

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

A Comparative Study of Minutiae Based Fingerprint

Matching Algorithms

NJERU, SILAS KIVUTI

P58/61707/2010

SUPERVISOR:

Dr. ROBERT OBOKO

DECEMBER 2015

A project submitted in partial fulfilment of the requirement for the award of a

degree of Masters of Science in Computer Science at the School of Computing and

Informatics, University of Nairobi.

-ii-

DECLARATION OF ORIGINAL WORK

I declare that this research project is my original work and has not been submitted to the

University of Nairobi and any other university to the best of my knowledge for the same

purpose in the same scope and area of research.

NAME: SILAS KIVUTI NJERU REG. NO: P58/61707/2010

SIGNATURE………………………… DATE…………………………

This research project report is submitted for presentation with my approval as the

University Research project supervisor

NAME: DR.ROBERT OBOKO

SIGNATURE…………………….. DATE…………………………………..

-iii-

DEDICATION

This work is dedicated to my sons Brian Murimi, Ken Mutugi and Peace Murathime for

their patience and support since the beginning of my studies

Secondly, I dedicated this work to my parents who gave me the passion to advance in

my knowledge. Also, this thesis is dedicated to my uncle Meshack Muturi who has been a

great source of motivation and inspiration.

-iv-

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisors Dr. Robert

Oboko and Ms Pauline Wambui for their continuous support throughout my research for their

patience, motivation, enthusiasm, and immense knowledge. Their guidance helped me at all

the time of research and writing of this thesis.

My sincere thanks also goes to Mr. James Muhati, Mr Michael Ouma, Stephen Ngeno,

Ronald Chamwanda, and Abdulahi Abdi, for offering a condusive working environment and

diverse ideas to help advance my research project.

-v-

ABSTRACT

The fingerprint recognition has been used widely in cross border identification,

criminal investigation, access control and paternity identification among other modern

identification and authentication systems. However, the complex distortions among the

different fingerprint impression in real life poses a challenge in the performance of

fingerprint recognition systems. Matching two fingerprints or finding duplicates in a large

database of fingerprints can be difficult due to various reasons depending upon the method

that is being used for matching. In the modern day technologies, various biometric identifiers

e.g. iris, voice, fingerprints are considered more reliable for person recognition than

traditional password or knowledge based methods because they cannot be easily misplaced,

forged, or shared.

Previous research on this domain has only focused on comparing algorithms based on

building confusion matrix or using false acceptance rate (FAR) and false rejects rates (FRR)

which are measures of accuracy. In this research, we identified speed as another parameter in

the comparative analysis. In our experiment, we compared two fingerprint matching

algorithms by simulating the matching process of sampled fingerprint images. The process

involved comparing each of the four (4) fingerprints from each individual with the entire set

of other candidate fingerprints to identify duplicates if they exist. The output of a match

comparison is either a positive match or a negative match. Based on the result of accuracy,

time taken for matching, and the number of similar featured identified, the best algorithm was

determined and a prototype system for de-duplication was developed. The two types of

matching techniques used in this research were based on (a) matching using global

orientation minutiae features and (b) matching using minutia triangulation technique. We

conducted the experimental evaluation on a datasets of 100 candidates using four (4)

fingerprints from each candidate. The data was sampled from a mass registration of citizen in

Kenya conducted by a reputable organization.

The research revealed that fingerprint matching based on minutia triangulation algorithms

performs better in terms of speed with an average of 38.32 milliseconds as compared to

matching based on a combination of minutia and global orientation features with an average

of 563.76 milliseconds. In terms of accuracy of matching, the algorithms based on a

combination of minutia and global orientation field features performs better with an average

similarity score of 0.142433 as compared to m-triplet based matching with an average

similarity score of 0.004202.

-vi-

TABLE OF CONTENTS

DECLARATION OF ORIGINAL WORK ... ii

DEDICATION .. iii

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. ix

LIST OF TABLES .. x

LIST OF ABBREVIATIONS .. xi

CHAPTER ONE – INTRODUCTION ... 1

1.1 Background .. 1

1.2 Problem Statement ... 3

1.3 Research Objectives ... 4

1.4 Research Questions .. 5

1.5 Expected Outcome ... 5

CHAPTER TWO - LITERATURE REVIEW .. 6

2.1 Introduction .. 6

2.2 Fingerprint Features ... 6

2.2.1 Global Ridge Pattern (Level 1 Features) .. 6

2.2.2 Local Ridge Pattern (Level 2 Features) .. 7

2.2.3 Intra-Ridge Detail (Level 3 Features) .. 7

2.3 Image Pre-Processing... 8

2.4 Image Feature Extraction ... 8

2.5 Types of Fingerprint Matching Algorithms ... 9

2.4.1 Artificial Neural Network Based .. 10

2.4.2 Correlation Based Algorithms .. 11

2.4.3 Fingerprint Matching Based Local and Global Structures 12

2.4.4 M-triplet Descriptor Based Matching .. 13

2.6 Fingerprint Recognition Process .. 14

-vii-

2.5.1 Enrolment Stage ... 15

2.5.2 Feature Vector Extraction .. 16

2.5.3 Recognition Stage: Matching stage .. 16

2.5.4 Computation of Similarity Scores .. 16

2.7 Empirical Literature ... 17

2.6.1 Examples of Fingerprint Image Pre-Processing Routines 19

2.6.2 Segmentor Routine ... 19

2.6.3 Enhancement Routine .. 19

2.6.4 Ridge-Valley Orientation Detector .. 20

2.6.5 Feature extraction ... 20

2.6.6 Matching Technique ... 21

2.8 Performance Evaluation Of Fingerprint Recognition Algorithms 21

2.7.1 Receiver Operator Curve Analysis ... 21

2.7.2 False Match Rate Vs False Non-Match Rate ... 22

2.7.3 Comparison of Minutia points and Minutia Triangulation 23

2.7.4 Proposed Comparative Analysis .. 24

CHAPTER THREE - METHODOLOGY ... 25

3.1 Introduction .. 25

3.2 Requirements Analysis .. 26

3.2.1 Functional Requirements .. 26

3.2.2 Non-Functional Requirement ... 27

3.3 Interface Design ... 27

3.3.1 Main form ... 27

3.3.2 Matching Experiment Form ... 28

3.4 Data Collection and Conversion .. 29

3.5 Sampling Technique .. 30

3.6 Algorithm Implementation... 30

3.7 Prototype Testing ... 31

3.8 Visual Match Test .. 32

-viii-

CHAPTER FOUR – RESULTS AND DISCUSSIONS ... 34

4.1 Introduction .. 34

4.2 Overall Results ... 34

4.3 Analysis of Results Using Frequency Distribution Graphs ... 35

4.3.1 Graphs for Minutia Triangulation Algorithm (M3gl) 35

4.3.2 Graphs for Minutia and Global Orientation Algorithm 37

4.4 Discussions .. 39

CHAPTER FIVE - CONCLUSIONS AND RECOMMENDATIONS 40

5.1 Introduction .. 40

5.2 Achievements ... 40

5.3 Recommendations .. 41

5.3.1 Recommendations for Research ... 41

5.3.2 Recommendations for Practice ... 41

5.4 Future Work ... 41

5.5 Limitations of this Research .. 42

REFERENCES .. 43

APPENDIX I– Sample Output for M3gl Algorithm ... 45

APPENDIX II – Sample Output for MQYW Algorithm .. 53

APPENDIX 3 – Sample Codes ... 60

-ix-

LIST OF FIGURES

Figure 1 - Global Level features .. 6

Figure 2 - Local Ridge Details .. 7

Figure 3 - Artificial Neural Network ... 11

Figure 4 - M-triplet Feature representation ... 14

Figure 5 - Operations for Biometric Recognition System ... 15

Figure 6 - Stages of fingerprint recognition (Nadarajah et. al 2011) 15

Figure 7 - Feature Extraction ... 16

Figure 8 - Image orientation field .. 18

Figure 9 - Flow chart of the minutiae extraction process .. 21

Figure 10- Confusion matrix ... 22

Figure 11 - MTriplet Features ... 23

Figure 12 - Minutiae Points ... 23

Figure 13 - Crossing Numbers .. 24

Figure 14 –Software development process flow ... 25

Figure 15- Requirements Analysis Process ... 26

Figure 16 - Main Form .. 27

Figure 17 - Main Menu .. 28

Figure 18 - Experiment Form .. 28

Figure 19 - Save Results Dialog Box .. 29

Figure 20 -Image conversion screen .. 30

Figure 21 -Labelling of the Fingers ... 31

Figure 22 - Left Hand .. 31

Figure 23 -Visual match of the same fingerprints ... 33

Figure 24-Visual Match of different fingerprint images ... 33

Figure 25-Minutia Triangulation - Bar Chart on Accuracy ... 35

Figure 26- Minutia Triangulation - Bar Chart on Time taken (ms) 36

Figure 27 -Minutia Triangulation - Bar Chart on No of similar features 36

Figure 28 -Global Orientation - Bar Chart on Accuracy ... 37

Figure 29 -Global Orientation - Bar Chart on Time taken (ms) .. 38

Figure 30 -Global Orientation - Bar Chat on No of Similar Features 38

-x-

LIST OF TABLES

Table 1 - Query Fingerprint ... 32

Table 2 - Template fingerprints ... 32

Table 3- Sample Matching Results using Minutia Triangulation ... 34

Table 4 - Sample Matching Result using Minutia and Global Orientation Feature 34

Table 5 - Minutia Triangulation (M-Triplet) Based .. 39

Table 6 -Minutia and Global Orientation Based ... 39

-xi-

LIST OF ABBREVIATIONS

ANSI- NIST : American National Standards Institute – National Institute of standards

and technology.

ANN : Artificial Neural Network

AFIS : Automatic Fingerprint Identification System

DPI : Dots Per Inch

DFT : Discreet Fourier Transform

FAR : False Accept Rate

FMR : False Match Rate

FRR : False Reject Rate

FNMR : False Non-Match Rate

GUI : Graphical user interface

ROC : Receiver Operating Characteristics

POC : Phase Only Correlation

-1-

CHAPTER ONE – INTRODUCTION

1.1 Background

Biometric recognition refers to the automatic recognition of individuals based on their

physiological and/or behavioural characteristics (Dela & Grgic 2004). The use of biometrics

relies on the presumption that individuals are physically and behaviourally distinctive in a

number of ways. Any human physiological and/or behavioural characteristic can be used as a

biometric as long as these characteristics are universal, distinct, permanent and collectable

amongst a large population. Some of the physiological characteristics that have been used in

biometrics recognition include face, iris, fingerprints, and voice amongst others. Biometric

systems have increasingly been used in authentication and security access in banking

systems, cross border identification, forensics, criminal investigations, paternity

determinations, citizen registration and electronic voting systems (Pato & Millette 2010)

Use of biometrics in the registration of citizens is becoming one of the most interesting

and emerging technology applications in the authentication and identification persons as

compared to traditional password authentication. For instance in Kenya, biometric

registration has been used for registration of voters and civil servants. This process involves

collecting biometric data such as finger prints, facial scans, voice, signatures and iris for the

purposes of identification. The purpose of these technologies is mainly to help in the

detection and elimination of imposters as well as elimination of multiple registrations thus

improving the accuracy, reliability and effectiveness of the electronic authentication.

Pato & Millette (2010), observes that biometric recognition system involves probability

matching of records within a tolerance of approximation of observed biometric traits against

previously collected data for a subject. Uncertainties in biometric systems arise from

variations within persons e.g. changes in age, environment, disease, emotions, occupation,

training and other intentional alterations. Other variations may result from the sensitivity and

calibration of the sensor devices used as well as the biometric feature extraction and matching

algorithm used. Therefore, biometric traits have fundamental statistical properties,

distinctiveness and differing degrees of stability under natural physiological conditions and

environmental challenges. In large scale applications, the underlying biological properties

and distributions of biometric traits in a population are generally observed only through

image filters and require probability decision making both by the automated recognition

system and the human interpreters of the results. A biometric match therefore represents not a

certain and definitive recognition but a probability of correct recognition. The authors also

hypothesis that a fraction of results from even the best designed biometric system might be

-2-

incorrect or indeterminate. They noted that users and developers of biometric systems should

recognize and take into account the limitations and constraints of biometric systems

especially the probabilistic nature of underlying science, the limited knowledge regarding

human distinctiveness and the numerous sources of uncertainty in biometric systems.

Pato & Millette (2010) noted that one typical assumption in the design of most

biometric system has been that if the biometric features are properly collected and stored,

they are sufficiently distinctive to support the application in question. In practice, where the

algorithms cannot uniquely distinguish between two records within a high degree of accuracy

based on a set threshold, other manual techniques are employed which includes manual

investigation and verification of the records.

Generally, fingerprint-matching algorithms have two steps namely; (a) align the

fingerprints and (b) find the correspondences between two fingerprints. The approach

proposed by Jain et al. (1997) is capable of compensating for some of the nonlinear

deformations and finding the correspondences. However, since the ridges associated with the

minutiae are used to estimate the alignment parameters, the size of the templates has to be

large, which takes much memory and computation, otherwise, the alignment will be

inaccurate. Jiang & Yau (2005) use the local and global structures of minutiae in their

approach. The local structure of a minutia describes a rotation and translation invariant

feature of the minutia in its neighbourhood, and the global structure tries to determine the

uniqueness of a fingerprint. The problem with this technique is that it cannot compensate for

real world distortions of a 3-Dimensional elastic finger.

Besides minutiae, researchers have used other fingerprint features for matching. Saleh

& Adhami (2001) proposed an approach which transforms fingerprint images into a sequence

of points in the angle-curvature domain. The matching between a query fingerprint and a

template fingerprint is based on the least-squares error of the Euclidean distance between

corresponding points in the angle-curve domain. Jain et al. (1997) presented a filter-based

algorithm, which uses a bank of Gabor filters to capture both local and global details in a

fingerprint as a compact fixed length Finger Code. The authors reported that the Finger Code-

based system performs better than a state-of-the-art minutiae-based system when the

performance requirement of the application system does not demand a very low false

acceptance rate.

-3-

1.2 Problem Statement

There is generally lack of knowledge in the industry with regard to an optimal

algorithm for fingerprint enrolment and identification. Biometric systems are resource

intensive in terms of processing speed and memory and thus the need to evaluate

performance based on the two parameters. With the limited computing and time resources, it

is important to develop reliable performance metrics for algorithms that can be applied in the

selection of biometric matching algorithms. The most common measures of performance for

biometric identification systems are based on accuracy of matching. A number of design

factors have continued to create bottlenecks in achieving the desired performance of

recognition systems. These include the lack of reliable minutia extraction algorithms,

difficulty in quantitatively defining a reliable match between fingerprint images, poor image

acquisition, low contrast images as well as the difficulty of reading the fingerprint for manual

workers.

The quality of captured fingerprints impacts on the accuracy and performance of the

biometric identification system. Poor fingerprint image quality affects the identification

system because of the additional processing workload to eliminate spurious features as well

as missed identification / verification of the subject. A number of other factors that affects the

quality of fingerprint images include; dry fingers due to natural aging leading to light prints ,

Worn ridge structure due to occupation, Finer ridge structure due to demographic group e.g

Male vs Female, Age group, Uncooperative or nervous subject. This can result to incorrect

finger placement, Humidity / Temperature, Ambient light, unclean scanner surface and ease

of use of the capture software.

