
UNIVERSITY OF NAIROBI

COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES

SCHOOL OF MATHEMATICS

ORDER STATISTICS OF UNIFORM, LOGISTIC AND
EXPONENTIAL DISTRIBUTIONS

OKOYO COLLINS OMONDI

REG NO. I56/74539/2014

Supervisors:

Prof. J.A.M Ottieno

Anne Wang’ombe

A dissertation submitted to the School of Mathematics, University of

Nairobi in partial fulfillment of the requirements for the award of degree of

Master of Science in Statistics

July, 2016



Declaration

This is my original work and has not been presented for a degree in any other University.

Signature:............................................... Date:.........................

Okoyo Collins Omondi

This project has been submitted for examination with my approval as the University Su-

pervisor

Signature:............................................... Date:.........................

Prof. J. A. M. Ottieno

Signature:............................................... Date:.........................

Anne Wang’ombe

i



Dedication

I dedicate this project to my beautiful wife Caroline and daughter Sasha Malia.

A special feeling of gratitude to my loving parents, Charles Okoyo and Lucy Okoyo, my

siblings Everline, Evans, Basyl, Sheilah and Oliver for their overwhelming social support

and encouragement.

ii



Acknowledgment

I would like to thank the Kenya Medical Research Institute (KEMRI), Children’s Invest-

ment Fund Foundation (CIFF) and Dr. Charles Mwandawiro for sponsoring my masters

programme and for study time extended to me.

I would like to sincerely thank my supervisors, Professor J.A.M Ottieno and Anne Wang’ombe

whose valued advice and time enabled the writing of this project.

I would like to thank all members of staff of the Statistics Department at The School of

Mathematics, University of Nairobi for their ever-present assistance.

I would like to recognize the social support of my family members, colleagues, friends and

all those who helped and supported me in writing this project.

Finally, I would like to thank the Almighty God for giving me strength and energy to

finish this project.

iii



Abstract

The term, order statistics, was introduced by Wilks in 1942. However, the subject is

much older, as astronomers had long been interested in estimation of location beyond the

sample mean. By early 19th century, measures considered included the median, symmet-

rically trimmed means, the midrange and other related functions of order statistics.

In 1818, Laplace obtained (essentially) the distribution of the rth order statistic in random

samples and also derived a condition on the parent density under which the median is

asymptotically more efficient than the mean.

Traditionally, distributions of order statistics have been constructed using the transfor-

mation method. Here we used both the transformation method and the new technique of

beta generated distributions approach to construct distributions of order statistics.

We begin by studying the general properties and functions of order statistics from any

continuous distribution. Specifically, we study the marginal and joint distributions, single

and product moments of order statistics as well as distribution of the sample range and

median.

We then apply these distributional properties of order statistics to the case of uniform,

exponential and logistic distributions.

Even though, we have used the new technique of beta generated distribution approach in

construction of order statistics distributions, we have not discussed this method in detail

and we recommend further study on it. Finally, we hope that the knowledge summarized

in this study will help in the understanding of order statistics.
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Chapter 1

General Introduction

1.1 Background

For the last two decades, research in the area of order statistics has been steadily and

rapidly growing. Gathering of results and presenting them in varied manner to suit di-

verse interests have been made possible due to the extensive role of order statistics in

several areas of statistical inference. This project is an instance of such an attempt.

During this period, statistical inference theory has been developed for samples from pop-

ulations having normal, binomial, poisson, multinomial and other specified forms of dis-

tribution functions depending on one or more unknown population parameters. These

developments fall into two main categories: (i) statistical estimation, and (ii) the testing

of statistical hypotheses.

The theory of statistical estimation deals with the problem of estimating values of the

unknown parameters of distribution functions of specified form from random samples.

The testing of statistical hypotheses deals with the problem of testing, on the basis of a

random sample, whether a population parameter has a specified value, or whether one

or more specified functional relationships exist among two or more population parameters.

There are many problems of statistical inference in which one is unable to assume the

functional form of the population distribution. Many of these problems are such that

the strongest assumption which can be reasonably made is continuity of the cumulative

distribution function of the population.
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An increasing amount of attention is being devoted to statistical tests which hold for all

populations having continuous cumulative distribution functions. Problems of this type

in which the distribution function is arbitrary within abroad class are referred to as non-

parametric problems of statistical inference.

In nonparametric problems it is being found that order statistics, that is, the ordered

set of values in a random sample from least to greatest, are playing a fundamental role.

There are both theoretical and practical reasons for this increased attention to nonpara-

metric problems and order statistics. Theoretically, it is desirable to develop methods of

statistical inference which are valid with respect to broad classes of population distribu-

tion functions. This is indeed the case with statistical inference theory based on order

statistics. Order statistics also permit very simple solutions of some of the more impor-

tant parametric problems of statistical estimation and testing of hypotheses.

Historically, formal investigation in the sampling theory of order statistics dates back to

1902 when Karl Pearson solved the mathematical problem of finding the mean value of

the difference between the rth and (r + 1)th order statistics in a sample of n observations

from a population having a continuous probability density function.

Tippett (1925) extended the work of Pearson and found the mean value of the sample

range (that is, the difference between the least and the greatest order statistics in a

sample) and tabulated for certain sample sizes ranging from 3 to 1000, the cumulative

distribution function (cdf) of the largest order statistic in a sample from a standard nor-

mal population.

Asymptotic results were first obtained by Fisher and Tippett (1928), who also derived

under certain regularity conditions the limiting distributions of the largest and smallest

order statistics as the sample size increases indefinitely by a method of functional equa-

tions. Mises (1936) made a precise determination of these reqularity conditions.

Further studies of these limiting distributions has been made by Gumbel (1935) and var-

ious applications to such problems like flood flows and maximum time intervals between

successive emissions of gamma rays from a given source made by Gumbel (1941).

General expressions for the exact distribution functions of the median, quartiles, and

range of a sample size of n was given by Allen (1932).

These early developments and subsequent researches carried out for a period of almost
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a quarter of a century have been summarized by Wilks (1948) in a survey paper. More-

over, exact distributions and properties of order statistics have been extensively studied

in many articles and monographs e.g. Balakrishnan and Cohen (1991), David (1981) and

Sarhan and Greenberg (1962).

Apart from the basic distribution theory and limit laws, attention has also been focused

by various authors on problems involving order statistics in the theory of estimation and

testing of hypotheses, and in multiple decision and comparison procedures. Most of these

results are outlined in Gumbel (1958), Sarhan and Greenberg (1962) and Rupert Jr (2012).

Characterization of a distribution is an important tool in its application. In this study,

characterization of the exponential distribution by order statistics and specifically by dis-

tributional properties, independence and moment assumption of order statistics have been

examined in detail.

The aim of this project is to bring together various distributional properties of order

statistics and inference based on them from any continuous distribution and from special

cases of uniform, logistic and exponential distributions, and to describe how order statis-

tics can be used to characterize exponential distribution.

The remaining parts of this study are organized as follows: In chapter 2, we give the

general properties and functions of order statistics from any continuous population, and

construct order statistics distributions based on both the transformational method and

beta generated distributions approach. In chapters 3, 4 and 5 we apply these properties

to the case of standard uniform, logistic and exponential distributions respectively. Char-

acterization of exponential distribution based on order statistics is tackled in chapter 6.

We give the conclusion and recommendation in chapter 7.

1.2 Notations, Terminologies and Definitions

Given random variables, X1, X2, · · · , Xn, and arranging X
′
s in non-decreasing order, then

X1:n denote the smallest observation, X2:n denote the second smallest and Xn:n denote

the largest observation. Hence, X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the ordered observations

called order statistics. The focus of this study is on these order statistics.
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Although, this notation of order statistics is widely used, some authors use X(r) to denote

the rth order statistic from a sample of size n. We have, however, used both notations in-

terchangeably. Throughout this text, we assume that X
′
s are independent and identically

distributed (i.i.d) with cummulative distribution function F (x) and density function f(x).

More notations used herein are detailed below.

1. Given a > 0, b > 0 and 0 ≤ p ≤ 1

Ip(a, b) =

p∫
0

ta−1(1− t)b−1 dt

1∫
0

ta−1(1− t)b−1 dt

is the incomplete beta function

Which results in;

n∑
i=r

(
n

i

)
pi(1− p)n−i = Ip(r, n− r + 1)

2.

B(a, b) =

1∫
0

ta−1(1− t)b−1 dt =
Γ(a)Γ(b)

Γ(a+ b)
, a, b > 0

is the complete beta function

and

Γ(a) =

−∞∫
0

ta−1e−t, dt

is the gamma function

3. cdf: cumulative distribution function
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4. pdf: probability density function

5. f(x) : probability density function

6. F (x) : cumulative distribution function

7. i.i.d : independent and identically distributed

8. Rn = Xn:n −X1:n : is the sample range

9. Ur:n : rth order statistic from uniform (0, 1) distribution

10. Vn : sample midrange (X1:n +Xn:n)/2

11. X : Population random variable

12. Xr:n or X(r) : rth order statistic from a sample of size n

13. A cumulant Kn of a random variable X is defined using the cumulant-generating

function (cgf) K(t), which is the natural log of the moment generating function

(mgf):

K(t) = logE[etX ]

and mgf is defined as,

MX(t) = E[etX ]

where t are real values with the expected value being finite.

1.3 Problem Statement

In this project, we seek to construct order statistics distributions based on both transfor-

mation method and beta generated distribution approach.

1.4 Study Objective

The general objective was to study the general distributional properties and functions of

order statistics from any continuous distribution and apply them to the uniform, logistic

and exponential distributions.
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1.4.1 Specific Objectives

1. Derive the expected values, moments, sample ranges and sample median of order

statistics based on the standard uniform distribution.

2. Derive the expected values, moments, sample ranges and sample median of order

statistics based on the standard logistic distribution.

3. Derive the expected values, moments, sample ranges and sample median of order

statistics based on the standard exponential distribution.

4. Characterize exponential distribution based on distributional properties, indepen-

dence and moment assumption of order statistics.

1.5 Literature Review

This section reviews various distributions of order statistics in general case from a con-

tinuous distribution and from specific distributions of uniform, logistic and exponential.

We also review various characterization results of exponential distribution based on order

statistics.

1.5.1 General distributions and functions of order statistics

Developments in the field of order statistics from the early 1960
′
s are summarized in a

book by Sarhan and Greenberg (1962).

Applications of order statistics in tests of hypotheses and estimation methods based on

censored samples from lifetime distributions of interest have been widely brought forward

by Harter (1969), Harter and Balakrishnan (1996) and Harter and Balakrishnan (1997).

David (1981) gave an exciting encyclopedic representation of order statistics. An intro-

ductory level of order statistics was prepared by Ahsanullah et al. (2013), while Galambos

(1978) focused on the asymptomatic theory of extreme order statistics.

6



In this study, however, we simply give elementary description of order statistics presenting

the marginal distributions, joint distributions and moments of order statistics. We also

present brief details on sample ranges and median.

1.5.2 Order statistics from uniform distribution

The continuous uniform distribution or rectangular distribution is a family of symmetric

probability distributions widely used in probability theory and statistics, such that for

each member of the family, all intervals of the same length on the distribution’s support

are equally probable. This support is defined by the two parameters, a and b, which are

the minimum and maximum values respectively. The distribution is usually abbreviated

as U(a, b).

Putting a = 0 and b = 1, the resulting distribution U(0,1) is called a standard uniform

distribution, with an interesting property that, if u1 has a standard uniform distribution,

then so does 1− u1.

Results for central order statistics from the uniform distribution were established by Weiss

(1969), Ikeda and Matsunawa (1972) and Reiss (1976) while the extreme order statistics

for uniform distribution was investigated by Pickands III et al. (1967), Weiss (1971), Ikeda

and Matsunawa (1976), Reiss (1981), and De Haan and Resnick (1982), among others.

Here, we give a detailed description of the distributional properties from the uniform

distribution. Specifically, we construct marginal and joint distributions, and moments of

uniform order statistics. Detailed presentation of the distributions of ranges, midranges

and median is also given.

1.5.3 Order statistics from logistic distribution

Initially, the logistic growth function was suggested as a tool for use in demographic stud-

ies and thereafter, the term ”logistic distribution function” was developed by Reed and

Berkson (1929). The logistic function has since then been used to estimate the growth of

human population Pearl and Reed (1920), and to study income distributions Fisk (1961).

Order statistics can be applied to logistic distribution and a detailed discussion of order

statistics from the logistic distribution and some of their properties is presented in Gupta
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and Balakrishnan (1990). They presented the exact and explicit expressions for the single

and product moments in terms of gamma function.

Explicit expression of the cumulants of logistic order statistics were derived and their

means and standard deviations tabulated by Birnbaum et al. (1963). Gupta et al. (1965)

expressed cumulants in terms of polygamma functions. They also studied the sample

range and provided a table of its percentage points for n = 2 and 3.

Malik (1980), generalized this result and derived cumulative distribution function of the

rth quasi-range in relation to Yn−r:n−Yr+1:n for r = 0, 1, · · · , [n−1
2

]. The distribution of the

sample median was studied in detail Gupta et al. (1965) and distribution of the sample

mid-range in relation to (Y1:n + Yn:n)/2 and the relationship in distribution between the

mid-range and sample median of the logistic random variables was studied by George and

Rousseau (1987).

1.5.4 Order statistics from exponential distribution

The exponential distribution is a model widely used in reliability theory and survival

analysis with order statistics from exponential distribution widely applied in lifetesting

and related areas.

Properties of order statistics and the use of resulting results in estimating parameters

of exponential distribution has been studied by Balakrishnan and Cohen (1991), David

(1981) and Sarhan and Greenberg (1962).

Expected values for n ≤ 100 were given by Lieblein and Salzer (1957) for the extreme value

distribution with common distribution function (cdf) F (x) = exp[−e−x], −∞ < x <∞.

Lieblein and Zelen (1956) also tabulated the covariances for n ≤ 6. All means and vari-

ances for n ≤ 20 (and separately for n ≤ 100) were given by White (1969). Strictly,

White dealt with −X, which he called a ”reduced log-weibull” variate. Similarly working

with −X, Balakrishnan and Chan (1992) provided 5D tables of all µr:n and σr,s:n for

n = 1(1)15(5)30. Further, Maritz and Munro (1967) gave 3D tables of µr:n for the gener-

alized extreme-value distribution with cdf F (x) = exp[−(1− γx)
1
γ ], γ > 0, −∞ < x < 1

γ

and 5 ≤ n ≤ 10, σ = −0.10(0.05)0.40
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We, therefore, investigate the distributional and moment properties of order statistics

from this exponential distribution and restricting ourselves to the case when λ = 1.

1.5.5 Characterizations of exponential distribution based on or-

der statistics

The characterization theorems are increasingly becoming popular and since exponential

distribution has wide applications, most characterization work had been focused towards

this distribution.

Most of the results obtained from characterization of exponential distribution based on

properties of order statistics were on independence of suitable functions of order statistics

Ferguson (1967), Tanis (1964) and Govindarajulu (1966). Results based on the expected

values of extreme order statistics were reported by Chan (1967).

Basu (1965) proved that if F (x) is absolutely continuous with F (0) = 0, then the random

variables X1:n and (X2:n −X1:n) are independent. Ferguson (1967) used the property of

independence of X1:n and (X1:n −X2:n) to characterize the exponential distribution.

Therefore, in this study, we simply review these characterization results related to the

exponential distribution based on order statistics.

1.6 Significance of the Study

Order statistics and related theory have many interesting and important applications in

statistics, in modelling of empirical phenomena like climate characteristics, and in prob-

ability theory itself.

Below we list situations in which order statistics might have a significant role as outlined

by Sarhan and Greenberg (1962).

1. Robust location estimates. Suppose that n independent measurements are avail-

able, and we wish to estimate their assumed common mean. It has long been rec-

ognized that the sample mean suffers from an extreme sensitivity to outliers and
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model variations. Estimates based on the median or the average of central order

statistics are less sensitive to model assumptions. A particular application of this

observation is the accepted practice of using trimmed means (ignoring highest and

lowest scores) especially in evaluating Olympic figure skating performances.

2. Detection of outliers. If one is confronted with a set of measurements and is

concerned with determining whether some have been incorrectly made or reported,

attention naturally focuses on certain order statistics of the sample. Usually the

largest one (or two) and/or the smallest one (or two) are deemed most likely to be

outliers. We may ask questions like: If the observations really were i.i.d, what is

the probability that the largest order statistic would be as large as the suspiciously

large value we have observed?

3. Censored sampling. Consider life-testing experiments, in which a fixed number n

of items are placed on test and the experiment is terminated as soon as a prescribed

number r have failed. The observed lifetimes are thus X1:n ≤ X2:n ≤ · · · ≤ Xr:n

whereas the lifetimes Xr+1:n ≤ Xr+2:n ≤ · · · ≤ Xn:n remain unobserved.

4. Natural disaster. Disastrous floods and destructive earthquakes recur throughout

history. Dam construction has long been focused on so called 100-year flood. Pre-

sumably the dams are built big enough and strong enough to handle any water flow

to be encountered except for a level expected to occur only once every 100 years.

Whether one agrees or not with the 100-year disaster philosophy, it is obvious that

designers of dams and skycrapers, and even doghouses, should be concerned with

the distribution of large order statistics from a possibly dependent, but possibly not

identically distributed sequence.

5. Strength of materials. The adage that a chain is no longer than its weakest link

underlines much of the theory of strength of materials, whether they are threads,

sheets, or blocks. By considering failure potential in infinitely small sections of the

material, quickly lead to strength distributions associated with limits of distributions

of sample minima. Of course, if we stick to the finite chain with n links, its strength

would be the minimum of the strengths of its n component links, again an order

statistic.

6. Reliability. The example of a cord composed of n threads can be extended to lead

us to reliability applications of order statistics. It may be that failure of one thread
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will cause the cord to break (the weakest link), but more likely the cord will function

as long as r (a number less than n) of the threads remains unbroken, as such it is

an example of a r out of n system commonly discussed in reliability settings.

With regard to tire failure in automobile, is often an example of a 4 out 5 system

(remember the spare).

Borrowing on terminology from electrical systems, the n out of n system is known as

a series system, any component failure is disastrous. The 1 out of n system is known

as a parallel system, it will function as long as any of the component survives.

The life of the r out of n system is clearly Xn−r+1:n, the (n − r + 1)th largest

observation of the component lifetimes, or equivalently, the time until less than r

components are functioning. The study of system lifetime will necessarily involve

distributions of order statistics.

7. Quality control. Here we use example of production of snickers candy bars passing

through a conveyor belt. Each candy bar should weigh 2.1 ounces. No matter how

well the pouring machine functions, minor fluctuation will occur, and potentially

major aberrations might be encountered. We must be alert for correctable malfunc-

tions causing unreasonable variation in the candy bar weight. In quality control,

a sample of candy bars is weighted every hour, and close attention is paid to the

order statistics of the weights so obtained. If the median (or perhaps the mean) is

far from the target value, we must shaut down the line. Attention is also focused

on the sample range, if it is too large, the process is out of control, and the widely

fluctuating candy bar weights will probably cause problems further down the line.

Hence, quality control clearly involve order statistics.

8. Selecting the best. Field trials of corn varieties involved carefully balanced ex-

periments to determine which of several varieties is most productive. Obviously we

are concerned with the maximum of a set of probability not identically distributed

variables in such a setting. In this situation, the outlier (the best variety) is, how-

ever, good and merits retention (rather than being discarded as would be usual case

with outlier setting).

There are other examples in which order statistics plays important role, for instance,

in biology it helps in selective breeding by culling. Geneticists and breeders measure

the effectiveness of a selection program by comparing the average of the selected

group with the population average. Usually, the selected group consists of top or
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bottom order statistics.

9. Inequality of measurement. The income distribution in most countries is clearly

unequal. How does one make such statements precise? The usual approach involves

order statistics of the corresponding income distributions. The particular device

used is called a Lorenz curve. It summarizes the percent of total income accruing to

the poorest p percent of the population for various values of p. Mathematically this

is just the scaled integral of the empirical quantile function, a function with Xr:n at

the point r/n; r = 1, 2, · · · , n (where n is the number of individual incomes in the

population). A high degree of convexity in the Lorenz curve signals a high degree

of inequality in the income distribution.

10. Olympic records. Bob Beamons 1968 long jump remains on the olympic record

book. Few other records last that long. If the best performances in each olympic

games were modeled as independent identically distributed random variables, then

records would become more and more scarce as time went by. Such is not the case.

The simplest explanation involves improving and increasing populations, thus the

1968 high jumping champion was the best of, say, N1 active international-caliber

jumpers. In 1968 there were more high-caliber jumpers of probably higher caliber.

So we are looking, most likely, at a sequence of not identically distributed random

variables. But in any case we are focusing on maximum.

11. Characterizations and goodness of fit. The exponential distribution is famous

for its so-called lack of memory. The usual model involves a light bulb or other

electronic device. The argument goes that a light bulb that has been in service

20 hours is no more and no less likely to fail in the next minute than one that

has been in service for, say, 5 hours, or even, than a brand new bulb. Such a

curious distributional situation is reflected by the order statistics from exponential

samples. For example, if X1, X2, · · · , Xn are i.i.d exponential, then their spacings

XiXi−1 are again exponential and, remarkably, are independent. It is only in the

case of exponential random variables that such spacings properties are encountered.

A vast literature of exponential characterizations and related goodness-of-fit tests

has consequently developed.

We remark in passing that most tests of goodness of fit for any parent distribution

implicitly involve order statistics, since they often focus on deviations between the

12



empirical quantile function and the hypothesized quantile function.

As a result of the above mentioned applications, it is of interest to study the theory of

the distributional properties and functions of order statistics.

Moreover, this study seeks to contribute to the knowledge and comprehension of order

statistics and how to characterize exponential distributions using order statistics.
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Chapter 2

Distributions of Order Statistics and

their Functions

2.1 Introduction

In this chapter we construct order statistics distributions using transformation method

and using the beta generated distribution approach. Specifically, we obtain, in general

case, the distributions of the single and joint order statistics and those of their functions.

We also obtain the expected values and moments of order statistics.

2.2 Notations and Definitions

Let X1, X2, ..., Xn be a random sample of size n from a continuous population having

pdf f(x) and cdf F(x). The sample observations can be arranged in ascending order of

magnitude such that X1:n ≤ X2:n ≤ · · · ≤ Xn:n, where the numbers i = 1, 2, · · · , n in

parenthesis indicate the rank of the observations in the sample.

Such an ordered set of new random variables constitutes the order statistics.

