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Abstract

Estimation of proportion of defective items using group testing has been proven to be more

precise (reduced MSE) and economical than individual testing. Seven point estimators

have been explored in this project with their applicability and emphasis laid on the

bias corrected and empirical Bayes estimators. Using an example, these two class of

estimators have been shown to be superior to the maximum likelihood and classical

Bayesian estimators. Four methods of obtaining group size have been examined with an

in-depth description of group sizes obtained from optimizing the MSE and the method

of adjusting the group size from one testing phase to another which are recommended.

Finally, six interval estimates are explored with special consideration laid on the variance

stabilized interval (VSI) a Wald interval generated with a stabilized variance (free of the

proportion estimate). Using an example this Interval has been shown to overcome the

problem of negative endpoints.
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Chapter 1

INTRODUCTION

Group testing occurs when units from a population are pooled and tested as a group for

the presence of a particular attribute such a disease, the measurement is usually taken

to be dichotomous. If the test is positive it is assumed that at least one of the units in

the group is positive ,otherwise it is assumed that all the units are negative.

Group testing can be performed in aim of achieving two objectives , either to identify

the positive units in the groups tested or to estimate the proportion of positives in a

wider population. This thesis is concerning the estimation of the proportion.

An interesting feature about group testing is the variety of application in di�erent

�elds in which it is applied.Besides in epidemiology (entomology, ,public health etc.),

where group testing is used in either classifying the infected organism from a population

or estimate the proportion of the infected organism, group testing has a wider application

in industrial manufacturing and engineering in identifying the defectives in a population of

products, for instance in making a leak test on large number of gas �lled electrical devices.

Moreover, group testing is very useful in drug discovery process where screening large of

compounds to identify the active ones. Other �elds of application include experimental

designs, genetics etc...

Group testing has also appeared under other names as "batch sampling" and "pooled

testing ". This technique has been shown to reduce the cost of classifying all members

of a population according to where or not they possess an attribute and/or estimate the
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proportion of the members possessing the attribute of question when the incidence rate

is fairly low.

The following assumptions will be made about group testing in this paper.

1. The probability to show the trait of interest independent and identically distributed

for each unit in the population.

2. The testing is conducted without error i.e. there are no false negative or false

positive results.

3. The units are randomly assigned to the groups.

1.1 Literature Review

Group testing �rst appeared in statistical literature in 1943 in the context of blood testing.

Dorfman suggested using group testing with polled blood samples followed by one at a

time retesting for individuals in any group that had tested positive. Dorfman's goal was

to to class�e each of the individuals in the population as infected with syphilis or not

while reducing the expected number of tests.Further analysis Dorfman revealed that for

the economic application of the group testing the prevalence rate must be su�ciently

small to make it worth while.

Sterrett (1957) introduced a variation of Dorfman's procedure by replacing one at a

time testing with testing one by one until the defective one is found then the untested units

are tested as a group. The e�ciency of this methods were discussed by Sterrett(1957)

and Sobel and Groll (1959).

Watson (1961) (see also Gurnow 1965) applied group testing in screening factors in

experimental designs in which several factors considered may have e�ect or not on the

response variable. Factors are grouped and the group is treated as a single factor if there

is no e�ect, each factor is assumed to have no e�ect.

Gibbs and Gower (1960) were the �rst to explore the estimation using group testing in

use of use of multiple-transfer in plant virus transmission studies using the maximum like-
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lihood estimation to estimate the proportion and realized that the estimate is positively

biased.

Keith Thompson (1962) used group testing in estimation the proportion of vectors in

a natural population of insects this was the �rst time group testing was used to estimate a

proportion by assuming a binomial model. He also proposed a formula to calculate group

size k given the prior proportion by optimising the asymptotic variance. This method is

discussed in detail and compared with others in this thesis. In addition Keith proposed

Wald con�dence intervals for the proportion.

Sobel and Elasho� (1975) explored the e�ects of their halving procedure to the MLE of

the proportions. Under halving procedure a defective set is divided into equal subsets one

of which chosen at random is retested. If this subset is defective it may be halved again.

They discovered that this reduces the MSE of the estimate where p (true proportion) is

< 2=3

Walter (1980) explored the properties of the maximum likelihood estimates when

using the groups of di�erent sizes.

Mundel (1984) and Hwang (1984) developed multi-stage group testing procedures

in which the groups that fail the group test are subdivided successfully into subgroups

for retest. The traditional approach of estimating P has been the maximum likelihood

estimation and there are variation of MLE depending on the action taken after a group

tests positive.

Swallow 1985 provided an in depth analysis of the point estimate properties of the MLE

by exploring the bias and MSE of the MLE to arrive to a conclusion that using the

optimal group size k, group testing can be more precise that individual testing, followed

by Swallow (1987) in which he proposed using a group size less than the optimal which

favours both the mean squared error and the cost per information.

Burrows (1987) proposed an improved MLE with superior bias and mean square error

properties. This estimator improved the e�ciency of group testing and extended the

range of conditions where group testing is more e�cient than individual testing. He also

derived a simple formulation of optimal group sizes for situations where the number of
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groups is �xed by resource limitations.

Hughes-Oliver and Swallow (1992) investigated the sensitivity in choice of group size

in realizing the potential bene�ts of group testing (reduced cost and MSE) which depend

on using an appropriate group size. Followed by an adaptive group testing MLE (1994)

which resulted from adjusting the group size from time to time throughout the testing

phase using all accumulated data to obtain the adaptive estimate of the proportion based

on all the data collected. The performance of this adaptive estimator was evaluated

parallel to normal MLE and was found to be superior.

Hepworth and Watson (2009) investigated the bias of the MLE when testing groups of

di�erent sizes using �xed and sequential procedures. They proposed numerical methods

methods of for correcting the bias which produces almost an unbiased estimator.

Lew and Levy 1989 developed a Bayesian estimate of the proportion that was unbiased

and adjusted for sensitivity and speci�city of the screening test.

