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Abstract

The modern society quest for credit has led to an increase in consumer credit uptake with

proportionate increase in default rates. Some of the current credit risk models deteriorate

over time and need frequent validation. This is due to use of historical data that is time

dependent. The models lack the flexibility to take into account changes in economic and

other extreme events. This research considers the use of social network data to offer an

alternative approach in consumer credit scoring. Social data is widely available with vast

amount of information due to increase in social network sites and technologies. This

offers time dependent data that can be harnessed to develop time dependent models that

do not need validation and will not deteriorate with time. Further, the poor and young

consumers lack historical data and thus social data will cover that gap.

The set of agents who are part of a network are also obligors in a loan portfolio with

a financial institution. The key aim is to estimate credit risk in a loan portfolio based

on the agents’ behavior at the network level. The agents interactions and cyclical inter

dependencies in the social economic network are estimated to derive the social and eco-

nomic factors. These factors are derived from the network matrices using singular value

decomposition technique and scaled into (0, 1]. The scaled data forms the credit risk anal-

ysis factors that are used to learn and train the hidden Markov model. The model emits

the credit quality levels, the dynamic threshold and the credit quality scores. These out-

puts are in turn used to estimate the model false rates and the obligors’ delinquent cases,

default rate, stopping time and survival rates.

The dynamic threshold is estimated at each time period to capture the dynamics of

the credit quality of the obligors in the loan portfolio and emit the default and non-default

rates. Obligors are classified into four credit quality levels; poor, average, good and ex-

cellent (PAGE).

Obligors with average and good credit quality levels ranges between 61.5% and 89.3%
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while the excellent credit quality level was between 8% and 20.4%. The obligors classified

in the false rate category ranges between 25% and 50.1%. The model performance is

between 53% and 73% which is an accuracy rating of between medium and good accuracy.

Sensitivity analysis and false rates in the model have a coefficient of determination of

between 0.647 and 0.983.

The social network model offers an alternative approach to consumer credit scoring

with time dependent data. Agents’ interactions and cyclical interdependencies is an ideal

approach to incorporate in consumer underwriting and capture the poor and the unbanked.

The model has opened new frontiers in consumer credit scoring. Thus, the study con-

tributes in opening up new frontiers and innovations in consumer credit scoring with so-

cial and economic data.
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Ṡ Accuracy notation
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Chapter 1

Introduction

1.1 Motivation

The idea of modeling credit risk of obligors in the socio-economic network was triggered

by the work of Eisenberg and Noe (2001) for a financial system. The study considers the

properties of inter corporate cash flows that are assumed to have cyclical interdependence

amongst the players and default rates are determined endogenously by use of a clearing

vector in the network. Table 1.1 summarizes the existing research work of Eisenberg

and Noe (2001) and is compared to the advances and our contributions to the field of

consumer credit risk modeling using hidden Markov model with social economic network

data.

Table 1.1: Current versus existing research framework

(Eisenberg and Noe , 2001) Current Research

Corporate credit risk Consumer credit risk

Financial network Social economic network

Default ‘waves’ of firms measured systemic risk Credit scores and threshold measures default rates

Cash flows of firms with cyclical inter dependencies Agents SEN factors with cyclical inter dependencies

Simulation algorithm for individual firm Simulation algorithm for SEN agents’ variables

Use hidden Markov model

Use singular value decomposition

In the process of finalizing this study, three researchers with work on the similar area

of credit scoring using social media data were spotted. Daniel and Grissen (2015) used

2



the mobile phone usage data to predict loan repayment in a developing country; Masyutin

(2015) used social data from one of Russia’s popular social network to discriminate be-

tween solvent and delinquent debtors of credit organizations; while Wei et al. (2015)

compares the accuracy of customer scoring obtained with and also without network data.

The motivations behind this research are; first, the experiences from the year 2007 fi-

nancial crisis where the interwined nature of financial systems was brought to fore (Allen

and Babus , 2008); and the existing credit risk models failure to capture the dynamics ob-

servable in the market (Capuano et al. , 2009); Second, the young and the poor households

lack formal financial histories that can be used by the financial institutions for credit scor-

ing thus widening the data set available and capturing of new markets (Daniel and Grissen

, 2015; PWC , 2015). Social media data (SMD) or social network data (SND) can provide

an alternative data to support decisions about an applicant’s creditworthiness as this data

provides vast amounts of information (PWC , 2015).

The other reasons that makes SMD (SND and SMD are used interchangeably in this

research work) a good candidate for consumer credit scoring and estimation of default

rates are based on the following facts:

(i) The dynamics and innovations observable in the consumer finance market calls for

use of advanced analytics and big data from social cycles to gain insights in the

demographic changes, borrowers needs as well as loop in households with minimal

or no interactions with the formal financial institutions (Daniel and Grissen , 2015;

PWC , 2015).

(ii) No agent lives in a vacuum as they must interact with other agents in the network

to achieve its goals (Moe et al. , 2008)

(iii) Modeling trust in complex dynamic environment is non trivial; intelligent agents

strategically change their behaviour to maximize the utility gained from the network

(Liu and Datta , 2012; Moe et al. , 2008)).

(iv) Social networks continue to generate and accumulate huge amounts of data and

information vital in providing insights on people’s behaviour (Masyutin , 2015).

This is the data that financial service industry can use effectively to make robust

and informed decisions in the field of consumer credit risk.
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(v) Modeling and analyzing default risk in a network using agents interaction effects is

a key component of consumer credit risk

(vi) Modeling default events needs a dynamic process; the Hidden Markov Model (HMM),

which is a stochastic process based model ideal for timing such defaults (Crowder

et al. , 2005).

(vii) Minimum research exists on consumer credit and default prediction compared to

corporate credit risk. Consumer credit is at the highest today but the default rates

have risen (Horkko , 2010)

(viii) The ‘true’ default probability is elusive because default estimation depends on the

information that is available. Accuracy of the default ratings is limited as default

has no direct relationship to the observable quantities (David , 2004).

(ix) Credit scoring models performance deteriorates over time due to use of historical

data. Periodic validation maintains the models’ accuracy and completeness in order

to generate time tested scores (Robert et al. , 1996)

(x) Economic conditions are not the only cause of change in credit risk as massive

increase in defaults and bankruptcy have been observed even in good economic

times (Thomas et al. , 2005).

The techniques of personal credit scoring are highlighted by Li and Zhong (2012)

where they observe that credit scoring determines whether the applicant is qualified to

receive credit. The duo offers an overview of the credit scoring techniques and discusses

four current research problems, where we single out two of the four problems to be incor-

porated in this research. The research problems are:

(i) Type I and type II error in classification of customers. For type I error, we classify

good customers as bad ones and reject their loans, and this reduces the bank’s profit.

For type II error, the bad customers are classified as good ones and provided with

loans, which will bring loss to banks (Li and Zhong , 2012).

(ii) Incorporate economic conditions into credit scoring models. The assumption that

the past economic condition are similar to the economic conditions today is mis-

leading. The conditions are unpredictable and random, so an evolution criteria is

4



important to estimate these changes and how they affect the credit scoring process

(Li and Zhong , 2012).

The highlighted points and reasons form the main motivation in undertaking this re-

search. We strongly believe that based on these facts, social networks are crucial in un-

derstanding the issue of consumer credit risk and it is the approach we take in this study.

1.2 Background

This research work on consumer credit risk, the credit quality scoring for both individ-

ual obligors at the portfolio level is based on a class of stochastic processes that have a

finite set of states. They are considered as a special form of dynamic Bayesian networks

which are based on Bayes theory. This class of stochastic process is known as the Hid-

den Markov Models (HMMs), a function of the Markov Chain and Markov process. The

theory of Markov Process was the original work of a Russian Mathematician, Andrey

Andreyevich Markov (1856 − 1922). Markov main research work considered the theory

of stochastic Markov processes which later came to be known as Markov process and

Markov chains. HE introduced the Markov chains in 1906. In the year 1913, he used the

Russian language to calculate the letter sequence of the Markov chain. Kolmogorov in

1931 generalized the results to countable infinite state spaces (Dymarski , 2011).

In the twentieth century, Markov chains were linked to Brownian motion and the er-

godic hypothesis. This was extended from the law of large numbers. In general, Markov

process in probability theory and statistics can be considered as time varying random phe-

nomenon for which Markov properties are achieved. A stochastic process has a Markov

property, that is memorylessness, where the present state of the system is dependent on

preceding past but independent with the past (Dymarski , 2011).

A more powerful model for much more complicated stochastic process than the Markov

model is the Hidden Markov Model (HMM). The HMM was introduced by Leonard

Baum and others in 1966; and widely used in science, engineering and many other ar-

eas such as speech recognition, gesture recognition, language modeling, motion video

analysis and tracking, protein and gene sequence alignment, finance, economics, among

other areas.

Modeling credit risk has become an essential tool for modern risk management. The
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appetite for borrowing has truly become global in scope and created diversity in the port-

folio risk. Credit scoring systems have continued to occupy research interest in the areas

of financial engineering. The classical credit risk analysis core objective is to decide

whether a loan should be granted, and after its granted, trying to assess the risk of default.

As credit risk continue to concern commercial lenders, the financial industry representa-

tives, academics worldwide and regulators, among others have continued to increase their

effort towards improving the credit risk modeling process (Capuano et al. , 2009; Ching

et al. , 2008).

Banks and other financial institutions are applying increasingly sophisticated methods

to assess the risk of their loan portfolio. The methods for assessing risk try to find an

answer to the question, what is the likelihood of the applicant defaulting at a given time in

the future. That is why numerous methods continue to be developed for credit scoring. Li

and Zhong (2012) mentions a number of credit modeling techniques from mathematical

programing, expert systems, neural networks, discriminant analysis, genetic algorithms,

logistic regression, HMM, partitioning trees and nearest neighbor concept, among oth-

ers. The techniques can be classified into three groups (Li and Zhong , 2012) and the

classification accuracy of the techniques are highlighted by (Thomas et al. , 2005).

Consumer credit dates back around 3, 000 years ago since the time of the Babylonians.

Thomas et al. (2005) undertakes a historical and current times survey on consumer credit

from time of pawn brokers and usurers (750 years ago) to the current consumer credit

mass market. They give figures and facts that indicate the massive growth both in number

and products on offer, plus output in research work. The authors further look at consumer

credit modeling and current issues in the field. As these changes continue, the advent

of Basel Capital Accord II has increased the need to model credit risk of a portfolio

(interdependency), not just the risk of each loan defaulting independently (Thomas et al.

, 2005). Assumption of independence between individual obligor’s default rate leads to

the underestimation of the portfolio’s credit risk.

The increasing availability and widespread of credit in modern society has led to an

increase in the rate of personal bankruptcy due to default on credit repayment. Finan-

cial institutions can cover small exposures using normal operating cash flow but multiple

defaults simultaneously are a threat to the institutions. The concern is the concentra-

tion risk in a loan portfolio (Horkko , 2010). The quantitative methods used by banks
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to appraise ‘good’ and ‘bad’ obligors have been in use but in recent past, new interdis-

ciplinary approaches to analyzing personal loan data have been in use from operations

research, financial sciences, sociology, mathematical statistics to statistical methods of

survival analysis (Capuano et al. , 2009). Innovations and research on techniques and

methodologies to credit risk modeling has continued to take new dimensions.

Even with these advances, the recent global financial crisis of 2007 − 2008 brought

to fore the limitations of these innovative models. The financial systems revealed it’s in-

tertwined nature and proved the limitations of the mathematical techniques as the models

failed to measure credit risk. The inherent problem being the assumptions underlying

these models that lack dynamical ways to capture the economic changes and extreme

events (Capuano et al. , 2009). Even though the financial network provides fertile ground

for increasing global integration of the markets, there are inherent risks.

A network describes a collection of nodes and links, with nodes as individuals, or

firms, or countries (hereafter referred to as agents), and links could be friendship, tie, or

free trade agreements, or interbank transactions. Agents are individuals who have the

ability to act, and possibly to react to external stimuli and interact with the environment

and other agents (Allen and Babus , 2008; Meyers , 2009). Social network theory studies

the properties of networks and statistical generative models. Social influence is the ability

of a node to manipulate other nodes to adopt or reject the transmission of information

during the information propagation process (Madan and Pentland , 2009). The rise in

online communities, population and the role of networks in our world, social networks

continue to affect our social and economic lives (Jackson , 2008).

We use SEN as they permeate our social and economic lives playing a central role in

the transmission of information. The term social network was first used in 1950 in socio-

metrics, the science that seeks to obtain data on social behaviour and to analyze it. Social

networks create trust between agents because they allow for repeated interactions between

the members and create room to learn about each other. The structural connectivity (how

agents are connected to each other in the network) and the behavioral connectivity (how

an individual agent actions affect other agents in the network) present high complexity in

social networks (Pupazan , 2011). These social structures are ideal for effective monitor-

ing and enforcement of risk sharing agreements as well as in gaining significant payoff

advantages through the connecting of the disconnected agents (Jackson , 2008).
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When peoples’ interactions are captured over a period of time, the history of their

past interactions forms a set of information that informs them about their abilities. A

good reputation system collects, stores, distributes and aggregates feedback about the

agents past behaviour (Resnick et al. , 2000). The reputation of an agent is an important

factor in performing trust decisions as agents use it as a means to measure their own past

experiences with the other agents and comparing their reputation in relation to the other

agents (Ganesh and Sethi , 2013). In social networks, reputation quantifies the ratings

from the underlying network and the agent’s reputation is visible to all other agents. For

example, in the online trading communities, the seller’s reputation has an influence on

the online auction process. Thus, trust levels of agents are extracted from the reputation

ratings of each other in the network. Trust is crucial in formation of connections in social

networks due to its influence on how information flows and in assessing the quality of

information in the network (Ganesh and Sethi , 2013).

Social networks continue to gain popularity in describing social and scientific rela-

tions as they play a central role in the transmission of information (Chen et al. , 2008).

The networks are dynamic, complex and with stochastically evolving agents who strate-

gically change or reinforce their bahavior to improve their lot in the network (Meyers ,

2009; Skyrms and Pemantle , 2009). The dynamics witnessed in the social media implies

that financial institutions can leverage on advanced analytics and big data to gain insights

on credit scores of consumers with no or very low finance histories (PWC , 2015). Young

consumers and many households in developing countries lack formal interactions with

financial institutions that generate the necessary data for credit scoring (Daniel and Gris-

sen , 2015). The social media circles and social interactions provides vast amounts of

information that can support decisions about the consumer credit scoring process. A few

innovative lenders have pioneered in the use of social media data in credit underwriting

process to supplement the traditional methods of credit scoring (PWC , 2015).

The social media users continue to generate content and interactions at unprecedented

rate with data that is awaiting to be harnessed to improve the existing consumer credit risk

(Dewing , 2012). The availability of powerful data mining techniques for internet content

offers an opportunity for consumer credit scoring to single out credit worthy consumers

and use that data to predict other consumers with scanty financial history (Dubois et al. ,

2011; Tang et al. , 2014). This is possible as social networking allows people to indicate
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whom they trust and distrust creating links in the network.

Heterogeneity of the agents implies that they have different economic data, social

data and the credit as well as behavioral probabilities. The stochastic changes generate

structure changes on how agents behave and respond that can be captured by a Markov

process. A hidden Markov Model which is a statistical Markov Model can be used. The

system under study is assumed to be a Markov process with unobserved (hidden) states.

The output dependents on the state and is visible which makes the model ideal for real

world processes with observable outputs characterized as signals.

In credit scoring, models have been developed with default barrier being based on

a random process (Koyluoglu and Hickman , 1998). Therefore, the HMM, can be used

as they have the ability to output both the individual agent credit scoring and a dynamic

threshold to estimate the changes in credit quality. This highlights a new frontier in devel-

oping accurate estimates of credit quality scores of obligors in a loan portfolio (Thomas

et al. , 2005) who are part of a SEN. Further, the market has accepted the importance of

risk based pricing of credit products. That is, customers with different risk profiles pay

different amounts for the same product. The result is to develop a scoring model with

accuracy and ability to rank the credit risk of individual consumers.

Simulation analysis is used to achieve this quest of using SND in consumer lending as

we lack real life data for our analysis. We observe that, simulation technique has gained

popularity due to its diverse applicability and versatility (Capuano et al. , 2009).

1.3 Credit Risk

Credit risk is likely or risk of loss resulting from failures of counterparties or borrowers

to fulfill their obligations. It is the major source of risk for commercial banks. A key

component of credit risk is the default event which occurs if the debtor is unable to meet

its legal obligation as per the debt contract (David , 2004). Our main form of credit risk

in this work is the repayment delinquency in retail loans (Baesens and Gestel , 2009). An

obligor may be in default but has not defaulted on payment, in payment default but is not

insolvent and in default but not declared bankrupt (Daniel and Grissen , 2015). Therefore,

we have three scenarios. First, default - an obligation is not honored. Second, payment

default - an obligor does not make a payment when it is due where we have; repudiation
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(refusal to accept a claim as valid), moratorium (stopped payment for a period of time),

and credit default. Third, insolvency - inability to pay, and fourth, bankruptcy - the start

of a formal legal procedure to ensure fair treatment of all creditors of a defaulted obligor

Credit risk is a common form of risk in almost all financial activities. The ability to

measure, price and manage this risk is important for loan portfolios. Credit quality dy-

namics is important in credit risk measures and its application to pricing and portfolio risk

management (Korolkiewicz , 2010). Many estimates are needed when performing default

probabilities and its dynamics through time. A credit rating system serves to accurately

assess the credit risk of the obligor. Credit ratings are expected to assess the likelihood

of an obligor defaulting and accurately classify the obligor according to their credit qual-

ity (David , 2004). Most lenders calculate behavioral scores for all their borrowers on

frequent basis. The scores form a basis to estimate default probability in a fixed time

horizon. The scoring process uses recorded information about the individual and their

loan requests to predict, in a quantifiable numerical value, the future performance regard-

ing debt repayment (Robert et al. , 1996). Credit scores are superior to the subjective

assessment of credit history. This allows underwriters to improve on the methods to bet-

ter assess the strengths and weaknesses of the applicants. This increases the accuracy,

consistency and speed of the credit evaluation process (Robert et al. , 1996).

In credit scoring systems, differences in application characteristics of the customers

are observed. Stepanova and Thomas (2002) notes that these scoring systems are impor-

tant to aid in the decision as whether to grant credit to an applicant or not. The concept of

true default probability has been found to be elusive because it depends on the information

that is available. This makes it hard to develop a methodology to judge the accuracy of the

ratings as default has no direct relation to the observable quantities (Daniel and Grissen ,

2015). Financial institutions should learn to segment obligors in terms of delinquency and

default rates as well as the ease of recovery process. Delinquency occurs when an obligor

fails to honor their obligation by making a payment as scheduled, but sometimes the term

default and delinquency are used interchangeably (Robert et al. , 1996). The actual num-

ber of obligors who become delinquent on the loans is much greater that the number that

actually default. The issue of segmenting bank’s customers has been echoed by the Basel

Accord recommended by the Basel Committee on Bank Supervision (BCBS). The first

Basel was issued in the year 1988 and the second in the year 2004. Banks have the leeway
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of deciding what percentage of the loan amount to set aside to cover the possible defaults

by using the Internal Ratings Based Approach (IRBA) (Thomas et al. , 2005).

The fact that these recommendations and other issues have been addressed, it is im-

portant to consider the psychological and economic factors influencing defaults. Default

is a time dependent event, and these two factors should be measured and incorporated

into new types of models for credit risk estimation of consumer loans (Thomas et al. ,

2005). The time dependent events include consumer interaction with the environment

which means taking actions with uncertain effects, even though the obligors are supposed

to make informed decisions which account explicitly for the uncertainty with the world.

Agents interactions in a social network are important in understanding the social struc-

tures and how they affect the agents ability on their financial obligations. PWC (2015)

asks the question, is it the time for consumer lending to go social? With the abundance

of SMD, innovative approach and changes in the consumer trends requires better credit

scoring and loans underwriting decision making process. The gap can be filled by the

advanced analytics and big data from the social media (PWC , 2015). The use of the

applicant’s social media data has opportunities and benefits to the lenders. PWC (2015)

highlights five key benefits of using the SMD in loan underwriting process;

(i) Capture new customer segments - an alternative set of underwriting data may help

lenders assess creditworthiness of applicants with scanty or no financial history.

This can expand and tap on the excluded customer base (unbanked and poor).

(ii) Provide a differentiated customer experience - SMD can establish a framework of

analytical client knowledge that demonstrates an understanding of the customer

needs. Customers will appreciate being treated like more than just a number and

this could strengthen brand loyalty.

(iii) Strengthen existing underwriting processes - The credit scoring process is strength-

ened by availability of more data points, and hence helping to limit losses.

(iv) Prevent fraud - The available information on social media channels can be used

to cross-check information provided in loan applications. This could help identify

fraudulent activity early and prevent it from occurring before a loan is approved.

(v) Develop a competitive edge - The use of social media data may help lenders meet

their strategic goals and gain from the potential benefits; better manage new clients
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with scanty financial history, expand their market share, better pricing of risk, min-

imize expected losses, and improve performance and credit scoring strategy.

But why now? PWC (2015) notes that data is everywhere and credit trends require a

fresh approach. Some of the SMD for consumer lending are; basic personal and profes-

sional data, personal network, customer-provided data, and behavioral character data. It

is on that line that Daniel and Grissen (2015) used mobile phone usage to predict loan

repayment in a developing country. They quantified the so called soft information to com-

plement the current methods in use. The method is promising even for the poor borrowers

and those excluded from the main stream financial systems.

The issue of social media risk management arises. With growth comes opportunities

and challenges. According to Ernst & Young survey, 67% of social media users say that

social media influences their purchases (Ernst and Young , 2013). Thus, social media is a

powerful tool to increase market share. Ernst and Young (2013) notes that social media

compliance are consistent with those imposed on traditional and other electronic-based

channels. The risks posed are similar to those of other electronic communication that

include potential consumer compliance, operational, legal and reputation risk.

We highlight the strengths of using SMD in consumer lending process in the next

section. SEN are powerful and rich sources of obligors interactions and behavior that are

expected to change the way consumer lending is undertaken.

1.3.1 Social economic network

A socio-economic network (SEN) is where the primary action entails economic transac-

tions, under the structure of the social capital. The behaviour of obligors is driven by both

the social and economic factors. The relationships in the SEN arises from agent’s strate-

gies in investments which occur as individuals or collectively, with the aim of establishing

social links and the utility derived from the links (Johnson , 2003). Social network analy-

sis has provided a significant role in domains of security, sales, terrorism, biology, disease

spread modeling, economy and marketing to secure higher profits, finance, etc. This is

made possible by huge amount of social network data available with studies and simula-

tion of different nature made possible. These contribute significantly to understanding the

properties and the behaviour of social networks (Netrvalova and Safarik , 2011; Pupazan

, 2011; Stanley , 2006).
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Figure 1.1: Connections of three agents in a SEN

A Socio-Economic Network depicting three agents who are interconnected to each other

to show the interdependence between the agents.

Social networks aids in generating social capital which in turn generates resources

to assist in accumulation of human capital. Social capital, as with an asset, depreciates

over time. Social capital can contribute to economic situations as it represents an asset,

although it is more difficult to measure (Johnson , 2003). But Pani (2008) observes that

there is an association between social capital and the economic growth of a firm. Social

capital is the sum of social obligations and can be converted into economic capital in some

situations and conditions. Pani (2008) notes that the perspective on which social capital

is built cannot be separated from an actor and its activities, including economic activities.

Dynamic social networks are determined by stochastically evolving social network. These

random and strategic interactions are a key application in financial risk management and

our concern is how to capture them.

The data available in social networks is important as these networks continue to per-

meate our lives, playing a central role in the transmission of information. These networks

are crucial in credit risk as a network embeds dynamic, complex and flexible agents ac-

tivities and behaviour where the agents act and possibly react to external and internal

environment influenced by other agents (Meyers , 2009). An agent is likely to encounter

an agent generated content, some of which the agent uses to make decisions and develop

context within a community with respect to whom they will continue to interact with

(Dubois et al. , 2011). As agents in a social network interact, they form links that stochas-

tically evolve over time. This evolution has history of past interactions that informs an

agent about its abilities and dispositions (Resnick et al. , 2000). The social interactions

between pairs of individuals with strong ties are more likely to exhibit greater similarity

13



compared to those with weak ties (Xiang et al. , 2010).

The effectiveness of interactions in a SEN are guided by trust (Dubois et al. , 2011).

Trust is derived from the agents reputation ratings in the network. In the next section, we

consider HMM and why it is a powerful classification technique to use in this study.

1.3.2 Hidden Markov model

Hidden Markov Model has increasingly become popular for a wide range of applications

due to its strong theoretical and mathematical structure. Hassan and Nath (2005) out-

lines four advantages of HMM; strong statistical foundation; ability to handle new data

robustly; ability to predict similar patterns efficiently; and computationally efficient to

develop and evaluate due to availability of training algorithms. Bilmes (2006) notes that

there is no general theoretical limit on the capabilities of HMMs when we have enough

hidden states, observation distributions, sufficient and adequate training data and the ap-

propriate training algorithm, as it is more versatile than the normal Markov model. Hassan

et al. (2006) provides a summary of the HMM strengths:

(a) Natural model structure

HMM is a stochastic process and the transition parameters model temporal variabil-

ity (occurrence in time) and output parameters model spatial variability (quantity

measured at different locations exhibit differences). Sequential data analysis and

the HMM are a good match as the interactions of the agents in the SEN is hidden

but the net value is observable. In sequential data (correlation among subsequent

samples), where i.i.d assumption may no longer be a good approximation.

(b) Efficient and good modeling tool

Ideal for real world complex processes where the sequences have temporal con-

straints and spatial variability along the sequence.

(c) Proven technology

HMM theoretical basis forms a wide scope for different applications with high suc-

cess rate, such as language modeling, speech recognition, motion video tracking,

stock price prediction, protein sequence, gene sequence alignment, among other

areas.
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(d) Efficient evaluation, decoding and training algorithms

These algorithms are mathematically strong and computationally efficient. Tran-

sition probabilities and the observation generation probability density function are

both adjustable. The flexibility of HMM to embedded another model, the threshold

model and use of unsupervised and supervised learning technique to allow for new

patterns in the models (Bilmes , 2006).

St St+1 St+2

Ot Ot+1 Ot+2

Figure 1.2: Standard (Single-Chain) Hidden Markov Model

The shaded circles are the hidden states and the empty circles are the observation nodes.

1.4 Problem Statement

Consumer credit dates back around 3000 years ago since the time of the Babylonians.

With time, consumer credit moved to mass market contributing to increasing availability

and widespread of consumer credit in our modern society. This increase in availability

of consumer credit has led to increase in default rates. The likely reason being that the

existing credit risk models performance deteriorating over time with a need for periodic

validation. The validation is due to use of historical data that assumes credit quality

to be time independent. Another reason is that most of these existing models lack the

needed flexibility to take into account changes in economic or in other extreme events. For

example, in the year 2007, the financial crisis proved that the credit models are inadequate

in addressing the world dynamics due to the models underlying assumptions.

The exclusion of some consumers from credit facilities due to lack of data limits the

efforts towards financial inclusion. The poor and young consumers have minimal or no

financial history to apply and qualify for credit. The availability and increase in social

network data is one of the innovative ways to deal with these challenges. The social
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network data is time dependent and this eliminates the need to frequently validate the

existing credit risk model. The poor and young consumers tend to be active in the social

network and the data generated by these networks can cover the existing gap in lack of

financial history data.

Therefore, the limitations of credit risk models, the current status in consumer credit

and exclusion of some consumers from credit facilities calls for alternative approaches in

consumer credit scoring. This is the approach and solution being offered by this study.

We estimate consumer credit scores with time dependent social and economic data using

HMM. The obligors are part of a SEN with cyclical inter dependencies as well as of a loan

portfolio in a financial institution. This, eliminates the credit risk models deteriorating,

need of frequent validation and its inability to respond to changes in extreme events. The

consumers excluded from credit facilities benefits from the SEN data and this leads to

increase in financial inclusion.

1.5 Objectives of the Study

1.5.1 Overall objective

The overall objective of this study is to model the credit quality of obligors who are part

of a bank’s loan portfolio, and in a social economic network with the social media data

using the hidden Markov model.

1.5.2 Specific objectives

The specific objectives of the study are to:

(i) Develop and simulate a SEN model for agents stochastic interactions and cyclical

inter dependencies due to social and economic factors

(ii) Compute the CRAFs from the SEN

(iii) Estimate the HMM parameters for the model

(iv) Analyze the credit quality scores, dynamic threshold and default rates

(v) Estimate the delinquency, survival, false rates and stopping time of the obligors.
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1.5.3 Limitations of the study

Lack of real life data in this area allows us to use simulation technique to generate the

required data, as it enables us to capture the network complexities, versatility and dynam-

ics. Real life interactions are much more complicated than is depicted in this study but

simulation will offer great insight on the workings of SENs based on HMM.

The main data used to estimate the CQS of the agents is the SEN data only. Ordinarily,

most credit risk analysis are done with the five C’s of credit analysis (capital, collateral,

conditions, character and capacity) which we lack in this work. We instead take a dif-

ferent dimension and look at some factors in social network analysis that can be used in

consumer credit scoring.

No mathematical system model is perfect as these models only depicts those charac-

teristics of direct interest to the modeller (Maybeck , 1979). The objective of this study is

to represent the SEN data and apply it to model the consumer credit scoring process.