Amongst the techniques that have been used to address these challenges include finger

preparation like moisturizing as well as use of scanner silicon membrane /coating. New

technologies have also emerged which uses touch-less scanners. Training of the operator is an

important aspect to eliminate errors caused by incorrect placement of the fingerprint.

Improvements should also be done on the software GUI to provide guidance to the user on

how to correctly place the finger.

The application of fingerprint biometrics in voter registration and civic registration

poses a challenge of accurately capturing the biometric traits of individuals as well as

extracting and matching them to eliminate duplicates (de-duplication) within an acceptable

margin of error. According to Pato et. al (2010), an effective biometric solution does not have

to be nor can it be perfect, accurate and secure. A biometric algorithm at its core is a

comparison system, taking biometric samples as input and producing a measure of similarity

-4-

as its output. This similarity or otherwise called the matching score is particular to an

algorithm and is the fundamental output of the matching process. The enrolment process

involves presenting the finger to the sensor (often two or more times) so that the system can

record all the important and distinctive details from the fingerprint. The details captured from

this process are stored as reference template in order to allow it to recognize the finger every

time it is presented in the future. Image pre-processing techniques have been used by various

algorithms which include image enhancement, thinning, binarization and feature extraction

techniques. The effectiveness of the pre-processing techniques is a continuous research

question.

The American Nation Institute of standards and technology (NIST) has carried

extensive research in the area of biometrics over many years. The institute has also developed

prototype algorithms for fingerprint recognition. However, there has not been any single

algorithm that has been proved to be perfect in uniquely discriminating individual and thus

this has remained a continuous research area.

A biometric recognition project suffers a number of challenges resulting from system

specifications, design, implementation and support. For instance, most biometric systems

suffer from minutiae correspondence problems and as result causing multiple false duplicate

due to the low quality of fingerprint images, As a result manual verification are used to

compare faces and textual data by a trained user. Most Biometric systems cannot uniquely

identify individuals due to either low quality of captured images or damaged fingers.

1.3 Research Objectives

This research aims at studying two minutia based algorithms, one that is based on a

combination of the global and local minutia features and another one that is based on the m-

triplet minutia features. This investigation is therefore classified as a technology investigation

that aims at identifying an optimal algorithm for finger print feature extraction and matching.

The overall goal of this research is to carry out an exploratory analysis of fingerprint

algorithms and propose an optimal algorithm that can fulfil the requirements for fingerprint

verification for biometric recognition systems. This investigation should prove that

verification results are within a given acceptable tolerance. The specific objectives will

include:

i. To analyse effectiveness of minutiae based fingerprint matching algorithms.

ii. To compare the performance of minutia based matching algorithms versus Minutia

triangulation (M-triplet) based in terms of speed and accuracy.

iii. To develop and implement a prototype for fingerprint matching and de-duplication

using a sample dataset of citizens in Kenya.

-5-

1.4 Research Questions

The following research questions have been generated based on the above research

objectives.

i. How effective are minutia based fingerprint recognition algorithms?

ii. How do algorithms based on minutia compare with M-triplet based algorithms in terms

of speed and accuracy?

iii. How can a fingerprint recognition system prototype be implemented based on the

optimal matching algorithm?

1.5 Expected Outcome

The main outcome shall be a quantitative comparison of the performance of the minutia

based and minutia triangulation (m-triplet) fingerprint matching algorithms based on a

database of fingerprints obtained during citizen registration in Kenya.

-6-

CHAPTER TWO - LITERATURE REVIEW

2.1 Introduction

In this chapter, we will discuss those algorithms concerned with finger print recognition but

specifically algorithms in the category of Minutiae based and Probabilistic Neural Network.

In this chapter, we shall study the different fingerprint classification that can be used in the

recognition process.

A fingerprint can be defined as an impression of the epidermal ridges and valleys at the

surface of a human fingertip. These impressions can be classified into three categories,

namely, Level 1 (Global ridge patterns), Level 2 (Local ridge patterns- minutiae points) and

Level 3 (Intra-ridge details - pores and ridge shapes) that are used for recognition purposes.

The finger print recognition systems uses automated method and algorithms to verify a match

of a candidate finger print against a database of fingerprint templates. Most fingerprint

systems can be categorize as either verification (1:N) or identification (1:1) systems where

verification process either accepts or rejects a user identity based on a match against an

existing fingerprint database, whereas identification establishes whether the user is who

he/she claims to be. Chaohong (2007) postulates that most fingerprint recognition algorithms

are designed to minimize two types of errors namely the False Acceptance Rate (FAR) and

False Reject Rate (FRR). FAR and FRR refer to errors in the matching process and are

closely related to the more frequently reported false acceptance rate (FMR) and the false

rejection rate (FNMR). FAR and FRR refer to results at a broader system level and include

failures arising from additional factors, such as the inability to acquire a sample. Although

there are several methods for detecting minutiae, the technical problem of feature extraction

is still an active research problem.

2.2 Fingerprint Features

2.2.1 Global Ridge Pattern (Level 1 Features)

These are based on the ridge flows of fingerprints that create particular patterns, such as

shown in Figure 1 below. (a) Left-loop, (b) Right-loop, (c) Whorl, (d) Arch, and (e) Tented-

arch

Figure 1 - Global Level features

-7-

An example of algorithm that uses global ridge detail is the PCASYS developed by the

NIST. This Algorithm is a neural-network based fingerprint classification system, which

categorized a fingerprint image into the class of arch, left or right loop, scar, tented arch, or

whorl.

2.2.2 Local Ridge Pattern (Level 2 Features)

These are the patterns that form on the friction ridges of the fingerprints and they do not run

evenly across our fingers, hands, toes and feet but rather, they display a number of

characteristics known as minutiae. The most common minutiae are;

a) Ridge endings: These are ridges that end abruptly.

b) Ridge bifurcations: This is a single ridge that divides into two.

c) Lake or enclosure : This is a single ridge that bifurcates and reunites shortly afterwards to

continue as a single ridge;

d) Short ridge, island or independent ridge: This is a ridge that commences, travels a short

distance and then ends.

e) Dot : This is an independent ridge with approximately equal length and width;

f) spur : This is a bifurcation with a short ridge branching off a longer ridge; and

g) Crossover or bridge: This is a short ridge that runs between two parallel ridges.

Figure 2 below illustrates level 2 features of a fingerprint image.

Figure 2 - Local Ridge Details

2.2.3 Intra-Ridge Detail (Level 3 Features)

These are based on the very-fine level details of the finger print. The most important

feature is finger sweet pore, which can be observed using a high resolution sensor (1000

dpi). Level 3 features are still under research and development stage as it requires high-

resolution image capturing to extract and process.

-8-

2.3 Image Pre-Processing

The quality of a fingerprint image is determined by many factors which may be difficult to

control; therefore fingerprint systems must be able to handle images in medium and low

quality. Feature enhancement routines are applied on an image to improve on the quality of

the fingerprint features for effective recognition.

Some of the common image enhancements techniques are based on computation of the

forward two-dimensional fast Fourier transform (FFT) to convert the data from its original

(spatial) representation to a frequency representation. Thereafter, a nonlinear function is

applied that increases the power of useful information (the overall pattern, and in particular

the orientation, of the ridges and valleys) relative to noise. Finally, the backward 2-d FFT is

done to return the enhanced data to a spatial representation before snipping out the middle

16×16 pixels and installing them into the output image (Kenneth et.al 2007)..

These enhancement routine uses localized FFT filter techniques on the input image thus

increasing the accuracy of the resulting classifier. The nonlinear function applied to the

frequency-domain representation of the square of pixels has the effect of increasing the

relative strength of those frequencies that were already dominant. The dominant frequencies

correspond to the ridges and valleys in most cases. So the enhancer routine strengthens the

important aspects of the image at the expense of noise such as small details of the ridges,

breaks in the ridges, and ink spots in the valleys. (Kenneth et al 2007)

In this research, a uniform image enhancement technique is applied on each of the

fingerprint images in order to improve on the quality of the finger print recognition methods.

A Gaussian blur filter is applied to the image to remove noise and extra details thus smooth

the overall shape of the image. This helps in connecting the falsely broken points on ridges as

well as to remove false connections between ridges. Fingerprint Image binarization is applied

to transform the Grayscale fingerprint image to a 1-bit image with 0- value for ridges and 1-

value for furrows. This operation causes the ridges in the fingerprint to be highlighted with

black colour while furrows are highlighted with white.

2.4 Image Feature Extraction

According to Ratha et al (1995), in a good rolled fingerprint image there are about 70 to 80

minutiae points while in a latent fingerprint image the number of minutiae is much less (20 to

30). The ratha1995minutiaextractor is the basic feature extractor for the minutia classification

algorithm. It uses a pixel – alignment technique for fingerprint orientation field detection.

The algorithm detects, at each pixel location of the fingerprint image, the local orientation of

the ridges and valleys of the finger surface, and produces an array of regional averages of

-9-

these orientations. The routine is based on the ridge-valley fingerprint binarizer that reduces a

grayscale fingerprint image to a binary (black and white only) image.

Typically, the pixel–alignment-based method computes the local ridge orientation of each

pixel on the basis of the neighbouring pixel alignments with respect to a fixed number of

reference orientations. Differentiation (fluctuation) of neighbouring pixels grey level values

is expected to be the smallest along the local ridge orientation and the largest along its

orthogonal orientation. The accuracy of the estimated orientation in the pixel-alignment-

based method is limited because to the fixed number of reference orientations (Kenneth et al

2007).

The feature extraction technique involves the minutia extractor, orientation image extractor

and the skeleton image extractor proposed by Ratha et al (1995). In this algorithm, the feature

detection and extraction techniques uses convolution filters to detect and extract features

from the input and template images. Using the convolution filters, the fingerprint features are

defined by a 5X5 matrix of the grayscale image. The results of the convolution matrix are

divided by a bias value of 40 in order to keep the pixel values within the 0-255 range.

2.5 Types of Fingerprint Matching Algorithms

Fingerprint matching can be categorized as Neural Network based, Minutiae based or

Correlation based. Neural Network matching is a pattern based matching algorithm which

uses graphical comparison of the entire fingerprint image as opposed to the individual

minutiae points. Some matching techniques uses global level features and while others

combine both global and local features. The characteristics that are used include the ridge

thickness, curvature, or density. A pattern-based algorithm is independent of the number of

minutiae points in a fingerprint as well as independent of the size of the finger print sensor.

Compared to other algorithms, pattern-based algorithms are not affected by the quality of the

fingerprint image. However, Qi et. al (2005), observed that minutiae-based methods perform

better than correlation-based due to their uniqueness, stability, speed of processing and

memory requirements despite the fact that they may be affected by rotation, translation,

deformation of the fingerprints as well as location and direction of the detected minutiae or

presence of spurious minutiae. Therefore minutia features are considered to be more reliable

and robust.

Minutia based matching consists of finding the best alignment between the extracted and

stored template minutia and the minutiae from the subject finger print. On the other hand,

Pattern based algorithms are based on scanning the overall fingerprint global features i.e. the

loop, whorl or the arch patterns. The main problem in minutiae extraction methods is that

-10-

minutiae in the skeleton image do not always correspond with true minutiae in the fingerprint

image because of false minutiae extracted as a result of undesired spikes, breaks, and holes.

For this reason, time-consuming pre-processing algorithms are required prior to the matching

stage.

2.4.1 Artificial Neural Network Based

A Artificial neural network (ANN) based fingerprint pattern classification algorithms are

designed to automatically categorize a fingerprint image based on the arch, left loop, right

loop, scar, or whorl. By first classifying a fingerprint according to its class reduces the

number of candidate searches required to determine if a fingerprint matches to the file prints.

This improves the computation efficiency of the matching process by partitioning the file

fingerprints based on classification thus greatly reducing the number of comparisons that

must be performed by the minutiae-matcher (Kenneth et.al 2007). The ANN system performs

all the processes of image segmentation, enhancement, feature extraction, registration,

dimensionality reduction and classification. At the classification stage, the Artificial Neural

network traces and analyses ridges and creates the template (hypothesized class).

The basic method used by the fingerprint classifier consists of, first, extracting from the

fingerprint to be classified an array (a two-dimensional grid in this case) of the local

orientations of the fingerprint’s ridges and valleys. Second, comparing that orientation array

with similar arrays made from prototype fingerprints ahead of time. The comparisons are

performed between low-dimensional feature vectors made from the orientation arrays, rather

than using the arrays directly.

The ANN algorithm classifies an input feature vector by computing the Gaussian kernel

functions values which are organized into a multi-layered feed forward network with four

layers namely Input layer, Hidden layer, Pattern layer/Summation layer and the Output layer

as shown below. The output classification of the fingerprint is computed by applying a

transfer function f(x, y) to the weighted sums of the input vector values from the input image.

To work with the fingerprint recognition system using artificial neural network requires

training of the neurons from a training set of data and calculating the output of the network

by applying some random weights until the error between the network output and the desired

output is minimal.

-11-

Figure 3 below illustrates an Artificial Neural Network.

Figure 3 - Artificial Neural Network

The artificial neural network (ANN) uses a set of training datasets to build a model that can

be able to classify any input variable into its target class. Each Training data point

corresponds to a Gaussian Function.

 ()
 (() ())

 ….…. (1)

For multiple inputs values, the equation below applies to calculate the category values.

 () ∑
 (()

 ()

)

 ….…. (2)

The algorithm picks a maximum value of the category unit from this function which

becomes the corresponding output value for the classification. This algorithm requires

extensive training.

2.4.2 Correlation Based Algorithms

Texture correlation and convolution techniques are also used in image processing and can

also be applied to finger print matching. The phase only correlation function (POC) uses the

phase spectra of the finger print images and computes the Discreet Fourier Transforms (DFT)

of two finger print images. The phase spectrum transforms an image into its frequency

domain representation. When two images are similar, their POC function gives a distinct

sharp peak, but when two images are not similar, the peak drop significantly. Research

conducted by Koishi et al (2004) noted that phase correlation techniques are not influenced

by image shift and brightness change and it is highly robust against noise. Texture features

have been have also been applied to fingerprint matching where the finger print is tilled into

cells and a bank of Gabor filters are combine with each cell and the variance of the energies

of the Gabor filer responses in each cell is used as a feature vector. These techniques are

computationally expensive, although it has been suggested that local correlation and

correlation in Fourier domain can improve efficiency (Roli et al 2011)

-12-

Correlation based matching uses the grey level information of the fingerprint image since

it contains much richer, discriminatory information than only the minutiae locations. This

takes into account the level 3 features as well as other fingerprint features. In correlation

based techniques, two fingerprint images are superimposed and the correlation between

corresponding pixels is computed for different alignments.

2.4.3 Fingerprint Matching Based Local and Global Structures

Jian & Yau (2000) proposed an algorithm based on local and global features e.g. minutia

type, coordinates, and the orientation angle to compare the query and the template fingerprint.

The algorithm computes the Euclidian distances between the feature vectors in order to

obtain the correct minutiae correspondence. The final matching score in these algorithms

involves measuring both the number of matching minutiae pairs and the similarity degree of

two orientation fields thus reducing the false rejection rate as well as false acceptance rate as

illustrated by Jian & Yau (2000). This method takes advantage of more information than

traditional minutiae based method. By combining the Local structures and the fingerprint

orientation field, this algorithm improves the minutiae correspondence.