Gastwirth with Johnson (1991) used a Bayesian methods, which utilize prior results

and update them as new data become available, to estimate the prevalence of AIDs in

1980's using USA and Canada blood donors.

Chaubey and Li (1995) developed a bayes estimator for the proportion for sample

of �xed sizes by considering the prior of p(true proportion) or prior of p( estimated

proportion) the two estimators performance are evaluated in comparison with MLE. It

was observed that the Bayesian estimators were superior compared to the MLE.

Tebbs, Bilder and Moser (2003) developed an parametric empirical Bayesian proce-

dure ,which estimates the model hyper-parameter with a maximum likelihood procedure

instead of specifying a prior to avoid poor choices of the prior of the hyper-parameter,

to estimate the proportion using a beta type prior distribution and a squared error loss

function. They revealed that the empirical Bayes estimator using the squared loss func-

tion and found that estimator is superior over the usual MLE for small group sizes and

small proportion. Also, they proposed a interval estimator of the proportion using the

100(1� �)% empirical credible interval. This interval estimator of P will be discussed in

length in this thesis.
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Tebbs and Bilder (2004) Proposed and thoroughly compared new interval estimators of

the proportion in terms of coverage and mean length. He also proposed an new variance

of P' that does not involve P to develop a variance stabilized interval with theMLE as the

estimator and found that although the interval estimate is computationally complicated

the interval overcame the problem of the negative endpoints.

Xiang, Walter and Shunpu (2007) proposed two additional empirical estimators using

two scaled loss functions which improve the Bayesian approach to estimating p in terms

of minimizing the MSE of the Bayes estimator of p small p. They showed that the new

estimators are preferred over the estimator from the usual squared-error loss function and

the MLE small p. In this thesis we thoroughly review some of the most used estimators

(both point and interval). We also compare the Chaubey Li and Burrows estimators that

were found to de-bias the MSE and further investigate the robustness of the group size

to the errors of prior proportion.

1.2 Notation and de�nitions

MLE: Maximum likelihood estimator

MSE: Mean squared error

CLT: Central limit theorem

1.3 Summary

This thesis reviews both point and interval estimates of group testing. Chapter 2 contains

the derivation of the maximum likelihood estimator and its properties further discussed.

First the biased property of the MLE discussed and two bias corrected estimators are

described. Secondly, the proof of consistency followed by the mention of its asymptotic

normality property. Following the realization that the properties depend largely on the

group size, the chapter also contains a lengthy discussion in detail of the four ways that
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can be used in choosing the group size.

On the other hand the chapter contains the Bayesian approach of estimation. This

include the classical Bayesian estimation approach using the squared error loss function.

Additionally, three parametric empirical Bayesian estimators are also discussed in detail.

These are developed using 1: squared error loss function and two scaled loss function.

Chapter 3 is generally on interval estimation of group testing. It kicks o� with three Wald

intervals. First, the wald interval proposed by Thomspson using the exact variance of the

estimator is discussed. Secondly,we have a Wald interval estimate using the asymptotic

variance of the estimate. The �nal Wald interval is based on a stabilized variance, not

to depend on the unknown proportion, proposed by Tebbs and Bilder. Another exact

interval estimate is discussed on this chapter to try and overcome the limitation of the

Wald intervals. Finally, Bayesian interval estimates are discussed in detail, this is both

classic and empirical approaches. These interval were obtained from both credible interval

and highest posterior distribution means.
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Chapter 2

Point Estimation

Group testing prevalence estimates can be categorized into two types:

1. Maximum Likelihood estimation

2. Bayesian estimation

2.1 Maximum likelihood estimation

Group testing starts with experimental units whose responses are assumed to be inde-

pendent and identically distributed Bernoulli random variable with the probability of

possessing the trait as P. The maximum likelihood estimator MLE of P means that of

all the values of that P could assume p̂ as the one that maximises the probability or the

likelihood of the observed data. These random variable are grouped in to groups(n) of

size k.

Let p = the probability of selecting at random an individual with the attribute,

1� p = the probability of selecting at random an individual without the attribute,

(1� p)k = the probability of obtaining by random selection a unit in a group of size

k who are without the attribute.
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p̂ = 1� (1� p)k = the probability of obtaining by random selection a group of size k

with at least one experimental unit with the attribute.

Under these assumptions the number of groups possessing the attribute X has a

binomial distribution with parameters n and p̂ = 1� (1� p)k.

Thus

f(xi; p) =

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (2.1)

Therefore, the MLE can be derived as follows

l(x; p) =
nX
i=0

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (2.2)

log l(x; p) =
nY
i=0

�
n

x

�
+ x log 1� (1� p)k + (n� x) log(1� p)k (2.3)

d log l(x; p)

dx
=

x

1� (1� p)k
+

n� x

(1� p)k
(2.4)

0 =
x

1� (1� p)k
+

n� x

(1� p)k
(2.5)

� x

1� (1� p)k
=

n� x

(1� p)k
(2.6)

p̂ = 1� (1� x

n
)
1
k (2.7)

With mean

E(p̂) =
nX
x

p̂L(x; p) (2.8)

E(p̂) = 1�
nX
x

(1� x

n
)
1
k �
�
n

x

�
(1� (1� p)k)xi((1� p)k)n�xi (2.9)
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Figure 2.1: An example illustrating group testing estimate

and variance

V ar(p̂) = 1�
nX
x

(1� x

n
)
2
k �
�
n

x

�
(1� (1� p)k)xi((1� p)k)n�xi � [1� E(p)]2 (2.10)

The estimate depends on k (group size). The group size k is the one that adjusts the

group proportion to individual prevalence.

For instance �gure 2.1 shows an example the group proportion was 4=10 while the

actual proportion was 3=25 = 0:12 but the estimated proportion was 0:0971: Group size

k inuences the estimated proportion. Figure 2.2 shows the relationship of the group

proportion in relation to the individual proportion.
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Figure 2.2: The graph above shows the relationship between the true proportion and the
proportion of the positive groups

2.1.1 Properties of the estimate

We �rst explore the properties and the asymptotic properties of the estimate.

