(x2 − 0.75x+ 0.125)(x2 − 0.5x)dx = 0.060784314

1.55
0.85
∗ 64

∫ 0.5

0
(x2 − 0.75x+ 0.125)(x2 − 0.25x)dx = −0.030392157

1.55
0.85
∗ 256

∫ 0.5

0
(x2 − 0.5x)2dx = 0.48627451

1.55
0.85
∗ 128

∫ 0.5

0
(x2 − 0.5x)(x2 − 0.25x)dx = 0.060784314

1.55
0.85
∗ 64

∫ 0.5

0
(x2 − 0.25x)2dx = 0.121568627

(4.21)

This matrix is given below;

B

K
M1

ij =

 0.121568627 0.060784314 −0.030392157

0.060784314 0.48627451 0.060784314

−0.030392157 0.060784314 0.121568627


To obtain A1

ij = S1
ij + B

K
M1

ij

A1
ij =

 4.688235294 −5.072549019 0.536274509

−5.072549019 10.08627451 −4.405882353

0.536274509 −4.405882353 4.021568627


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4.2.3 Stiffness and mass matrix for element two (e2)

Solutions obtained for the stiffness matrix is given has follows;

64 ∗
∫ 1

0.5
(1− x2)(2x− 1.75)2dx = 2.9

−128 ∗
∫ 1

0.5
(1− x2)(2x− 1.75)(2x− 1.5)dx = −3.133333333

64 ∗
∫ 1

0.5
(1− x2)(2x− 1.75)(2x− 1.25)dx = 0.233333333

256 ∗
∫ 1

0.5
(1− x2)(2x− 1.5)2dx = 4.266666667

−128 ∗
∫ 1

0.5
(1− x2)(2x− 1.5)(2x− 1.25)dx = −1.133333333

64 ∗
∫ 1

0.5
(1− x2)(2x− 1.25)2dx = 0.9

(4.22)

This matrix is given by;

S2
ij =

 2.9 −3.133333333 0.233333333

−3.133333333 4.266666666 −1.13333333

0.233333333 −1.13333333 0.9


The solution for mass matrix is has follows;

1.55
0.65
∗ 64

∫ 1

0.5
(x2 − 1.75x+ 0.75)2dx = 0.158974359

1.55
0.65
∗ 128

∫ 1

0.5
(x2 − 1.75x+ 0.75)(x2 − 1.5x+ 0.5)dx = 0.079487179

1.55
0.65
∗ 64

∫ 1

0.5
(x2 − 1.75x+ 0.75)(x2 − 1.25x+ 0.375)dx = −0.039743588

1.55
0.65
∗ 256

∫ 1

0.5
(x2 − 1.5x+ 0.5)2dx = 0.635897436

1.55
0.65
∗ 128

∫ 1

0.5
(x2 − 1.5x+ 0.5)(x2 − 1.25x+ 0.375)dx = 0.079487179

1.55
0.65
∗ 64

∫ 1

0.5
(x2 − 1.25x+ 0.375)2dx = 0.158974359

(4.23)

This matrix is given by;

B

K
M2

ij =

 0.158974359 0.079487179 −0.039743588

0.079487179 0.635897436 0.079487179

−0.039743588 0.079487179 0.158974359


57



The value of A2
ij = S2

ij +M2
ij

A2
ij =

 3.058974359 −3.053846154 0.193589745

−3.053846154 4.902564102 −1.053846151

0.193589745 −1.053846151 1.058974359


4.2.4 Matrix assemblying of the two elements

The matrix after assemblying is given below;

A =


4.688235294 −5.072549019 0.536274509 0 0

−5.072549019 10.08627451 −4.405882353 0 0

0.536274509 −4.405882353 7.080542986 −3.053846154 0.193589745

0 0 −3.053846154 4.902564102 −1.053846151

0 0 0.193589745 −1.053846151 1.058974359


4.2.5 Load vector for two elements

From Eq.(4.19) by evaluating integral of the equation on the right hand side we obtained

solutions for each element as follows.

The integral solution for both elements are shown below;

8 ∗
∫ 0.5

0
(x2 − 0.75x+ 0.125)dx = 1

12

16 ∗
∫ 0.5

0
(x2 − 0.5x)dx = 1

3

8 ∗
∫ 0.5

0
(x2 − 0.2x)dx = 1

12

8 ∗
∫ 1

0.5
(x2 − 1.75x+ 0.75)dx = 1

12

16 ∗
∫ 1

0.5
(x2 − 1.5x+ 0.5)dx = 1

3

8 ∗
∫ 1

0.5
(x2 − 1.25x+ 0.375)dx = 1

12

(4.24)

The value for albedo and S(x) is obtained by use of data from S.G Warren and S.T.Schneider

in (1979) [36].These values are given in the table below.

The value for Q = 1
4
Q = 342.5Wm−2
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Table 4.1: Values for K(x),Albedo,S(x) and QS(x)β(x,µ)-A per latitude belt for

two elements

x S(x) QS(x) Albedo S(x)β(x,µ)-A K

0-0.5 1.176 402.78 0.258 87.6676 0.85

0.5-1 0.804 275.40425 0.443 -57.79983275 0.65

From Eq.(4.19) we obtained the values for F (x) has shown in the table below;

Table 4.2: Values of F(x) for two elements

x F(x)

0 8.594388235

0.25 34.37755294

0.5 1.184153267

0.75 -29.64093987

1 -7.410234968

From Eq.(4.16) the solution of temperature for five elements is obtained by solving the

equation A~T = ~F by use of Gaussian elimination method.Here A is a 5 by 5 matrix, ~F

is a 5 by 1 matrix and ~T are unknowns to be determine.The solution for temperature are

shown in the table below and are round off to 3 significant figures.

Table 4.3: Temperature per latitudes in degrees celsius

x zone(◦) T(◦c )

0 0 17.0

0.25 14 14.8

0.5 30 6.22

0.75 48.59 -5.01

1 90 -13.1
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4.3 Evaluation of Stiffness matrix S,Mass matrix M

and Load vector F for five elements.

From the following equation Eq.(4.17),Eq.(4.18) and Eq.(4.19) we evaluated values for

these matrices by using quadratic basis function derived below.

4.3.1 Quadratic basis function for five elements.

We let hi = 0.1

We partition the interval I = (0, 1) into subinterval given below,

0 < 0.2 < 0.4 < 0.6 < 0.8 < 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e1 e2 e3 e4 e5

Figure 4.2: Quadratic finite elements for five elements

(i) Quadratic basis functions for element one (e1) are;

ϕ
(1)
0 (x) =

(x− 0.1)(x− 0.2)

(0− 0.1)(0− 0.2)
=
x2 − 0.3x+ 0.02

0.02

ϕ
(1)
1 (x) =

(x)(x− 0.2)

(0.1− 0)(0.1− 0.2)
=
x2 − 0.2x

−0.01

ϕ
(1)
2 (x) =

(x)(x− 0.1)

(0.2− 0)(0.2− 0.1)
=
x2 − 0.1x

0.02
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(ii) Quadratic basis functions for element two (e2) are;

ϕ
(2)
0 (x) =

(x− 0.3)(x− 0.4)

(0.2− 0.3)(0.2− 0.4)
=
x2 − 0.7x+ 0.12

0.02

ϕ
(2)
1 (x) =

(x− 0.2)(x− 0.4)

(0.3− 0.2)(0.3− 0.4)
=
x2 − 0.6x+ 0.08

−0.01

ϕ
(2)
2 (x) =

(x− 0.2)(x− 0.3)

(0.4− 0.2)(0.4− 0.3)
=
x2 − 0.5x+ 0.06

0.02

(iii) Quadratic basis functions for element three (e3) are;

ϕ
(3)
0 (x) =

(x− 0.5)(x− 0.6)

