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Abstract

The term, order statistics, was introduced by Wilks in 1942. However, the subject is
much older, as astronomers had long been interested in estimation of location beyond the
sample mean. By early 19" century, measures considered included the median, symmet-

rically trimmed means, the midrange and other related functions of order statistics.

In 1818, Laplace obtained (essentially) the distribution of the 7 order statistic in random
samples and also derived a condition on the parent density under which the median is

asymptotically more efficient than the mean.

Traditionally, distributions of order statistics have been constructed using the transfor-
mation method. Here we used both the transformation method and the new technique of

beta generated distributions approach to construct distributions of order statistics.

We begin by studying the general properties and functions of order statistics from any
continuous distribution. Specifically, we study the marginal and joint distributions, single
and product moments of order statistics as well as distribution of the sample range and

median.

We then apply these distributional properties of order statistics to the case of uniform,

exponential and logistic distributions.

Even though, we have used the new technique of beta generated distribution approach in
construction of order statistics distributions, we have not discussed this method in detail
and we recommend further study on it. Finally, we hope that the knowledge summarized

in this study will help in the understanding of order statistics.
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Chapter 1

General Introduction

1.1 Background

For the last two decades, research in the area of order statistics has been steadily and
rapidly growing. Gathering of results and presenting them in varied manner to suit di-
verse interests have been made possible due to the extensive role of order statistics in

several areas of statistical inference. This project is an instance of such an attempt.

During this period, statistical inference theory has been developed for samples from pop-
ulations having normal, binomial, poisson, multinomial and other specified forms of dis-
tribution functions depending on one or more unknown population parameters. These
developments fall into two main categories: (i) statistical estimation, and (ii) the testing
of statistical hypotheses.

The theory of statistical estimation deals with the problem of estimating values of the
unknown parameters of distribution functions of specified form from random samples.
The testing of statistical hypotheses deals with the problem of testing, on the basis of a
random sample, whether a population parameter has a specified value, or whether one

or more specified functional relationships exist among two or more population parameters.

There are many problems of statistical inference in which one is unable to assume the
functional form of the population distribution. Many of these problems are such that
the strongest assumption which can be reasonably made is continuity of the cumulative

distribution function of the population.



An increasing amount of attention is being devoted to statistical tests which hold for all
populations having continuous cumulative distribution functions. Problems of this type
in which the distribution function is arbitrary within abroad class are referred to as non-
parametric problems of statistical inference.

In nonparametric problems it is being found that order statistics, that is, the ordered

set of values in a random sample from least to greatest, are playing a fundamental role.

There are both theoretical and practical reasons for this increased attention to nonpara-
metric problems and order statistics. Theoretically, it is desirable to develop methods of
statistical inference which are valid with respect to broad classes of population distribu-
tion functions. This is indeed the case with statistical inference theory based on order
statistics. Order statistics also permit very simple solutions of some of the more impor-

tant parametric problems of statistical estimation and testing of hypotheses.

Historically, formal investigation in the sampling theory of order statistics dates back to
1902 when Karl Pearson solved the mathematical problem of finding the mean value of
the difference between the 7" and (r + 1) order statistics in a sample of n observations
from a population having a continuous probability density function.

Tippett (1925) extended the work of Pearson and found the mean value of the sample
range (that is, the difference between the least and the greatest order statistics in a
sample) and tabulated for certain sample sizes ranging from 3 to 1000, the cumulative
distribution function (cdf) of the largest order statistic in a sample from a standard nor-
mal population.

Asymptotic results were first obtained by Fisher and Tippett (1928), who also derived
under certain regularity conditions the limiting distributions of the largest and smallest
order statistics as the sample size increases indefinitely by a method of functional equa-
tions. Mises (1936) made a precise determination of these reqularity conditions.

Further studies of these limiting distributions has been made by Gumbel (1935) and var-
ious applications to such problems like flood flows and maximum time intervals between
successive emissions of gamma rays from a given source made by Gumbel (1941).
General expressions for the exact distribution functions of the median, quartiles, and

range of a sample size of n was given by Allen (1932).

These early developments and subsequent researches carried out for a period of almost



a quarter of a century have been summarized by Wilks (1948) in a survey paper. More-
over, exact distributions and properties of order statistics have been extensively studied
in many articles and monographs e.g. Balakrishnan and Cohen (1991), David (1981) and
Sarhan and Greenberg (1962).

