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Abstract

Malaria is a serious disease whose confirmation in laboratories, usually by optical 

microscopy, remains a challenge. The process involved in preparation of blood films and 

their examination in the conventional microscopes is time consuming, and the results 

may vary depending on the expertise of the examining technician, putting the lives of 

patients at risk. Other laboratory techniques for confirming malarial infection are 

expensive and may involve procedures that require extra training of personnel.

In this thesis, a method for rapid detection of Plasmodia (malaria parasites) in unstained 

thin blood smears has been developed. The method is based on microscopically imaging 

red blood cells using different wavelengths of light in the UV, visible and NIR region for 

illumination (an emerging field known as multispectral imaging microscopy). Imaging 

was accomplished by use of an optical microscope modified by replacing its tungsten 

light source with a set of light emitting diodes (LEDs) whose emission spectra were 

centered at 375 nm, 400 nm, 435 nm, 470 nm, 525 nm, 590 nm, 625 nm, 660 nm, 700 

nm, 750 nm, 810 nm, 850 nm and 940 nm. These LEDs were made to illuminate the 

samples from different orientations to obtain transmittance, reflectance, and dark-field 

images to reveal different optical properties of the imaged sample. The microscope was 

fitted with a monochrome CMOS camera that recorded the intensity of light emanating 

from the specimen as gray-level images. Using in vitro cultures of red blood cells 

infected with Plasmodium falciparum prepared as thin smears and without any stain, 

congruent intensity images were recorded at different wavelengths and used to compose a 

multispectral image. Pixels of the multispectral image .were used tp generate spectral
t\ 1 '\ ••‘ /
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signatures (with the assistance of multivariate chemometric techniques) to identify 

infected and non-infected red-blood cells.

Results obtained using Principal Components Analysis (PCA) and Hierarchical Cluster 

Analysis (HCA) show that detection and identification of malaria parasites in 

multispectral images is possible in the 375-940 nm range and relies on presence of 

hemozoin (a pigment generated by the parasites when they digest haemoglobin). 

Artificial Neural Network (ANN) model shows promising results in accurately 

discriminating infected red blood cells from non-infected ones and in determining 

parasite burden (parasitemia) in unstained human blood.

The developed method is rapid, with the whole diagnostic process taking approximately 

10 minutes as opposed to the conventional microscopy which takes about 30 minutes.
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Chapter 1

INTRODUCTION

1.1 Preamble

Malaria is a serious vector-bone disease that causes significant morbidity and mortality in 

human beings worldwide. According to the 2009 World Health Organization (WHO) 

statistics, close to one million of the 243 million people infected by the disease 

succumbed to this menace in the year 2008 [1], The disease is caused by any of the 

following four species of Plasmodium: falciparum, vivax, ovale and malariae, which are 

introduced into human blood by the saliva of a feeding female anopheles mosquito.

Many control approaches to malaria exist, but one of the major challenges faced in its 

treatment lies in diagnosis for a suspected infection. Clinical diagnosis (identification of 

the disease by observation of symptoms exhibited by a patient) is usually based on 

history or presence of fever and is thus very unreliable because malaria symptoms are not 

very specific; some patients may not have fever at all and may present other symptoms 

such as headache, backache, joint pains, and dizziness among others. Presumptive 

treatment based on clinical diagnosis is associated with over-administration of drugs and 

erroneous treatment of fever caused by other infections which can lead to development of 

resistance to drugs by malaria parasites [2], WHO recommends prompt parasitological 

confirmation of malaria before start of any treatment, with specific drug administration 

based on the species of Plasmodium present [1].
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Examination of stained thick and thin blood smear in a conventional light microscope is 

currently the “gold standard” for parasitological confirmation of malarial infection [1]. 

This is done by a trained microscopist or laboratory technician who examines the blood 

smear after careful preparation [3]. In countries where malaria is uncommon, such as in 

those outside the tropics, malaria parasites may not be easily recognized by the 

examining technicians who have insufficient experience in interpreting blood smears. In 

such a case, the non-immune victim, typically a recently returned traveler is at a great 

risk of death especially if infected by Plasmodium falciparum. In malaria endemic areas, 

on the other hand, the magnitude of the task and lack of enough skilled microscopists 

contributes to either misdiagnosis [2] or late diagnosis of the disease.

Conventional microscopy has several advantages, including the ability to speciate and 

quantify the parasites. However, examination of blood smears is not only labour- 

intensive, but also a subjective process. For instance, an inexperienced technician may 

confuse artefacts in a blood smear (such as dye precipitates) or other stained objects (such 

as blood platelets) with malaria parasites, hence produce false results. The method, 

therefore, requires the services of experienced personnel.

The limitations of conventional light microscopy in malaria diagnostics has stimulated 

development of alternative methods with a constraint that they should be rapid, sensitive, 

easy to use and affordable in order to be adopted in both endemic and non- endemic 

areas. These methods include: immunochromatographic tests (commonly known as

Rapid Diagnostic Tests (RDTs)) which detect specific antigens derived from malaria

1 *
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parasites in lysed blood [4, 5]; Polymerase Chain Reaction (PCR)-based techniques that 

detect specific nucleic acid sequences [6-8]; and spectroscopic techniques such as, among 

others, Third Harmonic Generation (THG) imaging [9] and Raman micro-spectroscopy 

[10-11], which are based on detection of hemozoin (a digestion residue of the malaria 

parasite) as a biomarker for identifying malarial infection.

Rapid Diagnostic Tests (RDTs) have already gained acceptance by WHO as an 

alternative parasitological confirmation of malarial infection [1]. However, RDTs do not 

allow the user to quantify parasite burden (parasitemia), which is necessary for 

establishing the severity of the disease. Furthermore, the available dipsticks are mostly 

specific to Plasmodium falciparum and their costs are still prohibitive for widespread 

application. Similarly, the main hindrance to adoption of PCR and spectroscopic 

methods lies in the costs involved.

Image processing and analysis is an emerging novel method for applications in machine 

vision. Systems based on RGB (Red-Green-Blue, i.e. three visible light spectral 

channels) colour image processing have been proposed for use in automated malaria 

parasite detection and quantification in microscopy [12-14]. Imaging in three spectral 

sensitivity bands (such as that in RGB images) is, however, limited in spectral 

information about the absorption properties of the sample which is valuable for 

segmentation and classification of objects in microscopic images.
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Multispectral imaging involves recording both spatial and spectral data from a sample in 

order to capture more information from the objects under study [15-22]. Analyses of the 

large set of variables encountered in multispectral images, which are sometimes 

correlated, require the use of multivariate statistical tools to extract useful information. 

The work presented in this thesis combines multispectral imaging with multivariate 

chemometric techniques to detect, discriminate and quantify malaria parasites in human 

blood media for the purpose of performing rapid malaria diagnosis. This is accomplished 

by imaging unstained thin blood smears using a simple multispectral imaging microscope 

built by replacing the conventional broadband light source (commonly used in optical 

microscopes) with a set of 13 quasi monochromatic Light Emitting Diode (LED) sources 

in conjunction with a monochrome camera. The camera captures a gray-level image for 

each LED illumination, giving a set of 13 gray-level congruent images that compose the 

multispectral image. Analysis is then carried out by employing Principal Component 

Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Artificial Neural Network to 

detect, identify and discriminate infected red blood cells from non-infected ones.

1.2 Statement of the Problem

Conventional microscopy, which is currently the ‘gold standard’ for laboratory 

confirmation of malarial infection, is time consuming and the results are sometimes not 

reliable because they depend on the expertise of the microscopist examining the 

specimens. Advancement of Information Technology (IT) exploits the ever-increasing 

computation power of computers to incorporate image processing in automated disease 

diagnosis. However, the existing imaging methods /designed for automation have not

4



been successful in malaria diagnostics due to their exclusive reliance on the morphology 

of objects in the blood smear. On the other hand, spectroscopic techniques, which use 

spectral signatures to detect hemozoin (a malaria pigment that is generated during 

degradation of haemoglobin by the malaria parasites), use specialized equipment such as, 

Raman spectrometers, FTIR micro-spectrometers, among others which are rarely 

available in places where the disease is endemic, hence making them unpopular. 

Multispectral imaging microscopy of unstained thin blood smear is a potential superior 

concept to develop by exploiting Multivariate Image Analysis (MIA) techniques to 

detect, identify, discriminate and quantify malaria parasites in human blood.

1.3 Objectives of the Study

The goal of this research was to develop a microscopic system for comprehensive malaria 

diagnostics in human blood media based on spectral signatures of Plasmodia extracted 

from multispectral images. The specific objectives were:

(i) To identify and characterize the spectral fingerprints of the genus Plasmodium in 

human blood media in the spectral range 375 nm to 940 nm.

(ii) To identify the important spectral signature responsible for discrimination of 

malaria parasites in blood by exploiting an exploratory chemometric technique 

(Principal Component Analysis).

(iii) To examine the distribution of parasite components in an infected red blood cell by 

employing a clustering technique (Hierarchical Cluster Analysis).

l
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(iv) To utilize the spectral information from the multispectral microscopy images to 

develop a supervised pattern recognition model for fast screening of human blood 

for presence of malaria parasite infection.

(v) To compare the performance of the developed model with results obtained based 

on conventional light microscopy.

1.4 Justification and Significance of the Study

Malaria remains a serious worldwide health concern. For this reason, there is need for 

quick and accurate diagnosis of malaria. Development of a Plasmodium detection 

method that has the capability to result in automation of malaria diagnostics is of great 

significance to malaria research. Multispectral imaging microscopy of malaria parasites 

has the potential of replacing a trained human eye with a trained vision instrument. This 

will result in improved speed and accuracy in malaria diagnostics translating to effective 

management of the disease.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the current methodology and approaches to diagnosis of malaria. 

These range from the labour-intensive routine laboratory examination of stained blood 

smears (films) in light microscopes to sophisticated spectroscopic analysis of blood 

components or application of advanced molecular biology techniques such as Polymerase 

Chain Reaction (PCR) procedures. Application of digital image processing to the malaria 

diagnostics problem and the utility of multispectral imaging to myriad applications 

involving parasite detection and disease diagnostics are also reviewed.

2.2 Observation of Malaria Parasites in Conventional Microscopy

/
Examination of stained blood film under a conventional light microscope is currently the 

“gold standard” for laboratory confirmation of malaria. Peripheral blood from a finger 

(or the heel in young infants) is smeared on a glass slide, stained and fixed (for thin blood 

smear) to highlight the malaria parasites. Giemsa staining is the most commonly used 

method and allows identification of all the four species of Plasmodia, stage and 

parasitemia (relative quantity of parasites in blood) [1]. The staining process can take up 

to 30 minutes for thin film preparation while examination of 100 fields (a field is area 

that is visible in a microscope) in a thick blood smear (the'film preparation method that is
I *
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a bit faster), apparently, may miss infection of up to 20 % [23] depending on the 

experience of the personnel involved.

Conventional optical microscopy is labour-intensive as the microscopist or the examining 

technician has to examine as many red blood cells as possible on a glass slide with his/her 

own eye. A correct diagnosis is done only after attentive and careful examination of at 

least 100 microscopic fields in thick blood smear and a number of morphological 

characteristics have been drawn to identify the species in thin blood smear. The time 

spent in the staining process and manual examination of many fields is the cause of 

delays in releasing of laboratory results in clinics and hospitals. In addition, the results 

are subjective and may not be reproducible depending on the expertise of the examining 

personnel and the time spent on examination of the specimen.

The aforementioned limitations experienced in conventional light microscopy have 

stimulated research in development of alternative diagnostic methods that could be rapid, 

sensitive and affordable. Optical enhancement techniques such as dark field, microscopy 

can be employed to significantly reduce the time spent on parasite staining in 

conventional transmission light microscopy. Dark-field microscopy is a contrast 

enhancement technique which is based on abstraction (exclusion) of undiffracted beams 

of light in image formation in the microscope. Jamjoom [30] used dark-field microscopy 

to detect presence of malaria parasites in unstained blood films, and observed that intra- 

erythrocytic stages of Plasmodium (rings, trophozoites and schizonts) and gametocytes 

were visible as bright objects enclosed in red blood cell outlines against a dark
• -  "V
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background. This observation may be understood in terms of Huygen’s principle that “If 

a wave-front strikes an interface between materials with different refractive indices at 

angle different from 90°, every point of the interface becomes a source of spherical 

waves”. However, identification of the various stages of the parasites was difficult and, 

like in conventional light microscopy, the method is tedious due to manual examination.