(0.4− 0.5)(0.4− 0.6)
=
x2 − 1.1x+ 0.3

0.02

ϕ
(3)
1 (x) =

(x− 0.4)(x− 0.6)

(0.5− 0.4)(0.5− 0.6)
=
x2 − x+ 0.24

−0.01

ϕ
(3)
2 (x) =

(x− 0.4)(x− 0.5)

(0.6− 0.4)(0.6− 0.5)
=
x2 − 0.9x+ 0.2

0.02

(iv) Quadratic basis functions for element four (e4) are;

ϕ
(4)
0 (x) =

(x− 0.7)(x− 0.8)

(0.6− 0.7)(0.6− 0.8)
=
x2 − 1.5x+ 0.56

0.02

ϕ
(4)
1 (x) =

(x− 0.6)(x− 0.8)

(0.7− 0.6)(0.7− 0.8)
=
x2 − 1.4x+ 0.48

−0.01

ϕ
(4)
2 (x) =

(x− 0.6)(x− 0.7)

(0.8− 0.6)(0.8− 0.7)
=
x2 − 1.3x+ 0.42

0.02

(v) Quadratic basis functions for element five (e5) are;

ϕ
(5)
0 (x) =

(x− 0.9)(x− 1)

(0.8− 0.9)(0.8− 1)
=
x2 − 1.9x+ 0.9

0.02

ϕ
(5)
1 (x) =

(x− 0.8)(x− 1)

(0.9− 0.8)(0.9− 1)
=
x2 − 1.8x+ 0.8

−0.01

ϕ
(5)
2 (x) =

(x− 0.8)(x− 0.9)

(1− 0.8)(1− 0.9)
=
x2 − 1.7x+ 0.72

0.02
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4.3.2 Stiffness and Mass matrix for element one (e1)

From Eqs.(4.17) and (4.18) we obtained values for the stiffness and the mass matrix for

element one. Solution obtained for stiffness matrix is has follows;

2500 ∗
∫ 0.2

0
(1− x2)(2x− 0.3)2dx = 872

75

−5000 ∗
∫ 0.2

0
(2x− 0.3)(2x− 0.2)dx = −994

75

2500 ∗
∫ 0.2

0
(1− x2)(2x− 0.3)(2x− 0.1)dx = 122

75

10000 ∗
∫ 0.2

0
(1− x2)(2x− 0.2)2dx = 656

25

−5000 ∗
∫ 0.2

0
(1− x2)(2x− 0.2)(2x− 0.1)dx = −974

75

2500 ∗
∫ 0.2

0
(1− x2)(2x− 0.1)2dx = 284

25

(4.25)

This matrix is given by;

S
(1)
ij =

 11.62666667 −13.25333333 1.626666667

−13.25333333 26.24 −12.98666667

1.626666667 −12.98666667 11.36


The solution of mass matrix is has follows;

1.55
0.90
∗ 2500 ∗

∫ 0.2

0
(x2 − 0.3x+ 0.02)2dx = 0.94148148

1.55
0.90
∗ −5000 ∗

∫ 0.2

0
(x2 − 0.3x+ 0.02)(x2 − 0.2x)dx = 0.02296296

1.55
0.90
∗ 2500 ∗

∫ 0.2

0
(x2 − 0.3x+ 0.02)(x2 − 0.1x)dx = −0.011481481

1.55
0.90
∗ 10000 ∗

∫ 0.2

0
(x2 − 0.2x)2dx = 0.1837037

1.55
0.90
∗ −5000 ∗

∫ 0.2

0
(x2 − 0.2x)(x2 − 0.1x)dx = 0.02296296

1.55
0.90
∗ 2500 ∗

∫ 0.2

0
(x2 − 0.1x)2dx = 0.04592593

(4.26)

This matrix is given by;

B

K
M

(1)
ij =

 0.94148148 0.02296296 −0.011481481

0.02296296 0.1837037 0.02296296

−0.011481481 0.02296296 0.04592593


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Then the matrix A
(1)
ij = S

(1)
ij + B

K
M

(1)
ij

A
(1)
ij =

 12.56814815 −13.23037037 1.615185186

−13.23037037 26.4237037 −12.96370371

1.615185186 −12.96370371 11.40592593


4.3.3 Stiffness and mass matrix for element two (e2)

From Eqs.(4.17) and (4.18) we obtained values of the stiffness and the mass matrix for

element two. The solution of stiffness matrix is has follows;

2500 ∗
∫ 0.4

0.2
(1− x2)(2x− 0.7)2dx = 274

25

−5000
∫ 0.4

0.2
(1− x2)(2x− 0.7)(2x− 0.6)dx = −934

75

2500 ∗
∫ 0.4

0.2
(1− x2)(2x− 0.7)(2x− 0.5)dx = 112

75

10000 ∗
∫ 0.4

0.2
(1− x2)(2x− 0.6)2dx = 1808

75

−5000 ∗
∫ 0.4

0.2
(1− x2)(2x− 0.6)(2x− 0.5)dx = −874

75

2500 ∗
∫ 0.4

0.2
(1− x2)(2x− 0.5)2dx = 254

25

(4.27)

This matrix is given by;

S2
ij =

 10.96 −12.45333333 1.493333333

−12.45333333 24.10666667 −11.65333333

1.493333333 −11.65333333 10.16


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The solution for the mass matrix is given by;

1.55
0.85
∗ 2500 ∗

∫ 0.4

0.2
(x2 − 0.7x+ 0.12)2dx = 0.0462745

1.55
0.85
∗ −5000 ∗

∫ 0.4

0.2
(x2 − 0.7x+ 0.12)(x2 − 0.6x+ 0.08)dx = 0.02431373

1.55
0.85
∗ 2500 ∗

∫ 0.4

0.2
(x2 − 0.7x+ 0.12)(x2 − 0.5x+ 0.06)dx = −0.012156863

1.55
0.85
∗ 10000 ∗

∫ 0.4

0.2
(x2 − 0.6x+ 0.08)2dx = 0.1945098

1.55
0.85
∗ −5000 ∗

∫ 0.4

0.2
(x2 − 0.6x+ 0.08)(x2 − 0.5x+ 0.06)dx = 0.04548209

1.55
0.85
∗ 2500 ∗

∫ 0.4

0.2
(x2 − 0.5x+ 0.06)2dx = 0.04862745

(4.28)

This matrix is given by;

B

K2

M
(2)
ij =

 0.04862745 0.02431373 −0.012156863

0.02431373 0.1945098 0.04548209

−0.012156863 0.04548209 0.04862745


Then the matrix A

(2)
ij = S

(2)
ij + B

K2
M

(2)
ij

A
(2)
ij =

 11.00862745 −12.4290196 1.48117647

−12.4290196 24.30117647 −11.60785124

1.48117647 −11.60785124 10.20862745


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4.3.4 Stiffness and mass matrix for element three (e3)

From Eqs.(4.17) and (4.18) we obtained values of the stiffness and the mass matrix for

element three. Solution of the stiffness matrix is has follows;

2500 ∗
∫ 0.6

0.4
(1− x2)(2x− 1.1)2dx = 234

25

−5000 ∗
∫ 0.6

0.4
(1− x2)(2x− 1.1)(2x− 1)dx = −794

75

2500 ∗
∫ 0.6

0.4
(1− x2)(2x− 0.9)(2x− 1.1)dx = 92

75

10000 ∗
∫ 0.6

0.4
(1− x2)(2x− 1)2dx = 496

25

−5000 ∗
∫ 0.6

0.4
(1− x2)(2x− 1)(2x− 0.9)dx = −694

75

2500 ∗
∫ 0.6

0.4
(1− x2)(2x− 0.9)2dx = 602

75

(4.29)

This matrix is given below;

S
(3)
ij =

 9.36 −10.58666667 1.226666667

10.58666667 19.84 −9.253333333

1.226666667 −9.253333333 8.026666667


The solution for the mass matrix is has follows;

