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Abstract

In this project, we have reviewed the methods of constructing Balanced Incomplete

Block Designs (BIBDs) by means of Mutually Orthogonal Latin squares (MOLS) of

prime powers order arising from Finite Geometries and Finite Fields. This project

finds that the existence of an Affine plane of prime powers order implies the existence

of a set of Mutually Orthogonal Latin squares (MOLS) of the same order, a treatment

square of side equal to the prime powers order, a set of bijective maps defined on the

key Latin square into the treatment space and a transformation defined on the set of

bijective maps that generates new sets of bijective maps that are the mappings of the

remaining MOLS into the treatment square.

Key Words: Balanced Incomplete Block Designs (BIBDs); Bijective map; Treatment

space; Latin Squares; Orthogonal Latin Squares; Mutually Orthogonal Latin Squares

(MOLS); Geometries - Projective & Euclidean (Affine); Finite (Galois) Fields
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Chapter 1

Introduction

Scientific research is a process of guided learning where knowledge is obtained by

conducting experimens. An experiment is a set of observations made under conditions

deliberately arranged by the observer. The three basic principles of experimental

designs are:

1. Replication: more than one observation is taken for each combination of

treatment factors.

2. Blocking: is the use of blocking factors to divide the experimental units into

sets (blocks) in a manner that captures the variability introduced by blocking

3. Randomisation: combinations of treatment factors are allocated to experi-

mental units in a manner that minimises bias.

To realise these principles, the experimenter makes use of such tools as combina-

torial theory, the theory of algebraic structures and number theory.

Combinatorial design theory concerns itself with the arrangements of elements of

a finite set into subsets in a manner that satisfies certain “balance” properties. Exper-

imental Designs have had various applications in recreational mathematics, tourna-

ment scheduling, lotteries, mathematical biology, algorithm design & analysis, group

testing & cryptography (see Stinson (2004)).
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According to Arshaduzzaman (2014), the development of Latin squares started

with Euler in 1779. Arthur Cayley extended the work of Euler between 1877 and

1890 and proved that the multiplication table of a group is a special Latin square.

The development somewhat stalled until 1930 when the ideas of quasi-groups and

loops began to be developed in group theory. These also played an important role

in the foundations of finite geometries, and R. A. Fisher began using them together

with other combinatorial structures in the design of statistical experiments.

1.1 Problem Statement

In this project, we study the relationships between Latin squares and finite geometries

and the resulting BIBDs.

1.2 Objectives

The main objective of the study is to establish the relationships between Latin

squares, finite geometries and BIBDs more intuitively. The specific objectives are:

1. Prove that the existence of an Affine Geometry is equivalent to the existence of

a Projective Geometry.

2. Prove that the existence of an Affine Geometry is equivalent to the existence of

s− 1 mutually orthogonal Latin squares (MOLS) of prime-powers order s.

3. Develop a more intuitive description of constructing BIBDs from the s − 1

MOLS.
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1.3 Significance of the study

In the Design of Experiments, many fundamental questions seek to establish the exis-

tence or non-existence of a specified type of design (see Stinson (2004)). In this study,

we are relating the methods of constructing BIBDs using mutually orthogonal Latin

squares and Finite Geometries by looking at possible relationships in the parameters

of the resulting BIBDs. This might provide insights that unify these methods, leading

to a possible simplification of the computations that are involved in coming up with

designs.

1.4 General Outline of the Project

Chapter 2 will provide important definitions, theorems and properties of designs that

will give us a common vocabulary as we progress. Chapter 3 will be concerned

with constructions of BIBDs using multiple methods. Chapter 4 will summarise

the properties of the constructions, mainly by looking at their parameters, and try

relating the methods of construction via these parameters. Chapter 5 will discuss the

challenges encountered, & areas for further work.
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Chapter 2

Preliminaries

We shall provide important definitions, theorems and corollaries that will lay our

foundation for the work ahead. The theorems and corollaries are stated without proof

or citation since these have become common literature in most books on Experimental

Designs.

2.1 General Definitions and Theorems

The excellent book by Stinson (2004) provides the following definitions and theorems.

Definition 2.1. (Design; Repeated Blocks; Simple Design) A Design is a pair

(X,A) with

a) X: a set of elements called points, and

b) A: is a multiset on non-empty sets of X called blocks.

Further, repeated blocks arise when two blocks in a design are identical, and a simple

design is one which has no repeated blocks.

Definition 2.2. (Balanced Incomplete Block Design (BIBD)) Let ν, k, and λ

be positive integers such that ν > k ≥ 2. A (ν, k, λ)-BIBD is a design (X,A) such

that
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1. |X| = ν,

2. each block has exactly k points, and

3. every pair of distinct points is contained in exactly λ blocks (balance property)

A BIBD is an incomplete block design because k < ν, and hence all blocks are incom-

plete blocks.

Theorem 2.3. In a (ν, k, λ)-BIBD, every point occurs in exactly

r =
λ(ν − 1)

(k − 1)

blocks.

Theorem 2.4. A (ν, k, λ)-BIBD, has exactly

b =
νr

k
=
λν(ν − 1)

k(k − 1)

blocks.

Corollary 2.5. If a (ν, k, λ)-BIBD exists, then

λ(ν − 1) ≡ 0 (mod (k − 1)), and

λν(ν − 1) ≡ 0 (mod (k(k − 1)))

The above corollary trivially follows from theorems (2.3) and (2.4) and is useful as

a quick check for the existence of a BIBD. A more general use of corollary (2.5) is to

determine necessary conditions for families of BIBDs with fixed values of k and λ.

Definition 2.6. (Incidence Matrix) Let (X,A) be a design where X = {x1, . . . , xν}

and A = {A1, . . . , Ab}. The incidence matrix of the design (X,A) is the 0-1 matrix

Mν×b defined by the rule

mi,j =

1 ifxi ∈ Aj

0 otherwise
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Theorem 2.7. Let Mν×b be an incidence matrix and 2 ≤ k < ν. Then Mν×b is the

incidence matrix of a (ν, b, r, k, λ)-BIBD iff

MMT = λJν + (r − λ)Iν , and,

uνM = kub

where uν and ub are unit vectors.

Theorem 2.8. The 0-1 matrix Mν×b is an incidence matrix of a regular pairwise

balanced design having ‘ν ′ points and ‘b′ blocks iff

(∃r, λ ∈ N+|MMT = λJν + (r − λ)Iν)

Definition 2.9. (Dual) Suppose that (X,A) is a design with |X| = ν and |A| = b

and Mν×b the incidence matrix of (X,A). The design having incidence matrix MT is

the dual design of (X,A).

Definition 2.10. (Isomorphism) Suppose that (X,A) and (Y,B) are two designs

with |X| = |Y |. Then the two designs (X,A) and (Y,B) are isomorphic if there exists

a bijection α : X → Y such that

[{α(x)|x ∈ A}|A ∈ A] = B.

The bijection α is an isomorphism.