The estimator is biased

Let Xi be drawn i.i.d from f(�;X): An estimator �̂ is said to be biased if E(�̂) 6= �.

Although (1 � x
n
) the proportion of the groups that test negative to the attribute is an

unbiased estimator of (1 � p)k, a bias is introduced in taking the k-th root of (1 � x
n
).

Thus the estimator is biased.

Proof

This can be proved using the Jensen's inequality.

Given that

p̂ = 1� (1� x

n
)
1
k (2.11)

E(p̂) = 1� E(1� x

n
)
1
k � 1� (1� E(

x

n
))

1
k (2.12)

E(p̂) � 1� (1� (1� P )k)
1
k (2.13)

E(p̂) � P (2.14)
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Thus the MLE overestimates the true proportion and its is therefore inaccurate.

E(p̂) =
nX
x

p̂L(x; p) (2.15)

E(p̂) = 1�
nX
x

(1� x

n
)
1
k �
�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (2.16)

Bias(p̂) = E(p̂� p) (2.17)

Bias(p̂) =
nX
x

[(1� p)� (1� x

n
)
1
k ]�

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (2.18)

From table 2.1 the general trend of bias is evident that for �xed group size and p, propor-

tion, the bias decreases as n increases this is expected since the MLE is asymptotically

unbiased. Its is also notable that for small k and p the bias is negligible even for small

n. This is evident for all k and n when p=0.01 the bias is always less than 0.0006 which

would be negligible for most cases. Thus if the researcher has some prior information that

the true proportion is less than or equal to or less than 0.01, he/she has the freedom of

choosing any k and n depending on the resources available without worry of the estimator

being biased.

However, for all n, p � 0:10 and large k, the bias is relatively large to be ignored. For

example, when p= 0.15 and k=15 the bias from table 2.1 is 0.33 which would increase the

estimated proportion to 0.48 which would be exaggerated more than three times. This

insists on the caution of choice of k.

Figure 2.3 shows that for a �xed n the bias [E(p̂) � p] is positive, increases as k

increases thus strongly dependent on the group size. for instance when k=4 the bias is

never great and its negligible as long as p is less than about 0.4. When k=22 the bias is

negligible as long as p is less than 0.06.

Alternative MLE estimators

Several authors have attempted to come up with modi�ed estimators that reduce the

bias.
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P K
n

10 20 30 50 100 200

0.01

2 0.000265 0.000129 0.000085 0.000051 0.000025 0.000012
5 0.000436 0.000211 0.000139 0.000083 0.000041 0.000020
10 0.000508 0.000244 0.000160 0.000095 0.000047 0.000024
15 0.000544 0.000261 0.000171 0.000101 0.000050 0.000025

0.02

2 0.000533 0.000259 0.000171 0.000102 0.000051 0.000025
5 0.000895 0.000431 0.000284 0.000169 0.000084 0.000042
10 0.001077 0.000515 0.000338 0.000200 0.000099 0.000049
15 0.001198 0.000566 0.000371 0.000219 0.000108 0.000054

0.03

2 0.000805 0.000391 0.000258 0.000154 0.000076 0.000038
5 0.001377 0.000662 0.000486 0.000259 0.000129 0.000064
10 0.001720 0.000815 0.000534 0.000317 0.000157 0.000078
15 0.002023 0.000927 0.000625 0.000357 0.000176 0.000088

0.04

2 0.001080 0.000525 0.000347 0.000206 0.000103 0.000051
5 0.001886 0.000904 0.000595 0.000353 0.000175 0.000087
10 0.002460 0.001149 0.000751 0.000445 0.000220 0.000109
15 0.003283 0.001355 0.000880 0.000518 0.000256 0.000127

0.05

2 0.001359 0.000660 0.000435 0.000259 0.000129 0.000064
5 0.002425 0.001158 0.000761 0.000451 0.000224 0.000111
10 0.003357 0.001523 0.000993 0.000587 0.000289 0.000144
15 0.005721 0.001871 0.001207 0.000707 0.000347 0.000127

0.07

2 0.001928 0.000935 0.000617 0.000367 0.000183 0.000091
5 0.003602 0.001735 0.001118 0.000662 0.000328 0.000163
10 0.006271 0.002419 0.0001565 0.000919 0.000453 0.000225
15 0.020179 0.003464 0.002067 0.001194 0.000583 0.000288

0.10

2 0.002815 0.001361 0.000899 0.000534 0.000265 0.000132
5 0.005728 0.002643 0.001727 0.001020 0.000505 0.000251
10 0.019048 0.004403 0.002723 0.001580 0.000773 0.000382
15 0.090470 0.014182 0.004927 0.002356 0.001122 0.000550

0.15

2 0.004393 0.002112 0.001392 0.000827 0.000410 0.000204
5 0.011530 0.004627 0.002992 0.001756 0.000865 0.000429
10 0.094557 0.017750 0.006950 0.003409 0.001623 0.000795
15 0.326017 0.134159 0.058109 0.014140 0.003145 0.001448

0.20

2 0.006128 0.002926 0.001924 0.001142 0.000566 0.000282
5 0.025096 0.007549 0.004716 0.002739 0.001339 0.000663
10 0.240669 0.083522 0.032951 0.009154 0.003245 0.001552
15 0.539802 0.374276 0.261921 0.131038 0.027258 0.004423

0.25

2 0.008079 0.003814 0.002503 0.001484 0.000735 0.000366
5 0.054146 0.013264 0.007296 0.004099 0.001984 0.000978
10 0.393960 0.220857 0.127287 0.046265 0.008375 0.003055
15 0.641724 0.555621 0.482812 0.366772 0.188461 0.053939

Table 2.1: The bias of MLE

1. Chaubey and Li (1995)

Lovision, 1994 expanded the MLE into a Taylor series around the true parameter
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Figure 2.3: The plot of bias(p̂) for n=50 and k=4,7,11,16,22

P so as to eliminate the leading term of the bias.

p̂ = p+ (p̂� p)
dp̂

dp
+ (p̂� p)2 � 1

2
� d2p̂

dP 2
+ :::: (2.19)

Taking term by term expectation of the Taylor series expansion then

E(p̂1) = P + P (1� P )dk � 1

2nk2
e[ 1

n(1� p)
+
(1� 2P )(2k � 1)

3kn2(1� p)2
+ ::::] (2.20)

E(p̂1) � p̂+
k � 1

2nk2
[
1� (1� P )k

(1� P )k�1
] (2.21)

where

k � 1

2nk2
[
1� (1� p)k

(1� p)k�1
]

is the bias approximated using the Taylor series approximation.