1.6 Significance of Study

The recent economic crisis has emphasized the need for new and fundamental under-

standing of the dynamics and structure of socio-economic networks. The networks are

increasingly being built on inter dependencies, stressing the system complexity and re-

flect a dynamic interaction of a large number of different agents (Schweitzer et al. ,

2009). Agents in the network have different behaviors and these evolving interactions

are evident in a network dynamics, bound in space and time. This overcomes the short-

coming of historical data that assumes credit quality to be time independent. Decisions

evolve under changing conditions, and HMMs have the capabilities to better assess new

information on continues basis to capture the credit quality scores of the obligors.

The advantage of this model is its ability to dynamically track changes in the credit

quality scores, incorporate other existing models on consumer credit risk to complement

their usage, and develop a predictive model. Another factor is that the poor lack historical

data on their financial obligations performance and SMD can cover that gap. The financial

institutions benefits are in the ability to loop in new customer segment; strengthening and

improving credit risk management processes; and expanding the market share with better

pricing of risk for the institutions. The regulators of the financial institutions will be able
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to reduce the non performing loans and increase financial inclusion. In the academic

front, there is going to be an increase in new and improvement in existing credit risk

models; enhanced data mining techniques for social media data; and more research output

in consumer credit risk.

1.7 Contributions of the Thesis

This thesis contribution was based on the problems being addressed by use of social and

economic network data. First, there is an increase in modern credit that has led to rise

in default rates. Second, some of the current credit scoring models deteriorates over time

and needs frequent validation due to use of historical data. Third, some credit scoring

models failed to capture the extreme events in the recent financial crisis of the year 2007.

Fourth, the young, poor and unbanked fail to secure credit due to lack of financial his-

tories. Fifth, the research by Eisenberg and Noe (2001) considered systemic risk in a

corporate financial network. Sixth, there is an abundant social network data that has vast

information and influences how we learn and interact. These form the basis of the thesis

contributions.

(a) The increase in population and the growth in consumer credit mass market has

provided new opportunities and challenges. More innovative methods are needed

in credit underwriting. The model in this study is providing that opportunity to the

credit risk market.

(b) The model in this thesis uses time dependent data from the social network and thus

does not deteriorate or need any validation the life of a credit facility. This also

means that the time dependent data incorporates change in time events during the

period under study.

(c) As the young and unbanked lack financial histories, social media data provide vast

amounts of information that can support consumer credit underwriting. This is pos-

sible as most young people have access to social networks at an early age compared

to their access to financial institutions. The use of social network data in this study

covers this gap to increase financial inclusion.
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(d) The research by Eisenberg and Noe (2001) considers systemic risk in a financial

network. The network is made of firms that have a common clearing vector to

estimate default rates in the network. This study extends that research to consider

agents in a social and economic network, affected by their cyclical interdependence

and each agent has a loan obligation with a financial institution. Hidden Markov

model is used to estimate the credit quality scores and levels of the obligors and a

dynamic threshold that estimates the obligors default rates

(e) A new definition to suit the SEN is presented and a new theorem for reputation

ratings as a stochastic process is developed and proved.

(f) We have estimated the transition matrix A and observation matrix B by supervised

clustering using the CRAFs.

(g) We have modified the standard HMM to cater for the multiple agents HMM as the

SEN has a set of heterogeneous agents interactions.

1.7.1 Thesis organization

This thesis comprises of seven chapters, list of references and two appendices (one for

HMM and the other with list of publications with the manuscript attachments).

Chapter 2 has the literature review from other research work on the different areas

applied in this study. The areas include SENs, trust and reputation, Hidden MArkov

Model, consumer credit risk and simulation.

Chapter 3 outlines the mathematics preliminaries and basic tools from social networks,

trust, stochastic processes, martingale, stopping time, singular value decomposition, sim-

ulation and Markov process and chains. The chapter is an introduction to known and

accepted mathematical tools. This forms a basis for the chapters that follows, that is,

chapter 4, chapter 5 and chapter 6.

Chapter 4 introduces the standard hidden Markov model specifications. This chap-

ter further discuss the modifications of the standard HMM specifications to the multiple

agents HMM, which forms part of the study methodology. The modifications forms the

part of the HMM analysis in our new model that is developed to analyze the credit scores

of the agents in the SEN.
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Chapter 5 is the methodology of the proposed model that is composed of: the initial

conditions, the social economic network dynamics, the hidden Markov model parameter

estimation, the credit quality scores, default rates and false rates estimation. A new def-

inition for SEN is developed and a new theorem for reputation as a stochastic process is

developed and proved using the Martingale principle.

Chapter 6 is the analysis of the SEN-HMM-CSD model, its parameters and variables.

The Monte Carlo simulation generates the data for the model analysis and estimation of

the key variables in this study. Discussions from the results and findings are presented

and reviewed based on the study objectives.

Chapter 7 has the summary of the discussions of each of the objective of the study and

the conclusions from the study. Recommendations for further research areas based on the

study are presented.
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Chapter 2

Literature Review

The chapter highlights research work related to this study. We are using different tech-

niques in this research from social networks, trust and reputation, Hidden Markov models,

stopping time, stochastic processes, credit risk, default and simulation. We review the lit-

erature on these aforementioned areas.

2.1 Social and Economic Networks

Social networks have vast amount of social networking data which contributes signifi-

cantly to understanding the properties and the behaviour of the networks (Meyers , 2009;

Netrvalova and Safarik , 2011; Pupazan , 2011; Raghavan et al. , 2013). As agents in a

social network interact, they form links that stochastically evolve over time and lead to

network evolution (Meyers , 2009; Resnick et al. , 2000; Skyrms and Pemantle , 2009;

Starnini et al. , 2013).

A social network is a social structure created by individuals that are bounded together

on the basis of some particularity (Netrvalova and Safarik , 2011). Individuals in social

network are called actors and social networks connects these individuals in the groups.

Social network dynamics provides a platform to study agents and their collective be-

haviour on a large scale. Raghavan et al. (2013) notes that social interactions on networks

affect agents activity and these activities should be incorporated in social networks to de-

velop optimal models. They incorporated social effects of influence on a user’s activity

from the activity of a user’s neighbour to increase the model explanatory and predictive

power. Social networks are key in diffusion of information, ideas, opinions and the influ-
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ence of individual nodes on the diffusion process (Madan and Pentland , 2009).

A socio-economic network is a relationship between a node and more than one node

where at least one node enjoys a one-to-one relationship with one or more noded (Pani

, 2008). The networks, whose primary action entails economic transaction embedded in

social capital are called socio-economic network (SEN). A SEN is a set of nodes and their

bidirectional relationships where for each one-to-one bi-directional relationship there ex-

ists two uni-directional relationships. SENs are stable but not static as the network rela-

tionships are dynamic and go through renovation, change or even disruption (Pani , 2008).

A study on a set of social network evolution and dynamics and how the structure

is shaped by the incentives of the agents is the work of (Ehrhardt et al. , 2006). The

models analyzes the idea of how the dynamics of the network struggle between volatility

and the creation of new links. They observed that network dynamics exhibits three fea-

tures, resilience, co-existence and sharp phase transition with positive feedback between

link creation and inter-node similarity. A feedback mechanism in the network provides a

powerful mechanism that effectively offsets the link decay as a result of volatility in the

network (Ehrhardt et al. , 2006). Many social phenomena normally display an evolving

inherent network dimension which provides an ideal platform for a range of social prob-

lems from spread of disease, to the establishment of research collaborations in both the

scientific and industrial sectors, among other areas.

A dynamic social network model by Skyrms and Pemantle (2009) considers indi-

vidual agents who interact at random, and those interactions are modeled as games. The

payoff from the games determines which interactions are reinforced and the social net-

work structure emerges from these stochastically evolving social network. They noted a

difference between strategic dynamics by which individuals change their individual be-

haviors or strategies and the structural dynamics of the network. The social interaction

structures that emerge tend to separate the agents into small interaction groups. Skyrms

and Pemantle (2009) assumes that agents in the network make friends on asymmetric

weights. Each agent goes out to visit some other agents and this choice is by chance that

are determined by the relative weights each agent has assigned to the others. Let agent i

assign weights {wi1, . . . , wim} to other agents with wii = 0. Then, the agent i visits agent

j with probability
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Prob(agent i visitsj) =
wij

Σkwik

Even with this symmetry built at the starting point, different and varies types of structures

emerge as as a consequence of the dynamics of the agents’ learning behaviour. Choices

made by each agent are independent of the choices made by each other agent.

Agent dynamics or social group drives the evolution of the social groups in a commu-

nity. Chen et al. (2008) defines a social group as a collection of agents who share some

common context with the dynamics being governed by the agents dynamics. The agents

dynamic model developed has the ability to identify which parameters have a significant

impact on the future evolution of the society. The agents are categorized as active, occa-

sional or dormant. Stanley (2006) observes that the dynamics of societal cooperation have

gradually incorporated more and more information about social network structures. For

example, mathematical models on AIDS epidemic shows that the spread of HIV is sensi-

tive to human behaviors including; the amount of risky behavior; the manner in which that

risky behavior is distributed in the population; and the social network structures within

which people practice those risky behaviors (Stanley , 2006).

A network approach by Allen and Babus (2008) to financial systems was to assess the

financial stability and capture the externalities and risks associated with them. Mapping

the financial institutions is an important step toward gaining a better understanding of

modern financial systems. Here, the need for types of connections; the quality of the

links; role of networks in mutual monitoring; gain an understanding of systemic risk; and

how these dependencies stems from both the asset and liability side of the institutions

balance sheet are discussed (Allen and Babus , 2008).

Social networks convey social capital which is a form of capital as with an asset,

depreciates over time. Social capital represents as asset and might be an important de-

terminant in some economic situations. It is more difficult to measure (Johnson , 2003).

Social capital is also defined as social obligations which can be converted in certain con-

ditions into economic capital. Thus, social connections or obligations formed through a

social network can be maintained and used. Trust and civic co-operation is noted as a

proxy for social capital and the former have significant impacts on aggregate economic

activity.

The perspective on which social capital is built cannot be separated from an actor
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and its activities, including economic activities (Pani , 2008). The structural view of

social capital supported by the social network analysis. Dynamic social networks are

determined by stochastically evolving social network. Individuals interact at random,

strategically changing positions to gain incentives.

When a network has new membership, the sum of social capital in the network exceeds

the sum of individual investments. As occupational returns to social skills increase, social

capital investment increases, indicating an association between social capital and social

skills. This is also true between social capital and economic performance - as social

capital accumulation patterns are consistent with the standard economic investment model

(Glaeser et al. , 2002). The main predictions of this association are: the life-cycle effects

which predict that social capital rises and then declines with age; individuals who work

in occupations for which social skills are relatively important accumulate more social

capital.

A relationship is observable between investment in social capital and economic growth

of a firm (Pani , 2008). A SEN is where the primary action entails economic transactions,

under the structure of the social capital. The network of relationships is induced by the

investment strategies, individual or collective aimed at creating or establishing social re-

lationships (Johnson , 2003). Social network analysis had provided a significant role in

domains of biology, security, sales, terrorism, finance, and many more other areas. The

availability of huge amount of social network data offers opportunities for studies and

simulation of different nature of possibilities. These contribute to better understanding of

the properties and the behaviour of social networks (Pupazan , 2011).

Agents in a network rationally form relationships based on the derived cost and ben-

efits. There are three explanations offered as to why embedded resources in a network

enhance the outcomes of agents actions; first, resources facilitate the flow of information.

The social ties in strategic locations and positions provide individual agents with useful

information, opportunities and choices that would otherwise be unavailable. Second, so-

cial ties can exert influence other agents in decision making process. Third, the resources

tied up in the social network can be retrieved by individual relationships observable from

the social credentials of an individual. This can create a social debt (Johnson , 2003; Nan

, 1999).

The different characteristics of the agents in the system and uncertainty means that
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trust is a fundamental concern if effective interaction is to be achieved. HMM based trust

model to focus on outcomes of the past interactions and interaction context that reflects on

the dynamic behavior of an agent is modelled by (Liu and Datta , 2012). An investigation

and utilization of the interaction contextual information as the observation is used to build

a HMM. In order to achieve accurate prediction, information theory (that is, information

gain) and machine learning technique (i.e. multiple discriminant analysis) are applied to

select and process the contextual information. Liu and Datta (2012) observes that use

of past transactions to model dynamic trust is appropriate in situations where an agent’s

behaviour is dynamic or changes frequently. However, if an agent changes in behaviour

is relatively infrequent in changing patterns, then use of past observation sequence is not

well suited to model dynamic trust.

Agents might not have had previous interactions and therefore, trust is a fundamental

concern for effective interactions. Moe et al. (2008) used HMM for trust estimation,

and developed a trust model that allows for dynamic behaviour based on HMM. That

is, agents should decide how, when and with whom to interact with in a manner that will

maximize their utility. Resnick et al. (2000) analyzes the eBay online auction site that has

over four million auctions active at a time. They noted that the overall rate of successful

transactions is high due to eBay use of a reputation system, called the feedback forum.

This reputation system seeks to establish the shadow of the future to each transaction by

creating an expectation that other people will look back on it. The seller reputation has

a significant influence on online auction process and it is derived from the underlying

network and visible to all the people in that system. A reputation system, called the

feedback forum has been applied successfully by eBay system that has over four million

auctions active at a time. The feedback forum assists in knowledge transfer and better

understanding the behaviour of the individual in the network (Resnick et al. , 2000).

In a dynamic social network, reputation feedback systems can assist in knowledge

transfer and better understand the properties and behavior of agents in these networks.

The robustness of a social network assumes that social links are dynamic and allowed to

change with and without constrains or restrictions.
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2.1.1 Social media data

Social media has continued to gain widespread acceptance. For example, in the year 2012,

Facebook had 1 billion users worldwide while in the same year, Twitter had an estimated

517 million users (Dewing , 2012). The social networks provide the social media data

which refers to the wide range of internet based and mobile services data. The users of

these services participate in online exchanges, join online communities or contribute user

created content (Dewing , 2012). A number of factors has contributed to this rapid growth

and embracement of social media services. These are; increased broadband availability,

improvement of software tools, development of more powerful computers and mobile

services (Dewing , 2012; Mustafa and Hamzah , 2011).

Table 2.1 shows the variables used in the studies of Daniel and Grissen (2015) for

mobile phone data and Masyutin (2015) for the social network in credit scoring. The two

studies offers promising insights on use of social media data in credit scoring process.

Table 2.1: Social media data variables used in credit scoring

Mobile Phone Data Variables Social Network Variables

Age Age

Gender Gender

Top up and depletion patterns Marital status

Mobility Number of days since last visit

Patterns of handset use Number of subscriptions

Strength and diversity of network connections Number of days since the last post

Intensity and distribution over space and time Number of user’s posts with photos

Loan size Number of user’s posts with video

Loan term in days Number of children

Major things in life

Major qualities in people

The availability of powerful and new innovations in data science tools for mining

the internet content offers rich sets of data ideal for consumer credit lending. Evidence

suggests that soft information can add value to financial institutions credit lending process
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by supplying the missing pieces that complement existing hard information used (Siva ,

2010). There are over 2 billion people connected to the internet which implies an increase

in online content and user interactions (Dubois et al. , 2011).

2.2 Trust and Reputation

A number of methods and models for computing trust and distrust have been developed

(Dubois et al. , 2011; Guha et al. , 2004; Netrvalova and Safarik , 2011; Pupazan , 2011;

Skyrms and Pemantle , 2009; Tang et al. , 2014). The works agree that trust levels of

agents plays a central role in interactions of agents.

Modelling trust in complex dynamic environments is an important and challenging

issue as intelligent agents strategically changes their behaviour for different reasons (Liu

and Datta , 2012; Raghavan et al. , 2013; Skyrms and Pemantle , 2009). Trust is so fuzzy

and personal that its not easy to compute it (Dubois et al. , 2011; Tang et al. , 2014).

The set of incomplete information of each other in a network led to adoption of trust

and reputation framework to maximize the security level by basing decision making on

estimated trust values for network peers (Ehab and Sassone , 2013). The reputation model

enhances the reliability and quality of trust judgment. Feedback information improves

evaluation process about the trustee in the form of reputation reports (Ehab and Sassone

, 2013). Reputation systems are easy to describe but the notion of trust and distrust is

difficult to describe in a concise manner (Dubois et al. , 2011; Josang et al. , 2007).

Trust is the confidence in the ability of a person to be of benefit to trustworthy on

something or someone at sometime in the future. Gambetta (1988) notes that trust is the

subjective probability with which an agent assesses that another agent or group of agents

will perform a particular action both before he can monitor such action. Gambetta (1988)

continues to note that reputation is a perception that an agent has of another’s intentions

and norms. Therefore, trust and distrust are estimated from the reputation ratings of

the agents. (Netrvalova and Safarik , 2011) represent trust in the interval (0, 1) where 0

represents complete distrust and value 1 blind trust. The model reflects members of social

network and differentiates them according to their disposition to trusting somebody. A

value of 1 indicates that the agent is highly trusted and hence blind trust (Netrvalova and

Safarik , 2011). The work of Guha et al. (2004) highlights agents who optionally express
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some level of trust for the other agents in a network. The expressions become entries for

a real valued matrix that is used to predict an known trust value between any two users.

Dubois et al. (2011) computes trust using a path probability in a random graph. For

each pair of users, (x, y), they placed an edge between them with some probability that

depends on the direct trust between them denoted by txy. The rise of social networking

has allowed people to indicate whom they trust and distrust creating links in the network.

Trust assists the users to decide whom to accept information from and with whom to share

information with (Dubois et al. , 2011).

Agent interactions require trust but Dubois et al. (2011) observes that knowing whom

to distrust is equally important but is trickier to compute in a satisfying way. Guha et al.

(2004) used a set of n users, each optionally expressing some level of trust and distrust

for any other user. Tang et al. (2014) notes that distrust is a new dimension of trust. A

difference between trust and distrust is that distrust information is publicly unavailable

and social media services rarely implement distrust mechanism in their networks. Gen-

erally, trust and distrust are complex measures representing people’s multi-dimensional

utility function (Guha et al. , 2004; Josang et al. , 2007)

Reputation and trust systems produce a score that reflects the relying agent subjective

view of the other agent trustworthiness. Transitivity is an explicit component in trust

systems. The prediction of trust and distrust in social network, Dubois et al. (2011)

refers to them as positive and negative trust with trust being transitive and distrust is not

transitive. Trust is transitive while reputation is not. Josang et al. (2007) observes that

the reputation score is seen by the whole community and take transitivity implicitly into

account (Gambetta , 1988; Ganesh and Sethi , 2013; Josang et al. , 2007).

Social relationships changes continuously in a way correlated with the dynamical pro-

cesses taking place during social interactions (Liu and Datta , 2012; Raghavan et al. ,

2013; Skyrms and Pemantle , 2009; Zhao et al. , 2011). Interaction contextual infor-

mation modeling is introduced by Liu and Datta (2012) to reflect an agents interactions

dynamics better. Information theory is used to select features that generated a compact

and effective feature vector for each agent interaction. Raghavan et al. (2013) incor-

porated social effects on a social interaction model using coupled HMM as the effects

influence a user’s activity based on the activity of a user’s neighbour thus increasing the

model explanatory and predictive power.
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The static interactions of users in facebook using interaction graphs is the work of

(Wilson et al. , 2009), while (Viswanath et al. , 2009) focuses on dynamics of user

interactions in facebook. A decay in the amount of interactions between pair of users

is noted due to network rapid changes over time. A model to infer relationship strength

as the hidden cause of user interaction showed strong similarity between relationship and

interactions (Xiang et al. , 2010). They noted that ancillary interaction information among

the users can improve interaction modeling. The stronger the relationship, the higher the

likelihood that a certain type of interaction will take place between the pair of agents

(Zhao et al. , 2011).

2.2.1 Trust and economic performance

A study by Knack and Keefer (1997) noted that if the trust levels are high in an envi-

ronment, the future actions of the agents in the network can be accomplished at lower

cost. A fact that shows that social capital contributes immensely in measuring economic

performance. Trust and civic cooperation were used to estimate economic performance

with a strong association observed between economic performance, trust and civic norms.

Government officials in societies with higher trust are perceived more trustworthy and this

triggers greater investment and other economic activities.

Further, Knack and Keefer (1997) notes that trusting societies have stronger incen-

tives to innovate and to accumulate physical capital with higher returns to accumulation

of human capital. Social capital variables exhibit a strong and significant relationship to

growth. The term social capital has no unified definition for its has been applied in varied

fields from social sciences, to economics, political science, organizational sociology and

so on (Sjoerd , 2004). At the individual level, social capital is formed through network

participation and social interactions in groups. According to Sjoerd (2004), social capital

is the features of social organization such as trust, norms, and networks that can improve

the efficiency of society by facilitating co-ordinated actions.

2.3 Hidden Markov Model

A HMM tutorial by Rabiner (1989) opened a new frontier in this area of research with

an analysis of HMM at depth. Different researchers have defined HMMs from different
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angles; HMM is the statistical tool for engineers and scientists to solve various problems

(Bhusari and Patil , 2011); HMM is a state machine for a system adherent to a Markov

process with unobserved states (Loni et al. , 2012). HMMS provide a flexible general

purpose approach for modeling various dynamic systems that can be observed through

univariate or multivariate time series (Lajos et al. , 2012).

HMMs have found a niche in different disciplines and have been applied with a lot of

success (Bhusari and Patil , 2011; Chen et al. , 2008, 2007; Ching et al. , 2006; Crowder

et al. , 2005; Davis et al. , 2005; Ehab and Sassone , 2013; Fonzo et al. , 2007; Liu and

Datta , 2012; Mathew , 1997; Mhamanne and Lobo , 2012; Quirini and Vannucci , 2014;

Srivastava et al. , 2008).

The popularity of HMM in bioinformatics with many software tools based on HMM is

highlighted by (Fonzo et al. , 2007). A dependent hidden Markov model to analyze credit

quality in discrete time with a Markov chain observed in martingale noise is proposed by

(Korolkiewicz , 2010). The use of HMM to develop probabilistic model for social net-

working is presented in (Raghavan et al. , 2013). A proposed interactive hidden Markov

model where the hidden states are affected by the observable states (Ching et al. , 2006).

Credit card fraud is detected using HMM during transactions. Bhusari and Patil (2011)

notes that the model helps to obtain a high fraud coverage combined with a low false

alarm rate in the credit card transactions. (Lajos et al. , 2012) delves into the stock market

with HMM to dynamically capture the behaviour of the various stock market equities and

indices. Bilmes (2006) observes that HMM do not have a limitation for their applications.

Netzer et al. (2008) uses HMM to model customer relationship dynamics. The effect of

the encounters between the customer and the firm on customer-firm relationships and the

customer’s choice behavior are modeled.

HMM is dynamic in observing sudden downgrading of a customer credit worthiness

(Quirini and Vannucci , 2014). The duo observed that HMM and related tools are essential

to assess the credit risk in order to gain profitability in the complex and fluctuating credit

market. Crowder et al. (2005) models the occurrence of defaults within a bond using

HMM while Srivastava et al. (2008) uses HMM to model the credit card fraud detection

system that is scalable for handling large volumes of transactions with high accuracy rate.

Miller et al. (1999) used HMM for information retrieval by incorporating multiple word

generation mechanism in the model.
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The model by Korolkiewicz (2010) describes the inter-connected dynamics of user

activity with the individual dynamics of each user being coupled to the aggregate activity

profile of his neighbours in the network. A HMM to model trust in a dynamic environment

that changes with time is the work of (Liu and Datta , 2012). They bypassed use of past

interactions in modelling trust and introduced interaction contextual information of an

agent in the system. This model is able to easily detect sudden changes in behaviour of

agents in the network as trust in a social setting is dynamic. Static models are not able to

dynamically capture these changes.

Agents dynamic behaviour is represented by a HMM as a trust and reputation model.

The model enhances the trust evaluation using supplementary feedback reports about the

trustee (Ehab and Sassone , 2013). Two components are key to the model in which there is

a reputation reporting exchanged between the network peers; and a mixing scheme which

uses multiple reputation reports about a trustee to evaluate the trust levels.

The work of Netzer et al. (2008) relaxes the assumption of homogeneity and uses

a non homogeneous HMM for modeling customer relationship dynamics, where time

varying covariates are investigated on its role in customer firm interactions. Ability

to train HMM with multiple observers is the work of (Li et al. , 2000). Time varies

with the actions of the multiple agents and observations of the emitted information. The

independence-dependence property of the observations are characterized by the combi-

natorial weights, thus giving more freedom in making different assumptions in the study.

HMM assumes that time is invariant but Chen et al. (2007) have relaxed that assump-

tion in a multiple observer situation. Relaxation of the assumption makes the HMM more

complicated but this work shows the versatility of the relaxed assumptions. Agent dynam-

ics have multiple observations and this ideally works in our study. This relaxation was

found not to satisfy the Markov property but proposed a method to find the maximum

likelihood estimates by the Expectation Maximization algorithm.

Viterbi algorithm for HMM is based on the principles of dynamic programming. Kar-

ris (2007) explains that dynamic programming is based on Bellman‘s Principle of Op-

timality which states that: an optimum policy has the property that whatever the initial

state and the initial decision are, the remaining decisions must constitute an optimum pol-

icy with regard to the state resulting from the first decision. A combination of stopping

time and dynamic programming model has been applied to the valuation of American
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put options. These models check for optimality in exercising the options as they can be

exercised any time until the expiry date. Equal spacing of the exercise dates for American

option simplifies the notation and are less restrictive, with the price process of the option

conditional on not having been exercised earlier (Haugh and Kogan , 2004).

In decision making, agents are faced with uncertainties due to lack of perfect infor-

mation about the environment as noted in (Moe et al. , 2008). Each agent trust is needed

in order to minimize the impact of the uncertainty and make optimal trust decisions over

time. Agent’s action choices is through the information gathered over time. Action choice

being based on prediction of other agent’s behaviour or directly on the reward received.

Hassan and Nath (2005) applied HMM in stock market forecasting and showed a 100

percent accuracy in the prediction. The time series data was divided into two sets, one

training set and one test (recall) set. Current price is linked to a smaller likelihood value,

then this is used to predict the next day stock price.

In credit card fraud detection system, Srivastava et al. (2008) links the set of all

possible types of purchase and line of business to be known by the bank in advance. A

cardholder purchases depends on the need for procuring different types of items over a

period of time, generating a sequence of transaction amounts. The transition in the type of

purchase is considered as state transition in the model. Bhusari and Patil (2011) study on

online banking fraud using HMM used the cardholder’s spending habit to detect fraudlent

transactions. HMM approach decreases the number of false positive transactions rec-

ognized as malicious by a fraud detection system even though they are really genuine.

Spending are categorized into three profiles, namely, low, medium and high. They noted

that the initial choice of parameters affects the performance of HMM algorithms. The

model checks the upcoming transaction as fraudulent or not and decides to add new up-

coming transaction to existing sequence or not, and a threshold level decides whether the

transaction is genuine or fraudulent. (Mhamanne and Lobo , 2012) study online banking

fraud and used HMM to detect and notify any fraud related online transactions.

A stochastic mesh method by Broadie and Glasserman (2004) solves a general op-

timal stopping problem of the American option with discrete exercise opportunity. The

mesh method is flexible providing for lower, upper bounds and confidence intervals. The

intervals are generated from combining high-biased and low-biased path estimator, and

the algorithm converges with an increase in the number of mesh points and as compu-
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tation effort increases. A forward algorithm to solve optimal stopping time is given by

(Haugh and Kogan , 2004; Irle , 2006).

2.4 Consumer Credit Risk

Credit risk modeling continues to receive increased research interests through application

of different techniques and approaches (Baesens and Gestel , 2009; Bhusari and Patil ,

2011; Bucay and Rosen , 2000; Ching et al. , 2008; Crowder et al. , 2005; Denault et al. ,

2009; Finger , 2000; Frey and Runggaldier , 2007; Giesecke , 2005; Gordy , 2000; Gurny

and Gurny , 2013; Hodgman , 1960; Horkko , 2010; Madhur and Thomas , 2007; Robert

et al. , 1996).

Consumer credit modeling has been considering each loan obligor in isolation. Lenders

are more interested in the general characteristics of the portfolio for risk management

purposes. The Basel Capital Accord, the bank’s regulatory body emphasized this need of

portfolio risk of retail loans. A need that has highlighted the importance of developing

accurate estimates of default probability - accurate overall risk to minimize the capital

required to cover these expected and unexpected default losses (Schweitzer et al. , 2009;

Thomas et al. , 2005). The Basel regulators imposed a corporate credit risk model as con-

sumer credit has not developed its own models of the default risk of a loan portfolio. Basel

II Accord put the spotlight to focus on portfolio risk (Capuano et al. , 2009; Schweitzer

et al. , 2009; Skyrms and Pemantle , 2009; Thomas et al. , 2005). Further, with increase

in volume of securitization of retail loans, it means bundling together different loans and

selling them at one price, which is misleading - there is no model to price these bundled

portfolio (Thomas et al. , 2005).

Recent advances in credit risk modeling and recent economic crisis due to systemic

complexity of economic networks is discussed (Capuano et al. , 2009; Schweitzer et

al. , 2009). Under the prevailing credit risk models assumptions of independence of

customers, socio-economic networks assumes that agents are interdependent. Socio-

economic networks offers solution due to their complexity, dynamism and robustness.

Agents interactions in the network are stochastic and bound in time and space, with var-

ied effects which increases with increasing coupling strength between nodes.