Isomorphisms of designs in terms of incidence matrices can be described in the theo-

rem below:

Theorem 2.11. Suppose Mν×b = (mi,j) and Nν×b = (ni,j) are incidence matrices.

Then the two designs are isomorphic iff there exists a permutation γ of {1, . . . , ν}

and a permutation β of {1, . . . , b} such that

mi,j = nγ(i),β(j) ∀ (1 ≤ i ≤ ν, 1 ≤ j ≤ b).
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We also have the definitions below which can be found in any common literature

concerning algebraic structures:

Definition 2.12. (Latin Square): A Latin square of order ‘k’ is an arrangement

of ‘k’ symbols in a k×k square so that every symbol appears once and once only in

each row and each column.

Example 2.13. Below is an example of a Latin square.

α β θ γ

β θ γ α

θ γ α β

γ α β θ

Arising from S = {γ, α, β, θ} and k = 4 = |S|

Definition 2.14. (Orthogonal Latin Squares): Two Latin squares of the same

order, both defined as in definition 2.12 above, are said to be orthogonal if when

superimposed, each element of the first square appears with each element of the second

square once and once only.

Definition 2.15. (Mutually Orthogonal Latin Squares): If L1, . . . , Lr are all

Latin squares of the same order, defined as in definition 2.12 above, such that Li is

orthogonal to Lj for all i 6= j, then the set (L1, . . . , Lr) is said to be a set of mutually

orthogonal Latin squares of the same order.

Example 2.16. Below is an example of two mutually orthogonal Latin squares.

A B C

B C A

C A B

A B C

C A B

B C A

Arising from S = {A,B,C} and k = 3 = |S|

Bose (1938) gave a method to construct a set of mutually orthogonal Latin squares

based on finite fields (GFs). Arshaduzzaman (2014) summarises the method as below:
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Let GF (s) = x0, . . . , xs−1 be a finite field of order s = pm, with x0 = 0 and x1 = 1.

Let L1 = (a1ij) be the Latin square of order s that is the addition table of GF (s).

Then

a1ij = xi + xj for 0 ≤ i, j ≤ s− 1

This is generalised in the proposition below:

Proposition 2.17. Define the squares Lk = (akij), for 1 ≤ k ≤ s− 1, by

akij = xk·xi + xj for 0 ≤ i, j ≤ s− 1

then Lk is a Latin square of order s for 1 ≤ k ≤ s− 1 based on GF (s).

The proof that the Latin squares obtained above are mutually orthogonal is also given

in the same paper by Arshaduzzaman (2014) and in many other sources since it is

common literature in Experimental Designs.

Definition 2.18. (Field): Is an algebraic structure, (F ,+, ·), formed by a set F

together with two binary operations (+, ·), addition and multiplication defined on the

set F by prescription of the following axioms ∀α, β, γ ∈ F :

i) Associative property:

(α + β) + γ = α + (β + γ) and

(α · β) · γ = α · (β · γ)

ii) Commutative property:

α + β = β + α and

α · β = β · α

iii) Identity element:

∃!0 ∈ F|α + 0 = 0 + α = α, ∀α ∈ F and

∃!1 ∈ F|α · 1 = 1 · α = α, ∀α ∈ F

iv) Distributive property of multiplication over addition:

α · (β + γ) = (α · β) + (α · β) = α · β + α · β

9



v) Inverse element:

∀α ∈ F ,∃!(−α) ∈ F|α + (−α) = (−α) + α = 0 and

∀(α 6= 0) ∈ F ,∃!(α−1) ∈ F|α · (α−1) = (α−1) · α = 1

Definition 2.19. (Galois field): An algebraic structure satisfying all the properties

of the field in definition (2.18) above, but with F being a finite set of elements. It is

denoted GFp where p = |F|.

Definition 2.20. (Commutative Ring): A set of elements together with the

binary operations (+, ·) of a field that satisfy all the properties of a field except mul-

tiplicative identity.

In the construction of experimental designs using geometries, the points are usually

taken to represent treatments whereas the lines and higher m−flats represent blocks.

We now lay out some basic definitions and theorems of the finite geometries as found

in Vanpoucke (2012).

Definition 2.21. (Finite Incidence Structure/Finite Geometry): P = (P,B, I)

is a finite set of points P , a finite set of lines B, and a relation I between the points

and the lines, called the incidence relation..

Definition 2.22. (Finite Projective Plane): Is a finite incidence structure such

that the following properties hold.

I. Two different points are incident with one line.

II. Two different lines are incident with one point (i.e. they intersect).

III. There exists at least four different points such that no three of them are incident

with one line.

Definition 2.23. For a finite projective plane P, there is a positive integer s, such

that any line of P has exactly s+ 1 points. The order of P is s.

Projective planes are denoted PG(p, s), whenever it is constructed from a finite field

of order s (i.e. GF (s)) and p is the highest dimension of the subspace. Vanpoucke
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(2012) also noted that the theorem of Desargues is only valid in PG(2, n) and thus

such a finite projective plane is a Desarguesian plane.

Theorem 2.24. On any line, there are s+ 1 points, where 2 ≤ s.

Theorem 2.25. Through any point, there passes s+ 1 lines.

Theorem 2.26. The total number of points in the geometry is s2 + s+ 1.

Theorem 2.27. The total number of lines in the geometry is s2 + s+ 1.

2.2 Literature Review

Arshaduzzaman (2014) summarised the work of Bose (1938) by presenting a paper

that dealt with Latin squares, orthogonal Latin squares, mutually orthogonal Latin

squares and the close connections between Latin squares and finite geometries. He

also provided a historical background of Latin squares. In the paper, he showed that

the table for a finite group (G,+) of order n is a Latin square of order n based on

G and that with Latin squares, permuting the rows among themselves (or columns)

results in a new Latin square of the same order (hence the set of MOLS - Mutually

Orthogonal Latin Squares). He noted that Latin squares were useful in designing

statistical experiments because they showed how to arrange factors and experimental

units in a manner that minimised errors without making the experiment too large.

He also empirically showed that there existed Latin squares that could not be derived

from group tables.

Tang (2009) discussed Latin squares and their transversals, Mutually Orthogonal

Latin Squares (MOLS) and Latin subsquares and their applications in coding mes-

sages, and game playing. He also noted that Latin squares were a “relatively unknown

aspect of mathematics”. He also introduces the Kronecker Product method of con-

structing MOLS in addition to the Finite (Galois) Field method.

Pachamuthu (2011) studied the construction of 22 and 32 Mutually Orthogonal Latin

Squares by using Galois Field theory.
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Bose (1938) discussed the Graeco-Latin square which is just a pair of two orthogonal

Latin squares superimposed on one another, with one having Greek symbols. He

also referred to the superposition of p − 1 mutually orthogonal squares of size p as

a completely orthogonalised or Hyper-Graeco-Latin square. In his paper, he sought

to prove the surmise that it is possible to construct a Hyper-Graeco-Latin square

for every value of p, which is a prime or prime power using the properties of Galois

Fields.