2.3 Fluorescence-Based Malaria Diagnostic Techniques

Fluorescent dyes such as acridine orange and benzothiocarboxypurine are nucleic acid 

selective fluorescent cationic dyes that can bind on DNA and RNA of a biological cell in 

a process known as electrophoresis [24]. The compound formed fluoresces in the visible 

region when excited by UV light of appropriate wavelength, hence nucleic acid- 

containing cells such as malaria parasites are highlighted in a blood smear. A 

microhaematocrit tube containing acridine orange stain and an anticoagulant is filled with 

a suspected malaria infected blood obtained by the conventional finger pricking method. 

It is then centrifuged and immediately observed under a microscope fitted with ultraviolet 

light source. Blood cellular components such as erythrocytes are separated based on 

density. The parasites are seen as fluorescent bodies standing at different levels of the 

sedimentation column depending on their stages. Alternatively, acridine orange is used 

to stain thin blood films which are then observed under a fluorescent microscope fitted 

with optical filters that allow only the excitation wavelength of the dye to pass to the 

stained film [25].
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Although fluorescent-based techniques are fairly quick and easy to use, they have limited 

performance when other species of Plasmodium other than falciparum are involved and 

in parasitemia determination (quantification of relative content of parasites in the blood). 

These limitations pertain to the fact that the morphology of the parasites is not apparent 

when fluorescent dyes are used to highlight the parasites [26].

2.4 Immunochromatographic Tests for Malaria Antigens

Immunochromatography relies on the migration of liquid across the surface of a 

nitrocellulose membrane. Immunochromatographic test (commercially presented as 

Rapid Diagnostic Test kits) are based on the capture of parasite antigen from human 

blood using monoclonal antibodies prepared against a malaria antigen target and 

conjugated to a visually detectable marker such as selenium dye or colloidal gold in a 

mobile phase. A second or third capture monoclonal antibody applied to a strip of 

nitrocellulose acts as the immobile phase. Blood specimen obtained from a finger-prick 

is mixed with a buffer solution that contains a hemolyzing compound and applied to the 

strip. If the target antigen is present in the blood, a labeled antigen/antibody complex is 

formed and it migrates up the test strip to be captured by the monoclonal antibody of the 

immobile phase, thus producing a visible coloured line [4, 5].

Malaria antigens currently targeted by Rapid Diagnostic Test kits are Histidine-Rich 

Protein-2 (HRP-II), Parasite lactate dehydrogenase (pLDH) and Plasmodium aldolase. 

The kits are easy to use and do not require expertise and well established laboratory.
f\  ’ '
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However, most RDT kits are based on HRP-II immunochromatography; hence they are 

only useful for diagnosis of Plasmodium falciparum, the species that produce HRP-II. It 

has also been reported that in some cases the antibody used in the kits reacts with serum 

rheumatoid factor giving a false positive result, or some individuals may have a gene 

deletion for the production of HRP-II and so never give positive results. Aldolase and 

pLDH have been proposed for detection of non falciparum infection with positive results 

reported in Plasmodium vivax [4, 5]. However, the cost of RDT kits is still high with 

price ranging from US$ 1.2-13.5 depending on geographical region [1],

2.5 Detection of Malaria Parasites’ Nucleic Acid Sequences

Polymerase Chain Reaction (PCR) is a technique in molecular biology that is used to 

target and amplify any specific nucleic acid from a complex biological sample. In 

disease diagnostics, the procedure is used to determine whether a clinical sample contains 

nucleic acid sequence that is known to occur only in a specific pathogen. The method 

relies on thermal cycling, consisting of cycles of repeated heating and cooling of the 

reaction for DNA melting and enzymatic replication of the DNA. Primers (short DNA 

fragments) containing sequences complementary to the target region along with DNA 

polymerase (an enzyme that helps to catalyze in the polymerization of 

deoxyribonucleotides into DNA strand) are the components that enable selective and 

repeated amplifications. As PCR progresses, the DNA generated is itself used for 

replication, setting in motion a chain reaction in which the DNA template is 

exponentially amplified. A number of PCR assays have been developed for the detection
t\ I '
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of malaria. The major advantages of using PCR-based technique are the ability to detect 

malaria parasites in patients with low levels of parasitemia and to identify them to the 

species level. Infections with five parasites or less per micro-litre of blood can be 

detected with 100 % sensitivity and equal specificity [6-8]. However, PCR-based 

techniques remain unutilized because they are time-consuming, involve complicated 

procedures and require a well established laboratory.

2.6 Spectroscopic Investigation of Malarial Infection

Spectroscopic techniques such as Third Harmonic Generation (THG) imaging 

spectroscopy [9], resonance Raman micro-spectroscopy [10-11], and Electron 

Paramagnetic Resonance (EPR) spectroscopy [27] among others have been used in the 

investigation of malaria pigment (hemozoin) in malaria drug-target interaction research 

and in malaria diagnostics studies.

Ong et al. [10] employed resonance Raman microspectroscopy to study normal and 

Plasmodium berghei-infected mouse erythrocytes. They found that the Raman spectra 

for infected and non-infected red blood cells could be differentiated by the bands at 754 

cm 1 and 747 cm '1 respectively. They attributed the slight decrease in frequency between 

754 cm"1 and 747 cm'1 as a result of infection to the fact that, in hemozoin (a polymer 

formed as a result of haemoglobin degradation by malaria parasites), the porphyrin 

structures are more packed, resulting in stronger vibrational mode than in haemoglobin. 

They also observed that the averaged Raman spectra of infected erythrocytes were

12



identical to Raman spectra of p-hematin (a synthetic analog of hemozoin), implying that 

hemozoin was indeed the spectroscopic biomarker of Plasmodium infection.

Belislie et al. [9] developed an optical-based malaria detection method using Third 

Harmonic Generation (THG) imaging of hemozoin using ultra-fast (femto-second), infra

red pulsed laser excitation. THG is a material-dependent non-linear optical effect that 

involves conversion of fundamental laser frequency to a tripled frequency due to third- 

order dielectric susceptibility of the material. The results showed that hemozoin yields 

up to three orders of magnitude stronger THG signal than any other component found in 

blood. This is because hemozoin contains a condensed phase of iron (III) porphyrin rings 

which have an extensive polarizable 7t-electron system as opposed to iron (II) porphyrin 

rings found in haemoglobin.

Yulia et al. [28] used UV-visible spectroscopy to study intra-erythrocytic stages of 

Plasmodium falciparum. Using the first derivatives of the absorption spectra, they 

enhanced the differences in the absorption spectral features of infected red, blood cells. 

They observed an absorption peak centered at 650 nm whose size increased as the 

parasites progressed from ring to schizont stage. This peak was due to hemozoin. They 

also observed that the characteristic oxy-haemoglobin doublet at 540 nm and 575 nm in 

the haemoglobin spectrum was more pronounced in trophozoite stages but reduced in the 

schizont stage. The reduction in this doublet is the result of degradation of haemoglobin 

into the polymeric form of heme (hemozoin).
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Webster et al. [29] discriminated intra-erythrocytic stages of Plasmodium falciparum by 

employing synchrotron Fourier Transform Infra-Red (FT-IR) micro-spectroscopy in 

conjunction with principal component analysis. In FT-IR difference spectra between 

uninfected and infected erythrocytes, they observed bands assigned to hemozoin moiety - 

1712 cm'1, 1664 cm'1 and 1209 cm'1. By employing principal component analysis to 

investigate spectra of parasites at different stages, they found that these bands were 

important contributors in separating between spectra of infected and non-infected 

erythrocytes.

The spectroscopic investigations of malaria infection have two things in common: (i) they 

check for the presence of malaria pigment which has a different spectral response from 

that of haemoglobin, the dominant protein in the red blood cells; and (ii) they require 

specialized equipment such as spectrometers, and laser systems. Such a requirement is 

untenable for application in poor countries where malaria is endemic because they are 

very expensive. In addition, malaria diagnostics based on exclusive hemozoin detection 

may miss ring stage of Plasmodium since hemozoin is more pronounced in the mature 

trophozoites and schizont stages of Plasmodium.

2.7 Morphological Digital Image Processing in Malaria Diagnostics

Semi-automated classification and quantification of erythrocytes infected with malaria 

parasites is the beginning of use of Information Technology (IT) in malaria diagnostics 

ar>d it is based on image processing techniques [12-14], Development of automated 

systems for malaria diagnosis can greatly enhance reproducibility of'diagnostic results
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and reduce the time spent on examining specimens. Ross et al. [13] developed an image 

processing algorithm to automate diagnosis of malaria on thin blood smears based on 

morphological and threshold selection techniques. They used features based on RGB 

colour space, texture and geometry of the cellular components of blood and the parasites 

to classify infections in a two-stage tree classifier employing back propagation feed 

forward neural networks.

Minh et al. [12] and Gloria et al. [14] developed semi-automatic methods for 

quantification and classification of erythrocytes infected with malaria parasites in 

microscopic images. For Minh et al. [12], the images were first analyzed for nucleated 

components based on the differences between intensity values of different colour 

channels of RGB images, then decomposed into solid and non-solid matters in which the 

latter was considered the background. Parasitemia was estimated by differentiating white 

blood cells, red blood cells and gametocytes based on estimated average size. Gloria et 

al. [14] on the other hand, used normalized RGB colour space to classify pixels as either 

erythrocyte or background followed by a two step classification process based on the 

histograms of the images to identify infected from non- infected red blood cells for 

parasitemia estimation. They allowed user intervention whenever the approach failed; for 

example in the case when the classifier was not able to allocate an erythrocyte to a unique 

class, it was left to the user to classify the red blood cell by visual inspection.

Systems based on morphological, size and geometrical mathematical operators for

detection of parasites [12-14] are necessary but not sufficient for accurate diagnosis of

\ ' '
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malaria because they rely on RGB colour images which have limited spectral information 

that can aid in object identification. RGB colour imaging mimics human eye and hence 

samples have to be stained in order for the algorithms to work. The process of staining a 

thin blood smear (which is ideal for RGB image processing) is the major cause of delay 

in obtaining diagnostic results because the staining process alone can take up to 20 

minutes [23].

2.8 Multispectral and Hyperspectral Imaging Applications

Multispectral imaging is a novel imaging technology that integrates spatial and spectral 

properties of an object under observation in order to record more information. Its use has 

been reported in a number of applications including, detection of parasites in cod fillets 

[16], cell differentiation in thyroid cytology [17], white blood cell segmentation [18,22], 

detection and classification of latent defects and diseases on raw French fries [20], 

mapping of lipid oxidation in chicken meat [21], identification of faecal contamination 

on apples [31], measurement of ripeness in tomatoes [32], defect detection in cherries 

[33] and detection of malignant melanomas on skin lesions [34], among others. The 

utility of multispectral imaging owes its success to the fact that in addition to recording 

the morphological aspects of an object (e.g. a cell), its interaction with electromagnetic 

radiation at different wavelengths can be used to reveal its spectral signature. Such 

information is valuable for segmentation of objects in the images.
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A multispectral image consists of a set of congruent gray-level images, acquired at 

different wavelengths of light. The gray-levels (the numerical value in each pixel) 

represent a measured intensity of the radiation used in image acquisition. The number of 

gray level (intensity) images generally varies from four to a few tens depending on the 

spectral resolution required or equipment limitations.

Advances in computer technology have led to the development of hyperspectral imaging 

systems. Unlike multispectral imaging, hyperspectral imaging systems capture image 

stacks made of a series of tens or hundreds of narrow, adjacent spectral band congruent 

gray-level images. Applications have been reported in food quality control [35], such as 

bruise damage detection on white mushrooms [36] and pickling cucumbers [37]. 

However, due to extensive time required in hyperspectral image acquisition and 

equipment requirement it is not suited for automated systems but rather for identification 

of important spectral bands to be used in multispectral imaging systems [37]. 

Multispectral imaging is an equally powerful basis for segmentation and classification as 

it can be used to visualize the chemical composition of materials with fewer spectral 

bands. This thesis incorporates the advantages of multispectral imaging, optical contrast 

enhancement and Multivariate Image Analysis (MIA) to detect, discriminate and quantify 

Plasmodia in human blood media for the purpose of malaria diagnostics.