A minutia point M detected from a fingerprint is described by the feature vector

 () , Where (x, y) are the coordinates of the minutiae points, is the local ridge

orientation direction of the fingerprint ridge in the range [π/2, π/2] or [0, π]. To measure the

difference between two ridge directions, ω1 and ω2 the function d (ω1, ω2) is given as

below;

 ()

{

 ()

 ()

 () }

 ….…. (3)

Given a minutiae point M with orientation ω, a minutiae structure is defined as follows;

Let

 ….…. (4)

Using the above minutia feature vectors, Jiang & Yau (2000) developed an algorithm that

receives as the input two minutia lists and two orientation fields captured from two

fingerprint impressions and delivers a matching score that expresses the degree of similarity

between the two fingerprints. The value of the similarity level between minutiae (b1, b2) is

obtained by maximizing the similarity level () (s (i, j)), where i and j are

the minutiae points of the input and template fingerprint. The algorithm applies two

-13-

thresholds namely GlobalAngleThr and the GlobalDistThr. The GlobalAngleThr is used to

compare angles in the global minutia matching step while the GlobalDistThr is used to

compare minutia distances in the global minutia matching step.

2.4.4 M-triplet Descriptor Based Matching

Medina-Perez et. al (2011) Proposes an M-triplet feature using three triangular minutiae

points where the ridge continuity breaks and they are typically represented as (x; y; Ө); where

(x; y) represent the two dimensional point coordinates, and Ө the ridge direction at that point.

Minutiae detection algorithm takes a fingerprint image and locates features in the ridges and

furrows of the skin. Points are detected where ridges end or split, and their location, type,

orientation, and quality are stored and used for search. There are 100 minutiae on a typical

ten-print, and matching takes place on these points rather than the 250,000 pixels in the

fingerprint image.

According to Medina-Perez et. al (2011), Minutiae triplets are local structures

represented by three minutiae in the neighbourhood. Minutiae matching techniques aims at

finding the minutiae correspondence (number of common minutiae points) between the input

and the query fingerprints. In this algorithm, the number of matching minutiae points can be

maximized if a proper alignment between the query and template fingerprints can be found

(Kumar & Begum 2013).

The relative transformation between the Query image and the Template image poses a

challenge known as correspondence problem. This causes ambiguity since each minutiae of

one finger print can be matched onto any minutiae of the other fingerprint. To reduce the

ambiguity, additional information is added called the minutiae descriptor information. This

information helps to quickly establish the minutiae correspondence. A simple and accurate

descriptor is based on Minutiae triplet (m-triplet). Some of the quality parameters of the

minutiae triplet based matching include:

i. The minutiae order in the triplet does not affect the correspondence and thus the

algorithm finds the correct correspondence when matching.

ii. The algorithm does not match a triplet with its reflected versions.

iii. In order to find similar triplets, the algorithm takes into account the directions of the

minutiae relative to the sides of the triangles formed by the triplets.

An m-triplet is defined as a tuple with the following components (Miguel, et. al 2012);

 Minutiae pi ϵ P which are clockwise starting at Pi

 where di is the Euclidean distance between the minutiae different that pi

-14-

 Which are the maximum, middle, and minimum distance

values.

 which are the angles (()) required to rotate the direction of

a minutia to superimpose it to the vectors associated with the other two minutia in

the triplet.

 ()is the angle required to rotate the direction of the minutia pk in

order to superimpose it to the direction of the minutia pj

Figure 4 below represents the m-triplet feature

Figure 4 - M-triplet Feature representation

The M3gl developed by Medina P. et. al (2012) is based on the M-triplet feature such

that given a fingerprint described by the features set P we can compute the M-triplet as

follows. For each p ϵ P, we find its nearest minutiae in P and build all m-triplets that

include p and two of its nearest minutiae, discarding duplicates.

2.6 Fingerprint Recognition Process

The basic operations performed by a general biometric system are the capture and

storage of enrolment (reference) biometric samples and the capture of new biometric

samples and their comparison with corresponding reference samples (matching). The

primary component is the image capture process. In this process, the finger print sensor

collects biometric data and stores into a reference database. The reference database

contains previously enrolled fingerprint biometric data. The second component called the

matcher, compares presented sample data to the reference data in order to make a

recognition decision (Joseph et al 2010).

-15-

Figure 5 below represents the fingerprint recognition process

Figure 5 - Operations for Biometric Recognition System

All fingerprint recognition systems follows a two stage process which mainly consist of

enrolment and matching stages. Each stage consists of several sub-stages. These can be

illustrated as shown in figure 6 below;

Figure 6 - Stages of fingerprint recognition (Nadarajah et. al 2011)

2.5.1 Enrolment Stage

This is the stage where each individual fingerprint is enrolled with a unique identifier.

The image of the fingerprint is captured using one of the capturing techniques like optical,

capacitive and Radio Frequency (RF). The captured image is then processed using image

enhancement techniques. The resulting image is in a binary form. The Global and Local

(level 1 and 2) features are extracted at this stage. Upon completion of the extraction process,

templates are generated and stored in a database for the use in matching process for 1: N

matching or in an identity document such as identity card or passport for 1:1 matching.

During this stage, the image Quality algorithm analyses a fingerprint image and assigns a

quality value of 1– 5 (Highest to lowest).

-16-

2.5.2 Feature Vector Extraction

The feature extraction process entails reading and codifying each of the minutiae

features and generating the feature vector consisting of the x-coordinates, y-coordinates and

the angular distance as shown in Figure 7 below. The minutia points are normally extracted

during enrolment as well as during authentication. In industry applications, these features are

codified and stored in a reference database for future recognition.

Figure 7 - Feature Extraction

2.5.3 Recognition Stage: Matching stage

This stage entails matching the extracted features against either the templates stored in

data base for 1: N matching or the single template stored in the identity document (e.g.:

identity card or passport) for 1:1 Matching. Depending upon the criteria used, the results from

the template matching are scored and final decision is arrived to accept or reject the subject as

the subject that claimed to be.

2.5.4 Computation of Similarity Scores

A similarity score is used to measure the degree with which minutiae points from

fingerprints of the same finger and of different fingers can be discriminated. Minutia points

are represented on the Cartesian coordinate system x, y, Ө. To compute a similarity score, the

algorithm computes the Euclidian distances between the two points of a fingerprint features.

Given two fingerprint images with ‘T’ and ‘Q’ identified minutiae points respectively (where

T need not be equal to Q), this algorithm outputs the ‘M’ common minutiae points in both the

images. Effectively, if T represents the set of minutiae points in image 1 and Q represents the

set of minutiae points in image 2, M would be the intersection of T and Q (M = T ∩ Q). A

fingerprint matcher takes two fingerprints vectors, Ti and Qj and produces similarity

-17-

measurement S(Ti,Qi) which is normalized in the interval [0, 1]. If the value of the matching

score is close to 1, then the matcher has a higher confidence of similarity. For instance, Let

the number of minutiae in T and Q be m and n respectively

 T=m1, m2…… mm, mi =xi, yi, i i=1,….m ….…. (5)

 Q= m’1, m’2…… m’m, m’j = x’j, y’j, i j=1,….m

This category of algorithms computes the Euclidean distances between the pairs of

minutiae (Feature vectors). The outputs of each comparison is either a “match” or a “non-

match”. In Minutiae based algorithms, a minutiae in T and in Q are considered

matching if the following conditions are satisfied. This can also be written according to the

equation below using the spatial distance (sd) and direction distance (dd)

 = ≤ ….…. (6)

 =min ≤ o

where ro and o are the parameters of tolerance required to compensate for errors.

Minutia based fingerprint matching system usually returns the number of matched minutia

on both the query and reference fingerprint and uses it to generate similarity scores in the

rage between [0….1]. More matched minutiae will always yield a higher similarity score and

thus when the number of minutiae on both the fingerprints is large, then we can confidently

distinguish the genuine and impostor fingerprints using the number of matched minutiae.

2.7 Empirical Literature

In General terms, Fingerprint matching can be classified as either Minutiae – based or

Correlation/Pattern Methods. Pattern based matching algorithms uses graphical comparison

of the entire fingerprint image as opposed to the individual minutiae points. The

characteristics that are used include the ridge thickness, curvature, or density. A pattern-

based algorithm is independent of the number of minutiae points in a fingerprint as well as

independent of the size of the finger print sensor. Compared to other algorithms, pattern-

based algorithms are not affected by the quality of the fingerprint image. However, Qi et. al

(2005) observed that minutiae-based methods perform better than correlation-based despite

the fact that they may be affected by rotation, translation, deformation of the fingerprints as

well as location, direction of the detected minutiae or presence of spurious minutiae.

Minutia based matching consists of finding the best alignment between the extracted and

stored template minutia and the minutiae from the subject finger print. On the other hand,

Pattern based algorithms are based on scanning the overall fingerprint global features i.e. the

-18-

loop, whorl or the arch patterns. Pattern based techniques are considered to be more stable

and robust to fingerprint orientation, quality and do not require extensive pre-processing or

enhancements.

The American National Standards Institute – National Institute of standards and technology

(ANSI- NIST) proposed a minutia-based fingerprint representation which included location

and orientation. In this case, minutia orientation is defined as the direction of the underlying

ridge at the minutia location. These characteristics are then represented in the Cartesian

coordinates system of x, y, Ө of the miniature datasets where x- is the x- coordinates, y is the

y-coordinates and Ө is the angular orientation of the miniature. The simplest and most

commonly used techniques are based on segmentation, Image Orientation field estimation,

binarization and ridge thinning. Figure 8illustrates the Image Orientation field estimation

technique,

 As shown on figure 8, a ridge

ending minutia: (x,y) are the minutia

coordinates; Ө is the minutia’s

orientation; (b) A ridge bifurcation

minutia: (x,y) are the minutia

coordinates; Ө is the minutia’s

orientation.

The Segmentor takes an input image that is 512x480 pixels and cuts a rectangular region to

produce an output image rectangle image. The sides of the rectangle that is cut out are not

necessarily parallel to the corresponding sides of the original image. The Segmentor attempts

to position its cut rectangle on the impression made by the first joint of the finger. It also

attempts to define the rotation angle of the cut rectangle and remove any rotation that the

finger impression had to start with.

The other enhancement techniques applied on an image involves picking up parts of

the image in form of input squares and performing the forward two-dimensional fast Fourier

transform (FFT) to convert the data from its original (spatial) representation to a Frequency

representation. Next, a nonlinear function is applied that increases the power of useful

information (the overall pattern, and in particular the orientation, of the ridges and valleys)

relative to noise. This enhances the segmented image before extracting the orientation

features, thus increasing the accuracy of the resulting classification.

Figure 8 - Image orientation field

-19-

2.6.1 Examples of Fingerprint Image Pre-Processing Routines

2.6.2 Segmentor Routine

The Segmentor reads the input fingerprint image (512x480 at 500 pixels per inch) and

produces an image that is 512×480 pixels in size. This involves cutting a rectangular region

out of the input image. The sides of the rectangle that is cut out are not necessarily parallel to

the corresponding sides of the original image. The routine attempts to position its cut

rectangle on the impression made by the first joint of the finger. It also attempts to define the

rotation angle of the cut rectangle and remove any rotation that the finger impression had to

start with. Cutting out this smaller rectangle reduces the amount of data that has to undergo

subsequent processing. Removing rotation helps in removing a source of variation between

prints of the same class.

2.6.3 Enhancement Routine

The enhancement routine goes through the image and snips out a sequence of squares each

of size 32×32 pixels, with the snipping positions spaced 16 pixels apart in each dimension to

produce overlapping. Each input square undergoes a process that produces an enhanced

version of its middle 16×16 pixels, and this smaller square is installed into the output image

in a non-overlapping fashion relative to other output squares.

The enhancement of an input square is done by first performing the forward two-

dimensional fast Fourier transform (FFT) to convert the data from its original (spatial)

representation to a frequency representation. Next, a nonlinear function is applied that

increases the power of useful information (the overall pattern, and in particular the

orientation, of the ridges and valleys) relative to noise. Finally, the backward 2-d FFT is done

to return the enhanced data to a spatial representation before snipping out the middle 16×16

pixels and installing them into the output image (Kenneth et.al 2007)..

The Enhancement routine uses localized FFT filter techniques on the segmented image thus

increasing the accuracy of the resulting classifier. The nonlinear function applied to the

frequency-domain representation of the square of pixels has the effect of increasing the

relative strength of those frequencies that were already dominant. The dominant frequencies

correspond to the ridges and valleys in most cases. So the enhancer strengthens the important

aspects of the image at the expense of noise such as small details of the ridges, breaks in the

ridges, and ink spots in the valleys. (Kenneth et.al 2007)

Other image enhancement technique that are applied on each of the fingerprint images to

improve on the quality of the finger print recognition include Histogram equalization

technique which is applied to expand the pixel value distribution of an image so as to increase

the perception information.

-20-

A Gaussian filter is also applied to the image template to remove noise and extra details

from the original image thus smoothen the overall shape of the image. This helps in

connecting the falsely broken points on ridges as well as to remove false connections between

ridges. Other technique involves use of Fingerprint Image binarization which is applied to

transform the 8- bit Gray fingerprint image to a 1-bit image with 0- value for ridges and 1-

value for furrows. This operation causes the ridges in the fingerprint to be highlighted with

black colour while furrows are white.

2.6.4 Ridge-Valley Orientation Detector

This uses a pixel – alignment technique for fingerprint orientation field detection. The

algorithm detects, at each pixel location of the fingerprint image, the local orientation of the

ridges and valleys of the finger surface, and produces an array of regional averages of these

orientations. The routine is based on the ridge-valley fingerprint binarizer that reduces a

grayscale fingerprint image to a binary (black and white only) image.

Typically, the pixel–alignment-based method computes the local ridge orientation of each

pixel on the basis of the neighboring pixel alignments with respect to a fixed number of

reference orientations. Differentiation (fluctuation) of neighboring pixels grey level values is

expected to be the smallest along the local ridge orientation and the largest along its

orthogonal orientation. The accuracy of the estimated orientation in the pixel-alignment-

based method is limited because to the fixed number of reference orientations (Kenneth et.al

2007).

2.6.5 Feature extraction

The feature extraction technique involves performing image thinning to eliminate

redundant pixels of ridges until each ridge is a single pixel. Pruning and ridge filling

operation on the thinned image can also be applied to remove false minutiae. Feature

detection and extraction techniques are then applied on the image. A reference database is

then created from the extracted features.

The figure 9 below represents a schematic representation of the process of feature

extraction.

-21-

Figure 9 - Flow chart of the minutiae extraction process

2.6.6 Matching Technique

Fingerprint matching is achieved by minutia matching of the point pattern where features

associated with each point pattern and inter-point distances are used to reduce the search

paths.. Minutia matching processes are normally decomposed into two stages mainly (a) pre-

processing stage where enhancements and transformations such as translation, rotation and

scaling parameters between input minutia pattern and a template minutia are first estimated;

the input minutia is then aligned with the template minutia pattern according to the estimated

parameters; and (b) matching stage, where both the input and the template are converted to

polygons in polar coordinate system and a matching algorithm is used to match the polygons.

In pattern based approach, the graphical center of the fingerprint image is located, then the

image is cropped a fixed distance around this center point. The cropped region is then stored

for subsequent matching.