The comparison of approximate bias and the exact bias as shown in the table 2.2

shows that the approximation is adequate when P is small. Since the MLE of

(1� p)k = [1� x
n
]

then the MLE of 1� (1� P )k = x
n

and the MLE of (1� P )k�1 = (1� x
n
)
(k�1)

k
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P K
n

10 20 30
exact approx. exact approx. exact approx.

0.005

2 0.00013 0.00013 0.00006 0.00006 0.00004 0.00004
5 0.00022 0.00020 0.00010 0.00010 0.00007 0.00007
10 0.00025 0.00023 0.00012 0.00012 0.00008 0.00008
15 0.00026 0.00024 0.00013 0.00012 0.00008 0.00008

0.01

2 0.0003 0.0003 0.0013 0.0013 0.0009 0.0008
5 0.0004 0.0004 0.0021 0.0020 0.00014 0.0014
10 0.0005 0.0005 0.0024 0.0024 0.0016 0.0016
15 0.0005 0.0005 0.0026 0.0025 0.0017 0.0017

0.05

2 0.0014 0.0013 0.0007 0.0006 0.0004 0.0004
5 0.0024 0.0022 0.0012 0.0011 0.0008 0.0007
10 0.0036 0.0029 0.0015 0.0014 0.0010 0.0010
15 0.0057 0.0034 0.0019 0.0017 0.0012 0.0011

0.10

2 0.0028 0.0026 0.0014 0.0013 0.0009 0.0009
5 0.0057 0.0050 0.0026 0.0025 0.0017 0.0017
10 0.0190 0.0076 0.0044 0.0038 0.0027 0.0025
15 0.0905 0.0108 0.0142 0.0054 0.0049 0.0036

0.25

2 0.0081 0.0073 0.0038 0.0036 0.0025 0.0024
5 0.0541 0.0193 0.0133 0.0096 0.0073 0.0064
10 0.3940 0.0566 0.2209 0.0283 0.1273 0.0189
15 0.6417 0.1723 0.5556 0.0861 0.4828 0.0574

Table 2.2: The exact bias and approximate bias of MLE

Thus a bias corrected estimator is proposed p̂1

p̂1 = p̂� k � 1

2nk2
[

x=n

1� x=n(k�1)=k
] (2.22)

Where p̂ = 1� (1� p)
1
k

The ratio of the bias of corrected MLE to that of uncorrected MLE, we �nd that

the bias correction is e�ective for small k as well as for the larger k. Substantial

reduction in bias is observed for small values of P.

2. Burrows (1987)

The MLE can be written as p̂ = 1 � (y=n)1=k where y = n � x is the number

of negative groups. If y/n is replaced by (y + a)=(n + b) and the expression is

expanded as a power series of n�1, it is found that the bias term is eliminated when
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P K
n

10 20 30 50 100

0.005

2 -0.0006 -0.0001 -0.0001 0.0000 0.0000
5 -0.0222 -0.0105 -0.0069 -0.0041 -0.0020
10 -0.0300 -0.0143 -0.0094 -0.0056 -0.0027
15 -0.0331 -0.0157 -0.0103 -0.0061 -0.0030

0.01

2 -0.0006 -0.0001 -0.00003 0.0000 0.0000
5 -0.0225 -0.0107 -0.0070 -0.0041 -0.0021
10 -0.0310 -0.0147 -0.0096 -0.0057 -0.0028
15 -0.0349 -0.0164 -0.0107 -0.0068 -0.0031

0.05

2 0.000008 0.0002 0.0002 0.0001 0.0001
5 -0.0252 -0.0116 -0.0076 -0.0045 -0.0022
10 -0.0200 0.0190 -0.0122 -0.0071 -0.0035
15 0.2334 -0.0245 -0.0162 0.0093 -0.0045

0.10

2 0.0009 0.0006 0.0004 0.0003 0.0001
5 -0.0191 -0.0135 -0.0086 -0.0050 -0.0025
10 0.4870 -0.0021 -0.0182 -0.0104 -0.0049
15 0.8729 0.5116 0.1177 0.0165 -0.0086

0.25

2 0.0098 0.0024 0.0016 0.0010 0.0005
5 0.6048 0.1241 -0.0012 -0.0092 -0.0042
10 0.9688 0.9264 0.8714 0.7130 0.1809
15 0.9954 0.9904 0.9851 0.9735 0.9371

Table 2.3: The ratio of Chaubey's Estimators bias to that of MLE

a = b = 1
2
(k � 1)=k: The substitution then leads to

p̂2 = 1� [
2k(n� x) + k � 1

2kn+ k � 1
]1=k (2.23)

The 2.23 estimator does so well in reducing bias as illustrated by table 2.4. Table

2.4 shows the percentage reduction of bias calculated as

[1� [
Bias(p̂2)

Bias(p̂)
]]� 100

Bias(p̂) = E(p̂)� p

For the cases where the percentage reduction is less than 100% then Bias(p̂2) is

positive and less than Bias(p̂). With the cases where the percentage is greater than

100% then Bias(p̂2) is negative.
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P K
n

10 20 30 50 100 200

0.005

2 97.55 98.76 99.18 99.53 99.86 100.33
5 98.07 99.01 99.34 99.61 99.88 100.22
10 98.22 99.09 99.39 99.65 99.88 100.18
15 98.25 99.11 99.41 99.68 99.99 100.63