Apart from the basic distribution theory and limit laws, attention has also been focused
by various authors on problems involving order statistics in the theory of estimation and
testing of hypotheses, and in multiple decision and comparison procedures. Most of these
results are outlined in Gumbel (1958), Sarhan and Greenberg (1962) and Rupert Jr (2012).

Characterization of a distribution is an important tool in its application. In this study,
characterization of the exponential distribution by order statistics and specifically by dis-
tributional properties, independence and moment assumption of order statistics have been

examined in detail.

The aim of this project is to bring together various distributional properties of order
statistics and inference based on them from any continuous distribution and from special
cases of uniform, logistic and exponential distributions, and to describe how order statis-

tics can be used to characterize exponential distribution.

The remaining parts of this study are organized as follows: In chapter 2, we give the
general properties and functions of order statistics from any continuous population, and
construct order statistics distributions based on both the transformational method and
beta generated distributions approach. In chapters 3, 4 and 5 we apply these properties
to the case of standard uniform, logistic and exponential distributions respectively. Char-
acterization of exponential distribution based on order statistics is tackled in chapter 6.

We give the conclusion and recommendation in chapter 7.

1.2 Notations, Terminologies and Definitions

Given random variables, X1, Xs, - - - , X,,, and arranging X s in non-decreasing order, then
Xi., denote the smallest observation, Xs., denote the second smallest and X,,.,, denote
the largest observation. Hence, X;., < Xo.,, < --- < X,,., denote the ordered observations

called order statistics. The focus of this study is on these order statistics.



Although, this notation of order statistics is widely used, some authors use X,y to denote
the 7" order statistic from a sample of size n. We have, however, used both notations in-
terchangeably. Throughout this text, we assume that X's are independent and identically

distributed (i.i.d) with cummulative distribution function F'(z) and density function f(x).

More notations used herein are detailed below.

1. Givena>0,b>0and 0<p<1

p
St (1 =)t dt
[p(CL, b) = :

1
Jtot (1=t dt
0

is the incomplete beta function

Which results in;

n

2 Cb)pi(l —p)" =L(rn—r+1)

i=r

1

B(a,b) = /t“_l(l — )t adt = % a,b>0

0

is the complete beta function
and
I'(a) = / t*le™t dt
0

is the gamma function

3. cdf: cumulative distribution function



10.

11.

12.

13.

pdf: probability density function

f(z) : probability density function

F(z) : cumulative distribution function

1.5.d : independent and identically distributed

R, = X,., — X1, : is the sample range

Uy 7™ order statistic from uniform (0, 1) distribution
V,, : sample midrange (X1, + X,.n)/2

X : Population random variable

Xyip or X(py r*" order statistic from a sample of size n

A cumulant K, of a random variable X is defined using the cumulant-generating

function (cgf) K(t), which is the natural log of the moment generating function

(mgf):
K(t) = logE[e™™]
and mgf is defined as,
Mx(t) = E[e'¥]

where t are real values with the expected value being finite.

1.3 Problem Statement

In this project, we seek to construct order statistics distributions based on both transfor-

mation method and beta generated distribution approach.

1.4 Study Objective

The general objective was to study the general distributional properties and functions of

order statistics from any continuous distribution and apply them to the uniform, logistic

and exponential distributions.



1.4.1 Specific Objectives

1. Derive the expected values, moments, sample ranges and sample median of order

statistics based on the standard uniform distribution.

2. Derive the expected values, moments, sample ranges and sample median of order

statistics based on the standard logistic distribution.

3. Derive the expected values, moments, sample ranges and sample median of order

statistics based on the standard exponential distribution.

4. Characterize exponential distribution based on distributional properties, indepen-

dence and moment assumption of order statistics.

1.5 Literature Review

This section reviews various distributions of order statistics in general case from a con-
tinuous distribution and from specific distributions of uniform, logistic and exponential.
We also review various characterization results of exponential distribution based on order

statistics.

1.5.1 General distributions and functions of order statistics

Developments in the field of order statistics from the early 1960's are summarized in a
book by Sarhan and Greenberg (1962).

Applications of order statistics in tests of hypotheses and estimation methods based on
censored samples from lifetime distributions of interest have been widely brought forward
by Harter (1969), Harter and Balakrishnan (1996) and Harter and Balakrishnan (1997).

David (1981) gave an exciting encyclopedic representation of order statistics. An intro-
ductory level of order statistics was prepared by Ahsanullah et al. (2013), while Galambos

(1978) focused on the asymptomatic theory of extreme order statistics.



In this study, however, we simply give elementary description of order statistics presenting
the marginal distributions, joint distributions and moments of order statistics. We also

present brief details on sample ranges and median.