2.8 Performance Evaluation Of Fingerprint Recognition Algorithms

2.7.1 Receiver Operator Curve Analysis

One of the techniques for evaluation of the performance of the algorithms that has been

widely research on has been based on the receiver operating characteristics (ROC) graph. It is

a graphical plot that illustrates the performance of a binary classifier system as its

discrimination threshold is varied. The ROC graph is used for visualizing, organizing and

selecting classifiers based on their performance. A classification model based on mapping of

instances to some target class is used. If the instance is positive and it is classified as positive,

it is counted as a true positive; if it is classified as negative, it is counted as a false negative. If

the instance is negative and it is classified as negative, it is counted as a true negative; if it is

classified as positive, it is counted as a false positive.

https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier

-22-

Given a classifier and a set of instances (the test set), a two-by-two confusion matrix is

constructed as shown in figure 10 below;

Figure 10- Confusion matrix

From the above matrix, common metrics are calculated using Equation (7) and (8) below

 ….…. (7)

Similarly

 ….…. (8)

Thus the ROC graph is a two-dimensional graph in which tp rate is plotted on the Y axis

and fp rate is plotted on the X axis. From the graph therefore, we can depict relative trade-

offs between benefits (true positives) and costs (false positives). It is important to note that

this technique measures performance in terms of accuracy but does not evaluate speed.

2.7.2 False Match Rate Vs False Non-Match Rate

 A second technique for evaluation of the performance of the algorithms is based on the

false match rate (FMR) versus the false non-match rates (FNMR). The FMR is the number of

impostor comparisons with scores higher than the threshold divided by the total number of

impostor comparisons computed as below;

FMR (n) = (Number of successful impostor attempts against a person n) / (Number of all

impostor attempts against a person n)

Similary, The FNMR is the number of genuine comparisons with scores lower than the

threshold divided by the total number of genuine comparisons computed as below

FNMR (n)= (Number of rejected verification attempts for a qualified person n) / (Number

of all verification attempts for a qualified person n)

-23-

2.7.3 Comparison of Minutia points and Minutia Triangulation

The figure below visualizes and compares the two underlying techniques for fingerprint

feature representation. Figure 11 represents minutiae points while figure 12 represents

minutiae triangulation features.

Minutiae matching techniques aims at finding the minutiae correspondence (number of

common minutiae points) between the input and the query fingerprints. Given two fingerprint

images with ‘T’ and ‘Q’ identified minutiae points respectively (where T need not be equal to

Q), the algorithms outputs the ‘M’ common minutiae points in both the images. Effectively, if

T represents the set of minutiae points in image 1 and Q represents the set of minutiae points

in image 2, M would be the intersection of T and Q (M = T ∩ Q).

A classification technique categorizes the fingerprint images according to the Henry’s

classification scheme. This consists of the five commonly used classes namely Arch, Tented

arch, Left loop, Right loop and Whorl. The commonly used method of minutiae extraction is

called Crossing Number (CN). In this method, the minutiae points are determined by

scanning the local neighbourhood of each pixel in the ridge thinned image using a 3x3

window.

The CN value is them computed as shown in equation 9 below which is defined as half the

sum of the differences of the pairs of neighbouring pixels Pi and Pi+1,

Where

……… (9)

Figure 12 - Minutiae Points
Figure 11 - MTriplet Features

-24-

The results of the formula can be summarized as shown in figure 13 below

CN PROPERTY

0 Isolated point

1 Ridge Ending

2 Continuous ridge

3 Bifurcation

4 Crossing

Figure 13 - Crossing Numbers

The main problem, in this minutiae extraction method is that minutiae in the skeleton

image do not always correspond with true minutiae in the fingerprint image because of false

minutiae extracted as a result of undesired spikes, breaks, and holes. For this reason, time-

consuming enhancement algorithms are required prior to thinning stage. An example of a

Minutiae matching algorithm developed by the American NIST is the MIDTCT.

2.7.4 Proposed Comparative Analysis

The key aspect of the efficiency of the algorithm is measured in terms of speed of

execution and accuracy of comparison. Generally, trade-offs are made across all of these

measures to achieve the best-performing system consistent with operational and budgetary

needs. For example, recognition error rates might be improved by using a better but more

time-consuming enrolment process; however, the time added to the enrolment process could

result in queues (with loss of user acceptance) and unacceptable costs. Previous comparative

analysis of fingerprint carried out by Kumar & Begum (2013) compared Minutiae based

matching and distance based ratio matching and observed that minutia matching performed

best in terms of time and memory requirements. Other research done by Qi et. al (2004)

evaluated the performance of minutiae based matching using an ROC curve. Most of the

researched comparative analysis techniques have only been based of accuracy as a measure

of performance.

The proposed analysis is based on combination of the speed of matching, accuracy of the

algorithm and the number of features identified. The speed of matching as a performance

measure has a direct impact on the speed of identification of individuals. The accuracy is

evaluated using the similarity scores and the number of common fingerprint features in two

fingerprints that are matched by an algorithm. From the values obtained in the experiment,

descriptive statistical analysis of the similarity scores, time taken, and the number of features

is performed.

-25-

CHAPTER THREE - METHODOLOGY

3.1 Introduction

This section describes an exploratory research for comparison of the performance of two

fingerprint matching algorithms; one that is based on minutiae triangulation features and

another based on a combination of minutia points and global orientation features. The

research is conducted on a Microsoft Visual Studio environment using C# using fingerprint

images obtained from a citizen registration exercise conducted in Kenya by a reputable

institution. Minutiae based algorithms compare several minutia points from an original image

stored in a template with those extracted from a candidate finger print. Minutiae based

algorithms require extensive pre-processing and image enhancement techniques in order to

improve on the degree of extraction and perception of the minutia as well as to remove

spurious or false minutiae. The pre- processing mainly involves linearization and thinning

techniques that require a lot of processing power and time.

In this research, we aimed at carrying out an exploratory analysis of those algorithms that

are based of minutia and global orientation features namely MJY (Jian & Yau 2000) and

MQYW (Medina-Pérez, et al 2012) against those that are based on minutia triangulation (M-

triplet features) namely M3gl (Miguel et al 2012). The findings from this research can be

used to provide guidance in the design, development, implementation and evaluation of an

open, flexible finger print matching algorithm for biometric identification in Kenya.

The development of the solution followed standard software development model as shown

in the Figure 14 below;

Figure 14 –Software development process flow

-26-

3.2 Requirements Analysis

 Requirements analysis was done to define what and how the desired system for biometric

recognition would be designed to address the research objectives. A review of existing

documentations on biometric recognition systems was done. This helped in identifying gaps

in the requirements and in the design of the proposed solution. Some of the systems

documentations that were studies included the Kenya Biometric Voter registration system,

SourceAFIS system and the National Institute of Science and Technology (NIST) algorithms.

Figure 15 below describes the process followed in the requirements analysis.

Figure 15- Requirements Analysis Process

During this stage, the following requirements were identified;

3.2.1 Functional Requirements

These defined how the system should function from the end-user's perspective. They

described the features and functions with which the end-user will interact with the system

directly. It included the following;

i. Provide an interface with menus for selection of different functional operations

like file menu, window and help menus.

ii. Provide and interface for conversion of WSQ images into BMP images. This

entails creating a form where the user specifies the directory path for the source

images and a directory path for the destination / output images

iii. Provide an interface for displaying fingerprint features for visual comparisons

iv. Provide an interface for automatic matching of fingerprints and displaying

similarity scores, time taken and number of matching features.

-27-

3.2.2 Non-Functional Requirement

These are those requirements that define the quality characteristics of the system. They

specify criteria that judge the operation of a system. They included the following aspects of

the system;

i. Response time: The system should be able to perform matching of at least 1000

records within thirty (30) minutes

ii. Capacity : The system should be able to match a large dataset of at least 1000

candidate fingerprints

iii. Usability : The system should be easy to learn and use with minimal user

assistance

iv. Scalability: The system should be scalable to perform matching of unlimited

number of finger print records without having to change the code or re-program

v. Data Integrity: The system should ensure that the original fingerprint images are

maintained i.e. the system should not modify or tamper with the original

fingerprint images.

3.3 Interface Design

In order to develop the required solution, an interface design of the prototype was

developed with the various screens required to achieve the required functions. A screen for

the main menu was drawn as shown in the Figure 16 below.

Figure 16 - Main Form

3.3.1 Main form

The main form (figure 17) provides menus form accessing various functions within the

application e.g. file menu for performing system functions, window menu for arraigning

multiple windows and help to the user assistance and help functions.

File Window Help ___ X

Convert WSQ to

BMP

Display Images

Visual Match

Run Experiment

Quit

-28-

The figure 17 below represents the main menu

Figure 17 - Main Menu

3.3.2 Matching Experiment Form

The experimental matching form provides the interface to select the required algorithm for

the matching test and execute the match. The matching process runs in the background and

displays the results on the screen in a grid format. The results of the matching experiment are

then saved into comma-separated values (CSV) file in a windows directory. The Figure 18

below shows the form for executing the experiment.

Figure 18 - Experiment Form

-29-

The figure 19 below shows how the results of the experiment are then saved

Figure 19 - Save Results Dialog Box

3.4 Data Collection and Conversion

The data used for this research was based on a collection of image impressions of the four

(4) fingers from each candidate individuals. The data is captured using a 500 dpi resolution

finger print scanner (4-4-2) that produced images of 512x480 pixels. Prior to the features

extraction and matching process, each image is passed through a pre-processing stage to

improve on the image quality. For ease of identification and matching, each image is

assigned a unique name as follows;

i. Left Thumb: xxxxxxxxxx_31.wsq

ii. Left Index: xxxxxxxxxx_32.wsq

iii. Right Thumb: xxxxxxxxxx_36.wsq

iv. Right Index: xxxxxxxxxx_37.wsq

The .wsq fingerprint images of 100 candidates are sampled and save in a windows folder in

C:\FingerprintImages\WSQImages, A program is developed in c# to convert the .wsq images

to bitmap images for the algorithms to read and extract features. The converted bitmap

images are stored under C:\FingerprintImages\BMPImages.

-30-

The figure 20 below illustrates an interface for the conversion of images from WSQ to

Bitmap images that can be processed by the algorithms.

Figure 20 -Image conversion screen

3.5 Sampling Technique

The identification of a person requires the comparison of his/her fingerprint with all the

fingerprints in a database, which may be very large (several million fingerprints). A common

strategy to reduce the number of comparisons during fingerprint retrieval and to improve the

response time of the identification process is to divide the fingerprints into some predefined

classes.

In this research, we randomly selected a sample of four (4) fingerprints (Left index, Left

Thumb, Right Index, Right Thumb) from amongst 100 randomly selected candidates in the

database of registered individuals. The assumptions and considerations in this research were

that all the fingerprint capture equipment have the same configurations for the registration

software, secondly, it is assumed that the environmental conditions did not affect the quality

of the captured fingerprints and therefore the conclusions drawn from the samples were

generalized into the entire population.

3.6 Algorithm Implementation

The algorithms were implemented on a Microsoft visual studio 2010 development

environment and coded as windows forms application interface. Various pre-programed

standard libraries were referenced and used for basic windows form functions which included

open dialog and save dialogue boxes. Other fingerprint feature extraction routines and image

processing libraries were also extensively used. Some of the libraries included the windows

form dialogues, text manipulation functions and input/output libraries. Special libraries

included the wsq2bmp decoder libraries and Rather1995 image processing routines.

-31-

3.7 Prototype Testing

Each candidate fingerprint was compared with every member in the population set

without repetition. The process was automated by ensuring that each query fingerprint is

selected from the population and matched against each and every finger print in the entire

population. This process was able to uniquely discriminate fingerprints belonging to the same

individual and thus identifying duplicate registrations either as fraudulent or erroneous

enrolments. In this research, the experiment was conducted by executing each algorithm

against a database of sampled fingerprints and obtaining values of similarity scores, time

taken and the number of similar features obtained from the query and template fingerprints.

The outputs were then analysed using SPSS statistical tool to obtain statistical values for

comparison. Fingerprint features were extracted from each of the four sampled fingerprints

(Left Thumb, Left Index, Right Thumb, Right Index) and average similarity scores were

computed.

For each Candidate Q[i] , i=0…….N-1 where N is the total number of candidates, the

finger prints features from each of the four (4) fingers of a candidate were extracted and

compared with the template fingerprints from the entire set of candidates Q[i], where

i=1 …..N, in this case N was 40.

Figure 21 and 22 shows the left hand fingerprints with numbering of the fingerprints

The experiment was conducted by running the routine that picks one fingerprint from the

dataset at a time and matching it against each and every other fingerprint as illustrated in

table 1 and table 2 below.

Figure 22 - Left Hand Figure 21 -Labelling of the Fingers

-32-

Table 1 - Query Fingerprint

QUERY FINGERPRINT (Index)

Left Thumb x =0 x+1 …

…

n-1

Left Index x =0 x+1 …

…

n-1

Right Thumb x =0 x+1 …

…

n-1

Right Index x =0 x+1 …

…

n-1

Table 2 - Template fingerprints

TEMPLATE FINGERPRINT (Index)

Left Thumb i =x+1 i+1 …

…

n

Left Index i =x+1 i+1 …

…

n

Right Thumb i =x+1 i+1 …

…

n

Right Index i =x+1 i+1 …

…

n

 An analysis of the order of computations was done as shown in equation (9) below. It

was observed that the number of comparisons performed by the matching algorithm was in

the order

(n-1) + (n-2) + (n-3)….+1, = n*(n-1)/2. ….…. (9)

For example, given a dataset of 5 fingerprints, the number of comparisons done would be

calculated as follows

 5*(5-1)/2 = 5*4/2=5*2=10 Comparisons. ……… (10)

3.8 Visual Match Test

Visual matching involved selecting a query fingerprint (Q) and a template Fingerprint (T)

then executing a match test. The results indicated accuracy between 0 (Lowest similarity) and

1(Highest similarity). Using each of the algorithms implemented, the algorithms are able to

uniquely match two fingerprints by calculating the accuracy of match between them as well

as displaying the number of similar features. When two fingerprints are identical, the

-33-

similarity score will be equal to 1 and the number of similar minutiae will be a value above

20 as shown in Figure 23 below.

We were therefore able to visually determine the degree to which the algorithm is able to

discriminate one fingerprint from another.

Figure 23 -Visual match of the same fingerprints

When the Query fingerprint and the Template fingerprint are not from the same finger or

individual, the similarity score is below the 0.2 and the number of matching minutiae is low

(below 10) as shown in the figure 24 below.

Figure 24-Visual Match of different fingerprint images

-34-

CHAPTER FOUR – RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter describes the findings and results of the research within the scope of the

research objective. The results in this chapter show the performance indicators in terms of

algorithm speed and accuracy. This helps to clarify the implications on performance of the

fingerprint matching implemented in solution.

4.2 Overall Results

After the tests were successful, the image conversion program was executed to convert

the four (4) fingerprint images for 100 candidates. This process took approximately two (2)

minutes. The main experimental program for the matching and de-duplication was

performed where the de-duplication using MWQY algorithm took about 45 minutes and the

M3gl algorithm took an approximate 3 minutes to complete. The Output value indicated

whether there was a positive (P) Match or Negative (N) Non-match result /Impostor

An extract of the sample results are given in the Table 3.