Where

X1:n = the 1st order statistic

= the smallest observation

= min(X1, X2, ..., Xn)

14



Xn:n = the nth order statistic

= the largest observation

= max(X1, X2, ..., Xn)

and

Xr:n = the rth order statistic

= the rth smallest value

Remark 1. X1, X2, ..., Xn is a random sample. They are therefore independent random

variables; but X
′s
i are dependent because of the inequality relation among them.

Remark 2. A more explicit notation of the order statistics is X(1), X(2), ..., X(n)

or X1,n, X2,n, ..., Xn,n

Remark 3. Since Xr is a random variable, it’s function is also a random variable.

2.2.1 Functions of Order Statistics

Linear functions of order statistics are of the form
n∑
i=1

ωiXi (2.1)

Certain functions of the order statistics X1:n, X2:n, · · · , Xn:n are important statistics them-

selves. A few of these are;

Range

A range is the distance between the smallest X1:n and the largest Xn:n observations. It is a

measure of the dispersion in the sample and hence reflect the dispersion in the population.

The statistic

Rn = Xn:n −X1:n (2.2)

is known as the sample range of the random sample.

While the statistic

M =
1

2
{Xn:n +X1:n} (2.3)

is known as the mid-range of the random sample.
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Median

The median is a measure of location that might be considered an alternative to the sample

mean.

If n = 2m + 1 (i.e. n is odd), then the (m + 1)th observation, which is the middle value,

is called sample median of the random sample, given as

Xm where m =
(n+ 1)

2
(2.4)

For n = 2m (i.e. n is even), there is not a single middle observation but rather two middle

observations. Thus the sample median becomes

Median =
1

2
{Xm +Xm+1} (2.5)

Quantiles

Further, we can generalize the sample median to other sample quantiles.

If np is not an integer, we define the sample quantile of order p to be the order statistic

Xk:n where k = ceil(np) (2.6)

We note that ceil(np) is the smallest integer greater than or equal to np.

If np is an integer k, then we define the sample quantile of order p to be the average of

the order statistics.
[Xk:n +Xk+1:n]

2
(2.7)

The sample quantile of order p is a natural statistic that is analogous to the distribution

quantile of order p.

Remark 4. The sample quantile of order 1
4

is known as the first sample quartile and

is frequently denoted as Q1.

The sample quantile of order 3
4

is known as the third sample quartile and is frequently

denoted as Q3.

Note that the sample median is the quantile of order 1
2
.

The interquartile range (IQR) is defined to be

IQR = Q3 −Q1

The IQR is a statistic that measures the spread of the distribution about the median, but

of course this number gives less information than the interval [Q1, Q3].
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2.3 Distributions of Order Statistics Based on Trans-

formation

In this section we derive using transformation the explicit form of the distribution func-

tions and the density of a single and joint order statistics, also discussed is the distributions

of the range and median.

Assumption X1:n, X2:n · · · , Xn:n are i.i.d with marginal cdf F (.).

2.3.1 Distribution of Single Order Statistics

We derive the pdf f(x) and cdf F (x) of the largest observation Xn:n, smallest observation

X1:n and the rth observation Xr:n.

For the largest observation, the cdf of Xn:n is given by,

Fn(x) = Pr[Xn:n ≤ x]

= Pr[X1:n ≤ x,X2:n ≤ x, · · · , Xn:n ≤ x]

= Pr(X1:n ≤ x)Pr(X2:n ≤ x) · · ·Pr(Xn:n ≤ x)

= [F (x)]n

Letting fn(x) denote the probability density function of Xn:n, and taking derivatives of

both sides, we have;

fn(x) =
d

dx
Fn(x) = n[F (x)]n−1f(x), −∞ < x <∞ (2.8)

For the smallest observation, the cdf of X1:n is given by,

F1(x) = Pr[X1:n ≤ x]

= 1− Pr[X1:n > x]

= 1− Pr[X1:n > x,X2:n > x, · · · , Xn:n > x]

= 1− [1− Pr(X1:n ≤ x)][1− Pr(X2:n ≤ x)] · · · [1− Pr(Xn:n ≤ x)]

= 1− [1− F (x)]n

Thus, if f1(x) denotes the probability density function of X1:n, differentiation of both

sides of the last expression yields,

f1(x) =
d

dx
F1(x) = n[1− F (x)]n−1f(x), −∞ < x <∞ (2.9)
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For the rth order statistic, we consider the following figure

Out of n observations, there are (r-1) less than x, one observation between x and x+dx,

and (n-r) observations greater than x.

We are taking dx so small that the probability that more than one random variable falling

between x and x+dx inclusive, i.e [x, x+ dx] is negligible and that

Pr[Xi > x] = Pr[Xi > x+ dx], for i = 1, 2, · · · (2.10)

Using multinomial probabilities, we get the pdf as follows;

fXr:n(x) = Pr[Xr:n = x]

=
n!

(r − 1)!1!(n− r)!
[Pr{Xi ≤ x}]r−1Pr{Xi = x}[Pr{Xi > x}]n−r

=
n!

(r − 1)!1!(n− r)!
[F (x)]r−1f(x)[1− F (x)]n−r, −∞ < x <∞

(2.11)

In general, the cdf of Xr:n may be obtained by integrating the pdf of Xr:n in equation

(2.11) as follows,

Fr:n(x) = Pr(Xr:n ≤ x)

=
n∑
r=1

(
n

r

)
[F (x)]r[1− F (x)]n−r

(2.12)

by using the identity that

n∑
r=1

(
n

r

)
pr[1− p]n−r =

p∫
0

n!

(r − 1)!(n− r)!
tr−1(1− t)n−r dt, 0 < p < 1 (2.13)

we write the cdf of Xr:n from equation (2.12) as,

Fr:n(x) =

F (x)∫
0

n!

(r − 1)!(n− r)!
tr−1(1− t)n−r dt

= IF (x)(r, n− r + 1), −∞ < x <∞

(2.14)
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which is an incomplete beta function.

Pinsker et al. (1986) noted that cdf of Xr:n can be written in terms of negative binomial

probabilities instead of the binomial form given in equation (2.12) as,

Fr:n(x) = Pr(Xr:n ≤ x)

=

(
r − 1

r − 1

)
[F (x)]r[1− F (x)]0 +

(
r

r − 1

)
[F (x)]r[1− F (x)]1 + · · ·

+

(
n− 1

r − 1

)
[F (x)]r[1− F (x)]n−r

=
n−r∑
i=0

(
n− i− 1

r − 1

)
[F (x)]r[1− F (x)]n−r−i, −∞ < x <∞

(2.15)

2.3.2 Joint Distribution of Two or More Order Statistics

We derive the joint pdf f(x, y) and cdf F (x, y) of two order statistics, Xr:n and Xs:n, and

use the same method to derive the joint density function of all n order statistics.

Joint distribution of two order statistics

In general, we consider two order statistics; namely Xr:n and Xs:n where 1 ≤ r < s ≤ n.

Further we consider the figure below

• (r − 1) of X
′s are less than x

• one X
′s lies between x and x+ δx

• (s− r − 1) of X
′s lies between x+ δx and y

• one X
′s lies between y and y + δy

• (n− s) of X
′s is larger than y + δy
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Using multinomial probabilities, we get the joint pdf as follows,

fXr:nXs:n(x, y)

= Cr,s[Pr{Xi < x}]r−1Pr{Xi = x}[Pr{x < X < y}]s−r−1Pr{Xi = y}[Pr{Xi > y}]n−s

= Cr,s[F (x)]r−1f(x)[F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s, −∞ < xr < xs <∞
(2.16)

where

Cr,s =
n!

(r − 1)!1!(s− r − 1)!1!(n− s)!
(2.17)

In particular, the joint density of the maximum and the minimum, (X1:n, Xn:n) is

fX1:nXn:n(x, y) = n(n− 1)[F (y)− F (x)]n−2f(x)f(y), x < y (2.18)

Also, the joint density of two consecutive order statistics, (Xi:n, Xi+1:n) is

fX(i)X(i+1)
(x, y) =

n!

(i− 1)!(n− i− 1)!
[F (x)]i−1f(x)[F (y)−F (x)]n−i−1f(y), x < y (2.19)

The joint cdf of Xr:n and Xs:n can in principle be obtained through integration of the

joint pdf in equation (2.16)

Fr,s:n(x, y) = Pr(Xr:n ≤ x,Xs:n ≤ y)

=
n∑
i=s

i∑
j=r

n!

j!(i− j)!(n− i)!
[F (x)]j[F (y)− F (x)]i−j[1− F (y)]n−i

(2.20)

Thus, the joint cdf of Xr:n and Xs:n, (1 ≤ r < s ≤ n) is the tail probability [over the

rectangular region (s, r), (s, r + 1), · · · , (n, n)] of a bivariate binomial distribution

n∑
i=s

i∑
j=r

n!

j!(i− j)!(n− i)!
pj1(p2 − p1)i−j(1− p2)n−i

=

p1∫
0

p2∫
t1

Cr,st
r−1
1 (t2 − t1)s−r−1(1− t2)n−s dt2dt1, 0 < p1 < p2 < 1

(2.21)
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Hence,

Fr,s:n(x, y) =

F (x)∫
0

F (y)∫
t1

Cr,st
r−1
1 (t2 − t1)s−r−1(1− t2)n−s dt2dt1, 0 < x < y < 1 (2.22)

where Cr,s is as in equation (2.17). The above equation (2.22) takes the form of an in-

complete bivariate beta function.

Specifically, we now let n = 2 and find the joint density function for X1:n and X2:n.

The event (X1:n ≤ x1, X2:n ≤ x2) means that either (X1 ≤ x1, X2 ≤ x2) or (X2 ≤ x1, X1 ≤
x2). [Notice that X1:n could be either X1 or X2, whichever is smaller]

Therefore, for x1 ≤ x2,

Pr(X1:n ≤ x1, X2:n ≤ x2) = Pr[(X1 ≤ x1, X2 ≤ x2) ∪ (X2 ≤ x1, X1 ≤ x2)]

Using the additive law of probability and recalling that x1 ≤ x2, we see that

Pr(X1:n ≤ x1, X2:n ≤ x2) = Pr(X1 ≤ x1, X2 ≤ x2) + Pr(X2 ≤ x1, X1 ≤ x2)

− Pr(X1 ≤ x1, X2 ≤ x1)

Because X1 and X2 are independent and Pr(Xi ≤ w) = F (w), for i = 1, 2, it follows that,

for x1 ≤ x2;

Pr(X1:n ≤ x1, X2:n ≤ x2) = F (x1)F (x2) + F (x2)F (x1) − F (x1)F (x1)

= 2F (x1)F (x2) − [F (x1)]2
(2.23)

Suppose now, x1 > x2 (recall that X1:n ≤ X1:n), then we have;

Pr(X1:n ≤ x1, X2:n) ≤ x2) = Pr(X1:n ≤ x2, X2:n ≤ x2)

= Pr(X1 ≤ x2, X2 ≤ x2)

= [F (x2)]2

(2.24)

Therefore, the joint cumulative density function of X1:n and X2:n is given as;

FX1:n,X2:n(x1, x2) =

2F (x1)F (x2) − [F (x1)]2, for x1 ≤ x2

[F (x2)]2, for x1 > x2
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Letting, g1,2(x1, x2), denote the joint density function of X1:n and X2:n, then on differen-

tiating first with respect to x2 and then with respect to x1, we obtain

g1,2(x1, x2) =

2f(x1)f(x2), for x1 ≤ x2

0, elsewhere
(2.25)

If we now consider the case n = 3, and find the joint density function for X1:n, X2:n and

X3:n.

Considering a probability such as Pr(a < X1 = X2 < b, a < X3 < b), given by

b∫
a

b∫
a

x2∫
x2

f(x1)f(x2)f(x3)dx1dx2dx3 = 0

However,
x2∫
x2

f(x1)dx1, is defined in calculus to be zero.

We may, without altering the distribution ofX1, X2, X3, define the joint p.d.f f(x1)f(x2)f(x3)

to be zero at all points (x1, x2, x3) that have at least two of their coordinates equal.

Then the set A, where f(x1)f(x2)f(x3) > 0, is the union of the six mutually disjoint sets:

A1 = {(x1, x2, x3); a < x1 < x2 < x3 < b},
A2 = {(x1, x2, x3); a < x2 < x1 < x3 < b},
A3 = {(x1, x2, x3); a < x1 < x3 < x2 < b},
A4 = {(x1, x2, x3); a < x2 < x3 < x1 < b},
A5 = {(x1, x2, x3); a < x3 < x1 < x2 < b},
A6 = {(x1, x2, x3); a < x3 < x2 < x1 < b}.

There are six of these sets because we can arrange x1, x2, x3 in precisely 3! = 6 ways.

Consider the functions y1 = minimum of x1, x2, x3; y2 = middle in magnitude of x1, x2, x3

and y3 = maximum of x1, x2, x3.

These functions define one-to-one transformations that map each of A1, A2, · · · , A6 onto

the same set B = {(y1, y2, y3); a < y1 < y2 < y3 < b}.
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The inverse functions are,

for points in A1, x1 = y1, x2 = y2, x3 = y3;

for points in A2, x1 = y2, x2 = y1, x3 = y3;

and so on for each of the remaining four sets.

Then we have that

J1 =

∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣ = 1 and J2 =

∣∣∣∣∣∣∣
0 1 0

1 0 0

0 0 1

∣∣∣∣∣∣∣ = −1

It is easily verified that the absolute value of each of the 3! = 6 Jacobians is +1.

Thus the joint pdf of the three order statistics Y1 = minimum of X1, X2, X3; Y2 = middle

in magnitude of X1, X2, X3 and Y3 = maximum of X1, X2, X3 is

f(y1, y2, y3) = |J1|f(y1)f(y2)f(y3) + |J2|f(y2)f(y1)f(y3) + · · ·+ |J6|f(y3)f(y2)f(y1)

=

3!f(y1)f(y2)f(y3), a < y1 < y2 < y3 < b

0, elsewhere

(2.26)

For n = 4, and considering X1 ≤ X2 ≤ X3 ≤ X4

The joint pdf is similarly given as

f(x1, x2, x3, x4) = 4!f(x1)f(x2)f(x3)f(x4) (2.27)

We can note that, this joint pdf can be used to obtain the marginal density function for

any of the order statistics using integration.

For instance, we find the distribution of x2, x3 as follows;

f(x2, x3) = 4!

∞∫
x(3)

x(2)∫
−∞

f(x1, x2, x3, x4)dx1dx4
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Joint distribution of n Order Statistics

The same method used to obtain joint density for n = 3 and n = 4 can be generalized to

find the joint density of all X1:n, X2:n, · · ·Xn:n, which is

f1,2,··· ,n(x1x2 · · ·xn) =

n!f(x1)f(x2) · · · f(xn), −∞ < x1 ≤ x2 ≤ · · · ≤ xn <∞

0, elsewhere
(2.28)

Remark 5. The density of the rth order statistic and the joint density of two order

statistics are summarized in the below theorem.

Theorem 2.3.1. Let X1, X2, · · ·Xn be independent identically distributed continuous ran-

dom variables with common distribution function F (x) and density function f(x). If Xr:n

denotes the rth order statistic, then the density function of Xr:n is given by

fr:n(x) =
n!

(r − 1)!1!(n− r)!
[F (x)]r−1f(x)[1− F (x)]n−r,−∞ < x <∞

If r and s are two integers such that 1 ≤ r < s ≤ n, then the joint density of Xr:n and

Xs:n is given by

fr,s:n(x, y) = Cr,s[F (x)]r−1f(x)[F (y)−F (x)]s−r−1f(y)[1−F (y)]n−s, −∞ < x < y <∞

where Cr,s is as in equation (2.17)

2.4 Distributions of Order Statistics Based on Beta

Generated Distribution

2.4.1 Introduction

Here we construct distributions of order statistics using the new family of generalized beta

generated distribution approach. The new family of generalized beta generated distribu-

tions is based on beta generators classified as beta generated distributions

The beta generated distribution was first introduced by Eugene and Famoye (2002)

through its cdf, and Jones (2004) called it the generalized order statistics.
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2.4.2 Beta generated distribution

The cdf of a beta distribution is defined by,

F (t) =

x∫
0

ta−1(1− t)b−1

B(a, b)
dt, a > 0, b > 0, 0 < x < 1 (2.29)

Replacing t by a cdf say G(x), of any distribution, since 0 < G(x) < 1, for −∞ < x <∞
we have

F [G(x)] =
1

B(a, b)

G(x)∫
0

ta−1(1− t)b−1 dt, a > 0, b > 0 (2.30)

and where

F [G(x)] = A cdf of a cdf

= A function of x

= F (x)

(2.31)

Now, taking derivatives both sides (i.e.)

d

dx
F (x) =

d

dx
F [G(x)] (2.32)

gives

f(x) = {F ′ [G(x)]}G′(x)

= {f [G(x)]}g(x)
(2.33)

Implying that

f(x) =
g(x)[G(x)]a−1[1−G(x)]b−1

B(a, b)
, 0 < G(x) < 1, −∞ < x <∞ (2.34)

where a > 0, b > 0 and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

is the beta function.

Equation (2.34) is the beta generator or beta generated distribution. It is also referred to

as the generalized beta F-distribution (Kong and Sepanski (2007)).

25



The equation can be used to generate a new family of beta distributions usually referred

to as beta generated distributions.

It can also be called the generalized rth order statistic (Jones (2004)) because the order

statistic distribution is a special case when a = r, b = n− r+ 1, which gives the following

density function

f [G(x)] =
g(x)[G(x)]r−1[1−G(x)](n−r+1)−1

B(r, n− r + 1)

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
g(x)[G(x)]r−1[1−G(x)]n−r

=
n!

(r − 1)!(n− r)!
g(x)[G(x)]r−1[1−G(x)]n−r, −∞ < x <∞

(2.35)

Therefore, equation (2.35) is the rth order statistic generated from the beta distribution.

We can further obtain the pdf of the minimum (r = 1) and the maximum (r = n) values

from equation (2.35) as below.

For r = 1 (minimum),

f1(x) =
n!

(1− 1)!(n− 1)!
g(x)[G(x)]1−1[1−G(x)]n−1

=
n!

(n− 1)!
g(x)[1−G(x)]n−1

= n[1−G(x)]n−1g(x), −∞ < x <∞

(2.36)

For r = n (maximum),

fn(x) =
n!

(n− 1)!(n− n)!
g(x)[G(x)]n−1[1−G(x)]n−n

=
n!

(n− 1)!
g(x)[G(x)]n−1

= n[G(x)]n−1g(x), −∞ < x <∞

(2.37)

26



2.4.3 Various beta generated distributions

Various beta generated distributions have been constructed by different authors, here

we extend such work and show how beta generated distribution approach is used to

find distributions of order statistics, especially, the rth, minimum and maximum order

statistics for various specific distributions. However, for the succeeding chapters, we will

concentrate on the uniform, logistic and exponential distributions.

Standard uniform order statistics

The beta-standard uniform distribution can be obtained as follows.

Let

G(x) = u, 0 < u < 1 (2.38)

be the cdf of the standard uniform distribution and the pdf given by

g(x) = 1 (2.39)

Therefore, using equation (2.34), the density function of the beta-standard uniform dis-

tribution is given by

f(u) =
1 · [u]a−1[1− u]b−1

B(a, b)

=
1

B(a, b)
ua−1(1− u)b−1

(2.40)

Hence, equation (2.40) is the beta-standard uniform distribution.

Letting a = r and b = n − r + 1, we get the rth order statistic for the standard uniform

distribution as,

fr:n(u) =
1

B(r, n− r + 1)
ur−1(1− u)(n−r+1)−1

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
ur−1(1− u)n−r

=
n!

(r − 1)!(n− r)!
ur−1(1− u)n−r, 0 ≤ u ≤ 1

(2.41)
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Subsequently, we get the minimum and the maximum order statistics for the standard

uniform distribution as follows.

For r = 1 (minimum);

f1:n(u) = n(1− u)n−1, 0 ≤ u ≤ 1 (2.42)

For r = n (maximum);

fn:n(u) = nun−1, 0 ≤ u ≤ 1 (2.43)

Standard logistic order statistics

The beta-standard logistic distribution can be obtained as follows.

Let

G(x) =
1

(1 + e−x)
, −∞ < x <∞ (2.44)

be the cdf of the standard logistic distribution and the pdf given by

g(x) =
e−x

(1 + e−x)2
, −∞ < x <∞ (2.45)

Therefore, using equation (2.34), the density function of the beta-standard logistic distri-

bution is given by

f(x) =
1

B(a, b)
· e−x

(1 + e−x)2
·
[ 1

(1 + e−x)

]a−1

·
[
1− 1

(1 + e−x)

]b−1

(2.46)

Hence, equation (2.46) is the beta-standard logistic distribution.
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Similarly, letting a = r and b = n− r + 1, we get the rth order statistic for the standard

logistic distribution as,

fr:n(x) =
1

B(r, n− r + 1)
· e−x

(1 + e−x)2
·
[ 1

(1 + e−x)

]r−1

·
[
1− 1

(1 + e−x)

](n−r+1)−1

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
· e−x

(1 + e−x)2
·
[ 1

(1 + e−x)

]r−1

·
[
1− 1

(1 + e−x)

]n−r
=

n!

(r − 1)!(n− r)!
e−x

(1 + e−x)2

[ 1

(1 + e−x)

]r−1[
1− 1

(1 + e−x)

]n−r
, −∞ ≤ x ≤ ∞

(2.47)

Subsequently, we get the minimum and the maximum order statistics for the standard

logistic distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!

e−x

(1 + e−x)2

[ 1

(1 + e−x)

]1−1[
1− 1

(1 + e−x)

]n−1

=
ne−x

(1 + e−x)2

[
1− 1

(1 + e−x)

]n−1

, −∞ ≤ x ≤ ∞
(2.48)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!

e−x

(1 + e−x)2

[ 1

(1 + e−x)

]n−1[
1− 1

(1 + e−x)

]n−n
=

ne−x

(1 + e−x)2

[ 1

(1 + e−x)

]n−1

, −∞ ≤ x ≤ ∞
(2.49)

Standard exponential order statistics

The beta-standard exponential distribution can be obtained as follows.

Let

G(x) = 1− e−x, x ≥ 0 (2.50)

be the cdf of the standard exponential distribution and the pdf given by

g(x) = e−x, x ≥ 0 (2.51)
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Therefore, using equation (2.34), the density function of the beta-standard exponential

distribution is given by

f(x) =
1

B(a, b)
· e−x · [1− e−x]a−1 · [1− (1− e−x)]b−1

=
1

B(a, b)
[1− e−x]a−1e−xe−(b−1)x

=
1

B(a, b)
[1− e−x]a−1e−bx, x ≥ 0

(2.52)

Hence, equation (2.52) is the beta-standard exponential distribution.