Vanpoucke (2012) studied Latin squares, Sudoku Latin squares, mutually orthogonal

Latin squares and mutually orthogonal Sudoku Latin squares, their properties and

generalizations. In his thesis, he also discussed the important connection between

Latin squares and projective planes especially when it came to mutually orthogonal

Latin squares (MOLS). He proved the conjecture that there are (p−2)! distinct sets of

(p− 1)MOLS(p), for prime p, describing PG(2, p) and extended his results to prime

powers of p.
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Chapter 3

Constructions

Here, we shall state some propositions and theorems and give the corresponding proofs

(and examples where necessary) for the purpose of completeness. A good Abstract

Algebra book like Fraleigh (2002) and Beachy and Blair (2005) would offer a more

complete treatment of finite fields.

3.1 MOLS and Finite Fields

In Chapter 2, we already defined what Latin squares and orthogonal Latin squares

are. We now consider the proposition below

Proposition 3.1. For any s, the largest size of a set of s×s MOLS is s− 1.

Proof. Suppose we have a set of L1, . . . , Ls−1 MOLS. An automorphism of any of the

Latin squares in the set remains orthogonal to the rest of the Latin squares in the set.

Take out any pair of orthogonal Latin squares from the set and consider the symbol

13



in the cell in the second row, and first column as shown below (i.e. cell (2, 1)):


1 2 . . . s

α − . . .
...

− − . . . −

 ,


1 2 . . . s

β − . . .
...

− − . . . −

 .

Now, α and β are both different from 1 (properties of a Latin square) and α 6= β (we

do not have any repeated pairs from any two superimposed orthogonal Latin squares

since the first row has pairs that agree). The same goes for all other symbols in the

other cells leaving us with s−1 distinct choices for the cell (2, 1) that are not 1. This

implies that there are s − 1 squares in our collection of mutually orthogonal Latin

squares L1, . . . , Ls−1

Proposition 3.2. Let F be a finite field with s elements. Then there is a collection

of s− 1 mutually orthogonal Latin squares.

Proof. Let F = {f0, f1, . . . , fs−1}, and f0 = 0, f1 = 1. Then the array below is a

Latin square ∀(a 6= 0)∈F :


af0 + f0 af1 + f0 . . . afs−1 + f0

af0 + f1 af1 + f1 . . . afs−1 + f1
...

...
. . .

...

af0 + fs−1 af1 + fs−1 . . . afs−1 + fs−1

 ,

where we have cell (i, j) with afi + fj. We now prove that the above array is indeed

a Latin square. Suppose that along some row i, there are two cells (i, j) and (i, k)

14



which are the same, i.e. that

afi + fj = afi + fk

=⇒ a(fi − fi) = (fk + fj)

=⇒ 0 = (fk − fj)

=⇒ fj = fk,

and thus j = k and that the two cells are not different. By similar argument, picking

any column j along which are two cells (i, j) and (k, j) which are the same, we have

afi + fj = afk + fj

=⇒ a(fi − fk) = (fj − fj)

=⇒ a(fi − fk) = 0

=⇒ fi = fk,

and thus i = k and that the two cells are not different. We are thus able to generate

s− 1 distinct Latin squares, labeled La,∀a ∈ F . We now prove the claim that all the

Latin squares generated this way are mutually orthogonal Latin squares. Take two

squares La, Lb and suppose that there are two cells (i, j), (k, l) which at superimposing

yield the same ordered pair of symbols: i.e. that

afi + fj = afk + fl and bfi + fj = bfk + fl

Taking the difference of the two equations

(a− b)fi = (a− b)fk

=⇒ fi = fk

and working the above result in the earlier equations, we observe that fj = fl, and

therefore the two cells are not different, which proves the claim.

15



We now turn our attention to the finite fields and see how they give rise to Latin

squares by construction in an example.

Theorem 3.3. There is a finite field of order s if and only if s can be expressed as

a prime power.

Definition 3.4. Galois Field is a field containing a finite number of elements, say

s, and is denoted GF(s) or Fs.

Definition 3.5. (Ring of Polynomials over F) Given a finite field F , we can

form the ring of polynomials over F , F [x], by taking all polynomials of the form

a0 + a1x+ a2x
2 + . . .+ asx

s,

where ai ∈ F .

To extract a finite field from the ring of polynomials, find an irreducible polynomial,

say g(x) of degree s in F [x]. Multiply it with an appropriate constant to make the

coefficient of xs in g(x) be 1. In F [x], we now regard any two polynomials that differ

by a multiple of g(x) to be congruent, and we arrive at the finite field which we

denote as F [x]/〈g(x)〉, that is, the finite field has as it’s elements, the residual class

(mod g(x)).

Suppose now, we wish to construct the set of mutually orthogonal Latin squares

arising from the field F of order s = 8 = 23. We start by enumerating elements of

F [x]/〈g(x)〉 where g(x) is (x3 + x2 + 1), i.e.

ax2 + bx+ c (modx3 + x2 + 1), ∀(a, b, c ∈ F2)

thus

x3 = −x2 − 1 + (2x2 + 2) = x2 + 1 (mod 2)

=⇒ F [x]/〈g(x)〉 = {0, 1, x, x2, x2 + 1, x2 + x+ 1, x+ 1, x2 + x}

16



We create the addition (+) and multiplication (·) tables below

+ 0 1 x x2 x2 + 1 x2 + x+ 1 x+ 1 x2 + x

0 0 1 x x2 x2 + 1 x2 + x+ 1 x+ 1 x2 + x

1 1 0 x+ 1 x2 + 1 x2 x2 + x x x2 + x+ 1

x x x+ 1 0 x2 + x x2 + x+ 1 x2 + 1 1 x2

x2 x2 x2 + 1 x2 + x 0 1 x+ 1 x2 + x+ 1 x

x2 + 1 x2 + 1 x2 x2 + x+ 1 1 0 x x2 + x x+ 1

x2 + x+ 1 x2 + x+ 1 x2 + x x2 + 1 x+ 1 x 0 x2 1

x+ 1 x+ 1 x 1 x2 + x+ 1 x2 + x x2 0 x2 + 1

x2 + x x2 + x x2 + x+ 1 x2 x x+ 1 1 x2 + 1 0

,

· 0 1 x x2 x2 + 1 x2 + x+ 1 x+ 1 x2 + x

0 0 0 0 0 0 0 0 0

1 0 1 x x2 x2 + 1 x2 + x+ 1 x+ 1 x2 + x

x 0 x x2 x2 + 1 x2 + x+ 1 x+ 1 x2 + x 1

x2 0 x2 x2 + 1 x2 + x+ 1 x+ 1 x2 + x 1 x

x2 + 1 0 x2 + 1 x2 + x+ 1 x+ 1 x2 + x 1 x x2

x2 + x+ 1 0 x2 + x+ 1 x+ 1 x2 + x 1 x x2 x2 + 1

x+ 1 0 x+ 1 x2 + x 1 x x2 x2 + 1 x2 + x+ 1

x2 + x 0 x2 + x 1 x x2 x2 + 1 x2 + x+ 1 x+ 1

and inspect them for the properties of a field - the properties of a field are satisfied

by the above tables. We can form the key Latin square from the addition table and

proceed thereafter to create the s− 1 mutually orthogonal Latin squares.

