Effect of Variable High Fat Diets on Heart Rate Variability and Selected Modifiable Cardiovascular Risk Factors

by

Dennis Kipkemoi Rono
H56/68827/2013

A Thesis submitted in partial fulfilment of the conditions for the award of the degree of Master of Science in Medical Physiology of the University of Nairobi
DECLARATION

This thesis is my original work and has not been presented for a degree at any other university.

Dennis Kipkemoi Rono, MB.ChB. (UoN), BSc. Medical Physiology (UoN)
Department of Medical Physiology,
University of Nairobi,
P.O. BOX 30197-00100, NAIROBI, KENYA
Email: ronodennis@gmail.com

Signature______________________ Date________________

This thesis is being submitted to the Board of Postgraduate Studies, University of Nairobi for examination with our approval as university supervisors:

DR. FREDERICK BUKACHI (MMED, PhD)
Department of Medical Physiology,
University of Nairobi,
P.O. BOX 30197-00100, NAIROBI, KENYA
Email: fbukachi@uonbi.ac.ke

Signature______________________ Date________________

DR. PETER WAWERU (BPharm, PhD)

Department of Medical Physiology,
University of Nairobi,
P.O. BOX 30197-00100, NAIROBI, KENYA
Email: peterwaweru@uonbi.ac.ke

Signature______________________ Date________________
ACKNOWLEDGEMENTS

This work would not have been possible without the great support from individuals and various departments and institutions. The candidate would like to express his sincere gratitude to the following:

Dr Frederick Bukachi, who is both my supervisor and the Chairman of Department of Medical Physiology, for his immense support and guidance throughout the course of my study.

Dr Peter Waweru, my second supervisor, for his consistent support, inspiration and direction. I will forever remain indebted to my supervisors.

My gratitude also goes to the teaching staff at the Department of Medical Physiology, for their dependable guidance, critic and support.

Mr. C. Kinyungu, Mr. D. Wafula, Mr Wanyama, Mr Opiyo and Mr D. Horo for their consistent technical support at the laboratory and in the animal house.

My colleagues and classmates Dr Douglas Mwaniki, Dr Faraj Alkizim, Mr Gitonga, Dr Awot Baraza and Ms. Rose Kamenchu for their moral support throughout our course.

Lastly, special gratitude goes to my family for their support, encouragement and sacrifice throughout the duration of the study.
DEDICATION

To the two new additions to our family, Kigen and Kibet. Mum would have been thrilled to hold you in her loving arms.
ABSTRACT

Background: Cardiovascular diseases are on the rise particularly in developing countries and multiple factors are responsible this alarming trend. Non-ideal dietary fats adversely affect the traditional cardiovascular risk factors. However, the effect on recently described cardiovascular (CV) risk factors like heart rate variability (HRV) is less studied. Unlike in the developed world, the effect of the variable locally consumed cooking fat types on CV risk profile are unexplored thus excluding a major avenue for intervention.

Objectives: The aim of the present study was two-fold. Firstly, to determine the effect of variable high fat diets on HRV and selected modifiable CV risk factors. Secondly, to determine the chemical compositions of three locally available cooking fat types.

Design: Experimental design.

Setting: Department of Medical Physiology, University of Nairobi, Kenya.

Study Animals: Male and Female Wistar rats aged 4-6 weeks.

Methods: After acclimatization, forty animals will be divided into four groups to constitute the control(C) group and experimental groups 1(E1), 2 (E2) and 3 (E3). The control group will be fed on regular rat diet for 6 weeks. Fat enrichment (20%) of rat diet was prepared using locally sourced sunflower oil, palm oil and ghee and fed to groups E1, E2 and E3 respectively. Measurement of ECG, systolic blood pressure (SBP), fasting blood glucose and plasma lipid profile was done at baseline, and at three and six weeks. Fatty acid composition of the three fat types used will be determined using gas chromatography mass spectrometry (GC-MS). The experimental data were expressed as Mean +/- SD and analysed using repeated measures ANOVA. Significance level set at p < 0.05.

Results: All groups were similar in characteristics at baseline. Six weeks later, E1 had lower BMI levels (p = 0.026) having recorded the least percentage weight gain (p = 0.017). Groups E1 and E3 demonstrated higher HRV as measured by RMSSD (p = 0.006). Similar differences were noted with NN20 (p = 0.04), NN50 (p = 0.04) and NN100 (p < 0.001). The HRV was inversely correlated with the heart rate (r = -0.654, p< 0.001) and the QTc interval (r = -0.681, p < 0.001).
On evaluation of ECG parameters, E1 and E3 recorded shorter P wave durations ($p < 0.05$), PR intervals ($p < 0.05$) and QT$_c$ ($p < 0.01$). Moreover, E1 and E3 had smaller P wave amplitudes ($p < 0.01$) but larger Q wave amplitudes ($p < 0.01$). The groups were similar with regard to the QRS intervals and R, S and T wave amplitudes. For SBP, E2 and E3 had higher recordings ($p < 0.01$). No statistical differences were noted in the fasting blood glucose measurements. Experimental group 2 had statistically higher fasting plasma LDL-cholesterol ($p < 0.01$) and total cholesterol (TC) ($p < 0.01$). No statistical differences were noted in HDL, TGs and TChol/HDL ratio.

Fat analysis by GC_MS showed sunflower oil had more unsaturated fatty acids than palm oil (72 µg/mg vs. 50 µg/mg). They both contained significant amounts of cholesterol (21.3 µg/mg vs. 5.8 µg/mg respectively) and TFA (70.8 µg/mg vs. 47.3 µg/mg respectively). Ghee contained highest levels of cholesterol (126.4 µg/mg), SFA (2836 µg/mg) and TFA (107.2 µg/mg).

Conclusion: Heart rate variability, a marker of autonomic influence on the heart, is reduced by palm oil containing cooking fat. Sunflower oil not only maintains good HRV but also results in lower weights and BMI measurements, a shorter QT$_c$ on ECG, lower SBP measurements and lower LDL and total serum cholesterol levels. Despite having an otherwise good cardiovascular profile, ghee resulted in higher weight gain, BMI and SBP. Promotion of healthier cooking oil would result in good HRV and a better overall cardiovascular risk profile.
Table of Contents

ACKNOWLEDGEMENTS ... ii
DEDICATION ... iii
ABSTRACT ... iv
LIST OF TABLES .. viii
LIST OF FIGURES .. ix
LIST OF ABBREVIATIONS ... x

1 INTRODUCTION ... 1
LITERATURE REVIEW ... 3
 1.1 Heart Rate Variability .. 3
 1.1.1 Dietary Fat and Heart Rate Variability ... 4
 1.2 Hypertension .. 5
 1.2.1 Dietary Fat and Hypertension ... 6
 1.3 Diabetes and Insulin Resistance ... 7
 1.3.1 Dietary Fat and Diabetes ... 7
 1.4 PROBLEM STATEMENT AND JUSTIFICATION .. 8
 1.5 OBJECTIVES ... 9

2 MATERIALS AND METHODS .. 10
 2.1 STUDY DESIGN ... 10
 2.2 STUDY ANIMALS ... 10
 2.3 GROUP ALLOCATION ... 10
 2.4 EXPERIMENTAL PROCEDURES ... 12
 2.4.1 Food Preparation and Administration .. 12
 2.4.2 Determination of BMI ... 12
 2.4.3 ECG Recording .. 13
 2.4.4 Determination of blood glucose levels ... 13
 2.4.5 Blood Pressure Determination ... 14
 2.4.6 Lipid Profile Determination .. 14
2.4.7 Lipid Analysis

2.5 STATISTICAL ANALYSES

2.6 ETHICAL CONSIDERATIONS

3 RESULTS

3.1 Weight and Body Mass Index

3.2 Heart Rate Variability

3.3 ECG Changes

3.4 Systolic Blood Pressure

3.5 Fasting Blood Glucose

3.6 Lipid Profile

3.7 GC-MS Analysis of Fat

3.8 Correlations

4 DISCUSSION

4.1 Heart Rate Variability

4.2 ECG Changes

4.3 Systolic Blood Pressure

4.4 Fasting Blood Glucose

4.5 Plasma Lipid Profile

5 CONCLUSION AND RECOMMENDATION

6 REFERENCES
LIST OF TABLES

Table 2.4.1 Table of Dietary Fat Constituents ... 12
Table 3.1.1 Baseline Anthropometric Measures .. 17
Table 3.2.1 Table of Heart Rate Variability (RMSSD) Measured over Time 19
Table 3.2.2 Table of Heart Rate Variability (NN20, NN50 and NN100) 22
Table 3.5.1 Table of Fasting Blood Glucose Measurements ... 29
Table 3.6.1 Table of Lipid Profile Measurements .. 30
Table 3.7.2 Summary of Chemical Composition of Three Cooking Oil Types 34
LIST OF FIGURES

Figure 2.1.1 Study Flow Chart ... 11

Figure 3.1.1 Bar Graph of Percentage Weight Gain 18

Figure 3.1.2 Line Graph of Body Mass Index over the duration of study 18

Figure 3.2.1 Line Graph representing Heart Rate Variability (RMSSD) at Six Weeks 20

Figure 3.2.2 Bar Graph representing Heart Rate Variability (NN20, NN50 and NN100) at Six Weeks ... 23

Figure 3.3.1 Bar Graph representing P Duration, PR, QRS and QTc Intervals at Week 6 27

Figure 3.4.1 Bar Graph of Systolic Blood Pressure Measurements 28

Figure 3.6.1 Bar Graph of Lipid Profile Measurements 30

Figure 3.8.1 Scatter Plot Graph of RMSSD and Heart Rate 35

Figure 3.8.2 Scatter Plot Graph of RMSSD and QTc .. 35

Figure 3.8.3 An Overlay Scatter Plot of RMSSD with both P Duration and PR Interval 36

Figure 3.8.4 An Overlay Scatter Plot of Systolic Blood Pressure and Proportion of both Saturated Fatty Acid and Unsaturated Fatty Acid .. 37

Figure 3.8.5 A Scatter Plot of Plasma HDL Cholesterol and Weights at Six Weeks 38
LIST OF ABBREVIATIONS

ANS Autonomic nervous system
BMI Body mass index
CVD Cardiovascular disease
DBP Diastolic Blood Pressure
DHA Docosahexaenoic acid
ECG Electrocardiogram
EDTA Ethylenediaminetetraacetic acid
FAMEs Fatty acid methyl esters
GC_MS Gas chromatography–mass spectrometry
HDL High density lipoproteins
HRV Heart rate variability
ICIPE International Centre for Insect Physiology and Ecology
LDL Low density lipoprotein
NAL Nose-anus length
PHVO Partially hydrogenated vegetable oils
pNN20 Proportion of the total beats whose RR interval differ from the previous RR interval by 20 milliseconds.
pNN50 Proportion of the total beats whose RR interval differ from the previous RR interval by 50 milliseconds.