1.5.2 Order statistics from uniform distribution

The continuous uniform distribution or rectangular distribution is a family of symmetric
probability distributions widely used in probability theory and statistics, such that for
each member of the family, all intervals of the same length on the distribution’s support
are equally probable. This support is defined by the two parameters, a and b, which are
the minimum and maximum values respectively. The distribution is usually abbreviated
as U(a,b).

Putting a = 0 and b = 1, the resulting distribution U(0,1) is called a standard uniform
distribution, with an interesting property that, if u; has a standard uniform distribution,

then so does 1 — u;.

Results for central order statistics from the uniform distribution were established by Weiss
(1969), Ikeda and Matsunawa (1972) and Reiss (1976) while the extreme order statistics
for uniform distribution was investigated by Pickands III et al. (1967), Weiss (1971), Ikeda
and Matsunawa (1976), Reiss (1981), and De Haan and Resnick (1982), among others.

Here, we give a detailed description of the distributional properties from the uniform
distribution. Specifically, we construct marginal and joint distributions, and moments of
uniform order statistics. Detailed presentation of the distributions of ranges, midranges

and median is also given.

1.5.3 Order statistics from logistic distribution

Initially, the logistic growth function was suggested as a tool for use in demographic stud-
ies and thereafter, the term "logistic distribution function” was developed by Reed and
Berkson (1929). The logistic function has since then been used to estimate the growth of
human population Pearl and Reed (1920), and to study income distributions Fisk (1961).

Order statistics can be applied to logistic distribution and a detailed discussion of order

statistics from the logistic distribution and some of their properties is presented in Gupta

7



and Balakrishnan (1990). They presented the exact and explicit expressions for the single

and product moments in terms of gamma function.

Explicit expression of the cumulants of logistic order statistics were derived and their
means and standard deviations tabulated by Birnbaum et al. (1963). Gupta et al. (1965)
expressed cumulants in terms of polygamma functions. They also studied the sample
range and provided a table of its percentage points for n = 2 and 3.

Malik (1980), generalized this result and derived cumulative distribution function of the
rt" quasi-range in relation to Y,,_,., — Yyi1. forr = 0,1, -, [”T_l] The distribution of the
sample median was studied in detail Gupta et al. (1965) and distribution of the sample
mid-range in relation to (Y1., + Y,...)/2 and the relationship in distribution between the
mid-range and sample median of the logistic random variables was studied by George and
Rousseau (1987).

1.5.4 Order statistics from exponential distribution

The exponential distribution is a model widely used in reliability theory and survival
analysis with order statistics from exponential distribution widely applied in lifetesting

and related areas.

Properties of order statistics and the use of resulting results in estimating parameters
of exponential distribution has been studied by Balakrishnan and Cohen (1991), David
(1981) and Sarhan and Greenberg (1962).

Expected values for n < 100 were given by Lieblein and Salzer (1957) for the extreme value
distribution with common distribution function (cdf) F(x) = exp[—e™*], —oc0 < 2 < 0.
Lieblein and Zelen (1956) also tabulated the covariances for n < 6. All means and vari-
ances for n < 20 (and separately for n < 100) were given by White (1969). Strictly,
White dealt with — X, which he called a "reduced log-weibull” variate. Similarly working
with —X, Balakrishnan and Chan (1992) provided 5D tables of all pu,., and o, 4, for
n = 1(1)15(5)30. Further, Maritz and Munro (1967) gave 3D tables of ., for the gener-
alized extreme-value distribution with cdf F(z) = exp[—(1 — vx)%], 7>0, —co <z < %
and 5 <n <10, ¢ = —0.10(0.05)0.40



We, therefore, investigate the distributional and moment properties of order statistics

from this exponential distribution and restricting ourselves to the case when A = 1.

1.5.5 Characterizations of exponential distribution based on or-

der statistics

The characterization theorems are increasingly becoming popular and since exponential
distribution has wide applications, most characterization work had been focused towards
this distribution.

Most of the results obtained from characterization of exponential distribution based on
properties of order statistics were on independence of suitable functions of order statistics
Ferguson (1967), Tanis (1964) and Govindarajulu (1966). Results based on the expected

values of extreme order statistics were reported by Chan (1967).

Basu (1965) proved that if F'(z) is absolutely continuous with F'(0) = 0, then the random
variables X1., and (Xs., — X1.,) are independent. Ferguson (1967) used the property of

independence of X7., and (Xi., — Xs.,) to characterize the exponential distribution.