Similarly, letting a = r and b = n− r + 1, we get the rth order statistic for the standard

exponential distribution as,

fr:n(x) =
1

B(r, n− r + 1)
[1− e−x]r−1e−x(n−r+1)

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
[1− e−x]r−1e−x(n−r+1)

=
n!

(r − 1)!(n− r)!
(1− e−x)r−1e−(n−r+1)x, 0 ≤ x <∞

(2.53)

Subsequently, we get the minimum and the maximum order statistics for the standard

exponential distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
(1− e−x)1−1e−(n−1+1)x

= ne−nx, 0 ≤ x <∞
(2.54)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
(1− e−x)n−1e−(n−n+1)x

= ne−x(1− e−x)n−1, −∞ ≤ x ≤ ∞
(2.55)
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Pareto order statistics

The beta-pareto distribution can be obtained as follows.

Let

G(x) = 1− (
xm
x

)α, x ≥ xm (2.56)

be the cdf of pareto type 1 distribution and the pdf given by

g(x) =
αxαm
xα+1

, x ≥ xm (2.57)

Therefore, using equation (2.34), we obtain the density function of the beta-pareto dis-

tribution as

f(x) =
1

B(a, b)
· αx

α
m

xα+1
·
[
1− (

xm
x

)α
]a−1

·
[
1− {1− (

xm
x

)α}
]b−1

=
1

B(a, b)

αxαm
xα+1

[
1− (

xm
x

)α
]a−1[

(
xm
x

)α
]b−1

, x ≥ xm

(2.58)

Hence, equation (2.58) is the beta-pareto distribution.

Similarly, letting a = r and b = n − r + 1, we get the rth order statistic for the pareto

distribution as,

fr:n(x) =
n!

(r − 1)!(n− r)!
αxαm
xα+1

[
1− (

xm
x

)α
]r−1[

(
xm
x

)α
]n−r

, x ≥ xm (2.59)

Subsequently, we get the minimum and the maximum order statistics for the pareto dis-

tribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!

αxαm
xα+1

[
1− (

xm
x

)α
]1−1[

(
xm
x

)α
]n−1

= n
αxαm
xα+1

[
(
xm
x

)α
]n−1

, x ≥ xm

(2.60)
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For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!

αxαm
xα+1

[
1− (

xm
x

)α
]n−1[

(
xm
x

)α
]n−n

= n
αxαm
xα+1

[
1− (

xm
x

)α
]n−1

, x ≥ xm

(2.61)

Normal order statistics

The pdf of beta-normal distribution was given by Eugene and Famoye (2002) as,

f(x; a, b, µ, σ) =
σ−1
[
φ(x−µ

σ
)
]a−1[

1− φ(x−µ
σ

)
]b−1

B(a, b)
· φ(

x− µ
σ

) (2.62)

where a, b, σ, µ, x > 0.

From equation (2.62), when µ = 0 and σ = 1, we get the standard beta-normal distribu-

tion as,

f(x; a, b) =
[φ(x)]a−1[1− φ(x)]b−1

B(a, b)
· φ(x) (2.63)

where a, b, x > 0.

We therefore, extend this work and get the rth order statistic of the standard normal

distribution by replacing a = r and b = n− r + 1.

fr:n(x) =
[φ(x)]r−1[1− φ(x)](n−r+1)−1

B(r, n− r + 1)
· φ(x)

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
[φ(x)]r−1[1− φ(x)]n−rφ(x)

=
n!

(r − 1)!(n− r)!
[φ(x)]r[1− φ(x)]n−r, x > 0

(2.64)

Subsequently, we get the minimum and the maximum order statistics for the standard

normal distribution as follows.

32



For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
[φ(x)]1[1− φ(x)]n−1

= n[1− φ(x)]n−1φ(x), x > 0

(2.65)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
[φ(x)]n[1− φ(x)]n−n

= n[φ(x)]n, x > 0

(2.66)

Weibull order statistics

The pdf of the beta-weibull distribution was given by Famoye et al. (2005) as below. This

distribution was studied in detail by Lee et al. (2007) giving some of its properties and

applications to censored data.

f(x; a, b, c, β) =
( |c|
βc

)xc−1e−( x
β

)c
[
1− e−( x

β
)c
]a−1[

1− (1− e−( x
β

)c)
]b−1

B(a, b)

=
( |c|
βc

)xc−1e−( x
β

)c
[
1− e−( x

β
)c
]a−1[

e−( x
β

)c
]b−1

B(a, b)

=
( |c|
βc

)xc−1e−b(
x
β

)c
[
1− e−( x

β
)c
]a−1

B(a, b)
, a, b, c, β, x > 0

(2.67)

Equation (2.67) is a four parameter beta-weibull distribution introduced by Famoye et al.

(2005) and studied by Lee et al. (2007).

We therefore, extend this work and get the rth order statistic of the weibull distribution

by replacing a = r and b = n− r + 1.

fr:n(x) =
( |c|
βc

)xc−1e−(n−r+1)( x
β

)c
[
1− e−( x

β
)c
]r−1

B(r, n− r + 1)

=
n!

(r − 1)!(n− r)!
(
|c|
βc

)xc−1e−(n−r+1)( x
β

)c
[
1− e−( x

β
)c
]r−1

, c, β, x > 0

(2.68)
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Subsequently, we get the minimum and the maximum order statistics for the weibull dis-

tribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
(
|c|
βc

)xc−1e−(n−1+1)( x
β

)c
[
1− e−( x

β
)c
]1−1

=
n!

(n− 1)!
(
|c|
βc

)xc−1e−n( x
β

)c

= n(
|c|
βc

)xc−1e−n( x
β

)c , c, β, x > 0

(2.69)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
(
|c|
βc

)xc−1e−(n−n+1)( x
β

)c
[
1− e−( x

β
)c
]n−1

=
n!

(n− 1)!
(
|c|
βc

)xc−1e−( x
β

)c
[
1− e−( x

β
)c
]n−1

= n(
|c|
βc

)xc−1e−( x
β

)c
[
1− e−( x

β
)c
]n−1

, c, β, x > 0

(2.70)

Hyperbolic secant order statistics

Fischer and Vaughan (2004) introduced the beta-hyperbolic secant distribution. They

gave its pdf as,

f(x; a, b, π) =

[
2
π
arctan(ex)

]a−1[
1− 2

π
arctan(ex)

]b−1

B(a, b) πcosh(x)
, a, b, x > 0 (2.71)

We therefore, extend this work and get the rth order statistic of the hyperbolic secant
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distribution by replacing a = r and b = n− r + 1.

fr:n(x) =

[
2
π
arctan(ex)

]r−1[
1− 2

π
arctan(ex)

](n−r+1)−1

B(r, n− r + 1) πcosh(x)

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)

[
2
π
arctan(ex)

]r−1[
1− 2

π
arctan(ex)

]n−r
πcosh(x)

=
n!

(r − 1)!(n− r)!

[
2
π
arctan(ex)

]r−1[
1− 2

π
arctan(ex)

]n−r
πcosh(x)

, x > 0

(2.72)

Subsequently, we get the minimum and the maximum order statistics for the hyperbolic

secant distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!

[
2
π
arctan(ex)

]1−1[
1− 2

π
arctan(ex)

]n−1

πcosh(x)

=
n
[
1− 2

π
arctan(ex)

]n−1

πcosh(x)
, x > 0

(2.73)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!

[
2
π
arctan(ex)

]n−1[
1− 2

π
arctan(ex)

]n−n
πcosh(x)

=
n
[

2
π
arctan(ex)

]n−1

πcosh(x)
, x > 0

(2.74)

Gamma order statistics

The beta-gamma distribution was introduced by Kong and Sepanski (2007). They gave

its pdf as,

f(x; a, b, ρ, λ) =
xρ−1e

x
λ

Γ(x)
λ

(ρ)a−1
[
1−

Γ(x)
λ

(ρ)

Γ(ρ)

]b−1

B(a, b) Γ(ρ)aλρ
, a, b, ρ, λ, x > 0 (2.75)
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We therefore, extend this work and get the rth order statistic of the gamma distribution

by replacing a = r and b = n− r + 1.

fr:n(x) =
xρ−1e

x
λ

Γ(x)
λ

(ρ)r−1
[
1−

Γ(x)
λ

(ρ)

Γ(ρ)

](n−r+1)−1

B(r, n− r + 1) Γ(ρ)rλρ

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)

xρ−1e
x
λ

Γ(x)
λ

(ρ)r−1
[
1−

Γ(x)
λ

(ρ)

Γ(ρ)

]n−r
Γ(ρ)rλρ

=
n!

(r − 1)!(n− r)!

xρ−1e
x
λ

Γ(x)
λ

(ρ)r−1
[
1−

Γ(x)
λ

(ρ)

Γ(ρ)

]n−r
Γ(ρ)rλρ

, ρ, λ, x > 0

(2.76)

Subsequently, we get the minimum and the maximum order statistics for the gamma dis-

tribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(n− 1)!

xρ−1e
x
λ

Γ(x)
λ

(ρ)1−1
[
1−

Γ(x)
λ

(ρ)

Γ(ρ)

]n−1

Γ(ρ)1λρ

= nλ−ρxρ−1e
x
λ

Γ(x)

λ

[
1−

Γ(x)
λ

(ρ)

Γ(ρ)

]n−1

, ρ, λ, x > 0

(2.77)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!

xρ−1e
x
λ

Γ(x)
λ

(ρ)n−1
[
1−

Γ(x)
λ

(ρ)

Γ(ρ)

]n−n
Γ(ρ)nλρ

=
n

Γ(ρ)nλρ
xρ−1e

x
λ

Γ(x)

λ
(ρ)n−1, ρ, λ, x > 0

(2.78)
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Gumbel order statistics

The beta-gumbel distribution was introduced by Nadarajah and Kotz (2004) and gave its

pdf as,

f(x; a, b, µ, σ) =
1

B(a, b)
[exp(−µ)]a−1[1− exp(−µ)]b−1 · µ

σ
e−µ

=
µ

σB(a, b)
e−µa[1− e−µ]b−1, a, b, µ, σ, x > 0

(2.79)

We therefore, extend this work and get the rth order statistic of the gumbel distribution

by replacing a = r and b = n− r + 1.

fr:n(x) =
µ

σB(r, n− r + 1)
e−µr[1− e−µ](n−r+1)−1

=
µΓ(n+ 1)

σΓ(r)Γ(n− r + 1)
e−µr[1− e−µ]n−r

=
n!

(r − 1)!(n− r)!
· µ
σ
· e−µr[1− e−µ]n−r, µ, σ, x > 0

(2.80)

Subsequently, we get the minimum and the maximum order statistics for the gumbel dis-

tribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
· µ
σ
· e−µ(1)[1− e−µ]n−1

=
nµ

σ
e−µ[1− e−µ]n−1, µ, σ, x > 0

(2.81)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
· µ
σ
· e−µ(n)[1− e−µ]n−n

=
nµ

σ
e−nµ, µ, σ, x > 0

(2.82)
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Fréchet order statistics

The beta-fréchet distribution was introduced by Nadarajah and Gupta (2004) and gave

its pdf as,

f(x; a, b, λ, σ) =
λσλexp[−a(x

σ
)−λ]{1− exp[−(x

σ
)−λ]}b−1

x1+λB(a, b)
, a, b, λ, σ, x > 0 (2.83)

We therefore, extend this work and obtain the rth order statistic of the fréchet distribution

by replacing a = r and b = n− r + 1.

fr:n(x) =
λσλexp[−(r)(x

σ
)−λ]{1− exp[−(x

σ
)−λ]}(n−r+1)−1

x1+λB(r, n− r + 1)

=
n!

(r − 1)!(n− r)!
x−(1+λ)λσλexp[−r(x

σ
)−λ]{1− exp[−(

x

σ
)−λ]}n−r, µ, σ, x > 0

(2.84)

Subsequently, we get the minimum and the maximum order statistics for the fréchet dis-

tribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
x−(1+λ)λσλexp[−(1)(

x

σ
)−λ]{1− exp[−(

x

σ
)−λ]}n−1

= nx−(1+λ)λσλexp[−(
x

σ
)−λ]{1− exp[−(

x

σ
)−λ]}n−1, µ, σ, x > 0

(2.85)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
x−(1+λ)λσλexp[−(n)(

x

σ
)−λ]{1− exp[−(

x

σ
)−λ]}n−n

= nx−(1+λ)λσλexp[−n(
x

σ
)−λ], µ, σ, x > 0

(2.86)

38



Maxwell order statistics

Amusan (2010) introduced the beta-maxwell distribution and gave its pdf as,

f(x; a, b, α, γ) =

[
2γ( 3

2
, x

2

2α
)√

π

]a−1[
1− 2γ( 3

2
, x

2

2α
)√

π

]b−1√
2
π
x2e
−( x

2

2α2 )

α3

B(a, b)

=
1

B(a, b)

[ 2γ√
π

(3

2
,
x2

2α

)]a−1[
1− 2γ√

π

(3

2
,
x2

2α

)]b−1
√

2

π

x2e−( x
2

2α2 )

α3

where, a, b, α, γ, x > 0

(2.87)

We therefore, extend this work and obtain the rth order statistic of the maxwell distribu-

tion by replacing a = r and b = n− r + 1.

fr:n(x) =
1

B(r, n− r + 1)

[ 2γ√
π

(3

2
,
x2

2α

)]r−1[
1− 2γ√

π

(3

2
,
x2

2α

)](n−r+1)−1
√

2

π

x2e−( x
2

2α2 )

α3

=
n!

(r − 1)!(n− r)!

[ 2γ√
π

(3

2
,
x2

2α

)]r−1[
1− 2γ√

π

(3

2
,
x2

2α

)]n−r√ 2

π

x2e−( x
2

2α2 )

α3

where, α, γ, x > 0

(2.88)

Subsequently, we get the minimum and the maximum order statistics for the maxwell

distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!

[ 2γ√
π

(3

2
,
x2

2α

)]1−1[
1− 2γ√

π

(3

2
,
x2

2α

)]n−1
√

2

π

x2e−( x
2

2α2 )

α3

= n
[
1− 2γ√

π

(3

2
,
x2

2α

)]n−1
√

2

π

x2e−( x
2

2α2 )

α3

where, α, γ, x > 0

(2.89)
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For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!

[ 2γ√
π

(3

2
,
x2

2α

)]n−1[
1− 2γ√

π

(3

2
,
x2

2α

)]n−n√ 2

π

x2e−( x
2

2α2 )

α3

= n
[ 2γ√

π

(3

2
,
x2

2α

)]n−1
√

2

π

x2e−( x
2

2α2 )

α3

where, α, γ, x > 0

(2.90)

Rayleigh order statistics

Akinsete and Lowe (2009) introduced the beta-rayleigh distribution and gave its pdf as,

f(x; a, b, α) =

[
1− e−

x2

2α2

]a−1[
1−

(
1− e−

x2

2α2

)]b−1
x
α2 e
−( x

α
√

2
)2

B(a, b)

=
x

α2B(a, b)

[
1− e−

x2

2α2

]a−1

e
−b( x

α
√

2
)2

where, a, b, α, x > 0

(2.91)

We therefore, extend this work and obtain the rth order statistic of the rayleigh distribu-

tion by replacing a = r and b = n− r + 1.

fr:n(x) =
x

α2B(r, n− r + 1)

[
1− e−

x2

2α2

]r−1

e
−(n−r+1)( x

α
√

2
)2

=
n!

(r − 1)!(n− r)!
x

α2

[
1− e−

x2

2α2

]r−1

e
−(n−r+1)( x

α
√

2
)2

where, α, x > 0

(2.92)

Subsequently, we get the minimum and the maximum order statistics for the rayleigh

distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!

x

α2

[
1− e−

x2

2α2

]1−1

e
−(n−1+1)( x

α
√

2
)2

= n
x

α2
e
−n( x

α
√

2
)2

, α, x > 0

(2.93)
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For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!

x

α2

[
1− e−

x2

2α2

]n−1

e
−(n−n+1)( x

α
√

2
)2

= n
x

α2

[
1− e−

x2

2α2

]n−1

e
−( x

α
√

2
)2

, α, x > 0

(2.94)

Generalized-Logistic of type IV order statistics

Morais de Lemos (2009) introduced the beta-generalized logistic of type IV distribution

and gave its pdf as,

f(x; a, b, p, q) =
B(a, b)1−a−b

B(a, b)

eqx

(1− e−x)p+q
[
B 1

1+e−x
(p, q)

]a−1[
B e−x

1+e−x
(q, p)

]b−1

where, a, b, p, q, x > 0

(2.95)

We therefore, extend this work and obtain the rth order statistic of the generalized logistic

of type IV distribution by replacing a = r and b = n− r + 1.

fr:n(x) =
B(r, n− r + 1)1−r−(n−r+1)

B(r, n− r + 1)

eqx

(1− e−x)p+q
[
B 1

1+e−x
(p, q)

]r−1

[
B e−x

1+e−x
(q, p)

](n−r+1)−1

=
[(r − 1)!(n− r)!

n!

]−n[ n!

(r − 1)!(n− r)!

] eqx

(1− e−x)p+q
[
B 1

1+e−x
(p, q)

]r−1

[
B e−x

1+e−x
(q, p)

]n−r
=
[ n!

(r − 1)!(n− r)!

]n+1 eqx

(1− e−x)p+q
[
B 1

1+e−x
(p, q)

]r−1[
B e−x

1+e−x
(q, p)

]n−r
where, p, q, x > 0

(2.96)

Subsequently, we get the minimum and the maximum order statistics for the generalized

logistic of type IV distribution as follows.
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For r = 1 (minimum);

f1:n(x) =
[ n!

(1− 1)!(n− 1)!

]n+1 eqx

(1− e−x)p+q
[
B 1

1+e−x
(p, q)

]1−1[
B e−x

1+e−x
(q, p)

]n−1

= nn+1 eqx

(1− e−x)p+q
[
B e−x

1+e−x
(q, p)

]n−1

, p, q, x > 0

(2.97)

For r = n (maximum);

fn:n(x) =
[ n!

(n− 1)!(n− n)!

]n+1 eqx

(1− e−x)p+q
[
B 1

1+e−x
(p, q)

]n−1[
B e−x

1+e−x
(q, p)

]n−n
= nn+1 eqx

(1− e−x)p+q
[
B 1

1+e−x
(p, q)

]n−1

, p, q, x > 0

(2.98)

Generalized-Logistic of type I order statistics

Morais de Lemos (2009) introduced the beta-generalized logistic of type I distribution

which is a special case of the beta-generalized logistic of type IV distribution with q = 1.

She gave its pdf as,

f(x; a, b, p) =
pe−x

[
(1 + e−ax)p − 1

]b−1

B(a, b)(1 + e−x)a+pb
, a, b, p, x > 0 (2.99)

We therefore, extend this work and obtain the rth order statistic of the generalized logistic

of type I distribution by replacing a = r and b = n− r + 1.

fr:n(x) =
pe−x

[
(1 + e−rx)p − 1

](n−r+1)−1

B(r, n− r + 1)(1 + e−x)r+p(n−r+1)

=
n!

(r − 1)!(n− r)!
pe−x(1 + e−x)−(r+p(n−r+1))

[
(1 + e−rx)p − 1

]n−r
where, p, x > 0

(2.100)

Subsequently, we get the minimum and the maximum order statistics for the generalized

logistic of type I distribution as follows.
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For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
pe−x(1 + e−x)−(1+p(n−1+1))

[
(1 + e−(1)x)p − 1

]n−1

= npe−x(1 + e−x)−(1+np)
[
(1 + e−x)p − 1

]n−1

, p, x > 0

(2.101)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
pe−x(1 + e−x)−(n+p(n−n+1))

[
(1 + e−(n)x)p − 1

]n−n
= npe−x(1 + e−x)−(n+p), p, x > 0

(2.102)

Generalized-Logistic of type II order statistics

Morais de Lemos (2009) introduced the beta-generalized logistic of type II distribution

which is a special case of the beta-generalized logistic of type IV distribution with p = 1.

She gave its pdf as,

f(x; a, b, q) =
qe−bqx

B(a, b)(1 + e−x)qb+1

[
1− e−qx

B(a, b)(1 + e−x)q

]
, a, b, q, x > 0 (2.103)

We therefore, extend this work and obtain the rth order statistic of the generalized logistic

of type II distribution by replacing a = r and b = n− r + 1.

fr:n(x) =
qe−(n−r+1)qx

B(r, n− r + 1)(1 + e−x)q(n−r+1)+1

[
1− e−qx

B(r, n− r + 1)(1 + e−x)q

]
=

n!

(r − 1)!(n− r)!
qe−(n−r+1)qx

(1 + e−x)q(n−r+1)+1

[
1− n!

(r − 1)!(n− r)!
e−qx

(1 + e−x)q

]
where, q, x > 0

(2.104)

Subsequently, we get the minimum and the maximum order statistics for the generalized

logistic of type II distribution as follows.
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For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!

qe−(n−1+1)qx

(1 + e−x)q(n−1+1)+1

[
1− n!

(1− 1)!(n− 1)!

e−qx

(1 + e−x)q

]
=

nqe−nqx

(1 + e−x)nq+1

[
1− ne−qx

(1 + e−x)q

]
, q, x > 0

(2.105)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!

qe−(n−n+1)qx

(1 + e−x)q(n−n+1)+1

[
1− n!

(n− 1)!(n− n)!

e−qx

(1 + e−x)q

]
=

nqe−nqx

(1 + e−x)q+1

[
1− ne−qx

(1 + e−x)q

]
, q, x > 0

(2.106)

Generalized-Logistic of type III order statistics

Morais de Lemos (2009) introduced the beta-generalized logistic of type III distribution

which is a special case of the beta-generalized logistic of type IV distribution with p = q.

She gave its pdf as,

f(x; a, b, p) =
B(p, p)1−a−b

B(a, b)

e−px

(1 + e−x)2p

[
B 1

1+e−x
(p, p)

]a−1[
B e−x

1+e−x
(p, p)

]b−1

where, a, b, p, x > 0

(2.107)

We therefore, extend this work and obtain the rth order statistic of the generalized logistic

of type III distribution by replacing a = r and b = n− r + 1.

fr:n(x) =
B(p, p)1−r−(n−r+1)

B(r, n− r + 1)

e−px

(1 + e−x)2p

[
B 1

1+e−x
(p, p)

]r−1[
B e−x

1+e−x
(p, p)

](n−r+1)−1

=
n!