A model by Eisenberg and Noe (2001) featuring a network among financial systems,
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where the properties of inter corporate cash flows has cyclical interdependence deter-

mined endogenously by clearing vectors is presented. The model has clearing vectors

representing payment vector from nodes in the financial system to other nodes that sat-

isfy the conditions of proportional repayments of liabilities in default (Schweitzer et al.

, 2009). The clearing vector computation is through a fictitious sequential default algo-

rithm, where there is a process of dynamic adjustment in which the set of defaulting firms

at the start of each round is fixed by the adjustments of the system in the previous round.

The system is cleared in each round by assuming that only nodes that defaulted in the last

round default. If no new defaults occur, the algorithm terminates. Otherwise, the new

wave of defaults is recorded and the process is iterated again, until all nodes are cleared.

The algorithm yields the clearing vector, and this exposure in a given node indicates the

likely of the node in the system to default given other firms. ‘Waves’ of default measure

the systemic risk which can induce a firm in the system to fail (Eisenberg and Noe , 2001).

Survival analysis approach in credit risk modeling to assess aspects of profit and de-

fault is the work of (Stepanova and Thomas , 2002). A coarse classification approach to

the characteristics of the customers was developed. Residuals extracted are then tested for

fitness in the model. The competing risks approach of survival analysis to dealing with

both defaults and early completion of loans is the model of (Banasik et al. , 1999). They

tried to estimate how long until some events occurs even though in many cases the event

will not occur. Competing risks approach assumes that several reasons exists as to why

loan repayments are completed before the original intended term (Banasik et al. , 1999).

The work of Robert et al. (1996) is on credit risk and credit scoring with emphasis

on delinquent and default cases. A borrower’s credit history is summarized by a credit

history score which is a strong predictor of loan delinquency. Earlier credit history as-

sessment was subjective but introduction of a statistically derived measure of the credit

risk increased the observable probability of default. (Bucay and Rosen , 2000) developed

a simulation based framework to estimate the one period credit loss in a retail loan portfo-

lio. The usefulness of the model was demonstrated by estimating one-year credit losses.

The influence of economic cycles was introduced in the model. The results for this study

showed that some refinement in the modeling of the portfolio may lead to the greater im-

provement. In conclusion, they observed that application of portfolio credit risk models

to retail portfolios is in its infancy and much more research is required.
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Traditional Microfinance has presented a solution to the repayment problem as the

community members aid in monitoring the repayment process. This is one of the ma-

jor challenges facing Microfinance institutions in their quest to provide credit facilities,

as most of its clients have scarce financial information (Serrano-Cinca et al. , 2013). A

study by the Centre for the Study of Financial Innovation states that Microfinance indus-

try is faced by two main threats; credit risk which is worsened by the over-indebtedness

of its clients; and the perception that the Microfinance industry has lost sight of its so-

cial purpose (Serrano-Cinca et al. , 2013). The credit scoring systems of microfinance

institutions, if they exist, are strictly financial. They propose a decision support system

to facilitate microcredit underwriting process and estimate the social impact of the mi-

crocredit. The system is partly based on the Social Net Present Value (SNPV) which is

expressed as; SNPV = Σn
t=0

St

(1+r)t
, where S = social impact, r = discount rate, t = time

and n = number of periods. This component is to formalize the use of social aspects

in the credit scoring process and capture the social impact the loan has on the borrower

(Serrano-Cinca et al. , 2013).

The credit risk models in use face challenges of performance deterioration over time.

This calls for periodic validation to arrest this shortcoming of the models to retain their ac-

curacy, completeness and timelines of the information used to generate the scores (Robert

et al. , 1996). The use of historical data contributes to this deterioration as it assumes that

credit quality is time independent (Capuano et al. , 2009). A need remains to have models

with generalization capability and applicability but this is becoming more elusive (Li and

Zhong , 2012). Another factor is that no mathematical system model is perfect as these

models only depict those characteristics of direct interest to the modeler. The traditional

credit scoring has relied on the traditional underwriting factors which are character, ca-

pacity, collateral, capital and conditions. PWC (2015) outlines many of the benefits of

using the big data from the social media to supplement the traditional credit scoring pro-

cess. Recent trends in the consumer finance calls for innovative solutions due to shifting

demographics and credit trends, calling for shift in credit underwriting strategies by use

of social media (PWC , 2015). The young consumers and many households in developing

countries lack financial histories creates a need for this innovative approach.

One of the major revolution on use of available data in the social circles is the work

of (Daniel and Grissen , 2015). They used behavioral signatures in mobile phone data to
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predict default with accuracy than the approach of credit scoring using financial histories.

The method was found to be promising even for the poor borrowers whose mobile phone

usage is also very sparse (Daniel and Grissen , 2015). It was noted that a subscriber

may be able to manipulate their score if they knew the algorithm, but the problem can

be overcomed by combining with other credit scoring techniques. The algorithm reduces

defaults by 41 percent while still accepting 75 percent of the borrowers.

The use of social data from Russia’s most popular social network to discriminate be-

tween solvent and delinquent debtors of credit organizations is the work of (Masyutin ,

2015). The social network data was found to better predict fraudulent cases rather than

ordinary defaults, thus ideal to use in enriching the classical application scorecards. Wei

et al. (2015) considers a number of models to compare the accuracy of customer scoring

obtained with and without network data. They analyzed the benefits of collecting informa-

tion from consumer’s network where people with an above average chance of interacting

with others with similar creditworthiness creating the social scoring. An increase in in-

clusion of population with limited personal financial history to be offered credit increased

due to social scoring.

The social scoring methods are yet to gain popularity, but as they continue to do so,

consumers may adapt their personal networks that may affect their scores. The benefits

of using social media data in credit scoring increases when it involves networks of ties

that exhibit great homophily (Wei et al. , 2015). The advantage is that as more and more

people are getting connected to the internet every day, user interactions and online content

continue to increase (Dewing , 2012; Dubois et al. , 2011).

Credit scoring systems have been built to answer the question of finding out how likely

an applicant is going to default at a given time in future (Banasik et al. , 1999). As the

credit status is dynamic, we refine the question to ask, if the applicant will default, when

will the default occur? This question has various answers not just a single answer of

yes/no. The use of historical data sometimes becomes a problem since the customer data

is censored in that they are no longer in the bank’s database (they have either paid bask

the loan, or have died).
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2.4.1 Default process

Let Z(t) be the default process that takes the value of one if the default occurs and zero

if no default occurs at time t. The ability to model the Knowledge of default path is

equivalent to knowing the exact time of default. Since we have partial knowledge, the

situation at time t is that either the obligor has defaulted or not defaulted (David , 2004).

The default process has numerous studies with different variations on how default is

observed (Cetin et al. , 2004; Crowder et al. , 2005; Denault et al. , 2009; Eisenberg and

Noe , 2001; Finger , 2000; Giesecke , 2005; Giesecke and Kim , 2010; Gurny and Gurny

, 2013; Horkko , 2010; Iqbal and Ali , 2012; Kealhofer , 2003; Moffatt , 2005).

A clearing vector in a financial system represents the vector of payments from nodes

to nodes in the system is the work of (Eisenberg and Noe , 2001). A fictitious sequen-

tial default algorithm is used to estimate the defaults at any given time in a network of

financial firms that are part of a single clearing mechanism. The issue of cyclical in-

terdependence is introduced to model the default process of the firms. Koyluoglu and

Hickman (1998) considers the issue of default barrier based on stochastic and determin-

istic approach. A default threshold problem as a stochastic process with the inclusion of

systemic risk factors is undertaken. Normality is assumed and it borrows widely from the

Merton’s model of a firm’s capital structure. Joint-default situation among the obligors in

a portfolio correlates to the extent of which the obligors asset value changes.

The idea of competing risks is employed when two possible outcomes are consid-

ered: default and early payoff (Stepanova and Thomas , 2002). Approach of how survival

analysis proves useful in dealing with defaulters and early completion of loans is given

(Banasik et al. , 1999). The approach is undertaken for repayer defaulting or paying off

early by building survivor function models to estimate the distribution of each obligor.

(Kealhofer , 2003) considers default as a binary event; it either occurs or it does not oc-

cur. The KMV model is used based on default-predictive power test that characterizes the

relative ability of a default risk measure to correctly identify companies that subsequently

default versus incorrectly identifying companies as likely defaulters that do not default.

The dependencies between different risks in a life insurance portfolio are modeled and

analysis undertaken using survival probabilities (Dhaene and Goovaerts , 1996). Assump-

tion is that if a person with lower probability survives, and then one with higher survival

probability will survive. If a person dies, then all persons with lower survival probabilities
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will die too, as dependencies between individual risks being conditional. Customers’ dif-

ferences in application characteristics have different survival times. The customers‘ credit

performance data normally recorded monthly means that several failures are observable

at one time. If default probability is realized, then defaults are conditionally independent

but high volatility observed if the defaults induce stronger correlations (Finger , 2000;

Stepanova and Thomas , 2002). A high default rate would imply a generally decreased

credit quality of other obligors who did not default. The impact would then be that the

default rate for the second period would have a tendency to be high.

The estimate of the default probability and its dynamics through time is very impor-

tant. Four approaches for estimating creditworthiness and default probabilities are given

in (Denault et al. , 2009). The first one, default probability is estimated using the average

frequency with which obligors of the same rating have defaulted. Moody’s and Standard

and Poor’s collect data to perform these ratings estimates. The second approach uses

statistical techniques and data from the balance sheet, current market conditions or past

performance to estimate the probability that a firm will default. A third group uses the

structural bond-pricing approach started by Merton in 1974. The fourth consists of mod-

els from the reduced form approach pioneered by Jarrow and Turnbull in 1995 and Duffie

and Singleton in 1999 (Denault et al. , 2009).

The approach by Finger (2000) is to assign obligors a standard Wiener process and a

minimum threshold, below which implies a default. Defaults are conditionally indepen-

dent and the survival probabilities arise from expectations over the conditional probabil-

ity, which evolves according to a stochastic differential equation. Two important general

aspects of survival analysis which are connected to the use of stochastic processes are

undertaken (Aalen and Gjessing , 2005). One is the issue of time. Decoupling statistical

analysis from the development over time assumes that no changes take place when time

passes. Time is relegated at the back instead of being the major parameter of survival data

to capture and emphasize the changes over time. Second, models that allow for fruitful

speculations on underlying mechanisms should be applied much more.

A HMM to calculate the likelihood threshold of human gestures is undertaken by (Lee

and Kim , 1999). An ergodic model is developed where each state can be reached by all

other states. Output observation probabilities and self transition probabilities are kept

as in the gesture models. Lee and Kim (1999) noted that maintaining the self transition
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probability and the output probability distributions makes the states represent any sub pat-

tern of reference patterns and the ergodic structure makes it match well with any patterns

generated. Reduced forward transition probabilities makes the likelihood model, given

a gesture pattern smaller than the dedicated gesture model. Thus, the likelihood can be

used as an adaptive threshold (base-line) for selecting the proper gesture model.

The effects of threshold in credit card fraud detection system is investigated by (Alese

et al. , 2012). They noted that different methods have been implemented to detect fraud

but a threshold value add an extra advantage to detect anomalies in on-line transactions.

They implemented a method of selecting adaptive/dynamic threshold values that are based

on individual card holder spending profile. The process of detecting fraud in credit card

on-line transaction involves training of data with HMM algorithms, namely, forward-

backward for non-optimized and Baum-Welch for optimized HMM. Prediction of hidden

states via Viterbi for non-optimized states and posterior-Viterbi for the optimized states.

2.5 Simulation

Simulation techniques continue to cover the gap where real data is missing. The advances

in new methods and different applications continue to be evident (Capuano et al. , 2009;

Duan and Simonato , 1998; Eisenberg and Noe , 2001; Haugh and Kogan , 2004; Johnson

, 2003; Samik , 2008; Stanley , 2006; Terejanu , 2002).

The standard MCS procedure for computing the prices of the derivative securities

is modified in (Duan and Simonato , 1998). This modification imposes the martingale

property on the simulated sample paths of the underlying asset price, a procedure they re-

ferred to as the empirical martingale simulation (EMS). Simulation based on EMS yields

results with substantial variance reduction, and the method dominates the conventional

simulation methods in terms of computing time and price accuracy. MCS is generally

numerically intensive if a high degree of accuracy is desired. The simulated paths for the

underlying asset price almost always fail to posses the martingale property even though

the theoretical model does. When EMS was used, even for small simulated samples, no

statistically significant biases was observed. A note of concern was that EMS cannot pro-

vide a standard error estimate of its Monte Carlo price from using only one simulated

sample (Duan and Simonato , 1998).
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A simulation approach by Eisenberg and Noe (2001) for systemic risk in financial

systems shows that there exists a unique clearing vector for a complex financial system.

The algorithm clears both the financial system in a computationally efficient fashion and

provides information on the systemic risk faced by the individual system firms.

Applications of simulation are taking ever new dimensions. Network finance analysis,

financial systems contagion, economic networks, social capital formation, disease spread

simulations, investment decisions, and other network applications (Capuano et al. , 2009;

Eisenberg and Noe , 2001; Johnson , 2003; Stanley , 2006). The availability of power-

ful computing capabilities means that simulation techniques have an increasing use due

to their diverse applicability and versatility. Stanley (2006) observes that with today’s

computer firepower, simulation is being used on individual agent based models and the

results compared with those of differential equation models. But, the use of stochastic

simulations that account for the social network of individual agents is crucial in providing

a deeper understanding of the interactions between the individuals.

2.5.1 Conclusion

The agent dynamics in the social and economic network assumes that the actions of the

agents emits a signal that is stochastic, non stationary and is corrupted with noise due to

observations distortions and information asymmetry. Capturing this set of information

increases the chances of effective modeling of the social and economic network and its

effect on the credit quality of the obligors in the loan portfolio. Hidden Markov model

classifies the agents into the different credit quality levels after emitting the CQS.
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Chapter 3

Mathematical Preliminaries

This chapter is an highlight of the different mathematical techniques and methods that are

used in this study. The areas considered are SVD, Markov process, stochastic process,

MCS and reputation computation.

3.1 Singular Value Decomposition

We begin with an introduction of some of the basics of matrices that are important to keep

in mind (Carla and Mason , 2012);

(i) A square matrix is symmetric if AT = A

(ii) A square matrix A is orthogonally diagonalizable if there exist an orthogonal matrix

U and a diagonal matrix S such that, A = USUT = USU−1, where U, S and A

have all the same size

(iii) A vector norm is a function ||.|| : R → V that assigns a real-valued length to each

vector in V and satisfies the following conditions

• ||y|| ≥ 0 and ||y|| = 0 if and only if y = 0

• ||y + z|| ≤ ||y||+ ||z||

• ||λy|| = |λ|||y||

(iv) The matrix 2−norm is the maximum stretch factor for the length of a vector after

applying the matrix to it. We have ||A||2 =
√
σmax(A) and ||A−1||2 = 1√

σmin(A)
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The singular value decomposition is a matrix factorization method and has been used

widely in different applications ever since an efficient algorithm for its computation was

developed. The variety of applications are in engineering, chemistry, ecology, geology,

geophysics, biomedical, scientific computing, automatic control and many other areas

(Carla and Mason , 2012; Kalman , 1996; Lee et al. , 2013; musco , 2015; Sadek ,

2012; Soman et al. , 2009). SVD is a matrix factorization technique that is stable and

effective method to split the system into a set of linearly independent components, each

of them bearing its own energy contribution (Sadek , 2012). SVD is used for optimal low

rank approximation and a partial SVD can be used to construct a rank k approximation

(Kalman , 1996).

SVD was discovered over 100 years ago independently by Eugenio Beltrami (1835−

1899) and Camille Jordan (1838− 1921). James Joseph Sylvester (1814− 1897), Erhard

Schmidt (1876−1959), and Hermann Weyl (1885−1955) also (Carla and Mason , 2012)

discovered the SVD using different methods . SVD is a powerful technique in matrix

computations and analysis (Carla and Mason , 2012; Kalman , 1996; Leach , 1995);

(i) It reduces high dimensional, multidimensional and highly variable set of data to

a lower dimensional space that exposes the substructure of the original data more

clearly.

(ii) SVD has interesting and attractive algebraic properties and conveys important ge-

ometrical and theoretical insights about linear transformations. It exposes the geo-

metric structure of a matrix.

(iii) SVD is closely related to the theory of diagonalizing a symmetric matrix

(iv) SVD is a numerically reliable estimate of the effective rank of a matrix. Even for

linearly independent columns, the dependencies can be detected.

(v) Availability of algorithms to compute SVD with low computer resource utilization

even with large matrices. A superhero in the fight against monstrous data that is

available in every scientific discipline

(vi) Employed in a variety of applications such as least squares problems, noise signal

filtering, time series, etc
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SVD can be applied to any type of matrix from square, to rectangular, to Hermitian

matrices (those that are identical with their conjugate transpose). Let A be an m × k

matrix which can be represented as the product of two orthonormal matrices U and V

and a diagonal matrix S (Carla and Mason , 2012);

A = Um×mSm×kV
T
k×k (3.1)

This is expressed in matrix form as;

Am×k =


| |

u1 . . . um

| |




σ1

. . .

σm



− vT1 −

...

− vTn −


The columns of U, that is ui are the eigenvectors of AAT , and the columns of V,

that is vi are the eigenvectors of ATA. The singular values, σi on the diagonal of S are

the square roots of the nonzero eigenvalues of both AAT and ATA, which are ordered

decreasingly (Carla and Mason , 2012). We note that U1 . . .Ur spans the column space

of A and Ur+1 . . .Uk spans the null space of matrix AT . The singular values are at most

min(m, k) with r ≤ min(m, k). For matrix V, we have V1 . . .Vr spans the column space

of matrix AT and Vr+1 . . .Vm spanning the null space of matrix A. The SVD expansion

is (Leach , 1995)

A = U1S1V
T
1 + U2S2V

T
2 + . . .+ UmSmV

T
m (3.2)

An important measure of the linear independence of the columns of the matrices in

SVD is the condition number. Let C(A) be the condition number which is a measure of

linear independence between the column vectors of the matrix A. then

C(A) =
σmax

σmin
, with C(A) ≥ 1 (3.3)

=
||A||2
||A−1||2

If C(A) is close to 1, the columns of A are very independent. If C(A) is very large, the

columns of matrix A are nearly dependent (Carla and Mason , 2012; Leach , 1995). We
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are interested in these three matrices, U, S, and V in the estimation of what is referred

to as the credit risk analysis factors. The factors are estimated from the reputation ratings

of the agents, interactions, relationships, the private data and the demographic variables

of the agents.

3.2 Stochastic Process

We lack sufficient data to exactly estimate the agent interactions and how the system

behaves. The system is dynamic, complex and evolves with time to changing action

choice of the agents.

3.2.1 Random variable

A HMM has a hidden Markov chain which is a stochastic process with a sequence of

random variables. A random variable takes on values with certain probabilities, and might

or might not have the ability to influence each other. If Y and Y are two random variables,

and (Ephraim and Merhav , 2002; Ross , 2007),

P (Y = Y, Y = y) = P (Y = Y)P (Y = y)

then Y and Y are statistically independent - denoted as Y⊥Y . If the two random variables

are not independent of each other depending on the knowledge of a third random variable,

then (Ephraim and Merhav , 2002)

P (Y = Y, Y = y|Y = Y) = P (Y = Y|Y = Y)P (Y = y|Y = Y)

is the conditional independence and is different from unconditional (for marginal) inde-

pendence, and it might be true that Y⊥Y but not true that Y⊥Y |Y.

A discrete time stochastic process is a collection {Yt} for t ∈ [0, T ] of random vari-

ables ordered by the discrete time index t. The distribution for each of the variables Yt

can be arbitrary and different at each time t.

Definition 3.1 A stochastic process Y = {Yt, t ∈ [0, T ]} is a collection of random vari-

ables with index set I , where t is the time. A realization of Y is called a sample path.
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A discrete time stochastic process {Yt} is said to have independent increments if for all

t ∈ [0, T ], the random variables (Ephraim and Merhav , 2002),

Y (t1), Y (t2), . . . , Y (T ))

are independent. It is said to possess stationary increments if Y (t + τ) − Y (t) has the

same distribution ∀t and the distribution depends only on τ .

Definition 3.2 Stationary Stochastic Process. The stochastic process {Yt : t ∈ [0, T ]}

is said to be (strongly) stationary if the two collections of random variables (Ephraim and

Merhav , 2002)

{Y1, . . . , Yt} and {Yt+τ , . . . , YT}

have the same joint probability distributions for all t and τ

3.2.2 Martingale

Martingales are fundamental to the analysis of stochastic processes as they are random

variables whose future variations are completely unpredictable given the current informa-

tion set (Neftci , 2000). A martingale is always defined with respect to some information

set and some probability measure. Changes in the probabilities associated with the pro-

cess will make the process under consideration cease to be a martingale. The ability of

the loan obligor is not fully known given the current information but we know the status

at any given time t in the process of loan repayment. HMM can track the possible signs

of difficulty of the agents in meeting their future obligations with the bank.

Let Y be a random variable on the probability space (Ω,F,P), and let G be a sub−σ−field

of F. The conditional mean E{Y |G} exists if E{|Y |} <∞(Neftci , 2000)

Definition 3.3 Let F = {F1,F2, . . . ,FT} denote a sequence of sub−σ−fields of F. The

sequence F is called a filtration if Ft ⊆ Ft+τ , t ∈ [0, T ] and that FT ⊆ F, (Neftci , 2000).

Definition 3.4 If F = {Ft, t ∈ [0, T ]} is a filtration, and Y = {Yt, t ∈ [0, T ]} is a

discrete time stochastic process, then Y is said to be adapted to F if Yt is Ft measurable

for each t, (Neftci , 2000).
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Let Y = {Yt, t ∈ [0, T ]} denote a random process on the probability space. The

process is said to be adapted to its natural filtration {Ft, t ∈ [0, T ]} if Yt is Ft measurable

∀t. Intuitively, F is the collection of events whose occurrence can be determined from

observations of the process up to time t and an F−measurable random variable is one

whose value can be determined by time t. If Y is any random variable, then E[Y |Ft] is

the ‘best‘ estimate of Y based on observations of the process up to time t(Neftci , 2000).

Definition 3.5 A discrete time stochastic process Y = {Yt, t ∈ [0, T ]} is called a martin-

gale with respect to the filtration F = {Ft, t ∈ [0, T ]}, (Neftci , 2000).

(i) Y is adapted to F, that is, Yt is Ft measurable

(ii) E[Yt] <∞

(iii) E[Yt+1|F0,F1, . . . ,Ft] = Yt, a.s, the best forecast of unobserved future value is

the last observation on Yt.

A stochastic process Y = {Yt, t ∈ [0, T ]} is called submartingale if E[Yt+1|Ft] ≥ Yt

and is a supermartingale if E[Yt+1|Ft] ≤ Yt. Yt is said to be a martingale with respect

to Ft.(Neftci , 2000). A Martingale, (1) makes the expected future value conditional on

its present value or on the set of information that is known. (2) is not expected to drift

upwards or downwards and thus it is a notion of a fair game. (3) is always defined with

respect to some information set, and with respect to some probability measure (Bilmes ,

2006; Neftci , 2000).

Martingale is invariant to certain operations that would destroy more classical rela-

tions like independence. Two states are considered given the number of individuals and

a certain number of transitions from one state to the next in a given time interval. They

observe that censoring can be incorporated easily. Martingale theory provides a fertile en-

vironment for discussing stochastic variables in a continuous time. Increments of a mar-

tingale should be totally unpredictable, no matter how small the time interval is (Neftci ,

2000). Doob-Meyer decomposition implies that, under some general conditions, an arbi-

trary continuous-time process can be decomposed into a martingale process. The theory

caters for time dynamics and this blends in well with stochastic environments. As we are

working with discrete partition of a continuous time interval, the decomposition is im-

portant. For example, in the case of observed asset prices, occasional jumps and upward
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trends are observed at the same time, which can be converted into martingales. It is under

the martingale principles that the stopping time is implemented (Neftci , 2000).

3.2.3 Stopping time

Optimal stopping times are generally obtained by using dynamic programming approach

on which Viterbi algorithm of the hidden Markov model is based. The stopping times are

special type of random variables that assume as outcomes random time periods, τ̃ . If τ̃ is

a stopping time, then τ̃ is random and the range of its values is [0, T ]. When the outcome

is observed, τ̃ = t (Neftci , 2000). This tracks the time a loan obligor pays off all the

money or defaults in the payment process given a certain default level or the loan reaches

its maturity time, T .

If (Yt, t ∈ [0, T ]) is a stochastic process, then the non-negative integer valued random

variable T is a stopping time for Y. If the event {T = t} depends only on (Y0, Y1, . . . , YT );

and does not depend on {Yt+k; k ≥ 1}

Definition 3.6 A non-negative integer-valued random variable T is called a stopping

time with respect to (Xr; r ≥ 0) if, ∀ τ, the event T = τ may depend only on

{Y0, Y1, . . . , Yτ} and does not depend on Yτ+m; m > 0.

Theorem 3.1 Optional Stopping Theorem

Let {Yt : t ∈ [0, T ]} be a sequence of random variables defined on a probability space

(Ω,F,P), which is a martingale sequence with respect to the filtration (Ω,Ft,P) and

0 ≤ τ̃1 ≤ τ2 ≤ T be two bounded stopping times. Then E[Yτ̃2|Fτ̃1 ] = Yτ̃1

(Stirzaker , 2005).

Theorem 3.2 Let (Yt; t ∈ [0, T ]) be a martingale, and let T be a stopping time for Y .

Define

Zt =

 Yt, if t ≤ T

YT , otherwise
(3.4)

So, Zt is essentially Yt stopped at T. Then, Zt is a Martingale with respect to Yt

(Stirzaker , 2005).

47



3.3 Markov Process

Markov chain is named after Andrei A. Markov (1856 − 1922) who first published his

result in 1906. His research work on Markov chains launched the study of stochastic

processes that led to a lot of applications.

A Markov process is a stochastic (random) process in which the probability distribu-

tion of the current value is conditionally independent of the series of past value. This

characteristic is called the Markov property, that is, evolution occurs in a discrete time

and the probability distribution of a state at a given time is explicitly dependent only on

the previous state. A Markov process is the most useful and important class of stochastic

models (Stirzaker , 2005).

A Markov has a property that the conditional probability distribution of future states of

the process given the present state and all past states, depends only upon the present state

and only on the recent past state. For the Markov chain, they have a well developed theory

that allows us to do computations. Markov chains have successfully modeled a huge range

of scientific and social phenomena such as in biology, economics and physical systems

as they combine tractability with almost limitless complexity of behaviour (Stirzaker ,

2005).

Definition 3.7 A process {Yt : t ∈ [0, T ]} is said to be a Markov process if it satisfies

the Markov property,

P (Yt = yt|Yt−1 = yt−1, , . . . , Y1 = y1) (3.5)

= P (Yt = yt|Yt−1 = yt−1), ∀t,

If the state space S = {1, 2, . . . ,M}, then, it is a finite Markov chain and since we are

dealing with chains, Yt can take discrete values from a finite or a countable infinite set.

This countable set S is called the state space of the chain (Stirzaker , 2005).

A Markov chain is a discrete time stochastic process with the Markov property. It is a

first order Markov process in which the probability of the next ‘future’ state is dependent

only on the present state and the ‘past’ states are irrelevant once the present state is given.

Starting from a given initial state, the consecutive transitions from a state to the next one

produce a time evolution of the chain that is completely represented by a sequence of

states that a priori are to be considered random. The Markov process characterizes our
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HMM where the stochastic process is transformed into the observed outcome through the

stochastic process of choice made by the agents in the SEN (Volker , 2010).

Markov chain is viewed as a finite state automata with probabilistic state transitions

that are either infinite or finite. Evolution of the chain is determined by the state transition

probabilities that are assumed to be time-independent. The assumption of independence

on time gives rise to time-homogeneous (or just homogeneous) Markov chain. This tran-

sitions form a stochastic transition matrix (Bilmes , 2006).

If P (Yt = i|Yt−1 = j) = Pji, then the chain is called homogeneous. The array

P = (Pji), j, i ∈ S is called the matrix of transition probabilities; the chain Y is said

to be the Markov (P ). If
∑
Pji = 1, then the matrix P is said to be stochastic, else if∑

Pji = 1, and
∑
Pij = 1, then it is said to be doubly stochastic.