QTc QT interval corrected for Heart Rate

RMSSD The square-root of the mean squared differences between adjacent normal R–R intervals

SBP Systolic blood pressure

SDNN The standard deviation of all normal R–R intervals

TChol Total cholesterol

TFA Trans-fatty acids

TGs Triglycerides
1 INTRODUCTION

Cardiovascular diseases (CVDs) continue to cause significant morbidity and mortality globally. Indeed, CVDs are responsible for a higher disease burden than any other cause accounting for approximately one third of all deaths worldwide (GBD 2013 Mortality and Causes of Death Collaborators, 2015).

The trends are equally disheartening as shown by the steady rise in mortality secondary to non-communicable diseases and injuries between the years 1990 and 2013 (GBD 2013 Mortality and Causes of Death Collaborators, 2015). This is despite a considerable decline in the deaths secondary to communicable diseases, maternal, neonatal, and nutritional causes decreased (GBD 2013 Mortality and Causes of Death Collaborators, 2015). It is projected that by 2020 CVD will account for 73% of total global mortality and 56% of total morbidity (Murray and Lopez, 1996).

The development of CVD has been attributed to multiple risk factors. These are classified as modifiable and non-modifiable risk factors. Non-modifiable risk factors include advancing age, male gender and positive family history of cardiovascular disease. Traditional modifiable risk factors include high blood pressure, smoking, dyslipidaemia, diabetes/insulin resistance, lack of physical exercise and overweight/obesity. Newer cardiovascular risk factors have been described including heart rate variability (HRV) and high inflammatory states. Reduced HRV, an indicator of autonomic neuropathy, has been shown to predispose one to cardiovascular disease (Novak et al., 1997).

Dietary intake of partially hydrogenated vegetable oils (PHVO) containing trans-fatty acids (TFA) adversely affects multiple cardiovascular risk factors thereby predisposing one to CVDs (Mozaffarian et al., 2009). Several countries, mainly in the developed world, have policies
fostering the replacement of PHVO with fats containing less saturated and trans-fatty acids. In Kenya and many developing countries, however, the consumption of PHVO is still highly prevalent and unchecked. The effect of PHVO on heart rate variability is largely unexplored (Soares-Miranda et al., 2012)

This thesis analyses the chemical composition of three locally consumed cooking fat types and explores their effects on selected cardiovascular risk factors notably HRV, blood pressure, plasma lipids profile and plasma fasting blood glucose.
LITERATURE REVIEW

1.1 Heart Rate Variability

Heart rate variability (HRV), refers to beat-to-beat variation in duration of the R–R interval (Novak et al., 1997). The HRV measurements can either be done over short periods for example 5 minutes or longer intervals like 24 hours. Measurements over short periods show moment to moment changes in the heart rate. Longer period measurements, in addition, show circadian patterns.

Heart rate variability has become an important risk assessment tool. It has been established as a reliable measure of cardiac electrophysiology and autonomic function. This is because the cardiac rhythm is under both minute-minute as well as circadian influence of the autonomic nervous system (ANS) (Zhang et al., 2010). A good balance between the sympathetic and parasympathetic arms of the ANS results in desirable HRV patterns. Predominance of the sympathetic outflow results not only in higher heart rates but also reduced HRV. In such instances, HRV indices record ultra-low and low frequency power measurements. Parasympathetic predominance, on the other hand, results in lower heart rates and higher frequency power measurements.

Established link has been documented between reduced HRV as measured by the standard deviation of all normal R–R intervals (SDNN) and the square root of the mean squared differences between adjacent normal R–R intervals (RMSSD) with myocardial infarction, cardiomyopathy, congestive heart failure and mortality (Kleiger et al., 2005). There’s also suggested relationship between lower HRV and coronary heart disease, atrial fibrillation and heart failure (Malpas et al., 2002). These associations are in addition to the direct association between high heart rates and all-cause mortality, death from CVDs and sudden cardiac death.
Indeed heart rate measurement has been established as a marker of autonomic activity (Lahiri et al., 2008).

A number of techniques have now been developed to quantify HRV (Novak et al., 1997; Berntson et al., 1997; Grossman and Taylor, 2007; Thayler et al., 2010). Multiple techniques have been developed to evaluate different aspects of HRV. These are time domain methods, frequency domain methods, geometric methods, non-linear methods and long term correlations. (Novak et al., 1997).

The time domain measures look at changes in heart rate or the intervals between successive normal beats are determined an ECG record. Of note, only the normal QRS complexes are used for the calculation and ‘N’ is used to denote that only normal beats have been considered. Time domain measures can be applied on both short and long recordings. Descriptive time domain variables are used. These include the mean NN interval, mean heart rate, and the range (longest NN minus the shortest NN) (Kleiger et al., 1987). Statistical calculations like standard deviation of the NN interval (SDNN) are also calculated (Kleiger et al., 1987). In addition, measurement of adjacent pairs of normal beats that differ by more than 50 ms, NN50 has been used (Ewing et al., 1985).

1.1.1 Dietary Fat and Heart Rate Variability

Ingestion of diet rich in trans-fats has been shown to lower HRV (Soares-Miranda et al, 2012; Dyerberg et al., 2004). Beneficial effects have been seen with omega-3 fats (Hansen et al, 2014; Harris et al., 2012; Harbaugh et al., 2013) and docosahexaenoic acid (DHA) (Valera et al., 2014; Ninio et al., 2008). In particular 18:2 trans-fats and not 18:1 have been shown to have this HRV lowering effects (Soares-Miranda et al., 2012).
Two hypotheses have been put forward to explain the effects of dietary fats on HRV. One, that high dietary fat increases the basal metabolic rate of an individual leading to increased sympathetic stimulation. This is associated with both higher heart rate recordings and lower heart rate variability (Millis et al, 2009). Secondly, specific fatty acids have been shown to directly alter ion conductance of on the pacemaker tissue (Billman, 2013). This alteration seems to occur during channel development with no effect on the already formed channels. Indeed, omega-3 fatty acids have been used in post-myocardial infarction patients (Villa, 2002).

1.2 Hypertension

Hypertension refers to an abnormal sustained elevation of the blood pressure. Blood pressure, defined as the force exerted on the blood vessel wall, has been a concept examined for over 100 years. There are three components to it: systolic blood pressure; diastolic blood pressure and mean arterial pressure. Systolic blood pressure is defined as the highest pressure attained within the major arteries during the cardiac cycle. This corresponds to the latter half of ventricular systole. Diastolic blood pressure, on the other hand, refers to the lowest pressure within the major arteries during the cardiac cycle. This occurs late in ventricular diastole. Mean arterial pressure refers to the average pressure within major arteries during the cardiac cycle. This is often estimated by adding one third of the pulse pressure to the diastolic blood pressure. Of the three major components, increase in the systolic blood pressure is what has been linked strongly to the development of cardiovascular diseases (Sesso et al., 2000).

Optimal human blood pressure is define as pressures <120/<80mmHg for adults of age 18 and above. For children blood pressure recording that is lower than the 90th percentile for the age group is considered normal.
Hypertension is the leading risk factor for CVDs (Go et al., 2014). This is owing to its high prevalence and its high impact on disease causation. Indeed, it is the leading single contributor of adult deaths worldwide (Brundtland et al., 2002). The prevalence is on the rise and it is projected that by 2025, 40% of the adult population will be hypertensive (Kearney et al., 2004). This would be a significant rise from 25% documented in the year 2000 (Kearney et al., 2004). In 2010 a third of the US population had hypertension and 15% of all deaths were attributable to hypertension either directly or indirectly (Go et al., 2014).

In Kenya, the prevalence of hypertension is documented at between 12% and 22% (Joshi et al., 2014; De et al., 2013). Awareness among individuals with hypertension is much lower at 19.5% (De et al., 2013). Of these, only about half were actually on antihypertensive medication (De et al., 2013). Further to this, only 20% of those on medication actually achieved sufficient pressure reduction at <140/90. This implies that only 3% of hypertensive individuals are adequately treated (De et al., 2013).

Several factors have been associated with an increase in blood pressure (Go et al., 2014). These include increased age, positive family history, overweight, high blood cholesterol, diabetes, physical inactivity, smoking and diet high in salt, simple sugars and fat.