Therefore, in this study, we simply review these characterization results related to the

exponential distribution based on order statistics.

1.6 Significance of the Study

Order statistics and related theory have many interesting and important applications in
statistics, in modelling of empirical phenomena like climate characteristics, and in prob-

ability theory itself.

Below we list situations in which order statistics might have a significant role as outlined
by Sarhan and Greenberg (1962).

1. Robust location estimates. Suppose that n independent measurements are avail-
able, and we wish to estimate their assumed common mean. It has long been rec-

ognized that the sample mean suffers from an extreme sensitivity to outliers and



model variations. Estimates based on the median or the average of central order
statistics are less sensitive to model assumptions. A particular application of this
observation is the accepted practice of using trimmed means (ignoring highest and

lowest scores) especially in evaluating Olympic figure skating performances.

. Detection of outliers. If one is confronted with a set of measurements and is
concerned with determining whether some have been incorrectly made or reported,
attention naturally focuses on certain order statistics of the sample. Usually the
largest one (or two) and/or the smallest one (or two) are deemed most likely to be
outliers. We may ask questions like: If the observations really were i.i.d, what is
the probability that the largest order statistic would be as large as the suspiciously

large value we have observed?

. Censored sampling. Consider [ife-testing experiments, in which a fixed number n
of items are placed on test and the experiment is terminated as soon as a prescribed
number r have failed. The observed lifetimes are thus X;., < Xq., < --- < X,.,

whereas the lifetimes X, 1., < X490, < -+ < X, remain unobserved.

. Natural disaster. Disastrous floods and destructive earthquakes recur throughout
history. Dam construction has long been focused on so called 100-year flood. Pre-
sumably the dams are built big enough and strong enough to handle any water flow
to be encountered except for a level expected to occur only once every 100 years.
Whether one agrees or not with the 100-year disaster philosophy, it is obvious that
designers of dams and skycrapers, and even doghouses, should be concerned with
the distribution of large order statistics from a possibly dependent, but possibly not

identically distributed sequence.

. Strength of materials. The adage that a chain is no longer than its weakest link
underlines much of the theory of strength of materials, whether they are threads,
sheets, or blocks. By considering failure potential in infinitely small sections of the
material, quickly lead to strength distributions associated with limits of distributions
of sample minima. Of course, if we stick to the finite chain with n links, its strength
would be the minimum of the strengths of its n component links, again an order

statistic.

. Reliability. The example of a cord composed of n threads can be extended to lead

us to reliability applications of order statistics. It may be that failure of one thread

10



will cause the cord to break (the weakest link), but more likely the cord will function
as long as r (a number less than n) of the threads remains unbroken, as such it is
an example of a r out of n system commonly discussed in reliability settings.

With regard to tire failure in automobile, is often an example of a 4 out 5 system
(remember the spare).

Borrowing on terminology from electrical systems, the n out of n system is known as
a series system, any component failure is disastrous. The 1 out of n system is known
as a parallel system, it will function as long as any of the component survives.

The life of the r out of n system is clearly X, , 1.,, the (n —r + 1) largest
observation of the component lifetimes, or equivalently, the time until less than r
components are functioning. The study of system lifetime will necessarily involve

distributions of order statistics.

. Quality control. Here we use example of production of snickers candy bars passing
through a conveyor belt. Each candy bar should weigh 2.1 ounces. No matter how
well the pouring machine functions, minor fluctuation will occur, and potentially
major aberrations might be encountered. We must be alert for correctable malfunc-
tions causing unreasonable variation in the candy bar weight. In quality control,
a sample of candy bars is weighted every hour, and close attention is paid to the
order statistics of the weights so obtained. If the median (or perhaps the mean) is
far from the target value, we must shaut down the line. Attention is also focused
on the sample range, if it is too large, the process is out of control, and the widely
fluctuating candy bar weights will probably cause problems further down the line.

Hence, quality control clearly involve order statistics.

. Selecting the best. Field trials of corn varieties involved carefully balanced ex-
periments to determine which of several varieties is most productive. Obviously we
are concerned with the maximum of a set of probability not identically distributed
variables in such a setting. In this situation, the outlier (the best variety) is, how-
ever, good and merits retention (rather than being discarded as would be usual case
with outlier setting).

There are other examples in which order statistics plays important role, for instance,
in biology it helps in selective breeding by culling. Geneticists and breeders measure
the effectiveness of a selection program by comparing the average of the selected

group with the population average. Usually, the selected group consists of top or

11



10.