0.01

2 97.53 98.75 99.15 99.46 99.59 99.27
5 98.04 98.99 99.32 99.58 99.75 99.72
10 98.16 99.06 99.37 99.63 99.87 100.15
15 98.17 99.06 99.36 99.61 99.77 99.77

0.05

2 97.41 98.69 99.12 99.47 99.73 99.87
5 97.76 98.87 99.24 99.54 99.77 99.87
10 97.56 98.77 99.18 99.51 99.76 99.89
15 97.83 98.55 99.04 99.43 99.71 99.83

0.10

2 97.21 98.61 99.07 99.44 99.72 99.89
5 97.24 98.64 99.09 99.45 99.72 99.86
10 98.34 98.11 98.76 99.27 99.64 99.82
15 100.39 98.78 98.29 98.87 99.46 99.74

0.20

2 96.68 98.34 98.92 99.35 99.68 99.84
5 97.48 97.78 98.56 99.16 99.59 99.80
10 103.13 100.69 99.38 98.27 98.95 99.51
15 106.24 103.75 102.54 101.23 99.58 98.58

0.25

2 96.28 98.22 98.82 99.29 99.65 99.82
5 99.23 97.40 98.05 98.88 99.45 99.73
10 106.39 103.25 101.72 99.98 98.35 99.04
15 111.08 107.67 105.94 104.06 101.98 100.29

Table 2.4: The percentage reduction of bias of Burrows estimator
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Figure 2.4: The burrows bias plot

Although this estimator have almost eliminated the bias, for larger k and p or large

n and small p then p2 produces a negative bias (this is the situation where p is

greater than E(p̂)).

Consistent

A Consistent estimator is such that as the sample size (data points) increases the esti-

mator approaches the parameter it is actually estimating.

Mathematically, An estimator of � say Tnis consistent if it converges in probability to �.

lim
n!1

P (jTn � �j � ") = 0forall" > 0 (2.24)

Proof Using the Chebychev's inequality

P (jTn � �j � ") � E(
(Tn � �)2

"2
) (2.25)

lim
n!1

P (jTn � �j � ") � limn!1E(
(Tn � �)2

"2
) (2.26)
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Where E((Tn � �)2) is the MSE of P'

But limn!1MSE = 0 Thus

lim
n!1

P (jTn � �j � ") = 0 (2.27)

forall" > 0

Asymptotically normally distributed

This simply means that as we get more data, averages of random variables behave like

normally distributed random variables.This property is based on the Taylor series theo-

rem.

p
N(p̂� P ) � Normal(0;

1� (1� p)k

k2(1� p)k�2
) (2.28)

2.2 Experimental design

In the usual group testing scheme, it is assumed that n the number of groups (tests) and

k the size of each group are determined before data collection is begins.In choosing n one

usually considers constraints related to cost(the budget) and feasibility of implementation

(available resources). The choice of group size, k,may also be constrained. For instance

there might be a practical limitation on the size of the group, no more than 30 individuals.

2.2.1 Choice of group size

There has been a degree of discomfort associated with group testing because of the

sensitivity of the procedures to the size used for the groups in obtaining the data. Whereas

great gains can be achieved by testing in groups (rather than one at a time) when near

optimal group sizes are used, the losses can be overwhelming when highly inappropriate

group sizes are used. The possibility of such of such occurrences limits the appeal of

group testing for potential users who prefer a procedure for which is assured a minimal

level of performance. Thus the e�ciency of group testing largely depends on the group
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size k, the number units in a group.

If k is too large the estimated proportion is close to 1 and all groups are likely to test

positive, this makes the experiment very uninformative. However, if k is too small the

estimated proportion is closer to zero than necessary which makes the experiment very

expensive. Therefore it is desirable to have an optimal k that will balance the trade-o�.

In this thesis examines the four methods for determining the group size when estimating

a proportion: (1) choose the group size that makes the probability that a group shows

the trait is equal to that a group does not show the trait; (2) choose the group size that

minimizes the the asymptotic variance of the estimate of the proportion; (3) choose the

group that minimises the exact mean squared error of the estimate of the proportion; (4)

adapting the group size from one stage to another throughout the testing phase.

In application, each of the methods mentioned above requires the user to specify an initial

value of the proportion (prior proportion), based on whatever the prior information the

user may process. The group size obtained through each of the following methods depend

on the initial value.

1. Chiang and Reeves (1962) Chiang and Reeves considered the idea of equalizing

the probability of obtain a group that shows the trait and the group that does not

show the trait.

Let p = the probability of selecting at random an individual with the trait,

1� p = the probability of selecting at random an individual without the trait,

(1 � p)k = the probability of obtaining by random selection a unit in a group of

size k who are without the trait.

Thus 1 � (1 � p)k = the probability of obtaining by random selection a unit in a

group of size k with the trait.
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Figure 2.5: The e�ect of group size to the estimated proportion

That is to choose k such that

1� (1� p)k = (1� p)k =
1

2
(2.29)

log(1� (1� p)k) = k log(1� p)

But 1� (1� p)k =
1

2

log
1

2
= k log(1� p)

Therefore

k1 =
log(1=2)

log(1� p)
(2.30)

With this choice of k, one would then obtain estimate p̂ using Eqt. 2.7. The general
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P 0.001 0.005 0.01 0.02 0.05 0.1 0.15 0.20 0.25 0.3
K 693 138 69 34 14 7 4 4 2 2

Table 2.5: Group sizes for di�erent proportion as proposed by Chiang and Reeves (1962)

trend is as the proportion increases the group sizes decreases.