2.9 Multivariate Chemometric Techniques in Image Analysis

Chemometrics has its origin in chemistry. Its use arose from the realization that 

traditional univariate statistics was not sufficient in describing and thodeling chemical
\ l '\ ••/
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experiments performed with instruments giving multivariate responses for each sample 

analyzed. Chemometrics overcomes the limitations of univariate statistics in 

experimental design, multivariate classification and multivariate calibration by exploiting 

methods derived from mathematics, statistics and computer science. The whole idea of 

chemometrics is that matrices obtained from a multivariate response instrument contain 

redundant information and can be reduced substantially to ease interpretation [38].

Multispectral and hyperspectral images are huge three-way arrays, usually of highly 

correlated data. Multivariate chemometric techniques can therefore be used to generate a 

smaller number of statistically independent images, each revealing a unique contrast 

phenomenon. The most commonly used technique for achieving this is Principal 

Component Analysis (PCA) which has been extensively utilized in food quality analysis 

such as detection and classification of latent defects and diseases on raw French fries 

[20], mapping of lipid oxidation in chicken meat [21] and identification of faecal 

contamination on apples [31], among others. Another multivariate chemometric 

technique useful in image analysis is Soft Independent Component of Class Analogies 

(S1MCA) which has been used in detection of parasites in cod fillets [16]. In fact, there 

is no limit on applicability of chemometric techniques in multivariate image analysis, 

hence techniques such as Hierarchical Cluster Analysis (HCA), Artificial Neural 

Network (ANN) and many others can be used.
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Chapter 3

THEORETICAL BACKGROUND

3.1 Introduction

In this chapter, the life cycle and diagnostic stages of Plasmodium are presented followed 

by an overview of the biophysical changes introduced by the parasite in blood. An 

overview of image formation in an optical microscopy, which is currently the “gold 

standard” for malaria diagnosis, is given together with a general perspective of UV- 

visible-NIR spectroscopy. The concept of multispectral imaging and Multivariate Image 

Analysis (MIA), which are the cornerstones of this thesis, are also are discussed.

3.2 The Life Cycle of Plasmodium

Malaria parasite exhibits a complex lifecycle that involves a human being (and some
/

primates) and an insect vector (female anopheles mosquito). Malaria infection is initiated 

when sporozoites in mosquito saliva are injected into the human body by a feeding 

female Anopheles mosquito. The sporozoites are carried to the liver by the human 

circulatory system where they undergo asexual reproduction to form an invasive stage of 

the parasite known as merozoites. Merozoites are released into the blood stream to 

invade erythrocytes (red blood cells) and undergo a trophic period in which the parasites 

enlarge. The early trophozoite stage is known as ‘the ring stage’ due to its morphology. 

Trophozoite enlargement is accompanied by active metabolism which iftcludes ingestion
I '
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of host cytoplasm and proteolysis of haemoglobin into amino acids. The end of the 

trophic period culminates into schizonts, an intra-erythrocytic parasite stage involving 

repetitive nuclear division. Merozoites bud from mature schizonts and are released 

following rapture of the infected erythrocytes which reinitiates the cycle by attacking 

other red blood cells.

As an alternative to the trophic replicative cycle, the merozoites can differentiate into 

male and female sexual gametes known as macro and microgametocytes respectively. 

Ingestion of gametocytes by a feeding mosquito facilitates the completion of the vector 

(sexual) stages of the Plasmodium life cycle [39], The complete life cycle of malaria 

parasites is illustrated in Figure 3.1.
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Figure 3.1: Life cycle of Plasmodia that cause malaria in humans |Source:Centre for 

Disease Control website: http://www.dpd.cdc.t»ov/dpdx/HTML/lmatieLibrarv/M- 

R/Malaria/ b odv Malaria ill.htm (accessed on September 24th, 2010)].

3.3 Malaria Diagnostics

When malaria infection is suspected on clinical ground, it is important to obtain 

laboratory confirmation for the presence of Plasmodia, stages and the degree of infection 

(parasitemia) [1], Confirmation can be achieved by direct or indirect methods. Direct 

diagnosis is pursued by looking for the parasites’ whole cells or nucleic acid or parasites’
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products in blood. On the other hand, indirect diagnostics (also known 

immunodiagnostics) is conducted by testing a patient’s immune response to the infection 

in the blood.

Many morphological and spectral features of Plasmodium can be revealed during 

examination of a peripheral blood smear. In conventional microscopy for instance, 

trophozoites, schizonts and gametocytes are identified by their shapes, sizes and colour in 

stain. Table 3.1 gives a summary of the main diagnostic features used to identify 

different species of Plasmodium in thin blood smears.
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Table 3.1: Features used in malaria parasites identification in conventional microscopy
(Source: [3])-

Trophozoite Schizont Garnet ocyte

| | |  q o l  > \ y ^

a ? |  Size: small to medium; auraber often 
'j  | 6 numerous; shape ring and comma 1 forms common; chremsdin: often two 

f  f  dots; cytoplasm: regular, fine to fleshy; 
g  e  nature forms sometimes present in 

severe malaria, compact with pigment 
as few coarse grains or a mass

r  •  t  « •
f a  t e

Usualy associated with many young 
ring forms. Size: small, compact; 
■amber few, uncommon, usuady in 
severe malaria; mature faraw: 12-30 
or more merozoites in compact duster; 
pig event: single dark mass

* l
Immature pointed-end forms uncom
mon. aiatere forma: banana-shaped 
or rounded; ahromatin: single, wed 
defined; pigmaat scattered, coarae, 
rice-grain-like; pink extrusion body 
sometimee present Eroded forms with 
only rhromabn and pigment often seen.

I* - - £• ' *V^e v., U J -*• O
III *  •  •*
|  j j  je Size: small to large; number: few to1 j "  moderate; shape: broken ring to irregu- 

I f  tar forms common; chromatin: single, 
t  S occasionady two; cytoplasm: irregular or |  fragmented; matere forma: compact 
g  dame; pigmaat: scattered, fine

Size: large; suraber: few to moderate, 
matwe forma: 12-24 merozoites, usu
ally 16, in irregular cluster; p if meat: 
loose mass

• #
Immature forms difficult to distinguish 
from mature trophozoites, aiatere 
forme round, targe; ehreraatia: 
single, wed defined; pigment: scat
tered, fine. Eroded forme with scanty 
or no cytoplasm and only chromatin 
and pigment present

| |  “ ? • * * •* -M
i is m  <0 #  #
11|  *  »  #  411'1 Size: may be smaller than P. mwr, eum- # bar usually few; shape: ring to rounded, | 2  compact fomra; cbrematie: single,

1 %  prominent cytoplasm: fairly regular, g|: Hesty; pigment: scattered, coarse.

*  m- m  -% 
*

Immature forms difUcuft to distinguish 
from mature trophozoites, stators 
farms: round, may be amader than P. 
vtvax. chromatin: angle, wed defined; 
pigment: scattered, coarse. Eroded 
forms with only chromatin and pigment 
present

m m m *
/

Sim : rather like P. m alariar, number:

usuady B, in looee cktater; pigmaat 
concentrated mass.

• O  ̂% u 
« 0 • • •

I ! •  •  «* *r Size: smalt usually few; shape: ring to | V  rounded, compact forms; cteomatin:1 toggle, large; cytoplasm: regular, dense; 
C  P 3 "te "t scattered, abundant with 

yewwr tinge in older forma.

•  •  •  %
% •••*

Sim: small, compact nember: usually 
few; maters farms: 6-12 maromites, 
usuady 8, in looae cluster, soma ap
parently without cytoplasm; pigmaat 
concentrated.

f

•  •  o  9
Immature and certain mature forms 
difficut to dahnguah from mature 
trophozoites, mature forms: round, 
compact chromatin: angle, wed de
fined; pigment: scattered, coarse, may 
De peff*iefaiy dLstnoutBu. trooed Torms 
With oniy chromehn and pigment present
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This thesis is focused on direct diagnostics of malaria by employing unique microscopy 

techniques based on spectral properties of blood and the chemical changes induced by 

P la sm o d iu m  in the red blood cells during an infection.

3.4 Effect of Plasm odium  Parasitization on Erythrocytes

Red blood cells make up 99 % of cellular component of human blood and about 43 % of 

whole blood [37]. They are highly specialized cells for facilitation of gas transfer in the 

body. Some of their adaptations to this function include: lack of cell organelles and 

nuclei, high concentration of haemoglobin and a biconcave disk shape for high surface- 

to-volume ratio and ease of movement within small blood vessels [40]. In its intra- 

erythrocytic stage, the malaria parasite alters biophysical properties of the red blood cells. 

For instance, Plasmodium falciparum, the most lethal of the four species, digests a 

considerable amount of haemoglobin for its nutrition and produces a huge amount of 

waste products known as hemozoin [41-43], and creates nano-scale protrusions on the red 

blood cell membrane leading to reduced deformability of the host cell and increased 

cytoadherence to vascular endothelium and to other red blood cells [43-45]. The result is 

sequestration of the red blood cells in microvasculature in later stages of parasite 

development which is linked to vital organ dysfunction in severe malaria [46].

The various components within infected red blood cells (the parasite whole cell with its 

myriad organelles, haemoglobin and hemozoin) interact differently with electromagnetic 

radiations of different energies. This is important for spectroscopic analysis of malaria.
t\ 1 '\‘ /
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In the optical region of the electromagnetic spectrum, for instance, haemoglobin (the 

dominant protein in red blood cells) is known to have a Soret absorption band centred at 

around 416 nm and doublet absorption bands centred at 540 nm and 575 nm [27, 28]. 

Intra-erythrocytic parasite growth is associated with a corresponding decrease in 

haemoglobin but an increase in hemozoin that accumulate in the parasite’s digestive 

vacuole [39, 41]. Hemozoin is known to have Raman spectra that are identical to 

commercial p-hematin and can be differentiated from haemoglobin using 754 cm'1 band 

[10]. UV-visible absorption spectra show that hemozoin has a broad absorption band 

centered at around 650 nm [28, 47- 48] in addition to the Soret band close to that of 

haemoglobin. Both haemoglobin and hemozoin have a porphyrin containing heme 

prosthetic group but differ slightly in their spectra due to polymerization in hemozoin 

which makes it more stable than haemoglobin.

The infected red blood cells exhibit varying index of refraction due to inhomogeneity 

brought about by the invading parasites as opposed to healthy ones which have 

homogeneous distribution of haemoglobin and hence uniform refractive index. The 

refractive indices of these stages have been found to be 1.399, 1.395, 1.383 and 1.373 for 

healthy red blood cells, ring, trophozoite and schizont stage respectively [49].

3.5 Image Formation in an Optical Microscope

An optical microscope is an instrument that uses visible light to produce a magnified 

image of an object (or specimen) that is projected onto the retina of the eye or onto an 

•maging device. In its simplest form, image formation in a light microscope may be
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represented as shown in Figure 3.2. The objective lens collects light diffracted by the 

specimen and forms a magnified real image at the real intermediate image plane near the 

eyepiece. The eye or the imaging device detects a magnified virtual image of the 

intermediate real image. In practice, the objective and the ocular (or the eyepiece) 

contains multiple lens elements and the position of the specimen is dictated by the overall 

focal length of the objective [49].

Ocular

Figure 3.2: Perception of a magnified virtual image of a specimen in a transmission 

microscope (Source: [50]).

In conventional microscopy, the specimen is illuminated by transmission using a broad 

band source of light that covers part of or the entire visible region. This is called bright 

field. Other modes of illumination are also possible. For instance, by including a 

reflective objective, images can be generated by use of reflected light. The microscope’s 

objective collects both diffracted and non-diffracted rays from the specimen. According 

to Abbe s theory of image formation in a microscope, interference between 0th and higher 

der diffracted rays in the image plane generates contrast [50]. For unstained transparent
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specimens, however, the component of non-diffracted background light is very large, 

resulting in bright, low contrast images in which details are poorly visible. Such objects 

can be viewed in dark-field microscopy in which the non-diffracted rays are removed 

altogether so that the image is composed solely of diffracted wave components. This 

technique is sensitive because images based on small amounts of diffracted light from 

minute objects are seen against a black or very dark background. Dark-field conditions 

are obtained by illuminating the specimen at an oblique angle such that direct, non- 

diffracted rays are not collected by the objective. As such only diffracted rays from the 

specimen are collected by the objective to be used in image formation [50, 51 ].