11.

bottom order statistics.

. Inequality of measurement. The income distribution in most countries is clearly

unequal. How does one make such statements precise? The usual approach involves
order statistics of the corresponding income distributions. The particular device
used is called a Lorenz curve. It summarizes the percent of total income accruing to
the poorest p percent of the population for various values of p. Mathematically this
is just the scaled integral of the empirical quantile function, a function with X,., at
the point 7/n; r = 1,2,--- ,n (where n is the number of individual incomes in the
population). A high degree of convexity in the Lorenz curve signals a high degree

of inequality in the income distribution.

Olympic records. Bob Beamons 1968 long jump remains on the olympic record
book. Few other records last that long. If the best performances in each olympic
games were modeled as independent identically distributed random variables, then
records would become more and more scarce as time went by. Such is not the case.
The simplest explanation involves improving and increasing populations, thus the
1968 high jumping champion was the best of, say, N; active international-caliber
jumpers. In 1968 there were more high-caliber jumpers of probably higher caliber.
So we are looking, most likely, at a sequence of not identically distributed random

variables. But in any case we are focusing on maximum.

Characterizations and goodness of fit. The exponential distribution is famous
for its so-called lack of memory. The usual model involves a light bulb or other
electronic device. The argument goes that a light bulb that has been in service
20 hours is no more and no less likely to fail in the next minute than one that
has been in service for, say, 5 hours, or even, than a brand new bulb. Such a
curious distributional situation is reflected by the order statistics from exponential
samples. For example, if Xy, X, .-, X, are 7.7.d exponential, then their spacings
X;X,; 1 are again exponential and, remarkably, are independent. It is only in the
case of exponential random variables that such spacings properties are encountered.
A vast literature of exponential characterizations and related goodness-of-fit tests
has consequently developed.

We remark in passing that most tests of goodness of fit for any parent distribution

implicitly involve order statistics, since they often focus on deviations between the

12



empirical quantile function and the hypothesized quantile function.

As a result of the above mentioned applications, it is of interest to study the theory of

the distributional properties and functions of order statistics.

Moreover, this study seeks to contribute to the knowledge and comprehension of order

statistics and how to characterize exponential distributions using order statistics.

13



Chapter 2

Distributions of Order Statistics and

their Functions

2.1 Introduction

In this chapter we construct order statistics distributions using transformation method
and using the beta generated distribution approach. Specifically, we obtain, in general
case, the distributions of the single and joint order statistics and those of their functions.

We also obtain the expected values and moments of order statistics.

2.2 Notations and Definitions

Let Xy, X5, ..., X,, be a random sample of size n from a continuous population having
pdf f(x) and cdf F(x). The sample observations can be arranged in ascending order of
magnitude such that X, < X,.,, < --- < X,,.,, where the numbers ¢ = 1,2,--- ,n in
parenthesis indicate the rank of the observations in the sample.

Such an ordered set of new random variables constitutes the order statistics.

Where

X1., = the 1% order statistic
= the smallest observation

= min(Xl, X27 ceey Xn)

14



X,.., = the n'" order statistic
= the largest observation
= max(Xy, Xo, ..., X;,)
and

X,., = the r*" order statistic

= the r*" smallest value

Remark 1. X, Xy, ..., X,, is a random sample. They are therefore independent random

variables; but X;s are dependent because of the inequality relation among them.

Remark 2. A more explicit notation of the order statistics is X1y, X(2), ..., X(n)
or Xl,nu X2,n) tey Xn,n

Remark 3. Since X, is a random variable, it’s function is also a random variable.

2.2.1 Functions of Order Statistics

Linear functions of order statistics are of the form
i=1

Certain functions of the order statistics Xi.,,, Xo.n, -+ , X, are important statistics them-

selves. A few of these are;

Range

A range is the distance between the smallest X;., and the largest X,,.,, observations. It is a
measure of the dispersion in the sample and hence reflect the dispersion in the population.
The statistic

Rn = Xn:n - Xl:n (22)

is known as the sample range of the random sample.
While the statistic

1

is known as the mid-range of the random sample.

15



Median

The median is a measure of location that might be considered an alternative to the sample
mean.
If n=2m+1 (i.e. nis odd), then the (m + 1) observation, which is the middle value,
is called sample median of the random sample, given as
(n+1)

2
For n = 2m (i.e. n is even), there is not a single middle observation but rather two middle

X,, where m =

(2.4)

observations. Thus the sample median becomes
_ 1
Median = §{Xm + X1} (2.5)

Quantiles

Further, we can generalize the sample median to other sample quantiles.