(r − 1)!(n− r)!
B(p, p)−n

e−px

(1 + e−x)2p

[
B 1

1+e−x
(p, p)

]r−1[
B e−x

1+e−x
(p, p)

]n−r
where, p, x > 0

(2.108)
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Subsequently, we get the minimum and the maximum order statistics for the generalized

logistic of type III distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
B(p, p)−n

e−px

(1 + e−x)2p

[
B 1

1+e−x
(p, p)

]1−1[
B e−x

1+e−x
(p, p)

]n−1

= nB(p, p)−n
e−px

(1 + e−x)2p

[
B e−x

1+e−x
(p, p)

]n−1

, p, x > 0

(2.109)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
B(p, p)−n

e−px

(1 + e−x)2p

[
B 1

1+e−x
(p, p)

]n−1[
B e−x

1+e−x
(p, p)

]n−n
= nB(p, p)−n

e−px

(1 + e−x)2p

[
B 1

1+e−x
(p, p)

]n−1

, p, x > 0

(2.110)

Beta prime order statistics

The beta-beta prime distribution was introduced by Morais de Lemos (2009), and obtained

from the beta-generalized logistic of type IV distribution using the transformation x = e−y

where y is a random variable following the beta-generalized logistic of type IV distribution.

She gave the pdf of the beta-beta prime distribution as,

f(x; a, b, p, q) =
B(p, q)1−a−b

B(a, b)

xq−1

(1 + x)p+q

[
B x

1+x
(q, p)

]a−1[
B 1

1+x
(p, q)

]b−1

where, a, b, p, q, x > 0

(2.111)

We therefore, extend this work and obtain the rth order statistic of the beta prime distri-
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bution by replacing a = r and b = n− r + 1.

fr:n(x) =
B(p, q)1−r−(n−r+1)

B(r, n− r + 1)

xq−1

(1 + x)p+q

[
B x

1+x
(q, p)

]r−1[
B 1

1+x
(p, q)

](n−r+1)−1

=
n!

(r − 1)!(n− r)!
B(p, q)−n

xq−1

(1 + x)p+q

[
B x

1+x
(q, p)

]r−1[
B 1

1+x
(p, q)

]n−r
where, p, q, x > 0

(2.112)

Subsequently, we get the minimum and the maximum order statistics for the beta prime

distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
B(p, q)−n

xq−1

(1 + x)p+q

[
B x

1+x
(q, p)

]1−1[
B 1

1+x
(p, q)

]n−1

= nB(p, q)−n
xq−1

(1 + x)p+q

[
B 1

1+x
(p, q)

]n−1

, p, q, x > 0

(2.113)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
B(p, q)−n

xq−1

(1 + x)p+q

[
B x

1+x
(q, p)

]n−1[
B 1

1+x
(p, q)

]n−n
= nB(p, q)−n

xq−1

(1 + x)p+q

[
B x

1+x
(q, p)

]n−1

, p, q, x > 0

(2.114)

F order statistics

The pdf of the beta-F distribution was obtained by Morais de Lemos (2009) as,

f(x; a, b, u, v) =
B(a, b)−1

B(u
2
, v

2
)

( v
u
)
v
2x

v
2
−1[

1 + ( v
u
)x
](u+v)/2

[
I ( vu )x

1+( vu )x

(
u

2
,
v

2
)
]a−1[

I 1
1+( vu )x

(
u

2
,
v

2
)
]b−1

where, a, b, u, v, x > 0

(2.115)
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We therefore, extend this work and obtain the rth order statistic of the F distribution by

replacing a = r and b = n− r + 1.

fr:n(x) =
B(r, n− r + 1)−1

B(u
2
, v

2
)

( v
u
)
v
2x

v
2
−1[

1 + ( v
u
)x
](u+v)/2

[
I ( vu )x

1+( vu )x

(
u

2
,
v

2
)
]r−1[

I 1
1+( vu )x

(
u

2
,
v

2
)
]n−r

where, u, v, x > 0

(2.116)

Subsequently, we get the minimum and the maximum order statistics for the F distribu-

tion as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(n− 1)!
B(

u

2
,
v

2
)

( v
u
)
v
2x

v
2
−1[

1 + ( v
u
)x
](u+v)/2

[
I ( vu )x

1+( vu )x

(
u

2
,
v

2
)
]1−1[

I 1
1+( vu )x

(
u

2
,
v

2
)
]n−1

= nB(
u

2
,
v

2
)

( v
u
)
v
2x

v
2
−1[

1 + ( v
u
)x
](u+v)/2

[
I 1

1+( vu )x
(
u

2
,
v

2
)
]n−1

, u, v, x > 0

(2.117)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!
B(

u

2
,
v

2
)

( v
u
)
v
2x

v
2
−1[

1 + ( v
u
)x
](u+v)/2

[
I ( vu )x

1+( vu )x

(
u

2
,
v

2
)
]n−1[

I 1
1+( vu )x

(
u

2
,
v

2
)
]n−n

= nB(
u

2
,
v

2
)

( v
u
)
v
2x

v
2
−1[

1 + ( v
u
)x
](u+v)/2

[
I ( vu )x

1+( vu )x

(
u

2
,
v

2
)
]n−1

, u, v, x > 0

(2.118)
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Burr XII order statistics

Paranáıba et al. (2010) introduced the beta-burr XII distribution and gave its pdf as,

f(x; a, b, p, q, k) =
1

B(a, b)

[
1−

(
1 + (

x

q
)p
)−k]a−1[(

1 + (
x

q
)p
)−k]b−1

pkq−p(
1 + (

x

q
)p
)−k−1

xp−1

=
pkq−pxp−1

B(a, b)

[
1−

(
1 + (

x

q
)p
)−k]a−1[

1 + (
x

q
)p
]−kb−1

where, a, b, p, q, k, x > 0

(2.119)

We therefore, extend this work and obtain the rth order statistic of the burr XII distribu-

tion by replacing a = r and b = n− r + 1.

fr:n(x) =
pkq−pxp−1

B(r, n− r + 1)

[
1−

(
1 + (

x

q
)p
)−k]r−1[

1 + (
x

q
)p
]−k(n−r+1)−1

=
n!

(r − 1)!(n− r)!
pkq−pxp−1

[
1−

(
1 + (

x

q
)p
)−k]r−1[

1 + (
x

q
)p
]−k(n−r+1)−1

where, p, q, k, x > 0

(2.120)

Subsequently, we get the minimum and the maximum order statistics for the burr XII

distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!
pkq−pxp−1

[
1−

(
1 + (

x

q
)p
)−k]1−1[

1 + (
x

q
)p
]−k(n−1+1)−1

= npkq−pxp−1
[
1 + (

x

q
)p
]−nk−1

, p, q, k, x > 0

(2.121)

For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!
pkq−pxp−1

[
1−

(
1 + (

x

q
)p
)−k]n−1[

1 + (
x

q
)p
]−k(n−n+1)−1

= npkq−pxp−1
[
1−

(
1 + (

x

q
)p
)−k]n−1[

1 + (
x

q
)p
]−k−1

, p, q, k, x > 0
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(2.122)

Log-logistic order statistics

The beta - log logistic distribution was introduced by Paranáıba et al. (2010) as a special

sub-model of the beta-burr XII distribution.

They gave its pdf as,

f(x; a, b, p, λ) =

[
(λx)p

1+(λx)p

]a−1[
1− (λx)p

1+(λx)p

]b−1
λp(λx)p−1

(1+(λx)p)2

B(a, b)

=
λp(λx)ap−1

B(a, b)(1 + (λx)p)a+b

where, a, b, p, λ, x > 0

(2.123)

We therefore, extend this work and obtain the rth order statistic of the log logistic distri-

bution by replacing a = r and b = n− r + 1.

fr:n(x) =
λp(λx)rp−1

B(r, n− r + 1)(1 + (λx)p)r+n−r+1

=
n!

(r − 1)!(n− r)!
λp(λx)rp−1

(1 + (λx)p)n+1
, p, λ, x > 0

(2.124)

Subsequently, we get the minimum and the maximum order statistics for the log logistic

distribution as follows.

For r = 1 (minimum);

f1:n(x) =
n!

(1− 1)!(n− 1)!

λp(λx)(1)p−1

(1 + (λx)p)n+1

=
nλp(λx)p−1

(1 + (λx)p)n+1
, p, λ, x > 0

(2.125)
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For r = n (maximum);

fn:n(x) =
n!

(n− 1)!(n− n)!

λp(λx)(n)p−1

(1 + (λx)p)n+1

=
nλp(λx)np−1

(1 + (λx)p)n+1
, p, λ, x > 0

(2.126)

2.5 Distribution of the Median, Range and Other

Statistics

2.5.1 Distribution of the sample median

The median is a measure of location that might be considered an alternative to the sample

mean. It is less affected by etreme observations.

The sample median, which we will denote by M , is a number such that approximately

one-half of the observations are less than M and one-half are greater. In terms of order

statistics, M is defined as;

M =

X((n+1)/2) if n is odd

[X(n/2) +X(n/2+1)]/2 if n is even
(2.127)

Consider when the sample size n is odd. Then from equation (2.11), the pdf of the

sample median X̃n = X(n+1)/2:n is

fX̃n(x) =
n!

(n+1
2
− 1)!(n− n+1

2
)!

[F (x)]
n+1

2
−1[1− F (x)]n−

n+1
2 f(x)

=
n!

[(n−1
2

)!]2
[F (x)(1− F (x))]

n−1
2 f(x), −∞ < x <∞

(2.128)

Suppose now the sample size n is even, the sample median is given by X̃n = (X(n/2):n+

X(n/2)+1:n)/2. To derive the distribution of X̃n in this case, we first from equation (2.16)
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get the joint density function of X(n/2):n and X(n/2)+1:n to be

fn
2
,n
2

+1(x1, x2) = Cx1,x2 [F (x1)]
n
2
−1[F (x2)− F (x1)]

n
2

+1−n
2
−1[1− F (x2)]n−(n

2
+1)f(x1)f(x2)

=
n!

[(n
2
− 1)!]2

[F (x1)(1− F (x2))]
n
2
−1f(x1)f(x2), −∞ < x1 < x2 <∞

where Cx1,x2 =
n!

(n
2
− 1)!(n

2
+ 1− n

2
− 1)!(n− (n

2
+ 1))!

(2.129)

Secondly, from equation (2.129), we obtain the joint density function of X(n/2):n and X̃n

to be

fX(n/2):n,X̃n
(x1, x) = Cx1,x[F (x1)]

n
2
−1[1− F (2x− x1)]n−

n
2
−1[F (2x− x1)− F (x1)]n−n

f(x1)f(2x− x1)

=
2n!

[(n
2
− 1)!]2

[F (x1)]
n
2
−1[1− F (2x− x1)]

n
2
−1f(x1)f(2x− x1)

where −∞ < x1 < x <∞, Cx1,x =
2n!

(n
2
− 1)!(n− n

2
− 1)!(n− n)!

(2.130)

Integrating out x1 in equation (2.130), we obtain the pdf of the sample median X̃n as

fX̃n(x) =
2n!

[(n
2
− 1)!]2

∫ x

−∞
[F (x1)]

n
2
−1[1−F (2x−x1)]

n
2
−1f(x1)f(2x−x1) dx1, −∞ < x <∞

(2.131)

and from equation (2.131), the cdf of the sample median X̃n can be given as

FX̃n(xα) = Pr(X̃n ≤ xα)

=
2n!

[(n
2
− 1)!]2

xα∫
−∞

x∫
−∞

[F (x1)]
n
2
−1[1− F (2x− x1)]

n
2
−1f(x1)f(2x− x1) dx1dx

where −∞ < xα <∞
(2.132)
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2.5.2 Distribution of the sample range

The sample range, Rn = Xn:n − X1:n, is the distance between the smallest and largest

observations. It is a measure of the dispersion in the sample and should reflect the dis-

persion in the population.

Here we shall obtain the distribution of the sample range Rn = Xn:n − X1:n, the ith

quasirange Ri:n = Xn−i+1:n−Xi:n which is a special case of Ri,j:n and the sample midrange

Vn = (X1:n +Xn:n)/2.

From the joint density function of X1:n and Xn:n in equation (2.18), we get the joint

density function of X1:n and Rn to be

fX1:n,Rn(x1, ω) = n(n−1)[F (x1+ω)−F (x1)]n−2f(x1)f(x1+ω), −∞ < x1 <∞; 0 < ω <∞
(2.133)

The pdf of the sample range Rn can be therefore derived by integrating out x1 in

equation (2.133) and obtain

fRn(ω) =

∞∫
−∞

fX1:n,Rn(x1, ω) dx1

= n(n− 1)

∞∫
−∞

[F (x1 + ω)− F (x1)]n−2f(x1)f(x1 + ω) dx1, 0 < ω <∞

(2.134)
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However, the cdf of Rn takes a simpler form and is derived as

FRn(ωα) = Pr(Rn ≤ ωα)

=

ωα∫
0

∞∫
−∞

n(n− 1)[F (x1 + ω)− F (x1)]n−2f(x1)f(x1 + ω) dx1dω

= n(n− 1)

ωα∫
0

∞∫
−∞

[F (x1 + ω)− F (x1)]n−2f(x1)f(x1 + ω) dx1dω

= n

∞∫
−∞

f(x1)

[
(n− 1)

ωα∫
0

[F (x1 + ω)− F (x1)]n−2f(x1 + ω) dω

]
dx1

= n

∞∫
−∞

[F (x1 + ωα)− F (x1)]n−1f(x1) dx1, 0 < ωα <∞

(2.135)

In order to derive the distribution of the quasirange Ri,j:n, we start by obtaining the

joint density function of Xi:n and Ri,j:n from equation (2.16).

fXi:n,Ri,j:n(xi, ω) =
n!

(i− 1)!(j − i− 1)!(n− j)!
[F (xi)]

i−1[F (xi + ω)− F (xi)]
j−i−1[1− F (xi + ω)]n−jf(xi)f(xi + ω),

−∞ < xi <∞, 0 < ω <∞
(2.136)

we then derive the pdf of Ri,j:n by integrating out xi and obtain

fRi,j:n(ω) =
n!

(i− 1)!(j − i− 1)!(n− j)!
∞∫

−∞

[F (xi)]
i−1[F (xi + ω)− F (xi)]

j−i−1[1− F (xi + ω)]n−jf(xi)f(xi + ω) dxi,

0 < ω <∞
(2.137)

Next, we present the derivation of the sample midrange Vn = (X1:n + Xn:n)/2. From
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equation (2.18), we have the joint density function of X1:n and Vn as

fX1:n,Vn(x1, γ) =
2n!

(n− 2)!
[F (2γ − x1)− F (x1)]n−2f(x1)f(2γ − x1)

= 2n(n− 1)[F (2γ − x1)− F (x1)]n−2f(x1)f(2γ − x1), −∞ < x1 < γ <∞
(2.138)

Hence, the pdf of the sample midrange Vn is given by integrating out x1 in equation

(2.138)

fVn(γ) = 2n(n−1)

γ∫
−∞

[F (2γ−x1)−F (x1)]n−2f(x1)f(2γ−x1) dx1, −∞ < γ <∞ (2.139)

with the cdf of midrange given as

FVn(γα) = 2n(n− 1)

γα∫
−∞

v∫
−∞

[F (2γ − x1)− F (x1)]n−2f(x1)f(2γ − x1) dx1dγ

= n

v∫
−∞

f(x1)

[
2(n− 1)

γα∫
x1

[F (2γ − x1)− F (x1)]n−2f(2γ − x1) dγ

]
dx1

= n

v∫
−∞

[F (2γα − x1)− F (x1)]n−1f(x1) dx1, −∞ < γα <∞

(2.140)

Similarly, density function and the distribution function of the general quasi-midrange

Vi,j:n = (Xi:n +Xj:n)/2; 1 ≤ i < j ≤ n can be derived.

Remark 6. We note that the expressions for the pdf and cdf derived for the sample median

and range are for the case when the population distribution has an infinite support.

2.6 Order Statistics for a Discrete Case

We mention that, though there are noted similarities between order statistics from con-

tinuous and discrete distributions, some properties by order statistics from continuous

distributions do not hold for discrete distributions.

More work on order statistics from discrete distributions has been done by Nagaraja
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(986a,b); Rüschendorf (1985); Arnold et al. (1992) and a review article by Nagaraja (1992).

Here we show order statistics from a discrete case for the rth and joint order statistics.

Suppose that X1, X2, · · · , Xn are n independent variates, each with cdf F (x).

Let Fr:n(x) where r = 1, 2, · · · , n denote the cdf of the rth order statistic Xr:n. Then the

cdf of the rth order statistic is given by

Fr:n(x) = Pr(Xr:n ≤ x)

= Pr(at least r of the Xi ≤ x)

=
n∑
i=r

(
n

i

)
[F (x)]i[1− F (x)]n−i

(2.141)

which is the binomial probability that exactly i ≤ x.

Alternatively, equation (2.141) can be written as

Fr:n(x) = [F (x)]r
n−r∑
j=0

(
r + j − 1

r − 1

)
[1− F (x)]j (2.142)

where the RHS is the sum of probabilities that exactly r ≤ x. This is a negative binomial

version of equation (2.141).

Alternatively, from the relation between binomial sums and incomplete beta function, we

have

Fr:n(x) = IF (x)(r, n− r + 1) (2.143)

where Ip(a, b) is the incomplete beta function.

Now let fr:n(x) = Pr(Xr:n = x) be the probability function of Xr:n, where f(x) is discrete

over x = 0, 1, 2, · · ·
From equation (2.143), we have

fr:n(x) = Fr:n(x)− Fr:n(x− 1)

= IF (x)(r, n− r + 1)− IF (x−1)(r, n− r + 1)

= Pr[F (x− 1) < Ur:n ≤ F (x)]

=
1

β(r, n− r + 1)

F (x)∫
F (x−1)

µr−1(1− µ)n−r dµ

(2.144)
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The joint cdf Fr,s:n(x, y) of Xr:n and Xs:n is obtained as below for discrete case.

For x < y,

Fr,s:n(x, y) = Pr(at least r ≤ x, at least s ≤ y)

=
n∑
j=s

j∑
i=r

Pr(exactly i ≤ x, exactly j ≤ y)

=
n∑
j=s

j∑
i=r

n!

i!(j − i)!(n− j)!
[F (x)]i[F (y)− F (x)]j−i[1− F (y)]n−j

(2.145)

For x ≥ y, the inequality Xs:n ≤ y implies Xr:n ≤ x, so that

Fr,s:n(x, y) = Fs:n(y) (2.146)

From equation (2.145), we have the probability function fr,s:n(x, y) = Pr(Xr:n = x,Xs:n =

y) as

fr,s:n(x, y) = Fr,s:n(x, y)− Fr,s:n(x− 1, y)− Fr,s:n(x, y − 1) + Fr,s:n(x− 1, y − 1)

= Pr
[
[F (µr:n)]−1 = x, [F (µs:n)]−1 = y

]
= Pr

[
F (x− 1) < µr:n ≤ F (x), F (y − 1) < µs:n ≤ F (y)

]
= Crs

x
vr−1(w − v)s−r−1(1− w)n−s dvdw, x ≤ y

(2.147)

where Crs is as in equation (2.17) and the integration is over the region

(v, w) : v ≤ w,F (x− 1) ≤ v ≤ F (x), F (y − 1) ≤ w ≤ F (y)

2.7 Expected Values and Moments of Order Statis-

tics

A fundamental definition regarding order statistics, which can be critically important in

the computation of L-moments and probability-weighted moments (though these are not
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discussed here), is the expectation of an order statistic. The expectation is defined in

terms of the QDF.

Here we find the single moments µr,n and product moments, µr,n and µs,n, of order statis-

tics in general case.

From equation (3.1), we get the following results

µ(k)
r:n = E(Xr:n)k

=

∫ ∞
−∞

xk dFr:n(x)

=
n!

(r − 1)!(n− r)!

∫ ∞
−∞

xk[F (x)]r−1[1− F (x)]n−r dF (x)

(2.148)

For continuous distribution functions F , equation (2.148) can be expressed as

µ(k)
r:n =

n!

(r − 1)!(n− r)!

∫ 1

0

[G(u)]kur−1[1− u]n−r du (2.149)

where G(u) is the inverse of F .

For absolutely continuous distributions with pdf f , equation (2.148) can be expressed as

µ(k)
r:n =

n!

(r − 1)!(n− r)!

∫ ∞
−∞

xk[F (x)]r−1[1− F (x)]n−rf(x) dx (2.150)

We note that for r = 1, n = 1 and k = 1

E(X1:1) =

∫ 1

0

x(F ) dF = µ = arithmetic mean (2.151)

Consider two order statistics Xr:n and Xs:n, 1 ≤ r < s ≤ n.

Hence,

µ(k,j)
r,s:n = E[(Xr:n)k(Xs:n)j], 1 ≤ r < s ≤ n

= Cr,s

∫ ∞
−∞

∫ ∞
−∞

xkyj[F (x)]r−1[F (y)− F (x)]s−r−1[1− F (y)]n−s dF (x)dF (y)
(2.152)

where Cr,s = n!
(r−1)!(s−r−1)!(n−s)!

For absolutely continuous case

µ(k,j)
r,s:n = Cr,s

∫ ∞
−∞

∫ ∞
−∞

xkyj[F (x)]r−1[F (y)−F (x)]s−r−1[1−F (y)]n−sf(x)f(y) dxdy (2.153)
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In general, denoting µ
(1)
r:n by µr:n and µ

(1,1)
r,s:n by µr,s:n, for convenience. We have the;

variance given by

σr,r:n = V ar(Xr:n) = µ(2)
r:n − (µr:n)2, 0 ≤ r ≤ n (2.154)

and covariance between Xr:n and Xs:n given by

σr,s:n = Cov(Xr:nXs:n) = µr,s:n − µr:nµs:n, 0 ≤ r < s ≤ n (2.155)

2.8 Recurrence Relations and Identities

Here we aim to study the recurrence relations and identities between the single and prod-

uct moments of order statistics, this results in reduction of the number of independent

calculations required for evaluation of the moments.