It is important to note, however, that the set of s − 1 mutually orthogonal Latin

squares do not always exist for any order s, and that the maximum number of mutu-

ally orthogonal Latin squares of most non-prime-powers order are unknown.

3.2 Latin Squares and Finite Geometry

In this section, we want to prove that the existence of an affine plane is equivalent to

the existence of a projective plane and that there exists an affine plane of order s iff

there exists a complete set of MOLS of the same order. The existence of MOLS of

the same order, s, implies the existence of a BIBD as shall be shown.

Definition 3.6. (Affine Plane) is a collection of points and lines in space that

adhere to
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(A1): There is exactly one line joining any two points.

(A2): Given a point P and a line L not containing P , there is a unique line that

contains P and does not intersect L.

(A3): There exist four points such that no three of them are collinear.

The Euclidean plane is an affine plane; we restrict ourselves to finite affine planes.

(a) 4 points, 6 lines (b) 9 points, 12 lines

Figure 3-1: Affine Planes

Definition 3.7. (Projective Plane) is a set of points and lines such that

(P1): There is exactly one line joining any two points.

(P2): Any two lines intersect at a unique point.

(P3): There are four points such that no three of them are collinear.

Proposition 3.8. In any affine plane, there is an integer s such that every line in

the plane has exactly s points, and every point lies on precisely s + 1 lines: s is the

order of the plane.

Proof. Suppose we can always find a third point P that does not lie on either of any

two lines L1 and L2 of our plane. Then, given any point Q on the line L1, we can find

a line M through Q and P via property A1 of our affine plane, and this line cannot

intersect any other elements on L1. Thus, every point in L1 is contained within one
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line through P . Furthermore, by property A2, there is another line through P that

does not meet L1. Thus if |L1| denotes the total number of points contained in L1,

then we have |L1| + 1 lines through P . This extends to all other lines of the plane,

and since this all counts the same object: the number of lines through P , we have

|L1| = |L2|. Therefore, all lines contain the same number of points, say s, and any

point is contained by s+ 1 lines.

Proposition 3.9. Any finite affine plane of order s contains s2 points.

Proof. In the affine plane, every point, say P , is on s+ 1 lines, each of which contain

s − 1 points different from P . By properties A1 and A2, there is exactly one line

connecting any other point in the plane to P , thus there are

(s+ 1)(s− 1) + 1 = s2

points in the plane ((s + 1) lines each contain (s - 1) points other than P in the

plane).

We see that the difference between the affine plane and the projective plane is in the

prescription of their axioms, namely A2 and P2. Also, P1 and P2 together imply that

the projective plane is symmetrical in that it is invariant to inverting its objects (see

Tang (2009)). Tang (2009) also noted that in any projective plane of order s, every

line contained s + 1 points and every point lay on n + 1 lines: each projective plane

therefore contained s2 + s+ 1 points and s2 + s+ 1 lines.

Theorem 3.10. The existence of an affine plane of order s is equivalent to the

existence of a projective plane of order s.

Proof. To transform any affine plane into a projective plane we proceed as follows:

Extend the lines on each parallel class to meet at a ‘point at infinity’, so that s + 1

new points are made, then join all these ‘points at infinity’ with a line. The result is a

plane with s2 + s+ 1 points and s2 + s+ 1 lines. Furthermore, every pair of lines now

intersect at a unique point since the parallel classes now join at the ‘point at infinity’,

19



and every pair of points is still joined by a unique line since we’ve joined every new

point that was created. Hence a projective plane. The reverse process transforms any

projective plane into an affine plane.

Definition 3.11. (Parallel Class): is a collection of lines that are all parallel in an

affine plane.

Proposition 3.12. In any finite affine plane of order s, there are exactly s2 + s lines

that can be partitioned into s+ 1 distinct parallel classes, each containing s lines.

Proof. Pick any point P and any line L through P . Let M be any other line through

P ; then for each of the s− 1 non-P points in M , there is a parallel line through that

point parallel to L. Taking this parallel lines along with L, constitutes a parallel class

with s elements in it. Repeating this for all lines through P creates s + 1 different

parallel classes, and every line M shows up in exactly one parallel class as (by A2)

there is a unique line through P parallel to M that determines which of the s + 1

different parallel classes M is in. This counts each of our lines exactly once, hence

s2 + s lines in total.

We now prove that a set of s−1 MOLS of order s is equivalent to a finite affine plane

of order s.

Theorem 3.13. A finite affine plane of order s exists if and only if a set of s − 1

MOLS of order s exist.

Proof. We begin by describing how to turn a set of MOLS into an affine plane:

we do this by the following construction; for points, take all the pairs (i, j), where

1 ≤ i, j ≤ s. For lines, we list the lines of our affine plane in groups of s, corresponding

to the s+ 1 parallel classes that were shown to exist:

• Given any i, all of the cells in row i form a line. The collection of these s lines

is a parallel class.
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• Given any i, all of the cells in row i form a line. The collection of these s lines

forms another parallel class.

• Take any Latin square Lα of our s − 1 MOLS. Take any symbol a, and let all

cells containing a in Lα be a line. The collection of all these s lines, one for

each symbol constitute a parallel class. We get s− 1 such parallel classes, one

for each Latin square in our set.

The orthogonality of the Latin squares implies that none of the lines overlap. Thus,

given any point (i, j), we’ve actually shown that it lies on s + 1 lines, each of which

contain s− 1 other points: therefore the collection of all these lines contain

(s+ 1)(s− 1) + 1 = s2

points, i.e., cell (i, j) is connected to every other cell in our Latin square by some

line; hence A1 is satisfied.

To satisfy A2, take any line M and any other point (i, j) not on M . Suppose M is

a row: the row i is a line parallel to M , and is unique in doing so since it is incident

to the point (i, j). By similar argument, if M is a column, the column j is also the

unique line parallel to M and incident to (i, j). Finally, if M is a set of cells with

some underlying symbol a in the Latin square Lα, take the set of symbols underlying

whatever symbol is in (i, j) in Lα. This is parallel to M and is unique in doing so

since it is incident to (i, j): take any other line N containing (i, j), N must either be

a row or a column or must come from some other symbol b and other Latin square

Lβ, in which case it must intersect M .