If np is not an integer, we define the sample quantile of order p to be the order statistic
Xk.n where k = ceil(np) (2.6)

We note that ceil(np) is the smallest integer greater than or equal to np.
If np is an integer k, then we define the sample quantile of order p to be the average of

the order statistics.
[Xk:n + ch+1:n]
2
The sample quantile of order p is a natural statistic that is analogous to the distribution

(2.7)

quantile of order p.

Remark 4. The sample quantile of order i 1s known as the first sample quartile and
15 frequently denoted as Q1.

The sample quantile of order % 18 known as the third sample quartile and is frequently
denoted as Q)s.

Note that the sample median is the quantile of order %

The interquartile range (IQR) is defined to be

IQR = Q3 — @
The IQR is a statistic that measures the spread of the distribution about the median, but

of course this number gives less information than the interval [Q1, Qs3).
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2.3 Distributions of Order Statistics Based on Trans-

formation

In this section we derive using transformation the explicit form of the distribution func-
tions and the density of a single and joint order statistics, also discussed is the distributions
of the range and median.

Assumption X, Xo., - -+, X,,.,, are i.i.d with marginal cdf F'(.).

2.3.1 Distribution of Single Order Statistics

We derive the pdf f(z) and cdf F(x) of the largest observation X,,.,, smallest observation
X1., and the r** observation X,.,.

For the largest observation, the cdf of X,,., is given by,

F.(x) = Pr[X,., <]

= PT'[le <x, Xom < y- o X < 1']
= Pr(Xy, <z)Pr(Xs, <z)- Pr(X,, <)
= [F(z)]"”

Letting f,(z) denote the probability density function of X,,.,, and taking derivatives of
both sides, we have;

folz) = %Fn(x) = n[F(2)]" ' f(x), —00o <z < 00 (2.8)

For the smallest observation, the cdf of X3., is given by,

Fi(z) = Pr[Xy., <]

=1- Pr[Xy., > x|

=1—-Pr[Xi,>x,Xop >z, Xp > 1]

— 1= [1 = Pr(Xu S D))l = Pr(Xan < @)+ [1 = Pr(Xp, < o))
=1-[1-F(z)]"

Thus, if fi(x) denotes the probability density function of X.,, differentiation of both

sides of the last expression yields,
d

file) = = Fy(@) = nll = F(@)" (), —00 < 2 < 00 (2.9)
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For the r'" order statistic, we consider the following figure

1
=1 | n-r

T ”::-’r&m

Out of n observations, there are (1-1) less than x, one observation between x and x+dx,
and (n-r) observations greater than x.
We are taking dx so small that the probability that more than one random variable falling
between x and x+dx inclusive, i.e [z, + dz] is negligible and that
Pr(X; > z]|=Pr[X; >z +dx], fori=1,2,--- (2.10)
Using multinomial probabilities, we get the pdf as follows;
fX'r:n (x) - PT[XT:n - ‘/L‘]
n!
(r—=D!1(n—7)
n!

T (r— )1l —r)! [F(2) " f@)[l = F(2)]"™, —co <x <00

(PriXs < a7 Pr{X = 2} [Pr{Xs > )" gy

In general, the cdf of X,., may be obtained by integrating the pdf of X,., in equation
(2.11) as follows,

Frn(z) = Pr(X,., <x)
=3 (0) i - Fap

by using the identity that

> (Z)p’”[l = / o 1;&; - T)!f"-lu )T 0<p< 1 (2.13)

r=1

(2.12)

we write the cdf of X, from equation (2.12) as,

F(x)
n!

Frona) = 0/ Tl T (2.14)

= Ip@(r,n—r4+1), —00o <z < 00
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which is an incomplete beta function.

Pinsker et al. (1986) noted that cdf of X,.,, can be written in terms of negative binomial

probabilities instead of the binomial form given in equation (2.12) as,

Frn() = Pr(X,m < 2)
(Z - D L= F)f + (r ’ 1) [F(2)]"[1 = F(z)]" +---
i (Z: i) 'L = F) (2.15)

— i 0 (” :I 1) [F(z)]"[l — F(z)]" ", —oc0o <z < 00

2.3.2 Joint Distribution of Two or More Order Statistics

We derive the joint pdf f(x,y) and cdf F(x,y) of two order statistics, X,., and X,.,, and
use the same method to derive the joint density function of all n order statistics.

Joint distribution of two order statistics

In general, we consider two order statistics; namely X,., and X, where 1 <r < s <n.