2. Thompson 1960

Thompson suggested the choice k to be based on the minimisation of the asymptotic

variance of the estimated proportion.

lim
n!1

V (P 0) =
1

nE[dlogf(x;p)
dp

]2
(2.31)

Alternatively,

lim
n!1

V (P 0) =
1

�nE[d2logf(x;p)
dp2

]
(2.32)

f(x; p) =

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (2.33)

log f(x; p) = log

�
n

x

�
+ xlog(1� (1� p)k) + k(n� x)log(1� p) (2.34)

d log f(x; p)

dp
=

d

dp
[x log(1� (1� p)k)] +

d

dp
[k(n� x) log(1� p)] (2.35)

letm = 1� (1� p)k then dm = k(1� p)k�1dp

d

dp
[x log(1� (1� p)k)] =

x

(1� (1� p)k)
[k(1� p)k�1] (2.36)

d

dp
[k(n� x) log(1� p)] =

k(n� x)

(1� p)
(2.37)

Thus

d log f(x; p)

dp
=

x

(1� (1� p)k)
[k(1� p)k�1] +

k(n� x)

(1� p)
(2.38)

d2 log f(x; p)

dp2
=

d

dp
[
xk(1� p)k�1

(1� (1� p)k)
] +

d

dp
[
k(n� x)

(1� p)
] (2.39)

First, let u = xk(1� p)k�1 then du = �xk(k � 1)(1� p)k�2dp
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and v = 1� (1� p)k then d
dp
[k(n�x)
(1�p)

]dv = k(1� p)k�1

consequently d
dp
[u
v
] = u0v�v0u

v2

d

dp
[
xk(1� p)k�1

(1� (1� p)k)
] = [

�xk(k � 1)(1� p)k�2 � 1� (1� p)k]� [k(1� p)k�1 � xk(1� p)k�1

(1� (1� p)k)2
]

(2.40)
d

dp
[
xk(1� p)k�1

(1� (1� p)k)
] =

�xk(k � 1)(1� p)k�2 � 1� (1� p)k � xk2(1� p)2(k�1)

(1� (1� p)k)2

=
xk(1� p)k�1

(1� (1� p)k)2
[(k � 1)(1� p)� (1� (1� p)k)� k(1� p)k�1]

(2.41)

On the other hand

d

dp
[
k(n� x)

(1� p)
] =

k(n� x)

(1� p)2
(2.42)

Thus

d2logf(x; p)

dp2
=
�xk(1� p)k�1

(1� (1� p)k)2
[(k�1)(1�p)�(1�(1�p)k)�k(1�p)k�1]� k(n� x)

(1� p)2

(2.43)

Since the x � bin(n; (1� (1� p)k)) then E(x) = n(1� (1� p)k)

E(
d2logf(x; p)

dp2
) =

�nk(1� p)k�1

(1� (1� p)k)
[(k � 1)(1� p)

� (1� (1� p)k)� k(1� p)k�1]� kn(1� p)k�2 (2.44)

E(
d2logf(x; p)

dp2
) =

�nk(1� p)k�2

(1� (1� p)k)
[(k� 1)(1� (1� p)k)+ k(1� p)k +(1� (1� p)k)]

(2.45)

E(
d2logf(x; p)

dp2
) =

�nk2(1� p)k�2

(1� (1� p)k)
(2.46)

lim
n!1

V (P 0) = [
�nk2(1� p)k�2

(1� (1� p)k)
]�1 (2.47)

lim
n!1

V (P 0) =
1� (1� p)k

nk2(1� p)k � 2
(2.48)

To minimise the asymptotic variance of p̂:
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Figure 2.6: The asymptotic variance of p̂ as a percentage of its minimum value for di�erent
values of (1� p)k

d

dk
[

1� (1� p)k

nk2(1� p)k � 2
] =

1

nk3(1� p)k�2
[2(1� p)k � klog(1� p)� 2] (2.49)

which has a unique solution in k for all 0 < p < 1 when equated to zero.

0 =
1

nk3(1� p)k�2
[2(1� p)k � klog(1� p)� 2] (2.50)

This solution maybe represented by the equation

2(1� p)k � klog(1� p) = 2 (2.51)

Thus the approximaton

k2 � �1:5936
ln(1� p)

(2.52)

which is obtained by solving (1 � p)k � 0:2032 for k is su�cient to minimise the

asymptotic variance of p. k2 is the solution to 2.52

P 0.001 0.005 0.01 0.02 0.05 0.1 0.15 0.20 0.25 0.3
k2 1593 318 159 79 31 15 10 7 6 3

Table 2.6: Group sizes for di�erent proportion as proposed by Thompson(1962)

Figure 2.6 plots the asymptotic variance of p as a percentage of its minimum value

versus di�erent values of (1� p)k.We see that this function is indeed minimised at
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(1�p)k = 0:2032, but we also see that there is a range of values of (1�p)k that are
close to the minimum value. For instance, if (1� p)k�[0:1641; 0:2477] then there is

no more than 1% increase in asymptotic variance, so that any k such that (1� p)k

is in this region is acceptable.

For example if p=0.05, then this region is 27 � k � 35 instead of the single

value that k=31. Figure refasy vs grp also shows that outside this interval the

rate of increase of of the asymptotic variance is greater for values of k such that

(1 � p)k < 0:2032 than for the values of of k such that (1 � p)k > 0:2032. since

larger values of of k will result smaller values of (1 � p)k. That is, the percentage

increase in the asymptotic variance is greater when k is larger than optimal than

when is smaller than optimal.

Hence, if one cannot use the optimal value of k or a value such that (1�p)k�[0:1641; 0:2477]
then it is better to use a smaller that optimal values rather that a larger than op-

timal value.

3. Swallow 1985

He proposed the choice of group size (k) to be chosen so as to give the smallest

mean squared error(MSE).This is due to the fact that the estimator is biased,

the MSE is the best measure of precision because it takes into account both the

variance(precision) and the bias(accuracy) of the estimator.