Hypertension if left untreated may result in a host of complications. These include but are not limited to atherosclerosis, acute coronary syndrome, aortic dissection, stroke, renal failure, retinal damage, erectile dysfunction, and peripheral artery disease (Sesso et al., 2000).

1.2.1 Dietary Fat and Hypertension

The ingestion of partially hydrogenated vegetable oils has been associated with elevation of the blood pressure (Bonny et al., 2008; Esmaillzadeh et al., 2011). This association is thought to be
secondary to elevated LDL cholesterol in plasma among those ingesting partially hydrogenated vegetable oils (Bonny et al., 2008).

1.3 Diabetes and Insulin Resistance

Diabetes is a chronic debilitating condition characterized by deficient or absent insulin activity. This can either be due to lack of insulin production (Type I, Insulin dependent diabetes mellitus) or deficient activity in the presence of normal or even elevated levels of insulin (Type II, Non-insulin dependent diabetes mellitus).

The “diabetes epidemic” is a great challenge to the world’s health care system with a world-wide prevalence of 230 million at the end of 2006. This represented 6% of the world’s population then. This is up from a prevalence of 30 million in 1985. The prevalence is expected to increase to 350 million in less than 20 years.

The situation is worse in the developing world which has 80% of the diabetes prevalence (Roglic et al., 2005). The prevalence in some countries for example India is as high as 12-20% of the adult population.

1.3.1 Dietary Fat and Diabetes

The development of insulin resistance as well as type II diabetes has been associated with the consumption of diets rich in trans-fats as well as saturated fatty acids (Simopoulos, 1994; Riccardi et al., 2004). Specifically, saturated fat worsens insulin sensitivity, while monounsaturated and omega-6 polyunsaturated fats improve it (Rivellese and Lilli, 2003). In the short term, however, consumption of variable partially hydrogenated vegetable oils has been shown not to influence insulin sensitivity or the development of diabetes (Lovejoy et al., 2002;
Esmaillzadeh et al., 2011). Indeed, this is the case with and without correcting for body mass index (BMI).

The molecular mechanism underlying varying insulin sensitivity has been shown to be secondary to fatty acid composition on muscle cell membrane (Borkman et al., 1993). Indeed, using clamp technique, insulin action has been correlated with the proportion of long-chain poly-unsaturated fatty acids (PUFA) (Borkman et al., 1993). On the contrary, insulin sensitivity was inversely correlated with the proportion of saturated fatty acids (Borkman et al., 1993)

1.4 PROBLEM STATEMENT AND JUSTIFICATION

Cardiovascular diseases are on the rise especially in developing countries including Kenya. The effect of locally consumed dietary fat on different cardiovascular risk factors is largely unexplored. This is despite the well documented role diet plays in an individual’s risk profile. Even scantier, is data on the effect of our dietary fat on newer cardiovascular markers like heart rate variability. This leaves a potentially significant avenue for prevention and management unexplored. Thus, the present study tested the effects of variable high fat diets on selected cardiovascular risk factors in an animal model.
1.5 OBJECTIVES

General objective:

To determine the effect of variable high fat diets on selected modifiable cardiovascular risk factors.

Specific objectives:

To determine the effect of variable high fat diets on heart rate variability.

To determine the effect of variable high fat diets on systolic blood pressure.

To determine the effect of variable high fat diets on fasting blood glucose.

To determine the effect of variable high fat diets on fasting plasma lipid profile level.

To determine the lipid composition of three locally available cooking oil/fat
2 MATERIALS AND METHODS

2.1 STUDY DESIGN

An experimental study design was employed in this study. Four groups comprising 10 animals each were used. One group served as the negative control while the other three constituted the experimental groups. (Figure 2.1.1)

2.2 STUDY ANIMALS

Forty (40) male and female Wistar rats aged 4-6 weeks were used. The animals were obtained from the Kabete Veterinary Laboratory of the Government of Kenya. They were housed at the Department of Medical Physiology animal house. The male and female rats were placed in separate cages.

The rats were provided with standard rat chow (Unga Feeds, Nairobi, Kenya) and drinking water ad libitum. Rats were habituated to handling and testing procedures for two (2) weeks prior to the start of the experiment. The animals were subjected to a 12:12-h light–dark cycle

2.3 GROUP ALLOCATION

After two weeks of acclimatization, the animals were randomly divided into four groups each containing 10 animals. These constituted the control group and three experimental groups: E1, E2 and E3.
Figure 2.1.1 Study Flow Chart

- Animal Acquisition
 - 2 Weeks of Acclimatization
 - Random Allocation into 4 Groups
 - Control Group
 - Experimental Group 1
 - Experimental Group 2
 - Experimental Group 3
 - Baseline Measurements (Weight, Nose-Anal Length, ECG)
 - *Ad libitum* Administration of Different Diet Types
 - Weight, Nose-Anal Length Measurement (At 2 Weeks)
 - ECG Recording (At 3 Weeks)
 - Weight, Nose-Anal Length Measurement (At 4 weeks)
 - ECG Recording, Fasting Blood Sugar and Lipid Profile Determination (At 6 Weeks)
 - Data Analysis
 - Data Presentation and Write-Up
2.4 EXPERIMENTAL PROCEDURES

2.4.1 Food Preparation and Administration

The control group was fed on the normal rat diet and water *ad libitum*. The experimental groups were fed on three different forms of high fat (20%) diet and water *ad libitum*.

For experimental Group 1, the normal rat diet was fat enriched with sunflower oil. Experimental Group 2 had enrichment with vegetable fat from palm oil while experimental Group 3 had ghee-enriched diet. The constitution of these three lipids is summarised below in Table 2.4.1. A complete analysis of the lipids used is detailed in Table 3.7.1 in the results section.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>UNITS</th>
<th>Control</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fat</td>
<td>g/100g</td>
<td>4</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Saturated FA</td>
<td>g/100g</td>
<td>2.83</td>
<td>10.4</td>
<td>14.8</td>
<td>19.3</td>
</tr>
<tr>
<td>Monounsaturated FA</td>
<td>g/100g</td>
<td>1.1</td>
<td>8.4</td>
<td>6.1</td>
<td>1.91</td>
</tr>
<tr>
<td>Polyunsaturated FA</td>
<td>g/100g</td>
<td>0.17</td>
<td>1</td>
<td>0.98</td>
<td>0.82</td>
</tr>
<tr>
<td>Unsaturated (Monounsatured + Polyunsaturated)</td>
<td>g/100g</td>
<td>1.17</td>
<td>9.4</td>
<td>7.08</td>
<td>2.73</td>
</tr>
<tr>
<td>Trans - fatty acids</td>
<td>g/100g</td>
<td>1.17</td>
<td>9.15</td>
<td>6.74</td>
<td>0.73</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>g/100g</td>
<td>0</td>
<td>2.8</td>
<td>0.83</td>
<td>0.86</td>
</tr>
</tbody>
</table>

E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3

2.4.2 Determination of BMI

The weight and nose-anus length (NAL) of the rats in the control and experimental groups were measured at the start of the experiment and at weeks two, four and six. The BMI was determined
by dividing the weight in grams by the square of the nose-anus length in centimetres. Thus, obesity was defined by a BMI of greater than 0.68 g/cm2 as previously described by Novelli et al.

2.4.3 ECG Recording

The ECG record (bipolar lead II) of each animal was taken at three weeks and six weeks. The rats were anaesthetized by use of Ketamine (0.12 mg/g bodyweight intraperitionally, IP) before recording the ECG. The ECGs were recorded by use of Power Lab Data acquisition apparatus (Model ML865, AD Instruments, Dunedin, New Zealand).

Heart rate variability (HRV) was evaluated using time domain measures: RMSSD, pNN20 and pNN50 (Novak et al., 1997). RMSSD is the square root of the mean of the sum of the squares of differences between adjacent NN/RR. This is the calculation of standard deviation of the differences between adjacent normal heart beats. pNN20 refers to the proportion of the total beats whose RR interval differs from the previous RR interval by 20 milliseconds. pNN50 refers to the proportion of the total beats whose RR intervals differ from the previous RR interval by 50 milliseconds (Novak et al., 1997).

In addition to HRV, the following standard ECG variables were analysed: heart rate, P duration, P amplitude, PR interval, QRS duration, QT interval, QTc interval, Q amplitude, R amplitude, S amplitude, T amplitude and RR interval. The QTc interval was derived from the QT interval using the Bazzet’s formula: QTc = QT Interval / $\sqrt{\text{RR interval}}$.

2.4.4 Determination of blood glucose levels

Fasting blood glucose levels were determined at week 6. The animals are fasted overnight (12 hours) prior to the measurement. Using a disinfected pair of surgical scissors, 1-2mm of the tip
of the tail was cut. The drop of blood produced was fed into the blood glucose monitoring system (OneTouch SureStep, Milpitas, CA, USA) and the reading was recorded.

2.4.5 Blood Pressure Determination

Systolic blood pressure measurements were conducted at after six weeks. Rats were immobilized by placement into 6 cm wide bottles with ventilation holes. The animals were then warmed to between 36° C and 40° C. The rat tails were placed within miniature blood pressure cuffs and blood flow impeded by increasing the pressure in the cuff. Blood flow or its absence was detected using a digital pulse detector which is part of the Power Lab Data acquisition apparatus (Model ML865, 2005, ADinstruments, Dunedin, New Zealand). Pressure was recorded from a dial sphygmomanometer.