2.8.1 Identities

In general,( n∑
r=1

Xk
r:n

)m
=
( n∑
r=1

Xk
r

)m
(2.156)

Let µ and σ2 be the population mean and variance respectively and taking expectations

both sides from equation (2.156) and choosing m = 1, we have

n∑
r=1

µ(k)
r:n = nE(Xk) = nµ(k)

r:n (2.157)

Then, if k = 1, we have

n∑
r=1

µr:n = nE(X) = nµ (2.158)

and, if k = 2, we have

n∑
r=1

µ2
r:n = nE(X2) (2.159)
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Now if k = 1 and m = 2 and using binomial expansion, we have

n∑
r=1

n∑
s=1

(Xr:nXs:n) =
n∑
r=1

X2
r:n + 2

n−1∑
r=1

n∑
s=r+1

Xr:nXs:n

=
n∑
r=1

X2
r + 2

n−1∑
r=1

n∑
s=r+1

XrXs

(2.160)

Now taking expectations both sides

n∑
r=1

n∑
s=1

E(Xr:nXs:n) =
n∑
r=1

E(X2
r ) + 2

n−1∑
r=1

n∑
s=r+1

E(XrXs)

=
n∑
r=1

µ(2)
r + 2

n−1∑
r=1

n∑
s=r+1

µr,s:n

= nE(X2) +
2n(n− 1)

2
[E(X)]2

(2.161)

When we apply equation (2.156) and simplify equation (2.161), we get an identity for

product moments of order statistics as

n−1∑
r=1

n∑
s=r+1

µr,s:n =

(
n

2

)
[E(X)]2

=

(
n

2

)
µ2

=
1

2
n(n− 1)µ2

(2.162)

In summary, we have the following identities

n∑
r=1

µr:n = nµ

n∑
r=1

E(X2
r:n) = nE(X2)

n∑
r=1

n∑
s=1

E(Xr:nXs:n) =
1

2
n(n− 1)µ2
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2.8.2 Recurrence relations

By starting from equation (2.11), we can establish the triangle rule for single moments of

order statistics from any arbitrary distribution given by

rµ
(k)
r+1:n + (n− r)µ(k)

r:n = nµ
(k)
r:n−1 (2.163)

Similarly, a recurrence relation for the product moments of order statistics from any

arbitrary distribution is given by

(r − 1)µ(k,m)
r,s:n + (s− r)µ(k,m)

r−1,s:n + (n− s+ 1)µ
(k,m)
r−1,s−1:n = nµ

(k,m)
r−1,s−1:n (2.164)
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Chapter 3

Order Statistics from Uniform

Distribution

3.1 Introduction

In chapter 2, we discussed some basic distributional properties of order statistics from

arbitrary continuous and discrete populations. In this chapter, we apply these distribu-

tional properties to the case of uniform order statistics on the unit interval (0, 1) and

specifically show that the rth order statistic from a random sample of size n from the

uniform population has a Beta(r, n− r + 1) distribution. Similarly, we show that the rth

and sth order statistics jointly have a bivariate Beta(r, s− r, n− s+ 1) distribution. We

use these distributional results to derive the means, variances and covariances of uniform

order statistics. Additionally, we discuss other interesting properties of order statistics

from uniform population.

3.2 Notations and Definitions

Suppose that we have a random sample X1, X2, · · · , Xn of size n from a continuous distri-

bution with common distribution function FX(x) = F (x) and common density function

fX(x) = f(x). The order statistics X(1) ≤ X(2) ≤ · · · < X(n) are obtained by ordering the

sample X1, X2, · · · , Xn in ascending order. Since this is random sampling from a contin-

uous distribution, we assume that the probability of a tie between two order statistics is

zero.
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We had already shown in the previous chapter that the probability density function of

the ith order statistic is given as:

fXr(x) =
n!

(r − 1)!(n− r)!
F (x)r−1 [1− F (x)]n−rf(x) (3.1)

3.3 Basic Distributional Results and Properties

Here we give the cdf and pdf of ur:n, r = 1, 2, · · · , n for a standard uniform uniform

distribution with f(x) = 1 and F (x) = u, where 0 ≤ x ≤ 1.

We first obtain the cdf of ur:n, (1 ≤ r ≤ n) to be

Fr:n(x) = Pr(Xr:n ≤ x)

=
n∑
r=1

(
n

r

)
[F (x)]r[1− F (x)]n−r, −∞ < x <∞

(3.2)

Furthermore, by using the identity that

n∑
r=1

(
n

r

)
pr[1− p]n−r =

p∫
0

n!

(r − 1)!(n− r)!
tr−1(1− t)n−r dt, 0 < p < 1

we can write the cdf of Xr:n from equation (3.2) as

Fr:n(x) =

F (x)∫
0

n!

(r − 1)!(n− r)!
tr−1(1− t)n−r dt

= IF (x)(r, n− r + 1), −∞ < x <∞

(3.3)

which is incomplete beta function (see Pearson (1934)).

Accordingly, from equations (3.2) and (3.3), we have the cdf of ur:n as

Fr:n(u) =
n∑
r=1

(
n

r

)
ur[1− u]n−r

=

u∫
0

n!

(r − 1)!(n− r)!
tr−1[1− t]n−r dt, 0 < u < 1

(3.4)
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Similarly, from equation (2.11) we obtain the pdf of ur:n, (1 ≤ r ≤ n) to be

fr:n(u) =
n!

(r − 1)!(n− r)!
ur−1[1− u]n−r, 0 ≤ u ≤ 1 (3.5)

The above density function is from the family of beta distributions; Beta(r, n− r + 1).

Hence, the pdf of the minimum value (i.e r = 1) is given as

fX(1)
(u) = n(1− u)n−1 (3.6)

and the pdf of the maximum value (i.e r = n) is given by

fX(n)
(u) = nun−1 (3.7)

In general, the pdf of beta distribution with mean and variance are,

fw(w) =
Γ(a+ b)

Γ(a)Γ(b)
wa−1[1− w]b−1

where 0 < w < 1 and Γ(·) is the gamma function

E(w) =
a

a+ b

V ar(w) =
ab

(a+ b)2(a+ b+ 1)

Hence, the pdf of the rth order statistic of standard uniform distribution with mean and

variance is given as,

fr:n(u) =
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
ur−1[1− u](n−r+1)−1, 0 ≤ u ≤ 1 (3.8)

with

E(ur:n) =
r

r + (n− r + 1)
=

r

n+ 1
(3.9)

and

V ar(ur:n) =
r(n− r + 1)

(n+ 1)2(n+ 2)
(3.10)
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Note, the proofs for the mean (3.9) and variance (3.10) will be done in section (3.4).

From equation (2.20) and (2.22) we have the joint cdf of ur:n and us:n, 1 ≤ r < s ≤ n to

be

Fr,s:n(ur, us) =
n∑
r=s

r∑
s=r

n!

s!(r − s)!(n− r)!
usr(us − ur)r−s(1− us)n−r

=

ur∫
0

us∫
1

n!

(r − 1)!(s− r − 1)!(n− s)!
tr−1
1 (t2 − t1)s−r−1(1− t2)n−s dt2dt1

0 ≤ ur < us ≤ 1

(3.11)

with the joint pdf of ur:n and us:n from equation (2.16) obtained as

fr,s:n(ur, us) =
n!

(r − 1)!(s− r − 1)!(n− s)!
ur−1
r (us − ur)s−r−1(1− us)n−s

0 ≤ ur < us ≤ 1

(3.12)

which takes the form of joint bivariate Beta(r, s− r, n− s+ 1) distribution.

From equation (2.28), we can see that the joint density function of all n order statistics

based on standard uniform distribution with density function f(u) = 1; 0 ≤ u ≤ 1 is

given by

f1,2,··· ,n:n(u1, u2, · · · , un) = n![f(u1) · f(u2) · · · f(un)]

= n!
n∏
i=1

f(ui)

= n!, 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ n

(3.13)

Theorem 3.3.1. For a standard uniform distribution, the random variables V1 = ur:n/us:n

and V2 = us:n; 1 ≤ r < s ≤ n are statistically independent, with V1 and V2 having

Beta(r, s− r) and Beta(s, n− s+ 1) distributions respectively.
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Proof: From equation (3.12), we have the joint density function of ur:n and us:n (1 ≤
r < s ≤ n) to be

fr,s:n(ur, us) =
n!

(r − 1)!(s− r − 1)!(n− s)!
ur−1
r (us − ur)s−r−1(1− us)n−s

Taking the transformation;

V1 = ur:n/us:n and V2 = us:n

we note that the jacobian of this transformation is, v2, hence the joint pdf of V1 and V2 is

fv1,v2(v1, v2) =
(s− 1)!

(r − 1)!(s− r − 1)!
vr−1

1 (1− v1)s−r−1 · n!

(s− 1)!(n− s)!
vs−1

2 (1− v2)n−s

0 < v1 < 1, 0 < v2 < 1

(3.14)

Implying that the random variables V1 and V2 are statistically independent and also dis-

tributed as Beta(r, s− r) and Beta(s, n− s+ 1) respectively.

Theorem 3.3.2. Consider a standard uniform (0,1) distribution, the random variables

V1 =
ur1:n

ur2:n

, V2 =
ur2:n

ur3:n

, · · · , Vi−1 =
uri−1:n

uri:n
and Vi = uri:n

(1 ≤ r1 < r2 < · · · < ri ≤ n) are all statistically independent, and have distributions

Beta(r1, r2 − r1), Beta(r2, r3 − r2), · · · , Beta(ri−1, ri − ri−1) and Beta(ri, n − ri + 1) re-

spectively.
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Proof: From the above theorem, we obtain

E(
i∏

j=1

umjrj:n) = E
( i∏
j=1

v
k1+k2+···+kj
j

)
=

i∏
j=1

E(v
k1+k2+···+kj
j )

=
i∏

j=1

(
n!

n+
i∑

j=1

kj

)(
(rj + k1 + k2 + · · ·+ kj − 1)!

(rj + k1 + k2 + · · ·+ kj−1 − 1)!

)

=
n!

n+
i∑

j=1

kj

i∏
j=1

(
(rj + k1 + k2 + · · ·+ kj − 1)!

(rj + k1 + k2 + · · ·+ kj−1 − 1)!

)

with k0 = 0

(3.15)

Hence, from equation (3.15), specifically we obtain that for 1 ≤ r1 < r2 < r3 < r4 ≤ n.

E(uk1
r1:n
uk2
r2:n
uk3
r3:n
uk4
r4:n

)

=
n!(k1 + r1 − 1)!(k1 + k2 + r2 − 1)!(k1 + k2 + k3 + r3 − 1)!(k1 + k2 + k3 + k4 + r4 − 1)!

(r1 − 1)!(k1 + r2 − 1)!(k1 + k2 + r3 − 1)!(k1 + k2 + k3 + r4 − 1)!(n+ k1 + k2 + k3 + k4)!

(3.16)

These first four cummulants and cross-cummulants of uniform order statistics obtained in

equation (3.16) above may be used to develop some approximations for the corresponding

quantities of order statistics from arbitrary continuous distribution F (x). This method of

approximation is discussed in detail by David and Johnson (1954).

3.4 Expected Values and Moments of Uniform Order

Statistics

Here we find the single moments Ur:n and product moments of Ur:n and Us:n of order

statistics from the case of the standard uniform distribution, hence, showing the means,

variances, covariances and correlations.

66



From equation (3.1) and for any α > −r, we get the following results

E(Ur:n)α =

∫ 1

0

xαf(x) dx

=
n!

(r − 1)!(n− r)!

∫ 1

0

xα[F (x)]r−1[1− F (x)]n−rf(x) dx

=
n!

(r − 1)!(n− r)!

∫ 1

0

xαxr−1(1− x)n−r dx

=
n!

(r − 1)!(n− r)!
β(α + r, n− r + 1)

=
n!Γ(α + r)Γ(n− r + 1)

(r − 1)!(n− r)!Γ(n+ α + 1)

=
n!Γ(α + r)

(r − 1)!Γ(n+ α + 1)

=
n!(α + r − 1)!

(r − 1)!(n+ α)!

(3.17)

where β(a, b) and Γ(s) denote the beta function and gamma function respectively, which

are related as

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

We note also that

Γ(n) = (n− 1)! for n = 1, 2, · · ·

Implying that the αth moment is B(r + α, n− r + 1)/B(r, n− r + 1)

For α = 1;

E(Ur:n) = ur:n

=
n!Γ(r + 1)

(r − 1)!Γ(n+ 2)

=
n!r!

(r − 1)!(n+ 1)!

=
r

n+ 1
, 1 ≤ r ≤ n

(3.18)
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and

E(1/Ur:n) =
n!Γ(r − 1)

(r − 1)!Γ(n)

=
n

r − 1
, 2 ≤ r ≤ n

(3.19)

For α = 2;

E(Ur:n)2 =
n!Γ(r + 2)

(r − 1)!Γ(n+ 3)

=
n!(r + 1)!

(r − 1)!(n+ 2)!

=
n!(r + 1)r(r − 1)!

(r − 1)!(n+ 2)(n+ 1)n!

=
r(r + 1)

(n+ 1)(n+ 2)
, 1 ≤ r ≤ n

(3.20)

and

E
( 1

(Ur:n)2

)
=

n(n− 1)

(r − 1)(r − 2)
, 3 ≤ r ≤ n (3.21)

In general, for k = 1, 2, · · · , we have

E(Ur:n)k =
n!Γ(r + k)

(r − 1)!Γ(n+ k + 1)

=
n!(r + k)(r + k − 1) · · · (r + 1)r(r − 1)!

(r − 1)!(n+ k + 1)(n+ k) · · · (n+ 2)(n+ 1)n!

=
r(r + 1) · · · (r + k − 1)

(n+ 1)(n+ 2) · · · (n+ k)
, 1 ≤ r ≤ n

(3.22)

and

E(
1

(Ur:n)k
) =

n(n− 1) · · · (n− k + 1)

(r − 1)(r − 2) · · · (r − k)
, k + 1 ≤ r ≤ n (3.23)
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It follows from equations (3.18) and (3.20) that

V ar(Ur:n) = E(Ur:n)2 − [E(Ur:n)]2

=
r(r + 1)

(n+ 1)(n+ 2)
− [

r

(n+ 1)
]2

=
r(r + 1)(n+ 1)− r2(n+ 2)

(n+ 1)2(n+ 2)

=
nr2 + r2 + nr + r − nr2 − 2r2

(n+ 1)2(n+ 2)

=
r(n− r + 1)

(n+ 1)2(n+ 2)
, 1 ≤ r ≤ n

(3.24)

and from equations (3.19) and (3.21)

V ar(1/Ur:n) =
n(n− 1)

(r − 1)(r − 2)
− [

n

r − 1
]2

=
n(n− 1)(r − 1)− n2(r − 2)

(r − 1)2(r − 2)

=
n2r − n2 − nr + n− n2r + 2n2

(r − 1)2(r − 2)

=
n(n− r + 1)

(r − 1)2(r − 2)
, 3 ≤ r ≤ n

(3.25)

Consider two uniform order statistics Ur:n and Us:n, 1 ≤ r < s ≤ n.

Hence

E(Umr
r:nU

ms
s:n ) =

∫ 1

0

∫ 1

0

Umr
r:nU

ms
s:n f(UrUs) dUrdUs

=
n!

(r − 1)!(s− r − 1)!(n− s)!
β(r +mr, s− r)β(s+mr +ms, n− s+ 1)

=
n!

(n+mr +ms)!
· (r +mr − 1)!

(r − 1)!
· (s+mr +ms − 1)!

(s+mr − 1)

(3.26)
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setting mr = ms = 1, we obtain

E(Ur:nUs:n) =
n!

(n+ 2)!
· r!

(r − 1)!
· (s+ 1)!

s!

=
n!

(n+ 2)(n+ 1)n!
· r(r − 1)!

(r − 1)!
· (s+ 1)s!

s!

=
r(s+ 1)

(n+ 1)(n+ 2)
, 1 ≤ r < s ≤ n

(3.27)

Hence,

σr,s:n = Cov(Ur:nUs:n)

= E(Ur:nUs:n)− E(Ur:n)E(Us:n)

=
r(s+ 1)

(n+ 1)(n+ 2)
− r

(n+ 1)
· s

(n+ 1)

=
r(s+ 1)

(n+ 1)(n+ 2)
− rs

(n+ 1)2

=
(rs+ r)(n+ 1)− rs(n+ 2)

(n+ 1)2(n+ 2)

=
nr + r − rs

(n+ 1)2(n+ 2)

=
r(n− s+ 1)

(n+ 1)2(n+ 2)

(3.28)

and

Corr(Ur:nUs:n) =
Cov(Ur:nUs:n)√

V ar(Ur:n)V ar(Us:n)

=
r(n− s+ 1)

(n+ 1)2(n+ 2)

(n+ 1)2(n+ 2)√
r(n− r + 1) + s(n− s+ 1)

=

{
r(n− s+ 1)

s(n− r + 1)

}1/2

(3.29)

Subsequently, the correlation coefficient between the minimum value r = 1 and maximum
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value s = n is given as,

Corr(U1:n, Xn:n) =

{
1(n− n+ 1)

n(n− 1 + 1)

}1/2

=
{ 1

n2

}1/2

=
1

n

3.5 Distribution of the Median, Range and Other

Statistics

Here we give the distribution of the sample median and sample range of order statistics

from the standard uniform distribution.

3.5.1 Distribution of the sample range

The sample range is given by

Rn = Xn:n −X1:n

Now let

X1:n take the value x

Xn:n take the value y

Rn take the value w

Therefore,

Rn = w = y − x

and

y = w + x

From equation (2.16) and letting r = 1 and s = n, we have the pdf of the sample range
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given as

fX1:nXn:n(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
[F (x)]r−1[F (y)− F (x)]s−r−1[1− F (y)]n−sf(x)f(y)

=
n!

0!(n− 2)!0!
[F (x)]0f(x)[F (w + x)− F (x)]n−2f(w + x)[1− F (w + x)]0

= n(n− 1)f(x)f(w + x)[F (w + x)− F (x)]n−2

(3.30)

Since f(x) = 1 and F (x) = u, we get the pdf of Rn as;

fX1:nXn:n(x,w + x) = n(n− 1) · 1 · 1 · [u+ w − u]n−2

= n(n− 1)wn−2
(3.31)

for a starting point uε[0, 1− w] with interval length w.

To find the probability of X1:n and Xn:n, within some interval of w, we integrate over all

(permissible) starting points, u:

f(w) =

1−w∫
0

fX1:nXn:n(x,w + x) du

=

1−w∫
0

n(n− 1)wn−2 du

= n(n− 1)wn−2

1−w∫
0

du

= n(n− 1)wn−2(1− w)

(3.32)

which is the distribution of the sample range for standard uniform distribution.

Using equation (3.32), we get the cdf of the sample range Rn as

FRn(r) =

r∫
0

n(n− 1)wn−2(1− w) dw

= nrn−1 − (n− 1)rn, 0 < r < 1

(3.33)
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Knowing that F (x1 + r) ≡ 1 when x > 1 − r, we get the cdf of sample range Rn from

equation (2.135) as

FRn(r) =

1−r∫
0

rn−1 dx1 + n

1∫
1−r

(1− x1)n−1 dx1

= nrn−1(1− r) + rn, 0 < r < 1

(3.34)

which is as expressed in equation (3.33).

As seen in equations (3.32) and (3.33), the sample range Rn from a standard uniform

population has a Beta(n− 1, 2) distribution.

From equation (2.137), we can see that the pdf of quasirange Ri,j:n for standard uniform

distribution is,

fRi,j:n(ω) =
n!

(i− 1)!(j − i− 1)!(n− j)!
ωj−i−1

1−ω∫
0

xi−1
i (1− ω − xi)n−j

=
n!

(j − i− 1)!(n− j + i)!
ωj−i−1(1− ω)n−j+i, 0 < ω < 1

(3.35)

Similarly, from equation (2.139), the pdf of the sample midrange Vn for standard uniform

distribution is obtained as,

for 0 ≤ t ≤ 1
2
;

fVn(t) = 2n(n− 1)

t∫
0

(2t− 2x1)n−2 dx1

= 2n−1ntn−1, 0 ≤ t ≤ 1

2

(3.36)

and for 1
2
≤ t ≤ 1;

fVn(t) = 2n(n− 1)

t∫
2t−1

(2t− 2x1)n−2 dx1

= 2n−1n(1− t)n−1,
1

2
≤ t ≤ 1

(3.37)
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Using equations (3.36) and (3.37), we can obtain the cdf of the sample midrange Vn for

the standard uniform distribution as;

FVn(t0) = Pr(Vn ≤ t0) = 2n−1tn0 , if 0 ≤ t0 ≤
1

2

= 1− 2n−1(1− t0)n, if
1

2
≤ t0 ≤ 1

(3.38)

Expectation of the sample range

We can further show the expectation of the sample range Rn = Xn:n − X1:n by taking

the expectation of the difference of the random variables Xn:n with X1:n. From equation

(2.11), we had the pdf of the rth order statistic as,

fXr:n(u) =
n!

(r − 1)!(n− r)!
[FX(u)]r−1fX(u)[1− FX(u)]n−r

Letting r = 1 and r = n for the 1st and nth order statistic (of the uniform distribution)

respectively, we get

fX1:n(u) = n(1− u)n−1

fXn:n(u) = nun−1

Now, taking the expectation of their difference, we get

E(Rn) = E(Xn:n −X1:n)

=

1∫
0

uf(Xn:n −X1:n) du

=

1∫
0

u[nun−1 − n(1− u)n−1] du

=

1∫
0

nun du−
1∫

0

nu(1− u)n−1 du

=
n

n+ 1
− 1

n+ 1

=
n− 1

n+ 1

(3.39)

We note that Xn:n and X1:n are not independent but that the expectation of the sums of

random variables is still the same regardless.
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The joint pdf of sample range (Rn) and mid-range (m)

We show the joint pdf of range Rn and mid-range m in a random sample of size n from

a uniform population over the interval (0, 1).

From Rn = Xn:n−X1:n and m = 1
2
[X1:n+Xn:n], we find two equations, Xn:n = 2M−X1:n

and Xn:n = R +X1:n, solving them simultaneously gives;

Xn:n = M +
R

2

and

X1:n = M − R

2

J =

∣∣∣∣∣ δX1:n

δR
δX1:n

δM
δXn:n

δR
δXn:n

δM

∣∣∣∣∣ =

∣∣∣∣∣ −1
2

1
1
2

1

∣∣∣∣∣ = |−1| = 1

g(r,m) = fX1:nXn:n(r,m) · |J |

but

fX1:nXn:n(x, y) =
n!

(1− 1)!(n− 1− 1)!(n− n)!
[F (x)]−1f(x)[F (y)− F (x)]n−1−1f(y)[1− F (y)]n−n

=
n!

(n− 2)!
f(x)[F (y)− F (x)]n−2f(y)

= n(n− 1)[y +
1

2
− (x+

1

2
)]n−2

= n(n− 1)[y − x]n−2

since f(x) ∼ U(0, 1)
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f(x) =
1

1− 0
=

1, 0 < x < 1

0, otherwise

and

F (x) =

∫ x

0

1 dt = t|x0 = x

Therefore,

g(r,m) = [fX1:nXn:n(r,m)] |−1|
= n(n− 1)[r +m−m]n−2

= n(n− 1)rn−2; 0 ≤ r ≤ 1− 2 |m| ≤ 1

Which is the joint pdf of range and mid-range.