3.6 A General Perspective of UV- Visible-NIR Spectroscopy

Different compounds have different spectral response to excitation by electromagnetic 

radiation of different wavelengths. The wavelength of light that a compound absorbs is 

characteristic of its chemical structure. Specific regions of the electromagnetic spectrum 

are absorbed when they excite specific types of molecular and atomic motion of matching 

energy to higher energy levels. Absorption of visible and ultraviolet (UV) radiation is 

associated with excitation of lower electronic states to higher energy states in both atoms 

and molecules, while visible and near infrared (NIR) is associated with vibrational 

molecular processes. Absorption spectra are therefore characteristic of molecular 

structure and may be used to qualitatively identify atomic and molecular species. Since 

they uniquely identify compounds, the characteristic spectra can act as fingerprints (or

fX l X
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spectral signatures) o f the compounds, 

governed by Beer Lambert Law:

,4 = -log 10

The absorbance of a transparent solvent is

(3.1)

where I0 is the incident intensity, It the transmitted intensity and A the absorbance. 

Hence by measuring the intensity of a monochromatic beam before and after its 

interaction with a sample, absorbance of such a sample can be calculated.

3.7 Multispectral Imaging

When a specimen is imaged in an optical microscope, contrast is created by the colour of 

the imaged scene, which makes features in the specimen to become visible. RGB 

imagers mimic the human eye by detecting three spectral bands: red, green and blue 

which combine in various proportions to give a colour image. However, contrast is not 

an inherent property of the specimen; rather, it results from the interaction of the 

specimen with light and the sensitivity of the detector. Light intensity recprded by a 

camera after interacting with the specimen results from such phenomena as absorption, 

reflection and diffraction of light. Contrast therefore arises from the differences in these 

optical phenomena for the different parts of the specimen as a function of wavelength. In 

a transmission set up, spatial gradients in the index of refraction also contribute to 

contrast in the specimen [52].

Spectral imaging involves measurement of the wavelength spectrum (transmitted,
*' -v

reflected, emitted, etc) at every pixel of an image. Multispectral images are composed of
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multiple bands (see Figure 3.3) in which each pixel represents the spectral characteristics 

at a specific position in the image. The resulting spectrum acts like a fingerprint which 

can be used to characterize the composition of that particular pixel [15-22] as explained 

in section 3.6.

x

(a) (b)

Figure 3.3: (a) Representation of a multispectral image and (b) an arbitrary spectrum of

a pixel (xjjj) from a multispectral image.

/
When the illumination conditions and the spectral characteristics of a camera are known, 

physical variables such as the reflectivity or transmittance of an object being observed in 

specified illumination conditions can be determined [52]. Suppose that the spectral 

sensitivity of a camera in the k-th band is Sk(>.), the spectral intensity of the illumination 

IS L(k), and the spectral reflectivity or transmission of an object is z(X), then the pixel 

intensity value xk in the k-th band is represented as

xk = /S ka)La)z(X)dX f " ' (3.2)
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here X is the wavelength [15]. In a three band colour representation such as RGB, the 

sensitivity bands are broad and overlapping and emphasizes the colour composition ratio 

rather than the physical variables [15]. In multispectral imaging, sensitivity bands are 

significantly narrow; hence more information about the physical variable is obtained in 

addition to pseudo-colour composition from the various spectral bands.

3.8 Multivariate Image Analysis (MIA)

Pixel classification can enable identification of regions with similar spectral 

characteristics in a multispectral image. Within a multispectral image, there are different 

sources of information which have characteristic spectra that can be used to map the 

distribution of different compounds in the image. These characteristic spectra are mixed 

together, meaning that useful information can only be extracted by image analysis such as 

by the use of multivariate statistical analytical tools. In order to apply two-way 

multivariate techniques such as Principal Component Analysis (PCA), the three-way 

multivariate images (consisting of one spectral and two spatial dimensions) are unfolded 

to two-way object-variable data matrix in which the columns represent the variables and 

rows the objects (pixels). Analysis is done and the results interpreted in the usual way. 

In addition, visualization as images is done by folding the transformed data matrix back 

into the original dimension of the multivariate image [53].

Multivariate data analysis may be divided into pattern recognition and multivariate 

regression techniques [54]. Image analysis is basically a pattern recognition problem.

I *
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Pattern recognition techniques are further divided into supervised and unsupervised 

learning procedures [54]. In supervised pattern recognition, a priori knowledge about 

classes contained within a sample is required. In contrast, unsupervised pattern 

recognition does not require a priori knowledge about classes in the training set samples. 

As such, unsupervised pattern recognition techniques are exploratory methods for data 

analysis, which seek inherent similarities of data, then group the data in a “natural” way. 

Supervised pattern recognition, on the other hand, groups data into predefined classes 

thereby allowing a more precise classification within the class boundaries. In this thesis, 

Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) have 

been used to explore the spectral response of pixels from different regions of 

multispectral images whereas Artificial Neural Network (ANN) has been used for 

classification. PCA and HCA are unsupervised techniques while ANN is a supervised 

pattern recognition technique.

3.8.1 Principal Component Analysis (PCA)
/

PCA evaluates total variances within a data set and reduces its dimensionality via eigen 

value analysis. It searches for correlating features and converts them to a few 

uncorrelated linear combinations of the original variables that capture most of the 

information in the original variables of the dataset. To find the latent (hidden) structure 

in a data matrix X (made up of n objects and q variables), PCA decomposes X into an 

outer product of score vector ta and loading vectors pa' plus a matrix of residuals, E (the

noise part) as expressed in equation 3.3.
f\ l *
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*  = Ea=l ta pTa + E =  TPT +  E (3-3)

where A is equal to or less than the rank of X. The rank of a matrix is the maximum 

number of independent rows or columns; therefore A must be the smallest value for 

which equation 3.3 still holds [38]. T and P are known as score and loading matrices 

respectively. P 1 is the transpose matrix of P.

For multispectral images, equation 3.3 is applicable after unfolding has been done as 

shown in Figure 3.4. The three-way Object-Object-Variable (OOV) data image X 

(pixels as objects and wavelengths as variables) is unfolded to a two-way Object-Variable 

(OV) data matrix (X) which is decomposed into score (T), loading (P) and E (residual) 

matrices [55]. The score vectors have same dimension as the unfolded original gray-level 

images of the multispectral image and thus can be reshaped (folded back to the original 

dimension of the multispectral image) to make gray-level images. To do this, the score 

vectors are rescaled to specified gray-level resolution (for example 0-255 for 8-bit 

images) to avoid having negative values and positive values that are beyond the required 

resolution of the images. These values may arise in PCA decomposition because all the 

calculations are based on floating-point numbers. Images have to be represented as short 

integers for example in the range 0 to 255 for 8-bit images in order to be displayed on a 

computer screen. The first few score images usually account for most variation in the 

multispectral image. In addition, score and loading vectors can be plotted against each

' -v
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other as scatter plots in order to visualize important analytical properties such as outliers, 

gradients and clusters [51].

Figure 3.4: Decomposition of a 3-way data matrix in PCA.

PCA is thus a powerful data-reduction technique that can condense original data with 

many variables to a dataset with only a few variables reflecting the most relevant 

analytical information. For spectral data, it assists in resolving overlapping spectral 

features by evaluating variance across the selected spectral range. In this work, PCA 

was used to separate pixel clusters for malaria parasite identification and to single out the 

most important variables (wavelengths) for malaria diagnostics in the 375-940 nm 

wavelength range.

3.8.2 Hierarchical Cluster Analysis (HCA)

Cluster analysis, in general, uses statistical methods to identify groups that behave 

similarly or show similar characteristics in a dataset [56]. There are many clustering 

algorithms such as K-means cluster analysis, Hierarchical Cluster Analysis (HCA) and C-

means clustering techniques. In this work, Hierarchical Cluster Analysis (HCA) has been
\ < '
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used because o f  its popularity in production of dendrograms which can provide a two- 

dimensional pictorial representation of the clustering process [57].

In hierarchical clustering, the original data composed of m objects and n variables are

groups until finally the individual objects themselves remain. Such algorithm may be 

agglomerative or divisive [56].

In agglomerative clustering, small groups, starting with individual samples, are fused to 

produce larger groups. In contrast, divisive clustering starts with a single cluster, 

containing all objects which are successively divided into smaller partitions. 

Agglomerative hierarchical clustering is the commonly implemented algorithm in most 

application software. It begins with the computation of similarity or distance matrix 

between the objects, finds the smallest elements in the distance matrix and joins the 

corresponding objects into a single cluster. This process is repeated until all the objects 

are fused into one large set. The most popular measure of dissimilarity between objects 

x, and Xj is the Euclidean distance, which is a special case of the Minkowski distance with 

p=2, generally expressed as

separated into a few general classes, each of which is further subdivided into still smaller

where *,={.*,/, ....,xid} and Xj={xji, The Minkowski distance with p=l is called

Manhattan distance. Other distances can also be defined, such as Chebyshev, 

Mahalanobis and Bahattacharyya distances [57]. The algorithm employed in this work
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uses Euclidean distance and has been used to show spatial distribution o f heme species in 

an infected red blood cell.

3.8.3 Artificial Neural Network (ANN)

An ANN consists of a large number of processing units known as neurons connected 

together, that attempt to simulate the biological structure of the brain and nervous system. 

A biological neuron has components that are of particular interest in understanding an 

artificial neuron: the dendrites which receive electrical signals from other neurons into 

the cell body of the neuron, the soma (or the cell body) which sums and thresholds the 

incoming signals and fires depending on the threshold value, and the axon which 

transmits the resulting signal from soma to other neurons [58] (see Figure 3.5). A point 

of contact between an axon of one neuron and a dendrite of another neuron is known as a 

synapse. The strengths of the synapses change in an organism’s life. Strengthening or 

weakening of synaptic junctions is what is known as ‘a learning process’ of the organism

[59],

Axon from 
Another Neuron

Axon
~7

Dendrite of 
Another Neuron

Another Neuron

figure 3.5: A schematic representation of a biological neuron (Source: £58]).
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Component5 of an artificial neuron model relate to those of a biological neuron as 

follows: the dendrites, synapses, soma and axon correspond to inputs, weights, transfer 

function and output of the neuron respectively. An illustration of an artificial neuron is 

shown in Figure 3.6.

Figure 3.6: A schematic representation of an artificial neuron.

The individual inputs pi, p:, ..., pr form the input vector, and are each weighted by the 

corresponding elements w/j, vv/,2, . . . , w / , r  of a weight matrix W. The first index on the 

elements of the weight matrix indicate the particular neuron destination for that weight 

(in the case where there are more than one neuron), and the second index indicates the 

source of the signal fed to the neuron, for example, means a connection to the first 

neuron, coming from the second element of the input vector. The neuron has a bias b 

which is summed with the weighted inputs to form the net input n, as expressed in 

equation 3.5 and 3.6.

n~ w/,/p/+ wi'2 p2+ ... + wi'R p R+b (3.5)

or
*v

n=Wp+b \  ’ « : (3.6)
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where W is the weight matrix, p  is the input vector and b the bias. The summer output n 

(referred to as net input) is evaluated in a transfer function, /  (also known as the 

activation function) to produce a scalar output a of the neuron as expressed in equation

3.7

a=f(Wp+b) (3.7)

The actual output of the neuron depends on the particular transfer function used in the 

neuron. Typically the transfer function is chosen by the neural network designer and the 

values of W  and b are adjusted by some learning rule so that the neuron input/output 

relationship meets some specific goal. The neural network “learns” by modifying the 

weights of the neurons in response to the errors between the actual output values and the 

target output values [60].

A layer of neurons, such as the one just described, is known as a perceptron. A 

perceptron is limited by the fact that it can only be used to solve a classification problem 

in which there exist a linear boundary. In this work, though the main problem is to 

classify a red blood cell as either infected or uninfected, there were no identifiable linear 

boundaries between the spectra of the two. As such a multilayer perceptron neural 

network with a Levenberg-Marquardt back propagation learning algorithm which can be 

trained to solve non-linear problems [61] was chosen. Since output of the network is 

expected to classify red blood cells in two states, positive or negative, a symmetrical 

function in the hidden layer and a linear function with a threshold value in the output
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er were selected. These are: hyperbolic tangent function defined by equation 3.8\<*j

whose outputs varies between -1 and +1 and a linear transfer function whose input is

equal to the output for the output layer with a threshold value set to zero.

en—e~n 
^  en+e~n (3.8)

where a is function output and n is the summer output.