The MSE of the estimator is given as

MSE(p̂) = E(p̂� p)2 (2.53)

MSE(p̂) =
nX

x=0

(p̂� p)2
�
n

x

�
(1� (1� p)k)xi((1� p)k)n�xi (2.54)

MSE(p̂) =
nX

x=0

(1� (1� x

n
)
1
k � p)2

�
n

x

�
(1� (1� p)k)xi((1� p)k)n�xi (2.55)

MSE(p̂) = (1�p)2+
nX

x=0

(1� x
n
)
1
k [(1� x

n
)
1
k�2(1�P )]

�
n

x

�
(1�(1�p)k)x((1�p)k)n�x

(2.56)
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Clearly the optimal value of group size depends on the unknown value of the true

proportion. In practise some prior value for the true proportion(P) say p0 can be

used to determine the group size that minimizes the MSE of P' evaluated when

P = p0: That is

k = k(n) = argminkMSE(p̂;x; p0; n) (2.57)

k = k(n) = argmink(1�p0)2+
nX

x=0

(1�x
n
)
1
k [(1�x

n
)
1
k�2(1�p0)]

�
n

x

�
(1�(1�p0)k)x((1�p0)k)n�x

(2.58)

Equating the �rst derivative of MSE with respect to k to 0 and solving for k leads to

non-existence k.This is due to the fact that the MSE is typically a convex function

and strictly increasing, thus it is quite reasonable to assume that the function has

a derivative that vanishes at most once.

Using non-derivative optimisation methods one can be able to obtain the optimal

group sizes(k) for given prior proportions and the number of groups(n).

The table 2.7 gives the following range of combination of p and n:k the value of

k is optimal in the sense that it minimises MSE(p); the MSE of p̂ when k=k*

[MSE(p̂; k�)] and for comparison the MSE of p̂ when k=1 [MSE(p̂; 1)] For example

when p=0.04 and n=20 table 2.7 indicates that the optimal group size is 19 for

which the MSE(p̂) = 0:000180, if k=1 had been used instead , p̂ would have had

MSE(p̂) = 0:001920,which is 10.67 times the minimum value realized with optimal

k. Thus using the optimal group size group testing can be more precise than

individual testing. Also, a general observation can be made from table 2.7, that the

group sizes decrease as p increases.

From the above two tables, table 2.6 and 2.7, it can observed that, minimal k due

to MSE depends on n (the number of groups) and as n increases the group size are

always less than the value of optimal k obtained from the asymptotic variance.

4. Hughes-Oliver and Swallow 1994
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P
n

10 20 30 50 60 80 100 200

0.01
k 34 65 88 119 121 134 143 150

MSE(p,k) 0.000046 0.000013 0.000007 0.000004 0.000003 0.000002 0.0000016 0.0000007
MSE(p,1) 0.000990 0.000495 0.000330 0.000198 0.000165 0.000124 0.000099 0.000050

0.02
k 19 36 47 62 64 69 71 75

MSE(p,k) 0.000162 0.000048 0.000027 0.000014 0.000011 0.000008 0.0000065 0.0000031
MSE(p,1) 0.001960 0.000980 0.000653 0.000391 0.000327 0.000245 0.000196 0.000098

0.03
k 14 25 30 40 43 45 48 52

MSE(p,k) 0.000337 0.000104 0.000059 0.000031 0.000025 0.000018 0.000015 0.000007
MSE(p,1) 0.002910 0.001455 0.000970 0.000582 0.000485 0.000364 0.000291 0.000146

0.04
k 11 19 25 30 43 35 35 35

MSE(p,k) 0.000565 0.000180 0.000102 0.000055 0.000045 0.000032 0.000026 0.000012
MSE(p,1) 0.003840 0.001920 0.0001280 0.000768 0.000640 0.000480 0.000384 0.000192

0.05
k 9 16 20 25 25 25 30 30

MSE(p,k) 0.000842 0.000274 0.000157 0.000084 0.000069 0.000050 0.000040 0.000019
MSE(p,1) 0.004750 0.002375 0.001583 0.000950 0.0000792 0.000594 0.000475 0.000238

0.06
k 8 13 17 21 22 23 23 24

MSE(p,k) 0.001158 0.000385 0.000222 0.000120 0.000098 0.000071 0.000056 0.000027
MSE(p,1) 0.005640 0.002820 0.001880 0.001128 0.000940 0.000705 0.000564 0.000282

0.08
k 6 10 13 16 16 17 17 18

MSE(p,k) 0.001922 0.000656 0.000382 0.000208 0.000170 0.000124 0.000097 0.000047
MSE(p,1) 0.007360 0.003680 0.002453 0.001472 0.001227 0.000920 0.000736 0.000368

0.10
k 5 8 10 12 13 13 14 14

MSE(p,k) 0.002807 0.000987 0.000579 0.000317 0.000258 0.000189 0.000149 0.000072
MSE(p,1) 0.009000 0.004500 0.003000 0.001800 0.001500 0.001125 0.000900 0.000450

0.15
k 4 6 7 8 8 9 9 9

MSE(p,k) 0.005409 0.002014 0.001202 0.000665 0.000544 0.000398 0.000314 0.000152
MSE(p,1) 0.012750 0.006375 0.004250 0.002550 0.002125 0.001594 0.001275 0.000638

0.20
k 3 4 5 6 6 6 7 7

MSE(p,k) 0.008356 0.003284 0.001975 0.001100 0.000901 0.000662 0.000523 0.000253
MSE(p,1) 0.016000 0.008000 0.005333 0.003200 0.002667 0.002000 0.001600 0.000800

0.25
k 3 3 4 5 5 55 5 5

MSE(p,k) 0.012089 0.004735 0.002831 0.001597 0.001306 0.000959 0.000757 0.000370
MSE(p,1) 0.018750 0.009375 0.006250 0.003750 0.003125 0.002344 0.001875 0.000938

0.3
k 2 3 3 4 4 4 4 4

MSE(p,k) 0.014516 0.006000 0.003769 0.002114 0.001733 0.001276 0.001009 0.000494
MSE(p,1) 0.021000 0.010500 0.007000 0.004200 0.003500 0.002625 0.002100 0.001050

Table 2.7: The optimal group sizes
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Having noted in their previous works that the bene�ts of group testing both eco-

nomical and reduction of MSE are sensitive to the choice of group size and the

assumed prior proportion . Hughes and swallow proposed adapting the group size

from time to time throughout the testing phase using all the accumulated data and

obtaining a �nal estimate P (proportion) based on all the data collected.