1.55
0.80
∗ 2500 ∗

∫ 0.6

0.4
(x2 − 1.1x+ 0.3)2dx = 0.051666667

1.55
0.80
∗ −5000 ∗

∫ 0.6

0.4
(x2 − 1.1x+ 0.3)(x2 − x+ 0.24)dx = 0.025833333

1.55
0.80
∗ 2500 ∗

∫ 0.6

0.4
(x2 − 1.1x+ 0.3)(x2 − 0.9x+ 0.2)dx = −0.012916667

1.55
0.80
∗ 10000 ∗

∫ 0.6

0.4
(x2 − x+ 0.24)2dx = 0.20666667

1.55
0.80
∗ −5000 ∗

∫ 0.6

0.4
(x2 − x+ 0.24)(x2 − 0.9x+ 0.2)dx = 0.025833333

1.55
0.80
∗ 2500 ∗

∫ 0.6

0.4
(x2 − 0.9x+ 0.2)2dx = 0.051666667

(4.30)

This matrix is given by;

B

K3

M
(3)
ij =

 0.051666667 0.025833333 −0.012916667

0.025833333 0.20666667 0.025833333

−0.012916667 0.025833333 0.051666667


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Then the matrix A
(3)
ij = S

(3)
ij + B

K(3)
M

(3)
ij

A
(3)
ij =

 9.411666667 −10.56083334 1.21375

−10.56083334 20.04666667 −9.2275

1.21375 −9.2275 8.078333334


4.3.5 Stiffness and mass matrix for element four (e4)

From Eqs.(4.17) and (4.18) we obtained values of the stiffness and the mass matrix for

element four. Solution of stiffness matrix is has follows;

2500 ∗
∫ 0.8

0.6
(1− x2)(2x− 1.5)2dx = 6.826666667

−5000 ∗
∫ 0.8

0.6
(1− x2)(2x− 1.5)(2x− 1.4)dx = −7.653333333

2500 ∗
∫ 0.8

0.6
(1− x2)(2x− 1.5)(2x− 1.3)dx = 0.826666666

10000 ∗
∫ 0.8

0.6
(1− x2)(2x− 1.4)2dx = 13.44

−5000 ∗
∫ 0.8

0.6
(1− x2)(2x− 1.4)(2x− 1.3)dx = −5.786666667

2500 ∗
∫ 0.8

0.6
(1− x2)(2x− 1.3)2dx = 4.96

(4.31)

This matrix is given by;

S
(4)
ij =

 6.826666667 −7.653333333 0.826666666

0.826666666 13.44 −5.786666667

0.826666666 −5.786666667 4.96


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The solution of mass matrix is has follows;

1.55
0.75
∗ 2500 ∗

∫ 0.8

0.6
(x2 − 1.5x+ 0.56)2dx = 0.055111111

1.55
0.75
∗ −5000 ∗

∫ 0.8

0.6
(x2 − 1.5x+ 0.56)(x2 − 1.4x+ 0.48)dx = 0.027555555

1.55
0.75
∗ 2500 ∗

∫ 0.8

0.6
(x2 − 1.5x+ 0.56)(x2 − 1.3x+ 0.42)dx = 0.013777778

1.55
0.75
∗ 10000 ∗

∫ 0.8

0.6
(x2 − 1.4x+ 0.48)2dx = 0.22044444

1.55
0.75
∗ −5000 ∗

∫ 0.8

0.6
(x2 − 1.4x+ 0.48)(x2 − 1.3x+ 0.42)dx = 0.027555555

1.55
0.75
∗ 2500 ∗

∫ 0.8

0.6
(x2 − 1.3x+ 0.42)2dx = 0.055111111

(4.32)

This matrix is given by;

B

K4

M
(4)
ij =

 0.055111111 0.027555555 −0.013777778

0.027555555 0.22044444 0.027555555

−0.013777778 0.027555555 0.055111111


Then the matrix A

(4)
ij = S

(4)
ij + B

K(4)
M

(4)
ij

A
(4)
ij =

 6.881777778 −7.625777778 0.812888888

−7.625777778 13.66044444 −5.759111112

0.812888888 −5.759111112 5.015111111


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4.3.6 Stiffness and Mass matrix for element five (e5)

From Eqs.(4.17) and (4.18) we obtained values of the stiffness and the mass matrix for

element five. Solution of the stiffness matrix is has follows;

2500 ∗
∫ 1

0.8
(1− x2)(2x− 1.9)2dx = 3.36

−5000 ∗
∫ 1

0.8
(1− x2)(2x− 1.9)(2x− 1.8)dx = −3.653333333

2500 ∗
∫ 1

0.8
(1− x2)(2x− 1.9)(2x− 1.7)dx = 0.293333333

10000 ∗
∫ 1

0.8
(1− x2)(2x− 1.8)2dx = 4.906666667

−5000 ∗
∫ 1

0.8
(1− x2)(2x− 1.8)(2x− 1.7)dx = −1.253333333

2500 ∗
∫ 1

0.8
(1− x2)(2x− 1.7)2dx = 0.96

(4.33)

This matrix is given by;

S5
ij =

 3.36 −3.653333333 0.293333333

−3.653333333 4.906666667 −1.253333333

0.293333333 −1.253333333 0.96


The solution for mass matrix is given has follows;

1.55
0.60
∗ 2500 ∗

∫ 1

0.8
(x2 − 1.9x+ 0.9)2dx = 0.068888889

1.55
0.60
∗ −5000 ∗

∫ 1

0.8
(x2 − 1.9x+ 0.9)(x2 − 1.8x+ 0.8)dx = 0.034444444

1.55
0.60
∗ 2500 ∗

∫ 1

0.8
(x2 − 1.9x+ 0.9)(x2 − 1.7x+ 0.72)dx = −0.017222223

1.55
0.60
∗ 10000 ∗

∫ 1

0.8
(x2 − 1.8x+ 0.8)2dx = 0.275555556

1.55
0.60
∗ −5000 ∗

∫ 1

0.8
(x2 − 1.8x+ 0.8)(x2 − 1.7x+ 0.72)dx = 0.034444444

1.55
0.60
∗ 2500 ∗

∫ 1

0.8
(x2 − 1.7x+ 0.72)2dx = 0.068888889

(4.34)

This matrix is given by;

B

K5

M
(5)
ij =

 0.069421117 0.034710559 −0.01735528

0.034710559 0.27768447 0.034710559

−0.01735528 0.034710559 0.069421117


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Then the matrix A
(5)
ij = S

(5)
ij + B

K5
M

(5)
ij

A
(5)
ij =

 3.429421117 −3.618888889 0.27611111

−3.618888889 5.182222223 −1.218888889

0.27611111 −1.218888889 1.028888889


4.3.7 Matrix assemblying for five elements

To 9 decimal place, we assembly all the stiffness and mass matrix has shown below;

A =


A

(1)
ij 0 0 . . . . . . 0

0 A
(2)
ij . . . . . . . . . 0 0

0 . . . A
(3)
ij . . . 0

0 0 . . . A
(4)
ij 0

0 0 . . . 0 A
(5)
ij


This matrix is of order 11 and is symmetric

4.3.8 Load vector for five elements

From Eq.(4.19) by evaluating the integral of the equation on right hand side we obtained

solutions for each element as follows.