Training of such a network is carried out by repeatedly presenting the training patterns 

(updating the weights) until the average error over all the training patterns is minimal and 

within tolerance specified for the problem. This is carried out through gradient descent 

approach in which changes in weights are proportional to the negative of the derivative of 

the sum of the squares of the errors for all the training patterns. One pass through the set 

of training pattern, together with associated updating of the weights, is called a cycle or 

an epoch. After training, the neural network should be able to reproduce the target output 

values for the training data with minimal errors. The associated trained weights of the 

neurons are then stored in the neural network memory and used in prediction of target 

output values when different sets of data are fed to the ANN [59].

The performance of the neural network model can be assessed by several criteria; these 

include the coefficient of correlation R, root mean squared error and mean absolute error

among others. A well trained model should result in an R value close to one and small 

values of error terms [62].
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MATERIALS AND METHODS 

4 1 The Multispectral Imaging Microscope

The imaging system used in this study was a multimodal, multispectral imaging 

microscope developed by Mikkel et al. [52] and advanced by Aboma [63]. The 

equipment consists of a commercial optical microscope (Brunei compound microscope) 

modified by replacing the conventional illumination light (white light) with 

monochromatic LED lighting system. Thirteen LEDs emissions centred at 375 nm, 400 

nm, 435 nm, 470 nm, 525 nm, 590 nm, 625 nm, 660 nm, 700 nm, 750 nm, 810 nm, 850 

nm and 940 nm are used. This wavelength range covers UV, visible and NIR optical 

region. Figure 4.1 shows the emission spectra of the LEDs as measured using USB2000 

Ocean Optics® spectrometer.

Chapter 4

700

Waveleogth(nm)

Figure 4.1: Emission spectra of LEDs used for illumination in the microscope.
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It may be noted that all the LEDs show an appreciable chromaticity though there is little 

overlap of some of the spectra of neighbouring LEDs. The LEDs are mounted in a quasi 

hemispherical container made of teflon and illuminate same spot on a 5 mm Opal light 

diffuser (Edmund Optics) which in turn provides a Lambertian-like illumination to the 

sample. A Lambertian source of light is one which has same apparent radiance when 

viewed at any angle, hence provides uniform illumination to the sample.

To achieve multispectral imaging, the LEDs are activated sequentially through a 

computer controlled data acquisition card (DAQ from National Instruments Inc.). The 

sample is illuminated in three different modes: bright field (transmission), dark field 

(scattering) and reflection. For transmission measurement, the sample is illuminated by 

the set of LEDs located directly below the sample. In reflection mode, light reaches the 

sample from above via a system of optics, which includes a Cassegrain objective. The 

cassegrain objective (X I5 Reflx™® objective from Edmund Optics) is a reflective 

objective that is essential for reduction of chromatic aberration in all the three modes of 

imaging. Dark field imaging is achieved through the use of a ring coupled on an optical 

fibre. The ring provides an oblique illumination that cannot be accepted by objective’s 

aperture, hence only light which is scattered by the specimen can enter the objective. An 

image formed in this way has bright objects superimposed upon a dark background.

A computer controlled 12-bit (resolution 640X480 - 1600X1200) monochrome CMOS 

camera (Guppy GF503B, Allied Vision Technologies) is fitted on the microscope ocular 

t0 capture an image of the sample at each LED illumination. Figures 4.2 and 4.3 show
t ' '\ ' '\
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the spectral sensitivity of the camera and the complete multispectral imaging set-up 

respectively. It can be noted that the spectral sensitivity of the camera matches the 

emission range of the LEDs shown in Figure 4.1.
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Figure 4.2: Spectral response of Guppy GF503B camera (Source: [64]).
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Figure 4 J :  The Multispectral Imaging Microscope (Adapted from 1631).

Key

1. Computer 6. Cassegrain objective ,

2. LED set 7. Optical fibre
3. CMOS camera 8. Diffuser

4. L>AQ card and circuitry 9. Ring coupled on optical fibre
5. Sample iO. Beam splitter
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4.2 Measurement Procedure

In vitro cultures of malaria-infected unstained thin blood smears were obtained from 

Kenya Medical Research Institute (KEMRI) and Institut National d'Hygiene Publique 

(Cote d’Ivoire). The samples had already been positively identified by an expert 

microscopist as positive and containing all the stages of Plasmodium falciparum. For 

each sample, three measurements (transmission, reflectance, and scattering) were made. 

The sample was focused such that the camera ‘sees’ the objects in the sample from all the 

three modes at same image plane.

The spectral sensitivity of the CMOS camera (as show shown in Figure 4.2) varies with 

the wavelength of the light to be detected [64]. For instance, light from a 590 nm LED 

will easily saturate the camera as opposed to one from a 940 nm LED when both LEDs are 

driven by equal proportion of current as per their current ratings. As such, a protocol 

(camera and current settings for each LED) was created, at every measurement, in the 

software (developed in LabView-National Instruments Inc.) by subjectively adjusting the 

driving currents of the LEDs, the exposure time and the gain of the camera to obtain a 

good dynamic range without saturating the camera. A single measurement consisted of 

taking three images; sample image, I(X)S, dark image, I(>-)a, and reference image, I(X)r 

us>ng same protocol. The three images were then used in calibration (see section 4.3).
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The process of acquiring reference image, I(X)r and dark image, I(X)d varied slightly 

depending on the mode of imaging in use. For transmission measurements, I(X)r was an 

image of an empty glass slide with identical optical properties as those of the slide holding 

the sample. In reflection and scattering modes, I(X)r was the image of reflecting and 

scattering sides respectively of an Opal diffuser (P0:006208-00 SM-Edmund Optics) 

known to have an average reflectance value of 50 %. The dark current image I(X)d in 

transmission mode was taken by using the same transmission protocol as that of the 

sample but with the power supply to the LEDs switched off. In reflection, I(X)d was 

obtained using the same protocol as that of the reflection sample image with nothing on 

the light path (sample and slide removed) while in dark field mode I(X)d was obtained with 

an empty glass slide using scattering sample image protocol.

4.3 Calibration

To account for the differences in the spectral response of the camera to the different LED 

light sources, the ‘dark’ camera response and different noise sources, a corrected spectral 

image, l(X.)spec was obtained from the images captured in measurements using equation 

4.1.

_  KA),-KA)dMA)spec -  I ( X ) _ I ( x ) d (4.1)

where I(X)S is sample image, I(^)r is reference image, and I(X)d is dark image. The 

subtraction is done on a pixel-by-pixel basis for each wavelength (̂ .). Image correction 

ar>d the subsequent processing and analysis were performed using MATLAB® 

(MathWorks Inc.) software. A code was written to import the raw images stored in

44



unsigned 16-bit representation, convert them to double class representation and apply the 

correction using equation 4.1 in readiness for analysis. A number of selected Matlab 

codes used in the processing are presented in the Appendix.

For images taken in transmission mode, transmittance values were obtained directly from 

equation 4.1 since the reference is a plain transparent glass slide. The ratio between the 

intensity of light transmitted through sample slide to the intensity of light transmitted 

though an empty slide is the transmittance value. However, the values of reflectance were 

obtained by multiplying images taken in reflectance mode by a factor Q given by equation 

(4.2), because the reference used in this case (Opal diffuser) is 50 % reflecting.

Q =  T
l-I(A)d
” I(A)d

(4.2)

where I (X)d is the dark image.

In all imaging modes, the size of the imaged scene was estimated by imaging 

homogeneous polymer microspheres of standard diameter 10 pm each. From the images, 

a microsphere with diameter of 10 pm occupies 40 X 40 pixel space. Thus for a 480 X 

640 pixel image, the imaged scene is approximately 120 X 160 pm with a resolution of 16 

pixels per square micro-metre.

4.4 Image Preprocessing

The corrected images resulting from equation 4.1 have both missing and infinite values 

arising from points where there was division by zeros. To remove these?“dead” pixels, all
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pixel values in the images were scaled to a maximum value of one, all infinite values set 

to one and all missing values set to zero. A median filter was then applied on each gray- 

level image using a kernel of 3 X 3 to remove “salt and pepper” noise.

4.5 Spectral Capability Test for the Microscope

To test the capability of the microscope to generate spectral signatures of imaged 

components, an absorption spectrum of thin blood smear was taken using SolidSpec® 

3700 spectrophotometer in the range 375-940 nm. The same sample was also imaged 

using the LED multispectral imaging microscope working in transmission mode and 

absorption spectra obtained by using Beer-Lambert’s law after normalization. The spectra 

from the two systems were then compared in order to visualize the main spectral features 

of blood.

4.6 Multivariate Image Analysis

Image analysis consisted of two parts. First, the images were explored for presence of 

parasites in the red blood cells. To do this, an image from the dark-field mode was used to 

identify possibly infected red blood cells. In dark-field, an infected red blood cell would 

contain a bright spot inside an enclosed outline of the red blood cell against a dark 

background, whereas uninfected one does not contain such spot. The bright spot in an 

infected cell is the result of diffraction (scattering) effect of the parasite. However, since 

fte morphological features of the parasite (usually known and used by microscopists) 

Were not dear to conclusively identify it as a parasite, exploratory analysis based on the
f
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spectral properties of the imaged red blood cells was done. Principal components analysis 

was done (after mean-centering to minimize undue influence from individual 

wavelengths) to investigate the spectra of both suspected infected red blood cells and 

uninfected ones. The reason for this was that in the transformed latent space of PCA, 

scores and loadings could be used to visualize similarities and differences in the spectra 

and also highlight the variables (wavelengths) causing the highest variances.

PCA was applied by first inspecting a single red blood cell suspected to be infected by 

Plasmodium using analytical method of image analysis developed by Geladi et al. [53, 65- 

66]. Individual parasitized red blood cells, which are visible in the images, were cropped 

(using a function developed in Matlab to crop a 13-band image) and then subjected to 

PCA to explore variance in the spectra. To minimize undue influence from individual 

variables (wavelengths at which images have been acquired), all spectra were scaled to 0-1 

dynamic range and then mean-centered before applying the PCA algorithm in Matlab. 

The transformed data was then interpreted by selecting a cluster of pixels in the score plot 

and highlighting them in the image space (a process known as masking) to identify the 

origin of spectra. Secondly, PCA was applied by labeling each red blood cell as either 

positive (P) or negative (N) based on the results of dark-field image. The red blood cell 

was then cropped and its spectrum found by averaging intensity values in each gray-level 

image for all the 13 bands. The averaged spectra were then subjected to PCA analysis and 

the scores studied. Correctly classified red blood cells were those which appeared in the 

expected cluster. Red blood cells that appeared in the unexpected cluster or those which 

appeared to be outliers were excluded from the second stage of analysis. HCA algorithm
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was then applied to the unfolded image spectra using Matlab Statistical Tool box to show 

the distribution of similar spectral features and hence the distribution of important 

pigments in an infected red blood cell.

Part two of analysis was development of Neural Network model based on the correctly 

identified spectra of red blood cells from PCA results. The neural network was developed 

using Matlab Neural Network tool box (MathWorks Inc.) software. The inputs to the 

network were raw spectra obtained by averaging pixel values from individual red blood 

cells. The network was trained to solve a two-class classification problem to identify each 

red blood cell as either infected (output coded +1 or uninfected (output coded -1).

To avoid overfitting, which makes a neural network to memorize training patterns in such 

a way that it cannot generalize to new data, spectra were split into three subsets: a training 

set (60%), a validation set (20%) and a test set (20%). The training set is usually used to 

update the network weights as the error is monitored whereas the validation set is used to 

ensure that, when the network generalizes, training stops just before overfitting occurs. A 

one hidden layer ANN was chosen since it can approximate any continuous function [62]. 

Network structure was optimized by testing varying number of neurons in the hidden layer 

for the lowest training and validation dataset errors. The prediction accuracy of the 

network was then determined from classification performed on the test set. The 

performance of the network was calculated by dividing the number of correctly classified 

spectra by the total number test spectra and expressing it as a percentage.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Microscope’s Capability in Reproducing Red Blood Cells Spectra

Before any analysis was carried out on the spectral dimension of the images, the 

microscope was tested on its capability to reproduce measured spectra. Testing was done 

using a thin blood smear on a standard laboratory slide. It is known that haemoglobin is 

the major constituent of red blood cells and has a spectral signature in the visible region. 

Figure 5.1 shows normalized absorption spectrum of blood smear obtained from 

Shimadzu® DUV 3700 spectrophotometer for comparison to spectra from the microscope.