3.3.1 Markov assumption

The hth-order Markov chain can always be converted into an equivalent first-order Markov

chain. Given a sequence of data Ŷ = {y1, . . . , yT} sampled from the random variable Y

the likelihood can be written as

P (Y |M) =
T∏
t=1

P (yt)

Where M are the number of states in the Markov chain. When working with sequen-

tial data (correlation among subsequent samples) the identical independent distributed

assumption is no longer a good approximation. There is time correlation between the dif-

ferent samples (Bilmes , 2006). Instead of assuming independence, we assume a casual

dependence among the given samples;

P (Y |M) = P (yt|yT , . . . y1) (3.6)

= P (yt|yt−1, . . . , y1)P (yt−1|yt−2, . . . , y1)P (y2|y1)

= P (y1)
T∏
t=2

P (yt|y1, . . . , yt−1)

= P (y1)
T∏
t=2

P (yt|yt−1)

This is computationally hard and we simplify it by applying a Markov assumption

P (yt|yt−1, . . . , y1) ≈ P (yt|yt−1)
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and is called the first order Markov assumption as the outcome of yt is only dependent on

the outcome at yt−1. The observation variable Y in Markov models can have an obser-

vation sequence y1, . . . , yT where each of the variables yt may take one of the M states

(S1, . . . , SM). The likelihood of the discrete samples Y = {y1, . . . , yT}can be calculated

as

P (Y |M) = P (y1 = Si)
T∏
t=1

P (yt = Sj|yt−1 = Si)

Therefore, a hth order Markov chain may be transformed into a first order chain. As-

suming a first-order Markov chain possess a sufficient states, there is no inherent fidelity

loss when using a first-order as opposed to an hth order Markov chain (Bilmes , 2006;

Koubaa , 2008). We will use P (yt = j|yt−1 = i) and P (yt = Sj|yt−1 = Si) interchange-

ably to imply a transition from state i (Si) at time t− 1 to state j (Sj) at time t (Volker ,

2010)

3.3.2 Markov model

The conditional probabilities P (yt = Sj|yt−1 = Si) are referred to as state transition

probabilities or simply transition probabilities, where

aij = P (yt = Sj|yt−1 = Si)

We can assume that the transition probabilities are homogeneous, which means that

the probabilities do not change over time, so

P (yt = Sj|yt−1 = Si) = P (yt+h = Sj|yt−1+h = Si)

The transition probabilities can be written as a transition matrix, AM×M

A =



a11 a12 . . . a1M

a21 a22 . . . a2M
...

... . . . ...

aM1 aM2 . . . aMM


Each element in A is a probability of staying or jumping to another state, then,

(i) aij ≥ 0, ∀i, j
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(ii)
∑M

j=1 aij = 1 for i = 1, . . . ,M

A full characterization of the Markov model is by including the initial state probability

which is given as

πi(1) = P (x1) = Si; or π(1) = [P (y1 = S1), P (y1 = S2) . . . P (y1 = SM)]T .

This is the probability of being in one of the M states at the first state (Koubaa , 2008).

3.3.3 Homogeneous Markov chain

Time homogeneous Markov chain(s) with time homogeneous transition probabilities are

processes where

Pij = P (Yk+1 = j|Yk = i) = P (Yk = j|Yk−1 = i)

and Pij is said to be stationary transition probability. The Yk is a Markov chain of order

one. Even though the one step transition is independent of k, this does not mean that the

joint probability of Yk+1 and Yk is also independent of k,

P (Yt+1 = j and Yt = i) = P (Yt+1 = j|Yt = i)P (Yt = i) (3.7)

= PijP (Yt = i)

A time homogeneous Markov chain is stationary and there can be more than one

stationary distribution for a given chain (as is the case with eigenvector of a matrix).

The condition of stationarity for the chain depends on if the chain ‘admits’ a stationary

distribution, and has positive probability only for positive-recurrent states (states that are

re-visited). We note that the time homogeneous property of a Markov chain is distinct

from the stationarity property. Stationarity implies time-homogeneity but on the other

hand, a time homogeneous chain might not admit a stationary distribution and does not

correspond to a stationary random process (Bilmes , 2006).

We note that if the process is stationary, then

P (Yt = i, Yt−1 = j) = P (Yt−1 = i, Yt−2 = j)

and P (Yt = i) = P (Yt−1 = i)

Therefore

aij(t) =
P (Yt = i, Yt−1 = j)

P (Yt−1 = j)
=
P (Yt−1 = i, Yt−2 = j)

P (Yt−2 = j)
= aij(t− 1)
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So, by induction, aij(t) = aij(t+τ) for all τ , and the chain is time homogeneous (Bilmes ,

2006). On the other hand, a time homogeneous Markov chain might not admit a stationary

distribution and therefore never correspond to a stationary random process.

3.3.3.1 State probabilities

We are interested in the probability of finding the chain at various states, that is (Bilmes ,

2006),

πi(t) = P (Yt = i)

By application of the total probability, we can write

πi(t) =
∑
j

P (Yt = i|Yt−1 = j)P (Yt−1 = j) =
∑
j

Pij(t)πj(t− 1)

In vector form, for the homogeneous Markov chain, we write

π(t) = π(t− 1)P

and for the non-homogeneous Markov Chain, we write

π(t) = π(t− 1)P (k)

3.3.4 Classification of states

We consider a Markov chain Yt with transition probability matrix A and a set of states

S. A state j is said to be accessible (or reachable) from i to j if for some h ≥ 0 the

probability of going from i to j in h steps is positive, that is, P (h)
ij . If i→ j and j → i, we

say that i and j communicate and this is denoted as i↔ j.

The equivalence relation↔ on the set of states indicates that the states communicate.

The equivalence relation satisfies the following properties

(i) It is reflexive: i↔ j for all i ∈ I

(ii) It is symmetric: i↔ j if and only if j ↔ i

(iii) It is transitive: if i↔ j and j ↔ k then i↔ k

An equivalence relation on a set S decomposes the set into equivalence classes. If S

is countable, then it can be partitioned into subsets (Ephraim and Merhav , 2002; Koubaa

, 2008; Stirzaker , 2005);
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(i) A stochastic matrix is called irreducible (ergodic) if the states consists of a single

communicating class, that is, all states communicate with each other, i↔ j.

(ii) A state i is said to be transient if after visiting the state, it is possible for it never to

be visited again. We have two types of recurrent states, positive and null recurrent.

(iii) A state i is said to be null-recurrent (less common) if it is not transient but the

expected return time is infinite. A state is positive-recurrent if it is not transient

and the expected return time to that state is finite. For a Markov chain with a finite

number of states, a state can only be either positive-recurrent or transient.

(iv) A state i is periodic with period d > 1, if d is the smallest number such that all

paths leading from state i back to state i have a multiple of transitions. A state is

aperiodic if it has period equal to one. A path is a sequence of states, where each

transition has a positive probability of occurring .

3.3.5 Steady state

We recall that the state probability, the probability of finding the Markov chain at state i

after the tth step is given by

πi ≡ P (Yt = i)

We are interested in what happens in the long run, that is, πi = limt→∞ πi(t). This is

referred to as steady state or equilibrium or stationary state probability. The existence of

a steady state implies that π(t + 1) ≈ π(t). Therefore, the steady state probabilities are

given the solution to the equations (Koubaa , 2008)

π = πP and
∑
i

πi = 1

The presence of periodic states in irreducible Markov chain prevents the existence of

a steady state probabilities.

3.4 Reputation Computation

Trust is easy to recognize because we experience and rely on it everyday. It can manifest

itself in many different forms, making it quite challenging to define. Reputation is what
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is generally said or believed about a person’s or thing’s character or standing. Reputa-

tion is a collective measure of trustworthiness from a social network based on the ratings

from members in that community (Josang et al. , 2007). Therefore, reputation and trust-

worthiness are closely linked with trust being a complex social relationship Dubois et al.

(2011).

We rely on trust everyday for every social transaction. There is a chance that one can

defect against one’s opponent so as to increase one’s personal gain (Mui , 2002). There

has been a rise in virtual communities such as online electronic markets. These markets

use an online reputation rating system which attempts to provide a summary of a user’s

reputation history. With so much interactions and the content created online, the question

of whom and what to trust has become an increasingly complex and important challenge

(Dubois et al. , 2011). Reputation systems are expected to posses the following properties

(Josang et al. , 2007)

(i) Entities must be long lived, so that with every interaction there is always an expec-

tation of future interactions. This means that it should be impossible or difficult for

an agent to change identity and re-enter as a new agent.

(ii) Ratings about current interactions are captured and distributed. Agents should be

willing to provide ratings.

(iii) Ratings about past interactions must guide decisions about current interactions.

Agents must respond to reputation system ratings and this is reflected in their activ-

ities and interactions

Trust and trustworthiness are positively correlated across societies (Knack and Keefer

, 1997). Reputation and trust rating systems have a wide applications with many different

types of mechanisms. No single solution is known to exist that is suitable in all contexts

and applications. A reputation system design depends on constraints available and type

of information that can be used as input ratings. Basic criteria for judging the quality and

soundness of reputation computation engines (Josang et al. , 2007)

(i) Accuracy for long-term performance: Must have the capability to distinguish be-

tween unknown quality and poor long term performance
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(ii) Weighting toward current behaviour: Tdhis is to detect sudden changes in the agent

trustworthiness

(iii) Robustness against attacks: Resist attempts by the agents to manipulate the reputa-

tion ratings scores.

(iv) Smoothness: A new single score added should not influence the score significantly

1

23

R̃

Figure 3.1: Three agents in a network

A reputation computation system showing a connection of three agents and the reputation

engine (R̃) used to estimate their reputation ratings.

Reputation systems are typically based on agents information on each other resulting

from personal experiences. A number of reputation computational engines exists and we

have summarized a five of them according to (Josang et al. , 2007);

(i) Simple summation or average of ratings: The method applies the summation prin-

ciple with the sum of positive ratings done separately with those of the negative

ratings. A principle applied by the eBay’s website reputation forum.

(ii) Bayesian system: They take positive and negative ratings as input and by use of sta-

tistical updating of beta probability density functions, they output reputation scores.

(iii) Discrete trust models: They use discrete measures ; an agent can be referred to as

having high trust level, medium trust level, fair trust level or poor trust level. The

limitation is that they are not easy in computations algorithms.
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(iv) Belief models: Based on probability theory but with the assumption that the sum of

probabilities over all possible outcomes is not equal to 1. The remaining probability

is the uncertainty.

(v) Flow models: Reputation is computed by transitive iteration through loops or long

chains. Some of these models assume a constant reputation weight for the whole

community; while others do not always require the sum of the trust scores to be

constant.

We have used the flow model in this research work to compute the reputation ratings of

the agents in the network and thereafter use SVD to estimate the trust levels of the agents

in the network.

3.5 Monte Carlo Simulation

Simulation is a numerical technique applied in conducting experiments by imitating a

real life situation using logical and mathematics models. This estimates the likelihood of

different possible outcomes probable over a given period of time. Simulation can be used

in a number of situations with a lot of success (Rubinstein , 1981):

(i) If the process to obtain data is impossible or extremely expensive. The simulated

data can then be used to formulate and test an hypothesis about the system under

study.

(ii) When it is impossible or very costly to validate the mathematical model that de-

scribes the system

(iii) If the system cannot be modeled with a tractable numerical model to offer a analyt-

ical solution, then simulation can cover that gap.

Monte Carlo simulation (MCS) is a simulation technique that uses repeated random

sampling and statistical analysis to compute the desired results. In most cases, an an-

alytical solution is not known (Terejanu , 2002). A mathematical model is used where

input parameters are input in the model, then processed through the mathematical formu-

las and the result is one or more outputs. MCS is a methodical way of doing the so called

what-if-analysis (Samik , 2008).
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Normally, we identify a statistical distribution and draw random samples from the

distribution, which represents the values of the input variables. Each simulation run has

output parameter. The output values are collected to perform statistical analysis on the

values of the output parameters to make decisions. A statistical distribution or probability

distribution describe the outcomes of varying a random variable and the probability of

occurrence of those outcomes. Simulation is only as good as the estimates you make as

it represents probabilities or uncertainties and not certainty (Samik , 2008). MCS has

varied application areas from finance, real options analysis, portfolio analysis, to personal

financial planning among other areas (Samik , 2008).

Input Data Math Model Output Analysis

Figure 3.2: A diagram of the simulation process in mathematical models

The diagram shows the process used in mathematical models, where input parameters

are processed through mathematical formulas in the model and it results in one or more

outputs.

Simulation efficiency can be increased by: first, developing good simulation algo-

rithm; second, minimizing the storage requirement; third, minimizing the execution time;

fourth, decreasing the variability of the simulation output, and the techniques used to re-

duce variability are called variance reduction techniques (Haugh , 2010). A complete

simulation process has a large number of outputs derived from the input values. The out-

put from the model describe the probability of achieving the results based on the input

values in the model (Haugh , 2010). The standard simulation algorithm is;

(i) Generate W1,W2, . . . ,Wm

(ii) Estimate O with Ôm = 1
m

Σm
i=1Wi, where Wi = h(Wi)

(iii) Approximate 100(1− α)% for the confidence interval

[Ôm − Z1−α/2
σ̂m√
m
, Ôm + Z1−α/2

σ̂m√
m

]

where σ̂m is the usual estimate of var(W) based on W1,W2, . . . ,Wm

A number of steps are normally performed for the MCS as outlined by (Samik , 2008);
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(i) Static model generation - a deterministic model is used that closely resembles the

real scenario where mathematical relationships are used with the input parameters

and transformed with the desired output.

(ii) Input distribution identification - If the deterministic model working as expected,

we add the risk components of the model which is from the stochastic nature of the

input variables, governed by the underlying distribution of the variables

(iii) Random variable generation -We generate a set of random numbers or random sam-

ples from a random number generator (RNG). A RNG is a computational device

designed to generate a sequence of numbers that appear to be independent draws

from a population. We repeat the process of generating more random numbers for

each input distribution and collect the different sets of possible output values.

(iv) Analysis and decision making - We perform statistical analysis on the output values.

The statistical confidence is key for the decisions after running the simulations.

To increase the accuracy in MCS, one way is by increasing the number of samples

but the convergence is very slow. A better way is to decrease the variance in the samples

simulated. This is achieved through the variance reduction techniques (Boyle , 1977;

Terejanu , 2002).

3.5.1 Variance reduction techniques

The variance reduction technique refines and improves the efficiency of the simulation. A

number of methods are available; stratified sampling, importance sampling, control vari-

ates, antithetic variates, acceptance rejection sampling, partial sampling, among others

(Terejanu , 2002). We briefly mention three of these techniques.

3.5.1.1 Antithetic Variable

In this technique, a simulation trial involves generating two random numbers from the

specific probability distribution. The first value f1 is generated in the usual way. The

second number f2 is generated by changing the sign of the number generated. So, if f1

and f2 are drawn from p(y), then, the estimate of the sample drawn f̂ is (Boyle , 1977);
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f̂ =
f1 + f2

2
(3.8)

and the variance of the two samples drawn to estimate one sample is;

Var(f̂) = Var[
1

2
(f1 + f2)] =

1

4
Var[f1] +

1

4
Var[f2] +

1

2
Cov[f1, f2] (3.9)

The above variance analysis indicates that

Cov[f1, f2] ≈


= 0, If estimate remains the same due to samples independence

< 0 If the estimate is improved

> 0 If the actual performance is worse
(3.10)

The confidence interval is computed by estimating the standard error using the sample

standard deviation of the samples from f̄ . Thus, the antithetic variate exploits the exis-

tence of the negative correlation between two estimates.

3.5.1.2 Acceptance rejection sampling

In this technique, we have an upper bound for the underlying probability distribution

function p(y) and we use a proposal distribution q(y) also called the importance density.

Then, there is c <∞ such that p(x) < cq(x). The algorithm for the rejection sampling is

(Terejanu , 2002)

(a) Select a uniform random variable u ∼ U(0, 1)

(b) Draw a sample y ∼ q(y)

(c) if u < p(y)
cq(y)

then

(d) Accept y

(e) else

(f) reject it and repeat the process

(g) end if

The choice of c has a profound effect on the results as a too small c has a low rejection

rate and a too big c has low acceptance rate.
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3.5.1.3 Control variates

In this technique, the evaluation of an unknown expectation is replaced with the evaluation

of the difference between the unknown quantity and a related quantity, whose expectation

is known (Boyle , 1977). We carry out two simulations and let f1 and f2 be the respective

values of the two random numbers. Then, we can write f1 = E[f ∗1 ] and f2 = E[f ∗2 ], where

f ∗1 and f ∗2 are estimate values of the two random numbers respectively. A random variate

f2 is a control variate for f1 if it is correlated with f1. Then,

f̂1 = f ∗1 + (f2 − f ∗2 ) (3.11)

where f2 is the known value of the second random number and the known error (f2− f ∗2 )

is used as a control in the estimation of f1. The value f̂1 adjusts the estimator f1 according

to the difference between the known value f2 and the observed value f ∗2 . We reduce the

variance by comparing the values of the two random numbers, with (Terejanu , 2002);

Var[f̂1] = Var[f ∗1 ] + Var[f2] + Var[f ∗2 ]− 2Cov[F ∗1 , f
∗
2 ] (3.12)

and Var[f2] = 0 since f2 is the known value of the second random number and thus not

a random variable. This control variate technique is effective if the covariance between

f ∗1 and f ∗2 is large, that is, if 2Cov[f ∗1 , f
∗
2 ] > Var[f ∗1 ] + Var[f ∗2 ]. The variance reduction is

achieved.

We have observed that MCS is a very useful mathematical technique for analyzing

uncertain scenarios and providing probabilistic analysis of different situations and ap-

plications. In real-life situations, it is not practical to investigate many factors but in

simulation experiments, we can have hundreds of factors (Kleijnen , 2009).

3.5.2 Conclusion

The mathematical preliminaries introduced in this chapter are captured in different parts

of the methodology and data analysis that are found in the following chapters. SVD

technique is ideal for the estimation of the variables from the matrices generated in the

SEN. The HMM are based on the Markov process, and has a stochastic component to

capture the agents dynamics. Stopping time is used to estimate defaults or non defaults in

the loan portfolio of the obligors who are agents in the SEN.
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Chapter 4

Multiple Agents HMM

This chapter is part of the methodology in which we modify the standard HMM to multi-

ple agents HMM. The agents in the SEN are heterogeneous and one key requirement is to

have a HMM with the capabilities to model the dynamics of each agent individually and

as a group. This brings out the individuality and group dynamics in the SEN interactions

and cyclical inter dependencies. Therefore, the modifications in this chapter forms part of

the contributions brought forward in this study.

4.1 Introduction

The standard hidden Markov model specifications are introduced by outlining the five

parameters of HMM. A modification of the standard HMM is undertaken by introducing

multiple variables in the parameters to cater for the expected observations in the multiple

agent SEN. The modifications in this chapter forms a part of the multiple agents HMM

and one of the major contributions made in this study.

4.2 Standard HMM

The work of Lawrence Rabiner in the year 1989 opened up a whole new frontier in the

field of HMM in his seminal paper (Rabiner , 1989). A hidden Markov model is a dou-

ble embedded stochastic process with two hierarchy levels in which the system being

modeled is assumed to be a Markov process with unobserved state. In a regular Markov

model, the state is directly visible to the observer, and therefore the state transition prob-
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abilities are the only parameters. In HMM, the state is not directly visible ‘hidden’, but

output, dependent on the state, is visible. Each state has a probability distribution over the

possible emissions. This sequence of emissions gives some information about the hidden

states (Mhamanne and Lobo , 2012).

Hidden Markov models (HMMs) are capable statistically to characterize and estimate

the signal in a precise and well defined manner (Rabiner , 1989). These models are

inexpensive, intuitive and versatile for modeling stochastic processes, to estimate and

track activities based on noisy information. States involved are finite and state space

is known but the current state of the process is not known with certainty and has to be

estimated from whatever evidence is available.

HMM makes no marginal independence assumptions, that is, Y⊥Y but the only as-

sumptions of conditional independence exist in an HMM of the form Y⊥Y |Y. Condi-

tional independence has a power to make a statistical model undergo enormous simpli-

fications - this implies that some factorization of the joint distribution exists (Bilmes ,

2006).

4.2.1 Specifications of standard HMM

To fully specify a hidden Markov model, we have five parameters (Rabiner , 1989)

(a) M is the number of states in the model. We denote the set of all possible states as

S = {S1, S2, . . . , SM}

(b) K, the number of distinct observation symbols per state, that is, the discrete alpha-

bet size of the output set. We denote the set of all possible output symbols as

V = {v1, v2, . . . , vK}, the output symbol at time t as Ot. The sequence of observed

symbols is denoted as O = O1O2 . . . OT .

(c) The state transition probability distribution

A = {aij}, where aij = P [qt+1 = Sj|qt = Si], 1 ≤ i, j ≤M

(d) The observation symbol probability distribution in state j,

B = {bj(k)}, where bj(k) = P [Ot = vk|qt = Sj], 1 ≤ j ≤M, 1 ≤ k ≤ K.

(e) The initial state distributions
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π = {πi}, where πi = P [q1 = Si], 1 ≤ i ≤M

4.2.2 Multiple agents HMM parameters modification

The modification of the standard hidden Markov model to cater for the multiple agents

in the SEN is undertaken in this section. This modification is important as part of the

contributions of the study and to offer a HMM for the multiple agents in the network as

the model emits the credit quality scores and levels of the agents under study.

1. The set of hidden states

The set of hidden states are given by;

S = (S1, S2, . . . , SM) (4.1)

Where M is the number of state transitions. If an agent n is connected to all the

agents at time period t, then,

S
(n)
t = Sijt , 1 ≤ i, j ≤M, t = 1 : T

2. State transition probability distribution

Let the transition matrix be given by

At = {aij}M×M , 1 ≤ i, j ≤M

ai,j = P (qt+1 = j|qt = i) (4.2)

Where ai,j is the transition probability from hidden state i to hidden state j, while

qt denotes the hidden state at time t. The sequence of hidden state in Markov model

is Q = (q1, . . . , qT )

The set of all the hidden states for the N agents at time t is given in the matrix

Q =



q11 q12 . . . q1T

q21 q22 . . . q2T
...

... . . . ...

qN1 qN2 . . . qNT


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Where qnt is the hidden state of agent n at time t, 1 ≤ n ≤ N, t ∈ [1, T ]. The

structure of this stochastic matrix defines the connection structure of the model, and

the transition probabilities should satisfy the normal stochastic constraints with

aij ≥ 0, 1 ≤ i, j ≤M,
∑

aij = 1,

3. Set of observation symbols

The observation of all the N agents at each time t is a vector

Ot = (O
(1)
t , O

(2)
t , . . . , O

(N)
t ) (4.3)

The sequence of T observations made on agent n is

O(n) = (O
(n)
1 , O

(n)
2 , . . . , O

(n)
T )

The set of all the observations for the N agents at time t is given in the matrix

O =



O1
1 O1

1 . . . O1
T

O2
1 O2

2 . . . O2
T

...
... . . . ...

ON
1 ON

2 . . . ON
T


4. Observation symbol probability distribution

Let the observation or emission matrix be given as

B = {bj(νκ)}, 1 ≤ i, j ≤M, 1 ≤ κ ≤ K

bj(κ) = P [Ot = νκ|qt = j], 1 ≤ j ≤M, 1 ≤ κ ≤ K (4.4)

MatrixB is also known as the emission matrix, bj(νκ) is the probability that symbol

νκ is emitted in state j, νκ denotes the κth observation symbol and Ot is the current

parameter vector. The following stochastic constraints must be satisfied

bj(κ) ≥ 0, 1 ≤ j ≤M, 1 ≤ κ ≤ K, (4.5)∑
bj(κ) = 1, 1 ≤ j ≤M
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There are K set of possible observations of the agents

V = {ν1, ν2, . . . , νK}, 1 ≤ κ ≤ K (4.6)

We have K observation symbols per state and each agent net value changes at each

observation time due to their dynamics and connections in the network.

5. Initial state probability distribution

The initial state distribution π = {π(n)
i }, where πi is the probability that the model

is in state i at the time t = 0 with

π
(n)
i = P (qn1 = i), (4.7)

M∑
i=1

π
(n)
i = 1, 1 ≤ i ≤M

We denote an HMM as a triplet λ = (A,B, π), the model training parameters

4.3 Basic Problems for HMM

The three main problems in HMM are probability calculation, state estimation and pa-

rameter estimation, which were solved by Lawrence Rabiner (1989).

4.3.1 Evaluation problem

In this problem, we compute the probability that a given model generates a given sequence

of observations, O = (O(1), . . . , O(N)). That is, given the model λ = (A,B, π), compute

P (O|λ). The most used algorithms to solve the problem are (Rabiner , 1989)

(a) Forward algorithm: find the probability of emission distribution (given a model)

starting from the beginning of the sequence

(b) Backward algorithm: find the probability of emission distribution (given a model)

starting from the end of the sequence

A direct calculation is by enumerating every possible state sequence of length T (obser-

vation times). Consider a fixed state sequence

Qn = qnt, 1 ≤ n ≤ N, 1 ≤ t ≤ T (4.8)
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Likelihood of an observation sequence given a state sequence, or likelihood of an obser-

vation sequence along a single path: the probability of the observation sequence O(n)
t for

the state sequence Qn
t of the same length, determined from a HMM with parameters λ,

the likelihood of O along the path Q for the nth agent is equal to:

P (O(n)|Q(n), λ) =
T∏
t=1

P (O(n)|q(n)t , λ) (4.9)

Joint likelihood of an observation sequence O and a path Q : it is the probability that

O and Q occur simultaneously, P (O,Q|λ), and decomposes into a product of the two

quantities. The joint probability of O and Q is derived from Bayes given as:

P (O(n), Q(n)|λ) = P (O(n)|Q(n), λ) P (Q(n)|λ) (4.10)

The probability of a state sequenceQ = q1, q2, . . . , qn coming from a HMM with parame-

ters λ corresponds to the product of the transition probabilities from one state to the next,

and they are expressed as

P (Q(n)|λ) = π
q
(n)
1
a
q
(n)
1 q

(n)
2
a
q
(n)
2 q

(n)
3
. . . a

q
(n)
T−1q

(n)
T

(4.11)

while the observed probabilities given the model is

P (O(n)|Q(n), λ) =
T∏
t=1

aqnt ,qnt+1
= b

q
(n)
1

(O
(n)
1 )b

q
(n)
2

(O
(n)
2 ) . . . b

q
(n)
T

(O
(n)
T ) (4.12)

The likelihood of an observation sequence O with respect to a HMM with parameter λ

given the model is obtained by summing the joint probabilities over all possible state

sequences

P (O(n)|λ) =
∑
all Q

P (O(n)|Q(n), λ) P (Q(n)|λ)

=
∑

q1,...,qT

π
q
(n)
1
b
q
(n)
1

(O
(n)
1 )a

q
(n)
1 q

(n)
2
b
q
(n)
2

(O
(n)
2 ) . . . (4.13)
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q
(n)
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(n)
T
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q
(n)
T

(O
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T )

At t = 1, the nth agent is in state q(n)1 with probability π
q
(n)
1

and generate the symbol

O
(n)
1 with probability b

q
(n)
1

(O
(n)
1 ). We continue in this manner until t = T from state

q
(n)
T−1 to state q(n)T with probability a

q
(n)
T−1q

(n)
T

and generate symbol O(n)
T with probability

b
q
(n)
T

(O
(n)
T ). The equation (4.14) involves 2TNT calculations and a more efficient proce-

dure is required. The Forward-Backward procedure is used.
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4.3.1.1 Forward variable

The forward variable α(n)
t (i) is defined as

α
(n)
t (i) = P (O

(n)
1 , . . . , O

(n)
t , q

(n)
t = i|λ) (4.14)

That is, the probability of the partial observation sequence until time t and state i at time

t given the model λ. α(n)
t (i) can be obtained inductively, see Appendix A.1.1

4.3.1.2 Backward variable

We consider a backward variable β(n)
t (i) defined as

β
(n)
t (i) = P (O

(n)
t+1, . . . , O

(n)
T |q

(n)
t = i|λ), 1 ≤ t ≤ T (4.15)

That is, the probability of the partial observation sequence from t + 1 to the end, given

state i at time t and the model λ. We can solve β(n)
t (i) inductively, see appendix A.1.2.

4.3.1.3 Forward-backward variable

The Forward-Backward procedure is based on the technique known as dynamic program-

mming (Lyengar , 2005). To apply the procedure, we find a recursive property that allows

us to do calculations for the next instance based on the current one. We can see that

α
(n)
t (i)β

(n)
t (i) = P (O

(n)
t , q

(n)
t = i|λ), (4.16)

1 ≤ i, j ≤M, 1 ≤ n ≤ N

The evaluation problem can be solved by both forward and backward algorithm

P (O(n)|λ) =
M∑
i=1

P (O(n), q
(n)
t = i|λ) (4.17)

=
M∑
i=1

α
(n)
t (i)β

(n)
t (i) =

M∑
i=1

α
(n)
T (i)

4.3.2 Decoding problem

Given a model, λ, and a sequence of observations, i, induce the most likely hidden states

(that best explains the observations) more specifically (Rabiner , 1989)

(i) Find the sequence of internal states that has the highest probability. We use the

Viterbi algorithm

67



(ii) Find for each position the internal state that has the highest probability. Mostly used

algorithm is the posterior decoding algorithm

This involves finding the ‘optimal’ state sequence associated with the given observation

sequence. This optimality criterion maximizes the expected number of correct individual

states. The Viterbi algorithm is used to find the single best state sequence and is based on

dynamic programming method.

4.3.2.1 Viterbi algorithm

This technique is similar to forward algorithm and traces the most likely hidden states

while reproducing the output sequence. It differs from forward algorithm in that the

transition probabilities are maximized at each step, instead of summation. Define an

auxillary variable (Galassi , 2008)

δ
(n)
t (i) = max

q1,...,qT−1

P (q
(n)
1 , . . . , q

(n)
t , O

(n)
1 , . . . , O

(n)
T−1|λ) (4.18)

That is, δ(n)t (i) is the best score (highest probability) along a single path, at time t,

which accounts for the first t observations and ends in state i. By induction

δ
(n)
t+1(j) = bj(O

(n)
t+1)

[
max
1≤i≤M

δ
(n)
t (i)aij

]
(4.19)

with δ
(n)
1 (j) = π

(n)
j bj(O

(n)
1 ), 1 ≤ j ≤M

To retrieve the state sequence, we also need to keep track of the state that maximizes

δ
(n)
t (i) at each time, t. This is done by constructing an array

ψ
(n)
t+1(j) = argmax1≤i≤M

[
δ
(n)
t (i)aij

]
(4.20)

ψ
(n)
t+1(j) is the state at time t from which a transition to state j maximizes the probabil-

ity δ(n)t+1(j). The Viterbi algorithm for finding the optimal state sequence is given in the

appendix A.1.3.