2.4.6 Lipid Profile Determination

Fasting Lipid profile was determined at the end of week 6. The profile included total cholesterol (TChol), high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides (TGs). After 12-hours of fasting, 4 millilitres of blood was drawn via retro-orbital puncture and placed in EDTA vacutainers. Lipid profile was determined using Philips Model 23187

2.4.7 Lipid Analysis

The chemical composition of the three dietary fats used in the fat-enrichment of rat food was done using gas chromatography mass spectrometry (GC-MS). This was carried out at the International Centre for Insect Physiology and Ecology Laboratories, Nairobi Kenya.

Sample preparation

- 10 mg of was weighed from each of the three cooking fats and derivatized to form Fatty acid methyl esters which was analysed by GC-MS
Serial dilutions of authentic standard (Octadecanoic acid; 99%, Gillingham, dorset, England) (0.2 ng/µl, 1ng/µl, 5 ng/µl, 25 ng/µl 125 ng/µl and 625 ng/µl) were prepared and analysed by GC-MS.

The sample and the standard were analysed on an Agilent Gas Chromatograph7890A / 5975 C Mass Spectrometer in full scan mode. With the following conditions:

Machine Settings

GC Column: HP-5 MS low bleed capillary column (30 m × 0.25mm i.d., 0.25 μm) (J&W, Folsom, CA, USA)

Flow rate,(He): 1.25 ml/min, constant flow mode

Injection Mode: split mode

Oven temperature: 35°C (5 min.) to 280°C @10°C/min (10.5min); run time 40min

Injection volume: 1µl

Compound identities were determined using NIST’08, 05, Adams and chemical mass spectral databases (Adams, 2007)

Procedure for Derivatization

Method adopted from (Sweeney et al., 2004) summarised as follows:

1. Ten milligrams of the sample were weighed and esterification carried out. A solution of sodium methoxide in dry methanol was prepared to give a concentration of 15 mg/mL. Subsequently, 1000 µL volume of this solution the sample was added, vortexed for 1 min and sonicated for 5 min. The reaction mixture was incubated at 70 °C for 1 hr.
Quenching was done by adding 200 µL deionized water and vortexed. The methyl esters were extracted using GC-grade hexane (Sigma–Aldrich, St. Louis, USA) and centrifuged at 14,000 rpm for 5 min.

2. The supernatant was dried using anhydrous Na₂SO₄ and analysed using GC-MS.

2.5 STATISTICAL ANALYSES

The results are expressed as mean ± standard deviation. One way analysis of variance (ANOVA) was used to test for difference between the different groups. Alpha (α) value was set at 0.05. ANOVA was followed by the Tukey's post hoc test in instances where significant differences were observed.

2.6 ETHICAL CONSIDERATIONS

The study protocol was approved by the Postgraduate Research Committee, Department of Medical Physiology, School of Medicine, University of Nairobi. The study was conducted in accordance with the internationally accepted principles for laboratory animal use and care. Animals were handled with care and in accordance with the FELASA guidelines.
3 RESULTS

3.1 Weight and Body Mass Index

At baseline, there were no significant differences in the weights (127.3 ± 28.1 (control) vs 129.6 ± 24.1 (E1) vs 129.7 ± 19.7 (E2) vs 121.6 ± 17.5 (E3); \(p = 0.972 \)) and BMI (0.60 ± 0.04 (control) vs 0.61 ± 0.02 (E1) vs 0.61 ± 0.04 (E2) vs 0.60 ± 0.03 (E3); \(p = 0.885 \)) of the animals in the different groups. The data are illustrated in Table 3.1.1.

Table 3.1.1 Baseline Anthropometric Measures

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Weight (g)</th>
<th>BMI (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>127.3 ± 28.1*</td>
<td>0.60 ± 0.04†</td>
</tr>
<tr>
<td>E1</td>
<td>129.6 ± 24.1*</td>
<td>0.61 ± 0.02†</td>
</tr>
<tr>
<td>E2</td>
<td>129.7 ± 19.7*</td>
<td>0.61 ± 0.04†</td>
</tr>
<tr>
<td>E3</td>
<td>121.6 ± 17.5*</td>
<td>0.60 ± 0.03†</td>
</tr>
</tbody>
</table>

Values are Mean ± SD
* \(p = 0.972 \); † \(p = 0.885 \)

Experimental group 1 recorded the least percentage weight gain over the six weeks of the study (\(p = 0.022 \)) while the experimental group 3 recorded the highest percentage weight gain (\(p = 0.044 \)). The percentage weight gained was (76.8 ± 22.2 (control) vs. 52.2 ± 17.6 (E1) vs. 72.0 ± 10.2 (E2) vs. 74.4 ± 20.1 (E3); \(p = 0.017 \)). This is illustrated in Figure 3.1.1.

Accordingly, E1 had the lowest body mass index (BMI) measurements at six weeks (\(p = 0.041 \)). The BMI measurements at six weeks were (0.70 ± 0.04 (control) vs 0.61 ± 0.09 (E1) vs 0.70 ± 0.04 (E2) vs 0.65 ± 0.10 (E3); \(p = 0.026 \)). This is illustrated in Figure 3.1.2.
Figure 3.1.1 Bar Graph of Percentage Weight Gain

Bars represent means ± SD.
*p = 0.022
**p = 0.044
E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3

Figure 3.1.2 Line Graph of Body Mass Index over the duration of study

Error bars represent ±SD.
*E1 vs Control $p = 0.041$
E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3
3.2 Heart Rate Variability

RMSSD (Standard Deviation of Adjacent Normal RR Intervals)

There were no statistically significant differences in RMSSD measure of HRV between the different group at baseline (5.64 ± 5.5 (control) vs 5.59 ± 2.6 (E1) vs 5.04 ± 4.1 (E2) vs 4.41 ± 2.1 (E3); p = 0.878). Similarly, no statistically significant differences were noted in measurements recorded at three weeks (5.46± 6.3 (control) vs 10.07 ± 13.2 (E1) vs 8.29 ± 7.3 (E2) vs 4.24 ± 4.5 (E3); p = 0.41). At week six, the RMSSD measurements demonstrated statistical difference between the groups with higher variability recorded in groups E1 (p = 0.005) and E3 (p = 0.003). The RMSSD recordings were (55.13 ± 31.8 (control) vs 87.340 ± 6.6 (E1) vs 56.43 ± 37.6 (E2) vs 85.12 ± 6.4 (E3); p = 0.006). This is illustrated in Table 3.2.1 and Figure 3.2.1.

Table 3.2.1 Table of Heart Rate Variability (RMSSD) Measured over Time

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Heart Rate Variability (ms)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Week 3</td>
<td>Week 6</td>
</tr>
<tr>
<td>Control</td>
<td>5.64 ± 5.5</td>
<td>5.46± 6.3</td>
<td>55.13 ± 31.8*</td>
</tr>
<tr>
<td>E1</td>
<td>5.59 ± 2.6</td>
<td>10.07 ± 13.2</td>
<td>87.340 ± 6.6*</td>
</tr>
<tr>
<td>E2</td>
<td>5.04 ± 4.1</td>
<td>8.29 ± 7.3</td>
<td>56.43 ± 37.6*</td>
</tr>
<tr>
<td>E3</td>
<td>4.41 ± 2.1</td>
<td>4.24 ± 4.5</td>
<td>85.12 ± 6.4*</td>
</tr>
</tbody>
</table>

Values are Mean ± SD
*p<0.01
E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3
Figure 3.2.1 Line Graph representing Heart Rate Variability (RMSSD) at Six Weeks

Bars represent means ± SD.

*p < 0.05

**p < 0.05

E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3

NN20, NN50, NN100

At baseline, there were no statistical differences between the groups in the HRV measurements of NN20 1.6 ± 3.5 (control) vs 1.4 ± 2.9 (E1) vs 1.7 ± 2.8 (E2) vs 0.8 ± 1.6 (E3); *p* = 0.67), NN50 1.1 ± 1.8 (control) vs 1.3 ± 2.1 (E1) vs 1.3 ± 2.2 (E2) vs 0.7 ± 1.3 (E3); *p* = 0.87) and NN100 0.0 ± 0.0 (control) vs 0.0 ± 0.1 (E1) vs 0.1 ± 0.1 (E2) vs 0.0 ± 0.0 (E3); *p* = 0.87). This is summarized in Table 3.2.2.