Further we consider the figure below

1
| $=r=1 H n—s
|z+6: y||y+6y

o (r —1) of X'* are less than x

e one X'* lies between z and = + dx

e (s — 7 —1) of X'® lies between x + dz and y
e one X'* lies between y and y + 0y

e (n —s) of X'* is larger than y -+ &y
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Using multinomial probabilities, we get the joint pdf as follows,

fXT:nXs:n ((L’, y)
= O, J[Pr{X; < x}]" 'Pr{X; = 2}[Pr{z < X < y}]* " 'Pr{X, = y}[Pr{X; > y}]"*
= CosF ()] f(@)[Fy) — F(@)] " fy)[L = F(y)]"™°, —o0 < 2y < 23 < 00

(2.16)

where

n!

Crs = (r—1)1(s —r — )1(n — s)!

(2.17)

In particular, the joint density of the maximum and the minimum, (X.,, X,,.,) is

[XinXun(@,y) = n(n = D[F(y) = F(2)]" 7 f(2)f(y), = <y (2.18)

Also, the joint density of two consecutive order statistics, (X;.,, Xi11.n) 18

n!

P ) = i P @) —F@ T ), <y (219

The joint cdf of X,., and X,., can in principle be obtained through integration of the
joint pdf in equation (2.16)

FT,SZn(x7 y) = PT(XTn < ‘CE XS"n < y)
(2.20)

_ Z Z ’L . ] 7’L — Z)' [F(I)]][F(y) _ F(x>]Z_J[1 _ F(y)]n_l

zsyr

Thus, the joint cdf of X,.,, and X, (1 < r < s < n) is the tail probability [over the

rectangular region (s,r), (s, 4+ 1),---,(n,n)] of a bivariate binomial distribution
J . i—j . n—i
;]Zr (i — j)! i)!p1<p2 p1)" (1 = p2)
o P2 (2.21)
= //Cnst?{_l(tg — tl)s_r_l(l — tz)n_s dtgdtl, 0< p1 < po < 1
0 t1
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Hence,
F(z) F(y)
Fr,s:n<x7y) = / / Cﬁst?lnil(tg — t1)577”71<1 — t2)nis dtgdtl, O<x< Yy < 1 (222)

0 t1

where C, 5 is as in equation (2.17). The above equation (2.22) takes the form of an in-

complete bivariate beta function.

Specifically, we now let n = 2 and find the joint density function for X;., and Xs.,.
The event (X7, < x1, Xo., < x9) means that either (X; < 1, Xy < x9) or (Xy < 21, X7 <
xs). [Notice that Xj., could be either X or X5, whichever is smaller]

Therefore, for 1 < w9,
Pr(Xim < o1, Xog < 29) = Pri(Xy <21, Xo <19) U (Xo < oq, Xy < 29)]
Using the additive law of probability and recalling that x; < x5, we see that

Pr(Xy, <y, Xoy < x9) = Pr(Xy <z, Xo <x9) + Pr(Xo <x, X; < a9)
— Pr(Xj <z, Xy <1)

Because X; and X, are independent and Pr(X; < w) = F(w), for i = 1,2, it follows that,
for x1 < xq;

Pr(Xi, <xp, Xopm < x9) = F(x1)F(x9) + F(2)F(21) — F(x1)F (1)

) (2.23)
=2F(z1)F(22) — [F(21)]
Suppose now, x; > x (recall that X, < X.,), then we have;
Pr(Xi., <z1,Xom) < x2) = Pr(Xi., <z, Xoy < 1)
= p?"(Xl < iL'Q,XQ < .1'2) (224)

= [F(x2)]

Therefore, the joint cumulative density function of Xi., and X5, is given as;

2F (x1)F(x9) — [F(x1)]?, for x; < a9
FXl:n7X2:n (:Ul, x2) =
[F(x9))?, for 1 > x5
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Letting, g1 2(z1,22), denote the joint density function of X;.,, and Xs,,, then on differen-

tiating first with respect to x5 and then with respect to z1, we obtain

2f(x1) f(x2), for zy < o
g12(21,02) = (2.25)
0, elsewhere

If we now consider the case n = 3, and find the joint density function for X;.,, X5, and
X3:n-
Considering a probability such as Pr(a < X; = X5 <b, a < X3 < b), given by

/b/b72f(xl)f(@)f(xg)dxldmdxg -0

z2
However, [ f(z1)dz, is defined in calculus to be zero.