Hence, the pdf of mid-range m is given by;

g(m) =

∫ 1−2|m|

0

g(r,m) dr

=

∫ 1−2|m|

0

n(n− 1)rn−2 dr

= n(n− 1)
rn−1

n− 1
|1−2|m|
0

g(m) = n[1− 2|m|]n−1; |m|≤ 1

3.5.2 Distribution of the sample median

The sample median, which we will denote by M , is defined as;

M =

X(n+1)/2:n if n is odd

[Xn/2:n +Xn/2+1:n]/2 if n is even
(3.40)
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Consider when n is odd. Then from equation (2.11) we have the pdf of the sample median

X̃n = X(n+1)/2:n to be

fX̃n(x) =
n!

(r − 1)!(n− r)!
[F (x)]r−1[1− F (x)]n−rf(x)

=
n!

((n+ 1)/2− 1)!(n− (n+ 1)/2)!
[F (x)](n−1)/2[1− F (x)](n−1)/2f(x)

=
n!

([(n− 1)/2]!)2
[F (x)(1− F (x))](n−1)/2f(x), −∞ < x <∞

(3.41)

The above pdf is symmetric about 0 if the population distribution is symmetric about 0.

For the case of standard uniform distribution, the pdf of the sample median given in

equation (3.41) becomes

fũn(u) =
n!

([(n− 1)/2]!)2
u(n−1)/2[1− u](n−1)/2, 0 ≤ u ≤ 1 (3.42)

We can further work out the moments of the sample median X̃n from equation (3.41).

The mth moment is obtained as below from equation (3.17) and r = (n− 1)/2.

E(ũn
m) =

n!(m+ r − 1)!

(r − 1)!(n+m)!

=
n!

(n+m)!
· (m+ r − 1)!

(r − 1)!

=
n!

(n+m)!
· (m+ (n+ 1)/2− 1)!

((n+ 1)/2− 1)!

=
n!

(n+m)!
· (m+ (n− 1)/2)!

((n− 1)/2)!
where m = 1, 2, · · ·

(3.43)

Specifically, we can find the mean and variance as follows;
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For mean, we set m = 1 and obtain

E(ũn) =
n!

(n+m)!
· (m+ (n− 1)/2)!

((n− 1)/2)!

=
n!

(n+ 1)!
· (1 + (n− 1)/2)!

((n− 1)/2)!

=
1

(n+ 1)
· ((n+ 1)/2)!

((n− 1)/2)!

=
1

(n+ 1)
· (n+ 1)/2((n− 1)/2)!

((n− 1)/2)!

=
1

2

(3.44)

Hence, E(ũn) = 1
2

If now, m = 2;

E(ũn
2) =

n!

(n+m)!
· (m+ (n− 1)/2)!

((n− 1)/2)!

=
n!

(n+ 2)!
· (2 + (n− 1)/2)!

((n− 1)/2)!

=
1

(n+ 2)(n+ 1)
· n+ 3

2
· n+ 1

2

=
(n+ 3)

4(n+ 2)

(3.45)

Therefore, the variance is given by

V ar(ũn) = E(ũn
2)− [E(ũn)]2

=
n+ 3

4(n+ 2)
− 1

4

=
1

4(n+ 2)

(3.46)

Hence, V ar(ũn) = 1
4(n+2)

Suppose now the sample size n is even. Then the sample median is given by X̃n =

(Xn/2:n +Xn/2+1:n)/2.

We then derive the distribution of X̃n in this case by first from equation (2.16) have the
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joint density function of ˜Xn/2:n and X̃n/2+1:n as;

fn
2
,n
2

+1(x1, x2) =
n!

(n
2
− 1)!(n

2
+ 1− n

2
− 1)!(n− (n

2
+ 1))!

[F (x1)]
n
2
−1[F (x2)− F (x1)]

n
2

+1−n
2
−1[1− F (x2)]n−(n

2
+1)f(x1)f(x2)

=
n!

[(n
2
− 1)!]2

[F (x1)(1− F (x2))]
n
2
−1f(x1)f(x2), −∞ < x1 < x2 <∞

(3.47)

From equation (3.47) above, we obtain the joint density function of ˜Xn/2:n and X̃n/2+1:n

as;

fXn/2:n,X̃n
(x1, x) =

2n!

(n
2
− 1)!(n− n

2
− 1)!(n− n)!

[F (x1)]
n
2
−1[1− F (2x− x1)]n−

n
2
−1[F (2x− x1)− F (x1)]n−nf(x1)f(2x− x1)

=
2n!

[(n
2
− 1)!]2

[F (x1)]
n
2
−1[1− F (2x− x1)]

n
2
−1f(x1)f(2x− x1), −∞ < x1 < x <∞

(3.48)

If we integrate out x1 in equation (3.48), we obtain the pdf of the sample median X̃n as

below

fX̃n(x) =

x∫
−x

fXn/2:n,X̃n
(x1, x) dx1

=

x∫
−x

2n!

[(n
2
− 1)!]2

[F (x1)]
n
2
−1[1− F (2x− x1)]

n
2
−1f(x1)f(2x− x1) dx1

=
2n!

[(n
2
− 1)!]2

x∫
−x

[F (x1)]
n
2
−1[1− F (2x− x1)]

n
2
−1f(x1)f(2x− x1) dx1

where −∞ < x <∞

(3.49)
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In particular, for a standard uniform distribution, we obtain the pdf of the sample median

X̃n as;

fũn(u) =
2n!

[(n
2
− 1)!]2

1∫
0

u
n
2
−1[1− t]

n
2
−1 du

=
2n!

[(n
2
− 1)!]2

· [1− t]
n
2
−1 · u

n
2
−1

n
2

∣∣∣∣∣
1

0

=
2n!

[(n
2
− 1)!]2

2

n
[1− t]

n
2
−1

(3.50)

The cdf of the sample median X̃n can simply be written from equation (3.49) as;

FX̃n(x0) = Pr(X̃n ≤ x0)

=
2n!

[(n
2
− 1)!]2

x0∫
−x

x∫
−x

[F (x1)]
n
2
−1[1− F (2x− x1)]

n
2
−1f(x1)f(2x− x1) dx1dx

where −∞ < x0 <∞

(3.51)

By changing the order of integration, we get the cdf of X̃n as;

FX̃n(x0) =
2n!

[(n
2
− 1)!]2

x0∫
−x

[F (x1)]
n
2
−1f(x1)

[ x∫
x1

[1− F (2x− x1)]
n
2
−1f(2x− x1) dx

]
dx1

=
n!

(n
2
− 1)!(n

2
)!

[ x0∫
−∞

[F (x1)]
n
2
−1[1− F (x1)]

n
2 f(x1) dx1

−
x0∫
−∞

[F (x1)]
n
2
−1[1− F (2x0 − x1)]

n
2 f(x1) dx1

]
(3.52)

Notably, we have assumed an infinite support population in deriving equation (3.52).

For the case of standard uniform distribution, where the population is finite, we take

1−F (2x0−x1) ≡ 0 whenever x1 ≤ 2x0−1 and obtain the cdf of X̃n from equation (3.52)
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as below.

For 0 ≤ x0 ≤ 1
2
;

FX̃n(x0) =
n!

(n
2
− 1)!(n

2
)!

[ x0∫
0

x
n
2
−1

1 [1− x1]
n
2 dx1 −

x0∫
0

x
n
2
−1

1 [1 + x1 − 2x0]
n
2 dx1

]

= Ix0

(n
2
,
n

2
+ 1
)
− n!

(n
2
− 1)!(n

2
)!

n
2∑

r=0

(−1)r
(
n
2

r

)
[1− x0]

n
2
−r

x0∫
0

x
n
2
−1

1 [x0 − x1]r dx1

= Ix0

(n
2
,
n

2
+ 1
)
−

n
2∑

r=0

(−1)r
(

n
n
2
− r

)
x
n
2

+r

0 [1− x0]
n
2
−r, 0 ≤ x0 ≤

1

2

(3.53)

and for 1
2
≤ x0 ≤ 1;

FX̃n(x0) =
n!

(n
2
− 1)!(n

2
)!

[ x0∫
0

x
n
2
−1

1 [1− x1]
n
2 dx1 −

x0∫
2x0−1

x
n
2
−1

1 [1 + x1 − 2x0]
n
2 dx1

]

= Ix0

(n
2
,
n

2
+ 1
)
− n!

(n
2
− 1)!(n

2
)!

n
2
−1∑
r=0

(
n
2
− 1

r

)
[2x0 − 1]

n
2
−1−r[1− x0]

n
2

+r+1

1∫
0

t
n
2

+r dt

= Ix0

(n
2
,
n

2
+ 1
) n

2
−1∑
r=0

(
n
2

+ r

r

)(
n

n
2
− 1− r

)
[2x0 − 1]

n
2
−1−r[1− x0]

n
2

+r+1,
1

2
≤ x0 ≤ 1

(3.54)

In equations (3.53) and (3.54), Ix0

(
n
2
, n

2
+1
)

denotes an incomplete beta function, as used

in equation (2.14).

Specifically, from equations (3.53) and (3.54), we get that;

FX̃n

(1

2

)
= I 1

2

(n
2
,
n

2
+ 1
)
− 1

2n

(
n− 1
n
2
− 1

)
(3.55)

81



3.5.3 Estimation of percentiles

In descriptive statistics, we define the sample percentiles using the order statistics (even

though the term order statistics may not be used in a non-calculus based introductory

statistics course). For example, if sample size is an odd integer n = 2m+1, then the sam-

ple median is the order statistic Xm+1. The preceding discussion on the order statistics

of the uniform distribution can show us that this approach is a sound one.

Suppose we have a random sample of size n from an arbitrary continuous distribution.

The order statistics listed in ascending order are:

X1 < X2 < X3 < · · · < Xn

For each i ≤ n, consider Wi = F (Xi). Since the distribution function F (x) is a non-

decreasing function, the Wi are also increasing:

W1 < W2 < W3 < · · · < Wn

It can be shown that if F (x) is a distribution function of a continuous random variable

X, then the transformation F (X) follows the uniform distribution U(0, 1). Then the fol-

lowing transformed random sample:

F (X1), F (X2), · · · , F (Xn)

are drawn from the uniform distribution U(0, 1). Furthermore, Wi are the order statistics

for this random sample. By the preceding discussion,

E[Wi] = E[F (Xi)] =
i

n+ 1

Note that F (Xi) is the area under the density function f(x) and to the left of Xi. Thus

F (Xi) is a random area and E[Wi] = E[F (Xi)] is the expected area under the density

curve f(x) to the left of Xi.
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Recall that f(x) is the common density function of the original sample X1, X2, · · · , Xn.

For example, suppose the sample size n is an odd integer where n = 2m + 1. Then the

sample median is Xm+1. Note that

E[Wm+1] =
m+ 1

n+ 1
=

1

2

Thus if we choose Xm+1 as a point estimate for the population median, Xm+1 is expected

to be above the bottom 50% of the population and is expected to be below the upper

50% of the population.

Furthermore, E[Wi−Wi−1] is the expected area under the density curve and between Xi

and Xi−1. This expected area is:

E[Wi −Wi−1] = E[F (Xi)]− E[F (Xi−1)] =
i

n+ 1
− i− 1

n+ 1
=

1

n+ 1

The expected area under the density curve and above the maximum order statistic Xn is:

E[1− F (Xn)] = 1− n

n+ 1
=

1

n+ 1

Consequently here is an interesting observation about the order statistics X1 < X2 <

X3 < · · · < Xn. The order statistics Xi divides the area under the density curve f(x) and

above the x-axis into n+ 1 areas. On average each of these area is

1

n+ 1

As a result, it makes sense to use order statistics as estimator of percentiles.

For example, we can use Xi as the (100p)th percentile of the sample where

p =
i

n+ 1
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Then Xi is an estimator of the population percentile τp where the area under the density

curve f(x) and to the left of τp is p.

In the case that (n+1)p is not an integer, then we interpolate between two order statistics.

For example, if (n+ 1)p = 5.7, then we interpolate between X5 and X6.
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Chapter 4

Order Statistics from Logistic

Distribution

4.1 Introduction

In this chapter, we apply the distributions of order statistics and their functions as de-

scribed in chapter 2 to the case of logistic distribution.

4.2 Notations and Definitions

A random variable Y has the logistic distribution with location parameter a and scale

parameter b if its density function is

f(y) =
exp(y−a

b
)

b
[
1 + exp(y−a

b
)
]2 , −∞ < y <∞ (4.1)

In this study, however, we will restrict ourselves to the standard logistic distribution, with

the pdf given as,

f(y) =
e−y

(1 + e−y)2
, −∞ < y <∞ (4.2)

and cdf given as

F (y) =
1

(1 + e−y)
, −∞ < y <∞ (4.3)
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Let Y1, Y2, · · · , Yn denote a random sample of size n from a logistic distribution with pdf

f(y) and cdf F (y) as given in equations (4.2) and (4.3) respectively.

We also let Y1:n, Y2:n, · · · , Yn:n be the associated order statistics obtained by arranging the

Y
′s
i in increasing order of magnitude.

4.3 Basic Distributional Results and Properties

Here we give the density function of Yi:n (1 ≤ i ≤ n) as,

fi:n(y) =
n!

(i− 1)!(n− i)!
[F (y)]i−1[1− F (y)]n−if(y)

=
n!

(i− 1)!(n− i)!
[(1 + e−y)−1]i−1[1− (1 + e−y)−1]n−ie−y(1 + e−y)−2

=
n!

(i− 1)!(n− i)!
[(1 + e−y)−1]i−1[e−y(1 + e−y)−1]n−ie−y(1 + e−y)−2, −∞ < y <∞

(4.4)

For the case i = 1 (minimum), the pdf of Y1:n is given by

f1:n(y) =
n!

(1− 1)!(n− 1)!
[(1 + e−y)−1]1−1[e−y(1 + e−y)−1]n−1e−y(1 + e−y)−2

=
n!

(n− 1)!
[e−y(1 + e−y)−1]n−1e−y(1 + e−y)−2

= n[e−y(1 + e−y)−1]n−1e−y(1 + e−y)−2, −∞ < y <∞

(4.5)

The cdf of Y1:n is given by

F1:n(y) = 1− [1− F (y)]n

= 1− [1− (1 + e−y)−1]n

= 1− [e−y(1 + e−y)−1]n

= 1− [e−ny(1 + e−y)−n]

=
[ 1

1 + e−y

]n
, −∞ < y <∞

(4.6)
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For the case i = n (maximum), the pdf of Yn:n is given by

fn:n(y) =
n!

(n− 1)!(n− n)!
[(1 + e−y)−1]n−1[e−y(1 + e−y)−1]n−ne−y(1 + e−y)−2

=
n!

(n− 1)!
[(1 + e−y)−1]n−1e−y(1 + e−y)−2

= n[(1 + e−y)−1]n−1e−y(1 + e−y)−2, −∞ < y <∞

(4.7)

The cdf of Yn:n is given by

Fn:n(y) = [F (y)]n

= [(1 + e−y)−1]n

= (1 + e−y)−n, −∞ < y <∞

(4.8)

The joint density function of Yi:n and Yj:n (1 ≤ i < j ≤ n) is given by

fi,j:n(yi, yj) =
n!

(i− 1)!(j − i− 1)!(n− j)!
[F (yi)]

i−1[F (yj)− F (yi)]
j−i−1

[1− F (yj)]
n−jf(yi)f(yj)

=
n!

(i− 1)!(j − i− 1)!(n− j)!
[(1 + e−yi)−1]i−1

[(1 + e−yj)−1 − (1 + e−yi)−1]j−i−1[1− (1 + e−yj)−1]n−j

e−yi(1 + e−yi)−2 · e−yj(1 + e−yj)−2, 1 ≤ i < j ≤ n

(4.9)

Also, the joint density function for all n order statistics is given by

f1,2,··· ,n:n(y1, y2, · · · , yn) = n!f(y1)f(y2) · · · f(yn)

= n!
n∏
i=1

f(yi)

= n!
n∏
i=1

e−yi

(1 + e−yi)2
, 0 ≤ y1 < y2 < · · · < yn <∞

(4.10)
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4.4 Expected Values and Moments of Logistic Order

Statistics

In this section, we find the single moment E(Y k
i:n) which we will denote by σki:n for

1 ≤ i ≤ n, k = 1 and the product moments E(Yi:n, Yj:n) which we will denote by σki,j:n for

1 ≤ i < j ≤ n of order statistics from the case of the standard logistic distribution. We

also derive the mean, variance and covariance.

We obtain the moments of logistic distribution using the moment generating function

(mgf) and the cumulant-generating function (cgf) techniques (for definition of mgf and

cgf, see section on Notations, Terminologies and Definitions).

From equation (4.4), we obtain the moment generating function of Yi:n (1 ≤ i ≤ n) as,

Mi:n(t) = E[etYi:n ]

=
1

B(i, n− i+ 1)

∞∫
−∞

e−(n−i+1)y+ty

(1 + e−y)n+1
dy

=
B(i+ t, n− i+ 1− t)

B(i, n− i+ 1)

=
Γ(i+ t)

Γ(i)

Γ(n− i+ 1− t)
Γ(n− i+ 1)

, 1 ≤ i ≤ n

(4.11)

where B(·, ·) and Γ(·) are complete beta and gamma functions respectively defined in the

definition section.

From equation (4.11), we obtain the cumulant-generating function of Yi:n as

Ki:n(t) = logMi:n(t)

= log
[Γ(i+ t)

Γ(i)

Γ(n− i+ 1− t)
Γ(n− i+ 1)

]
= logΓ(i+ t) + logΓ(n− i+ 1− t)− logΓ(i)− logΓ(n− i+ 1), 1 ≤ i ≤ n

(4.12)
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From equation (4.12), we obtain the mth cumulant of Yi:n to be

K
(m)
i:n =

dm

dtm
Ki:n(t)|t=0

=
dm

dtm

[
logΓ(i+ t) + logΓ(n− i+ 1− t)− logΓ(i)− logΓ(n− i+ 1)

]
=

dm

dtm
logΓ(i+ t)|t=0 +

dm

dtm
logΓ(n− i+ 1− t)|t=0

=
dm

dtm
logΓ(i) +

dm

dtm
logΓ(n− i+ 1)

= φ(m−1)(i) + (−1)mφ(m−1)(n− i− 1)

(4.13)

where φ(m)(·) = dm

dtm
logΓ(·) = Γ

′
(·)

Γ(·) and denotes a polygamma function of order m.

From equation (4.13) we obtain the mean as;

µi:n = K
(1)
i:n

= φ(1−1)(i) + (−1)1φ(1−1)(n− i− 1)

= φ(i)− φ(n− i− 1)

(4.14)

Also, the variance is obtained as;

σi,i:n = K
(2)
i:n

= φ(2−1)(i) + (−1)2φ(2−1)(n− i− 1)

= φ(1)(i) + φ(1)(n− i− 1)

(4.15)

where φ and φ(1) are the digamma and trigamma functions respectively.

From equation (4.9), we obtain the joint mgf of Yi:n and Yj:n as

Mi,j:n(t1, t2) = E[et1Yi:n+t2Yj:n ]

=
n!

(i− 1)!(j − i− 1)!(n− j)!

∞∫
−∞

yj∫
−∞

et1yi+t2yj

[F (yi)]
i−1[F (yj)− F (yi)]

j−i−1[1− F (yj)]
n−jf(yi)f(yj) dyidyj

(4.16)

We now make the following transformations

s = F (yi) =
1

1 + e−yi
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and

h = F (yj) =
1

1 + e−yj

This would imply that;

eyi =
s

1− s

and

eyj =
h

1− h

Re-writing equation (4.16), we get

Mi,j:n(t1, t2) =
n!

(i− 1)!(j − i− 1)!(n− j)!

1∫
0

h∫
0

( s

1− s

)t1( h

1− h

)t2
si−1[h− s]j−i−1[1− h]n−j dsdh

=
n!

(i− 1)!(j − i− 1)!(n− j)!

1∫
0

h∫
0

( st1

(1− s)t1
)( ht2

(1− h)t2

)
si−1[h− s]j−i−1[1− h]n−j dsdh

(4.17)

We now expand (1− s)−t1 as an infinite series in powers of s, and get

Mi,j:n(t1, t2) =
n!

(i− 1)!(j − i− 1)!(n− j)!

∞∑
r=0

(t1 + r − 1)(r)

r!

1∫
0

h∫
0

st1+i−1+r[h− s]j−i−1ht2 [1− h]n−j−t2 dsdh

(4.18)

where

(t1 + r − 1)(r) =

1 if r = 0

t1(t1 + 1)(2) · · · (t1 + r − 1)(r) if r ≥ 1
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But we note that

h∫
0

st1+i−1+r[h− s]j−i−1 ds = hj+t1+r−1B(t1 + i+ r, j − i)

Hence, re-writing equation (4.18) we get

Mi,j:n(t1, t2) =
n!

(i− 1)!(j − i− 1)!(n− j)!

∞∑
r=0

(t1 + r − 1)(r)

r!

B(t1 + i+ r, j − i)
1∫

0

hj+t1+t2+r−1[1− h]n−j−t2 dh

=
n!

(i− 1)!(j − i− 1)!(n− j)!

∞∑
r=0

(t1 + r − 1)(r)

r!

B(t1 + i+ r, j − i)B(j + t1 + t2 + r, n− j − t2 + 1)

=
Γ(n+ 1)

Γ(i)Γ(n− j + 1)

∞∑
r=0

(t1 + r − 1)(r)

r!

Γ(t1 + i+ r)

Γ(t1 + j + r)

Γ(t1 + t2 + j + r)Γ(n− j + 1− t2)

Γ(n− 1 + t1 + r)

(4.19)

which is the joint mgf of Yi:n and Yj:n.

Therefore, from equation (4.19) above, we can obtain the product moments as;

σk1,k2

i,j:n = E[Y k1
i:n , Y

k2
j:n]

=
dk1+k2

dtk1
1 dt

k2
2

Mi,j:n(t1, t2)|t1=t2=0

(4.20)
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Now, if k1 = k2 = 1, we get the covariance σi,j:n as,

σi,j:n = E[Yi:n, Yj:n]

=
d2

dt1dt2
Mi,j:n(t1, t2)|t1=t2=0

= φ
′
(j) + [φ(i)− φ(n+ 1)][φ(j)− φ(n− j + 1)]

+
∞∑
r=1

1

r

(i+ r − 1)(r)

(n+ r)(r)
[φ(j + r)− φ(n− j + 1)]

(4.21)

4.5 Distribution of the Median, Range and Other

Statistics

Here we give the distribution of the sample median and the sample range of order statistics

from the standard logistic distribution.