We now turn an affine plane into MOLS. Suppose we have an affine plane of order s,

which can be conceived as constituting s + 1 parallel classes C0, . . . , Cs each with s

points that we number from 1 to s. Let C0 correspond to rows and Cs correspond to

columns of our Latin square. To each of the coordinates (i, j), assign the unique point

given by the intersection of the i-th line in the parallel class C0 and the j-th line in

the parallel class Cs. We have a bijection between points in our affine space and cells

21



(i, j). Given any number 1 < γ < s− 1, we fill the Latin square Lγ as follows: place

the symbol y in the cell (i, j) if the line y of class Cγ contains the point identified with

(i, j) earlier. Since every point is contained in some line of Cγ, this fills every cell,

thus preserving our Latin square property, since any line from our Cγ class shows up

in any row or any column exactly once by property A2. We have created s− 1 Latin

squares by this process. Further, given any two such Latin squares, say Lα and Lβ,

and any two lines a ∈ Cα, b ∈ Cβ, we see that a and b intersect at exactly one point:

i.e. there is exactly one cell in our square where Lα is a and Lβ is b: every pair of

symbols shows up exactly once through the whole series of s − 1 Latin squares thus

proving that they are mutually orthogonal.

Below is a pictorial representation of the above process:

(a) 3×3 MOLS (b) Parallel classes for (a)

Figure 3-2: Affine Plane of order 3

Bringing all these results together, specifically theorems (3.13) and (3.10), we have

showed that:

(a) The existence of an affine plane is equivalent to the existence of a projective

plane;

(b) The existence of an affine plane is equivalent to the existence of a complete set

of MOLS.
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Chapter 4

Extensions

In this chapter, we shall formalise the construction of a BIBD from a set of s − 1

MOLS where s = 3. It can be trivially seen that this method can be extended to

s− 1 MOLS with s > 3. In Chapter 3, we saw that the existence of an affine plane of

order s was equivalent to the existence of a projective plane of the same order; this

in turn was equivalent to the existence of a set of s− 1 MOLS.

4.1 Constructing a BIBD from s− 1 MOLS where

s = 3

Supposing we had a set of 2 Latin squares of order s = 3 which were mutually

orthogonal - the rightmost square is that of treatments. This is shown below:

A B C

B C A

C A B

A B C

C A B

B C A

0 1 2

3 4 5

6 7 8

Table 4.1: s− 1 = 2 MOLS of order s = 3 and a treatment square.

We can construct a BIBD from the 2 MOLS by following the following rules:
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(B1) Take the rows of the treatment square as blocks; one row per block

(B2) Take the columns of the treatment square as blocks; one column per block

(B3) Take each symbol from the s− 1 MOLS (a Latin square at a time), and corre-

spond it with the treatment at the same coordinate position in the treatment

square. This creates additional blocks with their treatments.

The result of the above process is shown below:

Block Treatments

Block 1 0 1 2

Block 2 3 4 5

Block 3 6 7 8

Block 4 0 3 6

Block 5 1 4 7

Block 6 2 5 8

Block 7 0 5 7

Block 8 1 3 8

Block 9 2 4 6

Block 10 0 4 8

Block 11 2 3 7

Block 12 1 5 6

On closer inspection, the above rules correspond to the parallel classes of the affine

plane that were shown in figure 3-2 in page 22. We now provide a less graphical

description of the process.

24



4.2 A New look at the Parallel Classes of the Affine

Plane of Prime Powers Order

Suppose we had a set of s − 1 MOLS. Taking the key Latin square of this set of

MOLS, we define a set of bijective maps B with |B| = s which map from the symbol

set, S = {A,B,C}, to the treatment space, T = {0, 1, 2, 3, 4, 5, 6, 7, 8}, arranged to

form a treatment square of the same dimensions as the Latin square. These bijective

maps form a partition of the treatment space and are defined when the elements in a

row or column of a key Latin square are mapped to the corresponding element in the

treatment square. The bijective maps can be understood as a superimposition of the

key Latin square to the treatment square. As for the remaining s − 2 MOLS, these

can be generated by definining an automorphism, Φ, on the set of bijective maps of

the key Latin square.

4.2.1 Case of s = 3

In the case of s = 3, the set of bijective maps is described as follows:

B = {α, β, γ}

where

α: maps symbols of the first row/column

β: maps symbols of the second row/column

γ: maps symbols of the third row/column

We define the above bijective maps as the superimposition of the row-wise symbols

of the first (key) MOL and the treatment square.
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L1

A B C

C A B

B C A

B

α α α

β β β

γ γ γ

T

0 1 2

3 4 5

6 7 8

so that we have (row-wise):

Rows

α(A) = 0 α(B) = 1 α(C) = 2

β(C) = 3 β(A) = 4 β(B) = 5

γ(B) = 6 γ(C) = 7 γ(A) = 8

Columns

α(A) = 0 β(C) = 3 γ(B) = 6

α(B) = 1 β(A) = 4 γ(C) = 7

α(C) = 2 β(B) = 5 γ(A) = 8

To generate the remaining s−2 MOLS, we define a transformation, Φ, on B, of which

we compose with itself s− 2 times. The bijection defined on the first row is invariant

to the successive compositions of the transformation with itself. This transformation

adds a different constant (mod s2) to the images of the bijective maps in B, and

results in a new set of bijective maps, say C, that are the partition of the treatment

space, T , as defined by the second Orthogonal Latin square in the set of MOLS. In

the case of s = 3, the transformation is applied once to the set of bijective maps, B

to define the mapping of the remaining Orthogonal Latin square.

This transformation, Φ, for the case of s = 3, is defined in the sequence of steps

below:

(i) Φ(α) = α′ = {α(b) : b ∈ S}

(ii) Φ(β) = β′ = {(β(b)− 2× s)(mod s2) : b ∈ S}

(iii) Φ(γ) = γ′ = {(γ(b)− s)(mod s2) : b ∈ S}

Thus a first application of the transformation, Φ, on the set B simply generates
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mappings of the second MOL to the treatment space, C, defined as:

C = {α, β′, γ′}

which are the superimposition of the symbols in the second MOL and the treatment

square defined row-wise:

L2

A B C

B C A

C A B

C

α α α

β′ β′ β′

γ′ γ′ γ′

T

0 1 2

3 4 5

6 7 8

so that we have the new arrangement below (row-wise):

Rows

α(A) = 0 α(B) = 1 α(C) = 2

β′(B) = 3 β′(C) = 4 β′(A) = 5

γ′(C) = 6 γ′(A) = 7 γ′(B) = 8

Columns

α(A) = 0 β′(B) = 3 γ′(C) = 6

α(B) = 1 β′(C) = 4 γ′(A) = 7

α(C) = 2 β′(A) = 5 γ′(B) = 8

We have completed defining the set of bijective maps for the s− 1 = 2 MOLS of the

Affine Plane of order s = 3. We now generate a BIBD from the above constructions:
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Blocks from B − L1 Treatments from C − L2

Block 1 α(A), α(B), α(C) 0, 1, 2 α(A), α(B), α(C)

Block 2 β(B), β(C), β(A) 3, 4, 5 β′(C), β′(A), β′(B)

Block 3 γ(C), γ(A), γ(B) 6, 7, 8 γ′(B), γ′(C), γ′(A)