Table 3- Sample Matching Results using Minutia Triangulation

Query Image Template Image

Accuracy

(Similarity Score)

Time Taken

(Milliseconds)

No of

Features Output

11142100 57479000 0.0036 80 3 N

11142100 89586000 0.0027 22 0 N

11142100 111925100 0.0016 25 0 N

11142100 123574800 0.0028 14 3 N

11142100 207140300 0.0014 13 0 N

11142100 222941600 0.0059 23 3 N

11142100 235115100 0.0023 26 0 N

11142100 235318800 0.0038 30 4 N

An extract of the sampled results of the experiment using minutia and global orientation

based algorithms is shown in the Table 4 below

Table 4 - Sample Matching Result using Minutia and Global Orientation Feature

Query Image Template Image

Accuracy

(Similarity Score)

Time

Taken

No of

Features Output

11142100 57479000 0.1329 703 3 N

11142100 89586000 0.1313 710 6 N

11142100 111925100 0.1232 856 6 N

11142100 123574800 0.0975 543 1 N

11142100 207140300 0.1146 481 1 N

11142100 222941600 0.155 704 4 N

11142100 235115100 0.1194 747 4 N

11142100 235318800 0.0933 125 4 N

11142100 248549600 0.2047 511 4 N

-35-

4.3 Analysis of Results Using Frequency Distribution Graphs

The simulation of matching experiment was conducted for each algorithm using a dataset

of 100 sampled candidates. Frequency distribution graphs in below were created that shows

the distribution of the three parameters accuracy, time taken and number of similar features.

The Accuracy values range between zero and one (0…1) with 0 being no similarity between

the query and template image while 1 indicates high similarity.

4.3.1 Graphs for Minutia Triangulation Algorithm (M3gl)

The Figure 24 below represents the graph of accuracy degrees ranging between 0 – 1 on

the x-axis and the frequencies of occurrence on the y-axis where accuracy was measured in

terms of similarity scores.

From the figure 25 below, it can be observed that the minimum value is 0.0009 and the

maximum value is 0.0142 with the majority values ranging between 0.0021 and 0.0065.

Figure 25-Minutia Triangulation - Bar Chart on Accuracy

-36-

The Figure 26 below represents the graph of Time taken to perform a match with the M3gl

algorithm. The values ranges between 0 – 400 milliseconds on the x-axis and the frequencies

of occurrence on the y-axis. It was noted the graph is skewed to the left with majority of the

frequencies falling between 10 and 70 milliseconds

Figure 26- Minutia Triangulation - Bar Chart on Time taken (ms)

The figure 27 below show the distribution graph of the number of similar features identified

by the algorithm on the x-axis against the frequency of occurrence on the y-axis. It can be

noted that the features were fewer in this algorithm.

Figure 27 -Minutia Triangulation - Bar Chart on No of similar features

-37-

4.3.2 Graphs for Minutia and Global Orientation Algorithm

A second experiment that was conducted using the minutia and Global orientation based

algorithm named MQYW, similar graphs were produced. In figure 28 below, the graph

represents accuracy of comparison versus frequency. It can be observed that average accuracy

falls in the range 0.10 to 0.18 indicating a higher degree accuracy as compared to the

previous algorithm.

Figure 28 -Global Orientation - Bar Chart on Accuracy

In terms of time taken to perform comparisons, the graph in figure 29 below indicates that

this algorithm performs poorly. Majority of the comparisons are performed in the range

between 439 milliseconds and 890 milliseconds.

-38-

Figure 29 -Global Orientation - Bar Chart on Time taken (ms)

The figure 30 below compares shows number of similar features identified against the

frequency. This algorithm is able to discriminate and identify more features than the previous

algorithm indicating a higher degree of accuracy.

Figure 30 -Global Orientation - Bar Chat on No of Similar Features

-39-

4.4 Discussions

Using the descriptive values of minimum, maximum, average and the standard deviation

of the three variables we were able to compare and analyse the performance of the two

algorithms as shown in table 5 below. The table 5 and table 6 below shows that a total of

4950 comparisons were performed and values for accuracy, time taken and number of similar

features identifies were computed for each algorithm

Table 5 - Minutia Triangulation (M-Triplet) Based

M3gl Algorithm - Descriptive Statistics

 N Minimum Maximum Mean Std.

Deviation

Variance

Accuracy 4950 .0009 .0142 .004202 .0017840 .000

TimeTaken (ms) 4950 8 504 38.32 31.834 1013.416

No. of Similar Features 4950 0 11 3.66 1.229 1.511

Valid N (Listwise) 4950

Table 6 -Minutia and Global Orientation Based

MQYW Algorithm - Descriptive Statistics

 N Minimum Maximum Mean Std.

Deviation

Variance

Accuracy 4950 .0459 .3009 .142433 .0363188 .001

TimeTaken 4950 0 999 563.76 237.459 56386.784

NoofSimilarFeatures 4950 1 32 7.56 3.532 12.475

Valid N (listwise) 4950

Where N= Number of Fingerprints comparisons performed in a dataset of 100 candidates

with four fingerprints each.

This research has revealed that fingerprint matching algorithms require high

computational resources in terms of speed, time and memory. For instance, it took approx.

30mins to perform de-duplication of one hundred (100) candidates with four (4) fingerprint

images each on a personal laptop. This research was successfully implemented on a personal

laptop computer based on simulation of algorithms implemented on C# using Microsoft

Visual Studio 2010 professional development environment. It is observed that fingerprint

matching based on minutia triangulation algorithms performs better in terms of speed with an

average of 38.32 milliseconds as compared to matching based on a combination of minutia

and global orientation features with an average of 563.76 milliseconds.

In terms of accuracy of matching, the algorithms based on a combination of minutia and

global orientation field features performs better with an average similarity score of 0.142433

as compared to m-triplet based matching with an average similarity score of 0.004202

-40-

CHAPTER FIVE - CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

This section summarizes the achievements, recommendations and future work in this

area. Specifically, the conclusions drawn from these results can be used in the design of

future biometric recognition system in citizen identification, paternity tests, criminal

investigation as well and access control systems.

5.2 Achievements

In this research, we were able to analyse and effectively compare the performance of two

fingerprint matching algorithms a) one that is based on minutia features and b) another based

on minutia triangulation features. Both of these algorithms have been compared in terms of

speed of comparison and degree of accuracy.

In this research, we also developed and implemented a prototype for fingerprint matching

to identify duplicate records using four (4) fingerprint images from 100 candidates. The

experiment was executed in a controlled environment using some free libraries available on

the internet. The prototype developed was able to extract and convert fingerprint images

captured using standard enrolment devices with 500 DPI.

The research has helped re-affirm the fact that the choice of the fingerprint matching

algorithm certainly improves the matching performance of the fingerprint based recognition

system. Other factors affecting the performance of fingerprint recognition systems have

widely been documented namely the quality of fingerprint images, enhancement techniques

applied. A lot of research efforts has previous been focused towards enhancing the quality of

the fingerprint images, improving the enrolment process and enhancing the usability of the

recognition software.

From this research, it has been revealed that the choice of an appropriate algorithm is

largely dependent on the intended application of the biometric recognition system, the

resources available as well as the desired level of accuracy. The computational resources

available for carrying out large scale biometric matching affects in a large way the choice of

the matching algorithm.

-41-

5.3 Recommendations

5.3.1 Recommendations for Research

We recommend that further comparative analysis of neural network and correlation based

algorithms be undertaken using the same parameters to identify their performance as

compared to minutia based fingerprint matching techniques. On a similar note, further

comparative analysis needs to be done using a combination of accuracy, speed, and memory

requirements in order to determine the correlation between speed and memory requirements

of a matching algorithm. Further comparative analysis on the computational efficiency using

ROC curves and confusion matrix should also be done to advance knowledge on this area.

5.3.2 Recommendations for Practice

Biometric recognition is a new field that is gaining popularity in the Kenyan market.

Every industry in Kenya is adopting biometric techniques in identifying both their staff and

their clients. It is in this perspective that prudent practices and techniques should be adopted

in the selection of solutions for biometric recognition. From the findings of this research, we

can recommended institutions and organizations that intend to acquire Biometric Recognition

systems should consider evaluating the solution proposals from vendors based on the degree

of accuracy, speed of matching as well as the memory space requirements. These factors will

to a large extent depend on the estimated population size in terms of the number of

fingerprint records to be processed at any one time as well as the processing resources

available.

5.4 Future Work

This project provides introductory concepts to fingerprint recognition and matching based

on minutiae point matching. The tested conducted in this research can be improved to ensure

their applicability in an enterprise scale. For instance, the interface can be enhanced to

provide functionality performing matching using the WSQ images without having to convert

them to bitmap images. This will require purchase of the WSQ image library available from

Cognaxon and integrating the same into the application. The other improvements that can be

done include; a) Implementation of parallel processing using threading in the matching

algorithm; b) Improvement of the minutiae templates by applying other image enhancement

routines and c) Using fingerprint classification to speed up the algorithm.

-42-

5.5 Limitations of this Research

In this Research, we did not use memory requirements as a factor in the evaluation of the

performance of an algorithm. It is also important to note that in this research, we did not

analyze the performance of the algorithms using the confusion matrix that is based on True

Match and False Match rate due to time constraints.

Most of the fingerprint de-duplication systems are based on proprietary source codes and

thus obtaining these source codes for bench mark analysis to determine their architecture

design was not possible while some were available at a fee. However, there are a number of

projects that provide free and open source fingerprint recognition tool kits that can be used to

build de-duplication prototypes e.g. www.sourceAfis.org.

http://www.sourceafis.org/

-43-

REFERENCES

Chaohong W (2007), Advanced feature extraction algorithms for automatic fingerprint

recognition systems. A dissertation submitted to the faculty of the graduate school of state

university of New York at buffalo in partial fulfilment of the requirements for the degree of

doctor of philosophy.

Delac K & Grgic, M (2004) “A survey of Biometric recognition methods”, Electronics in

marine. 46
th

 International Symposium, vol. no. pp.184,193.

Pato J N & Millettee L. I (2010), Whither Biometrics Committee; National Research

Council, Biometric recognition – challenges and opportunities.

Jain K., Hong L., Pankanti S., Bolle R., (1997), An identity – authentication system using

fingerprints, Proc. IEEE 85 (9) ,pp 1364-1388,

Qi J., Yang S & Wang Y (2005), Fingerprint matching combining the global orientation

field with minutia," Pattern Recognition Letters, vol. 26, pp. 2424-2430,

Kumar, D. A. & Begum, T. U. S. (2013). A Comparative Study on Fingerprint Matching

Algorithms for EVM. Journal of Computer Sciences and Applications, 1(4), 55-60.

Kenneth K, Stanley J, Michael M, Charles L., Elham T, Michael D., Craig I., (2007), User's

Guide to NIST Biometric Image Software, NIST Interagency/Internal Report (NISTIR) –

7392.

Lukas W. (2009), A minutiae-based matching algorithm in fingerprint recognition systems,

journal of medical informatics & technologies vol. 13/2009, issn 1642-6037

Medina P, Garcia, M., et.al, (2011), Robust fingerprint verification using m-triplets,

International Conference on Hand-Based Biometrics, Hong Kong, 2011, pp. 1-5.

Nadaraja M, Celalettin T, et. al, (2011), Fingerprint Biometric for Identity management

International Journal of Industrial Engineering and Management (IJIEM), Vol. 2 No 2, 2011,

pp. 39-44 < http://www.ftn.uns.ac.rs/ijiem/>

Germain R. S., Califano A., & Colville S. (1997) Fingerprint matching using trans-

formation parameter clustering. Computational Science and Engineering, IEEE Computing in

Science & Engineering, 4(4):42–49,

-44-

Roli B, Priti S, & Punam B. (2011), Minutiae Extraction from Finger print Images – A

review, International Journal of Computer science , vol. 8 Issue 5, No 3. Available from:

www.ijcsi.org/papers/IJCSI-8-5-3-74-85.pdf:last accessed 12 March 2015

Saleh A.A., Adhami R.R., (2001), Curvature-based matching approach for automatic

fingerprint identification, Proceedings of the Southeastern Symposium on System Theory, pp.

171-175,.

X. Jiang, W.-Y. Yau, and W. Ser. (2001), Detecting the fingerprint minutiae by adaptive

tracing the gray-level ridge. Pattern Recognition, 34(5):999–1013,

X. Jiang & W. Y. Yau, (2000), Fingerprint Minutiae Matching Based on the Local and

Global Structures, in 15th International Conference on Pattern Recognition, Barcelona, Spain,

pp. 1038-1041.