Similarly, no statistical difference was noted at three weeks:NN20 1.8 ± 4.6 (control) vs 1.7 ± 3.0 (E1) vs 2.1 ± 3.2 (E2) vs 0.6 ± 1.1 (E3); *p* = 0.746), NN50 0.7 ± 1.9 (control) vs 1.4 ± 2.5 (E1) vs 1.6 ± 2.6 (E2) vs 0.5 ± 1.1 (E3); *p* = 0.594) and NN100 0.0 ± 0.0 (control) vs 0.2 ± 0.6 (E1) vs 0.0 ± 0.0 (E2) vs 0.0 ± 0.0 (E3); *p* = 0.404) as shown in Table 3.2.2.
Measurements of NN20, NN50 and NN100 done at six weeks all recorded higher values for groups E1 and E3. For NN20 40.5 ± 27.0 (control) vs 67.4 ± 4.9 (E1) vs 43.2 ± 32.2 (E2) vs 69.4 ± 5.5 (E3); p = 0.04), NN50 31.9 ± 21.4 (control) vs 56.2 ± 4.6 (E1) vs 35.9 ± 27.2 (E2) vs 56.2 ± 6.3 (E3); p = 0.04) and NN100 10.1 ± 10.1 (control) vs 24.9 ± 3.6 (E1) vs 14.3 ± 11.8 (E2) vs 24.5 ± 3.2 (E3); p < 0.001) respectively. These results are illustrated in Table 3.2.2 and Figure 3.2.2.
Table 3.2.2 Table of Heart Rate Variability (NN20, NN50 and NN100)

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Heart Rate Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NN20</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.6 ± 3.5</td>
</tr>
<tr>
<td>E1</td>
<td>1.4 ± 2.9</td>
</tr>
<tr>
<td>E2</td>
<td>1.7 ± 2.8</td>
</tr>
<tr>
<td>E3</td>
<td>0.8 ± 1.6</td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.8 ± 4.6</td>
</tr>
<tr>
<td>E1</td>
<td>1.7 ± 3.0</td>
</tr>
<tr>
<td>E2</td>
<td>2.1 ± 3.2</td>
</tr>
<tr>
<td>E3</td>
<td>0.6 ± 1.1</td>
</tr>
<tr>
<td>Week 6</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>40.5 ± 27.0*</td>
</tr>
<tr>
<td>E1</td>
<td>67.4 ± 4.9*</td>
</tr>
<tr>
<td>E2</td>
<td>43.2 ± 32.2*</td>
</tr>
<tr>
<td>E3</td>
<td>69.4 ± 5.5*</td>
</tr>
</tbody>
</table>

Values are mean ± SD

*p < 0.05, †p < 0.001

E1 = Experimental Group 1, E2 = Experimental Group 2, E3 = Experimental Group 3
Figure 3.2.2 Bar Graph representing Heart Rate Variability (NN20, NN50 and NN100) at Six Weeks

3.3 ECG Changes

Electrocardiographic measurements at baseline revealed no statistically significant differences in the heart rate, RR interval, P duration, PR interval, QRS interval, QT interval, QTc, P amplitude, Q amplitude, R amplitude, S amplitude and T amplitude ($p > 0.05$).

At six weeks, E1 had the shortest PR intervals ($p = 0.03$) while E2 had the longest ($p = 0.04$). The PR intervals were $(44.4 \pm 3 \text{ (control)})$ vs $41.4 \pm 1.6 \text{ (E1)}$ vs $45.7 \pm 4.9 \text{ (E2)}$ vs $42.2 \pm 1.7 \text{ (E3)}$; $p = 0.016$. This is illustrated in Table 3.3.1 and Figure 3.3.1.
Similarly, P wave duration was shortest is E1 ($p = 0.02$) and longest in E2 ($p = 0.03$). The measurements were $(20.5 \pm 2.0$ (control) vs 18.4 ± 1.3 (E1) vs 21.1 ± 2.9 (E2) vs 18.8 ± 1.5 (E3); $p = 0.013$).

QT_C interval, QT interval corrected for different heart rates using the Bazzet’s formula, was also shortest in E1 ($p = 0.022$) and longest in E2 ($p = 0.014$). The measurements were $(20.5 \pm 2.0$ (control) vs 18.4 ± 1.3 (E1) vs 21.1 ± 2.9 (E2) vs 18.8 ± 1.5 (E3); $p = 0.004$).

The heart rate measurements between the groups demonstrated no statistical differences $(369.3 \pm 39.9$ (control) vs 344.3 ± 14.6 (E1) vs 366.3 ± 67.3 (E2) vs 355.6 ± 40.6 (E3); $p = 0.314$). Considering the descriptive statistics however, experimental groups 1 and 3 had lower mean heart rates than both the control group and experimental group 2 as depicted in Table 3.3.1.

The QRS intervals measured from the different groups had no statistical differences $(20.5 \pm 2.0$ (control) vs 18.4 ± 1.3 (E1) vs 21.1 ± 2.9 (E2) vs 18.8 ± 1.5 (E3); $p = 0.348$).

On evaluation of the wave amplitudes, E1 recorded the least P wave amplitude ($p = 0.028$) while E2 the highest ($p = 0.023$). The P wave amplitudes were $(20.5 \pm 2.0$ (control) vs 18.4 ± 1.3 (E1) vs 21.1 ± 2.9 (E2) vs 18.8 ± 1.5 (E3); $p < 0.01$).

On the contrary, Q wave amplitude was highest in E1 ($p = 0.0003$) and least in E2 (0.008). The Q wave amplitudes were $(-12.4 \pm 19.9$ (control) vs -63.6 ± 34.0 (E1) vs -18.4 ± 28.6 (E2) vs -38.8 ± 22.3 (E3); $p < 0.01$).

Lastly, no statistical differences were noted between R, S, and T amplitudes of the different groups: R $(208.8 \pm 107.6$ (control) vs 157.5 ± 62.1 (E1) vs 192.8 ± 90.6 (E2) vs 139.6 ± 29.1 (E3); $p > 0.05$); S $(-62.9 \pm 54.6$ (control) vs -64.8 ± 33.2 (E1) vs -126.1 ± 125.8 (E2) vs $-38.3 \pm$
19.0 (E3); p > 0.05); T (61.9 ± 50.5 (control) vs 17.4 ± 6.2 (E1) vs 55.3 ± 82.7 (E2) vs 17.3 ± 10.0 (E3); p > 0.05). These are demonstrated in Table 3.3.1.
Table 3.3.1 Table of ECG Parameters

<table>
<thead>
<tr>
<th>ECG Parameter</th>
<th>GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Heart Rate (beats/min)</td>
<td>369.3 ± 39.9</td>
</tr>
<tr>
<td>RR Interval (msec)</td>
<td>167.8 ± 20.7</td>
</tr>
<tr>
<td>P Duration (msec)</td>
<td>20.5 ± 2.0*</td>
</tr>
<tr>
<td>PR Interval (msec)</td>
<td>44.4 ± 3*</td>
</tr>
<tr>
<td>QRS Interval (msec)</td>
<td>24.4 ± 4.0</td>
</tr>
<tr>
<td>QT Interval (msec)</td>
<td>45.1 ± 4.9†</td>
</tr>
<tr>
<td>QTc (msec)</td>
<td>111.9 ± 16.4†</td>
</tr>
<tr>
<td>P Amplitude (µv)</td>
<td>49.5 ± 45.1†</td>
</tr>
<tr>
<td>Q Amplitude (µv)</td>
<td>-12.4 ± 19.9†</td>
</tr>
<tr>
<td>R Amplitude (µv)</td>
<td>208.8 ± 107.6</td>
</tr>
<tr>
<td>S Amplitude (µv)</td>
<td>-62.9 ± 54.6</td>
</tr>
<tr>
<td>T Amplitude (µv)</td>
<td>61.9 ± 50.5</td>
</tr>
</tbody>
</table>

*p< 0.05
†p< 0.01

ECG, Electrocardiogram; RR, P, Q, R, S, T electrocardiographic waves/time intervals
Figure 3.3.1 Bar Graph representing P Duration, PR, QRS and QTc Intervals at Week 6

Bars represent means ± SD.

*p < 0.05
**p < 0.02
***p < 0.01

E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3

3.4 Systolic Blood Pressure

One-Way ANOVA analysis of the systolic blood pressure (SBP) measurements done at six weeks demonstrated E3 had significantly higher measurements ($p = 0.009$). The SBP measurements were (128.8±11.9 mmHg (control) vs 132.6±14.4 mmHg (E1) vs 143.6±13.7 mmHg (E2) vs 149.4±14.0mmHg; $p<0.01$). This data is illustrated in Figure3.4.1.
Figure 3.4.1 Bar Graph of Systolic Blood Pressure Measurements

Bars represent means ± SD.

p = 0.009

E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3

3.5 Fasting Blood Glucose

Fasting blood Glucose levels done at the end of week six showed no statistically significant difference between the different groups (5.6±0.8 mmol/dL (control) vs 5.6±1.2 mmol/dL (E1) vs 5.7±0.6 mmol/dL (E2) vs 5.9±1.2 mmol/dL (E3); p =0.866) as shown in Table 3.5.1.
Table 3.5.1 Table of Fasting Blood Glucose Measurements

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Fasting Blood Sugar (mmol/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5.6±0.8*</td>
</tr>
<tr>
<td>E1</td>
<td>5.6±1.2*</td>
</tr>
<tr>
<td>E2</td>
<td>5.7±0.6*</td>
</tr>
<tr>
<td>E3</td>
<td>5.9±1.2*</td>
</tr>
</tbody>
</table>

Values represented as mean ± SD
*p = 0.866
E1 = Experimental Group 1, E2 = Experimental Group 2, E3 = Experimental Group 3

3.6 Lipid Profile

The lipid profile results comprised of four parameters; Total Cholesterol, High Density Lipoprotein, Low Density Lipoprotein and Triglycerides.

Total Cholesterol measurements demonstrated statistical differences between the groups with E2 having the highest levels (p = 0.001). The TChol measurements were (1.73 ± 0.18 mmol/L (control) vs 1.97 ± 0.46mmol/L (E1) vs 2.26 ± 0.26mmol/L (E2) vs 1.95 ± 0.12mmol/L (E3); p<0.01) as illustrated in Table 3.6.1 and Figure 3.6.1.

Similarly, E2 recorded highest LDL cholesterol levels (p = 0.001). The LDL measurements were (0.49 ± 0.22 mmol/L(control) vs 0.69 ± 0.30 mmol/L (E1) vs 0.92 ± 0.22 mmol/L (E2) vs 0.70 ± 0.15 mmol/L (E3); p<0.01).