4.3.3 Learning problem

Given the observation sequence O and the model parameters A,B and π, how do we find

the model that best explains the observed data. According to (Rabiner , 1989);
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State 1

State 2

State 3

State 1

State 2

State 3

State 1

State 2

State 3

Figure 4.1: Trellis diagram for a three states HMM

The diagram shows the three possible states the model can take at any given time period

interval. Only one state is reached at each time period.

(i) Find the optimal model based on the most probable sequences. Most used algorithm

is the Viterbi training (that uses recursively the Viterbi algorithm)

(ii) Find the optimal model based on the sequences of the most probable internal states.

Most used algorithm is the Baum Welch algorithm (that uses recursively the poste-

rior decoding algorithm)

How can we adjust the HMM parameters in way that a given set of observations (the

training set) is represented by the model in the best way for the intended application? We

choose λ = (A,B, π) such that P (O(n)|λ) is locally maximized. The iterative procedure

used is the Baum-Welch method.

4.3.3.1 Baum-Welch method

It is also equivalently called the expectation modification or maximization (EM) method.

This method can be derived by maximization of the auxiliary quantity (Rabiner , 1989)

Q(λ, λ̃) =
∑
q

P
(
q
(n)
t |O(n), λ

)
log
(
P [O(n), q

(n)
t , λ̃]

)
over λ̃. We define two more auxiliary variables (Dymarski , 2011)

(i) The first one is the joint event

ξ
(n)
t (i, j) = P (q

(n)
t = i, q

(n)
t+1 = j|O(n), λ)
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which can be expressed as

ξ
(n)
t (i, j) =

P (q
(n)
t = i, q

(n)
t+1 = j, O(n), λ)

P (O(n)|λ)
(4.21)

We use forward and backward variables in (4.21) to get

ξ
(n)
t (i, j) =

α
(n)
t (i)aijβ

(n)
t+1(j)bj(O

(n)
t+1)∑M

i=1

∑M
j=1 α

(n)
t (i)aijβ

(n)
t+1(j)bj(O

(n)
t+1)

(4.22)

This is the probability of being in state i at time t and state j at time t+ 1, given the

model and the observation sequence.

(ii) The second variable is the a posterior probability - state variable

γ
(n)
t (i) = P (q

(n)
t = i|O(n), λ) (4.23)

That is, the probability of being in state i at time t given the observation sequence

O(n) and the model λ. In forward and backward variables, we can express it as

γ
(n)
t (i) =

α
(n)
t (i)β

(n)
t (i)∑M

i=1 α
(n)
t (i)β

(n)
t (i)

(4.24)

α
(n)
t (i) accounts for the partial observation sequence O(n)

1 , . . . , O
(n)
t and state i at

time t. β(n)
t (i) accounts for the remainder of the observation sequenceO(n)

t+1, . . . , O
(n)
T

given the state i at time t.

The relationship between γ(n)t (i) and ξ(n)t (i, j) is given by

γ
(n)
t (i) =

∑
ξ
(n)
t (i, j), 1 ≤ i, j ≤M, 1 ≤ t ≤ T (4.25)

The normalization factor

P (On|λ) =
M∑
i=1

α
(n)
t (i)β

(n)
t (i)

makes γ(n)t (i) a probability measure so that

T∑
t=1

γ
(n)
t (i) = 1

Therefore
T−1∑
t=1

γ
(n)
t (i) = Expected number of transitions from i

T−1∑
t=1

ξ
(n)
t (i, j) = Expected number of transitions from i to j
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4.3.3.2 Baum-Welch Learning Process

This is the parameter updating equations. We want to maximize the quantity P (O(n)|λ).

Assume a starting model λ = (A,B, π) and calculate the α and β values. Then calculate

the γ and ξ values. We now have equations known as re-estimation formulas and are used

to update the HMM parameters.

(i) Initial state probability

π̃
(n)
i = γ

(n)
1 (i), 1 ≤ i ≤M

(ii) State transition probabilities

ãij =

∑T−1
t=1 ξ

(n)
t (i, j)∑T−1

t=1 γ
(n)
t (i)

(iii) Symbol emission probability

b̃j(O
(n)
t ) =

∑T−1
t=1 γ

(n)
t (j)∑T−1

t=1 γ
(n)
t (j)

This adjustment is reasonable as our model parameters are updated by calculating corre-

sponding ratios of proportions. The set of new model parameters is λ̃ = (Ã, B̃, π̃). We

have the new parameters, which proves that, either, (1) the initial model λ defines a crit-

ical point of the likelihood function, in which case λ̃ = λ, or, (2) model λ̃ is more likely

than model λ in the sense that

P (O(n)|λ̃) > P (O(n)|λ)

The iterative use of λ̃ instead of λ improves the probability of O(n) being observed from

the model until some limiting point is reached. The final result of this procedure is called

a maximum likelihood estimate of the HMM. The solution to training of the problem is

in appendix A.1.4

4.3.3.3 Baum’s auxilliary function

Maximizing Baum’s auxilliary function over λ̃

Q(λ, λ̃) =
∑
Q

P (Q(n), O(n), λ) log(P (O(n), Q(n)|λ̃)) (4.26)

71



where λ̃ is the auxilliary variable that corresponds to λ. The maximization of Q(λ, λ̃)

leads to increased likelihood, that is,

max(Q(λ, λ̃))

which implies

P (O(n)|λ̃) ≥ P (O(n)|λ)

the likelihood function converges to a critical point.

4.4 HMM Topologies

A HMM is classified into one of the following types depending on its state transition

4.4.1 Ergodic model

Ergodic model is also known as fully connected or full state transition HMM. Every state

of the model could be reached in a single step from every other state of the model (Rabiner

, 1989).

1

23

Figure 4.2: A three states Ergodic Model

The diagram depicts a three state transition model. Each of the three state is connected to

the other states in the model.

This is the type of HMM topology that is utilized in this study to understand agents

dynamics in a SEN and how they affect them in their loan obligations with a financial

institution. A ergodic transition matrix A with M transition states is expressed as
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A =



a11 a12 . . . a1M

a21 a22 . . . a2M
...

... . . . ...

aM1 aM2 . . . aMM


4.4.2 Left-to-right model

The underlying state sequence associated with the model has the property that as time

increases, the state index increases (or stays the same), that is, the states proceed from left

to right. This model has the desirable property that it can model situations that change

over time. They have the state transition coefficient that aij = 0, for all j < i, that is, no

transitions allowed to states whose indices are lower than the current state. .

Figure 4.3: A three states Left to Right Model

The diagram shows that the model only moves from left to right without any possibility

of transiting from right to left. That is why it is referred to as the left to right model, the

only direction the transition processes can take.

This model is good for modeling order constrained time series whose properties change

over time (Couvreur , 1996). The transition matrix A is upper triangular, that is

A =



a11 a12 . . . a1M

0 a22 . . . a2M
...

... . . . ...

0 0 . . . aMM


and the initial distribution is the unit vector π = (1, 0, . . . , 0)′. The Markov chain evolves

along the states in increasing order and the last state (M ) will be reached infinite time

with probability one (Couvreur , 1996).
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4.4.3 Stationary model

If the initial state distribution π of an ergodic HMM is the unique stationary distribution

π∗, then, π∗ = π∗A

The assumption is valid since the state distribution of an ergodic Markov chain always

converges toward the stationary distribution. λ = (A,B, π∗) is redundant since π∗ can

be computed from A by solving π∗ = π∗A. For stationary ergodic HMMs, λ = (A,B).

For non-ergodic HMM, the solution of π∗ 6= π∗A need not be unique. If π is a stationary

distribution, the Markov Chain {Yt} is stationary (Couvreur , 1996).

4.4.4 HMM architectures

The easiest way to increase an HMM’s accuracy is by increase the number of hidden states

and the capacity of the observation distributions (Bilmes , 2006). As the number of states

M, increases, the computations associated with HMM grow quadratically O(TM2), but

there is an appreciable associated computational cost. Bilmes (2006) notes that HMM

can accurately model any real world probability distribution, given enough hidden states

and a sufficient rich class of observation distributions. HMM is a very powerful class of

probabilistic model families with no limit to its ability to model any distribution.

The conventional HMM has deficiencies and many architectures have been proposed

to handle the deficiencies. Some of the HMM architectures that exist are interactive

(Ching et al. , 2006); factorial and poisson (Bilmes , 2006); auto-regressive (Rabiner ,

1989); layered (Bilmes , 2006); linked (Mathew , 1997); hierarchical (Galassi , 2008;

Ueda , 2004); input output (Bilmes , 2006); and coupled hidden Markov (Mathew , 1997;

Zhong and Ghosh , 2001), among other architectures.

4.4.5 Conclusion

The modifications of the HMM parameters caters for the multiple agents in the SEN.

Each agent has a set of CRAFs that are used in learning and training the HMM. Thus,

each agent has a set of the five HMM parameters, namely λ = {An, Bn, πn, On, Qn},

which are applied in the HMM model to emit the CQS and CQL. The modifications are

also part of the contributions made by this study in the arena of consumer credit using the

HMM as the technique to classify the agents into different CQL and in emitting the CQS.
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Chapter 5

SEN-HMM-CSD Model

This chapter introduces the mathematical techniques, simulation and analysis guidelines

as it forms the methodology of this study. The proposed model has five components which

are discussed in detail to expound on its applicability to consumer credit scoring.

5.1 Introduction

Humans tend to exhibit specific behavioristic profiles that are more individual based but

with some similarities with each other. It is on this basis that HMM are ideal tools to

model this behavior as the patterns in the SEN are dynamic and interdependent amongst

the agents in the network. A real world process like human behaviour produces observable

output which is characterized as a signal. This signal can be modelled to help us learn as

much as possible by use of simulations and other techniques. Hidden Markov models have

been found ideal to characterize the parametric random process of a signal. The stochastic

process generated can be estimated in a precise and well defined manner (Rabiner , 1989).

In this study, HMM has the ability to dynamically segment agents or the bank cus-

tomers in a loan portfolio into credit quality states, and estimate the evolution of customer

relationship with the bank over time. As credit quality changes from time to time, with

certain correlation structure, this induces individual unpredictable credit risk making indi-

vidual analysis of risk dynamic process. This in turn affect the quality of a loan portfolio

through default probabilities. Interaction effects of agents due to interdependency are an

important component of portfolio credit risk. A simple description of the interaction pro-

cess justified by economic and/ or empirical ground is needed. Our model can be used
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for the purposes of credit risk management for consumer loans. The model incorporates

both the economic data (or private data) and social data (or social capital data) from the

network.

The data, both social and economic for the agents is enhanced by the interdependency

of the agents in the SEN. These sets of data from the SEN are used to estimate different

components of credit risk analysis factors (CRAF) for each agent, and extract the obser-

vation and states of the HMM. In turn, the HMM classifies the agents into the respective

credit scores or levels, estimation of the dynamic default threshold and probabilities of

credit for each agent. These credit score estimates are undertaken at each time t ∈ [0, T ].

Therefore, the model captures the every changing economic and social conditions as well

as the dynamism observed in this consumer credit scoring model.

We observe that the N agents are in the SEN while the N obligors are part of the loan

portfolio with the financial institution (N = agents = obligors). We therefore use the

terms agents and obligors interchangeably in some of the sections of this study.

5.2 The Model

We propose a model that is referred to as Socio-Economic Network + Hidden Markov

Model + Credit Scores and Default (SEN-HMM-CSD) model which has five levels out-

lined below;

1. Initial conditions of the agents

2. Social economic network dynamics

3. Extraction of the credit analysis risk factors

4. The Hidden Markov learning and training

5. Credit scoring and default rates

Mathematical models can be used to gain insights into many aspects of the world

around us but there is no mathematical model that is perfect as these models only de-

pict those characteristics of direct interest to the modeler (Stanley , 2006). The SEN-

HMM-CSD model enables us to study the dynamics of the social network, the parameter

estimation in the HMM and the credit quality dynamics as the output.
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Figure 5.1 shows the flow of activities in the SEN-HMM-CSD model for each of the

five levels. In figure 5.2, level 1 and level 2, the initial conditions and the SEN dynamics

forms the first part of SEN-HMM-CSD model. For figure 5.3, it depicts the activities in

levels 3, 4 and 5 which forms the clustering of the CRAF to estimate matrices A and B

for the HMM and CSD components of the SEN-HMM-CSD model. Figure 5.2 and figure

5.3 depicts the flow of activities for the five levels of the model.

We expound on each level in the next section of our work. Before then, the key

assumptions are outlined to simplify the model.

5.2.1 SEN-HMM-CSD model assumptions

Assumptions are an important component of a model as it plays the role of bridging the

‘real world’ to the ‘mathematical world’. The main assumptions in this study are:

(a) No population drift during the life of the loan

(b) Default rates are based on the CQS of the agent and the default threshold

(c) No interest rates and no early repayment

(d) The obligor loans are from the same financial institution

(e) Obligors have similar loan repayment duration and amount

(f) The network is fully connected

(g) Agents affected by social and economic factors

(h) Agents reputation ratings estimates trust and distrust

The assumptions in the model increases the tractability when complexity is involved

but this leads to model limitations which are listed in the next section.

5.2.2 SEN-HMM-CSD model limitations

We highlight some of the limitations as a result of the model assumptions and in reducing

its complexity
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Level 1 - Initial conditions

Simulate private data, age and

number of interactions vectors

Simulate the matrices for relationship and reputation ratings

Level 2 - Agents interact in the network

Estimate feedback, trust, distrust, SEN risk and interactions

Estimate ethical factor, return and changes in private data

Level 3 - Credit risk analysis factors

Apply SVD to extract trust, distrust, SEN

risk, interactions and network feedback

Level 4 - HMM learning and training

Estimate HMM parameters

Level 5 - Credit scores and default rate

Compute credit quality scores and levels (PAGE)

Estimate model false rates, delinquency and stopping time

Compute model performance

Figure 5.1: Flow of activities in the SEN-HMM-CSD model

The flow sequence of activities in the model, from first level to the fifth level.
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ReputationPrivate Data Age

Reputation stateAverage Reputation Encounters

Interactions

RelationshipsFeedback

Reputation

SVD

Interactions Trust Distrust Feedback Relationships

Private Data (PD)

Return on PD Change in PD Private Data Ethical factor

Figure 5.2: Flow chart of the activities in levels 1 and 2 of the network.

The flow chart shows the sequence of activities required in developing the algorithm for

this model with the first two levels of the initial conditions and agents interactions in the

social network. The chart highlights the connectivity evident in these first two levels of

the model.
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CRAF Clustering

State & Observation sequence

Hidden Markov model

A, B Ā, B̄, Ō

Hidden Markov model

CQS and CQL Hybrid credit quality Dynamic threshold

Model false rates

Default and survival

Stopping time

Figure 5.3: Flowchart of the activities in levels 3, 4 and 5 of the network.

The flow chart shows the sequence of activities from credit risk analysis factors, the HMM

estimation and training and the estimation of the credit quality as well as the default rates

and stopping times. That is, from level three to level five of the model.
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(a) All the agents are not likely to have a loan obligation with the same financial insti-

tution. In an ideal situation, this is not always true.

(b) Not all agents are connected to each other.

(c) Peers have the ability to review the reputation ratings of each other in the SEN

(d) The only social and economic data has a bearing on the CQS of the obligors

(e) All the credit facilities for all the agents have same premium and duration

These limitations emphasizes the fact that mathematical models only capture the key

objectives of the modeler.

5.3 Model Simulation

We lack real data set of SEN interactions. There is no benchmark data set available for

this study. A large scale simulation is implemented to test the system where a mixture

of reputation ratings, private data, number of encounters and relationships at the onset

are simulated. The computations, simulations, algorithms, graphs and all the analysis are

based on Matlab version 7.0.1.

5.3.1 Uniform distribution

The simulation is based on the uniform distribution, that is, ∪(0, 1). We have assumed that

each agent has an equal chance in the network to interact with other agents in the system.

This creates a situation where each and every agent is given an equal chance to exhibit the

characteristics exhibited in the SEN. This equal probability mimics the dynamics in the

different SEN variables and its influence in the model output.

5.3.2 Summary of the simulation procedure

This section provides a summary of our overall simulation approach to credit quality

model from the uniform distribution. The HMM software package is accessible in Ap-

pendix (A.2). The numerical formulations for this part are explained in sections that

follows. The main simulation steps for the five levels are:
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(a) Initial conditions

For each variable, draw a sample of size N

(i) Private data, 0 < Xo < 1

(ii) Age, 18 ≤ ϕ ≤ 70

(iii) Number of encounters, N ≥ 1

Draw a sample of N ×N matrix for

(i) Reputation ratings, 1 ≤ R̃ ≤ 5

(ii) Relationships, 0 < Ṙ ≤ 1

(iii) Reputation state, −1 ≤ R̂ ≤ 1

(iv) Average reputation, R̄ (use reputation ratings)

A variance reduction technique is introduced at this starting stage of drawing sam-

ples

(b) Social and economic network dynamics

The simulation of the parameters in this level of the model are based on the results

in (a) above

(i) Estimate the interaction experiences (Ψ) as [bad, neutral or good]= [−1, 0, 1]

(ii) Estimate network feedback (Ψ̇)

(iii) Apply SVD to estimate trust (Θ) using reputation ratings

(iv) Apply SVD to estimate distrust (Θ̂) and SEN risk

(v) Estimate the ethical factor (X̃), return of private data (Ẋ), change in private

data (∆X) and the re-estimated private data (X)

(c) Credit risk analysis factors

The CRAFs is the collection of the data from levels (a) and (b) above. They form a

crucial part of the data set to estimate the credit quality scores and default rates.

(i) The ten CRAF at time t = 0 are trust, distrust, SEN risk, interactions, network

feedback, private data, return on private data, changes in private data, ethical

factor and age
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(ii) From t ≥ 1, we include credit quality score (φ) and distance to default ∆̂ to

be part of the CRAFs. This increases the factors to twelve.

(iii) CRAFs are scaled in the range of (0, 1] for each of the N agents

(d) HMM learning and training

Matlab has inbuilt function to estimate part of the parameters in this section

(i) Estimate matrix Aestn and Best
n using CRAFs with supervised clustering

(ii) Compute On and Qn with a sequence of length, L ≥ 1, 000

(iii) Calculate the maximum likelihoods of An and Bn for each agent

(iv) Calculate Ā, B̄ and Ō

(e) Credit scores and defaults

This part is the last level of the SEN-HMM-CSD model that computes the main

parameters, the CQS and the dynamic threshold among other variables.

(i) Compute the credit quality scores and credit quality level (PAGE)

(ii) Compute the dynamic threshold and hybrid credit quality score

(iii) Estimate the default rates

(iv) Estimate the model false rates, delinquent cases, defaults, survival rates and

stopping time

(v) Test the model performance using accuracy rate and sensitivity analysis

Repeat the procedures from step (b) to step (e) for t ∈ [1, T ]

5.4 Modeling SEN Dynamics

According to Allen and Babus (2008), a network is a collection of nodes and the links

between them. The node may be individuals or firms or countries or even a collection

of such entities. A link between two nodes represents a direct relation between them.

A social network theory is the study of the apparently universal properties of natural

networks and statistical generative models that explain such properties.

The definition given below is a modification of the definition for the graph theory to

fit and suit the type of network modeled in this study.
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5.4.1 Definition of social economic network

This definition was developed to cater for the social and economic factors in a network.

Since a network is a graph, which is represented as G = (N, Ṙ).

Definition 5.1 A SEN, S = (N, Ṙ,ft, Xt) is a quadruplet with N nodes (agents or cus-

tomers), a set of edges (relationships) Ṙ, the set of private data, Xt, and the social dy-

namics ft. The agents state and interactions evolve in discrete time and the conditions

satisfied are:

(i) N, Ṙ 6= ∅, SEN has agents with relationships

(ii) N = {1, 2, . . . , N} agents in the SEN

(iii) Ṙ = {ṙ1, . . . , ṙN} and Ṙ = N(N − 1), set of relationships

(iv) ft = {f1
t , . . . ,fN

t }, the social factors

(v) Xt = {x1t , . . . , xNt }, the set of private data (economic factor)

Further to the new definition above, let time T be the duration of the loan obligation

allocated to the agents, and t̂, (t̂ ∈ [1, T ]) be the time when the premiums are payable to

the bank at the end of the month (after 30 days period) by the agents. Let t = 2, 4, . . . , T

or t = 2t̂ be the time when the credit quality of agents are estimated which is after every

two months (60 day period). Let τ ∈ [t, t + 1] be the time intervals within the 60 days

period when the agents interact. The number of interactions occur at t < τ < t + 1. We

note that t̂ < t < T for the premiums are paid every end month t̂ and the credit quality of

the obligors is computed every two months period at t.

We have introduced a definition of SEN and the next part introduces a theorem to

prove that reputation ratings are a stochastic process.

5.4.2 Theorem of reputation ratings as a stochastic process

The following theorem proves that the reputation ratings of the agents behaves like a

stochastic process. It has been coined from this study which indicates the filtration process

which is a Martingale is important in the SEN-HMM-CSD model dynamics.

Theorem 5.1 Let R̃ be the reputation ratings that depend on stochastic changes in the

behaviour of the agents in the social and economic network. Then
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Table 5.1: Time cycles in the model

Status Time, t Time Intervals

Initial condition t = 0 τ = 0

Initial model state t = 0 τ = 1, 2, 3

Loan life t ≥ 1 τ = 1, 2, 3

Loan duration T t ∈ [1, T ]

The table 5.1 is a summary of the time cycles at different stages of the model. Each of

the initial model state and the loan duration have an interval of three recent time periods

as three sets of the credit risk analysis factors are used in each stage of the model.

(i) σ ⊂ F the sigma-field generated by r̃i, i = 1, . . . , N

(ii) wti = r̃t+1
i − r̃ti is a function of Ftn

(iii) E[wt+1
i |Fti ] = 0 for every t ≥ 0

Proof

Let wtn denote the net gain or loss in reputation at the tth time period, and let r̃nn′ = r̃n.

Then, wtn = r̃t+1
n − r̃tn for agent n and wtn, t = 1, 2, . . . , T, i = 1, 2, . . . , N, are

independent random variables with

P (wtn = Decrease) = pd and P (wti = Increase) = qI .

The total net gain or loss is expressed as

W t
n =

 Increase if, wt+1
n ≥ wtn;

Decrease if, wt+1
n < wtn

(5.1)

At time T , we have

W T
n = w1

n + w2
n + . . .+ wTn =

T∑
t=1

wtn.

Let Ftn = σ(r̃1n, r̃
2
n, . . . r̃

T
n ) denote the σ field generated by (r̃1n, r̃

2
n, . . . r̃

T
n ). The Ftn ⊂

Ft+1
n and Ftn can be regarded as the history of the increase and decrease up to time T.
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The average gain in ratings after the (T + 1)th time given the history up to time T is:

E[W T+1
n |FTn ] = E[W T

n + wT+1
n |FTn ] (5.2)

= E[W T
n |FTn ] + E[wT+1

n |FTn ]

= W T
n + E[wT+1

n ]

where W T
n = w1

n +w2
n + . . .+wTn =

∑T
t=1w

t
n is determined by FTn and wT+1

n is indepen-

dent of FTn . Thus

E[W T+1
n |FTn ] = W T

n + E[wT+1
n |FTn ] (5.3)

= W T
n + pd + qI

=


W T
n , if pd = qI ;

> W T
n , if pd < qI ;

< W T
n , if pd > qI .

In the first case, W T
n is called a martingale. It is a submartingale in the second case

and a supermartingale in the third case. The fact that the reputation ratings is a martingale

shows that changes in the dynamics and interactions are stochastic.

5.5 Network Initial Conditions

We refer to this data as the initial conditions as it forms the basis for the extraction of any

other data that follows in the model. Five of the parameters to form the initial conditions

are; age of the agents, private data, reputation ratings (and the mean of the reputation

ratings for each agent, the maximum reputation level, reputation state), the relationship

matrix of the agents and the number of interactions of the agents.

Table 5.2 has the initial condition variables and the accompanying notations. These

are simulated or estimated at time t = t̂ = 0 as τ changes during this time period.

5.5.1 Private data

At t = 0, each agent has private or the economic data before they even visit the financial

institution to sign up for a loan obligation. This data is referred to as the economic data
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Table 5.2: Initial Conditions in the Social Network

Variable Conditions Function of

Age 18 ≤ ϕ ≤ 70 ϕ ∼ ∪(0, 1)

Private data 0 < X0 < 1 X ∼ ∪(0, 1)

Reputation ratings 1 ≤ R̃ ≤ 5 R̃ ∼ ∪(0, 1)

Relationship factors 0 < Ṙ ≤ 1 X ∼ ∪(0, 1)

Reputation state −1 ≤ R̂ ≤ 1 f(R̃) R̂ = [−1, 0, 1] = [L, M, H]

Interaction encounter frequency N ∈ [1, 8] N ∼ ∪(0, 1)

Average reputation 0 < R̄ ≤ 5 R̄ = 1
N

∑N
j=1 R̃ij

Interactions experience −1 ≤ Ψ ≤ 1 f(R̂, Ṙ,N) R̂ = [−1, 0, 1] = [B, N, G]

Network feedback 0 < Ψ̇ < 1 f(R̄,Ψ)

The variables highlighted in this table are explained further. The numerical formulations

and computations are explained in detail.

of the agents since we are dealing with a socio-economic network. This set of the private

data for the N agents is given by the vector

X0 = {x10, x20, . . . , xN0 }, and 0 < xn < 1.

The vector X0 is drawn at time t = 0. This set of information is available to the bank

but limited in the sense that the bank is not aware of the actual interactions that take place

before the first premium is paid at the end of the month at t̂ = 1.

We know that the interactions affect the obligors behaviour that in turn impact their

credit quality levels. X0 limits the net worth or private data of the agents, (0 < X0 ≤ 1),

ideally to enhance our computations. This initial vector is generated at time t = 0 using

simulation but the minimum private data is placed at 0.3 ≤ xn0 < 1. The 0.3 is assumed

to be the acceptable minimum in terms of the private data for agents to gain access to

a financial institution consumer loan facilities. We note that private data is the socio-

economic value gained through social capital or an economic activity like investment,

etc, that benefits the agent. This data is generally observed to a limited extent by other

agents and the institution that issues the loan.
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5.5.2 Reputation ratings

Each agent knows the reputation rating of each other in the SEN. LetRi = {r1i, r2i, . . . , rni}

be the reputation rating agent i = 1, 2, . . . , n receives from the other N − 1 agents in the

SEN. Agents have the reputation rating information even before joining the bank loan

portfolio. Agents are aware of whom they have been interacting with even before ap-

proaching the bank for a loan. Therefore, they have information on the reputation levels

of each other.

R̃t =

 r̃ij = 5 if i = j;

1 ≤ r̃ij ≤ 5 if i 6= j;
(5.4)

The peer to peer reputation rating is based on the five star scale: 1−lowest, 2−low,

3−medium, 4−good and 5−high. That is, R̃ ∈ [1, 2, 3, 4, 5]. Therefore, each agent is

expected to rate the other N − 1 agents. As would be ideal in life situations, if we are to

rate ourselves, we would likely give a maximum score of 5. Therefore, the matrix R̃ has

r̃ii = 5, ∀i.

5.5.3 Average reputation rating

Agents feedback system is important in aiding agents make informed decisions based on

the information from other agents, how they rate each other. So, apart from an individual

reputation rating, an agent will also use the rating from other agents to make an informed

decision. Let R̄ be the average reputation rating extracted from the matrix R̃, the repu-

tation ratings matrix using the SVD for each agent. This represents the average value an

agent receives from the peers in the network. The average reputation rating is computed

with;

R̄ =
1

N

N∑
j=1

R̃ij (5.5)

5.5.4 Reputation state

The reputation state shows the overall rating an agent receives from the other N − 1,

which is a perception level in the network. Let R̂ be the reputation state of the agents. We
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let R̂ ∈ [−1, 0, 1] = [low, Medium, High]. An agent is then classified as follows;

R̂t =


−1 if r̂ < 2.33 Low;

0 if 2.33 ≤ r̂ ≤ 3.66 Medium;

1 if, r̂ > 3.66 High;

(5.6)

We have partitioned the reputation scores [1, 5] into three divisions.

5.5.5 Relationship matrix

Let Ṙ be a relationship matrix and ṙnn be the relationship intensity between agent n

and agent n′. We set 0 < Ṙ ≤ 1. This matrix defines the mutual links between the

agents irrespective of the agent reputation but linked to the interaction experiences each

agent gains from the other. Human beings tend to link up to others based on the mutual

connection irrespective of the reputation of the agent. That is why we have people ganging

up to engage in good and evil acts in the society.

Ṙt =

 ṙij = 1 if i = j;

0 < ṙij < 1 if i 6= j;
(5.7)

In sociology, homophily is a principle which states that people tend to form ties with

other people who have similar characteristics (like associating with like). This indicates

that strong ties shows a high similarity amongst the agents.

