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Abstract: Game theory is not only useful in understanding the performance of human and autonomous game players,
but it is also widely employed in solving resource allocation problems in distributed decision-making systems.
Reinforcement learning is a promising technique that can be used by agents to learn and adapt their strategies
in such systems. We have enhanced the carrier sense multiple access withcollision avoidance mechanism used
in random access networks by using concepts from the two fields so that nodes using different strategies can
adapt to the current state of the wireless environment. Simulation results show that the enhanced mechanism
outperforms the existing mechanism in terms of throughput, dropped packets and fairness. This is especially
noticeable as the network size increases. However the existing mechanismperforms better in terms of delay
which can be attributed to increased processing.

1 INTRODUCTION

The fundamental access mechanism adopted by the
IEEE 802.11 MAC (medium access control) is adis-
tributed coordination function (DCF)known ascar-
rier sense multiple access with collision avoidance
(CSMA/CA)(IEEE, 1999; Committee, 2007). This
function makes coordinated wireless medium access
possible when multiple nodes are vying for access
in an uncoordinated manner. This mechanism is a
distributed strategy to access and share the wireless
channel among contending nodes in random access
wireless networks (Forouzan, 2007). It consists of
two components: a contention resolution mechanism
that is used for contention before the start of a trans-
mission, and a feedback mechanism (known as back-
off) that updates a contention measure and sends it
back to the wireless nodes when a collision occurs.

The current CSMA/CA mechanism still has some
shortcomings that lead to inefficiency and unfairness.
These include: The inherent weaknesses of the mech-
anism and parameter manipulation by self-interested
nodes (Cagalj et al., 2005; Kyasanur and Vaidya,
2005; MacKenzie and DaSilva, 2006; Raya et al.,
2006; Buttyan and Hubbaux, 2007). Approaches

to optimizing it involves tuning its parameters i.e.
the interframe space (IFS), contention window (cw),
slot length, backoff time (BO)and control message
lengths. We try to address these shortcomings through
the adaptive tuning of the parameters using concepts
borrowed from the fields of game theory and rein-
forcement learning.

The characteristics of random access networks
give rise to a strategic setting in which the physi-
cal network is the environment and the nodes are the
agents. Past research shows that game theory has been
applied to the four bottom layers of the OSI reference
model in wireless networks as summarized in (Fel-
egyhazi and Hubaux, 2006; Chen et al., 2007; Cui
and Chen, 2008). In particular we concentrate on the
MAC layer under which the CSMA/CA mechanism
falls.

In idealistic models of non-stationary environ-
ments, nodes should continually adapt their strategies
based on the state of the environment. Because of
non-stationarity, the nodes should be more sensitive
to the trade-off betweenexploitation, which uses the
best strategy so far, andexploration, which tries to
find better strategies. Exploration is especially impor-
tant in non-stationary environments e.g. ad hoc wire-



less networks or sensor networks (Zhu and Ballard,
2002; Zhu, 2003) and hence the use of reinforcement
learning. Most existing reinforcement learning (Sut-
ton and Barto, 1998) algorithms are designed from a
single-agent’s perspective and for simplicity assume
the environment is stationary. The predominant ap-
proaches to game playing in those settings assume
that opponents’ behaviors are stationary.

As opposed to the current approach in which fair-
ness and efficiency drop as the tunable parameters
are manipulated, the main contribution of this work
was the use of game theory and reinforcement learn-
ing to design and improve the existing mechanism
such that the random access network stabilizes around
a steady state with increased fairness and efficiency.
Results from the experiments performed through sim-
ulations are quite encouraging. The modified mecha-
nism outperforms the existing mechanism in through-
put, dropped packets and fairness as the network gets
heavily loaded. However, the existing mechanism
does better in terms of delay when the network gets
heavily loaded.

This paper is organized as follows: Section 2 gives
the preliminaries of the CSMA/CA random access
mechanism, game theory and reinforcement learning.
Section 3 presents a model for applying game theory
and learning at the MAC layer. Section 4 presents
some simulation results and analysis. Section 5 con-
cludes the research and gives some direction for fur-
ther work.

2 PRELIMINARIES

2.1 The Distributed Coordination
Function (DCF)

The basic principle of the CSMA/CA mechanism is
listen before talking (carrier sensing) and contention
(collision avoidance) as illustrated in Figure1.