Wavelength (X) in nm

q!®Ure Absorption spectrum of a thin blood smear taken in the spectral range 375- 
nrn using DUV 3700 spectrophotometer. ( ',  ’ ,
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The spectrum was taken from a macroscopic view without consideration of the 

contribution of individual red blood cells and normalized using equation 5.1 in order to 

scale all values to range between zero and one.

lacfImln
norm ] J1 max”  Imln

(5.1)

where Inorm is the normalized intensity value, lact is the actual (original) intensity value, 

Imax is the maximum intensity value in the dataset and Imin is the minimum intensity value 

in the dataset.

From Figure 5.1, it can be seen that haemoglobin (the dominant constituent of blood) has a 

strong absorption at 411 nm (known as Soret band). It also has relatively weaker 

absorptions at 533 nm and 570 nm (a doublet) which are only observable for oxy- 

haemoglobin. These bands are important for identifying oxy-haemoglobin in absorption 

spectroscopy.

Figure 5.2 and Figure 5.3 show, respectively, a representative spatial image of red blood
/

cells (gray-level image captured at 590 nm for the purpose of visualization) and the 

corresponding spectrum of the whole multispectral image (imaged scene size 120 X 160 

pm) captured by the microscope.
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Figure 5.2: A microscopic image of thin blood smear taken in transmission mode.
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Figure 5.3: Absorption spectrum of thin blood smear derived from a multispectral image.
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The normalized spectrum from the image was obtained by taking an average pixel value in 

each transmittance gray-level image for all the channels (corresponding to all the 

wavelengths of measurement) to obtain transmittance spectrum and then transformed to 

absorbance spectrum using Beer-Lambert’s law.

It is clear from the image (Figure 5.2) that there is spatial variation in the transmittance 

values (pixel values) between regions occupied by red blood cells and where there are no 

red blood cells. In fact, there exist variances even within the individual red bloods. If all 

pixels from a single red blood cell (approximately 900 pixels since the average size of a 

red blood cell in the image is about 30 X 30 pixels) are plotted as absorption spectra, intra

cell variances are seen (see Figure 5.4). The global spectrum from the multispectral image 

is an average value of the all pixels in each channel represented as a single intensity value 

at that particular wavelength and hence cannot reveal intra-cell variances but reveals the 

general spectral features like those captured by the spectrophotometer. Since each pixel 

contains unique information in the image, spectral signatures of different components in 

blood smear can be found by examining the average value of localized pixel speetra.
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Figure 5.4: Pixels of a red blood cell presented as absorption spectra.

When the absorption spectrum obtained by Shimadzu® 3700 DUV spectrophotometer 

(Figure 5.1) is compared to the global spectrum measured by the multispectral imaging 

microscope (Figure 5.3), basic features of haemoglobin are observed. The spectrum from 

the spectrophotometer reveals a Soret absorption band centered at 411 nm and the Q bands 

(doublet) centered at 533 nm and 570 nm respectively. This is due to the fact that the 

spectrophotometer has high spectral resolution (0.1 nm full width at half maximum 

(FWHM)) which enables acquisition of more than 5000 data points in the range 375-940 

nm' These absorption bands are a signature that identifies oxy-haemoglobin which exists 

when red blood cells are exposed to oxygen. On the other hand, the global spectrum
•.r n

easured by the multispectral microscope reveals the koret band clearly but the Q bands
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are inseparable due to the fact that images were taken at discrete (thirteen) spectral bands 

giving only thirteen data points in the range 375-940 nm.

Since the spectrum from the whole multispectral image (Figure 5.3) basically captures the 

spectral signature of haemoglobin, each red blood cell in the image is expected to 

reproduce a similar spectrum. However, this can only be true if all the red blood cells are 

healthy and exposed to oxygen. Haemoglobin in the red blood cells can get altered by 

such things as lack of oxygen or presence of disease causing micro-organism such as 

malaria parasite. This spectroscopically is manifested as changes in the spectral signature.

5.2 Identification of Infected Red Blood Cells in Dark-Field

Figure 5.5 shows dark field microscopic image of red blood cells infected with 

Plasmodium falciparum. The infected red blood cells are indicated using white arrows. 

Dark-field mode of imaging was used as a starting point for identifying red blood cells as 

either infected or not infected because parasites inside the red blood cells cause 

diffraction (scattering) which make them to be highlighted as tiny bright spots inside the 

red blood cells. The bright (white) outline of the red blood cells is also the result of 

scattering of light by the edges of the red blood cells. Since uninfected red blood cells are 

homogenous only their edges are seen to have scattered light. The whole scenario is 

observed against a dark background representing regions of little or no scattering.

i
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Figure 5.5: Suspected Plasmodium falciparum in erythrocytes as seen in dark-field 

microscopic image of in vitro culture thin blood smear.

However, identifying a red blood cell based on dark-field microscopic examination was 

not conclusive owing to the fact that morphological features well known to clinicians (and 

any other microscopists) could not be resolved in the image. As such it was difficult to 

separate a true positive from a false positive (such as an artifact e.g. a dust particle) in the 

thin blood smear. Thus, a red blood cell identified as a positive in dark-field had to be 

subjected to further scrutiny in order to arrive at a conclusion that it is a true positive. Due 

to the limitation in the magnifying power of the microscope (X I5 objective), it was 

necessary to study the spectral dimension of images of both infected and non-infected red 

blood cells as identified in dark-field.
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5.3 Spectral Signature of the Genus Plasmodium  in Blood

Figure 5.6 shows normalized absorption spectra of Plasmodium falciparum-infected red 

blood cell and that of uninfected one plotted together. These plots represent a trend after 

examining spectra of 200 non-infected red blood cells and 50 infected ones. The spectra 

were obtained by cropping transmittance images of individual red blood cells (using a 

custom-made Matlab® function that crops a 13-band image) which gave transmittance 

spectra to be transformed to absorbance spectra as explained in section 5.1.

Figure 5.6: Absorption spectra of infected and non-infected single red blood cells.

It is important to note that these spectra are not absolute but only illustrate the main 

spectral features. The absorption spectra of infected and non-infected red blood cells have 

a c°nimon intense absorption band centered near 400 nm which is due to electronic 

transitions of the porphyrin ring found in heme. However, there are slight differences in
s  •>

the spectra: a healthy red blood cell has slightly higher absorbance irt the 470-590 nm
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wavelength range whereas an infected one has slightly higher absorbance in the 625-700 

nm spectral range.

Plasmodium, the malaria parasite, is a complete unicellular organism with cell membrane, 

nucleus and myriad organelles. On the other hand, a mature red blood cell consists mainly 

of haemoglobin protein without nucleus. The spectral signature of haemoglobin in the 

375-940 nm range was shown in Figure 5.1. The invasion of the red blood cell by 

Plasmodium with its cellular complexity presents some spectral response that requires a 

biochemical understanding of the precise origin of the spectra. Malaria parasites have 

nucleic acid material which is generally transparent in the visible region. In fact, nucleic 

acids are identified by their characteristic intense absorption at 260 nm [67] which is 

outside the range of the microscope used in this work. This, therefore, rules out any 

possibility of detecting the parasites’ DNA using the multispectral microscope in its 

current spectral range.

An attack by blood feeding organisms such as malaria parasites is associated with 

production of a large amount of waste product known as hemozoin (also known as malaria 

pigment). Hemozoin is a heme crystal produced by Plasmodia in order to detoxify free 

heme released when haemoglobin is digested in the digestive vacuoles of the parasites. 

Free heme is a potent cytotoxic agent to the parasites because it promotes lysis of the 

cellular organisms and generates Reactive Oxygen Species (ROS) which damage many 

biomolecules [68]. Both haemoglobin and hemozoin contain tightly bound metal-ion-

containing molecules known as prosthetic groups. The spectral signatures of prosthetic
>
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groups are known to be found in the visible region of the electromagnetic spectrum [67]. 

Hemozoin is, therefore, of central importance in identifying infected red blood cells 

spectroscopically using the LED multispectral imaging microscope working in 375-940 

nm range. The slightly higher absorbance of infected red blood cell in the spectral range 

625- 700 nm but lower absorbance in the 470-590 can therefore be attributed to reduction 

of haemoglobin but increase in hemozoin in an infected red blood cell in the trophic stage 

of the parasite.

Reflectance curves for both parasite-infected and non-infected red blood cells were also 

generated from reflectance images as was done in section 5.2 for transmittance images and 

are shown in Figure 5.7. However the differences between infected and uninfected red 

blood cell spectra were difficult to observe in this imaging mode. One of the reasons for 

the failure of reflection mode to highlight key spectral features is that the microscope was 

not optimized to separate specular and diffuse reflections. The spectra obtained include 

both and hence some information may have been lost due to specular reflection. A 

recording from transmission mode involves light that has adequately interacted with the 

sample hence generating full information about the sample.
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Figure 5.7: Reflectance spectra of infected and non-infected red blood cells.

From the spectra, both absorbance and reflectance, there is very little spectral differences 

between infected and uninfected red blood cells. This is due to the fact that in either case, 

the spectra are averaged values from the contribution of each pixel in the image. A typical 

red blood cell image is resolved by approximately 30X30 pixels. This means that the 

averaged spectrum was found from approximately 900 pixels (that is 900 spectra) whose 

plots are shown in Figure 5.4. Such complicated and highly correlated spectra which 

cannot be easily separated or interpreted by simple observation with the eye can be 

interpreted by employing multivariate chemometric techniques such as Principal 

Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Artificial Neural 

Network among others.
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5.4 Image Analysis Based on Multivariate Chemometric Techniques

It was necessary to first explore the spectral data generated from the images for any 

observable relational phenomena such as clusters of pixels, gradients between the clusters 

and outliers. A good starting point was to use PCA, a technique that has been extensively 

employed successfully in multivariate image applications [17, 21, 36-37, 69-70] to segment 

features based on their spectral characteristics. HCA was expected to give clusters of 

Plasmodium species as demonstrated by Royston et al. [71] in fingerprinting bacterial 

species. However, due to limitations in the availability of other Plasmodium species, low 

spectral resolution of the microscope and the unfolding of the fact that, spectroscopically, 

in the 375-940 nm spectral range hemozoin was central in determining if a cell was 

infected or not, HCA has only been used to show the spatial distribution of heme- 

containing pigments in an infected red blood cell. The ultimate goal of this work was to 

develop a blood screening model based on a supervised pattern recognition technique. 

ANN was a good choice, having successfully been used to discriminate intra-erythrocytic 

stages of malaria parasites based on spectra obtained in synchrotron Fourier Transform- 

Infra-Red (FT1R) micro-spectroscopy [29].

5.4.1 Principal Component Analysis of Thin Blood Smear Images

PCA gives two important values: scores and loadings. The role of score values in PCA 

image analysis is two-fold: they can be observed as both gray-level decorrelated images 

and/or scatter plots. The first three score images (each of the score images is a gray-level
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image) which contain most of information can be assigned to red, green and blue channels 

to form a false RGB image that has greatest contrast since the score vectors are orthogonal 

to each other. In addition, the scores can be visualized as score plots and segmentation 

done by studying the density of pixel clusters. Figure 5.8 shows a false colour composite 

of transmittance image generated by assigning the first, second and third principal 

components (the first 3 PCs contain 99 % variance) to red, green and blue channels 

respectively.

Figure 5.8: A false colour composite of transmittance image generated by assigning the 

first three PCs to red, green and blue channels.

In the RGB image (Figure 5.8), any reddish, greenish or bluish colours observed signify 

toe first, second and third principal components respectively. It can be seen that all the

^  blood cells in the image appear reddish, implying high values of the^red channel (first
1 '\ ••\ 9
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principal component) in the red blood cells. This means that the first principal component 

represents haemoglobin, a dominant pigment in the red blood cells. The image 

background appears grayish-green, a colour that arises from slightly higher values of the 

green channel (second principal component) than the other channels in this region of the 

image. The second principal component therefore represents the image background, 

which is majorly blood plasma. The little bluish colour on the red blood cells in the image 

is due to intra-cell variance resulting from curvature of the red blood cells, an implication 

that the third principal component has little significance in specific features in the whole 

image.

Visualizing score images as colour images is a rather subjective exercise because there 

may be differences in screen settings and people usually perceive colours differently. A 

more objective way is to study the PCs as score plots. The score plots generate clusters 

based on the fact that similar spectral features in the original image yield almost identical 

score combinations. Therefore, pixels from a specific feature in the image will overlap to 

create a dense cluster. These clusters are of great use in segmenting features inlhe image 

by delineating pixel clusters in the score plot which have similar spectral fingerprints. 