5.5.6 Interactions frequency

The number of times an agent interacts with another agent is also referred to as the in-

teraction frequency or the interaction encounter frequency. Let Nnn′ be the number of

encounters between agent n and n′. Let agents interact on frequent intervals with a min-

imum of 1 interaction at any given time period of two months and a maximum of 8 in-

teractions in the same period. We assume a maximum of 1 interaction per week and this

translates to 8 interactions for a period of two months, during the time period [t, t + 1].

The number of interactions can increase or decrease depending on the experiences they

accumulate from the SEN dynamics. These number of interactions of agent n to agent n′

will then change depending on the interaction experiences.
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5.5.7 Age of the agents

The age of the agents is the only demographic variable we have included in this study.

Let 18 ≤ ϕ ≤ 70 be the vector for the age of the agents. The age is expected to change

annually and the new variable reflected in the model. Thomas (2000) observes that there

are social issues in using social variables as credit analysis tools. It is illegal to use some

characteristics like race, sex and religion.

5.5.8 Interaction experiences

Interaction experiences are based on the agents interactions encounters that have a specific

outcomes. The experiences are classified in three levels, namely,

[−1, 0, 1] = [bad, neutral, good] = [B,N,G] (5.8)

= [ψ1, ψ2, ψ3] (5.9)

The Markov process in figure 5.4 offers insights on the possible transitions an agent

can make. This is from the interaction experiences. We have three scenarios based on

figure 5.4, the agents relationships and the reputation state. Three scenarios are evident

in the interactions. First, an agent starts with low reputation state with either high or

low relationship with other agents. Second, an agents starts at a medium reputation state

coupled with low, medium or high relationship levels with other agents. Third, an agent

starts at a high reputation state and has a low or high relationship levels with other agents.

We express the formulation for the interaction experiences using the relationships and

reputation ratings as:

Ḟt =


−1 if Ψ = 1 & − 1 < R̄ < 5

3
;

0 if Ψ = 0 & 5
3
≤ R̄ ≤ 10

3
;

1 if Ψ = −1 & R̄ > 10
3

;

(5.10)

Matrix Ḟ entries are then used to extract the estimated interaction experiences using the

singular value decomposition.

5.5.8.1 Interaction encounter

Social interaction is defined as participating in social networks (Sjoerd , 2004). We define

an interaction encounter as a situation where an agent interacts with another agent. Such
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Neutral GoodBad

Figure 5.4: A three state Markov Model for the agents relationship experiences

A Markov Model showing the transitions between bad (B), neutral (N) and good (G)

experiences of the agents. The only limitation is that an agent cannot move from bad to

good experience level, but has to first pass through the neutral level and vice versa.

interactions might include involvement in an investment project, financial advice, being

members of the same social group, communication via email, telephone, among other

activities. We can simply define it as an interaction where individuals generate social

capital and/ or engage in economic activities, enhancing the outcome of their actions.

Connections facilitate timely access to important information on a timely manner.

Social capital investment increases with the occupational returns to social skills. Com-

munities with more aggregate social capital investment generally have an increase in so-

cial capital as individuals are able to benefit from the resources embedded in social net-

works (Nan , 1999). Therefore, an interaction encounter occurs in a dynamic environment

where agents try to optimize their decisions and interactions bound in space and time.

In psychology and behavior science, an agents behavior change is associated with in-

teraction contextual information (Liu and Datta , 2012). They observed that inclusion

of interaction context information captures agent behavior changes that are relatively in-

frequent. Further, they observed that a past good record can conceal any sudden change

in behavior. A careful investigation of interaction contextual information can reflect the

agents dynamic behavior in a better way.

5.6 Social and Economic Factors

A SEN is where the primary action entails economic transactions under the structure

of the social capital. Agents and their actions are viewed as interdependent rather than

independent autonomous units. As the SEN is dynamic, trust and reputation levels are
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bound to change over time and in turn affect the net worth of agents. linkages between

agents are channels for transfer or ’flow of resources’. We normally lose or gain more

wealth depending on the agents we are interacting with in a network. The initial reputation

ratings changes are guided by the outcome of interactions or encounters the agents have

with each other.

Table 5.3: Credit risk analysis factors classification

Factor Category Symbol

Interactions experience Social Ψ

Trust level Social Θ

Distrust level Social Θ̂

SEN risk factor Social Θ̃

Network feedback Social Ψ̇

Private data Economic X

Return on private data Economic X̄

Ethical factor Economic X̃

Changes in private data Economic ∆X

Age of agents Demographics ϕ

The table shows the social and economic factors derived from the SEN dynamics and are

outlined in this section.

5.6.1 Reputation ratings

The dynamic interactions of the agents enables them to collect almost accurate informa-

tion on trust and reputation levels of each other. An independent rating of each other

increases transparency and reduces the rate of collusion amongst the agents. For an ef-

fective rating process, the agents have to interact. As the SEN comprises of N agents,

peer to peer review of each other is crucial in estimating the reputation of each agent. The

changes is a combination of the previous reputation rating, the feedback from the network

and the individual interaction experience expressed as:
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R̃t+1 = α̌[R̃t + Ψ̇t + Ψt] (5.11)

Where Rt is the reputation at time t, Ψ̇t is the network feedback, Ψt is the interactions

experiences of the agents and α̌ is a constant to limit 1 ≤ R̃t+1 ≤ 5. Modeling trust

is through a review of one agent by the other N − 1 agents with the assigned reputa-

tion ratings. The rating scale is in the range of [1, 2, 3, 4, 5], where 1−lowest, 2−low,

3−medium, 4−good and 5−high . Thus, we let the individual scale of ratings be denoted

as R̃ = {r̃1, r̃2, r̃3, r̃4, r̃5}. Agent n is rated in the scale of 1, 2, 3, 4, 5 by the other N − 1

agents and they rate themselves with a score of 5 because we humans have a tendency to

deceive ourselves and to justify our actions even if others deem them to be fraud or deceit.

At any instance t = 1, 2, . . . , T, a matrix R̃t is generated

R̃t =

 r̃ = 5 if n = n′;

1 ≤ r̃ ≤ 5 if n 6= n′;
(5.12)

The reputation ratings depends on the stochastic changes in the behaviour of agents in

the SEN and the availability of the set of information.

5.6.2 Social factors estimation

The five social factors are interaction experience, trust, distrust, SEN risk and network

feedback with age as the demographic factor. SVD technique extracted all the five so-

cial factors as the technique is a data reduction method that involves taking sets of high

dimensionality data and reduces it to a lower dimensional space (Kalman , 1996).

5.6.2.1 Trust estimation

Trust levels for the agents are extracted from the reputation ratings Rt with the aid of the

SVD. The SVD of the matrix Rt gives rise to the left eigenvectors, singular values and

the right eigenvectors. Similarity in the trust levels of the agents is then estimated and the

data scaled. The best rank one approximation by the SVD is used

Θ = ||R̃− V V T R̃T || (5.13)
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5.6.2.2 Distrust level

We subtract the reputation rating matrix with Řt = 5 − R̃t to give us the residue of

what remains from the trust, which is the distrust rating of the agents. The matrix Řt is

extracted with SVD for the three components as the case in trust levels. Similarity in the

agents distrust levels are estimated and the data is scaled. The rank one approximation for

the distrust levels in the SEN is computed with

Θ̂ = ||Ř− V V T ŘT || (5.14)

5.6.2.3 SEN risk factor

The SEN risk factor is the risk introduced in the network by the agents as a relative factor

of the distrust and trust levels. The matrix for the values of the risk factor before extraction

with SVD is estimated as

Ŕt =
Řt

Rt

(5.15)

The rank one SVD approximation for distrust level in the SEN is estimated with

Θ̃ = ||Ŕ− V V T ŔT || (5.16)

5.6.2.4 Network Feedback

The interactions experiences and the mean reputation rating for each agent in the network

is used to estimate the network reputation feedback or the SEN feedback mechanism. Let

Ψ̇ be the SEN feedback. We use SVD to extract its matrices and estimate the feedback

ratings for the agents in the network using the procedure applied for the trust and distrust

levels. The rank approximation of using SVD for the network feedback is

Ψ̇ = ||F̂ − V V T F̂ T || (5.17)

Where the matrix F̂ is estimated from R̄, the average reputation ratings, and Ψ, the in-

teractions experiences. Matrix F̂ = f(R̄t,Ψt) with Ψ = [−1, 0, 1] and 0 < R̄t ≤ 1 is

expressed as
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F̂t =



1.0 if Ψt = 1 & R̄t >
2
3
;

0.5 if Ψt ≥ 0 & 1
3
≤ R̄t

2
3
;

0 if Ψt = 0 & 1
3
≤ R̄t ≤ 2

3
;

−0.5 if Ψt = 0 & 1
3
≤ R̄t ≤ 2

3

−1.0 if Ψt = −1 & R̄t <
2
3

(5.18)

5.6.2.5 Agents’ age

The agents’ age is the only demographic variable that has been used in this work. Let

ϕ0 ∈ [18, 70] be the age of the agents at time t = 0. Then, the parameter ϕ is expected to

change in each time period after one year.

5.6.2.6 Encounter experience

This is a social factor extracted from the gains or losses an agent makes by interacting

with other agents in the network. They are the cumulative values of the bad, neutral or

good outcome of the dynamic interactions. SVD aids in extracting the experiences of

each agent from the matrix Ψ (interactions experience).

Ψ = ||R̂− V V T R̂T || (5.19)

5.6.3 Economic factors estimation

The four economic data emanates from the private data, namely, private data changes,

private data return and ethical factor.

5.6.3.1 Private data

We now turn our attention to the private data, Xt(Θt, Θ̂t, εx), that is a function of the

trust levels, distrust and an error component. Since the vector X0 exists, changes in Xt at

a time interval [t, t+ 1] is based on the trust level, distrust level and noise in the network

that cannot be fully eliminated by the SVD dimensionality reduction. The singular values

of the trust matrix are used to compute the condition number which is a ratio of the largest

to the smallest singular value. This number measures the sensitivity of the eigenvalues.
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The number acts as a discount factor in estimating the new private data. The condition

number is;

C =
σMax(Θ)

σMin(Θ)
(5.20)

The private data is estimated using

∆Xt+1 =
[ 1

C
(Θ− Θ̂)Xt + εx

]
(5.21)

Xt+1 = Xt +
[ 1

C
(Θ− Θ̂)Xt + εx

]
, with εx =

1

max(eigenvalue(R̃))

where ∆Xt+1 is the change in the private data, εx is a random variable which is the error

term or noise in the network, Θt is the trust level, Θ̂ is the distrust level and ĉ is the

condition number of the trust matrix.

5.6.3.2 Private data changes

The changes in private data is the differences in the private data between two time periods.

Let ∆X be the changes in private data. Then,

∆Xt+1 = Xt+1 −Xt

.

5.6.3.3 Private data return

At each time period, the agent private data return is estimated using,

Ẋ =
Xt+1

Xt

− 1 (5.22)

This is the return an agent gains or losses from the changes in the private data at any given

time period.

5.6.4 Ethical factor

We let X̃0 = X0. Then, the ethical factor is computed as;

X̃t+1 = X̃t −
1

C̃
Θ̃tX̃t + εx, with C̃ =

σMax(Θ̃)

σMin(Θ̃)
(5.23)

where X̃t+1 is the ethical value of the agent, εx is a random variable which is the error

term or noise in the network, Θ̃t is the SEN risk factor and c̃ is the condition number of

the SEN risk factor matrix.
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5.7 Credit Risk Analysis Factors

The variables are categorized into three, namely, social, economic and demographic fac-

tors. The symbols for each of the variable and the full description is in table 5.3. We can

express the credit risk analysis factors in a vector form

Γ = [ϕ, X, X̃, Ẋ, ∆X, Θ, Ψ̇, Ψ, Θ̂, Θ̃] (5.24)

= [Age, Trust, Distrust, SEN risk, Interactions, Feedback, (5.25)

Private data, Ethical, Return on private data, Changes in private data](5.26)

(5.27)

5.7.1 Credit score and dynamic threshold value

Once the first credit score values and dynamic threshold valu are computed at the end of

time t = 0, then from time t ≥ 1, we have a set our CRAFs to twelve factors. This is

the set of the ten social and economic factors plus the two factors of the credit scores and

dynamic threshold values. The new set of CRAFs is,

Γ = [ϕ, X, X̃, X̄, ∆X, Θ, Ψ̇, Ψ, Θ̂, Θ̃, ∆̂, φ] (5.28)

Table 5.4 shows the two new factors after the first computation of the credit quality score

and the default threshold.

Table 5.4: Emitted credit quality scores

Factor Category Symbol Computation process

Credit quality score Credit risk score φ φ = P (A,B, π,O,Q|λ)

Distance to default Credit risk score ∆̂ ∆̂ = φ− φ̄

Each of the value in the table is obtained from the hidden Markov model after the credit

scores are computed. The two variables are scaled as the rest of the ten factors and in-

cluded in the CRAF at time t ≥ 1 for the next time period credit quality analysis. It is

only at time t = 0 that these two variables are not included in the next computation of the

credit scores as this is the starting point of our computations.
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5.7.2 Credit factors set

At time t = 0, we have ten CRAFs for clustering into state sequences and observation

sequences for each agent. Therefore each agent has a set of ten state and ten observation

sequences at time t which are estimated at each time period τ for we have τ = 1, 2, 3

at t = 0. At t ≥ 1, we increase the CRAF from ten to twelve by adding the credit

quality and distance to default for each agent. The distribution of the credit risk analysis

factors ranges between 30 and 36 values of any given data set for each of the N agents as

indicated in equation 5.29.

ΓN×1 =



30 credit factors at t = 0, use τ1, τ2, τ3;

32 credit factors at t = 1, use t = 0(τ2, τ3), t = 1;

34 credit factors at t = 2, use (t = 0, τ3), t = 1, 2;

36 credit factors at t ≥ i, use t = i− 2, i− 1, i, ∀i ∈ [3, T ]

(5.29)

This is based on the fact that Γt=0 = 10 and Γt≥1 = 12 and that for each HMM training,

we use a three τ period. We observe that t = 0 is the period before the agents become

part of the loan portfolio and covers a period of six months. Estimation of CRAFs are

done three times in this time period t at τ1, τ2 and τ3.

5.7.3 Data scaling

To ease the computation process, we introduce uniformity in the CRAFs by scaling all the

ten variables at time, t = 0 in the range of (0, 1] and also for the twelve variables from

time t ≥ 1 in the same range. Let Y be the data set to be scaled. The commonly used

method is

Ŷ =
Y−min(Y)

max(Y)−min(Y)

But we modified the above method to

Ŷ =
Y−min(Y) + εy

21εy
, with εy = 0.05(max(y)−min(y)) (5.30)

Where Ŷ is the scaled data (Ŷ ∈ (0, 1]) and Y is the original data set that is to be scaled

into the interval (0, 1]. The data scaling eliminates the zero value to transform the data for

the clustering for estimating HMM parameters.
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5.8 HMM Parameters Estimation

The HMM we utilize are ergodic in nature with the Markov chain underlying the HMM

being irreducible and aperiodic. An HMM is irreducible if each state is reachable with

non-zero probability from every other one. It is aperiodic if it has at least one aperiodic

state. A state i is aperiodic if it does not recur with a cyclic period, that is if the greatest

common divisor of times t > 0 such that P (qt+1 = i|qt = 1) > 0 is 1. A periodicity is

guaranteed if one state has a self transition with non-zero probability (Ehab and Sassone

, 2013).

HMM Training stage

Clustering Γ into transition matrix, A

Clustering Γ into observation matrix, B

Generate observation sequences, (O)

Generate state sequences, (Q)

Estimate maximum likelihood for matrices A and B

Figure 5.5: The flow of the sequence of events in HMM learning and training

The flow chart outlines the clustering process estimation of the state transitions and obser-

vation matrices for each of the agents and for the default threshold. Hybrid credit quality,

default threshold and credit quality probabilities are also estimated at this stage.

5.8.1 Transition and observation matrices

A two state Markov model for the transitions of the agents in the network is depicted in

figure 5.6.

Each agent has two state transitions, S = {S1, S2} = [Low score,High sCore] =

99



HSLS

Figure 5.6: A two state Markov Model for the agents Interactions

A Markov process showing the ergodic transitions between low score (LS) and high score

(HS) for the state transitions of the agents in the network.

[L, H]. For the observations, the symbols are generated by :

bj(κ) = P (Ot = κ|qt = j), κ = 1, 2, 3, 4 j = 1, 2 (5.31)

where qt is the states and Ot are the four observation symbols, namely, poor, average,

good and excellent credit quality levels. The observation profile is heterogeneous to all

the agents as they have different observation probability given by the matrix Bt
n = {bjκ}.

By default, the Hidden Markov Model functions in Matlab begin with the model in state

1 at step 0. We want to assign different probabilities to the initial states. This makes our

Markov chain time independent and thus the ability to change the transition and observa-

tion matrices at each time t ∈ [1, T ] is simplified. Again, see Matlab (2003) on how to

change the probabilities of the initial states.

The transition and observation matrix for estimating the dynamic default threshold

has its roots on the properties of matrix addition and subtraction. A mean of the observa-

tion and transition matrices of all the agents is obtained to estimate the default threshold

observation and transition matrix set.

5.8.2 Clustering

Clustering is applied to the set of data Γ to emit the transition matrix and observation

matrix of each agent. We are interested in using the CRAFs to estimate the transition

matrix A and the observation matrix B. For the transition matrix A, we have (γ ∈ Γ),
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with A2×2 = Aest

A2×2 =



LL if γi,j < γi,j+1 & γi,j+1 < γi,j+2;

LH if γi,j < γi,j+1 & γi,j+1 > γi,j+2;

HL if γi,j > γi,j+1 & γi,j+1 < γi,j+2;

HH if γi,j > γi,j+1 & γi,j+1 > γi,j+2

(5.32)

Where LL indicates that a Low score is followed by a Low score; LH indicates that a

Low score is followed by a High score; HL indicates that a High score is followed by a

Low score; and HH indicates that a High score is followed by a High score. The clustering

for matrix A can also be expressed in a simple form as;

A =


L H

L LL LH

H HL HH


For the observation matrixB, we have (γ̂ = γ−mean(γ)) and max(γ̂)

4
= u, min(γ̂)

4
=

l with B2×4 = Best

B2×4 =



LP if γ̂i,j < li,j;

LA if li,j ≤ γ̂i,j < 2li,j;

LG if 2li,j ≤ γ̂i,j < 3li,j;

LE if 3li,j ≤ γ̂i,j < 0;

HP if 0 ≤ ui,j < ui,j;

HA if ui,j ≤ γ̂i,j < 2ui,j;

HG if 2ui,j ≤ γ̂i,j < 3ui,j;

HE if γ̂i,j ≥ 3ui,j;

(5.33)

Where LP indicates that a Low score is connected with a Poor credit quality; LA indicates

that a Low score is connected with an Average credit quality; LG indicates that a Low

score is connected with good credit quality; LE indicates that a Low score is connected

with an Excellent credit quality; HP indicates that a High score is connected with Poor

credit quality; HA indicates that a High score is connected with an Average credit quality;

HG indicates that a High score is connected with Good credit quality and HE indicates

that a High score is connected with an Excellent credit quality. This information can also

be expressed in a short form as a matrix B as;
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B =


P A G E

L LP LA LG LE

H HP HA HG HE


5.8.2.1 HMM parameters

Given the transition matrix Aest and observation matrix Best, the other parameters can be

estimated.

HMM learning and training

[O,Q] = hmmgenerate(L,Aest, Best)

[Ai, Bi] = hmmtrain(O,Aest, Best)

[π, Ōi] = hmmdecode(O,A,B)

Ā = 1
N

∑N
i=1Ai

B̄ = 1
N

∑N
i=1Bi

π̄ = 1
N

∑N
i=1 πi

Figure 5.7: The HMM training and learning procedure

The flow diagram outlines the HMM training an learning procedure for the local and

global HMM parameters in the model.

5.8.3 Multiple observations

The emissions from the HMM corresponding to individual agents are as a result of the

CRAFs. We shall assume that the observations of the different agents are independent,

as dependence would weaken the need for privacy. The observation vector at time t is

Ot = {O(1)
t , O

(2)
t , . . . , O

(N)
t } and they form a set to estimate the credit quality of an
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Table 5.5: Local and global estimated parameters

Parameter Local Global

Transition matrix A Ā

Observation matrix B B̄

Initial state probability π π̄

Observation sequence O Ō

State sequence Q Q̄

The HMM learning and training parameters use either the local or global matrices and the

observation sequence or the state sequence. These parameters estimate the CQL, CQS and

HCQS for each obligor and also the overall dynamic threshold that measures the system

likely default rates.

obligor. Each agent has an observation which is derived from the CRAFs based on the

dynamic strategies and connections in the network.

Each agent has a set of possible observations Vt and the observation probability matrix

B is unique for each agent. As the observations are made at time t ∈ [1, T ] each agent

makes its own observations of the SEN and these observations are secret.

The observation symbol emitted by HMM for each agent are combined to estimate the

dynamic default threshold of all the agents. We note that the observation and transition

matrices were derived from the mean of the individual agent observation and transition

matrix together. We denote the default threshold transition matrix as Ā and the observa-

tion matrix as B̄ with the observation symbols from all the agents after training as Ō.

5.9 Credit scores and dynamic threshold

Credit quality analysis is key to the success of this model and we outline its estimation

in this section. Table 5.6 shows the credit quality, default threshold, the hybrid credit

quality tuples and the delinquent estimation for the model training parameters and for the

estimation of the respective probabilities. The four variables are intertwined where at any

given time t we have one default threshold while we have N values for the hybrid credit

quality, credit quality scores, credit quality levels and delinquent cases.
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Table 5.6: Model training and credit quality scoring parameters

Variable Symbol Parameters

Credit quality tuple φ λ = (A,B, π,O,Q)

Default Threshold tuple φ̄ λ̄ = (Ā, B̄, π̄, Ō, Q̄)

Hybrid credit quality tuple φ̂ λ̂ = (Ā, B̄, π̄, O,Q)

Credit Quality φti φti = P (Ot
1, . . . , O

t
n|λi)

Hybrid credit quality φ̂ti φ̂ti = P (Ot
1, . . . , O

t
n|λ̂)

Default threshold φ̄t φ̄ti = P (Ōt
1, . . . , Ō

t
n|λ̄)

Delinquent φ̃t φ̃t = 0.85φ̄t

Credit Quality Level φ̇ φ̇ti = [Poor, Average, Good, Excellent]

We observed that each agent has a unique tuple represented by λi, i = 1, 2, . . . , n

as shown in table 5.6. The next section expounds more on each of the measures for the

consumer credit scoring in this study

5.9.1 Credit quality scores

The credit quality scores of the obligors is estimated by the individual agent matrices A

and B, and the state and observation sequence. The credit scores are based on the local

parameters in table 5.5. We express them as

λ = (A,B, π,O,Q), and (5.34)

φtn = P (O1, . . . , OL|λ) (5.35)

Where L is the length or size of the observation sequence for each agent; and 0 < φ < 1

the interval of the CQS for each agent at each time period. This is made easy by use of

the Matlab inbuilt function

[φ] = hmmdecode(Oj, Ai, Bi), i = 1, . . . , N, j = 1, 2, . . . , L (5.36)

The individual agent has a transition matrix, observation matrix and the observation se-

quence that emits a score for each obligor. The parameter φti, the credit quality, is dynamic

and changes at every time t for each agent which is an indicator of the credit quality level
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of the agent. It can remain constant, increase or decrease. To fully cater for the dynamics,

the dynamic default threshold is used to estimate the credit quality level as being poor,

average, good or excellent (the PAGE credit quality levels of the obligors in the loan

portfolio).

5.9.2 Credit quality level

The obligors credit quality scores classifies the obligors into four credit quality levels.

Matlab function hmmdecode emits an observation which is the CQL of the agent and is

estimated with:

[Ōi] = nhmmdecode(Oj, Ai, Bi), i = 1, . . . , N, j = 1, . . . , L (5.37)

The value Ōi = [P, A, G, E] = [1, 2, 3, 4] is emitted by HMM and that is what classifies

the obligor into a specific CQL. The symbols are represented in table 5.7

Table 5.7: The symbols for the key obligor credit quality levels

Variable Levels Poor Average Good Excellent (PAGE)

Credit quality Symbol ν1 ν2 ν3 ν4

Points 1 2 3 4

The data in this table 5.7 has the summary of the different credit quality levels of the

obligors.

5.9.3 Hybrid credit quality

This is estimated using the same model parameters for credit quality and some from the

default threshold as shown in 5.5. The purpose is to test how the individual agent obser-

vations and state sequence performs when compared to the threshold matrices Ā, B̄ and

π̄ against the individual agent observation and state sequence. In table 5.5, we use the

three global and two local model training parameters, that is,

λ̂ = (Ā, B̄, π̄, Ō, Q̄), and (5.38)

φ̂ = P (Ō1, . . . , ŌN |λ̂) (5.39)

105



The Matlab function is

φ̂ = hmmdecode(O, Ā, B̄) (5.40)

5.9.4 Dynamic threshold

A dynamic threshold classifies the obligors in the respective credit quality levels, and as

defaulters and non defaulters. The dynamic threshold depends on the average obligor

transition matrix and individual agent observation value at any given time period. The

estimations are based on

λ̄ = (Ā, B̄, π̄, O,Q), and (5.41)

φ̄ = P (Ō1, . . . , ŌN |λ̄) (5.42)

The matlab inbuilt function for this estimation is:

φ̄ = hmmdecode(Ō, Ā, B̄) (5.43)

A dynamic default threshold value is necessary to help detect the obligors below or above

the threshold for classification purposes and detect default rates. We expect the threshold

to be a good indicator of the credit quality level of the obligors not to increase the number

of false rates in the model but perform as expected.

5.9.5 Model false rates

The estimated numbers of the false positive and false negative are indicators of the quality

of our model in estimating the default rates. We use φti, φ̄
t and φ̂ti which are the credit

quality, default threshold and the hybrid credit quality respectively to estimate the false

rates in the model. Four rates to be estimated are as shown in table 5.8

1. False Positive - an obligor is estimated by the model as above the threshold level but

in actual sense, it is below the threshold level. A probability of accepting a ‘bad’

obligor.

2. False Negative - an obligor is estimated by the model as below the threshold level

but in actual sense it is above the threshold level. A probability of rejecting a ‘good’

obligor.
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Table 5.8: The model quality rates and their estimation

Ratings Points Symbol Estimation

Positive Rates 2 g If φti ≥ φ̄t & φ̂ti ≥ φ̄t

False Negative 1 ġ If φti ≤ φ̄t & φ̂ti ≥ φ̄t

False positive −1 g̈ If φti ≥ φ̄t & φ̂ti ≤ φ̄t

Negative Rates −2 ĝ If φti < φ̄t & φ̂ti < φ̄t

We have G = {g, ġ, g̈, ĝ} which is the matrix for the rates in the model. Our model

should have very low false positive rates and false negative rates. The use of credit quality

and hybrid credit quality to estimate these rates enhances the quality of the results in

computing the false rates. For positive rates, both the credit quality and the hybrid credit

quality are above the default threshold. In the false negative cases, credit quality is less

than the default threshold but hybrid credit quality is above the threshold. For the false

positives, credit quality is greater than the default threshold but hybrid credit quality is

less than the default threshold. For negative, both credit quality and hybrid credit quality

are below the default threshold.

5.9.6 Default and survival rates

The algorithm for the false rates in table 5.8 is combined with the algorithm in table 5.9

to aid in estimation of the defaults, survival, delinquent cases, stopping time and credit

quality levels. All the analysis for the obligors in this last section of our model are well

outlined in table 5.9 where the instances when an obligor experiences a certain situation

in the loan portfolio is given. A summary of the symbols for the default rates, survival,

delinquent cases, stopping times and the credit quality levels are given in table 5.10.

5.9.7 Stopping time

The stopping time instances in the loan portfolio for the obligors is summarized in table

5.9 using the credit quality and the model quality estimation.

We track the number of optimal and sub-optimal stopping time and when they occur

in the life of the loan. These sub-optimal stopping time are also the default rate detection

parameters of the model. We know that if the obligor does not default, then, P (t = T ) =
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Table 5.9: Estimation summary for the key obligor credit and default variables

Estimator of an event Default Delinquent Survival Stopping time

If G = g & φ̇ ≥ φ̄ 0 0 1 0

G = ġ & φ̇ ≥ φ̄ 0 0 1 0

G = ġ & φ̇ ≥ φ̃ & φ̇ ≤ φ̄ 0 1 1 0

G = ġ & φ̇ < φ̃ 1 0 0 1

G = g̈ & φ̇ ≥ φ̄ 0 0 1 0

G = g̈ & φ̇ ≥ φ̃ & φ̇ ≤ φ̄ 0 1 1 0

G = g̈ & φ̇ < φ̃ 1 0 0 1

G = ĝ & φ̇ ≥ φ̃ & φ̇ ≤ φ̄ 0 1 1 0

G = ĝ & φ̇ < φ̃ 1 0 0 1

We have combined the model quality, default rates, the survival and delinquent rates,

stopping time (both optimal and non-optimal) and the credit quality levels of the obligors.