-45-

APPENDIX I– Sample Output for M3gl Algorithm

Sample Output for M3gl Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

11142100 57479000 0.0036 80 N 3

11142100 89586000 0.0027 22 N 0

11142100 111925100 0.0016 25 N 0

11142100 123574800 0.0028 14 N 3

11142100 207140300 0.0014 13 N 0

11142100 222941600 0.0059 23 N 3

11142100 235115100 0.0023 26 N 0

11142100 235318800 0.0038 30 N 4

11142100 248549600 0.0032 16 N 0

11142100 254476300 0.0035 23 N 3

11142100 257861600 0.0029 59 N 4

11142100 258269000 0.0028 28 N 3

11142100 258734600 0.0074 20 N 3

11142100 263293600 0.004 16 N 3

11142100 267619800 0.0111 21 N 7

11142100 273915100 0.0047 29 N 3

11142100 276301300 0.0069 16 N 3

11142100 289435100 0.004 17 N 3

11142100 297020500 0.0027 19 N 0

11142100 298853800 0.0076 22 N 3

11142100 311046700 0.0035 31 N 3

11142100 338924500 0.0042 16 N 3

11142100 360148100 0.0066 16 N 4

11142100 360536100 0.006 23 N 5

11142100 378442300 0.0043 18 N 3

11142100 392769200 0.0039 17 N 3

11142100 394660700 0.0038 19 N 0

11142100 402527400 0.0021 24 N 0

11142100 421413300 0.0029 22 N 3

11142100 440687200 0.0051 14 N 0

11142100 465218500 0.0042 38 N 3

11142100 473647800 0.0066 23 N 3

11142100 487974700 0.0046 22 N 3

11142100 493823800 0.003 25 N 3

11142100 508742400 0.0056 22 N 4

11142100 512680600 0.0016 17 N 0

11142100 525581600 0.0101 15 N 6

11142100 529490700 0.0047 27 N 3

11142100 532264900 0.0024 23 N 3

11142100 550316600 0.0043 22 N 4

-46-

Sample Output for M3gl Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

11142100 552508800 0.0016 34 N 0

11142100 559172700 0.0039 25 N 3

11142100 575177700 0.0044 16 N 3

11142100 583044400 0.0038 18 N 4

11142100 600485000 0.002 24 N 0

11142100 616926500 0.0054 31 N 3

11142100 622630100 0.005 21 N 3

11142100 637636000 0.004 23 N 0

11142100 638402300 0.003 16 N 3

11142100 660101200 0.0034 12 N 0

11142100 681286000 0.0025 21 N 3

11142100 682285100 0.0041 34 N 0

11142100 682925300 0.0016 34 N 0

11142100 703178900 0.0036 20 N 0

11142100 713053500 0.0049 33 N 3

11142100 719445800 0.0038 32 N 3

11142100 729960600 0.0023 21 N 0

11142100 733763000 0.0039 31 N 3

11142100 739621800 0.0033 29 N 3

11142100 750049300 0.0042 33 N 3

11142100 755879000 0.0026 41 N 0

11142100 763192800 0.0032 25 N 3

11142100 766985500 0.0067 18 N 3

11142100 774454500 0.0044 15 N 0

11142100 777674900 0.0039 23 N 3

11142100 800712400 0.0023 21 N 0

11142100 825689900 0.0067 18 N 0

11142100 852937200 0.0046 19 N 3

11142100 869388400 0.0049 9 N 3

11142100 871726100 0.005 15 N 3

11142100 886567100 0.0038 9 N 0

11142100 887682600 0.0014 31 N 0

11142100 890796300 0.0047 16 N 3

11142100 909323300 0.0031 21 N 3

11142100 914735900 0.0035 14 N 0

11142100 935523000 0.0052 20 N 4

11142100 942739800 0.0035 18 N 3

11142100 945029000 0.0034 25 N 3

11142100 977349400 0.006 14 N 3

11142100 990512300 0.0019 15 N 0

11142100 1003423000 0.0021 20 N 0

11142100 1004053500 0.0038 18 N 3

11142100 1035568800 0.0036 14 N 0

11142100 1039875600 0.0073 19 N 4

-47-

Sample Output for M3gl Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

11142100 1050177000 0.0033 37 N 3

11142100 1062360200 0.005 15 N 3

11142100 1094118000 0.0038 22 N 3

11142100 1118426200 0.0015 56 N 3

11142100 1138980500 0.0028 15 N 0

11142100 1145586200 0.0041 39 N 3

11142100 1153976700 0.003 20 N 0

11142100 1173929600 0.0056 12 N 0

11142100 1183590800 0.0035 21 N 3

11142100 1186403800 0.0045 19 N 3

11142100 1188111000 0.0044 28 N 3

11142100 1206240300 0.003 27 N 3

11142100 1215261300 0.0021 34 N 3

11142100 1226561800 0.0022 11 N 0

11142100 1226668500 0.0013 19 N 0

57479000 89586000 0.004 37 N 3

57479000 111925100 0.0039 41 N 3

57479000 123574800 0.0063 20 N 5

57479000 207140300 0.0042 21 N 3

57479000 222941600 0.0031 33 N 0

57479000 235115100 0.004 44 N 3

57479000 235318800 0.0027 54 N 3

57479000 248549600 0.004 23 N 3

57479000 254476300 0.0072 38 N 5

57479000 257861600 0.0035 55 N 6

57479000 258269000 0.0029 47 N 3

57479000 258734600 0.0042 24 N 3

57479000 263293600 0.0038 24 N 3

57479000 267619800 0.002 29 N 3

57479000 273915100 0.0032 33 N 0

57479000 276301300 0.0074 23 N 3

57479000 289435100 0.0065 25 N 4

57479000 297020500 0.0045 26 N 3

57479000 298853800 0.0042 26 N 3

57479000 311046700 0.0041 51 N 3

57479000 338924500 0.006 23 N 4

57479000 360148100 0.0059 25 N 3

57479000 360536100 0.0047 32 N 5

57479000 378442300 0.0043 28 N 3

57479000 392769200 0.0029 31 N 3

57479000 394660700 0.0064 27 N 4

57479000 402527400 0.0035 36 N 3

57479000 421413300 0.0045 34 N 4

57479000 440687200 0.0074 19 N 3

-48-

Sample Output for M3gl Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

57479000 465218500 0.0034 27 N 4

57479000 473647800 0.0017 41 N 0

57479000 487974700 0.0038 35 N 3

57479000 493823800 0.0044 48 N 4

57479000 508742400 0.0034 42 N 3

57479000 512680600 0.0044 29 N 3

57479000 525581600 0.005 28 N 3

57479000 529490700 0.0034 44 N 3

57479000 532264900 0.0041 33 N 5

57479000 550316600 0.0045 38 N 3

57479000 552508800 0.0018 60 N 3

57479000 559172700 0.0031 35 N 4

57479000 575177700 0.005 19 N 0

57479000 583044400 0.0041 24 N 0

57479000 600485000 0.0066 38 N 4

57479000 616926500 0.0016 46 N 3

57479000 622630100 0.0038 25 N 3

57479000 637636000 0.0033 33 N 3

57479000 638402300 0.0034 22 N 3

57479000 660101200 0.0055 18 N 4

57479000 681286000 0.0031 30 N 3

57479000 682285100 0.003 31 N 3

57479000 682925300 0.0027 66 N 3

57479000 703178900 0.0043 31 N 3

57479000 713053500 0.0053 46 N 6

57479000 719445800 0.0055 50 N 3

57479000 729960600 0.0062 29 N 3

57479000 733763000 0.002 44 N 3

57479000 739621800 0.0056 43 N 3

57479000 750049300 0.004 24 N 5

57479000 755879000 0.0076 29 N 3

57479000 763192800 0.0022 43 N 3

57479000 766985500 0.0035 26 N 3

57479000 774454500 0.0043 26 N 3

57479000 777674900 0.0036 34 N 3

57479000 800712400 0.0036 33 N 3

57479000 825689900 0.0048 28 N 5

57479000 852937200 0.0044 29 N 3

57479000 869388400 0.008 17 N 8

57479000 871726100 0.0077 20 N 3

57479000 886567100 0.0033 15 N 3

57479000 887682600 0.0022 42 N 3

57479000 890796300 0.0047 28 N 4

57479000 909323300 0.0023 40 N 3

-49-

Sample Output for M3gl Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

57479000 914735900 0.0029 18 N 0

57479000 935523000 0.0087 32 N 7

57479000 942739800 0.0045 33 N 3

57479000 945029000 0.004 39 N 3

57479000 977349400 0.006 17 N 3

57479000 990512300 0.0067 19 N 3

57479000 1003423000 0.0043 29 N 4

57479000 1004053500 0.008 26 N 5

57479000 1035568800 0.0053 23 N 4

57479000 1039875600 0.0048 29 N 4

57479000 1050177000 0.0028 55 N 4

57479000 1062360200 0.0033 20 N 0

57479000 1094118000 0.0026 34 N 3

57479000 1118426200 0.001 118 N 3

57479000 1138980500 0.0051 23 N 3

57479000 1145586200 0.0037 64 N 5

57479000 1153976700 0.0027 30 N 3

57479000 1173929600 0.0042 17 N 4

57479000 1183590800 0.0057 33 N 3

57479000 1186403800 0.0048 28 N 0

57479000 1188111000 0.0021 42 N 3

57479000 1206240300 0.0033 39 N 3

57479000 1215261300 0.0031 47 N 4

57479000 1226561800 0.0051 13 N 3

57479000 1226668500 0.0044 34 N 3

89586000 111925100 0.0021 51 N 4

89586000 123574800 0.004 28 N 3

89586000 207140300 0.0028 31 N 4

89586000 222941600 0.0032 32 N 5

89586000 235115100 0.0029 62 N 3

89586000 235318800 0.0024 72 N 4

89586000 248549600 0.0021 23 N 3

89586000 254476300 0.0019 43 N 3

89586000 257861600 0.0023 122 N 4

89586000 258269000 0.0019 66 N 4

89586000 258734600 0.0033 31 N 3

89586000 263293600 0.0033 34 N 4

89586000 267619800 0.0045 40 N 3

89586000 273915100 0.0039 45 N 4

89586000 276301300 0.0031 25 N 3

89586000 289435100 0.0026 35 N 4

89586000 297020500 0.0049 25 N 6

89586000 298853800 0.0029 28 N 4

89586000 311046700 0.0022 71 N 4

-50-

Sample Output for M3gl Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

89586000 338924500 0.004 28 N 4

89586000 360148100 0.0019 28 N 3

89586000 360536100 0.0027 48 N 3

89586000 378442300 0.0028 44 N 4

89586000 392769200 0.0043 33 N 3

89586000 394660700 0.0038 28 N 3

89586000 402527400 0.0038 54 N 6

89586000 421413300 0.0021 49 N 4

89586000 440687200 0.0032 19 N 3

89586000 465218500 0.0027 49 N 6

89586000 473647800 0.0027 46 N 3

89586000 487974700 0.0036 39 N 5

89586000 493823800 0.0035 75 N 6

89586000 508742400 0.0028 37 N 3

89586000 512680600 0.0023 31 N 3

89586000 525581600 0.0034 22 N 3

89586000 529490700 0.0036 52 N 5

89586000 532264900 0.0031 48 N 5

89586000 550316600 0.0045 48 N 6

89586000 552508800 0.0035 92 N 5

89586000 559172700 0.0036 49 N 7

89586000 575177700 0.0033 21 N 4

89586000 583044400 0.0021 33 N 3

89586000 600485000 0.0039 47 N 3

89586000 616926500 0.002 66 N 3

89586000 622630100 0.0022 35 N 3

89586000 637636000 0.0044 39 N 4

89586000 638402300 0.0016 27 N 3

89586000 660101200 0.0045 27 N 5

89586000 681286000 0.0065 49 N 7

89586000 682285100 0.0031 32 N 4

89586000 682925300 0.0021 127 N 4

89586000 703178900 0.0045 35 N 7

89586000 713053500 0.002 61 N 4

89586000 719445800 0.004 60 N 3

89586000 729960600 0.0062 43 N 9

89586000 733763000 0.0035 59 N 7

89586000 739621800 0.0019 55 N 3

89586000 750049300 0.0026 39 N 4

89586000 755879000 0.0049 35 N 3

89586000 763192800 0.0049 95 N 8

89586000 766985500 0.0034 34 N 5

89586000 774454500 0.0024 24 N 3

89586000 777674900 0.002 49 N 3

-51-

Sample Output for M3gl Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

89586000 800712400 0.0049 37 N 4

89586000 825689900 0.0029 44 N 6

89586000 852937200 0.002 32 N 3

89586000 869388400 0.005 32 N 5

89586000 871726100 0.0045 32 N 3

89586000 886567100 0.0024 20 N 3

89586000 887682600 0.0025 58 N 5

89586000 890796300 0.0042 33 N 4

89586000 909323300 0.0033 62 N 4

89586000 914735900 0.0062 23 N 3

89586000 935523000 0.0033 37 N 5

89586000 942739800 0.0028 50 N 5

89586000 945029000 0.0042 57 N 8

89586000 977349400 0.0021 25 N 3

89586000 990512300 0.005 25 N 4

89586000 1003423000 0.0029 34 N 3

89586000 1004053500 0.0032 25 N 4

89586000 1035568800 0.0033 21 N 4

89586000 1039875600 0.0023 30 N 3

89586000 1050177000 0.0029 114 N 7

89586000 1062360200 0.003 26 N 3

89586000 1094118000 0.0054 41 N 6

89586000 1118426200 0.0017 239 N 6

89586000 1138980500 0.0047 30 N 4

89586000 1145586200 0.0019 94 N 5

89586000 1153976700 0.0024 35 N 3

89586000 1173929600 0.004 21 N 5

89586000 1183590800 0.0033 44 N 4

89586000 1186403800 0.0032 38 N 3

89586000 1188111000 0.0029 62 N 6

89586000 1206240300 0.0016 52 N 3

89586000 1215261300 0.0021 81 N 4

89586000 1226561800 0.0045 15 N 3

89586000 1226668500 0.0043 41 N 3

111925100 123574800 0.0034 33 N 3

111925100 207140300 0.0036 26 N 4

111925100 222941600 0.0022 36 N 3

111925100 235115100 0.0029 64 N 4

111925100 235318800 0.0016 91 N 3

111925100 248549600 0.0047 28 N 3

111925100 254476300 0.003 44 N 4

111925100 257861600 0.0024 83 N 5

111925100 258269000 0.0018 72 N 3

111925100 258734600 0.0033 31 N 4

-52-

Sample Output for M3gl Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

111925100 263293600 0.0033 36 N 3

-53-

APPENDIX II – Sample Output for MQYW Algorithm

Sample Output for MQYW Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

11142100 57479000 0.1329 703 N 3

11142100 89586000 0.1313 710 N 6

11142100 111925100 0.1232 856 N 6

11142100 123574800 0.0975 543 N 1

11142100 207140300 0.1146 481 N 1

11142100 222941600 0.155 704 N 4

11142100 235115100 0.1194 747 N 4

11142100 235318800 0.0933 125 N 4

11142100 248549600 0.2047 511 N 4

11142100 254476300 0.1386 714 N 4

11142100 257861600 0.1249 982 N 8

11142100 258269000 0.0983 45 N 4

11142100 258734600 0.1596 515 N 4

11142100 263293600 0.1065 533 N 3

11142100 267619800 0.1651 850 N 9

11142100 273915100 0.1407 861 N 3

11142100 276301300 0.1965 473 N 3

11142100 289435100 0.1091 558 N 3

11142100 297020500 0.1089 572 N 2

11142100 298853800 0.1897 579 N 3

11142100 311046700 0.1603 56 N 5

11142100 338924500 0.1316 619 N 6

11142100 360148100 0.0958 501 N 2

11142100 360536100 0.1904 590 N 7

11142100 378442300 0.1144 814 N 3

11142100 392769200 0.142 624 N 2

11142100 394660700 0.1173 538 N 1

11142100 402527400 0.0965 717 N 1

11142100 421413300 0.1585 714 N 4

11142100 440687200 0.1592 470 N 3

11142100 465218500 0.1482 619 N 6

11142100 473647800 0.1402 900 N 2

11142100 487974700 0.1134 725 N 3

11142100 493823800 0.0962 840 N 4

11142100 508742400 0.0851 808 N 2

11142100 512680600 0.1223 543 N 3

11142100 525581600 0.1279 480 N 3

11142100 529490700 0.1657 805 N 4

11142100 532264900 0.1459 862 N 9

11142100 550316600 0.1571 793 N 5

11142100 552508800 0.1228 121 N 3

-54-

Sample Output for MQYW Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

11142100 559172700 0.1368 775 N 6

11142100 575177700 0.1245 456 N 3

11142100 583044400 0.1376 603 N 2

11142100 600485000 0.1367 657 N 3

11142100 616926500 0.1742 841 N 7

11142100 622630100 0.1363 553 N 1

11142100 637636000 0.0919 700 N 2

11142100 638402300 0.1193 575 N 4

11142100 660101200 0.174 389 N 4

11142100 681286000 0.1398 765 N 5

11142100 682285100 0.1223 581 N 3

11142100 682925300 0.0805 549 N 5

11142100 703178900 0.1314 612 N 4

11142100 713053500 0.1405 852 N 5

11142100 719445800 0.0902 39 N 4

11142100 729960600 0.0913 683 N 4

11142100 733763000 0.173 44 N 7

11142100 739621800 0.1402 949 N 3

11142100 750049300 0.0905 512 N 4

11142100 755879000 0.1571 587 N 4

11142100 763192800 0.077 26 N 6

11142100 766985500 0.1885 593 N 3

11142100 774454500 0.1369 477 N 2

11142100 777674900 0.1975 719 N 5