Pixel delineation is achieved by toggling between the score space and the image space. A 

cluster in the score space is selected and their original spatial location in the image space 

highlighted based on a threshold value in a gray level image calculated using equation 5.1

h __ P C I  — P C 2  
P C I  + P C I ( 5.1)
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where h is a gray-level image upon which thresholding is done, PCI and PC2 are the 

scatter-plotted principal components. This procedure of calculating h is synonymous to 

that of calculating Normalized Difference Vegetation Index (NDVI) in satellite images 

[72]. Pixels falling below the threshold can be isolated and projected back in the image. 

By varying the threshold value of h, specific features in the image can be highlighted 

including the parasite. Figure 5.9 shows clusters in the score space and their

corresponding origin in the image space.

delineated in the score space and (b) highlighted in the image space.

It is clear that the pixels in the blue cluster originated from the red blood cells. However, 

highlighting malaria parasites inside the red blood cells at this level may be a daunting 

task as the pixels from the parasites form a very small cluster overlapping with those of 

the red blood cells. As such, individual single red blood cells were cropped and the
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process of delineating pixels in the score space and highlighting them in the image space 

repeated. The results of this process are shown in Figures 5.10 and 5.11.

P C I

(a) (b)

Figure 5.10: Pixels of a single red blood cell (colour coded-blue) (a) delineated in the

score space and (b) highlighted in the image space.
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From these Figures, it can be seen that the pixels from the parasite form a small cluster 

within the pixel cluster of the red blood cell. Overlapping of these clusters may have 

arisen from the fact that pixels in an infected red blood cell image contain mixed spectra 

of haemoglobin and hemozoin. In addition, the spectral features of hemozoin and 

haemoglobin are highly correlated. Both haemoglobin and hemozoin contain heme (a 

prosthetic group) which exists as a large heterocyclic organic ring called porphyrin with 

an iron ion at the centre. In hemozoin, this ring exists as ferriprotoporphyrin IX [73] 

whereas the non-protein part of haemoglobin exists as ferroprotoporphyrin IX. These two 

compounds exhibit 7t-7t* electronic transitions of the porphyrin ring visualized as the 

strong absorption band (Soret band ) centered near 400 nm as seen in Figures 5.1, 5.3, 5.4 

and 5.6. Their differences, however, arise from different locations of their vibronic 

transitions which occur at 540 nm and 575 nm for oxy-haemoglobin and 650 nm for 

hemozoin.

The procedure was repeated for images captured in reflection and dark-field modes of 

imaging with the microscope and the results are shown in Figures 5.12 and 5.13. From 

these clusters, it can be seen that reflection and dark-field mode images do not bring out 

clusters that can be easily delineated. The clusters from these modes are rather continuous 

with few outlier pixels far away from the main clusters. This makes it difficult to 

delineate specific features in the images.
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PC I

(a) (b)
Figure 5.12: Pixels of a red blood cell (colour coded-blue) (a) delineated in the scofe

space and (b) highlighted in the image space for an image captured in reflection mode

PC I

(a) (b)
Figure 5.13: Pixels of a red blood cell (colour coded-blue) (a) delineated in the sc O rC

space and (b) highlighted in the image space for an image captured in dark-field mode.
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5.4.1.1 Important Spectral Band Selection

The influence a measured variable has in each score is given by its loading. Hence, the 

loading plots are helpful in understanding the meaning of groups (in this case pixel 

clusters). Variables responsible for higher variance in the datasets generally give higher 

coefficients (positive or negative) on a certain principal component. In this regard, the 

contribution from different spectral bands to the PC eigen vectors can be observed in the 

loading plots. Figure 5.14 shows the loading plot of the first two PCs of images captured 

in the transmission mode.

CM
O
0-

Figure 5.14: Loading plot of PC2 against PCI from transmission image.

It was observed that the loading plots of the first and the second principal components of 

transmittance images were quite systematic for different red blood cells. From Figure
■ .  “V

5.14, it can be observed that the variables loading heavily oh the first principal component
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are 590 nm, 625 nm, 660 nm and 700 nm. These are bands associated with the vibronic 

absorption bands of haemoglobin and hemozoin. They are the important bands for 

differentiating between infected and uninfected red blood cells. Along the second 

principal component, infrared bands (750-940 nm) have high positive loading values 

whereas ultra-violet (i.e. 375 nm) and blue region of visible light (400-525 nm) have high 

negative values. It is a clear indication of contrasting absorption behaviour of 

haemoglobin in the long wavelength (1R) radiations and short wavelength (UV and blue 

part of visible light) of the optical spectrum. In the former, haemoglobin exhibits very 

little (or no absorption) whereas in the latter, it absorbs strongly. This is also the case with 

hemozoin. Since haemoglobin and hemozoin have identical optical characteristics in 

these two spectral regions, it implies that detection of malaria parasites can be done by 

employing fewer LEDs emitting in the 590-700 nm spectral range in the multispectral 

microscope.

The loading plots of various PC combinations for reflection and scattering images were 

not reproducible, giving completely different results on different red blood cells; hence 

they have not been presented. Failure of the reflection and scattering results may be 

attributed to the random nature of light scattering on the surface of the red blood cells. 

Spectra from reflection mode, in particular, may contain both diffuse and specular 

reflections depending on the particular location from which light has been reflected on the 

(spherical) surface of a red blood cell.
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After PCA results had shown that the variables (wavelengths) of importance in malaria 

diagnostics for the microscope were 590 nm -700 nm, raw gray-level transmittance images 

captured at these important variables (wavelengths) were transformed to absorbance [74, 

75] (by use of Beer-Lambert’s law as explained in section 3.6) and compared to images 

captured at wavelengths contributing little variance such as those captured at 375 nm, 400 

nm 850 nm and 940 nm. Figures 5.15, 5.16 and 5.17 show gray-level absorbance images 

captured at 400 nm, 625 nm and 940 nm respectively. In the image captured at 625 nm 

(Figure 5.16), the parasite region appears brighter due to its higher absorption in the image 

in comparison with other parts of red blood cells (see the gray-level scale). However, in 

the image captured at 400 nm (Figure 5.15) and that captured at 940 nm (Figure 5.17), 

there is little intensity difference between the parasites and the red blood cells. The reason 

for this is that at 400 nm and at 940 nm, the malaria pigment has almost identical 

absorption properties to those of haemoglobin. At 625 nm (and at the other three 

important spectral bands viz 590 nm, 660 nm and 700 nm), however, there is slight 

differences in absorption of haemoglobin and hemozoin, making the parasite more visible.

5.4.1.2 Image Generation by Selective Illumination of Red Blood Cells
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Figure 5.15: Image captured at a common absorption band (400 nm) for hemozoin and 

haemoglobin.

Figure 5.16: Gray-level image captured at 625 nm showing high absorption values for 

parasite region (shown with white arrows).
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Figure 5.17: Image captured at a common non-absorbing band (940 nm) for hemozoin 

and haemoglobin.

5.4.1.3 Infected and Uninfected Red Blood Cell Discrimination

Having known that pixels emanating from a parasite region in transmission mode images 

formed clusters different from those of image background and non-parasite region, 

individual red blood cells were cropped again and spectra obtained (as in section 5.1) and 

labeled as either positive (infected) or negative (uninfected) based on observations in dark- 

field images and PCA segmentation. These spectra were then subjected to PCA and their 

positions in the score plots used to identify true positives and negatives for Artificial 

Neural Network model development.
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Figure 5.18: Score plot of labeled red blood cells; Ns are suspected non-infected and Ps 

are the suspected infected cells.

Figure 5.18 shows score plot of labeled red blood cells. PI to P20 had been considered to 

be positive and N1 to N20 were the non-infected according to dark-field images. From 

this figure, the two main classes are separated along the first principal component. The 

clusters arise from the spectral variation of infected and uninfected red blood cells. As 

such, all P’s were expected to form one class and all N ’s another. However, P9 and PI2 

are appearing in a wrong cluster while P4, P14 and P17 are outliers. The red blood cells 

appearing in unexpected cluster and those which were outliers were removed from the 

data set as they presented confusion on whether they were true positives or not, probably 

due to differences in the stages of plasmodia.

f\ < '

72



5.4.2 Hierarchical Cluster Analysis (HCA) of a Single Infected Red Blood Cell

Automatic grouping of pixels having similar characteristics in a multispectral image can 

be used to reveal ‘natural’ clusters (groupings) in the image data. Such clusters can be 

obtained by clustering methods such as HCA. The agglomerative HCA algorithm used 

here proceeds by successive mergers of nearest objects (in this case pixels) followed by 

linkages of nearest clusters based on calculated Euclidean distances between objects 

(pixels). This yields a hierarchical cluster tree (known as dendrogram) that represents 

how clusters are joined.

In analysis of a multispectral image, the resulting clusters can also be viewed as a spatial 

distribution of chemical species present in the image because HCA classifies pixels 

(spectra) into groups of spectral similarity. Figure 5.19 shows a dendrogram obtained by 

hierarchical cluster analysis of a single Plasmodium falciparum-infected red blood cell 

cropped from a transmittance image.
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Pixel cluster indices

Figure 5.19: A dendrogram of a parasitized red blood cell cropped from transmittance

image.

It is difficult to interpret pixel similarity indices from the dendrogram. However, by 

successively limiting the maximum number of clusters generated by the algorithm, a 

clustered spatial image map can be correlated with branches in the resulting dendrogram. 

Figure 5.20 shows the results of such a process.
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Figure 5.20: A dendrogram of an infected red blood cell and the corresponding spatial 

map generated by limiting the maximum number of clusters to three.

It can be seen that the red blood cell is separated from the background in the image in a 

two cluster map. Exceeding three clusters for this image resulted in clusters that were 

difficult to comprehend because each pixel is at least slightly different from the others and 

hence up to thirty clusters could be obtained (see Figure 5.19). A three cluster map 

therefore appears more appropriate for displaying the spatial distribution of heme species 

in an infected red blood cell.
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In an unstained parasitized red blood cell, haemoglobin and hemozoin are the most 

abundant pigments that we can expect to detect in the 375-940 nm spectral range by 

transmittance spectra, since they are known to absorb light in this spectral range. The red 

and blue clusters in the three-cluster-red blood cell in Figure 5.20 (lower right) can be 

attributed to hemozoin and haemoglobin respectively, because haemoglobin is the most 

abundant pigment in a red blood cell and is usually distributed throughout the red blood 

cell. On the other hand, hemozoin is usually localized in the parasite’s digestive vacuole 

and is therefore concentrated in one specific region inside the red blood cell.

HCA was also performed on cropped infected red blood cells captured in reflectance and 

scattering modes. The clustering results in form of dendrograms and the corresponding 

spatial maps are shown in Figures 5.21, 5.22, 5.23, and 5.24.
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Figure 5.21: A dendrogram of a parasitized red blood cell cropped from reflectance 

image.
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Pixel cluster indices

Figure 5.23: A dendrogram of a parasitized red blood cell cropped from scattering image.

Figure 5.24: Spatial map of clusters obtained from scattering image.
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In Figure 5.21 the dendrogram shows that there are two main clusters in reflectance image 

representing the image background and the red blood cell. We would expect the red blood 

cell to divide into two clusters representing haemoglobin and hemozoin as is the case in 

transmittance images. However, this is not the case. Instead, by inspecting the 

corresponding cluster map (Figure 5.22) of the dendrogram, it can be seen that some 

pixels inside the red blood cell are identical to those found outside the red blood cell and 

part of the edges of the red blood cell (and indication of similar spectral similarity). This 

unexpected clustering can be attributed to the shape of the red blood cell. Since the red 

blood cell is not flat, different parts reflect light into different directions at different points 

on the red blood cell in form of diffuse and specular reflections.

In Figure 5.23, the dendrogram of the scattering image also has two main branches. These 

two branches represent the high and low scattering parts of the infected red blood cell. 

The high scattering part is colour-coded ‘light blue’ in Figure 5.24 and is the parasite

region. The ‘dark blue’ colour in the spatial map (Figure 5.24) is the low scattering part
/

(the red blood cell and its background). However, it is difficult to tell what the other 

clusters represent. Thus, the best clustering results for malaria diagnostics were those of 

images taken in transmission mode.

5.4.3 Development of Artificial Neural Network (ANN) Model

Unsupervised pattern recognition techniques are only good for data exploration. To 

develop a blood screening model for malaria detection, a supervised technique is more
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useful. Artificial Neural Network is a powerful tool for classification whose performance 

largely depends on the chosen parameters such as the transfer function employed, the 

number of layers and neurons used and the linearity or non-linearity of the data.