They are estimated using the credit quality, hybrid credit quality and the average of both

the credit quality and the hybrid credit quality. Definitions of the notations are in table 5.6

Table 5.10: The symbols for the key obligor credit and default variables

Parameter Default rates Survival Stopping time Delinquent

Symbol D S ṫ D

Outcome 0 or 1 0 or 1 0 or 1 0 or 1

The outcome 0 indicates that the event has not occurred while 1 is an indicator of the

occurrence of the specific event. The mathematical formulations for these outcomes are

highlighted in table 5.9.
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1. Let ṫ denote the sub-optimal stopping time. The default rates are random and thus ṫ

is also random. We are more concerned with sub-optimal stopping time, ṫ in our loan

portfolio as it is an indicator of the default points in the life of the loan.

5.10 Accuracy and Sensitivity Analysis

We test the model performance using the sensitivity analysis by varying the input variables

and comparing them with output variables. Rags (2001) observes that sensitivity analysis

can be derived from the simulated sample to quantify the influence of the inputs and

identify the key contributors. The main assumption being that the input and output of

the model varies in a monotonic and linear manner. We estimate sensitivity through use

of Pearson correlation coefficient and coefficient of determination to compare how the

changes in the input variable influences the output variable. The false rates estimates the

accuracy of the model.

5.10.1 Sensitivity analysis

Sensitivity analysis is the process of variation in output of a model with respect to changes

in the values of the model’s input (s) (Rags , 2001). The purpose is to provide a ranking

of the model inputs based on their relative contributions to model output variability and

uncertainty. Sensitivity analysis in simulation models estimates the change in the simula-

tion output as the simulation input changes, either for discrete event, continuous or hybrid

models (Kleijnen , 2009). In real life experimentation, it is hard to vary a factor over

many values, but in simulation experiments this restriction does not apply.

As simulation continues to receive increasingly use in solving problems and to aid

in decision making, there is a need to continue to develop models that are accurate and

give results that are “correct” (Sargent , 2011). A model is valid for a set of experimental

conditions if the model’s accuracy is within its acceptable range, that is, the amount of

accuracy required for the model’s intended purpose (Sargent , 2011). The commonly used

metrics to test for sensitivity are the Pearson correlation coefficient, sensitivity ratio (also

called elasticity) and sensitivity score among other metrics (Rags , 2001). The sensitivity

ration (S.R) is expressed as

Ŝ =
∆Output× 100

∆Input× 100
(5.44)
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The interpretation of the sensitivity analysis is based on;

SR =


Ŝ < 1, if sensitivity is low;

Ŝ = 1, if sensitivity is zero;

Ŝ > 1, if sensitivity is high;

(5.45)

Sensitivity equal to zero indicates that the model output does not change with changes in

the input. If Ŝ > 1, a small change in input reflects a higher change in model output. If

Ŝ < 1, a small change in model input leads to an even lower change in model output.

5.10.2 Accuracy

According to Loso and Koski (2014), the measure used to test for the performance of

the model is through its accuracy. The term accuracy is a measurement of how often the

model predicts the correct value. The accuracy is calculated as

Ṡ =
Number of true predicted states
Total number of tested objects

× 100 (5.46)

The study based its model performance on Ṡ ∈ [0, 100]. This metric system was devel-

oped in this study to measure the model accuracy as an indicator of the model’s perfor-

mance;

Ṡ =



< 25 Low accuracy;

25 to 50 Medium accuracy;

51 to 75 Good accuracy;

> 75 High accuracy;

(5.47)

The accuracy levels are important to measure how the model fairs in terms of estimat-

ing the false rates. High false positive rates means that the model accepts ‘bad’ agents

as good and this increases the likely default rate in the loan portfolio. If the model has

high false negatives, it means ‘good’ agents are rejected as bad and this high default rates

though in actual sense it would be lower. Therefore, any increase in false rates is not ideal

for the model, but decrease in false rates is what would be expected in a good model.
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5.10.3 Conclusion

The discussions, numerical techniques and models in this chapter have outlined the main

methodology procedures. We have five levels: network initial conditions; the SEN dy-

namics that captures the agents cyclical inter dependencies and changes in the social and

economic factors; the CRAFs which is a set of the five social factors, five economic fac-

tors and two credit quality factors; the HMM applied the CRAFs for learning and training

the model which in turn emits the CQS, CQL and HCQS using the dynamic threshold;

and the CQS and default rates dynamics. The last part of the methodology discussed how

to estimate the model performance through use of accuracy rate and sensitivity analysis.
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Chapter 6

Credit Scoring with Social Network

Data

This chapter undertakes the data analysis process based on the methodology in chapter 5

and using the Matlab software inbuilt functions appendix A.2. The analysis is presented

in form of charts, graphs, tables and descriptive statistics from the SEN model, the HMM

emissions and credit quality analysis. We have used different random generator seed in

this analysis to depict the varied scenarios when using simulation and in the analysis using

this type of model.

6.1 Network Initial Conditions Analysis

The initial conditions and the social network analysis are presented in this section. We

have the initial conditions for the reputation ratings, age, relationships, private data and

the frequency or number of encounters in the network. In table 5.1, we have the different

time cycles at the different stages in the model. At time t = 0, we have τ = 0 which

indicates the initial conditions of the model. At time t = 0 and with τ = 1, 2, 3, we have

the three interactions undertaken by the agents which indicates the initial model state.

These interactions are taking place before the agents approach the financial institution

for a loan. We assume that these events take place six months before the loan period is

effective. The assumption offers us a rich set of data for HMM training

We recall that the computations for the credit quality and other analysis are computed

after a period of two months.
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6.1.1 Reputation ratings

The initial condition matrix is depicted in the first plot at τ = 0 in figure 6.1 and the other

three plots τ = 1, 2, 3 show the changes observed at time t = 0. Evidently, changes in

reputation ratings are observable at each instance in time, τ = 0, 1, 2, 3 from the different

patterns of the plots. such changes are expected due to the stochastic nature of the SEN.

The main diagonal entries of the reputation rating matrix are equal to five. We observe

that the diagram of the plots does not show any changes due to this set condition for all

R̃t, t ∈ [0, T ]. We note that 1 ≤ R̃t ≤ 5 for t ∈ [0, T ] with r̃ii = 5 for all i = 1, 2, . . . , N.

The initial reputation ratings become more sharply divided in each time period, τ .

These changes are due to the initial state of the network as agents learn each others repu-

tation.

6.1.2 Relationships

The changes in the relationship coefficients of the agents as part of the initial conditions

are depicted in figure 6.2. The dynamics are evident on how agents changed their rela-

tionships levels and value to each other as observed in the figure with ten agents in the

network. We note that 0 < Ṙ ≤ 1 and the agents exhibit different levels of relationships

during this time period. A close look at the figures in figure 6.2 shows changes at each

time period.

The plots shows the discernible changes in the agents relationships along the time

period t = 0 for different τ values. The increases and decreases over time are noticeable

due to the SEN dynamics as expected.

6.1.3 Frequency of interactions

The frequency of encounters is how often an agent interacts with another agent at any

given time interval, τ . Figure 6.3 shows the frequency of encounters of the agents at

time t = 0 which are the initial conditions of the agents. Changes in the number of

these encounters are observable with both an increase and decrease in the frequency of

the encounters. The x-axis shows the number of agents in the network while the y-axis

has the frequency of encounters of each agent respective to the other network agents.

Variations in the frequency of interactions between the agents is observable from figure
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Figure 6.1: The reputation ratings of the agents at t = 0

The diagram shows the dynamics observed in the reputation ratings of the agents at time

t = 0 with 15 agents in the network. This is the period before the agents become part

of the loan portfolio. Changes in the reputation ratings are observable in each plot where

the minor diagonal do not change as this is the individual ratings of R̃ = 5. Some agents

have reputation ratings of as low as R̃ = 1 to the maximum possible of R̃ = 5.
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Figure 6.2: The relationship matrix at t = 0 of the agents.

Evidently, agents changed the relationship levels at each time period τ . The dynamics in

the relationships of the agents shown in the plots indicates that the SEN induced dynamic

relationships. However, we observe that the dynamics were not extreme but we can say

they were in acceptable range though that was not measured. Relationship levels are vital

to keep the agents interactions active and form part of the cyclical inter dependencies

being modeled in the social and economic network.
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6.3 at the indicated different time periods.

The frequency at which agents interact also changes over time. Figure 6.3 shows the

dynamics evident with agents interactions in the network due to change in the amount and

flow of information of each other.
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Figure 6.3: Frequency of encounters of the agents in the network

We have set the number of encounters 1 ≤ N ≤ 8 for all time period t ∈ [0, T ]. We have

assumed a maximum of four encounters per month and since our time t is two months,

then N ≤ 8. The plots shows the combination of the number of agents, frequency of

interactions and changes in time period. We observe changes in the patterns of the plots

that clearly indicates that the agents have changing levels of interaction together with the

frequency of interaction as with changes in time. The time period is at t = 0 with different

interaction times, τ = 0, 1, 2, 3.

6.1.4 Private data

Figure 6.4 shows the changes in the private data of the agents at time t = 0 with τ =

0, 1, 2, 3 where t = 0 and τ = 0 is the initial condition with 20 agents in the network.
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There are no major changes observable in the private data as it changes slowly. We noted

that the private data is a function of the trust and distrust levels in the network and the

accumulated private data at the previous period of time. Major spikes in private data are

kept in check by use of the SEN ratings of trust and distrust levels as the private data

forms a key component in this model.

The private data component of the SEN-HMM-CSD model shows high levels of sta-

bility in terms of dynamics of the accumulation or loss of the factors. In general, economic

factors do not exhibit stochastic behaviour, but has an element of deterministic behaviour.
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Figure 6.4: The initial private data of the agents at time t = 0

The twenty agents show minimal changes in the private data during this time period. The

changes in private data observable among the agents. Looking at the plots do not seem to

show any observable changes but in actual sense, the plots exhibit changes. We remember

that private data cannot change very frequently as is the case with social factors. Again,

the plots are for one period only, t = 0 with different interactions at τ = 0, . . . , 3.
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6.1.5 Age of the agents

The set of data for the agents age forms the demographic component of the SEN. Age

increament is observed after every twelve months. The mean for this group is 44.3 years

with a standard deviation of 12.74 and skewness of −0.211. The majority of the agents

are aged between 23 years and 45 years. Age was the only social-demographic variable

used in this study.

6.2 Network Dynamics Analysis

The SEN dynamics are observable from the different strategies and interactions agents

makes with each other. These dynamics are in reputation changes, relationships levels,

number of times the agents interact with each other, the interaction experiences and the

feedback from all the agents and individual agents. We analyze the dynamics from t ∈

[1, T ] with varying number of agents in the network for the different variables in the SEN

using the available different plots and graphs to give us a blend and mix of the possible

outcomes in the analysis.

We compare the relationship intensity, encounter experiences and the reputation rat-

ings of 8 agents in the network at time t = 6 as depicted in figure 6.5. Obligors with

high reputation ratings, and high relationship intensity had high encounter experiences

and vice versa. The colorbar in figure 6.5 represents the reputation ratings of the obligors.

This highlights the link between these variables in the SEN.

Figure 6.5 shows the link between interaction experiences, relationship levels and the

reputation ratings of eight obligors at t = 6. Dynamics are noted with obligors having

high levels of relationship intensity and reputation ratings showing high levels of inter-

action experiences. The dynamics are not showing a causation between the relationship

levels, encounter experiences and the reputation ratings. Each of these variables has either

a direct or indirect link with the other variables for the obligors in the network.

6.2.1 Reputation ratings

Figure 6.6 shows the agents when they are issued with loans by the financial institution

and the changes in the reputation ratings are tracked for a period of eight months, that is,

t̂ = 8. This translates to four periods, that is, t = 4 because we have a time interval of
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Figure 6.5: Relationships, interaction experiences and the reputation ratings

The interdependency of relationships, interaction experiences and reputation ratings are

depicted in the plot. The colorbar represents the reputation ratings of the agents and

are compared to the two other variables. High levels of reputation have high levels of

interaction experiences as well as good relationship levels amongst the agents. This is

within the expectations of the SEN dynamics due to the inter dependencies of the agents.
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2 months for the computation of the reputation ratings and other variables in the model.

Figure 6.6 depicts the dynamics observed in the reputation rating changes in those eight

months. Clearly, dynamics in the reputation ratings are observed even after the loan

is issued by the financial institution. The SEN offers dynamics of the changes in the

reputation ratings of the peers in the network as shown in figure 6.1 and figure 6.6. These

ratings enables us to gain insights on the behavior of the agents at each time period.

Reputation ratings are key part of the SEN-HMM-CSD model as they are used to

estimate trust, distrust, SEN risk and in the computation of the private data.
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Figure 6.6: Reputation ratings at t = 1, 2, 3, 4 with 12 obligors in the loan portfolio

The patterns in the diagonal observed in these plots are similar to those in figure 6.1 which

remains constant at r̃ii = 5, ∀i. The changes in time led to changes in reputation ratings

of the agents in the network as is depicted in the plots.

6.2.2 Agents relationships

The figure 6.7 shows the changes in the relationships levels after the loan was issued by

the financial institution for the period of the first eight months at t = 1, 2, 3, 4. Marked

120



changes in the strength of the relationships and the SEN dynamics in those relationships

are noticeable. The evolution of the relationships are made independently at each time

period by each agent. Agents choices are rational and change the relationship levels to

maximize gains from the network interactions and links. We noted that relationships have

costs and benefits that lower or increase the outcome of the agents actions.

As noted in the plots in figure 6.7, the changes are not sharply different with changes

in time periods. Relationships are crucial as they define which agent will relate to which

agent. This is the connecting factor which varies with experiences and outcomes of the

recent relationships.
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Figure 6.7: The relationship matrix during the life of the loan.

Relationship levels at t = 1, 2, 3 with ten obligors in the loan portfolio. The subtle

changes are noted in the four plots indicating that relationship changes are dynamic with

changes in time periods. This is the expectations we have observed from the agents in the

network.
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6.2.3 Interaction experiences

The interaction or encounter experiences are possibly enhanced by the different charac-

teristics of the agents and the uncertainties there in. Interaction information enables the

agents to decide on how frequently to interact with another agent, the relationship level

and the reputation rating to award the respective agent. We therefore note that the flow

in the SEN is cyclical as one parameter has a link with another as well as one agent with

another. Figure 6.8 shows the encounter experiences of the agents at time t = 1, 2, 3, 4

and how the dynamics of these experiences for the ten agents in the SEN changes over a

period of time.

The variations in the plots indicates that agents experienced varied interaction satis-

faction with changes in time. Therefore, agents interaction experiences forms part of the

main variables in the SEN dynamics.
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Figure 6.8: The encounter experience matrix during the period of loan obligations

Encounter experiences at t = 1, 2, 3 with ten agents in the network during the life of the

loan obligations with the financial institution.

122



6.2.4 Reputation feedback

Figure 6.9 is the contour plots for the reputation feedback at time t = 1, 2, 3, 4 with 14

agents in the network. The feedback mechanism is to ensure that the different parameters

offers us the general status of an agent. Social network model shows the desirable and

undesirable outcomes of the agents and the feedback from the agents reputation ratings.

Feedback systems in a network are important as they show how the agents interact,

react and rate each other in the networking process. Changes are observable in the plots

in figure 6.9 at each time period. Evidently, reputation feedback is dynamic over time. A

SEN characteristic is dynamism and stochastic nature from the agents interactions.
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Figure 6.9: The reputation feedback of the agents after the loan issuance.

The reputation feedback of fourteen obligors in the loan portfolio at time t =

1, 2, 3, and 4. As we have noted earlier, the plots exhibits the dynamics of the agents

inter dependencies in the network and the social factors that changes with time.
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6.3 Credit Risk Analysis Factors Data

Equation (5.29) shows the number of variables at each time period t ∈ [0, T ]. This in turn

eases the HMM learning and training process. The credit risk analysis factors are scaled

at (0, 1] to set the uniformity for ease of data clustering. The distribution of the CRAF

for ten agents at time t = 0 is depicted in figure 6.10. The plots shows that the CRAF

had varied dynamics based on individual agent. No specific distribution is observable for

the CRAFs of these agents but the 7th agent CRAFs show a curve that depicts the normal

distribution.
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Figure 6.10: The credit risk analysis factors scaled to (0, 1] for ten agents

Credit risk analysis factors are used to cluster the agents states sequence and observation

sequences which are in turn used for HMM learning and training.

The table 6.1 is a summary of the descriptive statistics for the CRAF at time t = 0 and

t = 1 for five agents in the network. Variability is high from the coefficients of variation

(CV) and this translates to high spread of the data a fact that is supported by the dynam-

ics expected from the network. We expect similar patterns to be observed in the credit

quality dynamics of the obligors later in the chapter. The asymmetry in the CRAF data
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is observed from the skewness values in the two time periods. Average values of these

factors is [0.4435, 0.7112] for the highlighted period in table 6.1. The coefficient of vari-

ation ranges between 46.9% and 85.6% for the time period t = 0. For t = 1, coefficient

of variation ranges between 36.3% and 85.1%. The second time period variations were

lower than those of the first time period. This scenario could be due to initial conditions as

the initial data was gathered from the agents for the first time. Therefore, in this scenario,

the five agents had lower CQS and CQL at time t = 1 compared to time t = 0.

Table 6.1: Descriptive statistics for the credit risk factors

Time Agent Mean Standard Error Standard deviation Skewness C.V (in %)

t = 0 1 0.5223 0.0757 0.4147 0.1000 79.40

2 0.7112 0.0610 0.3338 -0.7408 46.90

3 0.5458 0.0559 0.3059 0.0276 56.00

4 0.5500 0.0507 0.2777 0.4036 50.50

5 0.4490 0.0702 0.3844 0.2444 85.60

t = 1 1 0.5224 0.0952 0.4448 -0.0094 85.10

2 0.6371 0.0668 0.3131 -0.0949 49.10

3 0.6936 0.0635 0.2981 -0.7308 43.00

4 0.5648 0.0437 0.2050 0.3569 36.30

5 0.4435 0.0787 0.3691 0.5701 83.20

Figure 6.11 shows the changes in the credit risk analysis factors at t = 0, 1, 2, 3.

The data is from the initial conditions to the sixth month of the loan premiums being

in operation. The factors are clustered to estimate the state sequences and observation

sequences for HMM training process. A look at the plots shows that the factors had

changes over time as is also depicted in table 6.1. The coefficient of variation (CV)

measures the variations in the agents CRAFs at two different time periods.

6.3.1 Singular value decomposition analysis

The SVD analysis in the study is used to extract the social factors which form part of the

credit risk analysis factors of the agents. Figure 6.12 is the plots for the SVD extraction
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Figure 6.11: The credit risk analysis factors for hidden Markov model training.

The credit risk analysis factors for ten agents at time t = 0, 1, 2, 3. The data used in these

plots were scaled into the range (0, 1] to ease HMM training and learning process. It is

evident that the CRAFs changed with changes in time because of the dynamics of the

agents in the SEN.
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of the trust levels based on the reputation ratings of the peers in the network. The right

eigenvectors and the reputation ratings are combined to estimate the trust levels in the

network at time t = 1 with ten agents in the network. Figure 6.13 is the plots for the SVD

extraction of the distrust eigenvectors and singular values based on the distrust ratings.

The distrust ratings are extracted from the reputation ratings of the agents, which are

based on peer to peer levels in the network. The right eigenvectors and the distrust ratings

are combined to estimate the distrust levels in the network at time t = 1 with ten agents

in the network.
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Figure 6.12: The SVD of the reputation ratings to extract the eigenvectors and singular

values for the trust levels

The plots shows the reputation ratings and the corresponding extractions using the SVD.

These are the right eigenvectors, the singular values, and left eigenvectors. The right

eigenvectors are frequently used to estimate the trust levels as these eigenvectors are the

columns of the reputation ratings matrix extractions.

We use the SVD to analyze agents by extracting the reputation ratings to estimate

the trust levels of the agents. This gives rise to three matrices with the left eigenvectors,
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Figure 6.13: The SVD of the distrust ratings extracted from the reputation ratings for the

eigenvectors and singular values for distrust levels

The distrust levels of the agents are estimated with the right eigenvectors as depicted in

the third plot. Columns of the distrust ratings matrix shows the levels of perception an

agent receives from the other agents.
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singular values and the right eigenvectors. We have selected a reputation ratings matrix

with five agents to show an example of a SVD analysis. The condition number for the

system is, C(R̃) = 9.7023. This information is combined with information in table 6.2 to

explicitly show how the reputation ratings are used to extract the trust levels, among the

variables of the agents required for the CRAFs.

R̃ = Um×mSm×kV
T
k×k (6.1)



5 3 2 4 2

2 5 2 2 1

2 2 5 2 3

2 2 3 5 2

1 1 4 3 5


=



−0.496 0.481 −0.447 0.549 0.146

−0.368 0.505 0.677 −0.291 0.258

−0.450 −0.323 0.396 0.368 −0.633

−0.458 0.027 −0.429 −0.691 −0.358

−0.454 −0.640 −0.020 −0.032 0.619


×



14.160 0 0 0 0

0 4.898 0 0 0

0 0 3.056 0 0

0 0 0 2.011 0

0 0 0 0 1.459





−0.387 0.445 −0.317 0.739 −0.078

−0.395 0.558 0.641 −0.241 0.253

−0.506 −0.434 0.352 0.077 −0.653

−0.514 0.102 −0.604 −0.597 −0.065

−0.417 −0.541 0.005 0.184 0.707


We extract the trust levels of the five agents and the levels are shown in table 6.2 where

the agents with high average reputation ratings had high trust levels. Even though some

agents have the same average reputation ratings as in table 6.2, the trust levels differs

as the SVD analysis takes into account the other matrix entries in the reputation ratings

matrix in its analysis.

In figure 6.14, the graph shows the dynamics observed in the ethical factors, return

on private data and changes in private data at time t = 1 for ten agents in the network.

Obligors with high ethical factors had low return and change in private data and those

with low ethical factor had high return on private data and high changes in private data at

any given time period. We do not have an actual explanation as to why this is observable.

But, from real life situations, agents who are unethical can sometimes make high returns
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Table 6.2: Estimated trust levels for five agents using SVD

Agents 1 2 3 4 5

Trust levels 0.2439 0.546 1.0000 0.8849 0.6390

Average reputation ratings 2.4 2.6 3.2 3.2 2.6

on their investments. Though, this differs from case to case basis. An investment can be

done on ethical or unethical ways and still produce the desired results of high returns.

In figure 6.14, the third obligor has very low ethical factor and high return and changes

in the private data. For the second obligor, the ethical factor, return on private data and re-

turn on private data are almost the same at around 0.7 in the scale of 1.0. These dynamics

mark the agents behaviour in the SEN.

6.4 HMM Output

The availability of the credit risk analysis factors propels us to the clustering stage to es-

timate the state sequence and the observation sequences. Supervised clustering is applied

to cluster the credit risk factors into 1 and 2 for the state sequence and 1, 2, 3 and 4 for the

observation sequence. The state and observation sequences are used for HMM training to

estimate the transition and observation matrices for the agents and the dynamic threshold

levels.

Figure 6.15 shows the plots for the state sequence of an obligor from t = 0 to t = 3.

The dynamics of the state symbols are noted in each plot and the variations in the state

symbol length is observable. The state sequence form the transition matrix for each se-

quence using the hmmestimate inbuilt function in Matlab. The two sequences are esti-

mated after supervised clustering was done to estimate matrices A and B. The agent has

either a state sequence as one or two depending on the set of CRAF data. There is an

equal chance that an agent can exhibit either a low score or high score.

Figure 6.16 shows the plots for the observation sequence of an obligor from t = 0 to

t = 3. The symbols shows the changes at each time period. The data in figure 6.15 and

figure 6.16 are trained to emit the transition and observation matrices for each individual

agent. For example, the transition and observation matrices for an agent at time t = 0
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Figure 6.14: Comparison of the ethical factors, return on private data and changes in

private data

The ethical factor was used in the model to capture that component of the agents that af-

fects the private data. An agent can be ethical or non-ethical in their investment decisions.

That also means they can decide to act in a manner that compromises the returns of other

agents in the network.

131



0 10 20 30
1

1.2

1.4

1.6

1.8

2
State sequence of an agent at t = 0

0 10 20 30 40
1

1.2

1.4

1.6

1.8

2
State sequence of an agent at t = 1

0 10 20 30 40
1

1.2

1.4

1.6

1.8

2

Length of state symbols

State sequence of an agent at t = 2

0 10 20 30 40
1

1.2

1.4

1.6

1.8

2
State sequence of an agent at t = 3

Length of state symbols

Figure 6.15: The state sequence estimated from the credit risk analysis factors

The diagrams shows the state sequences of one agent at different time periods. The se-

quences are either 1 for low change or 2 for high change in the transition of the states.
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is respectively given as matrices Â and B̂. The observation sequence plots are also the

credit quality levels of the obligors. The changes in the observation symbols are evidently

observable from the obligors dynamics in the model analysis.

0 10 20 30
1

1.5

2

2.5

3
Observation sequence at t = 0

0 10 20 30 40
1

1.5

2

2.5

3
Observation sequence at t = 1

0 10 20 30 40
1

1.5

2

2.5

3
Observation sequence at t = 2

Length of observation symbols
0 10 20 30 40

1

1.5

2

2.5

3

Length of observation symbols

Observation sequence at t = 3

Figure 6.16: The observation sequence estimated from the credit risk analysis factors

The diagram shows the observation sequences of an agent with 1 indicating a poor obser-

vation, 2 is average, 3 is good and 4 is excellent observation of the agent credit quality.

The transition matrix Â is embedded with the initial state probabilities (in the first row

of the matrix) for the estimation of the dynamic threshold for 12 obligors at time t = 3 is

given as;

Â =


0 0.5139 0.4861

0 0.7457 0.2543

0 0.3068 0.6932


The transition matrix is fully connected or is an ergodic model. The first row of matrix Â

is the initial state probability distribution. The second and third rows of Â are the compo-
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nents of the transition state probabilities. The dynamic threshold observation matrix B̂ is

embedded with the initial state probabilities for 12 obligors at time t = 3, is given as;

B̂ =


0 0 0 0

0.3859 0.2782 0.1701 0.1658

0.2064 0.1477 0.3315 0.3144


With the estimated transition matrix Ân and the observation matrix B̂n for each agent

at each time period, we are now in a position to estimate the credit quality levels of the

agents.
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6.5 Credit Quality Analysis

The key objective of a credit rating system is to accurately and in a timely manner assess

the credit risk of an obligor. Characteristics of the obligors are inferred from the dynamics

of these credit quality scores and credit quality levels. We consider the analysis for the

CQS, CQL, the dynamic threshold, false rates and the stopping time estimations.

6.5.1 Credit quality scores classification

The dynamics of the credit quality scores of ten agents for a period of six months from

t = 0, 1, 2, and 3 is depicted in figure 6.17. Agents with high or low credit quality tend to

maintain the trend of the levels for the four periods estimated since entry in the financial

institution loan books but with some variations noted for some of the obligors.

Figure 6.18 shows the CQS dynamics of 35 agents against the dynamic threshold

level as an indicator of the barrier for the possible defaults and non defaults in the loan

portfolio. This is the sixth month since the loan inception. The stochastic nature of the

agents credit quality when observed against the dynamic threshold is clearly shown. The

fact that an agent is below the threshold does not automatically imply a default but signals

a likely default. Some of the values of the CQS of the obligors are very close to the

dynamic threshold value while others are far. In fact, the third obligor has its CQS equal

to the dynamic threshold value. The sixteenth obligor had the best CQS value and the first

obligor had the lowest CQS. If any defaults are observed in this scenario, then the first

obligor is among the defaulters.

Figure 6.19 shows the credit quality level and the hybrid credit quality levels of the

obligors against the dynamic threshold at t = 3 for 20 agents. The different transitions

in the credit quality level of each obligor indicates the level of dynamics of the model

and the general observation in the credit risk modelling world. When the obligors CRAF

are estimated in HMM using the threshold HMM parameters, the hybrid credit quality is

emitted. We are interested in observing the role of standardization of the credit scoring

and how it affects the obligors credit scores and default dynamics.

In some instances, the HCQS were higher than the CQS. This is due to the fact that

an obligor scores highly when compared to the peers average dynamics but poorly when

on their own.
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Figure 6.17: The credit quality scores of the obligors for a period of six months.

The second agent had its credit quality scores increases at each time period. For the first

agent, the score was almost constant for these four time periods. The dynamics through

time and uncertainties are observed. The six months indicates that we have four values of

the credit quality for each agent at time t = 0, 1, 2, and 3.
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Figure 6.18: Distribution of the obligors credit quality scores when compared against the

dynamic threshold.