Figure 1: The CSMA/CA Basic Access Mechanism. This
timing diagram show 3 nodes competing for the same radio
channel. Node 1 transmits to Node 2 while Node 3 waits to
transmit.

From the Figure, the following things should be
noted.

DIFS= SIFS+2(slot times) (1)

1. If the channel is sensed “idle” for a DIFS (dis-
tributed inter-frame space) time, then the node be-
gins a random backoff (BO), where

Randombacko f f= Random[0, cw]×slot time
(2)

• Randomis a random number generator function
which randomly selects a number from a uni-
form distribution [0,cw].

• Contention Window (cw): A number computed
using the equation:

cw= 2BE−1 (3)

TheBackoff Exponent (BE)enables the compu-
tation of thecw value. Some of the values used
include 3, 5 etc. to givecw values of 7, 31 etc.
Thecw is bounded bycwmin≤ cw≤ cwmax.

• Slot time, is defined under the physical layer: It
is equal to the time needed by any node to de-
tect the transmission of a packet from any other
node.

2. If the backoff expires and the channel is still free,
the node transmits the frame

3. If the channel is sensed “busy” during the backoff,
the backoff is paused until the channel is sensed
idle again, and then resumed.

If on transmission the frame is received correctly, the
receiver sends back an acknowledgment (ACK) frame
after a short inter-frame space (SIFS) period. The ran-
dom backoff process before sending a data frame is
used for mitigating collisions. After each successful
transmission,cw is reset to the minimum contention
window sizecwmin. If a frame is lost (An ACK frame
is not received), thecw is doubled if the maximum al-
lowable contention window sizecwmax has not been
reached yet. Otherwise,cwmax is used as the newcw
up to a maximum of 15 times. If this is exceeded, the
transmission is aborted.

2.1.1 Intrinsic imperfection of the CSMA/CA
mechanism

Based on the parameters used by the CSMA/CA
mechanism, the following issues arise:

1. Efficiency: Based on the size of thecw and BO
there may be a lot of collisions. With this in-
crease in the probability of collisions, the number
of lost packetsincreases as well. This reduces the
throughputand increases thedelay. Additionally,



the medium may also remain idle for long periods
of time while some nodes still have data to trans-
mit . This makes the mechanism probabilistic and
unsuitable for time-sensitive applications.

2. Fairness:

• Under contention, unlucky nodes will use a
larger cw and BO than lucky nodes. This is
based purely on the random manner in which
the two values are obtained.

• Similarly, a node which is successful in trans-
mission sets itscw to the minimum size (cwmin)
while other nodes are still counting down. This
has a possibility of giving the successful node
a higher probability of accessing the channel
with its next attempt.

2.1.2 Protocol manipulation by nodes

Since a decision made by any node effects other
nodes, it is implicitly assumed that the nodes follow
the prescribed protocol without any deviation when
performing network functions. In general, if nodes
are owned by autonomous entities and their objective
is to maximize their individual goals through strategic
behaviour, then such nodes are said to exhibitself in-
terest(Narahari et al., 2009). Nodes with self-interest
could manipulate the operation of the mechanism in
order to maximize their utility in the following man-
ner (Cagalj et al., 2005; Raya et al., 2006; Konorski,
2006; Zhao, 2006):

1. Selectively scrambling frames sent by other nodes
forcing them to increase theircws. Targeted
frames include CTS, RTS and data frames.

2. Manipulating the protocol parameters;

• Using shorter DIFS
• BO manipulation; The nodes choose a small or

fixed cw, thus, the backoff interval is always
short.

Nodes serving their self-interest inevitably contribute
towards inefficiency and unfairness in network perfor-
mance.

Two parameters that determine optimum network
behaviour that can be manipulated are thuscw and
BO. We can therefore argue that nodes using the
CSMA/CA mechanism as currently implemented, are
hard-wired to use a single strategy. This strategy uses
moves based oncw andBO to ensure fairness and ef-
ficiency. Both cases depend onrandomization. The
moves made by the nodes are not premeditated i.e. as
a result of or an anticipation of opposing nodes’ be-
havior. They are simply a reaction to the state of the
environment with no adaptivity. This can lend itself

to abuse and/or suboptimal behavior. Optimization
of the network performance involves seeking a stable
operating point based on the parameters.