No statistical differences were observed between measurements of HDL(1.01 ± 0.15 mmol/L(control) vs 1.02 ± 0.25 mmol/L (E1) vs 1.09 ± 0.22 mmol/L (E2) vs 1.00 ± 0.15 mmol/L (E3); p=0.781) and TGs(0.50 ± 0.14 mmol/L(control) vs 0.56 ± 0.14 mmol/L (E1) vs 0.55 ± 0.13 mmol/L (E2) vs 0.55 ± 0.13 mmol/L (E3); p=0.669) as illustrated in Table 3.6.1 and Figure3.6.1.
Table 3.6.1 Table of Lipid Profile Measurements

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Total Cholesterol</th>
<th>HDL</th>
<th>LDL</th>
<th>Triglycerides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.73 ± 0.18*</td>
<td>1.01 ± 0.15</td>
<td>0.49 ± 0.22**</td>
<td>0.50 ± 0.14</td>
</tr>
<tr>
<td>E1</td>
<td>1.97 ± 0.46*</td>
<td>1.02 ± 0.25</td>
<td>0.69 ± 0.30**</td>
<td>0.56 ± 0.14</td>
</tr>
<tr>
<td>E2</td>
<td>2.26 ± 0.26*</td>
<td>1.09 ± 0.22</td>
<td>0.92 ± 0.22**</td>
<td>0.55 ± 0.13</td>
</tr>
<tr>
<td>E3</td>
<td>1.95 ± 0.12*</td>
<td>1.00 ± 0.15</td>
<td>0.70 ± 0.15**</td>
<td>0.55 ± 0.13</td>
</tr>
</tbody>
</table>

Values represented as mean ± SD
*p = 0.003; **p = 0.002
E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3

Figure 3.6.1 Bar Graph of Lipid Profile Measurements

Bars represent Mean ± SD
*p = 0.003; **p = 0.002
E1= Experimental Group 1, E2= Experimental Group 2, E3= Experimental Group 3
3.7 GC-MS Analysis of Fat

The three cooking oil/fat types used to fat-enrich the rat pellets fed to experimental groups 1, 2 and 3 were analysed using Gas Chromatography-Mass Spectrometry (GC-MS). The compounds and their concentrations are listed alphabetically in Table 3.7.1. Eighty five percent of all the compounds were classified according to chemical structure and summarized in Table 3.7.2.