The integral solution for element one (e1) are;

50 ∗
∫ 0.2

0
(x2 − 0.3x+ 0.02)dx = 1

30

−100 ∗
∫ 0.2

0
(x2 − 0.2x) = 2

15

50 ∗
∫ 0.2

0
(x2 − 0.1x) = 1

30

(4.35)

The integral solution for element two (e2) are;

50 ∗
∫ 0.4

0.2
(x2 − 0.7x+ 0.12)dx = 1

30

−100 ∗
∫ 0.4

0.2
(x2 − 0.6x+ 0.08)dx = 2

15

50 ∗
∫ 0.4

0.2
(x2 − 0.5x+ 0.06)dx = 1

30

(4.36)
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The integral solution for element three (e3) are;

50 ∗
∫ 0.6

0.4
(x2 − 1.1x+ 0.3)dx = 1

30

−100 ∗
∫ 0.6

0.4
(x2 − x+ 0.24)dx = 2

15

50 ∗
∫ 0.6

0.4
(x2 − 0.9x+ 0.2)dx = 1

30

(4.37)

The integral solution for element four (e4) are;

50 ∗
∫ 0.8

0.6
(x2 − 1.5x+ 0.56)dx = 1

30

−100 ∗
∫ 0.8

0.6
(x2 − 1.4x+ 0.48)dx = 2

15

50 ∗
∫ 0.8

0.6
(x2 − 1.3x+ 0.42)dx = 1

30

(4.38)

The integral solution for element five (e5) are;

50 ∗
∫ 1

0.8
(x2 − 1.9x+ 0.9)dx = 1

30

−100 ∗
∫ 1

0.8
(x2 − 1.8x+ 0.8)dx = 2

15

50 ∗
∫ 1

0.8
(x2 − 1.7x+ 0.72)dx = 1

30

(4.39)
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Similarly we can find the values for albedo and S(x) for five elements by using data from

S.G Warren and S.T.Schneider in (1979) [36].These values are shown in the table below.

Table 4.4: Values for K(x),Albedo,S(x) and QS(x)β(x,µ)-A for five elements

x S(x) K(x) QS(x) albedo QS(x)β(x,µ )-A

0-0.2 1.204 0.90 412.37 0.251 87.898617

0.2-0.4 1.1545 0.85 395.41625 0.26 69.19682125

0.4-0.6 1.0705 0.80 366.64625 0.2905 39.1484115

0.6-0.8 0.8943 0.75 306.29775 0.358 -14.5568445

0.8-1 0.6063 0.60 207.65775 0.498 -106.9558095

From Eq.(4.19) values for F (x) per latitude is given in the table below;

Table 4.5: Values of F(x) for five elements

x F(x)

0 3.617227037

0.1 14.4690815

0.2 6.809698606

0.3 12.76988627

0.4 5.231451353

0.5 8.155919063

0.6 1.3920089

0.7 -2.587883467

0.8 -6.588960283

0.9 -23.76795767

1 -5.941989417
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From Eq.(4.16) the solution of temperature for five elements is obtained by solving the

equation A~T = ~F by use of Gaussian elimination method.Here A is a 11 by 11 matrix,
~F is a 11 by 1 matrix and ~T are unknowns to be determine.The solution for temperature

are shown in the table below and are round off to 3 significant figures.

Table 4.6: Temperature in degree celsius for five elements

x zones(◦) T(◦c)

0 0 15.0

0.1 6 15.9

0.2 12 16.1

0.3 17 15.4

0.4 24 14.0

0.5 30 11.7

0.6 37 8.66

0.7 44 4.82

0.8 53 0.12

0.9 64 -8.14

1 90 -15.4
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4.4 Evaluation of Stiffness matrix S,Mass matrix M

and Load vector F for ten elements.

From the following equation Eq.(4.17),Eq.(4.18) and Eq.(4.19) we evaluated values of this

matrices by using quadratic basis function derived below.

4.4.1 Quadratic basis function for five elements.

We let hi = 0.05

We partition the interval I = (0, 1) into subintervals given below;

0 < 0.1 < 0.2 < 0.3 < 0.4 < 0.5 < 0.6 < 0.7 < 0.8 < 0.9 < 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Figure 4.3: Quadratic finite elements for ten elements

(i) Quadratic basis function for element one (e1)

ϕ
(1)
0 (x) =

(x− 0.05)(x− 0.1)

(0− 0.05)(0− 0.1)
=
x2 − 0.15x+ 0.005

0, 005

ϕ
(1)
1 (x) =

(x)(x− 0.1)

(0.05− 0)(0.05− 0.1)
=
x2 − 0.1x

−0.0025

ϕ
(2)
2 (x) =

(x)(x− 0.05)

(0.1− 0)(0.1− 0.05)
=
x2 − 0.05x

0.005
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(ii) Quadratic basis function for element two (e2)

ϕ
(2)
0 (x) =

(x− 0.15)(x− 0.2)

(0.1− 0.15)(0.1− 0.2)
=
x2 − 0.25x+ 0.03

0.005

ϕ
(2)
1 (x) =

(x− 0.1)(x− 0.2)

(0.15− 0.1)(0.15− 0.2)
=
x2 − 0.3x+ 0.02

−0.0025

ϕ
(2)
2 (x) =

(x− 0.1)(x− 0.15)

(0.2− 0.1)(0.2− 0.15)
=
x2 − 0.25x+ 0.015

0.005

(iii) Quadratic basis function for element three (e3)

ϕ
(3)
0 (x) =

(x− 0.25)(x− 0.3)

(0.2− 0.25)(0.2− 0.3)
=
x2 − 0.55x+ 0.075

0.005

ϕ
(3)
1 (x) =

(x− 0.2)(x− 0.3)

(0.25− 0.2)(0.25− 0.3)
=
x2 − 0.5x+ 0.06

−0.0025

ϕ
(3)
2 (x) =

(x− 0.2)(x− 0.25)

(0.3− 0.2)(0.3− 0.25)
=
x2 − 0.45x+ 0.05

0.005

(iv) Quadratic basis function for element four (e4)

ϕ
(4)
0 (x) =

(x− 0.35)(x− 0.4)

(0.3− 0.35)(0.3− 0.4)
=
x2 − 0.75x+ 0.14

0.005

ϕ
(4)
1 (x) =

(x− 0.3)(x− 0.4)

(0.35− 0.3)(0.35− 0.4)
=
x2 − 0.7x+ 0.12

−0.0025

ϕ
(4)
2 (x) =

(x− 0.3)(x− 0.35)

(0.4− 0.3)(0.4− 0.35)
=
x2 − 0.65x+ 0.105

0.005

(v) Quadratic basis function for element five (e5)

ϕ
(5)
0 (x) =

(x− 0.45)(x− 0.5)

(0.4− 0.45)(0.4− 0.5)
=
x2 − 0.95x+ 0.225

0.005

ϕ
(5)
1 (x) =

(x− 0.4)(x− 0.5)

(0.45− 0.4)(0.45− 0.5)
=
x2 − 0.9x+ 0.2

−0.0025

ϕ
(5)
2 (x) =

(x− 0.4)(x− 0.45)

(0.5− 0.4)(0.5− 0.45)
=
x2 − 0.85x+ 0.18

0.005
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(vi) Quadratic basis function for element six (e6)

ϕ
(6)
0 (x) =

(x− 0.55)(x− 0.6)

(0.5− 0.55)(0.5− 0.6)
=
x2 − 1.15x+ 0.33

0.005

ϕ
(6)
1 (x) =

(x− 0.5)(x− 0.6)

(0.55− 0.5)(0.55− 0.6)
=
x2 − 1.1x+ 0.3

−0.0025

ϕ
(6)
2 (x) =

(x− 0.5)(x− 0.55)

(0.6− 0.5)(0.6− 0.55)
=
x2 − 1.05x+ 0.275

0.005

(vii) Quadratic basis function for element seven (e7)

ϕ
(7)
0 (x) =

(x− 0.65)(x− 0.7)

(0.6− 0.65)(0.6− 0.7)
=
x2 − 1.35x+ 0.455

0.005

ϕ
(7)
1 (x) =

(x− 0.6)(x− 0.7)

(0.65− 0.6)(0.65− 0.7)
=
x2 − 1.3x+ 0.42

−0.0025

ϕ
(7)
2 (x) =

(x− 0.6)(x− 0.65)