We used game theory to analyze this interaction,
and based on the analysis we proposed an enhance-
ment to make the mechanism moreadaptiveto net-
work environment conditions.

2.2 Game Theory

A game comprises of at least two participants called
players. A player may be an individual, a company, a
nation, a wireless node, a biological specie etc. Each
game consists of a set ofactionsor a sequence of
moves. These are either decisions by the players or
outcomes of chance events, which could besequential
or simultaneous. At the end of the game, each player
receives apayoff, which is always assumed to be a
real number. For the number to reflect the player’s
preferences, or all aspects of the outcome, it is repre-
sented numerically by itsutility value obtained from
a utility function. Our proposed random access game
can be generally formalized and expressed as shown
in the Definition below:

Definition .1. G= 〈N,A,ui〉
Where

• Game (G): A finite n-person game (N, A, u).

• Players (N): A finite set of n players indexed by i.
They are all IEEE 802.11 nodes.

• Actions (A): A = A1×A2× ·· · ,×An are action
sets for each node i, where Ai is a choice of cw
and BO parameters for each node i.

• Utility: u i = {u1,u2, · · · ,un}, where ui is the utility
(throughput, delay, lost packets or fairness) that
the players wish to maximize.

2.2.1 Learning in Strategic Games

Game theory has traditionally been developed as a
theory of strategic interaction among players who
are perfectly rational, and who (consequently) ex-
hibit equilibrium behaviour. This approach has been
complemented by evolutionary game theory (EGT),
which motivated by biological evolution, seeks to un-
derstand how equilibria could arise in the long term
by selection among generations of players who need
not be rational or even conscious decision-makers.
Somewhere in between are models of learning, which
apply to adaptive behaviour of goal-oriented players
who may not be highly rational (in a game-theoretic
sense), both to provide foundation for theories of
equilibrium and to model empirically observed be-
haviour (Erev and Roth, 1998).



These models take many different forms, depend-
ing on the available information, the available feed-
back, and the way they are used to modify behaviour,
giving rise to different models of adaptive learning in
a continuum. In our settings there are two possible
things to be learnt:

1. Nodes learn other nodes’ strategy so that they can
devise the best (or at least a good) response.

2. Nodes learn a strategy of their own that does well
against the competing nodes without explicitly
learning those nodes’ strategies.

We concentrate on the second which is sometimes
called a model-free learning an example of which is
reinforcement learning.

2.3 Reinforcement Learning

In reinforcement learning, learners are assumed to
have incomplete knowledge of the environment they
are embedded in, and act in a simple stimulus-
response way: the propensity to repeat a certain deci-
sion is positively related to the amount of satisfaction
the learner obtained as a result of making the decision
in the past.

Q-learning(Watkins and Dayan, 1992) is a form
of model-free reinforcement learning. It provides
agents with the capability of learning to act optimally
in Markovian domains by experiencing the conse-
quences of actions, without requiring them to build
maps of the domains.

2.3.1 Multiplayer Environments

The traditional Q-learning is effective for a single
learner in a stationary environment. It is problematic
for multiple learners in a non-stationary environment
because:

• The agent learns deterministic policies, whereas
mixed strategies are generally needed;

• The environment is generally non-stationary due
to adaptation of other agents.

3 APPLYING GAME THEORY
AND LEARNING AT THE MAC
LAYER

The strategysi of nodei define its decisions, taking
the decisions of other nodes into account. In the cur-
rent CSMA/CA mechanism, the strategy defines how
persistent a nodei, is in contending for the available
bandwidth on the channel by adjusting thecwandBO

parameters. In our modified CSMA/CA mechanism,
we denote the strategy space of nodei by si . The in-
creased strategy space of the players define the strat-
egy profile:

s= s1, . . . ,sn (4)

All nodes other than playeri are denoted by ‘−i’, and
their strategy profile by:

s−i = s1, . . . ,si−1,si+1, . . . ,sn (5)

Assuming the nodes to be rational, their objective is
to maximize their payoffs or utility function in the
network. We denote the payoff of nodei by ui . We
assume that each nodei wants to maximize its total
throughputti , reduce delaydi , reduce dropped pack-
etspi and increase network fairnessf . Thus its payoff
function is written as follows:

ui = f (ti ,di , pi , f ) (6)

The total utility is defined as the sum of the achieved
utilities of all of the nodes on channelc, given by:

uc = ∑
i

ui (7)

This is a non increasing function of the number of
nodes deployed onc. If the channel sensing is per-
fect, uc is independent of the number of nodes onc
for the CSMA/CA protocol. In practice, thecw and
BOvalues used in the CSMA/CA protocol implemen-
tation are not optimal; and owing to packet collisions,
uc becomes a decreasing function of the number of
nodes onc.