4.5.1 Distribution of the sample range

We denote the sample range Yn:n − Y1:n by Rn.

We first obtain the cdf of Rn from equation (2.135) as

FRn(r) = Pr(Rn ≤ r)

= n

∞∫
−∞

[F (y + r)− F (y)]n−1f(y) dy, 0 ≤ r <∞
(4.22)

We now expand [F (y + r)− F (y)]n−1, in equation (4.22), binomially,

[F (y + r)− F (y)]n−1 =
n−1∑
i=0

(−1)i
(
n− 1

i

)
[F (y + r)]n−1−i[F (y)]i (4.23)
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Hence,

FRn(r) = Pr(Rn ≤ r)

= n
n−1∑
i=0

(−1)i
(
n− 1

i

) ∞∫
−∞

[F (y + r)]n−1−i[F (y)]if(y) dy

= n
n−1∑
i=0

(−1)i
(
n− 1

i

) ∞∫
−∞

e−y

(1 + e−re−y)n−1−i(1 + e−y)i+2
dy

(4.24)

We then substitute s = 1
(1+e−re−y)

in equation (4.24) and obtain,

FRn(r) = Pr(Rn ≤ r)

= n

n−1∑
i=0

(−1)i
(
n− 1

i

)
e−(i+1)r∆i:n(r), 0 ≤ r <∞

(4.25)

where, if m = e−r − 1;

∆i:n(r) =

1∫
0

sn−1(1 +ms)−i−2 ds

=
1

(−m)n

[
(−1)i+1

(
n− 1

i+ 1

)
kn(1 +m)

+
n−1∑
i=0

(−1)k
(
n− 1

k

)
1

(k − i− 1)
{(1 +m)k−i−1 − 1}

]
=

1

(1− e−r)n
[
(−1)i

(
n− 1

i+ 1

)
r +

n−1∑
k=0

(−1)k
(
n− 1

k

)
1

(k − i− 1)
{e−(k−i−1)r − 1}

]
(4.26)

we set
(
n−1
i+1

)
to zero if i > n− 2.

Therefore, we substitute ∆i:n(r) in equation (4.26) into (4.25) and obtain the cdf of the

sample range Rn as;

FRn(r) = Pr(Rn ≤ r)

=
n

(1− e−r)n
n−1∑
i=0

(−1)i
(
n− 1

i

)[
(−1)i

(
n− 1

i+ 1

)
re−(i+1)r

+
n−1∑
k=0

(−1)k
(
n− 1

k

)
1

(k − i− 1)
{e−kr − e−(i+1)r}

]
, 0 ≤ r <∞

(4.27)
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We therefore, obtain the pdf of the sample range Rn by differentiating equation (4.27)

with respect to r.

fRn(r) =
n2e−r

(1− e−r)n+1

n−1∑
i=0

(−1)i
(
n− 1

i

)[
(−1)i

(
n− 1

i+ 1

)
re−(i+1)r

+
n−1∑
k=0

(−1)k
(
n− 1

k

)
1

(k − i− 1)
{e−kr − e−(i+1)r}

]
+

n

(1− e−r)n
n−1∑
i=0

(−1)i
(
n− 1

i

)[
(−1)i

(
n− 1

i+ 1

)
e−(i+1)r{1− (i+ 1)r}

−
n−1∑
k=0

(−1)k
(
n− 1

k

)
1

(k − i− 1)
{ke−kr − (i+ 1)e−(i+1)r}

]
, 0 ≤ r <∞

(4.28)

where also,
(
n−1
i+1

)
is set to zero if i > n− 2.

4.5.2 Distribution of the sample median

The density function of the median, Yn+1
2

, of a random sample of size n (where n is odd)

for any density function, fM(y), is given as,

fM(y) =
n!

(n+1
2
− 1)!(n− n+1

2
)!

[F (y)]
n+1

2
−1[1− F (y)]n−

n+1
2 f(y)

=
n!

[(n−1
2

)!]2
[F (y)(1− F (y))]

n−1
2 f(y)

(4.29)

Considering a logistic distribution with f(y) and F (y) as in equations (4.2) and (4.3)

respectively, then equation (4.29) becomes

fM(y) =
n!

[(n−1
2

)!]2
e−y(1 + e−y)−2[(1 + e−y)−1{1− (1 + e−y)−1}]

n−1
2

=
n!

[(n−1
2

)!]2
e−y(1 + e−y)−2[e−y(1 + e−y)−2]

n−1
2

(4.30)

Which can be summarized as

fM(y) =
n!

(m!)2
kkm (4.31)
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where m = n−1
2

and k = e−y(1 + e−y)−2.

95



Chapter 5

Order Statistics from Exponential

Distribution

5.1 Introduction

In this chapter, we apply the distributions of order statistics and their functions as de-

scribed in chapter 2 to the case of exponential distribution.

5.2 Notations and Definitions

A random variable X has the exponential distribution with parameter λ > 0 if its density

function is

f(x, λ) = λe−λx, x > 0 (5.1)

Then we denote X ∼ Exp(λ).

We will restrict our study to the standard exponential distribution, which is obtained

when λ = 1. Let X1, X2, · · · , Xn be independent and identically distributed standard

exponential, e(1), random variables with a density function

f(x) = e−x, x ≥ 0 (5.2)

Let X1:n, X2:n, · · · , Xn:n be the associated order statistics obtained by arranging the X
′s
i

in increasing order of magnitude.
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5.3 Basic Distributional Results and Properties

Here we give the density function of Xi:n, 1 ≤ i ≤ n.

fi:n(x) =
n!

(i− 1)!(n− i)!
[F (x)]i−1[1− F (x)]n−if(x)

=
n!

(i− 1)!(n− i)!
(1− e−x)i−1e−(n−i+1)x, 0 ≤ x <∞

(5.3)

For the case i = 1 (minimum), the pdf of X1:n is given by

f1:n(x) =
n!

(1− 1)!(n− 1)!
(1− e−x)1−1e−(n−1+1)x

=
n!

(n− 1)!
e−nx

= ne−nx, 0 ≤ x <∞

(5.4)

This shows a remarkable result that the minimum of n independent standard exponentials

is itself an exponential with mean 1
n

, i.e. it is distributed exactly as e(θ = 1/n).

The cdf of X1:n is given by

F1:n(x) = 1− [1− F (x)]n

= 1− [1− (1− e−x)]n

= 1− [e−x]n

= 1− e−nx

(5.5)

For the case i = n (maximum), the pdf of Xn:n is given by

fn:n(x) =
n!

(n− 1)!(n− n)!
(1− e−x)n−1e−(n−n+1)x

=
n!

(n− 1)!
(1− e−x)n−1e−x

= ne−x(1− e−x)n−1

= n
n−1∑
i=0

(−1)i
(
n− 1

i

)
e−(i+1)x, 0 ≤ x <∞

(5.6)
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with the cdf of Xn:n given by

Fn:n(x) = F (x)n

= (1− e−x)n

= (1− ne−x

n
)n

≈ exp(−ne−x)

(5.7)

∴ lim
n→∞

Fn:n(x) = lim
n→∞

exp(−ne−x) = 0

Similarly, the joint density of Xi:n and Xj:n, 1 ≤ i < j ≤ n, is given by [see David (1981)

and Arnold et al. (1992)]

fi,j:n(x, y) =
n!

(i− 1)!(j − i− 1)!(n− j)!
[F (x)]i−1f(x)[F (y)− F (x)]j−i−1f(y)[1− F (y)]n−j

=
n!

(i− 1)!(j − i− 1)!(n− j)!
(1− e−x)i−1(e−y − e−x)j−i−1e−xe−(n−j+1)y, 0 ≤ x < y <∞

(5.8)

with the joint pdf of X1:n and Xn:n given as

f1,n:n(x, y) = n(n− 1)e−(x+y)[e−y − e−x]n−2 (5.9)

The joint density function for all n order statistics is similarly given by

f1,2,··· ,n:n(x1, x2, · · · , xn) = n!f(x1)f(x2) · · · f(xn)

= n!
n∏
i=1

f(xi)

= n!
n∏
i=1

e−xi

= n!e−
∑n
i=1 xi ; 0 ≤ x1 < x2 < · · · < xn <∞

(5.10)
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5.4 Expected Values and Moments of Exponential

Order Statistics

We now let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n denote order statistics corresponding to the standard

exponential distribution with density function

F (x) = 1− e−x, x > 0

From the density function of Xi:n in equation(5.3), we calculate the general single moment

E(Zi:n)k as follows

E(Zi:n)k = E(Xk
i:n)

=

∫ ∞
0

xkfi:n(x) dx

=
n!

(i− 1)!(n− i)!

∫ ∞
0

xk[F (x)]i−1[1− F (x)]n−if(x) dx

=
n!

(i− 1)!(n− i)!

∫ ∞
0

xk[1− e−x]i−1[1− (1− e−x)]n−ie−x dx

=
n!

(i− 1)!(n− i)!

∫ ∞
0

xk[1− e−x]i−1e−(n−i+1)x dx

=
n!

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

) ∞∫
0

xke−(n−i+j+1)x dx,

But

∞∫
0

xke−(n−i+j+1)x dx = (n− i+ j + 1)−(k+1)

∞∫
0

tke−t dt

=
Γ(k + 1)

(n− i+ j + 1)(k+1)

Therefore;

E(Zi:n)k =
n!

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

)
Γ(k + 1)

(n− i+ j + 1)(k+1)
, i = 1, 2, · · · k ≥ 1

(5.11)
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If we let i = 1, then

E(Z1:n)k =
n!

(1− 1)!(n− 1)!

0∑
j=0

(−1)j
(

1− 1

j

)
Γ(k + 1)

(n− 1 + j + 1)(k+1)

=
n!

(n− 1)!

Γ(k + 1)

n(k+1)

= n
Γ(k + 1)

n(k+1)

=
Γ(k + 1)

nk
, k > −1

(5.12)

Now, if i = 2 and k > −1, we have

E(Z2:n)k =
n!

(2− 1)!(n− 2)!

2−1∑
j=0

(−1)j
(

2− 1

j

)
Γ(k + 1)

(n− 2 + j + 1)(k+1)

=
n!

(n− 2)!

[(−1)0
(

1
0

)
Γ(k + 1)

(n− 1)(k+1)
+

(−1)1
(

1
1

)
Γ(k + 1)

n(k+1)

]
= n(n− 1)

[ Γ(k + 1)

(n− 1)(k+1)
− Γ(k + 1)

n(k+1)

]
= n(n− 1)Γ(k + 1)

[
(n− 1)−(k+1) − n−(k+1)

]
(5.13)

Similarly, for i = n and k > −1, we have

E(Zn:n)k =
n!

(n− 1)!(n− n)!

n−1∑
j=0

(−1)j
(
n− 1

j

)
Γ(k + 1)

(n− n+ j + 1)(k+1)

=
n!

(n− 1)!

[(−1)0
(
n−1

0

)
Γ(k + 1)

1(k+1)
+ · · ·+

(−1)n−1
(
n−1
n−1

)
Γ(k + 1)

n(k+1)

]
= n

[
Γ(k + 1)− 2−(k+1)(n− 1)Γ(k + 1) + · · ·+ (−1)n−1n−(k+1)Γ(k + 1)

]
= nΓ(k + 1)

[
1− 2−(k+1)(n− 1) + · · ·+ (−1)n−1n−(k+1)

]
(5.14)
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We now introduce a theorem to enable us show the mean, variance and other expected

values of Zi:n.

Theorem 5.4.1. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics from the standard

exponential distribution. Then, the random variables Z1, Z2, · · · , Zn, where

Zi = (n− i+ 1)(X(i) −X(i−1)) (5.15)

with X(0) ≡ 0, are statistically independent and also have standard exponential distribu-

tions.

Proof: From equation (5.10), we saw that the joint density function of X(1), X(2), · · · , X(n)

is

f1,2,··· ,n:n(x1, x2, · · · , xn) = n!e
−

n∑
i=1

xi
; 0 ≤ x1 < x2 < · · · < xn <∞

We then consider the transformation given in equation (5.15) and obtain;

Z1 = nX(1), Z2 = (n− 1)(X(2) −X(1)), · · · , Zn = X(n) −X(n−1) (5.16)

From equation (5.16), we obtain an equavalent transformation below

X(1) =
Z1

n
,X(2) =

Z1

n
+

Z2

n− 1
, · · · , X(n) =

Z1

n
+

Z2

n− 1
+ · · ·+ Zn (5.17)

We then find the jacobian of this transformation as;

J(Z1, Z2, · · · , Zn) =

∣∣∣∣∣∣∣∣∣∣

∂X(1)

∂Z1

∂X(1)

∂Z2
· · · ∂X(1)

∂Zn
∂X(2)

∂Z1

∂X(2)

∂Z2
· · · ∂X(2)

∂Zn
...

...
...

∂X(n)

∂Z1

∂X(n)

∂Z2
· · · ∂X(n)

∂Zn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1
n

0 · · · 0
1
n

1
n−1

· · · 0
...

...
...

1
n

1
n−1

· · · 0

∣∣∣∣∣∣∣∣∣∣
= 1

n!
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We also let
n∑
i=1

xi =
n∑
i=1

zi, and obtain the joint density function of Z1, Z2, · · · , Zn as;

fZ1,Z2,··· ,Zn(Z1, Z2, · · · , Zn) = |J | fZ1,Z2,··· ,Zn(Z1, Z2, · · · , Zn)

= |J |n!f(Z1)f(Z2) · · · f(Zn)

= |J |n!
n∏
i=1

e−Zi

= |J |n!e
−

n∑
i=1

Zi

=
1

n!
n!e
−

n∑
i=1

Zi

= e
−

n∑
i=1

Zi
, 0 ≤ Z1 < Z2 < · · · < Zn <∞

(5.18)

Hence, Zi are statistically independent and also have standard exponential distribution.

From the proof of the theorem (5.4.1), we see that if Z(1:n), Z(2:n), · · · , Z(n:n) is the order

statistics corresponding to n i.i.d random variables from a standard exponential distribu-

tion, then

(Z(1:n), Z(2:n), · · · , Z(n:n))
d
= (

w1

n
,
w1

n
+

w2

n− 1
, · · · , w1

n
+

w2

n− 1
+ · · ·+ wn−1

2
+wn) (5.19)

where w1, w2, · · · , wn are independent exponential E(1) random variables.

From equation (5.19) and when k = 1, we obtain

µi:n = E(Zi:n)

= E(Z(1:n), Z(2:n), · · · , Z(n:n))

= E
(w1

n
+

w2

n− 1
+ · · ·+ wi

n− i+ 1

)
=
E(w1)

n
+
E(w2)

n− 1
+ · · ·+ E(wi)

n− i+ 1

=
1

n
+

1

n− 1
+ · · ·+ 1

n− i+ 1

=
i∑

j=1

1

n− j + 1
, 1 ≤ i ≤ n

(5.20)
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Since E(wi) = V ar(wi) = 1, if wi has a standard exponential distribution.

Hence

σi,i:n = V ar(Zi:n)

= V ar
(w1

n
+

w2

n− 1
+ · · ·+ wi

n− i+ 1

)
=
(V ar(w1)

n
+
V ar(w2)

n− 1
+ · · ·+ V ar(wi)

n− i+ 1

)
=

1

n2
+

1

(n− 1)2
+ · · ·+ 1

(n− i+ 1)2

=
i∑

j=1

1

(n− j + 1)2
, 1 ≤ i ≤ n

(5.21)

From equations (5.20) and (5.21) we obtain that

E(Zi:n)2 = V ar(Zi:n) + [E(Zi:n)]2

=
i∑

j=1

1

(n− j + 1)2
+
[ i∑
j=1

1

n− j + 1

]2 (5.22)

If we compare equations (5.20) and (5.22) with equation (5.11) taking k = 1 and k = 2,

then we get the following identities;

when k = 1,

E(Zi:n) =
n!

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

)
Γ(1 + 1)

(n− i+ j + 1)(1+1)

=
n!

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j

(
i−1
j

)
(n− i+ j + 1)2
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Therefore,

i∑
j=1

1

n− j + 1
=

n!

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j

(
i−1
j

)
(n− i+ j + 1)2

(5.23)

when k = 2,

E(Zi:n)2 =
n!

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

)
Γ(2 + 1)

(n− i+ j + 1)(2+1)

=
n!

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

)
2

(n− i+ j + 1)3

=
2(n!)

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j

(
i−1
j

)
(n− i+ j + 1)3

Therefore,

i∑
j=1

1

(n− j + 1)2
+
[ i∑
j=1

1

n− j + 1

]2

=
2(n!)

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j

(
i−1
j

)
(n− i+ j + 1)3

(5.24)

Now, from equation (5.20), we see that

E(Z1:n) =
1

n
(5.25)

and from equation (5.21), we see that

V ar(Z1:n) =
1

n2
(5.26)

this imply that V ar(Zi:n) −→ 0 as n −→∞
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Also, from equation (5.14), we see that

E(Zn:n) =
n∑
j=1

1

(n− j + 1)

=
n∑
j=1

1

j
∼ log(n)

(5.27)

this imply that E(Zn:n) −→∞ as n −→∞

and

V ar(Zn:n) =
n∑
j=1

1

j2
(5.28)

which tends to π2

6
as n −→∞.

Since Zi; i = 1, 2, · · · , n are i.i.d standard exponential random variables, the covariance

of Zr:n and Zs:n (1 ≤ r < s ≤ n) is given by

σr,s:n = Cov(Zr:n, Zs:n)

=
r∑
j=1

V ar
( wi
n− j + 1

)
=

r∑
j=1

1

(n− j + 1)2
, r ≤ s

(5.29)

5.5 Distribution of the Median, Range and Other

Statistics

Here we give the distribution of the sample range of order statistics from the standard

exponential distribution.

5.5.1 Distribution of the sample range

Let a random sample of size n from an exponential distribution Xi ∼ exp(1). We seek to

find the pdf of the sample range Rn = X(n) −X(1).
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Using the memoryless property of the exponential distribution stated elsewhere Galambos

and Kotz (1978) pg. 13, the difference between X(n) and X(1) is independent of the actual

value of X(1).

Hence, we find the pdf of Rn by first assuming that X(i) = 0.

Thus;

Pr(Rn < r) = Pr(n− 1 < r)

=
( r∫

0

f(x) dx
)n−1

=
( r∫

0

e−x dx
)n−1

= (1− e−r)n−1

(5.30)

where Pr(Rn < r) is the probability that the remaining n− 1 sample observations all fall

in the range (0, r).

Differentiating equation (5.30), we obtain the pdf of Rn as;

fRn(r) = (n− 1)e−r(1− e−r)n−2, 0 ≤ r <∞ (5.31)
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Chapter 6

Characterizations of Exponential

Distribution Based on Order

Statistics

6.1 Introduction

In this chapter, we review characterization results related to exponential distribution

based on order statistics and in particular by the distributional properties, independence,

and moments assumption of order statistics.

There is abundance of characterizations of exponential distribution and among them a

considerable part is based on properties of order statistics. Most of them could be found

in Ahsanullah and Hamedani (2010), Balakrishnan (1996) Galambos and Kotz (1978),

and Johnson et al. (1994).

6.2 Notations and Definitions

Let X1, X2, · · · , Xn denote independent and identically distributed random variables with

common exponential distribution having the pdf

f(x, λ) = λe−λx, for x ≥ 0 and λ > 0 (6.1)

with cdf given as

F (x, λ) = 1− e−λx, for x ≥ 0 and λ > 0 (6.2)
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Let X(1), X(2), · · · , X(n) denote the order statistics of X1, X2, · · · , Xn. A characterization

of the exponential distribution is shown by considering the identical distribution of the

random variables nX1:n and (n− i+ 1)(X1:n−Xi−1:n) for one i and one n with 2 5 i 5 n.

6.3 Characterization Based on Distributional Prop-

erties of Order Statistics

In this section, we study various characterization results of exponential distribution by

distributional properties of order statistics.

One of the basic characterizations of the exponential distribution states that among the

non-degenerate distributions only the exponential distribution has the property that nX1:n

for all n ≥ 1 is distributed as the population.

Theorem 6.3.1. Let F(x) be a non-degenerate distribution, we let

G(x) = 1− F (x) (6.3)

We assume that

G(x1, x2, · · · xn) = G(x1)G(x2) · · ·G(xn) (6.4)

holds for two integral values of n, n1 and n2 (say), such that (logn1)/(logn2) is irrational,

and in equation (6.4), x1 = x2 = · · · = xn = x ≥ 0 is arbitrary. Then F (x) = 1 − e−λx

where x ≥ 0, λ > 0

Proof: The result is due to Sethuraman (1965).

Assuming

[G(x)]n = G(nx), ∀n ≥ 0 and for n = n1 or n2 (6.5)

Also, equation (6.5) can be written as

G(
x

n
) = [G(x)]

1
n (6.6)

By induction, for any integer N = ns1n
t
2 where s, t are arbitrary integers,

[G(x)]N = G(Nx) (6.7)
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Using N = ns1n
t
2, and from elementary mathematics

y = logN

= log[ns1n
t
2]

= slogn1 + tlogn2

(6.8)

Hence, we can obtain two sequences; s = s(b) and t = t(b) such that the corresponding

y = y(b)→ 0.

Let y = y(b) be such a sequence.

Then by putting

g(x) = log[−logG(ex)]

z = logx

and

y = logN

we get from equation (6.7),

g(y + z)− g(z) = y

or

g(y + z)− g(z)

y
= 1

(6.9)

If y → 0, we have g
′
(z) = 1 (whenever the derivative exists, which in this case it doesn’t

since y is arbitrary).

Further, if {V } is an arbitrary set such that v → 0, then we can construct two sequences

y1 < v ≤ y2 such that y1 → 0 but y1 is of the form of equation (6.8) and yi/v → 1 for

i = 1, 2.

Therefore,

g(y1 + z)− g(z)

y1

· y1

v
≤ g(v + z)− g(z)

v
≤ g(y2 + z)− g(z)

y2

· y2

v
(6.10)

which by equation (6.9), reduce to

y1

v
≤ g(v + z)− g(z)

v
≤ y2

v
(6.11)
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Since the two extremes tend to one as v → o, g
′
(z) exists and equals one.

This now gives

G(ez) = exp(−ez+c) (6.12)

Hence,

G(x) = e−λx, λ > 0 (6.13)

From equation (6.3), we find that

F (x) = 1− e−λx, x ≥ 0, λ > 0 (6.14)

which was to be proved.