11142100 800712400 0.2011 694 N 3

11142100 825689900 0.1416 698 N 3

11142100 852937200 0.1118 570 N 4

11142100 869388400 0.1116 449 N 4

11142100 871726100 0.1416 474 N 4

11142100 886567100 0.1546 323 N 4

11142100 887682600 0.0748 957 N 3

11142100 890796300 0.1172 513 N 3

11142100 909323300 0.1315 751 N 4

11142100 914735900 0.0962 520 N 2

11142100 935523000 0.104 660 N 1

11142100 942739800 0.1425 666 N 4

11142100 945029000 0.1455 697 N 2

11142100 977349400 0.1534 560 N 5

11142100 990512300 0.1878 471 N 3

11142100 1003423000 0.1519 671 N 2

11142100 1004053500 0.2016 478 N 3

11142100 1035568800 0.1543 458 N 4

11142100 1039875600 0.1715 629 N 3

11142100 1050177000 0.136 85 N 10

-55-

Sample Output for MQYW Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

11142100 1062360200 0.1486 457 N 1

11142100 1094118000 0.0943 611 N 3

11142100 1118426200 0.065 131 N 4

11142100 1138980500 0.1215 501 N 3

11142100 1145586200 0.1486 270 N 4

11142100 1153976700 0.106 609 N 4

11142100 1173929600 0.1298 481 N 4

11142100 1183590800 0.119 734 N 5

11142100 1186403800 0.1295 691 N 3

11142100 1188111000 0.1356 947 N 4

11142100 1206240300 0.1645 825 N 4

11142100 1215261300 0.0974 95 N 4

11142100 1226561800 0.1034 425 N 1

11142100 1226668500 0.1097 640 N 3

57479000 89586000 0.1661 90 N 10

57479000 111925100 0.1257 3 N 6

57479000 123574800 0.1747 541 N 5

57479000 207140300 0.1563 423 N 7

57479000 222941600 0.2441 634 N 7

57479000 235115100 0.0814 772 N 4

57479000 235318800 0.1638 127 N 10

57479000 248549600 0.1565 515 N 6

57479000 254476300 0.1717 641 N 8

57479000 257861600 0.1167 87 N 6

57479000 258269000 0.1191 960 N 9

57479000 258734600 0.1822 504 N 6

57479000 263293600 0.2024 561 N 11

57479000 267619800 0.0714 704 N 2

57479000 273915100 0.2012 683 N 9

57479000 276301300 0.1718 506 N 8

57479000 289435100 0.1575 551 N 6

57479000 297020500 0.1062 570 N 3

57479000 298853800 0.172 531 N 6

57479000 311046700 0.1665 994 N 5

57479000 338924500 0.1709 538 N 5

57479000 360148100 0.1263 543 N 5

57479000 360536100 0.1645 685 N 7

57479000 378442300 0.1274 684 N 5

57479000 392769200 0.1584 618 N 6

57479000 394660700 0.1488 551 N 3

57479000 402527400 0.1691 745 N 8

57479000 421413300 0.2071 691 N 9

57479000 440687200 0.1033 433 N 4

57479000 465218500 0.1125 639 N 7

-56-

Sample Output for MQYW Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

57479000 473647800 0.1418 749 N 6

57479000 487974700 0.1699 687 N 10

57479000 493823800 0.1549 789 N 6

57479000 508742400 0.103 730 N 7

57479000 512680600 0.1484 556 N 6

57479000 525581600 0.161 462 N 7

57479000 529490700 0.1441 869 N 9

57479000 532264900 0.172 817 N 12

57479000 550316600 0.1746 929 N 4

57479000 552508800 0.1011 229 N 7

57479000 559172700 0.1658 824 N 11

57479000 575177700 0.1357 537 N 6

57479000 583044400 0.1553 680 N 6

57479000 600485000 0.197 692 N 4

57479000 616926500 0.2021 929 N 10

57479000 622630100 0.1473 602 N 5

57479000 637636000 0.1781 631 N 10

57479000 638402300 0.1962 578 N 5

57479000 660101200 0.14 385 N 4

57479000 681286000 0.194 627 N 7

57479000 682285100 0.1377 561 N 7

57479000 682925300 0.1441 319 N 14

57479000 703178900 0.167 616 N 6

57479000 713053500 0.1165 853 N 10

57479000 719445800 0.129 833 N 9

57479000 729960600 0.1486 629 N 10

57479000 733763000 0.1247 91 N 12

57479000 739621800 0.1923 802 N 10

57479000 750049300 0.1665 568 N 15

57479000 755879000 0.1832 610 N 11

57479000 763192800 0.0759 954 N 9

57479000 766985500 0.183 529 N 6

57479000 774454500 0.1901 532 N 5

57479000 777674900 0.2202 808 N 14

57479000 800712400 0.1611 682 N 3

57479000 825689900 0.1353 642 N 6

57479000 852937200 0.1584 592 N 10

57479000 869388400 0.2114 402 N 16

57479000 871726100 0.1494 459 N 8

57479000 886567100 0.1177 329 N 3

57479000 887682600 0.1504 982 N 5

57479000 890796300 0.1821 523 N 2

57479000 909323300 0.1809 808 N 8

57479000 914735900 0.2069 467 N 10

-57-

Sample Output for MQYW Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

57479000 935523000 0.1645 661 N 3

57479000 942739800 0.142 701 N 5

57479000 945029000 0.1394 729 N 7

57479000 977349400 0.1712 476 N 4

57479000 990512300 0.1884 445 N 6

57479000 1003423000 0.1614 620 N 5

57479000 1004053500 0.1662 473 N 4

57479000 1035568800 0.1674 486 N 7

57479000 1039875600 0.1384 581 N 5

57479000 1050177000 0.0899 222 N 11

57479000 1062360200 0.1852 495 N 6

57479000 1094118000 0.1355 640 N 7

57479000 1118426200 0.0758 240 N 12

57479000 1138980500 0.1875 491 N 7

57479000 1145586200 0.106 273 N 6

57479000 1153976700 0.2438 601 N 13

57479000 1173929600 0.1989 459 N 5

57479000 1183590800 0.1519 688 N 5

57479000 1186403800 0.1894 637 N 6

57479000 1188111000 0.1594 991 N 9

57479000 1206240300 0.1586 800 N 6

57479000 1215261300 0.1076 135 N 7

57479000 1226561800 0.1617 401 N 4

57479000 1226668500 0.1507 649 N 11

89586000 111925100 0.1282 79 N 12

89586000 123574800 0.1438 676 N 7

89586000 207140300 0.1607 520 N 12

89586000 222941600 0.1617 742 N 9

89586000 235115100 0.1528 879 N 9

89586000 235318800 0.1818 297 N 12

89586000 248549600 0.1435 600 N 10

89586000 254476300 0.1577 777 N 12

89586000 257861600 0.126 410 N 16

89586000 258269000 0.1466 201 N 17

89586000 258734600 0.1371 730 N 13

89586000 263293600 0.1353 725 N 11

89586000 267619800 0.0833 928 N 6

89586000 273915100 0.1823 893 N 11

89586000 276301300 0.1402 594 N 15

89586000 289435100 0.1257 745 N 13

89586000 297020500 0.0975 655 N 10

89586000 298853800 0.1302 649 N 6

89586000 311046700 0.1668 290 N 13

89586000 338924500 0.1151 717 N 12

-58-

Sample Output for MQYW Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

89586000 360148100 0.1693 657 N 8

89586000 360536100 0.1545 970 N 12

89586000 378442300 0.0889 867 N 6

89586000 392769200 0.163 759 N 11

89586000 394660700 0.1543 643 N 11

89586000 402527400 0.2087 933 N 14

89586000 421413300 0.1751 935 N 20

89586000 440687200 0.1165 515 N 8

89586000 465218500 0.1746 932 N 14

89586000 473647800 0.1963 899 N 10

89586000 487974700 0.1375 871 N 7

89586000 493823800 0.1769 21 N 7

89586000 508742400 0.1055 878 N 9

89586000 512680600 0.1029 697 N 9

89586000 525581600 0.1472 614 N 10

89586000 529490700 0.1535 934 N 13

89586000 532264900 0.1417 931 N 10

89586000 550316600 0.1421 8 N 16

89586000 552508800 0.1261 347 N 18

89586000 559172700 0.177 928 N 12

89586000 575177700 0.125 648 N 7

89586000 583044400 0.1528 793 N 13

89586000 600485000 0.2016 826 N 13

89586000 616926500 0.2003 120 N 16

89586000 622630100 0.157 714 N 10

89586000 637636000 0.1629 779 N 12

89586000 638402300 0.1188 752 N 7

89586000 660101200 0.1276 511 N 9

89586000 681286000 0.1847 804 N 18

89586000 682285100 0.1614 674 N 16

89586000 682925300 0.1762 654 N 18

89586000 703178900 0.1712 750 N 18

89586000 713053500 0.1436 50 N 11

89586000 719445800 0.131 7 N 10

89586000 729960600 0.1197 877 N 9

89586000 733763000 0.1315 226 N 6

89586000 739621800 0.145 29 N 17

89586000 750049300 0.1226 790 N 6

89586000 755879000 0.1642 747 N 9

89586000 763192800 0.1019 154 N 10

89586000 766985500 0.2003 640 N 18

89586000 774454500 0.137 646 N 10

89586000 777674900 0.1475 974 N 10

89586000 800712400 0.1678 790 N 6

-59-

Sample Output for MQYW Algorithm

Query Image Template Image Similarity Score Time Taken Output

No of

Similar

Features

89586000 825689900 0.1455 815 N 17

-60-

APPENDIX 3 – Sample Codes

a) Function to convert Images from WSQ to BMP

 private void btnConvert_Click(object sender, EventArgs e)
 {
 string caption = "Successful Conversion";
 string Msg;
 int Maxnofile = 0;

 String strfilename;
 String[] wsqFiles;
 MessageBoxButtons buttons = MessageBoxButtons.OKCancel;
 DialogResult result;
 wsqFiles = Directory.GetFiles(txtResources.Text, "*.wsq");
 progressBar1.Value = 0;
 //Path.GetDirectoryName(StrSourcepath);
 Maxnofile = Convert.ToInt32(txtMaxNo.Text);
 Maxnofile = Maxnofile * 4;
 progressBar1.Maximum = Maxnofile;
 for (int i = 0; i < Maxnofile; i++)
 {
 strfilename = wsqFiles[i];
 FileStream fs = File.OpenRead(strfilename);
 byte[] fileData = new byte[fs.Length];
 fs.Read(fileData, 0, fileData.Length);

 WsqDecoder decoder = new WsqDecoder();
 Bitmap bmp = decoder.Decode(fileData);

 bmp.Save(txtTemplates.Text + "\\" +
Path.GetFileNameWithoutExtension(wsqFiles[i]) + ".bmp");

 progressBar1.Value = progressBar1.Value + 1;
 //bmp.Save(@"C:\sample_image.bmp");
 }

Msg = " Convertion Completed Successfully. A total of " + Maxnofile + "
Files Converted";

 result = MessageBox.Show(Msg, caption, buttons);
 }

-61-

b) Program to perform the matching test

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.IO;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Reflection;
using PatternRecognition.FingerprintRecognition.Core;
using PatternRecognition.FingerprintRecognition.ResourceProviders;

namespace PatternRecognition.FingerprintRecognition.Applications
{
 public partial class frmmatchingtest : Form
 {
 #region private fields

 private MinutiaListProvider mtiaListProvider = new MinutiaListProvider();

 private OrientationImageProvider orImgProvider = new
OrientationImageProvider();

 private SkeletonImageProvider skImgProvider = new SkeletonImageProvider();

 private readonly Dictionary<Type, List<Type>> providersByMatcher = new
Dictionary<Type, List<Type>>();

 private String[] bmpLeftThumbFiles;
 private String[] bmpLeftIndexFiles;
 private String[] bmpRightThumbFiles;
 private String[] bmpRightIndexFiles;

 private int arraysize;

 private double Threshhold;

 private Bitmap qLeftThumbImage;
 private Bitmap qLeftIndexImage;
 private Bitmap qRightThumbImage;
 private Bitmap qRightIndexImage;

 private Bitmap tLeftThumbImage;
 private Bitmap tLeftIndexImage;
 private Bitmap tRightThumbImage;
 private Bitmap tRightIndexImage;

 private Bitmap[] tImagearray;

 private IResourceProvider resourceProvider;

 private ResourceRepository repository;

 private string resourcePath;

 private IMatcher matcher;

 private object qFeatures;

 private object tFeatures;

-62-

 private object[] tLeftThumbFeaturesarray;
 private object[] tLeftIndexFeaturesarray;
 private object[] tRightThumbFeaturesarray;
 private object[] tRightIndexFeaturesarray;

 private object[] qLeftThumbFeaturesarray;
 private object[] qLeftIndexFeaturesarray;
 private object[] qRightThumbFeaturesarray;
 private object[] qRightIndexFeaturesarray;

 Globalvar Globalparams = new Globalvar();

 #endregion

 public frmmatchingtest()
 {
 InitializeComponent();
 var providerByFeatType = new Dictionary<Type, List<Type>>();
 var mtiaListExtractors = new List<Type>();
 var orImgExtractors = new List<Type>();
 var skImgExtractors = new List<Type>();
 var experiments = new List<Type>();
 Assembly thisAss = Assembly.GetExecutingAssembly();
 string dir = Path.GetDirectoryName(thisAss.Location);
 foreach (string fileName in Directory.GetFiles(dir))
 try
 {
 Assembly currAssembly = Assembly.LoadFile(fileName);
 foreach (Type type in currAssembly.GetExportedTypes())
 if (type.IsClass && !type.IsAbstract)
 {
 var currInterface =
type.GetInterface("IFeatureExtractor`1");
 if (currInterface != null)
 {
 var featType =
currInterface.GetGenericArguments()[0];
 if (featType == typeof(List<Minutia>))
 {
 mtiaListExtractors.Add(type);
 continue;
 }

 if (featType == typeof(OrientationImage))
 {
 orImgExtractors.Add(type);
 continue;
 }

 if (featType == typeof(SkeletonImage))
 {
 skImgExtractors.Add(type);
 continue;
 }
 }

 currInterface =
type.GetInterface("IMatchingExperiment");
 if (currInterface != null)
 {
 experiments.Add(type);
 continue;
 }

-63-

 currInterface =
type.GetInterface("IResourceProvider`1");
 if (currInterface != null)
 {
 var featType =
currInterface.GetGenericArguments()[0];
 if (!providerByFeatType.ContainsKey(featType))
 providerByFeatType.Add(featType, new
List<Type>());
 providerByFeatType[featType].Add(type);
 continue;
 }

 currInterface = type.GetInterface("IMatcher`1");
 if (currInterface != null &&
!providersByMatcher.ContainsKey(type))
 providersByMatcher.Add(type, new List<Type>());
 }
 }
 catch
 {
 }
 foreach (var pair in providersByMatcher)
 {
 var featType =
pair.Key.GetInterface("IMatcher`1").GetGenericArguments()[0];
 foreach (var provider in providerByFeatType[featType])
 pair.Value.Add(provider);
 }

 // Populating cbxMinutiaExtractor
 cbxMinutiaExtractor.DataSource = mtiaListExtractors;
 cbxMinutiaExtractor.DisplayMember = "Name";
 cbxMinutiaExtractor.ValueMember = "Name";

 // Populating cbxMinutiaExtractor
 cbxOrientationImageExtractor.DataSource = orImgExtractors;
 cbxOrientationImageExtractor.DisplayMember = "Name";
 cbxOrientationImageExtractor.ValueMember = "Name";

 // Populating cbxMinutiaExtractor
 cbxSkeletonImageExtractor.DataSource = skImgExtractors;
 cbxSkeletonImageExtractor.DisplayMember = "Name";
 cbxSkeletonImageExtractor.ValueMember = "Name";

 // Populating cbxMatcher
 cbxMatcher.DataSource = new List<Type>(providersByMatcher.Keys);
 cbxMatcher.DisplayMember = "Name";
 cbxMatcher.ValueMember = "Name";
 }

 private void cbxMatcher_SelectedIndexChanged(object sender, EventArgs e)
 {

 switch (matcher.GetType().Name)
 {
 case "JY": txtdescription.Text = "Fingerprint Minutiae
Matching Based on the Local and Global Structures";
 break;
 case "MJY": txtdescription.Text = "Improved Version of
Fingerprint Minutiae Matching Based on the Local and Global Structures";
 break;
 case "QYW": txtdescription.Text = "Fingerprint matching
combining the global orientation field with minutia";
 break;