(0.7− 0.6)(0.7− 0.65)
=
x2 − 1.25x+ 0.39

0.005

(viii) Quadratic basis function for element eight (e8)

ϕ
(8)
0 (x) =

(x− 0.75)(x− 0.8)

(0.7− 0.75)(0.7− 0.8)
=
x2 − 1.55x+ 0.6

0.005

ϕ
(8)
1 (x) =

(x− 0.7)(x− 0.8)

(0.75− 0.7)(0.75− 0.8)
=
x2 − 1.5x+ 0.56

−0.0025

ϕ
(8)
2 (x) =

(x− 0.7)(x− 0.75)

(0.8− 0.7)(0.8− 0.75)
=
x2 − 1.45x+ 0.525

0.005

(ix) Quadratic basis function for element nine (e9)

ϕ
(9)
0 (x) =

(x− 0.85)(x− 0.9)

(0.8− 0.85)(0.8− 0.9)
=
x2 − 1.75x+ 0.765

0.005

ϕ
(9)
1 (x) =

(x− 0.8)(x− 0.9)

(0.85− 0.8)(0.85− 0.9)
=
x2 − 1.7x+ 0.72

−0.0025

ϕ
(9)
2 (x) =

(x− 0.8)(x− 0.85)

(0.9− 0.8)(0.9− 0.85)
=
x2 − 1.65x+ 0.68

0.005
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(x) Quadratic basis function for element ten (e10)

ϕ
(10)
0 (x) =

(x− 0.95)(x− 1)

(0.9− 0.95)(0.9− 1)
=
x2 − 1.95x+ 0.95

0.005

ϕ
(10)
1 (x) =

(x− 0.9)(x− 1)

(0.95− 0.9)(0.95− 1)
=
x2 − 1.9x+ 0.9

−0.0025

ϕ
(10)
2 (x) =

(x− 0.9)(x− 0.95)

(1− 0.9)(1− 0.95)
=
x2 − 1.85x+ 0.855

0.005

4.4.2 Stiffness and Mass matrix for element one (e1)

From Eqs.(4.17) and (4.18) we obtained values of the stiffness and the mass matrix for

element one. Solution of stiffness matrix is given by;

40000 ∗
∫ 0.1

0
(1− x2)(2x− 0.15)2dx = 23.31333333

−80000 ∗
∫ 0.1

0
(1− x2)(2x− 0.15)(2x− 0.1)dx = −26.49333333

40000 ∗
∫ 0.1

0
(1− x2)(2x− 0.15)(2x− 0.05)dx = 3.313333333

160000 ∗
∫ 0.1

0
(1− x2)(2x− 0.1)2dx = 53.12

−80000 ∗
∫ 0.1

0
(1− x2)(2x− 0.1)(2x− 0.05)dx = −26.49333333

40000 ∗
∫ 0.1

0
(1− x2)(2x− 0.05)2dx = 23.28

(4.40)

This matrix is given by;

S
(1)
ij =

 23.31333333 −26.49333333 3.313333333

−26.49333333 53.12 −26.49333333

3.313333333 −26.49333333 23.28


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The solution for mass matrix is has follows;

1.55
0.95
∗ 40000 ∗

∫ 0.1

0
(x2 − 0.15x+ 0.005)2dx = 1.97964912

1.55
0.95
∗ −80000 ∗

∫ 0.1

0
(x2 − 0.15x+ 0.005)(x2 − 0.1x)dx = 0.01026558

1.55
0.95
∗ 40000 ∗

∫ 0.1

0
(x2 − 0.15x+ 0.005)(x2 − 0.05x)dx = −0.005438596

1.55
0.95
∗ 160000 ∗

∫ 0.1

0
(x2 − 0.1x)2dx = 0.08701754

1.55
0.95
∗ −80000 ∗

∫ 0.1

0
(x2 − 0.1x)(x2 − 0.05x)dx = 0.01087719

1.55
0.95
∗ 40000 ∗

∫ 0.1

0
(x2 − 0.05x)2dx = 0.02175439

(4.41)

This matrix is given has follows;

B

K1

M
(1)
ij =

 1.97964912 0.01026558 −0.005438596

0.01026558 0.08701754 0.01087719

−0.005438596 0.01087719 0.02175439


Then the matrix A

(1)
ij = S

(1)
ij + B

K1
M

(1)
ij is given by;

A1
ij =

 25.29298245 −26.48245614 3.307894737

−26.48245614 53.20701754 −26.48245614

3.307894737 −26.48245614 23.30175439


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4.4.3 Stiffness and Mass matrix for element two (e2)

From Eqs.(4.17) and (4.18) we obtained values of the stiffness and the mass matrix for

element two. Solution of stiffness matrix is given by;

40000 ∗
∫ 0.2

0.1
(1− x2)(2x− 0.35)2dx = 22.98

−80000 ∗
∫ 0.2

0.1
(1− x2)(2x− 0.35)(2x− 0.3)dx = −26.22666667

40000 ∗
∫ 0.2

0.1
(1− x2)(2x− 0.35)(2x− 0.25)dx = 3.246666667

160000 ∗
∫ 0.2

0.1
(1− x2)(2x− 0.3)2dx = 52.05333333

−80000 ∗
∫ 0.2

0.1
(1− x2)(2x− 0.3)(2x− 0.25)dx = −25.82666667

40000 ∗
∫ 0.2

0.1
(1− x2)(2x− 0.25)2dx = 22.58

(4.42)

This matrix is shown below;

S
(2)
ij =

 22.98 −26.22666667 3.246666667

−26.22666667 52.05333333 −25.82666667

3.246666667 −25.82666667 22.58


The solution for mass matrix is given by solving the following;

1.55
0.92
∗ 40000 ∗

∫ 0.2

0.1
(x2 − 0.35x+ 0.03)2dx = 0.03481884

1.55
0.92
∗ −80000 ∗

∫ 0.2

0.1
(x2 − 0.35x+ 0.03)(x2 − 0.3x+ 0.02)dx = 0.01123188

1.55
0.92
∗ 40000 ∗

∫ 0.2

0.1
(x2 − 0.35x+ 0.03)(x2 − 0.25x+ 0.015)dx = −0.005615942

1.55
0.92
∗ 160000 ∗

∫ 0.2

0.1
(x2 − 0.3x+ 0.02)2dx = 0.08985507

1.55
0.92
∗ −80000 ∗

∫ 0.2

0.1
(x2 − 0.3x+ 0.02)(x2 − 0.25x+ 0.015)dx = 0.01123188

1.55
0.92
∗ 40000 ∗

∫ 0.2

0.1
(x2 − 0.25x+ 0.015)2dx = 0.02246377

(4.43)
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This matrix is given has follows;

B

K2

M
(2)
ij =

 0.3481884 0.01123188 −0.005615942

0.01123188 0.08985507 0.01123188

−0.005615942 0.01123188 0.02246377


Then the matrixA

(2)
ij = S

(2)
ij + 1

K2
M

(2)
ij is given below;

A
(2)
ij =

 23.01481884 −26.21543479 3.241050725

−26.21543479 52.1431884 −25.81543479

3.241050725 −25.81543479 22.60431373


4.4.4 Stiffness and Mass matrix of element three (e3)

From Eqs.(4.17) and (4.18) we obtained values of the stiffness and the mass matrix for

element three. Solution of the stiffness matrix is given has follows;

40000 ∗
∫ 0.3

0.2
(1− x2)(2x− 0.55)2dx = 22.18

−80000 ∗
∫ 0.3

0.2
(1− x2)(2x− 0.55)(2x− 0.5)dx = −24.89333333

40000 ∗
∫ 0.3

0.2
(1− x2)(2x− 0.55)(2x− 0.45)dx = 3.113333333

160000 ∗
∫ 0.3

0.2
(1− x2)(2x− 0.5)2dx = 49.92

−80000 ∗
∫ 0.3

0.2
(1− x2)(2x− 0.5)(2x− 0.45)dx = −24.62666667

40000 ∗
∫ 0.3

0.2
(1− x2)(2x− 0.45)2dx = 21.51333333

(4.44)