To characterize stability in the MAC game, we in-
troduce the concept of the Nash Equilibrium. The
strategy profiles∗ = s∗1, . . . ,s

∗
n defines a Nash Equilib-

rium (NE), if for each nodei, and its strategys′i ∈ Si
we haveui(s∗i ,s

∗
−i) ≥ ui(si ,s∗−i). This means that in a

Nash Equilibrium, none of the nodes can unilaterally
change their strategy to increase their payoffs.

Two issues arise with using the basic Q-learning
algorithm for nodes using the CSMA/CA protocol

• In Q-learning, the Q-matrix is only used once
there is convergence. In this case, the end of
the game can not be pre-determined and so is as-
sumed to be infinite. The convergence of the Q-
matrix for the nodes is therefore only theoretically
possible. Nodes are therefore highly unlikely to
benefit from a converged Q-matrix.

• Convergence is unlikely since the environment is
dynamic.

We extend the Q-learning algorithm to the multi-
agent stochastic game setting by having each agent
simply ignore the other agents and pretend that the



environment is passive. Our modified algorithm is
a combination of the Win-Stay, Lose-Shift (WSLS)
strategy (Nowak and Sigmund, 1993) and Q-learning
(Watkins, 1989). A simple learning paradigm for it-
erated normal form games in an evolutionary context.
Following the decision theoretic concept of satisfic-
ing we design players with a certain aspiration level.
If their payoff is below this level, they change their
current action, otherwise they repeat it. The modified
algorithm is as outlined below.

Begin:
For every contention
1. Consult the Q-matrix
2. Use the best action from the stored Q-values
3. Evaluate the reward

If positive
Update the Q-matrix

Else
Randomly explore another action from the
stored Q-values

End.

This algorithm has both:

• Exploration: When a node fails the contention

• Exploitation: When a node wins the contention

This modified algorithm will benefit the nodes by
allowing them to make informed strategic decisions
based on past history. This is because as the node
learns and updates its Q-matrix, the matrix reflects
the direction of convergence. During each episode,
the Q-matrix remain the same or gets better compared
to the previous one. Therefore the Q-values for each
state-actionpair represent how each move benefits a
particular node at a particular time.

Our implemented Q-matrix is a six by six matrix
where, the rows represent the previous states and the
columns represent the next states’ a node arrives at
after taking an actiona. TheQ(s, a)values represent
the appropriateness of taking such an action. The six
states explored in our work are as shown in Table 1:

Table 1: Typical mapping of ad hoc network components to
a game

State Parameters
s1 standardcw size and a slower rate of in-

crease of theBOwindow
s2 standardcw size and fixedBO window
s3 standardcw size and standard rate of in-

crease of theBOwindow
s4 smallcw size and a slower rate of increase

of theBOwindow
s5 smallcwsize and fixedBOwindow
s6 smallcw size and standard rate of increase

of theBOwindow

4 RESULTS AND ANALYSIS

4.1 Simulation Characteristics

The proposed protocol was compared to the existing
protocol by simulation through the use of the Opnet
Modeler simulator. Different network sizes having
similar topologies, running the two protocols were
subjected to the same traffic types. The simulation
characteristics were as follows.

Table 2: Parameters used in the simulation

Charateristic Type
Network Size 4, 7 and 13 nodes
Bandwidth 11 Mbps
Radio type DSSS

Applications File Transfer: Heavy
Database Access: Light
Email: Heavy

4.2 Performance Metrics

The proposed model was evaluated against the exist-
ing MAC protocol based on

• Efficiency: The capacity of a MAC protocol is
usually expressed in terms of itsefficiency- the
fraction of transmitted packets that escape colli-
sions. In other words, the efficiency identifies the
maximum throughputrate for a MAC protocol.
This is the ratio of the successful transmission to
the total number of transmissions.

• Delay: Average delay experienced per packet.
This is influenced by the network load.

• Dropped Packets: Packets dropped when the load
increases. This is an indication of the efficiency
of the access mechanism.