2
We may, without altering the distribution of X7, X, X3, define the joint p.d.f f(z1)f(z2) f(x3)
to be zero at all points (x1, z9, 3) that have at least two of their coordinates equal.
Then the set A, where f(z1)f(x2)f(x3) > 0, is the union of the six mutually disjoint sets:

Ay ={(x1,29,23);0 < 11 < T3 < 13 < b},
Ay = {(x1, 29, 13);a0 < 19 < 71 < w3 < b},
ca <1 < x3 < Ty < b},
T1,%9,23);a < Ty < x3 < 1 < b},
As = {(x1, 29, 13);0 < x3 < 11 < 19 < b},

Ag = {(z1, 29, 23);a < x3 < T3 < 1 < b}.

There are six of these sets because we can arrange xq, xrs9, x3 in precisely 3! = 6 ways.
Consider the functions y; = minimum of z1, x9, x3; Yy = middle in magnitude of 1, xs, 3
and y3 = maximum of x, zo, 3.

These functions define one-to-one transformations that map each of A;, Ay, - -, Ag onto

the same set B = {(y1,¥2,y3);a < y1 < y2 < y3 < b}.
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The inverse functions are,

for points in Ay, v1 = y1, T2 = Y2, T3 = Ys3;

for points in Ay, 71 =y, T2 = Y1, T3 = Ys3;

and so on for each of the remaining four sets.

Then we have that

100

Ji=101 0] =1 and Jo =
0 01 00

It is easily verified that the absolute value of each of the 3! = 6 Jacobians is +1.
Thus the joint pdf of the three order statistics Y7 = minimum of X7, X5, X3; Y5 = middle
in magnitude of X5, X5, X35 and Y3 = maximum of X7, X5, X3 is

F,y2,y3) = [l f (1) f(y2) f(ys) + |l f(y2) f(y1) f(ys) + -+ [ J6l f(y3) f(y2) f (1)

3 (y)fy2) f(ys), a<y <y2<yz<b

0, elsewhere
(2.26)
For n = 4, and considering X; < Xy < X3 < X}
The joint pdf is similarly given as
f(x1, 29, 23, 24) = A f (21) f(202) f (23) f(04) (2.27)

We can note that, this joint pdf can be used to obtain the marginal density function for
any of the order statistics using integration.

For instance, we find the distribution of x5, x5 as follows;

oo Z(2)

f(a:Q,x3):4!//f(xl,xg,xg,x4)dx1dx4

m(g) —0o0
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Joint distribution of n Order Statistics

The same method used to obtain joint density for n = 3 and n = 4 can be generalized to
find the joint density of all Xi.,, Xo.,, -+ X,..n, which is
nlf(zy)f(za) - flxn), —oco<z <ay<-- <z, <00

froe n(T1me - 20) = (2.28)
0, elsewhere

Remark 5. The density of the r* order statistic and the joint density of two order

statistics are summarized in the below theorem.

Theorem 2.3.1. Let X1, Xs, - - - X, be independent identically distributed continuous ran-
dom variables with common distribution function F(x) and density function f(x). If X,.,
denotes the r*" order statistic, then the density function of X,., is given by

frn(z) =

n!

(r—1)1!(n—r)! [F(2)]" ™ f(2)[l = F(2)]"™", —o0 <z < 00

If r and s are two integers such that 1 < r < s < n, then the joint density of X,., and
X 18 given by

Fram(@,y) = Co[F(@)] F@)[F(y) — F@)* " f)[L - F(y)]" ", —o0 <& <y < oo

where C, 5 is as in equation (2.17)

2.4 Distributions of Order Statistics Based on Beta

Generated Distribution

2.4.1 Introduction

Here we construct distributions of order statistics using the new family of generalized beta
generated distribution approach. The new family of generalized beta generated distribu-

tions is based on beta generators classified as beta generated distributions

The beta generated distribution was first introduced by Eugene and Famoye (2002)
through its cdf, and Jones (2004) called it the generalized order statistics.
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2.4.2 Beta generated distribution
The cdf of a beta distribution is defined by,
ta—l 1—1¢ b—1
F(t):/%dt,a>0,b>0,0<x<1 (2.29)

a,b)
0

Replacing t by a cdf say G(x), of any distribution, since 0 < G(z) < 1, for —oo < z < 00

we have
) G(z)
FIGW) = 5oy / B0 — N, a0, b> 0 (2.30)
0
and where

F|G(z)] = A cdf of a cdf
= A function of x (2.31)
= F(z)

Now, taking derivatives bot