Block 4 α(A), β(C), γ(B) 0, 3, 6 α(A), β′(B), γ′(C)

Block 5 α(B), β(A), γ(C) 1, 4, 7 α(B), β′(C), γ′(A)

Block 6 α(C), β(B), γ(A) 2, 5, 8 α(C), β′(A), γ′(B)

Block 7 α(A), β(B), γ(C) 0, 5, 7 α(A), β′(A), γ′(A)

Block 8 α(B), β(C), γ(A) 1, 3, 8 α(B), β′(B), γ′(B)

Block 9 α(C), β(A), γ(B) 2, 4, 6 α(C), β′(C), γ′(C)

Block 10 α(A), β(A), γ(A) 0, 4, 8 α(A), β′(C), γ′(B)

Block 11 α(C), β(C), γ(C) 2, 3, 7 α(C), β′(B), γ′(A)

Block 12 α(B), β(B), γ(B) 1, 5, 6 α(B), β′(A), γ′(C)

From the above, we see that with a set of bijective maps, B, that map from the

symbol set, S, of a Latin square of prime powers order s = 3 into a treatment set,

say T , to form a partition, we generated a BIBD by means of a transformation, Φ,

defined on B.

4.3 Further Examples

We now examine whether the method given in the above section holds for the case of

s = 8 before we generalise it.

4.3.1 Case of s = 8

In the case of s = 8, we define the symbol set, S = {A,B,C,D,E, F,G,H}, the

elements are from GF (23), and we have the irreducible polynomial ψ(x) = x3+x2+1,

28



i.e. we have

ax+ b (mod x3 + x2 + 1), (a, b ∈ GF(2)).

We have

ψ(x) = x3 + x2 + 1 = 0

=⇒ x3 = −x2 − 1 + (2x2 + 2) = x2 + 1 (mod 2).

The elements of S are defined as shown below:

A = 0, B = 1, C = x, D = x2, E = x3 = x2 + 1

F = x4 = x(x3) = x(x2 + 1) = x3 + x = x2 + x+ 1,

G = x5 = x(x4) = x(x2 + x+ 1) = x2 + 1 + x2 + x = x+ 1,

H = x6 = x(x+ 1) = x2 + x

With the above symbols defined as polynomials, We now generate the key Latin

square, L1, for s = 8:

1. Row 1: Add 0 to each element of S, to arrive at a column element in turn.

2. Row 2: Add 1 to each element of S, to arrive at a column element in turn.

3. Row 3: Add x to each element of S, to arrive at a column element in turn.

4. Row 4: Add x2 to each element of S, to arrive at a column element in turn.

5. Row 5: Add x2 +1 to each element of S, to arrive at a column element in turn.

6. Row 6: Add x2 + x+ 1 to each element of S, to arrive at a column element in

turn.

7. Row 7: Add x+ 1 to each element of S, to arrive at a column element in turn.

8. Row 8: Add x2 +x to each element of S, to arrive at a column element in turn.
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which results in the key Latin square, L1 below (the treatment square is given along-

side it):

A B C D E F G H

B A G E D H C F

C G A H F E B D

D E H A B G F C

E D F B A C H G

F H E G C A D B

G C B F H D A E

H F D C G B E A

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

We now define a set of bijective maps,

B = {α, β, γ, ε, ζ, η, θ, ι}

where they are the superimposition of the symbols of L1 in every row to the corre-

sponding treatments in the treatment square:

α: the first row β: the second row γ: the third row ε: the fourth row

ζ: the fifth row η: the sixth row θ: the seventh row ι: the eighth row

We now define a transformation, Φ, on the set of bijective maps, B:

Φ(α) = α, Φ(β) = β′, Φ(γ) = γ′, Φ(ε) = ε′, Φ(ζ) = ζ ′, Φ(η) = η′, Φ(θ) = θ′, Φ(ι) = ι′

We define the successive compositions of the transformation with itself as successively

adding the row-wise constants (mod s2) to the images of the bijective maps in the set

B, but with α being invariant to any number of compositions of the transformation

with itself, as exemplified below for the case of s = 8 = 23 (we use the super-script

notation to indicate the number of compositions of the transformation):
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(Φ ◦ Φ)(α) = α (Φ ◦ Φ ◦ Φ)(α) = α (Φ ◦ Φ ◦ Φ ◦ Φ)(α) = α (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(α) = α

(Φ ◦ Φ)(β) = β(2) (Φ ◦ Φ ◦ Φ)(β) = β(3) (Φ ◦ Φ ◦ Φ ◦ Φ)(β) = β(4) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(β) = β(5)

(Φ ◦ Φ)(γ) = γ(2) (Φ ◦ Φ ◦ Φ)(γ) = γ(3) (Φ ◦ Φ ◦ Φ ◦ Φ)(γ) = γ(4) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(γ) = γ(5)

(Φ ◦ Φ)(ε) = ε(2) (Φ ◦ Φ ◦ Φ)(ε) = ε(3) (Φ ◦ Φ ◦ Φ ◦ Φ)(ε) = ε(4) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ε) = ε(5)

(Φ ◦ Φ)(ζ) = ζ(2) (Φ ◦ Φ ◦ Φ)(ζ) = ζ(3) (Φ ◦ Φ ◦ Φ ◦ Φ)(ζ) = ζ(4) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ζ) = ζ(5)

(Φ ◦ Φ)(η) = η(2) (Φ ◦ Φ ◦ Φ)(η) = η(3) (Φ ◦ Φ ◦ Φ ◦ Φ)(η) = η(4) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(η) = η(5)

(Φ ◦ Φ)(θ) = θ(2) (Φ ◦ Φ ◦ Φ)(θ) = θ(3) (Φ ◦ Φ ◦ Φ ◦ Φ)(θ) = θ(4) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(θ) = θ(5)

(Φ ◦ Φ)(ι) = ι(2) (Φ ◦ Φ ◦ Φ)(ι) = ι(3) (Φ ◦ Φ ◦ Φ ◦ Φ)(ι) = ι(4) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ι) = ι(5)

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(α) = α (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(α) = α

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(β) = β(6) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(β) = β(7)

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(γ) = γ(6) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(γ) = γ(7)

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ε) = ε(6) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ε) = ε(7)

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ζ) = ζ(6) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ζ) = ζ(7)

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(η) = η(6) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(η) = η(7)

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(θ) = θ(6) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(θ) = θ(7)

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ι) = ι(6) (Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ)(ι) = ι(7)

From above it is clear that

(Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ ◦ Φ) = Φ(0).