• Fairness: How well the system shares bandwidth
among multiple users. It is an important consid-
eration in most performance studies especially in
distributed systems where a set of resources is to
be shared by a number of users. Assuming that
fair implies equal and that all paths are of equal
length, Raj Jain (Jain et al., 1984) proposed the
following fairness index. Given a set of a set of
flow throughputs, (x1, x2,. . . , xn) the fairness in-
dex f (xi):

f (xi) =
(∑n

i=1xi)
2

n∑n
i=1x2

i

(8)

The fairness index always results in a number be-
tween 0 and 1, with 1 representing greatest fair-
ness.



4.2.1 Throughput

Figure 2 compares performance of the enhanced
mechanism and the existing mechanism in terms of
the global throughput of the network.

Figure 2: The global throughput comparing the enhanced
protocol against the existing protocol using different net-
work sizes

From the graph, one notices that the enhanced
access mechanism performs better that the existing
mechanism in all network sizes. As the network size
increases, the difference is even much bigger.

4.2.2 Delay

Figure 3 compares performance of the enhanced
mechanism and the existing mechanism in terms of
the global delay of the network when transmitting
packets. From the graph one notices that the existing
mechanism perform better than the enhanced mecha-
nism. This is expected because of the additional pro-
cess of evaluating the best strategy and updating the
Q matrix.

4.2.3 Dropped Packets

Figure 4 compares performance of the enhanced
mechanism and the existing mechanism in terms of
the global number of packets dropped by the network
when nodes transmit. Here the enhanced mechanism
performs far much better than the existing mechanism
more so as the network size gets bigger. This indi-
cates that the number of collisions has substantially

Figure 3: The global delay compares the delay of the en-
hanced protocol against the existing protocol using different
network sizes.

Figure 4: The global number of packets dropped compares
the enhanced protocol against the existing protocol using
different network sizes

reduced. This could be attributed to exploitation and
learning where each node uses a better strategy as
time progresses. This also contributes to the increase
in throughput when the network uses the enhanced
protocol.



4.2.4 Fairness

Figure 5 compares performance of the enhanced
mechanism and the existing mechanism in terms of
the global fairness among nodes as they compete for
a shared resource. It can be observed that the original

Figure 5: The global fainess comparing the enhanced pro-
tocol against the existing protocol using different network
sizes.

mechanism performs better when the network is
lightly loaded. But as the network becomes heavily
loaded, the enhanced mechanism displays better
fairness features. When the network is lightly loaded,
the competition for the scarce radio resource is
minimal and the resource is shared equally. As the
load increases, the competition gets stiffer and there
is now need to use better strategies against opponents.
This calls for the use of more intelligent mechanism.
The enhanced mechanism has these features inbuilt.

In all cases one notices that the graphs gener-
ated by the enhanced mechanism are smoother. This
is an indication od stability as the network settles
around a steady state.

5 CONCLUSIONS AND FUTURE
WORK

Analysis of the simulation results indicates that
the enhanced mechanism outperforms the existing
mechanism in terms of throughput, dropped packets
and fairness. This is more defined as the network
size increases. The new mechanism additionally gen-
erated a more stable equilibrium candidate that pro-
duced different strategies in different network envi-
ronments. However the existing mechanism does bet-
ter in terms of delay. This is as a result of the addi-
tional processing required by the new mechanism.

There is still a lot of work to be done which would
comprise of future work. This involves improving on
the strategies and the strategy space. Additionally ex-
periments need to be done to determine the optimal
learning rate.
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APPENDIX

APPENDIX 1

The Q-learning algorithm goes as follows:

APPENDIX 2

The algorithm to utilize theQ matrix is as follows:

Algorithm 1 An Algorithm for Learning Q

1. For eachs, a, Initialize table entryQ(s,a)← 0
Observestates

2. Do forever:

• Selectan actiona and execute it
• Receiveimmediate rewardr
• Observethe new states’
• Update table entry forQ(s, a)as follows:

Q(s,a)← r + γmaxQ(s′,a′)

• s← s′

Algorithm 2 An Algorithm to Utilize the Q-Matrix

• Input: Q matrix, initial state

1. Set current state = initial state
2. From current state, find action that produce

maximumQ value
3. Set current state = next state

• Go to 2 until current state = goal state