We observe that 17 of the agents were above the threshold level, 17 below the threshold

level and one agent on the threshold level. The different obligor characteristics are seen

from the different credit quality scores.
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Figure 6.19: The Dynamics of the credit quality levels against the threshold level

The dynamics in the hybrid credit quality and the credit quality levels are compared

against the threshold level at time t = 3 with twenty obligors in the loan portfolio.
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Table 6.3: 95% confidence interval and the credit quality of obligors

Time, t Dynamic Agents indexing

months Confidence interval threshold 1 2 3 4 5

0 (0.3223, 0.5269) 0.3611 0.3835 0.4180 0.3667 0.4665 0.4883

1 (0.3488, 0.5113) 0.3842 0.4708 0.4504 0.3853 0.3854 0.4583

2 (0.3538, 0.5074) 0.3757 0.4310 0.4690 0.4016 0.3822 0.4691

3 (0.3101, 0.5149) 0.3557 0.4476 0.4608 0.3877 0.3331 0.4332

4 (0.3313, 0.4717) 0.3391 0.4098 0.3993 0.4231 0.3418 0.4334

5 (0.3099, 0.5137) 0.3455 0.4501 0.4055 0.4736 0.3417 0.3879

6 (0.3360, 0.5471) 0.3651 0.4894 0.4203 0.5060 0.3793 0.4126

The obligors credit quality score lies within the 95% confidence interval as shown in table

6.3. In this scenario, it is only the 4th agent at time t = 3 whose credit quality score

was below the threshold level, that is, 0.3331 < 0.3557. If we apply the 0.85θ̄ rule for

the delinquent cases, then, this 4th agent at t = 3 was a delinquent case. Thus, no agent

defaulted in this scenario.
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Figure 6.20 shows a display of the credit quality dynamics of the credit quality scores

of the agents for a period of one year. The display is a reflection of the expectations in the

long run on the shape exhibited by the credit scores of the agents. The normality observ-

able in figure 6.20 is in agreement with observations from other studies and researchers

(David , 2004). We note some outliers in the figure for agents with extreme CQS.
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Figure 6.20: Obligors’ credit quality scores

The plot shows a histogram of the credit quality scores of 40 obligors for a period of one

year from t = 1, 2, . . . , 6. A normal like curve is displayed by the data.

Table 6.4 shows the correlation between the credit quality levels at the different time

periods during an interval of one year. There is a high positive correlation between time

t = 1 and t = 2 at 0.622. This is also observed between time t = 5 and t = 6 at 0.632. We

observe negative correlation at time period t = 1 and t = 4 with a correlation of −0.231.

Low association is observed between time t = 5 and the time periods 1, 2 and 3 with no

general trend observable.

Time periods preceding each other have higher positive associations. This could be

because of using current preceding data in estimating CRAFs. This is in order as the
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SEN-HMM-CSD model estimates are time dependent.

Table 6.4: Correlation of the credit quality scores

Time, t 1 2 3 4 5 6

1 1.000

2 0.622 1.000

3 0.011 0.608 1.000

4 -0.231 0.319 0.460 1.000

5 0.030 -0.013 0.013 0.498 1.000

6 0.247 0.177 -0.165 0.276 0.632 1.000

The correlation of the credit quality scores of 40 obligors for a period of one year after

the agents are incorporated in the loan portfolio.

6.5.2 Credit quality levels classification

The obligors in the loan portfolio are classified as being in the following credit levels,

poor, average, good and excellent (PAGE).

Table 6.5 shows the dynamics in the classification of the obligors into the four CQLs

namely, poor, average, good and excellent. The majority of the obligors falls into the

average and good levels but with some percentages in the poor and excellent levels. The

model proves that its possible to use SEN data for consumer credit scoring process.

Table 6.5: Percentage of agents (N = 40) in each credit quality level

Time (months) Poor Average Good Excellent

1.0 5.0 17.5 65.0 12.5

2.0 5.0 20.0 65.0 10.0

3.0 5.0 10.0 57.0 27.5

4.0 2.5 22.5 55.0 20.0

Between 65% and 82.5% of the agents credit quality is classified as is either average or

good.
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Table 6.6 shows the mean and standard deviation of obligors credit quality and hybrid

credit quality. This is compared to the actual values of the dynamic threshold values for

a period of one year. The mean credit quality is higher than the hybrid credit quality and

the threshold level values. At t = 2 and t = 3, the mean credit quality is slightly lower

than the threshold level. The HCQS have higher coefficient of variation compared to the

CQS. This indicates that the HCQS had higher variability compared to the CQS at any

given time during this period of one year with 40 obligors in the loan portfolio. The CQS

had a higher mean value when compared to the HCQS mean value.

Table 6.6: Descriptive statistics for the credit scores

Time, t

Credit Score Statistic 1 2 3 4 5 6

Threshold Actual score 0.2397 0.4696 0.4700 0.2952 0.2548 0.3145

CQS Mean 0.4724 0.4695 0.4699 0.4581 0.4424 0.4218

Standard deviation 0.0783 0.0747 0.0665 0.0691 0.0739 0.0737

C.V (%) 16.60 15.90 14.20 15.10 16.70 17.50

HCQS Mean 0.3752 0.3743 0.3539 0.3438 0.3771 0.3569

Standard deviation 0.1050 0.1028 0.1027 0.1009 0.0784 0.0714

C.V (%) 28.00 27.50 29.00 29.30 20.80 20.00

The data is the descriptive statistics for the credit quality scores of 40 obligors for a period

of one year during the life of the loan. The coefficient of variation (CV) measures the

variations in the CQS and HCQS for the time period.

In table 6.7, the number of agents increased but there was also an increase in the

number of agents with credit levels of average and good. This second set of agents,

as compared in table 6.5 shows that the credit scoring model with social and economic

data is a reliable model when it comes to consumer underwriting process. Our model,

SEN-HMM-CSD offers promising prospects in use of social network data to increase the

accuracy of default rates estimation.

We therefore note that the SEN-HMM-CSD model emits credit quality scores that

classifies the agents with poor, average, good and excellent credit quality levels.
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Table 6.7: Percentage of agents (N = 65) in each credit quality level

Time (months) Poor Average Good Excellent

1.0 3.1 12.3 75.4 9.2

2.0 4.6 23.1 56.9 15.4

3.0 3.1 20.0 60.0 16.9

4.0 1.5 21.5 58.5 18.5

From the table, between 80% and 87.7% of the agents credit quality is either average or

good when the SEN had 65 obligors

6.5.3 Default and survival rate

The default and survival rates are one of the key components in this model. Figure 6.21

shows the obligors credit quality levels against the dynamic threshold value and the delin-

quent level in the model. These are the values at time t = 3 with 20 obligors in the

loan portfolio. Any score below the lower delinquent level indicates a default while any

obligor score above the lower delinquent level indicates a survival at that time period. We

are more concerned with the obligors below the lower delinquent level as they are the

likely default cases. As noted earlier, different random generator seed have been used in

different section to depict at least some of the possible scenarios in this study.

The default and survival rates in the SEN-HMM-CSD model are as a result of CQS

and the dynamic threshold. Agents CQS falling below the dynamic threshold are assumed

to be delinquent cases. Those below the delinquent threshold are defaulters. The default

rates are the main concern for any financial institution. They always want to understand

if a default is likely to occur and when it occurs.

Figure 6.22 indicates instances in which an obligor credit score was below both the

dynamics threshold level and the lower delinquent level. The marked sections are where

default was realized in a scenario of 12 obligors for a period of one year where t =

0, . . . , 7. Evidently, some of the obligors would have defaulted more than once assuming

that they were allowed to continue with the loan even after it was noted that they had

defaulted. Two obligors have instances of more than one default period while two other

obligors would have defaulted only once during this period.

The survival rates for the 12 obligors for a period of one year, where t = 0, . . . , 7 is
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Figure 6.21: The credit score against the delinquent level and threshold value
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Figure 6.22: Default rates

The marks on the plot shows the instances when the obligor would have defaulted on the

loan obligation. For the third and twelfth obligors, the plot indicates a default but it shows

that if they were allowed to continue paying the loan premiums, they possibly would have

been able to meet the obligations at the end of the time period.
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Figure 6.23: Survival rates

The blank spaces are the default rates while the marked spots are instances of survival.

This compares to figure 6.22 which is a mirror image of this figure. On average as shown

in figure 6.23, if we estimate the total expected marks in the figure and compare to the

empty pockets which are the default rates, the defaults are very few.

depicted in figure 6.23. When figure 6.23 is compared to figure 6.22, the pockets missing

in the former is the default rates while those of the later are the survival rates. We generally

know that an obligor survives if they do not default. The set of the obligors in the SEN

and the loan portfolio is the union of the defaults and survival rates.

6.5.4 False rates analysis

We note that high false rates in a credit scoring model reduces the accuracy of the model.

This is detrimental to the actual expectations of such a model. We consider the cases of

false positives and false negatives observed in the model. Figure 6.24 shows the false

rates clustering of six obligors in the network for a period of one year, t = 1, 2, . . . , 7.
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The combination of the credit quality and hybrid credit quality of an obligor results into

the classification below,

G =



g = 2 for Positive Rates If φ ≥ φ̄ & φ̂ ≥ φ̄;

ġ = 1 for False Negative If φ ≤ φ̄ & φ̂ ≥ φ̄;

g̈ = −1 for False Positive If φ ≥ φ̄ & φ̂ ≤ φ̄;

ĝ = −2 for Negative Rates If φ ≤ φ̄ & φ̂ ≤ φ̄;

(6.2)

Figure 6.24 depicts the false rates for each of the six agents for a period of one year.

Obligor two had four positive ratings with obligor one, three, five and six having three

positive ratings. Obligor one did not show any signs of defaulting because there is no

negative ratings in that one year period. For obligor two, four, five and six, each had two

negative ratings during this one year period. Obligor three had four false positive rating

during this period.

The general trend according to the six plots in figure 6.24 for the six obligors is that

they all exhibited different types of patterns of the false rates at a given time period of

one year. However, in the last three periods of the year, the obligors had a positive rate

showing that the SEN-HMM-CSD model rated them as good clients. Low false rates are

ideal in real life situations to eliminate chances of denying credit facility to a ‘good’ client

and giving credit to a ‘bad’ client.

Table 6.8 shows the number of false rates in the model for ten agents for a period one

year. The obligor with the highest chance of not defaulting (positive rating)is the obligor

number 6 with a 85.7 percent of not defaulting with a 14.3 percent rate of false positive

which are instances when the obligor was declared to have defaulted while in real sense

they had not defaulted. The actual default probability is 0 for the first obligor. For the third

obligor, default probability was 14.3 percent, with a 28.6 percent rate of false negatives,

that is, assumed to have defaulted but had not defaulted, a 14.3 percent false positive rate,

that is, assumed to have not defaulted but in actual sense defaulted and a 42.8 percent rate

of not defaulting.

Each of the ten obligors is counted seven times in 6.8 which is a period of one year.

Only the fifth and eigth obligors who had high false negative rates of 57.1% and 42.8%

respectively. This is relatively high but chances are that they defaulted during this time

period. The other set of agents had a relatively low false rates during this time period.
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Figure 6.24: The false rates estimations

The false negative rates are represented by the value 1 while the false positive rates by the

value −1 in the model. This is depicted in the six plots. They are six different obligors

for a period of one year.
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Table 6.8: False rates clustering

Agents

False Rates 1 2 3 4 5 6 7 8 9 10

Positives 5 5 3 5 2 6 5 4 5 6

Percent 71.4 71.4 42.8 71.4 28.6 85.7 71.4 57.1 71.4 85.7

False positives 1 1 1 0 0 1 0 0 2 1

Percent 14.3 14.3 14.3 0 0 14.3 0 0 28.6 14.3

False negatives 1 1 2 1 4 0 2 3 0 0

Percent 14.3 14.3 28.6 14.3 57.1 0 28.6 42.8 0 0

Negatives 0 0 1 1 1 0 0 0 0 0

Percent 0 0 14.3 14.3 14.3 0 0 0 0 0

Total 7 7 7 7 7 7 7 7 7 7

Total (percent) 100 100 100 100 100 100 100 100 100 100

The false rates for each agent are for a period of one year where t = 1, 2, . . . , 7. Overall,

65.7 percent had a positive rating, 10 percent showing false positives in one year, 20

percent with false negatives and 4.3 percent with negative ratings in the same period. The

negative rated obligors are the ones with poor credit quality levels.
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6.5.5 Stopping time

Figure 6.25 shows the non optimal stopping time which is also similar to the default rates

spots in the model. Thus, the non-optimal stopping time is the default rates while the

optimal stopping time of an obligor is the ability of the agent to survive until the end of

the life of the loan. We track a discrete stopping time process ti indicate the time at which

an obligor defaults. The event occurs when the CQS of an obligor falls below both the

dynamic threshold and the delinquent threshold levels.

Assuming that a default occurs once an obligor is not able to meet its obligations,

then we have four defaults as shown in figure 6.25, that is, four non-optimal stopping

time periods If it is assumed that default occurs once an obligor defaults two obligors

defaulting.
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Figure 6.25: Non optimal stopping time

We have sixteen obligors in the loan portfolio and this is for a duration of one year. The

dots shows instances in time the specific obligors would have defaulted, thus having non-

optimal stopping time.
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6.6 Model Performance Analysis

The sensitivity analysis is tested using the Pearson correlation coefficient and the results

are in table 6.9. The coefficient of determination is higher for the analysis with 30 obligors

compared to the situation where we have 20 obligors. The model is thus more sensitive in

cases where there are fewer agents as compared to the SEN with many agents.

We refer to equation (5.47) which highlights the accuracy measure used in this study.

According to table 6.9 and equation 5.47, the SEN-HMM-CSD model accuracy is be-

tween good and high accuracy rates.

Table 6.9: Sensitivity analysis with Pearson correlation coefficient

Obligors (N) Input 1 Input 2 Correlation (t = 1) Correlation (t = 2)

20 5 6 0.8043 (R2 = 0.647) 0.8072 (R2 = 0.652)

30 5 6 0.9245 (R2 = 0.855) 0.9914 (R2 = 0.983)

We have 20 and 30 obligors whose credit quality sensitivity analysis is undertaken when

the reputation ratings are increased from 5 to 6

We test the accuracy of this simulation model by comparing the negative and positive

ratings against the false negative and false positive ratings. Table 6.10 shows the percent-

age accuracy rates for SEN with different number of obligors. We vary the number of

the obligors in the SEN and the reputation rating inputs in the model. A comparison is

made on the accuracy rates in percentages at two time periods. The accuracy levels range

between 53% and 73% which we feel are satisfactory for this model.

6.6.1 Credit quality and false rates

The quality of the model output in terms of the default rates is dependent on the random

generator used in the simulation process. We are able to depict different scenarios that

can occur in a real life situation. This study has shown that default rates can be captured

based on credit scores of the obligors and the dynamic threshold which is a function of

the CQS of all the obligors in the loan portfolio.

Table 6.11 is the summary of repeated simulation replications with different number

of obligors in the loan portfolio who form the SEN and the time period expressed in years.
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Table 6.10: Model accuracy in percentages based on the false rates

t = 2 t = 3

Reputation ratings Reputation ratings

Obligors (N) R = 5 R = 6 R = 5 R = 6

15 73.3 53.3 60 53.3

25 60 64 60 60

35 60 57.1 57.1 62.9

40 60 60 60 60

50 54 66 54 62

The data shows the dynamics in the credit quality levels of the obligors and the false rates

in the model at different periods of time. False positives were few with the highest being

at 15 percent and the lowest at 3.1 percent. The replication with the highest number of

obligors with poor credit quality level had the highest number of false positives in the

model.

6.6.2 Conclusion

The analysis and findings for the SEN-HMM-CSD model has been presented. Each of

the model’s five levels has been discussed and the findings presented in the form of tables,

charts and graphs. The model performance was also presented and the accuracy noted to

be within good and high accuracy rates which is acceptable for a model.
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Table 6.11: Repeated replications using the model

Replications 1 2 3 4 5

Number of obligors 40 30 15 20 25

Time In years 2.0 1.5 1.0 0.5 0.5

Credit Quality Poor 23.1 9.3 10.7 20.0 1.3

(Percent) Average 19.0 14.0 20.0 15.0 9.3

Good 42.5 56.3 69.3 52.5 74.7

Excellent 15.4 20.4 8.0 12.5 14.7

Total 100 100 100 100 100

False Rates Negatives 23.9 9.3 10.7 20.0 1.3

(Percent) False Positives 3.1 7.4 12.0 15.0 6.7

False Negatives 47.0 33.7 37.3 10.0 36.0

Positives 26.0 49.6 40.0 55.0 56.0

Total 100 100 100 100 100

The table is a summary of the credit quality levels and the false rates in the model using

different simulation replications with different random generators.
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Chapter 7

Discussions, Conclusions and

Recommendations

The chapter presents the discussions from the study, the conclusions made from the ob-

jectives and the analysis and recommends areas of future research.

7.1 Discussions

7.1.1 SEN-HMM-CSD Model

We have developed a dynamic model that captures the cyclical and inter dependencies of

the agents affected by the social and economic factors in the network. The dynamics of

these SEN factors have been analyzed and depicted in figures, graphs and tables which

have shown changes observable with time. Each social factor was estimated using the

SVD method after the interactions and ratings at each time period. The economic factor

(private data) was based on the trust levels and initial private data of the agents. The other

economic factors, ethical factor, changes in private data and return on private data were

also estimated. The analysis showed the stochastic nature and the dynamics in SEN.

A new definition for a social and economic network was formulated as part of the

contributions brought forward in this study. It was modified from the existing definition

of the social networks and graph theory. A theorem to prove that reputation ratings was

developed to show that these ratings are a stochastic process. The theorem derives its

proof from the filtration process which is a Martingale.
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7.1.2 Credit risk factors

The SEN-HMM-CSD model has a set of values for each agent at each time period. At

time, t, we have ΓN×γ which are scaled to (0, 1] to ease the supervised clustering in

estimating the transition and observation matrices. The CRAFs were estimated from the

social and economic factors that were noted to be stochastic and this in turn induced the

same dynamics in CRAFs.

The credit risk analysis factors were used in this study for the first time. No other

research or study has ever introduced these factors in the analysis of consumer credit

scores using the social and economic data.

7.1.3 HMM parameters

The multiple agent HMM was introduced by the modification of the existing standard

HMM. This caters for the heterogenety in the SEN dynamics and in learning and training

the HMM.

The CRAF data set formed an excellent basis for the learning and training of HMM.

Credit risk analysis factors were used to estimate the transition and observation matrices

for each agent. These matrices were in turn used to estimate the observation sequences

and state sequences for each agent at each time period. Maximum likelihood was then

used alongside the observation and state sequences to obtain optimal transition and obser-

vation matrices. The Matlab inbuilt functions for HMM were applied to estimate all the

parameters necessary for the computation of the credit scores and default rates.

The supervised clustering used in the study to estimate matrices A and B were also

used the first time in this study. No known research work exists that has estimated the

transition and observation matrix with such as a technique. In chapter four, the parameters

of the HMM were modified to suit the multiple agents and multiple observations for the

study. Thus, this is a new contribution that the study was able to offer in the field of credit

scoring using the HMM.

7.1.4 Credit scores and default rates

The HMM emissions were the credit scores and the credit levels based on the poor, av-

erage, good and excellent. The CQS had a range of between zero and one, which is a
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probability of survival and is weighed against the dynamic threshold. Default rates (from

dynamic threshold) were observed to vary with time and conditions induced in the SEN

model. The HCQS was used to offer a buffer as a form of global credit score to develop a

benchmark of how obligors would perform when a comparison was made against one set

of HMM parameters.

The CQLs analysis showed that between 61.5% and 89.3% of the obligors had average

or good credit quality levels. The excellent credit quality levels were in the range of

between 8% and 20.4%. The rest would then belong to the poor credit quality level

which is the group that we would not expect to receive any credit facility from a financial

institution. The dynamic threshold was able to mimic the stochastic and the dynamics of

the social and economic network. This in turn showed the changes in the possible default

rates from the credit scores and the dynamic threshold values.

7.1.5 False rates

The false rates in the model showed that between 25% and 50.1% of the obligors were

classified as either having false positive or false negative rating by the model. We ob-

serve that the accurate estimation were between 49.9% and 75%. The SEN-HMM-CSD

model had good estimates of the delinquent cases, survival rates and the stopping time,

both optimal and non-optimal. When the accurate estimations are considered, the model

developed has good accuracy rating.

7.1.6 Model performance

The model performance was based on the accuracy level using the false rates of the model

and the sensitivity analysis with the coefficient of determination. The model sensitivity

with changes in the input and how it affects output had a coefficient of determination

between 64.7% and 98.3%. For the accuracy with false rates, they range between 57.3%

and 70.0%. A combination between false rates and sensitivity analysis showed a model

performance of between 54% and 66%. These ranges are within our set accuracy levels

of good and high accuracy rate.

We are confident that the SEN-HMM-CSD model has proved to be accurate and within

acceptable performance rate in estimating consumer credit scores using the SEN data.
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7.2 Conclusions

Social networks are a source of social media data which provide more insights on how

social links are formed, evolve over time and how this affects people and the interactions

choices they make. The availability of powerful data mining tools can harden the soft

information to increase the information levels crucial in consumer credit underwriting.

This offers an opportunity to develop innovative products to widen the market share for

credit lending to the poor and young people who lack financial histories; and increase the

data set for improved credit scoring.

The SEN-HMM-CSD model does not deteriorate over time and generates time de-

pendent data for consumer credit scoring. The model is dynamic as it captures the agents

cyclical inter dependencies and the market events as agents do not live in vacuum. The

model does not rely on historical data which is one of the key limitations of the current

credit scoring models.

The SEN-HMM-CSD model exhaustively captured the study objectives and forms

a basis for consumer credit scoring research. The three components in this model: the

SEN estimated agent dynamics and captured the data necessary for credit scoring; the

HMM as a stochastic model with ability to classify agents according to the richness of

data available emitted the credit scores, credit levels and the dynamic threshold value; the

CQS estimated all the scoring variables to successfully estimate the obligors credit risk.

Therefore, the SEN-HMM-CSD model is stochastic, dynamic and an alternative ap-

proach to consumer credit scoring using social and economic data. The model is reliable

and offers results that are accurate to estimate consumer credit scores using SEN data.

7.3 Recommendations

The study brought out areas that require further and advanced research work. First, use

of real life data from the social media life twitter, facebook, and other networks. Second,

develop a numerically tractable model that can be used as a standalone or alongside the

existing credit scoring models. Third, relax some of the assumptions in the SEN-HMM-

CSD model like use of uniform distribution, use of ergodic transitions and having a fully

connected SEN network, among other assumptions. Fourth, validate the SEN-HMM-CSD

model with actual market data.
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Appendix A

Appendix

A.1 HMM Basic Problems Derivations

The basic problem in hidden Markov model for the multiple agents are modified and

outlined in this section of the appendix

A.1.1 Forward Variable

α
(n)
t (i) can be obtained inductively as follows

(1) Initialization

α
(n)
1 (i) = π

(n)
i bi(O

(n)
1 ), 1 ≤ n ≤ N, t = 1

α
(1)
1 (i)

α
(2)
1 (i)

...

α
(N)
1 (i)

 =


π
(1)
i bi(O

(1)
1 )

π
(2)
i bi(O

(2)
1 )

...

π
(N)
i bi(O

(N)
1 )


Initialize the forward probability as the joint probability of state i and initial obser-

vation O(n)
1 for each agent.

(2) Induction
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α
(n)
t (i) = [

∑
α
(n)
t (i)aij]bj(O

(n)
t+1)


α
(1)
t+1(j)

α
(2)
t+1(j)

...

α
(N)
t+1(j)
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α
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(
∑
α
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t (i)aij)bj(O

(N)
t+1)


α
(n)
t (i)aij is the probability of the joint event that O(n)

1 , O
(n)
2 , . . . , O

(n)
t are observed

and state j is reached at time t via state i at time t− 1. By multiplying the summed

quantity by the probability bj(Ont+1), α
(n)
t (j) is obtained by accounting for obser-

vation O(n)
t in state j.

(3) Termination

P (O(n)|λ) =
∑M

i=1 α
(n)
T (i), 1 ≤ n ≤ N, 1 ≤ i ≤M

P (O(n)|λ) =



∑
α
(1)
T (i)∑
α
(2)
T (i)
...∑

α
(N)
T (i)


We obtain the desired calculation of P (O(n)|λ). The calculations are reduced to the

order of N2T .

A.1.2 Backward Variable

(1) Initialization

β
(n)
T (i) = 1, 1 ≤ n ≤ N, 1 ≤ i ≤M

(2) Induction

β
(n)
t (i) =

∑M
j=1 aijbj(O

(n)
t+1)β

(n)
t+1(j), t = T − 1, . . . , 1, 1 ≤ i, j ≤M
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This step is less obvious than that for the forward variable

β
(n)
t (i) = P (O

(n)
t+1, . . . , O

(n)
T |q

(n)
t = i, λ) (A.1)

=
∑

P (O
(n)
t+1, . . . , O

(n)
T , q

(n)
t+1 = j|q(n)t = i, λ)

=
∑

P (O
(n)
t+1, . . . , O

(n)
T |q

(n)
t+1 = j, q

(n)
t = i, λ)P (q

(n)
t+1 = j|q(n)t = i, λ)

=
∑

P (O
(n)
t+2, . . . , O

(n)
T |q

(n)
t+1 = j, λ)P (O

(n)
t+1|q

(n)
t+1 = j, λ)P (q

(n)
t+1 = j|q(n)t = i, λ)

=
∑

aijbj(O
(n)
t+1)β

(n)
t+1(j)

where

β
(n)
t+1(j) = P (O

(n)
t+2, . . . , O

(n)
T |q

(n)
t+1 = j, λ) (A.2)

bj(O
(n)
t+1) = P (O

(n)
t+1|q

(n)
t+1 = j, λ)

aij = P (q
(n)
t+1 = j|q(n)t = i, λ)

(3) Termination

P (O(n)|λ) =
∏M

i=1 πibi(O
(n)
1 )β

(n)
1 (i)

A.1.3 Viterbi Algorithm

This is the Viterbi algorithm for finding the optimal state sequence

(1) Initialization

δ
(n)
t (i) = πibi(O

(n)
1 ), 1 ≤ i ≤M (A.3)

ψ
(n)
1 (i) = 0, that is, no previous state

(2) Recursion

δ
(n)
t (j) = max[δ

(n)
t−1(i)aij]bj(O

(n)
t ) (A.4)

ψ
(n)
t (j) = argmax[δ

(n)
t−1(i)aij]

1 ≤ j ≤M, 2 ≤ t ≤ T
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(3) Termination

P̃n = max[δ
(n)
T (i)] (A.5)

P̃ gives the state optimized probability

q̃
(n)
T = argmax[δ

(n)
T (i)]

Q̃(n) = {q̃(n)1 , . . . , q̃
(n)
T }is the optimal state sequence

(4) Path (state sequence) backtracking

q̃
(n)
t = ψ

(n)
t+1(q̃

(n)
t+1), t = T − 1, . . . , 1

The array ψ(n)
t (j) keeps track of the argument which maximizes δ(n)t (j). A lattice or trellis

structure efficiently implements the computation of the Viterbi procedure.

A.1.4 Baum-Welch Learning Process algorithm

1) initialize λ = (A,B, π)

2) Compute α(n)
t (i), β(n)

t (i), ξ(n)t (i, j), and γ(n)t (i)

3) Re-estimate the model λ = (A,B, π)

4) If P (O(n)|λ) increases, to go 2

It is desirable to stop if P (O(n)|λ) does not increase by at least some predetermined

threshold and/or to set a maximum number of iterations

A.2 HMM Matlab Software Package

The Matlab software has inbuilt functions for the Hidden Markov model analysis. MAT-

LAB implements the HMM via five functions described below. Where Q represents the

sequence of states, O is the observation sequence, A is the transition matrix and B is the

observation matrix (Matlab , 2003)

1) [O,Q] = hmmgenerate(length, A,B) : Generates a sequence Q of states and a

sequence O of observations.
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2) [Aest, Best] = hmmestimate(O,Q) : Calculates maximum likelihood estimates of

transition and observation probabilities.

3) [A,B] = hmmtrain(O,Aest, Best) : Calculates the maximum likelihood estimates

of transition and observation probabilities from the given initial estimates Aest of

transition matrix and Best of the observation matrix using the Baum Welch algo-

rithm.

4) Q = hmmviterbi(O,A,B) : calculates the most probable sequence Q of states for

a given sequence O of observations.

5) P = hmmdecode(O,A,B) : Calculates the sequence P of posterior state probabil-

ities.

A.3 HMM Scaling

The three HMM problems computations involve products of probabilities. For example

α
(n)
t (i)→ 0 as T →∞. Any attempt to implement the formulae as given will inevitably

result in underflow. The solution to this underflow problem is to scale the numbers. Care

must be taken to ensure that the re-estimation formulae remain valid. Recall that (Shen ,

2008)

α
(n)
t (i) = P (O

(n)
1 , . . . , O

(n)
t , q

(n)
t = i|λ) (A.6)

=
∑

q
(n)
1 ,...,q

(n)
t−1

P (O
(n)
1 , . . . , O

(n)
t , q

(n)
t = i|q(n)1 , . . . , q

(n)
t−1, λ) · P (q

(n)
1 , . . . , q

(n)
t−1|λ)

=
∑

q
(n)
1 ,...,q

(n)
t−1

(
T−1∏
t=1

b
q
(n)
t

(O
(n)
t )

T−1∏
t=1

a
q
(n)
t q

(n)
t+1

)

This summation goes to zero quickly as t becomes sufficiently large. The solution is

by scaling all α(n)
t (i)′s appropriately. The Baum-Welch algorithm changes by using the

modified forward and backward variables (Rabiner , 1989; Shen , 2008). Matlab functions

for training the HMM have inbuilt capabilities in the functions. Therefore, no need for

further scaling of the variables as matlab functions are utilized in the HMM training in

this study.
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âij =

∑T−1
t=1 α̂

(n)
t (i) · aijbj(O(n)

t+1) · β̂
(n)
t+1(j)∑T−1

t=1 α̂
(n)
t (i) · β̂(n)

t (i)/c
(n)
t

(A.7)

b̂j(O
(n)
t ) =

∑T
t=1 α̂

(n)
t (j) · β̂(n)

t (j)/c
(n)
t∑T

t=1 α̂
(n)
t (j) · β̂(n)

t (j)/c
(n)
t

(A.8)
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