We now set out to create a BIBD. The process is first shown below then the blocks

later. We generate the:

(i) first set of 8 (block 1 to block 8) from the row-wise parallel classes of L1

(ii) second set of 8 blocks (block 9 to block 16) arising from the column-wise parallel

classes of L1

(iii) third set of 8 blocks (block 17 to block 24) from the parallel classes joining the

symbols of L1, the key Latin square (or Φ(0)):
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(iv) fourth set of 8 blocks (block 25 to block 32) from the parallel classes joining the

symbols of L2 (or Φ(1))

(v) fifth set of 8 blocks (block 33 to block 40) from the parallel classes joining the

symbols of L3 (or Φ(2))

(vi) sixth set of 8 blocks (block 41 to block 48) from the parallel classes joining the

symbols of L4 (or Φ(3))

(vii) seventh set of 8 blocks (block 49 to block 56) from the parallel classes joining

the symbols of L5 (or Φ(4))

(viii) eighth set of 8 blocks (block 57 to block 64) from the parallel classes joining the

symbols of L6 (or Φ(5))

(ix) ninth set of 8 blocks (block 65 to block 72) from the parallel classes joining the

symbols of L7 (or Φ(6))

Blocks Operation Treatments

1 (α)(B) 0 1 2 3 4 5 6 7

2 (β)(B) 8 9 10 11 12 13 14 15

3 (γ)(B) 16 17 18 19 20 21 22 23

4 (ε)(B) 24 25 26 27 28 29 30 31

5 (ζ)(B) 32 33 34 35 36 37 38 39

6 (η)(B) 40 41 42 43 44 45 46 47

7 (θ)(B) 48 49 50 51 52 53 54 55

8 (ι)(B) 56 57 58 59 60 61 62 63
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Blocks Operation Treatments

9 α(A)β(B)γ(C)ε(D)ζ(E)η(F )θ(G)ι(H) 0 8 16 24 32 40 48 56

10 α(B)β(A)γ(G)ε(E)ζ(D)η(H)θ(C)ι(F ) 1 9 17 25 33 41 49 57

11 α(C)β(G)γ(A)ε(H)ζ(F )η(E)θ(B)ι(D) 2 10 18 26 34 42 50 58

12 α(D)β(E)γ(H)ε(A)ζ(B)η(G)θ(F )ι(C) 3 11 19 27 35 43 51 59

13 α(E)β(D)γ(F )ε(B)ζ(A)η(C)θ(H)ι(G) 4 12 20 28 36 44 52 60

14 α(F )β(H)γ(E)ε(G)ζ(C)η(D)θ(D)ι(B) 5 13 21 29 37 45 53 61

15 α(G)β(C)γ(B)ε(F )ζ(H)η(D)θ(A)ι(E) 6 14 22 30 38 46 54 55

16 α(H)β(F )γ(D)ε(C)ζ(G)η(B)θ(E)ι(A) 7 15 23 31 39 47 55 63

Blocks Operation Treatments Blocks Operation Treatments

17 (Φ(0)(B))(A) 0 9 18 27 36 45 54 63 25 (Φ(1)(B))(A) 0 10 19 28 37 46 55 57

18 (Φ(0)(B))(B) 1 8 22 28 35 47 50 61 26 (Φ(1)(B))(B) 1 14 20 27 39 42 53 56

19 (Φ(0)(B))(C) 2 14 16 31 37 44 49 59 27 (Φ(1)(B))(C) 2 8 23 29 36 41 51 62

20 (Φ(0)(B))(D) 3 12 23 24 33 46 53 58 28 (Φ(1)(B))(D) 3 15 16 25 38 45 50 60

21 (Φ(0)(B))(E) 4 11 21 25 32 42 55 62 29 (Φ(1)(B))(E) 4 13 17 24 34 47 54 59

22 (Φ(0)(B))(F ) 5 15 20 30 34 40 51 57 30 (Φ(1)(B))(F ) 5 12 22 26 32 43 49 63

23 (Φ(0)(B))(G) 6 10 17 29 39 43 48 60 31 (Φ(1)(B))(G) 6 9 21 31 35 40 52 58

24 (Φ(0)(B))(H) 7 13 19 26 38 41 52 56 32 (Φ(1)(B))(H) 7 11 18 30 33 44 48 61

Blocks Operation Treatments Blocks Operation Treatments

33 (Φ(2)(B))(A) 0 11 20 29 38 47 49 48 41 (Φ(3)(B))(A) 0 12 21 30 39 41 50 59

34 (Φ(2)(B))(B) 1 12 19 31 34 45 48 62 42 (Φ(3)(B))(B) 1 11 23 26 37 40 54 60

35 (Φ(2)(B))(C) 2 15 21 28 33 43 54 56 43 (Φ(3)(B))(C) 2 13 20 25 35 46 48 63

36 (Φ(2)(B))(D) 3 8 17 30 37 42 52 63 44 (Φ(3)(B))(D) 3 9 22 29 34 44 55 56

37 (Φ(2)(B))(E) 4 9 16 26 39 46 51 61 45 (Φ(3)(B))(E) 4 8 18 31 38 43 53 57

38 (Φ(2)(B))(F ) 5 14 18 24 35 41 55 60 46 (Φ(3)(B))(F ) 5 10 16 27 33 47 52 62

39 (Φ(2)(B))(G) 6 13 23 27 32 44 50 57 47 (Φ(3)(B))(G) 6 15 19 24 36 42 49 61

40 (Φ(2)(B))(H) 7 10 22 25 36 40 53 59 48 (Φ(3)(B))(H) 7 14 17 28 32 45 51 58
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Blocks Operation Treatments Blocks Operation Treatments

49 (Φ(4)(B))(A) 0 13 22 31 33 42 51 60 57 (Φ(5)(B))(G) 0 14 23 25 34 43 52 61

50 (Φ(4)(B))(B) 1 15 18 29 32 46 52 59 58 (Φ(5)(B))(B) 1 10 21 24 38 44 51 63

51 (Φ(4)(B))(C) 2 12 17 27 38 40 55 61 59 (Φ(5)(B))(C) 2 9 19 30 32 47 53 60

52 (Φ(4)(B))(D) 3 14 21 26 36 47 48 57 60 (Φ(5)(B))(D) 3 13 18 28 39 40 49 62

53 (Φ(4)(B))(E) 4 10 23 30 35 45 49 56 61 (Φ(5)(B))(E) 4 15 22 27 37 41 48 58

54 (Φ(4)(B))(F ) 5 8 19 25 39 44 54 58 62 (Φ(5)(B))(F ) 5 11 17 31 36 46 50 56

55 (Φ(4)(B))(G) 6 11 16 28 34 41 53 63 63 (Φ(5)(B))(G) 6 8 20 26 33 45 55 59

56 (Φ(4)(B))(H) 7 9 20 24 37 43 54 62 64 (Φ(5)(B))(H) 7 12 16 29 35 42 54 57

Blocks Operation Treatments

65 (Φ(6)(B))(A) 0 15 17 26 35 44 53 62

66 (Φ(6)(B))(B) 1 13 16 30 36 43 55 58

67 (Φ(6)(B))(C) 2 11 22 24 39 45 52 57

68 (Φ(6)(B))(D) 3 10 20 31 32 41 54 61

69 (Φ(6)(B))(E) 4 14 19 29 33 40 50 63

70 (Φ(6)(B))(F ) 5 9 23 28 38 42 48 59

71 (Φ(6)(B))(G) 6 12 18 25 37 47 51 56

72 (Φ(6)(B))(H) 7 8 21 27 34 46 49 60
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Chapter 5

Conclusions & Recommendations

In Chapter 2, Section 2.2 Literature Review, Tang (2009) mentioned that Latin

squares were a relatively unknown aspect of Mathematics. We take this to infer

that there appears to be a dearth of foundational work concerning Latin squares, yet,

they have so far proved quite applicable in many real-life problems.