Theorem 6.3.2. Assume that for any n ≥ 2, nX1:n has the same distribution F (x) as

the population. If F (x) is such that, x → 0+, lim F (x) = λ > 0 finite, then F (x) =

1− e−λx, x ≥ 0.

Proof: Both result and the method of proof are due to Arnold (1971), Gupta (1973) and

Galambos and Kotz (1978).

Let

n(k) = nk, k ≥ 1 (6.15)

If X1, X2, · · · , Xn(k), k ≥ 2 are observations, then we can form the following blocks

(X1, X2, · · · , Xn(k−1)), (Xn(k−1)+1, Xn(k−1)+2, · · · , X2n(k−1)), · · · ,
(X(n−1)n(k−1)+1, X(n−1)n(k−1)+2, · · · , Xn(k)) and if we denote the minima of these blocks by

X
(1)
1:n(k−1), X

(2)
1:n(k−1), · · · , X

(n)
1:n(k−1) respectively.

Then evidently,

X1:n(k) = min(X
(1)
1:n(k−1), X

(2)
1:n(k−1), · · · , X

(n)
1:n(k−1)) (6.16)

Since the Xi′s are independent and identically distributed, so are the X
(i)
1:n(k−1).
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Therefore, for k = 2, each X
(i)
1:n(k−1) is distributed as X1:n, which by assumption has

distribution F (nx).

By basic fact that (see cdf of X1:n on section (2.3.1)),

Pr(X1:n ≥ x) = [1− F (x)]n (6.17)

we have

[1− F (x)]n = 1− F (nx) (6.18)

Thus by equation (6.16),

Pr(X1:n(2) ≥ x) = [1− F (nx)]n

= 1− F (n2x)
(6.19)

Equations (6.16) and (6.17) and induction over k yields

Pr(X1:n(k) ≥ x) = [1− F (x)]n(k)

= 1− F (n(k)x)
(6.20)

Therefore, on one hand,

Pr
(
X1:n(k) <

x

n(k)

)
= 1−

[
1− F (

x

n(k)
)
]n(k)

(6.21)

while on the other hand,

Pr
(
X1:n(k) <

x

n(k)

)
= F (x) (6.22)

If n ≥ 2, and n(k) = nk with k ≥ 1. We then obtain

F (x) = 1−
[
1− F (

x

n(k)
)
]n(k)

= 1−
[
1− F (

x

nk
)
]nk (6.23)
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By assuming, k → +∞,

F (xn−k) = axn−k + o(n−k) (6.24)

Consequently, using a relation

lim
s = +∞

(
1 +

y

s
+ o(

1

s
)
)s

= ey (6.25)

and equation (6.23), imply that, for any x > 0

F (x) = 1−
[ lim

k = +∞
(

1 +
λx

nk
+ o(

1

nk
)
)nk]

= 1− e−λx, x ≥ 0

(6.26)

which is the required proof.

We note that, equation (6.23) can be satisfied for equations other than the exponential if

we don’t assume that F (x)/x→ a > 0 as x→ 0+.

6.4 Characterization Based on Independence of Func-

tions of Order Statistics

In this section, we study various characterization results of exponential distribution by

independence of functions of order statistics.

We start by the following result from Fisz (1958).

Theorem 6.4.1. Let X1 and X2 be independent random variables with common cdf F (x).

Assume that F (0) = 0 and that F (x) is strictly increasing for all x > 0. Then X2:2−X1:2

and X1:2 are independent if and only if, F (x) = 1− e−λx with some λ > 0.

Proof: Using the special case n = 2 of theorem (3.1.1) of Galambos and Kotz (1978)

pg. 37, shows that X2:2 −X1:2 and X1:2 are independent for the exponential distribution

F (x) = 1− e−λx.
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Here we now prove the converse, that X1:2 and X2:2 −X1:2 are independent.

Let

Pr(X2:2 −X1:2 < x/X1:2 = z) = Pr(X2:2 −X1:2 < x) for almost all z > 0 (6.27)

Note that ”almost all” can refer to lebesque measure because of the assumptions on F (x)

that it is continuous and strictly increasing for all x > 0.

Hence,

Pr(X2:2 −X1:2 < x/X1:2 = z) = Pr(X2:2 < x+ z/X1:2 = z)

= Pr(X∗1:1 < x+ z)
(6.28)

where X∗1:1 is the indicated order statistic from a population with parent distribution

given as

F ∗(x) =


F (x)−F (z)

1−F (z)
if x ≥ z

0 otherwise
(6.29)

If we denote the right hand side (RHS) of equation (6.27) by H(x), hence

F (x+ z)− F (z)

1− F (z)
= H(x) (6.30)

for all x ≥ 0 and almost all z > 0.

If we let z → 0, it implies that F (x) = H(x).

Therefore, if we write

F (x+ z)− F (z)

1− F (z)
= 1−

[1− F (x+ z)

1− F (z)

]
(6.31)

then equation (6.17) becomes

1− F (x+ z) = [1− F (x)][1− F (z)] (6.32)

for all x ≥ 0 and almost all z > 0.

Simplifying equation (6.32) further,

1− F (x+ z) = [1− F (x)][1− F (z)]

= 1− F (z)− F (x) + F (x)F (z)

F (x+ z)− F (z) = F (x)− F (x)F (z)

= F (x)[1− F (z)]
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Hence,

F (x+ z)− F (z) = F (x)[1− F (z)] (6.33)

Now dividing equation (6.33) by x > 0, we obtain

F (x+ z)− F (z)

x
=
F (x)

x
[1− F (z)] (6.34)

If z ≥ 0 is such that f(z) is defined, then limit of left hand side (LHS) of equation (6.34)

is

lim

x = 0+ F (x)

x
= λ ≥ 0 (6.35)

Denoting the derivative of the limit of the RHS by f+(z), we get

f+(z) = λ[1− F (z)] (6.36)

Hence, f(z) exists for all z ≥ 0 and is also given as

f(z) = λ[1− F (z)] (6.37)

Therefore, the solution of equation (6.37) is the required exponential distribution, hence

the proof.

Theorem 6.4.2. Let Xi (i = 1, 2, · · · , n) be i.i.d random variables with common cdf F (x).

Then Xn:n − Xn−1:n and Xn−1:n are independent if and only if, F (x) = 1 − e−λx; λ >

0, x ≥ 0.

Proof: The proof was provided by Lee et al. (2002).
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The joint pdf of Xn:n −Xn−1:n and Xn−1:n is

fn−1,n(xn−1:n, xn:n) =
n!

(n− 1− 1)!(n− n+ 1− 1)!(n− n)!

[F (x)]n−1−1f(x)[F (y)− F (x)]n−n+1−1f(y)[1− F (y)]n−n

=
n!

(n− 2)!
[1− e−λ(xn−1:n)]n−2λe−λxn−1:nλe−λxn:n

= λ2n(n− 1)e−λ(xn−1:n+xn:n)[1− e−λxn−1:n ]n−2

(6.38)

We then consider the following transformations, Z1 = (Xn:n −Xn−1:n), Z2 = Xn−1:n and

their inverses xn−1:n = z1, xn:n = z1 + z2.

Since this is a one-to-one transformation, its jacobian is |J | = 1.

Thus, from equation (6.38), the joint pdf of Z1 and Z2 is

g(z1, z2) = λ2n(n− 1)e−λ(z1+2z2)(1− e−λz2)n−2 (6.39)

We then use beta function, to get the marginal pdf of Z1 as,

g1(z1) = λe−λz1 (6.40)

Also, the marginal pdf of Z2 is,

g2(z2) = λn(n− 1)e−2λz2(1− e−λz2)n−2 (6.41)

We note that, g(z1, z2) = g1(z1) · g2(z2), hence Z1 and Z2 are independent.

That is, Xn:n − Xn−1:n and Xn−1:n are independent for the exponential distribution

F (x) = 1− e−λx; λ > 0, x ≥ 0.

Ahsanullah (1976) showed characterization of the exponential distribution by considering

the identical distribution of the random variables nX1:n and (n− i+ 1)(X1:n−Xi−1:n) for

one i and one n with 2 5 i 5 n.

We summarize this characterization in the following theorem.
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Theorem 6.4.3. Let X be a non-negative random variable with absolutely continuous

distribution function F (x) for all x ≥ 0 and F (x) for all x.

Then the following properties are equivalent

1. X has an exponential distribution with density as given in equation (6.1)

2. For one i and one n with 2 5 i 5 n, the statistics (n − i + 1)(Xi:n − Xi−1:n) and

nX1:n are identically distributed.

Proof: For part one, here we show that (1) imply (2).

We let g(x) = f(x)/(1− F (x)) = λ

We then consider the joint pdf of Xi:n and Xi−1:n as,

fi−1,i(xi−1:n, xi:n) =
n!

(i− 1− 1)!(i− i+ 1− 1)!(n− i)!
[F (x)]i−1−1f(x)[F (y)− F (x)]i−i+1−1f(y)[1− F (y)]n−i

=
n!

(i− 2)!(n− i)!
[1− e−λxi−1:n ]i−2 · λe−λxi−1:n · λe−λxi:n

· [1− (1− e−λxi:n)]n−i

=
n!

(i− 2)!(n− i)!
λ2e−λ(xi:n+xi−1:n)[1− e−λxi−1:n ]i−2e−λ(n−i)xi:n

(6.42)

Using the transformation V1 = Xi:n and V2 = (n− i+ 1)(Xi:n−Xi−1:n) with their inverses

xi:n = v1 and xi−1:n = v1 − v2

(n−i−1)

It can therefore, be shown that, from equation (6.42)

g(v1, v2) =
n!

(i− 2)!(n− i)!
λ2e−λ(v1+v1− v2

(n−i−1)
)[1− e−λ(v1− v2

(n−i−1)
)]i−2e−λ(n−i)v1

=
n!

(i− 2)!(n− i)!
λ2e−2λv1 · eλ(

v2
(n−i−1)

) · e−λ(n−i)v1 · [1− e−λ(v1− v2
(n−i−1)

)]i−2

=
n!

(i− 2)!(n− i)!
λ2e−2λ(n−i)v1 · eλ(

v2
(n−i−1)

) · [1− e−λ(v1− v2
(n−i−1)

)]i−2

(6.43)

Therefore, V2 = (n− i+ 1)(Xi:n −Xi−1:n) is identically distributed as nX1:n.
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For part two, here we show that (2) imply (1)

Let Zi = Xi:n −Xi−1:n, the pdf of Zi is

fZi(z) =
n!

(i− 2)!(n− i)!

∞∫
0

[F (x)]i−2[1− F (x+ z)]n−if(x)f(x+ z)dx (6.44)

If we now let Y = (n− i+ 1)zi and substitute in equation (6.44) above, we get the pdf of

Y as

fY (y) =
n!

(i− 2)!(n− i+ 1)!

∞∫
0

[F (x)]i−2[1−F (x+
y

n− i+ 1
)]n−if(x)f(x+

y

n− i+ 1
)dx

(6.45)

Further, letting W = nX1:n, we get the pdf of W as

fW (w) = [1− F (
w

n
)]n−1f(

w

n
) (6.46)

But Y and W are identically distributed (proved in part one), and using the fact that

(i− 2)!(n− i+ 1)!

n!
=

∞∫
0

[F (x)]i−2[1− F (x)]n−i+1f(x)dx (6.47)

Then from equations (6.45) and (6.47), we get

0 =

∞∫
0

[F (x)]i−2[1− F (x)]n−i+1f(x)g(x, y)dx, ∀y > 0 (6.48)

where

g(x, y) = [1− F (y/n)]n−1f(y/n)− {[1− F (x+ y/(n− i+ 1))]/[1− F (x)]}n−i

f(x+ y/(n− i+ 1))/[1− F (x)]

We then integrate equation (6.48) with respect to y from 0 to y1 and obtain,

0 =

∞∫
0

[F (x)]i−2[1− F (x)]n−i+1f(x)G(x, y1)dx, ∀y1 > 0 (6.49)
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where

G(x, y1) =
[1− F (x+ y1/(n− i+ 1))

1− F (x)

]n−i+1

− [1− F (y1/n)]n

but

G(0, y1) = 0, ∀y1 > 0

Hence,

[1− F (y/(n− i+ 1))]n−i+1 = [1− F (y/n)]n, ∀y1 > 0 (6.50)

If we now substitute H(y) = 1− F (y), φ(y) = −logH(y) and z = y/n, then

φ(z) =
[(n− i+ 1)

n

]
φ(nz/(n−i+1)), ∀z > 0; for one i and one n with 2 5 i 5 n (6.51)

The solution of equation (6.51) is provided by Aczél and Oser (2006), pg 32 as

φ(z) = cz, where c is a constant (6.52)

and so

F (z) = 1− e−cz (6.53)

Using the boundary condition F (0) = 0 and F (∞) = 1, we have

F (x) = 1− e−λx, λ > 0 (6.54)
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6.5 Characterization Based on Moment Assumption

In this section, we study various characterization results of exponential distribution through

moment assumption.

Let X1, X2, · · · , Xn be independent random variables with cdf F (x).

We use notation

Er:n = E(Xr:n) (6.55)

which is always assumed to be finite.

Using equation (2.14), we have that

Er:n =

∞∫
−∞

xdFr:n(x)

= r

(
n

r

) 1∫
0

F−1(t)tr−1(1− t)n−rdt

(6.56)

where

F−1(t) = inf{x : F (x) ≥ t}

From equation (6.56) and using the relation (see section (2.8.2))

(n− r)
(
n

r

)
(1− t) + (r + 1)

(
n

r + 1

)
t = n

(
n− 1

r

)
we have that, for any integers 0 < r < n, n ≥ 2

(n− r)Er:n + rEr+1:n = nEr:n−1 (6.57)

Therefore, if r = r(n), arbitrary function of n such that 1 ≤ r(n) ≤ n, then the sequence

Er(n):n, n ≥ 1, where E1:1 = E(X1) uniquely determines all values Er:n, 1 ≤ r ≤ n, n ≥ 1.

We thus obtain the following theorem which was pointed by Galambos and Kotz (1978).
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Theorem 6.5.1. The triangular array Er:n, 1 ≤ r ≤ n, n ≥ 1, of numbers uniquely

determines the population distribution F (x).

Proof: Let Z1, Z2, · · · , Zn be i.i.d random variables with distribution function H(x).

Assuming that, for all 1 ≤ r ≤ n, n ≥ 1, then

E(Zr:n) = Er:n (6.58)

where Er:n is defined in equation (6.55).

Using equation (6.56), we get

1∫
0

F−1(t)tr−1(1− t)n−rdt =

1∫
0

H−1(t)tr−1(1− t)n−rdt (6.59)

substituting z = 1− t and putting

fr(z) = F−1(1− z)(1− z)r−1 (6.60)

and

hr(z) = H−1(1− z)(1− z)r−1 (6.61)

results in

1∫
0

fr(z)zkdz =

1∫
0

hr(z)zkdz, k = n− r ≥ 0 (6.62)

Both fr(z) and hr(z) are non-negative and their integrals are equal, therefore, there exists

a constant c > 0 such that c fr(z) and c hr(z) are densities over the finite interval (0, 1).

Therefore, from equation (6.62), we see that all moments of two absolutely continuous dis-

tributions are equal, provided their distributions are supported by the finite interval (0, 1).

Hence, F (x) = H(x), as claimed.

From theorem (6.5.1) above, we see the following interesting corollaries.

120



Corollary 6.5.1. If E1:n = 1
n

for all n ≥ 1, then F (x) = 1− e−x, x ≥ 0

Proof: If F (x) = 1− e−x, x ≥ 0 then E1:n = 1
n

for all n ≥ 1.

Hence, by triangular array of numbers, Er:n is the same for all 1 ≤ r ≤ n, n ≥ 1, as for a

population distribution F (x) = 1−e−x. Therefore, theorem (6.5.1) implies our statement.

Corollary 6.5.2. If E1:n = 1
(n+1)

, n ≥ 1, then F (x) = x for 0 ≤ x ≤ 1.

Proof: The proof is similar to the preceding one.

Since, F (x) = x, 0 ≤ x ≤ 1, E1:n = 1
(n+1)

, theorem (6.5.1) imply that no other population

can have this property.

Note, we see from corollaries (6.5.1) and (6.5.2) that the limits of nE1:n as n→∞, cannot

characterize the population distribution.

However, Galambos and Kotz (1978), gave an argument to show that asymptotic values

Ek:n ∼ h(k, n), 1 ≤ k ≤ n, n → ∞ may characterize population distributions within

some families.

Huang (1974), characterized exponential distribution by expected value E(nX1:n), we

summarize this result in the following theorem.

Theorem 6.5.2. If F (x) does not degenerate at the origin and if

E(nX1:n) = E(X1) <∞, ∀n = 2, 3, · · · (6.63)

then F (x) is an exponential distribution function.

Proof: We let λ = E(X1) = E(nX1:n). Since E(X1:n) is a decreasing function of n, then

λ > 0.

We first show that, for some n ≥ 2, nX1:n is identically distributed as X1, then X1

possesses finite moments of all order.

If nX1:n is identically distributed as X1 for some n ≥ 2. Then for i = 0, 1, 2, · · ·

1− F (nix) = [1− F (x)]n
i

, ∀x (6.64)

Specifically, if we let p = 1− F (1). Then

1− F (ni) = pn
i

(6.65)
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Suppose nX1:n
d
= X1. Then

F (x) 1 0, for x Q 0 (6.66)

We further, let k be a positive integer and from equation (6.66)

E(Xk
1 ) =

∞∫
0

Pr(Xk
1 > u)du

=

∞∫
0

ktk−1[1− F (t)]dt

=

1∫
0

ktk−1[1− F (t)]dt+
∞∑
m=0

nm+1∫
nm

ktk−1[1− F (t)]dt

(6.67)

This shows that X1 possesses finite moments of all order.

We note that the result of the proof of X1 possessing finite moments is a weakening of

the theorem (6.5.2) above, hence, E(nX1:n) = E(X1) for some n and therefore, F (x) is

exponential.

Theorem 6.5.3. If E(X1) is finite and if F (x) is continuous, then E(X2:2−X1:2/X1:2 =

y) is constant almost surely with respect to F (x), if and only if, F (x) is exponential.

Proof: The result and the proof is due to Ferguson (1967).

Since for any y such that 0 < F (y) < 1,

E(X2:2 −X1:2/X1:2 = y) = E(X2:2/X1:2 = y)− y (6.68)

Therefore,

E(X2:2 −X1:2/X1:2 = y) =

∞∫
y

xdF ∗(x)− y (6.69)

where

F ∗(x) =
F (x)− F (y)

1− F (y)
, for x ≥ y (6.70)
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If the LHS of equation (6.69) is constant almost surely then equation (6.69) is equivalent

to

∞∫
y

xdF ∗(x) = c+ y a.s. (with respect to) F (6.71)

or to

∞∫
y

xdF (x) = (c+ y)[1− F (y)] a.s. (with respect to) F (6.72)

where 0 < F (y) < 1, and equation (6.72) is valid for all y.

Therefore,

F (y) = 1− exp
[
− 1

c
(y −B)

]
(6.73)

where B is an arbitrary constant. Since F (y) is continuous by assumption, equation (6.73)

is valid for all y ≥ B, hence the proof.

Theorem 6.5.4. Let F (x) be continuous and assume that E(X1) is finite. If X denotes

the arithmetic mean ( 1
n
)(X1 +X2 + · · ·+Xn) and if E(X−y/X1:n = y) is constant almost

surely (with respect to F), then F (x) is exponential.

Proof: First, for conditional distribution of Xi given X1:n = y, we have that

Pr(Xi < x/X1:n = y) =
Pr(Xi < x)− Pr(X1:n = y)

Pr(X1:n = y)

=
1

n
+
n− 1

n

F (x)− F (y)

1− F (y)
, if x > y

(6.74)

But the conditional distribution is zero for x ≤ y.

Therefore,

E(Xi/X1:n = y) =
1

n
+

n− 1

n[1− F (y)]

∞∫
y

xdF (x) a.s. (with respect to) F (6.75)
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We observe that the RHS of equation (6.75) doesn’t depend on i.

Thus denoting the expectation by

E(Xi/X1:n = y) = gn(y) (6.76)

Then

E(X/X1:n = y) =
1

n

n∑
i=1

E(Xi/X1:n = y) (6.77)

equals gn(y).

However,

E(X/X1:n = y) = y + cn (6.78)

Therefore,

gn(y) = y + cn a.s (F ) (6.79)

We note that from equation (6.75),

1

n− 1
E(nXi − y/X1:n = y) =

1

n− 1
E(nXj −X1:n/X1:n = y) (6.80)

which doesn’t depend on n. Hence, its value is the same for all n.

Specifically, for n = 2, we have from equations (6.76) and (6.79)

E(2Xi −X1:2/X1:2 = y) = 2E(Xi/X1:2 = y)− y
= y + c2

(6.81)

Since E(X1/X1:2 = y) = E(X2/X1:2 = y), we have that,

E(2Xi −X1:2/X1:2 = y) = E(X1 +X2 −X1:2/X1:2 = y)

= E(X1:2 +X2:2 −X1:2/X1:2 = y)

= E(X2:2/X1:2 = y)

(6.82)
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Combining equations (6.81) and (6.82), we get

E(X2:2/X1:2 = y) = y + c2 a.s (F ) (6.83)

which is directly the assumption of theorem (6.5.3). Therefore, we get conclusion of

theorem (6.5.4) from theorem (6.5.3).
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Chapter 7

Conclusion and Recommendation

Two methods of constructing order statistics distribution have been highlighted. Tra-

ditionally, order statistics distributions have been constructed using the transformation

method. However, this study examined also the use of beta generated distributions ap-

proach fronted by Jones in 2004 in constructing order statistics. We therefore, extended

this technique and constructed order statistics distribution for various distributions.

For order statistics from standard uniform distribution, the rth order statistic from a

random sample of size n has a Beta(r, n − r + 1) distribution and the rth and sth order

statistics jointly have a bivariate Beta(r, s− r, n− s+ 1) distribution.

For order statistics from standard exponential distribution, the pdf of the first (i=1) order

statistic shows a remarkable result that the minimum of n independent standard expo-

nentials is itself an exponential with mean 1
n
.

Characterization of a probability distribution is an important tool during usage and appli-

cation of the distribution. We have highlighted a number of characterization methods for

the exponential distribution, particularly, the principles underlying the characterization

by distributional properties, independence of functions and moment assumption of order

statistics. For each method, we gave the characterization theorems and the associated

proofs, corollaries and references.

We would like to recommend further research on the use of beta generated distributions
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approach in constructing the distributions of order statistics.
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