Since infected and non-infected red blood cells had shown spectral overlapping features, a 

multi-layer perceptron neural network with a Levenberg-Marquardt back propagation 

learning algorithm with one hidden layer was chosen because of its ability to solve non

linear problems [61]. The optimum number of neurons in the hidden layer was 

determined by trial starting from one neuron and increasing the number by one in the 

subsequent trials as the models were trained and tested.

As discussed earlier (section 3.8.2), the performance of a trained neural network can be 

measured by the errors in training, validation and test sets. However, it is also useful to 

investigate the network response by performing a regression analysis between the network 

response and the corresponding targets. A correlation coefficient (known as R-value) can 

then be used to explain the correlation between the targets and the outputs of the network. 

R-value is a measure of how well the variation in the output is explained by the targets. If 

its numerical value is close to 1, then there is good correlation between targets and the 

outputs. Table 5.1 shows the results of training the neural network for various numbers of 

neurons in the hidden layer. It can be noted that most of the models are efficient in 

predicting the state of infection as their R value is close to unity. The best model was that 

with high R value, with low mean-squared error and with fewer neurons in the hidden 

layer. A high number of neurons in the hidden layer would cause over-fitting while too
I '
/
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few would not be able to classify accurately. As such, the model with 5 neurons was 

adopted because it exhibited lower validation mean-squared error with a consistent R- 

value that is close to one.

After training, the neural network was challenged with new red blood cell images. Due to 

the limitation of the magnification of the microscope, training was based on identifying 

each red blood cell as either infected (-1) on not infected (+1) without identification of 

stage. The developed network was able to classify all the red blood cells correctly. Since 

classification is done at cell level, parasitemia was obtained by taking the number of 

infected cells as a percentage of all examined cells. The time taken to produce diagnostic 

results with this model was approximately ten minutes, which was way below that of 

conventional microscopy which takes about 30 minutes.
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Table 5.1: Results of training neural network for varying number of neurons in the hidden 
layer.

Number of 
neurons in 
the hidden 
layer

Best validation 
performance 
mean squared 
error

No. of 
epochs

Correlation coefficients

Training
R-value

Validation
R-value

Test R- 
value

Overall R- 
value

1 5.000 X 1 O’1 23 1 0.7746 0.7746 0.90453
2 3.361 X 10'3 15 0.99998 0.9992 1 0.99719
3 6.798 X 10'J 4 1 0.89002 0.9946 0.97912
4 2.6798 X 10'1 2 0.99852 0.79571 0.8004 0.92553
5 8.8317 X 10'4 38 1 0.99993 0.95462 0.9928
6 8.0126 X 1 O’5 437 1 0.99999 0.99393 0.99884
7 5.7077 X 1 O’" 9 1 0.98028 0.98491 0.9915
8 9.1095 X 10'n 37 1 1 0.78055 0.95169
9 6.9042 X 10'" 5 1 0.96782 0.99714 0.99196
10 7.9496 X 10*' 9 1 0.93701 0.97479 0.9793
11 7.0875 X 10’J 6 1 0.99788 0.620.06 0.91034
12 1.2602 X 10’J 8 1 0.99357 0 0.9812
13 7.4448 X 10'2 6 1 0.95243 0.97782 0.98837
14 8.6322 X 10‘2 5 1 0.95896 0.99985 0.99125
15 3.7646 X 10'1 2 1 0.69333 0.96159 0.90589
16 1.6261 X 10" 3 1 0.99093 0.9953 0.99709
17 1.0209 X 10'" 6 1 0.97754 0.98191 0.98962
18 3.5364 X 10‘2 4 1 0.98698 0.94035 0.97977
19 5.6368 X 1 O’2 3 1 0.98006 0.98453 0.99104
20 4.0484 X 10’2 3 1 0.99132 0.99459 0.99495
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Chapter 6

CONCLUSION AND FUTURE PROSPECTS

6.1 Conclusion

A rapid malaria diagnostic method has been developed in this thesis. The method is based 

on detection of Plasmodium spectral signature derived from pixels of a multispectral 

microscopic image of unstained thin blood smear. The signatures identify red blood cells 

as either positive or negative depending on the presence or absence of hemozoin. The 

fingerprints of haemoglobin and hemozoin (two pigmented compounds that would be 

found in an infected red blood cell) have been found to lie between 590 nm and 700 nm (a 

small section of the visible region of the electromagnetic spectrum).

Reliance on hemozoin signature to identify the malaria parasites without the associated
/

morphological features of the parasites is inadequate to differentiate species of Plasmodia. 

To differentiate the four species of plasmodia affecting humans, a higher resolution 

microscope that can reveal the morphology of either the whole parasite cells or differences 

in hemozoin crystals for the different Plasmodium species is required. Thus, this work has 

been limited to detection of Plasmodium falciparum only. Due to correlated nature of 

spectral signatures of hemozoin and haemoglobin, multivariate chemometric techniques 

have been employed to enhance detection. PCA and HCA were used in data exploration. 

PCA was used to find the most important spectral bands for malaria defection in 375-940



nm spectral range in absorption spectroscopy. HCA was used to highlight the distribution 

of pigments in Plasmodium-infected red blood cell. Finally, ANN was used for 

classification of red blood cells as either infected or not infected.

6.2 Future Prospects

PCA results have shown that the discriminating wavelengths for infected and non-infected 

red blood cells are found in the region 590-700 nm. This is in agreement with the results 

of Yulia et al. [28] and Oliveira et al. [47] which showed that it is a fingerprint region for 

hemozoin. The microscope can therefore be optimized for malaria detection by 

employing LEDs whose emissions are centered at 650 nm to pick out hemozoin as the 

highest absorbing objects in the gray-level images acquired. In addition, presence of 

nucleic material in a red blood cell can also be a biomarker of malarial infection, since red 

blood cells do not generally have nucleus. As such, detection of nucleic material may be 

made possible by use of a 260 nm LED in conjunction with UV detectors such as 

photomultiplier tubes in the microscope.

An artificial neural model has been developed to classify red blood cells as either positive 

(infected) or negative (non-infected). The limitation of this network is pegged on inability 

of humans to classify the parasites in unstained smear. Since ANN is a supervised pattern 

recognition technique, its inputs were based on correctly classified cells from dark-field 

microscopy and PCA. Further exploitation of this technique is possible by preparation of 

samples on slides containing pure stages of the parasites unlike those->used in this work
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which contained all stages on a single slide. For field study, the microscope should be 

used alongside the established conventional microscopy to determine its sensitivity and 

specificity in field conditions.
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APPENDIX

Matlab codes:

To import gray level images (should be saved as im port  Images)

d n = u i g e t d i r ( ' C: \Docum ents  and S e t t i n g s \ d i o d \ D e s k t o p \ f r o m  
d e s k to p \M y A p p \I m a g e s \ ' ) ;

f n = d i r ( [ d n  ' \ * . t i f f ' ] ) ;

c l e a r  M
f o r  n = l : l e n g t h ( f n )

M( : ,  : , l + s t r 2 n u m ( f n (n )  . name( 1 : ( e n d - 5 ) ) ) ) = i m r e a d ( [dn ' \ ' 
f n ( n ) . n a m e ] );  
end

p n = d i r ( [dn ' . x l s ' ] ) ;

To calculate a corrected multispectral image

im p ort lm ages  
b r i g h t = d o u b l e ( M ) ; 
c l e a r  M 
im p ort lm ages  
d a r k = d o u b le (M ); 
c l e a r  M 
im p ort lm ages  
sa m p le = d o u b le (M ); 
c l e a r  M

i m a g e = ( s a m p l e - d a r k ) . / ( b r i g h t - d a r k )  ;

To crop a 13-band multispectral image

f u n c t i o n  I = i m s t a c k c r o p ( x ) ;
%I=IMSTACKCROP(X) c r o p s  and m - b y -n - b y -1 3  image  
%from X w hich  i s  a l s o  m - b y - n - b y - 1 3 .  The f u n c t i o n  
% displays  t h e  f i r s t  gra y  s c a l e  image i n  X t o  a l l o w  
%you t o  zoom and d e f i n e  t h e  p o i n t  t o  be cro p p ed .
%Press ENTER a f t e r  zooming, t h e  c u r s o r  w i l l  change
%to c r o s s h a i r .  D e f i n e  t h e  c r o p p in g  r e c t a n g l e  by d r a g g in g
%the c r o s s h a i r  o v e r  t h e  r e g i o n  t o  be cro p p e d .  -»
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im s h o w (x ( : ,  : ,  1) , [ ] ) 
pause

r e c t = g e t r e c t / 
f o r  k = l : 1 3

I ( : ,  : ,  k ) = i m c r o p ( x ( : , : , k ) , r e c t ) ;
end

To apply a median filter to a 13-band image

f u n c t i o n  I = i m s t a c k f i l t ( x )

f o r  k = l : 1 3
I ( : , : , k ) = m e d f i l t 2 ( x ( : ,  : ,  k) ) ;

end

To perform Principal Component Analysis

f u n c t i o n  [ I I ,  c o e f f ,  v a r ] =imprincomp(X)
%[I1 c o e f f ] =IMPRINCOMP(X) per form s  P r i n c i p a l  Component 
A n a l y s i s
%on X and r e t u r n s  s c o r e  image ( I I )  and t h e  c o r r e s p o n d i n g  
l o a d i n g s  ( c o e f f )
%

%convert from u n s i g n e d  8 - b i t  i n t e g e r s  t o  d o u b le  c l a s s  and
remove m i s s i n g
%values
X = im 2 d o u b le (X );

%check t h e  s i z e  o f  t h e  image t o  g e t  t h e  number o f  v a r i a b l e s
and o b j e c t s
[ r o w , c o l , n ] = s i z e ( X ) ;

%unfold t h e  image t o  v a r i a b l e s  and o b j e c t s  
Y = r e s h a p e ( X , r o w * c o l , n ) ;

%perform PCA .. •
[ c o e f f , s c o r e , v a r ] = p r i n c o m p (z s c o r e (Y ) );
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%reshape s c o r e  m a t r i x  t o  s c o r e  image  
I l = r e s h a p e ( s c o r e , r o w , c o l , n ) ;

Delineating pixels in scatter plot and highlighting them in image space

%Take two d e c o r r i l a t e d  images  and g e t  t h e i r  r a t i o s  
s = m a t 2 g r a y ( s ) ;
PCl=s ( : , : , 1 ) ;
PC2=s( : , : , 2 ) ;
w= (PC1-PC2) . /  (PC1+PC2);

%Apply t h r e s h o l d  by a s s i g n i n g  i t  a v a l u e  
t h r e s h o l d = 0 .1 ;  
q = (w > t h r e s h o l d ) ;

%Make s c a t t e r  p l o t  and map them i n  t h e  imape s p a c e  
h = f i g u r e ;
p = g e t ( h , ' P o s i t i o n ' );
s e t ( h , ' P o s i t i o n ' , [ p ( l , l : 3 ) , p ( 3 ) / 2 ] )

s u b p l o t ( 1 , 2 , 1 )
p l o t  (PCI,PC2, ' * r ' ) , s e t ( g c a , ' X T i c k ' , [0 .2  .4 .6  .8  l j )  
h o ld  on
p l o t ( P C l ( q ( : ) ) , P C 2 ( q ( : ) ) , ' b * ' )
s e t ( g c a , ' XLim', [ 0  l ] , ' Y L i m ' , [ 0  1])
a x i s  sq u are
x l a b e l ( ' PCI')
y l a b e l ( ' PC2')
s u b p l o t ( 1 , 2 , 2 )
imshow(q)
s e t ( h , ' c o l o r m a p ' , [ 1  0 0 ;0  0 1 ])

To perform Hierarchical Cluster Analysis

f u n c t i o n  HCAcluster(X)

[ r o w , c o l , n ] = s i z e ( X ) ;
X = r e s h a p e ( X , r o w * c o l , n ) ;
Y = p d i s t ( X , ' E u c l i d e a n ' ) ;
Z = l i n k a g e (Y , ' a v e r a g e ' ) ;
[ H T] =d en drogram (Z);
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Neural Model Development

n e t = n e w f f ( I n p u t s , T a r g e t s ,  5) ;
n e t . l a y e r s { 1 } . t r a n s f e r F c n = ' t a n s i g '
n e t = t r a i n ( n e t , I n p u t s , O u t p u t s ) ;

y = s i m ( n e t , I n p u t s )
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