-64-

 case "MQYW": txtdescription.Text = "Improved version of
Fingerprint matching combining the global orientation field with minutia";
 break;
 case "PN": txtdescription.Text = "A fingerprint matching using
minutiae triangulation - Using Minutia Triplets";
 break;
 case "MPN": txtdescription.Text = "Improved version of
fingerprint matching using minutiae triangulation - Using Minutia Triplets";
 break;
 case "MTK": txtdescription.Text = "Improved version of
Fingerprint matching using an orientation-based minutia descriptor";
 break;
 case "TK": txtdescription.Text = "Fingerprint matching using
an orientation-based minutia descriptor";
 break;
 case "M3gl": txtdescription.Text = "Improved Fingerprint
Verification Using Minutiae Triplets";
 break;
 }
 }

 private void btnsave_Click(object sender, EventArgs e)
 {
 if (listView1.Items.Count >= 1)
 {
 SaveFileDialog SaveFileDialog1 = new SaveFileDialog();
 string strPath = null;
 SaveFileDialog1.Filter = "CSV Files|*.CSV";
 SaveFileDialog1.FileName = "Data_File";
 SaveFileDialog1.FilterIndex = 1;

 if (SaveFileDialog1.ShowDialog() == DialogResult.OK)
 {
 strPath = SaveFileDialog1.FileName;
 ListViewToCSV.SaveListViewToCSV(listView1, strPath, true);
 }
 }
 else MessageBox.Show("No Items to save. The List View is empty");

 }

 private void frmmatchingtest_Load_1(object sender, EventArgs e)
 {
 listView1.View = View.Details;
 listView1.GridLines = true;
 listView1.FullRowSelect = true;
 }

 private void btnRunMatch_Click(object sender, EventArgs e)
 {
 string Templatename = null;
 double SimilarityScore = 0;

 int truepositives = 0;
 int falsepositives = 0;
 int truenegatives = 0;
 int falsenegatives = 0;
 int Totalpositives = 0;
 int Totalnegatives = 0;

 double TPR = 0.0;
 double FPR = 0.0;

 string MatchResult = null;
 string MatchingMinutiae = null;

-65-

 string flt = null;
 int strlength = 0;
 DateTime starttime;
 DateTime endtime;
 Double timetake = new Double();
 double prgval = 0.0;

 string QueryFinger = null;
 string TemplateFinger = null;

 Globalvar GlobalParams = new Globalvar();

 listView1.Items.Clear();
 lblProgressValue.Text = "0";
 progressBar1.Value = 0;
 //set Global parameters
 Globalparams.Resourceprovider = resourceProvider;
 Globalparams.MinutiaProvider = mtiaListProvider;
 Globalparams.orientationProvider = orImgProvider;
 Globalparams.skeletonProvider = skImgProvider;
 Globalparams.Matcher = matcher;
 Globalparams.Repository = repository;

 String path = GlobalParams.Resourcepath;

 if ((path=="") ||(path==null))
 {
 path="C:\\FingerprintImages\\BMPImages";
 Globalparams.Resourcepath = path;
 }

 repository = new ResourceRepository(path);
 bmpLeftThumbFiles = Directory.GetFiles(path, "*" + "_31.bmp");
 bmpLeftIndexFiles = Directory.GetFiles(path, "*" + "_32.bmp");
 bmpRightThumbFiles = Directory.GetFiles(path, "*" + "_36.bmp");
 bmpRightIndexFiles = Directory.GetFiles(path, "*" + "_37.bmp");

 arraysize = bmpLeftThumbFiles.Length;

 //Query Image array
 qLeftThumbFeaturesarray = new object[arraysize];
 qLeftIndexFeaturesarray = new object[arraysize];
 qRightThumbFeaturesarray = new object[arraysize];
 qRightIndexFeaturesarray = new object[arraysize];

 //Template Image Features
 tLeftThumbFeaturesarray = new object[arraysize];
 tLeftIndexFeaturesarray = new object[arraysize];
 tRightThumbFeaturesarray = new object[arraysize];
 tRightIndexFeaturesarray = new object[arraysize];
 //MessageBox.Show("There are " + arraysize + " Image Files in the
folder " + path);

 // Matching features scores
 List<MinutiaPair> matchingMtiae = null;

 double[] LeftThumbscore = new double[arraysize];
 double[] LeftIndexscore = new double[arraysize];
 double[] RightThumbscore = new double[arraysize];
 double[] RightIndexscore = new double[arraysize];

 //for (double Threshhold = 0; Threshhold < 1; Threshhold += 0.1)
 //{

 Threshhold = 0.5;

-66-

 progressBar1.Maximum = arraysize*2;
 progressBar1.Value = 0;

 IMinutiaMatcher minutiaMatcher = matcher as IMinutiaMatcher;
 //Innitialize Resource Provider

 LoadResources();

 // Commence the experiement
 for (int x = 0; x < arraysize; x++)
 {
 if (matcher != null)
 {
 string qLeftThumbFileName =
Path.GetFileNameWithoutExtension(bmpLeftThumbFiles[x]);
 string qLeftIndexFileName =
Path.GetFileNameWithoutExtension(bmpLeftIndexFiles[x]);
 string qRightThumbFileName =
Path.GetFileNameWithoutExtension(bmpRightThumbFiles[x]);
 string qRightIndexFileName =
Path.GetFileNameWithoutExtension(bmpRightIndexFiles[x]);
 QueryFinger = qRightIndexFileName.Substring(0, 10);
 try
 {
 qLeftThumbFeaturesarray[x] =
resourceProvider.GetResource(qLeftThumbFileName, repository);
 qLeftIndexFeaturesarray[x] =
resourceProvider.GetResource(qLeftIndexFileName, repository);
 qRightThumbFeaturesarray[x] =
resourceProvider.GetResource(qRightThumbFileName, repository);
 qRightIndexFeaturesarray[x] =
resourceProvider.GetResource(qRightIndexFileName, repository);
 }
 catch (Exception)
 {
 MessageBox.Show("Unable to load Query features " +
resourceProvider.GetSignature() + ". Try using different parameters.", "Feature
Loading Error",
 MessageBoxButtons.OK,
MessageBoxIcon.Error);
 return;
 }
 for (int i = x+1; i < arraysize; i++)
 {

 string LeftThumbFileName =
Path.GetFileNameWithoutExtension(bmpLeftThumbFiles[i]);
 string LeftIndexFileName =
Path.GetFileNameWithoutExtension(bmpLeftIndexFiles[i]);
 string RightThumbFileName =
Path.GetFileNameWithoutExtension(bmpRightThumbFiles[i]);
 string RightIndexFileName =
Path.GetFileNameWithoutExtension(bmpRightIndexFiles[i]);
 TemplateFinger = RightIndexFileName.Substring(0, 10);
 try
 {
 tLeftThumbFeaturesarray[i] =
resourceProvider.GetResource(LeftThumbFileName, repository);
 tLeftIndexFeaturesarray[i] =
resourceProvider.GetResource(LeftIndexFileName, repository);
 tRightThumbFeaturesarray[i] =
resourceProvider.GetResource(RightThumbFileName, repository);
 tRightIndexFeaturesarray[i] =
resourceProvider.GetResource(RightIndexFileName, repository);
 }
 catch (Exception)

-67-

 {
 MessageBox.Show("Unable to load Template features " +
resourceProvider.GetSignature() + ". Try using different parameters.", "Feature
Loading Error",
 MessageBoxButtons.OK,
MessageBoxIcon.Error);
 return;
 }

 //pbxTemplateImg.Image = tImage;
 //tImagearray[i] =
ImageLoader.LoadImage(bmpLeftThumbFiles[i]);
 starttime = DateTime.Now.ToLocalTime();
 LeftThumbscore[i] =
matcher.Match(qLeftThumbFeaturesarray[x], tLeftThumbFeaturesarray[i]);
 LeftIndexscore[i] =
matcher.Match(qLeftIndexFeaturesarray[x], tLeftIndexFeaturesarray[i]);
 RightThumbscore[i] =
matcher.Match(qRightThumbFeaturesarray[x], tRightThumbFeaturesarray[i]);
 RightIndexscore[i] =
matcher.Match(qRightIndexFeaturesarray[x], tRightIndexFeaturesarray[i]);
 endtime = DateTime.Now.ToLocalTime();

 timetake = endtime.Subtract(starttime).Milliseconds;
 SimilarityScore = (LeftThumbscore[i] + LeftIndexscore[i] +
RightThumbscore[i] + RightIndexscore[i]) / 4;
 //matchingMtiae = LTmatchingMtiae.Max();// LTmatchingMtiae
+ LImatchingMtiae + RTmatchingMtiae + LImatchingMtiae;
 //MatchingMinutiae = matchingMtiae.Count.ToString();

 double Minutiascore =
minutiaMatcher.Match(qRightIndexFeaturesarray[x], tRightIndexFeaturesarray[i], out
matchingMtiae);

 if (SimilarityScore == 1)
 {
 MatchResult = "P";
 }
 else
 {
 MatchResult = "N";

 }
 //Add items in the listview

 string[] arr = new string[6];
 ListViewItem itm;

 arr[0] = QueryFinger;
 arr[1] = TemplateFinger;
 arr[2] = SimilarityScore.ToString("0.0000");
 arr[3] = timetake.ToString();
 arr[4] = MatchResult;
 arr[5] = matchingMtiae.Count.ToString();
 itm = new ListViewItem(arr);
 listView1.Items.Add(itm);
 prgval = x + 1;
 prgval = (prgval / arraysize) * 100;
 lblProgressValue.Text = prgval.ToString("0");
 }
 }
 if (Totalpositives != 0) TPR = truepositives / Totalpositives;
 if (Totalnegatives != 0) FPR = falsepositives / Totalnegatives;
 }

-68-

 MessageBox.Show("Experiment Completed", "Experiment",
MessageBoxButtons.OK, MessageBoxIcon.Information,
MessageBoxDefaultButton.Button1);
 }

 private void LoadResources()
 {

 Type resourceType = resourceProvider.GetType();
 foreach (PropertyInfo propertyInfo in resourceType.GetProperties())
 {
 var currInterface =
propertyInfo.PropertyType.GetInterface("IResourceProvider`1");
 if (currInterface != null)
 {
 var featType = currInterface.GetGenericArguments()[0];
 if (featType == typeof(OrientationImage))
 {
 resourceType.InvokeMember(propertyInfo.Name,
BindingFlags.Public | BindingFlags.Instance | BindingFlags.SetProperty, null,
resourceProvider, new object[] { orImgProvider });
 continue;
 }
 if (featType == typeof(List<Minutia>))
 {
 resourceType.InvokeMember(propertyInfo.Name,
BindingFlags.Public | BindingFlags.Instance | BindingFlags.SetProperty, null,
resourceProvider, new object[] { mtiaListProvider });
 continue;
 }
 if (featType == typeof(SkeletonImage))
 {
 resourceType.InvokeMember(propertyInfo.Name,
BindingFlags.Public | BindingFlags.Instance | BindingFlags.SetProperty, null,
resourceProvider, new object[] { skImgProvider });
 continue;
 }
 }

 if (propertyInfo.CanWrite)
 {
 currInterface = propertyInfo.PropertyType;
 if (currInterface.Name == "IFeatureExtractor`1")
 {
 var featType = currInterface.GetGenericArguments()[0];
 if (featType == typeof(OrientationImage))
 {
 resourceProvider = orImgProvider;
 continue;
 }
 if (featType == typeof(List<Minutia>))
 {
 resourceProvider = mtiaListProvider;
 continue;
 }
 if (featType == typeof(SkeletonImage))
 {
 resourceProvider = skImgProvider;
 continue;
 }
 }
 }
 }

-69-

 }
 private void cbxMinutiaExtractor_SelectedValueChanged(object sender,
EventArgs e)
 {
 object selectedValue = ((ComboBox)sender).SelectedItem;
 if (selectedValue != null)
 {
 Type extractorType = (Type)selectedValue;
 mtiaListProvider.MinutiaListExtractor =
Activator.CreateInstance(extractorType) as IFeatureExtractor<List<Minutia>>;
 cbxMinutiaExtractor_Enter(sender, e);
 }
 }

 private void cbxMinutiaExtractor_SelectedIndexChanged(object sender,
EventArgs e)
 {

 }

 private void cbxMatcher_SelectedValueChanged(object sender, EventArgs e)
 {
 object selectedValue = ((ComboBox)sender).SelectedItem;
 if (selectedValue != null)
 {
 Type matcherType = (Type)selectedValue;
 matcher = Activator.CreateInstance(matcherType) as IMatcher;
 Globalparams.Matcher = matcher;

 cbxFeatureProvider.DataSource = providersByMatcher[matcherType];
 cbxFeatureProvider.DisplayMember = "Name";
 cbxFeatureProvider.ValueMember = "Name";

 cbxMatcher_Enter(sender, e);
 }
 }

 private void cbxMatcher_Enter(object sender, EventArgs e)
 {
 propertyGrid1.SelectedObject = matcher;
 }

 private void cbxFeatureProvider_SelectedValueChanged(object sender,
EventArgs e)
 {
 object selectedValue = ((ComboBox)sender).SelectedItem;
 if (selectedValue != null)
 {
 Type providerType = (Type)selectedValue;
 resourceProvider = Activator.CreateInstance(providerType) as
IResourceProvider;
 cbxFeatureProvider_Enter(sender, e);
 }
 }

 private void cbxFeatureProvider_Enter(object sender, EventArgs e)
 {
 propertyGrid1.SelectedObject = resourceProvider;
 }

 private void cbxMinutiaExtractor_Enter(object sender, EventArgs e)
 {
 propertyGrid1.SelectedObject = matcher;
 }

-70-

 private void cbxOrientationImageExtractor_SelectedValueChanged(object
sender, EventArgs e)
 {
 object selectedValue = ((ComboBox)sender).SelectedItem;
 if (selectedValue != null)
 {
 Type extractorType = (Type)selectedValue;
 orImgProvider.OrientationImageExtractor =
Activator.CreateInstance(extractorType) as IFeatureExtractor<OrientationImage>;
 cbxOrientationImageExtractor_Enter(sender, e);
 }
 }

 private void cbxOrientationImageExtractor_Enter(object sender, EventArgs
e)
 {
 propertyGrid1.SelectedObject =
orImgProvider.OrientationImageExtractor;
 }

 private void cbxSkeletonImageExtractor_SelectedValueChanged(object sender,
EventArgs e)
 {
 object selectedValue = ((ComboBox)sender).SelectedItem;
 if (selectedValue != null)
 {
 Type extractorType = (Type)selectedValue;
 skImgProvider.SkeletonImageExtractor =
Activator.CreateInstance(extractorType) as IFeatureExtractor<SkeletonImage>;
 cbxSkeletonImageExtractor_Enter(sender, e);
 }
 }

 private void cbxSkeletonImageExtractor_Enter(object sender, EventArgs e)
 {
 propertyGrid1.SelectedObject = skImgProvider.SkeletonImageExtractor;
 }

 private void cbxMatcher_SelectedIndexChanged_1(object sender, EventArgs e)
 {

 }

 private void cbxFeatureProvider_SelectedValueChanged_1(object sender,
EventArgs e)
 {
 object selectedValue = ((ComboBox)sender).SelectedItem;
 if (selectedValue != null)
 {
 Type providerType = (Type)selectedValue;
 resourceProvider = Activator.CreateInstance(providerType) as
IResourceProvider;
 Globalparams.Resourceprovider = resourceProvider;
 cbxFeatureProvider_Enter(sender, e);
 }
 }

 private void cbxFeatureProvider_Enter_1(object sender, EventArgs e)
 {
 propertyGrid1.SelectedObject = resourceProvider;
 }
 }

}