This project has resulted in a new look at the relationships between Finite Geometries,

Latin squares and Balanced Incomplete Block Designs (BIBDs). The result of Chapter

4 showed that:

The existence of a affine plane of prime powers order, s, implies the exis-

tence of a set of mutually orthogonal Latin squares (MOLS) of the same

order, a treatment square of side equal to the prime powers order, a set

of bijective maps, B, defined on the key Latin square into the treatment

space, T , and a transformation, Φ, defined on the set of bijective maps

that generates s − 2 new sets of bijective maps that relate the s − 2 re-

maining MOLS to the treatment square.

We now review the work of earlier chapters:

• Chapter 1 opened with a discussion on the subject of Experimental Designs, the

problem statement, objectives and significance of the study. A general outline
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of this document was also presented.

• Chapter 2 was a survey of important definitions, theorems, corollaries that

helped to lay a foundation for the later work. The literature review was also

provided in this chapter.

• Chapter 3 was a discussion on the relationships between MOLS, Finite Fields,

Latin squares and Finite Geometries. This was supposed to show the equiva-

lence in existence of Finite Geometries of prime powers order and sets of mutu-

ally orthogonal Latin squares of the same order. The Finite (Galois) fields were

a tool used to construct the Latin squares as first developed by Bose (1938).

• Chapter 4 further extended the work of constructing MOLS from a key Latin

square by proposing a set of bijective maps that corresponded with the superim-

position of the key Latin square to the treatment square and a transformation

operation on this set of bijective maps to produce new sets bijective maps that

corresponded to the superimposition of the remaining MOLS to the treatment

square. This resulted in a more algorithmic comprehension of the process.

5.1 Challenges Encountered

Algebra, was my single largest challenge. There has not been sufficient coverage of this

important area of Mathematics in my past training and I had to read through various

texts to gain sufficient understanding that could help me relate certain important

concepts from Algebra. All the same this was so rewarding and I ended up loving

Algebra.

There was also not much work, in the form of research papers, accessible to me since

most research papers appeared to be locked-for-sale in some important journals. My

budget could not accommodate such expenditures and I had to make do with what I

had.
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5.2 Further Work

There’s a lot that needs to be done, for instance:

• What are the classes of BIBDs that arise from Affine planes of prime powers

order? (and are there classes of BIBDs that don’t?)

• What other designs could arise from the Affine planes of prime powers order?

• Provide an implementation of the process of Chapter 4 in a high-level language.

5.3 Concluding Remarks

SOLI DEO GLORIA
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Appendix A

Proofs

Proof. (Proof of Theorem (2.3)) Let (X,A) be a (ν, k, λ)-BIBD. Suppose x∈X,

and let rx denote the number of blocks containing x. Define a set

I = {(y, A)|y∈X, y 6=x,A∈A, {x, y}∈A}.

|I| can be computed in two different ways: First, there are ν − 1 different ways to

choose y∈X such that y 6=x. For each such y∈X, there are λ blocks A such that

{x, y}⊂A. Hence

|I| = λ(ν − 1)

There are rx ways to choose a block A such that x∈A. For each choice of A, there are

k − 1 ways to choose y∈A, y 6=x. Hence

|I| = rx(k − 1)

but rx is independent of x i.e. rx ≡ r, and thus bringing the two results above together

we have

r(k − 1) = λ(ν − 1)
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Proof. (Proof of Theorem (2.4)) Let (X,A) be a (ν, k, λ)-BIBD, and let b = |A|.

Define a set

I = {(x,A)|x∈X,A∈A, x∈A}.

|I| can be computed in two different ways: First, there are ν ways to choose x∈X.

For each such x, there are r blocks A such that x∈A. Hence,

|I| = νr.

On the other hand, there are b ways to choose a block A∈A, and for each choice of

A there are k ways to choose x∈A. Hence,

|I| = bk.

Bringing the two results together we have

bk = νr

Proof. (Proof of Theorem (2.7)) Suppose (X,A) is a (ν, k, λ)-BIBD, where X =

{x1, . . . , xν} and let A = {A1, . . . , Ab}. Let M be it’s incidence matrix. The (i, j)-

entry of MMT is

b∑
h=1

mi,hmj,h =

r , i = j

λ , i 6= j.

Thus all entries along the principle diagonal ofMMT is r and it’s off-diagonal elements

are λ, thus

MMT = rJν + (r − λ)Iν .

Furthermore, the ith entry of uνM is the number of 1’s in column i of M , which is

k, hence

uνM = kub.
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Conversely, suppose that M is the incidence matrix of a design (X,A) such that

MMT = rJν + (r − λ)Iν and uνM = kub. Clearly, |X| = ν and |A| = b and from

uνM = kub we see that every block in A has k points, and from MMT = rJν +

(r − λ)Iν , every pair of points occurs in exactly λ blocks, and every point occurs in

r blocks. Hence, (X,A) is a (ν, b, r, k, λ)-BIBD.

Proof. (Proof of Theorem (2.11)) Suppose that (X,A) and (Y,B) have Mν×b and

Nν×b incidence matrices respectively and that X = {x1, . . . , xν}, Y = {y1, . . . , yν},

A = {A1, . . . , Ab} and B = {B1, . . . , Bb}. Further, suppose that (X,A) and (Y,B)

are isomorphic. Then there exists a bijection α : X → Y such that [{α(x) : x ∈ A} :

A ∈ A] = B. We define

γ(i) = j iff α(xi) = yj for 1 ≤ i ≤ ν

Since α is a bijection of X and Y , it follows that γ is a permutation of {1, . . . , ν}.

Next, there exists a permutation β of {1, . . . , b} with the property

{α(x) : x∈Aj} = Bβ(j) for 1 ≤ j ≤ b

and such a permutation exists because α is an isomorphism of the two designs (X,A)

and (Y,B). Thus

mi,j = 1 ⇐⇒ xi ∈ Aj

=⇒ yγ(i) ∈ Bβ(j)

⇐⇒ nγ(i),β(j) = 1.

Conversely, suppose we have permutations γ and β such that mi,j = nγ(i),β(j) for all

i, j. Define α : X → Y by the rule

α(xi) = yj iff γ(i) = j
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The it is easily seen that

{α(x) : x ∈ Aj} = Bβ(j) for 1 ≤ j ≤ b.

Hence, α defines an isomorphism between the two designs (X,A) and (Y,B).
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