This matrix is shown below;

S
(3)
ij =

 22.18 −24.89333333 3.113333333

−24.89333333 49.92 −24.62666667

3.113333333 −24.62666667 21.51333333


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The solution for mass matrix is given has follows;

1.55
0.90
∗ 40000 ∗

∫ 0.3

0.2
(x2 − 0.55x+ 0.075)2dx = 0.02296296

1.55
0.90
∗ −80000 ∗

∫ 0.3

0.2
(x2 − 0.55x+ 0.075)(x2 − 0.5x+ 0.06)dx = 0.01148148

1.55
0.90
∗ 40000 ∗

∫ 0.3

0.2
(x2 − 0.55x+ 0.075)(x2 − 0.45x+ 0.05)dx = −0.005740741

1.55
0.90
∗ 160000 ∗

∫ 0.3

0.2
(x2 − 0.5x+ 0.06)2dx = 0.09185185

1.55
0.90
∗ −80000 ∗

∫ 0.3

0.2
(x2 − 0.5x+ 0.06)(x2 − 0.45x+ 0.05)dx = 0.01148148

1.55
0.90
∗ 40000 ∗

∫ 0.3

0.2
(x2 − 0.45x+ 0.05)2dx = 0.02296296

(4.45)

This matrix is shown below;

B

K3

M3
ij =

 0.02296296 0.01148148 −0.005740741

0.01148148 0.09185185 0.01148148

−0.005740741 0.01148148 0.02296296


Then the matrix A

(3)
ij = S

(3)
ij + B

K3
M

(3)
ij is given has follows;

A
(3)
ij =

 22.20296296 −24.88185185 3.107592592

−24.88185185 50.01185185 −24.61518519

3.107592592 −24.61518519 21.53629629


4.4.5 Stiffness and mass matrix for element four (e4)

From Eqs.(4.17) and (4.18) we obtained stiffness and mass matrix for element four. As in

the case of element three we did the same for element four and we obtain the matrix,A
(4)
ij =

S
(4)
ij + B

K4
M

(4)
ij given below;

A
(4)
ij =

 20.93470085 −23.81450981 2.907254902

−23.81450981 46.8172549 −22.88117647

2.907254902 −22.88117647 20.00431373


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4.4.6 Stiffness and Mass matrix for element five (e5)

From Eqs.(4.17) and (4.18) we obtained stiffness and mass matrix for element five. As

in the case of element three we did the same for element five and we obtain the matrix,

A
(5)
ij = S

(5)
ij + B

K5
M

(5)
ij given below;

A
(5)
ij =

 19.20583333 −21.81375 2.640208334

−21.81375 42.55666666 −20.61375

2.640208334 −20.61375 18.00583333


4.4.7 Stiffness and Mass matrix for element six (e6)

From Eqs.(4.17) and (4.18) we obtained stiffness and mass matrix for element six. As

in the case of element three we did the same for element six and we obtain the matrix,

A
(6)
ij = S

(6)
ij + B

K5
M

(6)
ij given below;

A
(6)
ij =

 16.94755556 −19.27955555 2.306444444

−19.27955555 37.23022222 −17.81288889

2.306444444 −17.81288889 15.54088889


4.4.8 Stiffness and mass matrix for element seven (e7)

From Eqs.(4.17) and (4.18) we obtained stiffness and mass matrix for element seven. As

in the case of element three we did the same for element six and we obtain the matrix,

A
(7)
ij = S

(7)
ij + B

K7
M

(7)
ij given below;

A
(7)
ij =

 14.34285714 −16.21190477 1.905952381

−16.21190477 30.83809524 −14.47857143

1.905952381 −14.47857143 12.60952381


4.4.9 Stiffness and mass matrix for element eight (e8)

From Eqs.(4.17) and (4.18) we obtained stiffness and mass matrix for element eight. As

in the case of element three we did the same for element eight and we obtain the matrix

A
(8)
ij = S

(8)
ij + B

K8
M

(8)
ij given below;

A
(8)
ij =

 11.21179487 −12.61076923 1.838717949

−12.61076923 23.38051282 −10.61076923

1.8387717949 −10.61076923 9.211794872


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4.4.10 Stiffness and mass matrix for element nine (e9)

From Eqs.(4.17) and (4.18) we obtained stiffness and mass matrix for element nine. As

in the case of element three we did the same for element nine and we obtain the matrix,

A
(9)
ij = S

(9)
ij + B

K9
M

(9)
ij given below;

A
(9)
ij =

 7.614444444 −8.476111111 0.904722221

−8.476111111 14.85777778 −6.209444445

0.904722221 −6.209444445 5.347777777


4.4.11 Stiffness and mass matrix for element ten (e10)

From Eqs.(4.17) and (4.18) we obtained stiffness and mass matrix for element ten. As

in the case of element three we did the same for element ten and we obtain the matrix,

A
(10)
ij = S

(10)
ij + B

K10
M

(10)
ij given below;

A
(10)
ij =

 3.550909091 −3.807878788 0.303939393

−3.807878788 5.27030303 −1.274545454

0.303939393 −1.274545454 1.017575758


4.4.12 Matrix assemblying for ten elements

Similarly with the same case as in two element we assembly all the stiffness and mass

matrix for ten element as shown below:

A =



A
(1)
ij 0 . . . . . . . . . . . . 0

0 A
(2)
ij . . . . . . 0

0 . . . . . . A
(3)
ij . . . . . . 0

0 . . . . . . . . . . . . . . . . . . 0

0
. . . 0

0
. . .

0 0 . . . . . . . . . . . . . . . . . . . . . . . . A
(10)
ij


This is a matrix of order 21 and is symmetric.
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4.4.13 Load vector for ten elements

From Eq.(4.19) by evaluating the integral of the equation on right hand side we obtained

solutions for each element as follows.

The integral solution for element one (e1) are;

200 ∗
∫ 0.1

0
(x2 − 0.15x+ 0.005)dx = 1

60

400 ∗
∫ 0.1

0
(x2 − 0.1x)dx = 1

15

200 ∗
∫ 0.1

0
(x2 − 0.05x)dx = 1

60

(4.46)

The integral solution for element two (e2) are;

200 ∗
∫ 0.2

0.1
(x2 − 0.35x+ 0.03)dx = 1

60

−400 ∗
∫ 0.2

0.1
(x2 − 0.3x+ 0.02)dx = 1

15

200 ∗
∫ 0.2

0.1
(x2 − 0.25x+ 0.015)dx = 1

60

(4.47)

The integral solution for element three (e3) are;

200 ∗
∫ 0.3

0.2
(x2 − 0.55x+ 0.075)dx = 1

60

−400 ∗
∫ 0.3

0.2
(x2 − 0.5x+ 0.06)dx = 1

15

200 ∗
∫ 0.3

0.2
(x2 − 0.45x+ 0.05)dx = 1

60

(4.48)

The integral solution for element four (e4) are;

200 ∗
∫ 0.4

0.3
(x2 − 0.75x+ 0.14)dx = 1

60

−400 ∗
∫ 0.4

0.3
(x2 − 0.7x+ 0.12)dx = 1

15

200 ∗
∫ 0.4

0.3
(x2 − 0.65x+ 0.105)dx = 1

60

(4.49)

The integral solution for element five (e5) are;

200 ∗
∫ 0.5

0.4
(x2 − 0.95x+ 0.225)dx = 1

60

−400 ∗
∫ 0.5

0.4
(x2 − 0.9x+ 0.2)dx = 1

15

200 ∗
∫ 0.5

0.4
(x2 − 0.85x+ 0.18)dx = 1

60

(4.50)
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The integral solution for element six (e6) are;