Table 3.7.1 Chemical Composition of Three Cooking Oil Types

<table>
<thead>
<tr>
<th>Chemical Library ID</th>
<th>Sample 1 (µg/mg)</th>
<th>Sample 2 (µg/mg)</th>
<th>Sample 3 (µg/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 .alpha.-Amyrin</td>
<td>3.5901</td>
<td>2.3441</td>
<td>14.2467</td>
</tr>
<tr>
<td>2 .alpha.-Methylstyrene</td>
<td></td>
<td></td>
<td>8.9560</td>
</tr>
<tr>
<td>3 .beta.-Pinene</td>
<td>0.8725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 .beta.-Sitosterol</td>
<td></td>
<td>1.7059</td>
<td></td>
</tr>
<tr>
<td>5 .gamma.-Ergostenol</td>
<td>6.3061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 .gamma.-Sitosterol</td>
<td></td>
<td></td>
<td>18.6200</td>
</tr>
<tr>
<td>7 1-Heptacosanol</td>
<td></td>
<td></td>
<td>23.7352</td>
</tr>
<tr>
<td>8 1-Octanol, 2-butyl-</td>
<td>0.8838</td>
<td></td>
<td>12.6048</td>
</tr>
<tr>
<td>9 1R-.alpha.-Pinene</td>
<td>0.8602</td>
<td>0.8590</td>
<td>9.0409</td>
</tr>
<tr>
<td>10 2,2-Dimethoxybutane</td>
<td>0.9627</td>
<td></td>
<td>10.3355</td>
</tr>
<tr>
<td>11 2,4-Dimethyl-1-heptene</td>
<td></td>
<td></td>
<td>9.8021</td>
</tr>
<tr>
<td>12 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethyl)-</td>
<td>1.0890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (all-E)-</td>
<td>1.6810</td>
<td>1.8910</td>
<td>21.8602</td>
</tr>
<tr>
<td>14 2,6-Diisopropanylphathalene</td>
<td></td>
<td>0.901</td>
<td></td>
</tr>
<tr>
<td>15 2-Bromo dodecano</td>
<td></td>
<td>1.5023</td>
<td></td>
</tr>
<tr>
<td>16 2-Heptanone</td>
<td></td>
<td></td>
<td>8.9465</td>
</tr>
<tr>
<td>17 2-Hepten-4-one, 6-hydroxy-2-methyl-6-(4-methyl-3-cyclohexen-1-yl)-</td>
<td>0.8753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 2-Hexadecene, 3,7,11,15-tetramethyl- [R-[R*,R*-E]]-</td>
<td></td>
<td>12.5941</td>
<td></td>
</tr>
<tr>
<td>19 2-Pentadecanone</td>
<td></td>
<td></td>
<td>13.7343</td>
</tr>
<tr>
<td>20 2-Pentadecanone, 6,10,14-trimethyl-</td>
<td></td>
<td>0.9807</td>
<td></td>
</tr>
<tr>
<td>21 3.17 Octane<->n-></td>
<td>1.8191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4,4,6a,6b,8a,11,12,14b-Octamethyl-1,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydro-2H-picen-3-one</td>
<td>3.2528</td>
<td>14.6060</td>
<td></td>
</tr>
<tr>
<td>23 4.alpha.,14-Dimethyl-5.alpha.-ergosta-8,24(28)-dien-3-beta.-ol</td>
<td>3.3580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 5.alpha.-Cardanolide, 2.alpha.,3.beta.,14-trihydroxy-</td>
<td></td>
<td>1.4895</td>
<td></td>
</tr>
<tr>
<td>25 7,10,13-Eicosatrienoic acid, methyl ester</td>
<td></td>
<td>16.7949</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>26</td>
<td>7,9-Dimethyl-1,4-dioxa-7,9-diazacycloundecane-8-thione</td>
<td></td>
<td>0.9638</td>
</tr>
<tr>
<td>27</td>
<td>7-Isopropenyl-1,4a-dimethyl-4,4a,5,6,7,8-hexahydro-3H-naphthalen-2-one</td>
<td></td>
<td>3.3674</td>
</tr>
<tr>
<td>28</td>
<td>9,19-Cyclolanost-ene-3,7-diol, diacetate</td>
<td></td>
<td>1.9109</td>
</tr>
<tr>
<td>29</td>
<td>9-Hexadecenoic acid, methyl ester, (Z)-</td>
<td></td>
<td>0.8935</td>
</tr>
<tr>
<td>30</td>
<td>9-Octadecenoic acid (Z)-, methyl ester</td>
<td></td>
<td>25.7210</td>
</tr>
<tr>
<td>31</td>
<td>9-Octadecenoic acid, methyl ester, (E)-</td>
<td></td>
<td>38.4445</td>
</tr>
<tr>
<td>32</td>
<td>Bacchotricuneatin c</td>
<td></td>
<td>0.8755</td>
</tr>
<tr>
<td>33</td>
<td>Butanoic acid, 2-methyl-, methyl ester</td>
<td></td>
<td>0.8626</td>
</tr>
<tr>
<td>34</td>
<td>Campesterol</td>
<td></td>
<td>2.5069</td>
</tr>
<tr>
<td>35</td>
<td>Cholest-7-en-3-ol-15-one, 14-methyl-</td>
<td></td>
<td>1.6066</td>
</tr>
<tr>
<td>36</td>
<td>Cholesterol</td>
<td></td>
<td>1.5233</td>
</tr>
<tr>
<td>37</td>
<td>cis-10-Nonadecenoic acid, methyl ester</td>
<td></td>
<td>32.9053</td>
</tr>
<tr>
<td>38</td>
<td>cis-11-Eicosenoic acid, methyl ester</td>
<td></td>
<td>1.7914</td>
</tr>
<tr>
<td>39</td>
<td>cis-13-Eicosenoic acid, methyl ester</td>
<td></td>
<td>1.5230</td>
</tr>
<tr>
<td>40</td>
<td>Cyclohexane, 1,2,4,5-tetraethyl-</td>
<td></td>
<td>9.1109</td>
</tr>
<tr>
<td>41</td>
<td>Cyclohexane, methyl-</td>
<td></td>
<td>1.3483</td>
</tr>
<tr>
<td>42</td>
<td>Cyclopentane, 1,2,4-trimethyl-</td>
<td></td>
<td>1.7210</td>
</tr>
<tr>
<td>43</td>
<td>Cyclopentane, ethyl-</td>
<td></td>
<td>0.8662</td>
</tr>
<tr>
<td>44</td>
<td>Cyclopentane, undecyl-</td>
<td></td>
<td>0.8867</td>
</tr>
<tr>
<td>45</td>
<td>Cyclotetradecane</td>
<td></td>
<td>0.9566</td>
</tr>
<tr>
<td>46</td>
<td>Decane, 2,3,6-trimethyl-</td>
<td></td>
<td>4.0000</td>
</tr>
<tr>
<td>47</td>
<td>Decane, 2-methyl-</td>
<td></td>
<td>0.8873</td>
</tr>
<tr>
<td>48</td>
<td>Decane, 3,6-dimethyl-</td>
<td></td>
<td>1.9210</td>
</tr>
<tr>
<td>49</td>
<td>D-Limonene</td>
<td></td>
<td>0.8661</td>
</tr>
<tr>
<td>50</td>
<td>Docosane</td>
<td></td>
<td>3.5300</td>
</tr>
<tr>
<td>51</td>
<td>Dodecane</td>
<td></td>
<td>2.7300</td>
</tr>
<tr>
<td>52</td>
<td>Eicosane</td>
<td></td>
<td>2.7800</td>
</tr>
<tr>
<td>53</td>
<td>Ethyl 5,8,11,14-eicosatetraenoate</td>
<td></td>
<td>16.0564</td>
</tr>
<tr>
<td>54</td>
<td>Germacyclopent-3-ene, 1,1,3,4-tetramethyl-</td>
<td></td>
<td>0.9011</td>
</tr>
<tr>
<td>55</td>
<td>Heneicosane</td>
<td></td>
<td>3.1600</td>
</tr>
<tr>
<td>56</td>
<td>Heneicosane, 3-methyl-</td>
<td></td>
<td>0.9095</td>
</tr>
<tr>
<td>57</td>
<td>Hentriacontane</td>
<td></td>
<td>1.0663</td>
</tr>
<tr>
<td>58</td>
<td>Heptacosane</td>
<td></td>
<td>1.4891</td>
</tr>
<tr>
<td>59</td>
<td>Heptadecane</td>
<td></td>
<td>3.3300</td>
</tr>
<tr>
<td>60</td>
<td>Heptadecanoic acid, methyl ester</td>
<td></td>
<td>58.6374</td>
</tr>
<tr>
<td>61</td>
<td>Heptane</td>
<td></td>
<td>32.6700</td>
</tr>
<tr>
<td>62</td>
<td>Hexacosane</td>
<td></td>
<td>2.5890</td>
</tr>
<tr>
<td>63</td>
<td>Hexadecane</td>
<td></td>
<td>3.6100</td>
</tr>
<tr>
<td>64</td>
<td>Hexadecane, 2-methyl-</td>
<td></td>
<td>15.1280</td>
</tr>
<tr>
<td>65</td>
<td>Hexane, 2,3,5-trimethyl-</td>
<td></td>
<td>1.7300</td>
</tr>
<tr>
<td>66</td>
<td>Hexane, 3,3-dimethyl-</td>
<td></td>
<td>1.7350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>67</td>
<td>Hexatriacontane</td>
<td></td>
<td>1.5368</td>
</tr>
<tr>
<td>68</td>
<td>i-Propyl 7,10,13,16,19-docosapentaenoate</td>
<td></td>
<td>23.4067</td>
</tr>
<tr>
<td>69</td>
<td>Methyl 10-trans,12-cis-octadecadienoate</td>
<td>2.8037</td>
<td>2.5810</td>
</tr>
<tr>
<td>70</td>
<td>Methyl 13-methyldodecanoate</td>
<td></td>
<td>33.6286</td>
</tr>
<tr>
<td>71</td>
<td>Methyl 15-methyloctadecanoate</td>
<td></td>
<td>58.0093</td>
</tr>
<tr>
<td>72</td>
<td>Methyl 8,11,14,17-eicosatetraenoate</td>
<td></td>
<td>15.7396</td>
</tr>
<tr>
<td>73</td>
<td>Methyl 9.cis.,11.trans,t,13.trans.-octadecatrienoate</td>
<td>2.9980</td>
<td>2.3870</td>
</tr>
<tr>
<td>74</td>
<td>Methyl butanoate</td>
<td></td>
<td>34.6346</td>
</tr>
<tr>
<td>75</td>
<td>Methyl decanoate</td>
<td></td>
<td>95.3301</td>
</tr>
<tr>
<td>76</td>
<td>Methyl dodecanoate</td>
<td></td>
<td>121.6301</td>
</tr>
<tr>
<td>77</td>
<td>Methyl eicosa-5,8,11,14,17-pentaenoate</td>
<td></td>
<td>14.5424</td>
</tr>
<tr>
<td>78</td>
<td>Methyl hexadec-9-enoate</td>
<td>1.1563</td>
<td>1.0973</td>
</tr>
<tr>
<td>79</td>
<td>Methyl linoleate</td>
<td>2.9455</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Methyl linoleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Methyl myristoleate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Methyl nonanoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Methyl octadecanoate</td>
<td>5.2791</td>
<td>1.3514</td>
</tr>
<tr>
<td>84</td>
<td>Methyl octadecanoate</td>
<td></td>
<td>6.8700</td>
</tr>
<tr>
<td>85</td>
<td>Methyl octanoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Methyl palmitate (Methyl hexadecanoate)</td>
<td>8.1108</td>
<td>34.0051</td>
</tr>
<tr>
<td>87</td>
<td>Methyl tetradecanoate</td>
<td></td>
<td>1.9993</td>
</tr>
<tr>
<td>88</td>
<td>Methyl undecanoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>n-Hexadecanoic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Nonadecane</td>
<td>2.1500</td>
<td>1.0163</td>
</tr>
<tr>
<td>91</td>
<td>Nonane, 2,6-dimethyl-</td>
<td></td>
<td>1.9400</td>
</tr>
<tr>
<td>92</td>
<td>Nonane, 4,5-dimethyl-</td>
<td>1.9390</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Octacosane</td>
<td>3.1670</td>
<td>2.7530</td>
</tr>
<tr>
<td>94</td>
<td>Octadecane (C18)</td>
<td>3.4190</td>
<td>2.1850</td>
</tr>
<tr>
<td>95</td>
<td>Octane, 4,5-diethyl-</td>
<td></td>
<td>4.5000</td>
</tr>
<tr>
<td>96</td>
<td>Octane, 4-methyl-</td>
<td>1.8870</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Pentacosane</td>
<td>2.0466</td>
<td>2.6890</td>
</tr>
<tr>
<td>98</td>
<td>Pentadecane</td>
<td>0.9289</td>
<td>1.9430</td>
</tr>
<tr>
<td>99</td>
<td>Pentane, 3-ethyl-2,4-dimethyl-</td>
<td></td>
<td>0.8644</td>
</tr>
<tr>
<td>100</td>
<td>Phellandrene<beta-></td>
<td></td>
<td>0.8757</td>
</tr>
<tr>
<td>101</td>
<td>Phenol, 2,4-bis(1,1-dimethylethyl)-</td>
<td>1.0779</td>
<td>1.8590</td>
</tr>
<tr>
<td>102</td>
<td>p-Xylene</td>
<td></td>
<td>0.8615</td>
</tr>
<tr>
<td>103</td>
<td>Stig mast-7-en-3-ol, (3.beta.,5.alpha.,24S)-</td>
<td>3.3701</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Stigmasterol</td>
<td></td>
<td>2.3118</td>
</tr>
<tr>
<td>105</td>
<td>Tetracosane</td>
<td></td>
<td>4.1750</td>
</tr>
<tr>
<td>106</td>
<td>Tetracosanoic acid, methyl ester</td>
<td></td>
<td>1.7779</td>
</tr>
<tr>
<td>107</td>
<td>Tetradecane (C14)</td>
<td>0.8773</td>
<td>0.8675</td>
</tr>
<tr>
<td></td>
<td>Chemical class</td>
<td>Sample 1 (µg/mg)</td>
<td>Sample 2 (µg/mg)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>Amyryn</td>
<td>3.5901</td>
<td>2.3441</td>
</tr>
<tr>
<td>2</td>
<td>Cholesterol</td>
<td>21.3704</td>
<td>5.8039</td>
</tr>
<tr>
<td>3</td>
<td>Mono-Unsaturated</td>
<td>65.064</td>
<td>42.858</td>
</tr>
<tr>
<td>4</td>
<td>Poly-Unsaturated</td>
<td>7.4827</td>
<td>6.859</td>
</tr>
<tr>
<td>5</td>
<td>Saturated</td>
<td>80.3216</td>
<td>103.4271</td>
</tr>
<tr>
<td>6</td>
<td>Cis fats</td>
<td>1.7914</td>
<td>2.4166</td>
</tr>
<tr>
<td>7</td>
<td>Trans fats</td>
<td>70.7554</td>
<td>47.2982</td>
</tr>
</tbody>
</table>

Table 3.7.2 Summary of Chemical Composition of Three Cooking Oil Types
3.8 Correlations

With bivariate analysis, RMSSD measure of HRV, was negatively correlated with the heart rate (r = -0.654, p<0.001) as depicted on Figure 3.8.1.

Figure 3.8.1 Scatter Plot Graph of RMSSD and Heart Rate

The heart rate variability at week 6 as measured by RMSSD was also negatively correlated with the QTc interval (r = -0.681, p< 0.001) as illustrated in Figure 3.8.2.

Figure 3.8.2 Scatter Plot Graph of RMSSD and QTc
A negative correlation was also noted between the heart rate variability at week 6 as measured by RMSSD and both the P duration and PR interval ($r = -0.325, p < 0.05$ and $r = -0.690, p < 0.001$ respectively) as depicted in Figure 3.8.3.

Figure 3.8.3 An Overlay Scatter Plot of RMSSD with both P Duration and PR Interval

The systolic blood pressure, was positively correlated with the proportion of saturated fatty acids in the diet ($r = 0.391, p < 0.05$) and inversely correlated with the proportion of unsaturated fatty acids ($r = -0.413, p < 0.05$) as shown on Figure 3.8.4.
Figure 3.8.4 An Overlay Scatter Plot of Systolic Blood Pressure and Proportion of both Saturated Fatty Acid and Unsaturated Fatty Acid

SBP = Systolic Blood Pressure
FA = Fatty Acid
The levels of plasma HDL cholesterol were inversely correlated with the weights at six weeks ($r = -0.347$, $p = 0.028$) as shown in Figure 3.8.5.