200 ∗
∫ 0.6

0.5
(x2 − 1.15x+ 0.33)dx = 1

60

−400 ∗
∫ 0.6

0.5
(x2 − 1.1x+ 0.3)dx = 1

15

200 ∗
∫ 0.6

0.5
(x2 − 1.05x+ 0.275)dx = 1

60

(4.51)

The integral solution for element seven (e7) are;

200 ∗
∫ 0.7

0.6
(x2 − 1.35x+ 0.455)dx = 1

60

−400 ∗
∫ 0.7

0.6
(x2 − 1.3x+ 0.42)dx = 1

15

200 ∗
∫ 0.7

0.6
(x2 − 1.25x+ 0.39)dx = 1

60

(4.52)

The integral solution for element eight (e8) are;

200 ∗
∫ 0.8

0.7
(x2 − 1.55x+ 0.6)dx = 1

60

−400 ∗
∫ 0.8

0.7
(x2 − 1.5x+ 0.56)dx = 1

15

200 ∗
∫ 0.8

0.7
(x2 − 1.45x+ 0.525)dx = 1

60

(4.53)

The integral solution for element nine (e9) are;

200 ∗
∫ 0.9

0.8
(x2 − 1.75x+ 0.765)dx = 1

60

−400 ∗
∫ 0.9

0.8
(x2 − 1.7x+ 0.72)dx = 1

15

200 ∗
∫ 0.9

0.8
(x2 − 1.65x+ 0.68)dx = 1

60

(4.54)

The integral solution for element ten (e10) are;

200 ∗
∫ 1

0.9
(x2 − 1.95x+ 0.95)dx = 1

60

−400 ∗
∫ 1

0.9
(x2 − 1.9x+ 0.9)dx = 1

15

200 ∗
∫ 1

0.9
(x2 − 1.85x+ 0.855)dx = 1

60

(4.55)

Similarly we can obtain the values for albedo and S(x) by using the data from S.G.Warren

and S.T.Schneider in (1979) [36].Finally we then solve them to get results shown in the

table below.
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Table 4.7: The values for K(x),S(x),Albedo and QS(x)β(x,µ)-A for ten elements

x S(x) K(x) QS(x) Albedo QS(x)β(x,µ)-A

0-0.1 1.219 0.95 417.5075 0.254 100.260595

0.1-0.2 1.204 0.92 412.37 0.251 97.66513

0.2-0.3 1.189 0.90 407.2325 0.248 95.03884

0.3-0.4 1.1545 0.85 395.41625 0.26 81.408025

0.4-0.5 1.120 0.80 383.6 0.272 68.0608

0.5-0.6 1.021 0.75 349.6925 0.309 30.4375175

0.6-0.7 0.9565 0.70 327.60125 0.333 7.31003375

0.7-0.8 0.8310 0.65 284.6175 0.382 -35.306385

0.8-0.9 0.697 0.60 238.7225 0.4295 -75.00881375

0.9-1 0.5517 0.55 188.95725 0.5283 -122.0688652

From Eq.(4.19) values for F(x) is shown on the table below;
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Table 4.8: values for F(x) of ten elements

x F(x)

0 1.758957807

0.05 7.035831228

0.1 3.52825364

0.15 7.077183333

0.2 3.529274352

0.25 7.039914074

0.3 3.356214303

0.35 6.385943137

0.4 3.014169117

0.45 5.671733333

0.5 2.09432261

0.55 2.705557111

0.6 0.850437699

0.65 0.69619369

0.7 -0.731243501

0.75 -3.621167692

0.8 -2.988870083

0.85 -8.334312639

0.9 -5.78263468

0.95 -14.79622608

1 -3.69905652
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From Eq.(4.16) the solution for temperature of ten elements is obtained by solving the

equation A~T = ~F by use of Gaussian elimination method.Here A is a 21 by 21 matrix,
~F is a 21 by 1 matrix and ~T are unknowns to be determine.The solution for temperature

are shown in the table below and are round off to 3 significant figures.

Table 4.9: Temperature in degrees celcius for ten elements

x zones(◦) T(◦c)

0 0 6.73

0.05 3 7.33

0.1 6 7.73

0.15 9 7.95

0.2 12 7.93

0.25 15 7.85

0.3 17.5 7.65

0.35 20 7.22

0.4 24 6.53

0.45 27 5.57

0.5 30 4.32

0.55 33 2.77

0.6 37 0.96

0.65 41 -1.12

0.7 44 -3.51

0.75 49 -6.42

0.8 53 -8.77

0.85 58 -12.4

0.9 64 -16.4

0.95 72 -20.6

1 90 -24.5
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Chapter 5

RESULTS,CONCLUSION AND

RECOMMENDATION

5.1 Results

The results in table (5.1) to (5.3) shows the approximate values of temperature (◦c) at

different latitude zone for two elements ,five elements and ten elements.

Table 5.1: Results for two elements using quadratic basis function with step

length h=0.25

zone(◦) T(◦c)

0 17.0

14 14.7

30 6.21

49 -4.99

90 -13.1

88



Table 5.2: Results for five elements using quadratic basis function with step

length h = 0.1

zone(◦) T(◦c)

0 15.0

6 15.9

12 16.1

17 15.4

26 14.0

30 11.7

37 8.66

44 4.83

53 0.12

64 -8.14

90 -15.4
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Table 5.3: Results for ten elements using quadratic basis function with step

length h = 0.05

zone(◦) T(◦c)

0 6.73

3 7.33

6 7.73

9 7.95

12 7.93

14 7.85

17 7.65

20 7.22

24 6.53

27 5.57

30 4.32

33 2.77

37 0.96

41 -1.12

44 -3.51

49 -6.42

53 -8.77

58 -12.4

64 -16.4

72 -20.6

90 -24.5
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In 1979, Warren and Schneider [36] considered the Budyko climate model and used the

spectral method to obtain the results which correspond to some reality.We decided to use

the finite element method hoping to improve the results or at least to see if we obtain the

same.The starting point was, as it is suggested by the application of the finite element

method,to use 2, 5 and 10 elements in order to show how the results can be progressively

improved.We also decided to use immediately the quadratic interpolation polynomials in

the approximation which are more precise compared to the linear ones.

The results obtained above confirm,with some differences,the results of Warren and Schnei-

der for only two and five elements.For 10 elements,we have observed a very large discrep-

ancy and this may be due to the following factors,which we intend to research on in our

future work.

• Budyko climate model used here deals mainly with the local energy balance and ne-

glected possible interaction with other region at lower latitudes.Therefore the fluxes

between the element (zones of 3◦c ) may not be well represented.

• This model also ignored heat transport by both stationary waves and ocean currents

thus this assumption made must have limited the accuracy of the model.

• The assumed values of meridional exchange coefficient might have lead to this dif-

ference,since we have neglected the exchange in the Southern hemisphere which

naturally should influence the boundary conditions used at the equator.

• Also we assume that albedo varies with temperature and therefore the results changes

considerably.The importance of albedo which should depend also on the compo-

nents of the atmosphere above each zone(element) has not according to us ,was not

properly parameterized.The numerous documents available on the determination

of albedo take also into account paleo-climate data,which with time are changing

considerably.
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• The infrared radiation is to be analyzed in details due to its variation relative to

land,vegetation,clouds and ocean covering element(zone) considered.We have as-

sumed that infrared radiation from Eq.(2.4) that is;

I(x) = A+BT (x) (5.1)

here we have taken A=211.2WM−2 and B=1.55WM−2 which holds in each latitude

belt and this might be quite risky to change other variables without accounting for

changes in this parameters.

• Another fundamental component of finite element method is the generation of a tridi-

agonal matrix which may not be very well conditioned and stable due to errors

which may be part of the weak formulation obtained from the (initial)boundary

value problem representing the climate model.As we all know,all the boundary con-

ditions(Dirichlet,Neumann or Robin boundary conditions)must be taken into con-

sideration in the derivation of weak formulation of the model.Since some boundary

conditions keep changing due to climate change,we may not succeed in obtaining bet-

ter results if we consider smaller elements i.e reducing the width of the zones since

the corresponding boundary conditions for each smaller zone may not be known

adequately.

• Finally,because of time we couldn’t submit the obtained matrix of order 21 to normal

tests of stability of the matrix using the techniques of numerical linear algebra as

they appear for example in [38].
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5.2 Conclusion

The simplest climate model used here is the one developed by Budyko [1] in 1969.It

considers only the diffusive form of the heat transport.In our objectives,we wanted to study

the advection(convection)-diffusion type of climate model but while in progress,especially

considering the use finite element method ,we found that it will be a big challenge to

consider simultaneously the diffusive and the advection term.

Romuald Szymkiewicz [22],describes how it is easier to consider one term at once and

because the diffusive term is more dominant,when the altitude is not involved,we decided

to use the Budyko climate model for our study,hoping that a more complete account of

these two processes(diffusion and advection) will be considered in a future work.

As said above,our initial focus in this project was to solve by finite element method the

advection-diffusion equation as it appears in the climate model developed by Seller in

(1969),which incorporate both atmospheric and oceanic fluid dynamics [2]. Climate is

regulated by complex interaction among components represented by the earth climate

system.This influence the interaction which involves the sun,ocean,atmosphere,clouds,ice

and land.Infact,this project is about the heat transfer with all its forms and the fluid

dynamics theory.Concerning the fluid dynamics theory in particular,we should bear in

mind the observations made by G.K.Batchelor in [39] namely that:

• The density of air in the atmosphere varies with height as a consequence of its com-

pressibility.Therefore we regard the atmosphere and ocean as layer of incompressible

fluid with uniform density.

• The upper boundary of the layer of air or water is a free surface and it should be

spherical owing to the relatively strong action of the gravity.

• Vertical currents do occur in the atmosphere and the horizontal wind speed varies with

height.

In all this we should consider the rotation of the earth. Motion of large horizontal extent

in atmosphere or ocean,say with linear dimensions of atleast 100km is evident that coriolis

force is very important.Coriolis force is refer to an inertia force which acts on objects that

are in constant motion relative to a given rotating frame.It’s motion is in the direction

which is perpendicular to the axis of rotating and also depend on the velocity of the given

body.
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Another force we should consider is called centrifugal force which acts outwards toward

the radial direction which is proportional to the distance of the body from the axis of

a force rotating.The presences of this two forces can allows one to apply Newton’s laws

on a given rotating system.We shall therefore take earth as our rotating reference frame

where the coriolis effect is due to its rotation.Thus because the earth completes only one

rotation in per day coriolis force is smaller. Therefore it’s effect is notice for motion that

occur over a large distance for a long period of time.

Therefore these motion always takes place on the surface of the Earth in which they are

deflected to the right in the Northern hemisphere while in the Southern hemisphere they

are deflected to the left.This deflection is greater near the poles and becomes small at the

equator since the rate at which the diameter changes for each circle of latitude increases

as one move from North or South of the equator.Wind and currents then to flow toward

the right of the North hemisphere and to the left in the south hemisphere.The climate

modelling should try in a way or another use the observations above.

Budyko model neglect vertical heat transport by atmospheric motion.This type of one

dimensional climate model use latitude as the spatial dimension and estimates the equi-

librium surface temperature in terms of latitude.This model takes into account the first

order vertical structure of the atmosphere which shows how the atmosphere can absorb

longwave radiation leading to a warmer surface temperature that cause a decrease of

temperature in the atmosphere with height.This warm surface temperature leads to the

instability of convection processes in the atmosphere because air which is in contact with

the ground becomes more lighter than the air above this could leads to a vertical motion

of air.

George Hadley in (1735) was able to explained that strong solar heating in the tropics

cause air to rise on the surface which flows toward the equator and the air above it to-

ward the poles. Hadley observed that the extend of this circulating cell is limited to the

tropics about 30N and 30S of the equator.Hadley circulation has important implication

of hydrological cycles.Rising motion near the surface of the equator constitute to a strong

convection process,with release of latent heat and precipitation [4].
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Dry and cold air always flows toward poles in the upper troposphere and is subsidence in

the subtropics leading to dry conditions near the earth surface.The flow near the surface

of the equator picks up water vapour from evaporation at the surface and moves it into the

intertropics convergence zone.Thus there is divergence of meridional water vapour trans-

port in the subtropical temperature and convergence in the tropics.Therefore, if vertical

energy transported in terms of convection is included in our model both the surface and

the upper troposphere temperature will give good results compared with what we have

obtained.

With respect to model improvement we offer the following suggestions.First, we have

to consider Seller’s model which incorporated both transport in the atmosphere and

ocean.Taking into consideration of energy balance equation for the earth-atmosphere sur-

face, with boundary condition of no meridional energy transport across the poles Seller’s

model considers each of the transporting mechanisms separately.

This model neglect heat storage in the oceans,land and atmosphere and therefore our

energy balance climate model equation for the atmospheric system becomes;

Rs = L∇c+∇C +∇F (5.2)

where Rs refers to the radiation balance for a given latitude belt,L is refers to the la-

tent heat of condensation,∇c is represents net flux of water vapour by the atmospheric

currents,∇C is refers to the net flux of sensible heat by the atmosphere currents and ∇F
is refers to the net flux of sensible heat by ocean currents.Here we have the equations;

c = (vq − kw
4q
4y

)
4p
g

(5.3)

C = (vTo −Kκ
∆T

∆y
)
c

g
∆p, (5.4)

F = −Ko∆z
L′

L1

∆T

∆y
(5.5)

Where for each latitude circle we have;

v as the mean meridional wind speed.

q is the mean saturation of the specific humidity at sea level.

Kw is the eddy diffusivity for water vapour in air.

∆y = 1.11 ∗ 108cm

∆p is the pressure depth of the troposphere.
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∆z is the ocean depth.

L′ is the length of ocean-covered portion of L1.

To is the average temperature of the surface.

g is the gravity of the earth surface.

Ko is the eddy diffusivity for the ocean currents.

Cp is the specific air capacity given a constant pressure.

P is the pressure of air currents.

Eqs.(5.3) and (5.4) assumed that the poleward transport of water vapour and sensible heat

in the atmosphere consist of two parts,that is one in terms of the mean meridional mo-

tion and the other one involves large-scale eddies circulation or cyclones and anti cyclones

movement of wind. [2].The condensation process provides most of energy transferred pole-

ward in the atmosphere as sensible heat.The major source region for both atmospheric

and oceanic sensible heat lies in the tropics between 20N and 20S.Latent heat, on the

other hand originates primarily in the subtropics 15− 35N and 15− 35S [2].

If we consider both hemisphere transport is poleward and the bulk of required transport

occurs in the atmosphere is in the form of sensible heat then we shall be able to get

good approximate results.Latent heat or water vapour flux as a results of strong Hadley

circulation is directed equatorward at 20N and 20S. The albedo is higher at the south

pole than north pole and all this shows an interaction between the two hemisphere.Thus

considering all this transport component in the earth-atmosphere, we shall obtained good

approximate results of temperature per latitude belts.

The next major improvement concerns the use of mixed boundary value problem rather

than Neumann boundary condition.Finally,more important than the above two improve-

ment is the inclusion of the amount of cloud content in the atmosphere and its altitude

feedback.In a future work,we intend to include the results obtained by David Goluskin,in

his Ph.D thesis,defended in (2013) in the Graduate School of arts and science of Columbia

University,about the zonal flow being driven by convection processes and convection which

is driven by internal heating in the context of climate modelling [40].
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