Figure 3.8.5 A Scatter Plot of Plasma HDL Cholesterol and Weights at Six Weeks

$r = -0.347$

$p = 0.028$

$r^2 = 0.121$
4 DISCUSSION

Cardiovascular diseases (CVD) including hypertension, stroke, and the range of acute coronary syndrome are responsible for approximately 30% of the global disease burden. The development of CVD is multifactorial and gradual taking between 10-18 years. During this crucial time, cardiovascular risk factors and markers are present and reliably predict future events.

Dietary fat imparts significantly on these cardiovascular risk factors and together with physical exercise, account for approximately 60% of the total preventable attributable risk. Diet has both beneficial and detrimental effects on the cardiovascular health. Fatty acid from dairy products have been shown to be atherogenic due to the presence of myristic and lauric acids. This was basis of the recommendation for use of low fat dairy products (Lokuruka, 2007).

The current study evaluated the effect of variable high fat diet on heart rate variability, ECG parameters, systolic blood pressure, fasting blood glucose and fasting plasma lipid profile. The fat-enrichment was carried out using three locally consumed fat types made from sunflower oil, palm oil and ghee. Chemical composition of the selected fat types was subsequently determined using gas chromatography-mass spectrometry.

4.1 Heart Rate Variability

Heart rate variability (HRV) is an established indicator for cardiovascular health. Increased variability has been associated with better cardiovascular outcomes in healthy subjects as well as in post-myocardial infarction patients (Kleiger et al., 2005; Malpas et al., 2002). The current study demonstrated increased HRV in rats fed on rat chow enriched with either sunflower oil or ghee. Consumption of solid vegetable fat made from palm oil resulted in reduced HRV. Our
findings, although in rats, compare with those of Soares-Miranda et al. (2012) and Millis et al. (2009). The HRV was negatively correlated with heart rate. This is in keeping with findings by Millis et al. (2009) as well as Vaseghi and Shivkumar (2008). Poirier et al. (2003) demonstrated that reduction in dietary fat results in better HRV indicative of higher parasympathetic outflow. Higher heart rates as well as low frequency heart rate variability would both result from increased sympathetic outflow (Pongchaidecha et al., 2009). These two factors are both associated with poorer cardiovascular health. In addition, Lasisi et al (2012) in Nigeria demonstrated that ambulant patients with chronic heart failure have reduced heart rate variability factors that worsens the prognosis of these patients. In our study, HRV was inversely correlated with the percentage weight gain although statistical significance was not achieved. Our findings compare with those of Millis et al. (2010) who demonstrated an inverse association between HRV and body fat percentage. Similarly, Mouridsen et al. (2012) in a human study showed that weight loss resulted in improved HRV parameters.

4.2 ECG Changes

Evaluation of the electric cardiac function has reliably been studied using the ECG. This study demonstrated inter-group differences in several ECG parameters.

Firstly, palm oil resulted in higher heart rates as compared to sunflower oil. Obesity induced increase in heart rate has been previously shown by our research team (Mutiso et al., 2014) and others (Verwaerde et al., 1997). This is postulated to be a consequence of increased sympathetic outflow that is seen in obesity (Verwaerde et al., 1997).

Secondly, the study demonstrated prolongation of the PR interval in the rats fed on palm oil compared to sunflower oil. This implies a slower conductance between the atria and ventricles.
Such PR prolongation has been documented in humans with metabolic syndrome (Granér et al., 2014) as well as in rats (Axelsen et al., 2015). Metabolic syndrome refers to a cluster of the most dangerous heart attack risk factors: diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure (Alberti et al., 2005).

QT_c, QT interval corrected for the heart rate using the Bazzet’s formula, has been linked to increased propensity for arrhythmias. In our study, palm oil ingestion resulted in QT_c prolongation as compared to both the control group and the group on sunflower oil. Similar prolongation of the QT_c has previously been documented by our research team (Mutiso et al., 2014) and others (Zarzoso et al., 2013). This prolongation of the QT_c is indicative of ventricular remodelling that is seen in metabolic syndrome (Axelsen et al., 2015) among other conditions. Ventricular remodelling refers to the changes in size, shape, structure, and function of the heart (Mihl et al, 2008). This can happen physiologically as a result of exercise (Fernandes et al., 2015) or pathologically after injury to the heart muscle (Burchfield et al., 2013). These changes are however not secondary to changes in either Na^+ or K^+ conductance (Axelsen et al., 2015).

4.3 Systolic Blood Pressure

Blood pressure elevation has been associated with high salt ingestion, advancing age, increased body weight and increased plasma LDL- cholesterol (World-heart-federation, 2015). Our study demonstrated elevated systolic pressure in rats fed on ghee-enriched as well as palm oil-enriched diets. Our findings are similar to those of Esmaillzadeh et al. (2011) who demonstrated in humans increased blood pressure secondary to diets rich in fats.
In our study, the systolic blood pressure was positively correlated with the weight and body mass index. A rise in blood pressure is expected with increase in weight as was demonstrated by Drøyvold et al. (2005). This rise in blood pressure seen in obesity is thought to be secondary to increased sympathetic activation as well as activation of the renin-angiotensin-aldosterone system (Rahmouni et al., 2004). In a Kenyan study, leading cardiovascular risk factors among hypertensive patients were found to be obesity, dyslipidaemia and ventricular hypertrophy (Yonga et al., 1993). Of these, obesity and dyslipidaemia are linked to dietary fat intake.

4.4 Fasting Blood Glucose

Fasting blood glucose, as a marker of insulin resistance, is a recognized cardiovascular risk factor. Indeed, poorly controlled diabetes increases the risk for cardiovascular disease. This study demonstrated no statistical difference in the fasting blood glucose levels between the groups on variable high fat diets. Similar results have been documented from other short term studies looking at the effect of variable high fat diets on blood glucose levels (Lovejoy et. al, 2002; Esmaillzadeh et. al, 2011). Studies with longer follow up, however, demonstrated increased insulin resistance following high fat ingestion (Riccardi et. al, 2004; Rivellese and Lilli, 2003). Ingestion of a high fat diet results in obesity which has been shown to cause insulin resistance (Kahn, Hull and Utzschneider, 2006). Several hypotheses have been put forward to explain the link between obesity and insulin resistance. These are classified into endocrine, inflammatory, neural, and intracellular signalling pathways (Steppan et al., 2001; Qatanani and Lazar, 2007).

4.5 Plasma Lipid Profile

The profile of plasma lipids that is often measured includes the low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides and total cholesterol. An additional subclass of
very low-density lipoproteins is at times included. Of these, HDL is anti-atherogenic and therefore protective against myocardial infarction, stroke and other cardiovascular diseases. The cholesterol: HDL ratio is often calculated and it magnifies the measured effect by having an atherogenic measure as the numerator and an anti-atherogenic measure as the denominator.

This study demonstrated increased levels of both total cholesterol and LDL following ingestion of palm oil derived cooking fat. These were higher than those of both the control group and the experimental group on sunflower oil. The differences in HDL and TGs were not statistically significant. These results were expected and compare with those from other studies by Clevendence et al. (1997) and Siri-Tarino et al. (2010) that showed unfavourable plasma lipid profile after ingestion of fats rich in saturated and trans fatty acids.

Two subpopulations of high-density lipoprotein have been characterized based on the lipoprotein in the molecule. These are apolipoprotein A-I (apoA-I) and apolipoprotein A-II (apoA-II), comprising about 70% and 20% of the total HDL protein mass, respectively (Schultz et al., 1992). Of the two, the (apoA-I) is approximately 15-fold more anti-atherogenic (Schultz et al., 1992). Several mechanisms explaining this cardio-protective property have been demonstrated including causation of cholesterol efflux from cell membranes and mediation of anti-oxidation, and anti-inflammatory (Rye et al., 2008).

On the contrary, low-density lipoprotein cholesterol is atherogenic and has been linked to increased cardiovascular risk (Carmena, 2004; Grundy, 1997). Other atherogenic lipoproteins are the small, dense and oxidized LDL particles (Carmena, 2004). Studies looking at the role of LDL in atherogenesis have demonstrated the stimulation of macrophages leading to phagocytosis of
oxidized LDL particles on the endothelium. This is initiates further deposition of lipids resulting in a positive-feedback phenomenon (Young et al., 1994).

Lastly, a rise in LDL is often associated with elevated levels of TGs and reduced HDL levels all of which result in increased cardiovascular risk (Jeppesen et al., 1997).
5. CONCLUSION AND RECOMMENDATION

In summary, heart rate variability, a marker of autonomic influence on the heart was reduced by palm oil containing cooking fat. Sunflower oil as well as ghee consumption resulted in high degree of heart rate variability.

Secondly, the systolic blood pressure measurements were elevated following ghee ingestion. Both palm oil and sunflower oil did not result in statistically significant elevations of the systolic blood pressure.

The fasting blood glucose in the different groups were statistically similar.

Ingestion of both sunflower oil and ghee resulted in favourable fasting lipid profiles. Palm oil derived cooking fat ingestion resulted in unfavorable lipid profile characterized by high levels of LDL-cholesterol and total cholesterol.

Locally available cooking fat types contain variable amounts of saturate fatty acids and trans fatty acids.

The study recommends a shift to healthier cooking oil in our setting. This may be achieved by either public sensitization or preferential taxation making healthier fat types more affordable. Secondly, further studies to investigate the long-term effects of locally available cooking fat types on cardiovascular risk factors are recommended.
6. REFERENCES