The adaptive estimator is obtained by testing groups in stages and updating the

group size from one stage to the next. This general scheme allows the number of

groups N for each stage to be arbitrary but known before the experiment begins

while group sizes ki are determined sequentially during the experiment. The chal-

lenge comes in deciding how one should update the group size in a manner that

will lead to using a group size as close to the optimal group size as possible.

They presented an update based on the MLE of P (the proportion) obtained using

the data from the previous stage. The group size selected is the one that minimises

the MSE of the estimate of P that would be obtained if only the data from the next

stage were to be used. With P replaced in the MSE formula by the most recent

MLE of P. The group size of the for the �rst stage is still based on a prior value p0

of P.

They limited the description and the discussion to two stages partly fro simplicity

and partly because asymptotic results suggest that two stages yield optimal group

size as possible.

To enable direct comparison with the non adaptive estimator a total of N test will

be performed in two stages such that N1 = �N tests are performed in the �rst stage

and N2 = 1 � �N tests are performed in the second stage, where � is assumed to

be known before the experiment begins.

The group size for the �rst stage is based on some prior value p0 for the true P and

the number of tests to be performed in the �rst stage of size k1 calculated as

k1 = argmin[
1� (1� p0)

k

k2(1� p0)k�2
]: (2.59)

And then proceed to test �N groups each of size k1 for the trait of interest. The
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number of groups with the trait X1 has a binomial distribution with parameters

�N and 1� (1� p)k1 : Thus the intermediate MLE of P is determined as

p̂1 = ^p1(x1) = 1� [1� X1

�N
] (2.60)

The group of the second is then obtained as

k2 = k2(x1) = argmin[
1� (1� p̂1)

k

k2(1� p̂1)k�2
] (2.61)

That is, for each realization of X1 = x1 k2 minimizes the MSE of an estimate

of P, where the true MSE in the MSE formula replaced by ^p1(x1). Hence k2 is a

random variable that derives its randomness from X1. stage two proceeds by testing

(1��)N groups, each of size k2(x1). Let X2 is the number of these groups showing

the trait. Hence conditioned on X1; X2 has a binomial distribution. Speci�cally,

X2jX1 = x1 has a binomial distribution with parameters (1��)N and 1� (1�p)k2 :

f(X2jX1) =

�
(1� �)N

x2

�
(1� (1� p)k2)x2j((1� p)k2)n2�x2

The �nal two stage adaptive estimator of P, p̂A is the MLE based on the joint

distribution of X1 and X2.

From the bivariate distribution

P (X = x; Y = y) = P (X = xjY = y)� P (Y = y)

Thus

f(X1; X2) = f(X2jX1) � f(X1) (2.62)
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Letting �N = n1 and (1� �)N = n2

f(X1; X2jP ) =
�
n1
x1

�
(1� (1� p)k1)x1 j((1� p)k1)n1�x1��

n2
x2

�
(1� (1� p)k2)x2j((1� p)k2)n2�x2 (2.63)

The log likelihood is therefore

lnL(X1; X2jP ) = ln

�
n1
x1

�
+ ln

�
n2
x2

�
+x1lnf1� (1� p)k1

(1� p)k1
g+x2lnf1� (1� p)k2

(1� p)k2
g

+ [n1k1 + n2k2]ln(1� p) (2.64)

dlnL(X1; X2jP )
dp

=
x1k1

1� (1� p)k1
+

x1k1
1� (1� p)k1

� n1k1 � n2k2
(1� p)

(2.65)

Equating the derivative with zero and replacing back the �N = n1 and (1��)N =

n2

Thus the MLE is the solution to

k1x1
1� (1� p)k1

+
k2x2

1� (1� p)k1
= �Nk1 + (1� �)Nk2 (2.66)

And the MSE can be calculated as

MSE(p̂A) = EX1fEX2[(p̂A � P )2]jX1g (2.67)

To assess the asymptotic behaviour of p̂A one must �rst assess the asymptotic

behaviour of the non random k1(N) and the random k2(X1N). The second stage

group size approaches the asymptotically optimal group size regardless of the value

of the initial p0 if the proportion estimates are consistent.

Let �,N and p0 be given. If the group size k1 and k2 are chosen as described

earlier, and if p̂A is the solution to 2.66 then p̂A is strongly consistent for P and

asymptotically p̂A has a normal distribution with mean P and variance equal to the

reciprocal of the Fishers information using the fact that E(x1) = �N(1� (1� p)k1)
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and E(x2) = (1� �)N(1� (1� p)k2)

p
N(p̂A � P ) � Normal(0;

�k21(1� p)k1�2

1� (1� p)k1
+
(1� �)k22(1� p)k2�2

1� (1� p)k2
) (2.68)

Extending these derivations to more than two stages yields exactly the same asymp-

totic distribution for p̂A.This is due to the fact that regardless of the number of

stages involved, the group size for all but the �rst stage approaches the optimal k

as N approaches in�nity. It is in this sense that the two stage adaptive estimator is

considered optimal compared to a three stage estimator and any stage estimator.

Robustness of the group size to the choice of prior proportion

Whether the group size is obtained with method 1, 2 or 3 some initial value for the

proportion is needed. Since all these methods require specifying a value of p,one way or

another in the process of choosing k. Then all these methods would be implemented with

p0 in place of p.

If p0 is very far from the true P, the group sizes obtained p0 can be very di�erent from

those obtained using the true proportion.

Method 1 and 2 share the questionable property that the recommended group size re-

mains the same , regardless of the number of tests n being performed. Method three

recommends di�erent group size for di�erent values of n.

Method 1 is based , namely on equalizing the absolute inuence of a group showing the

attribute and the inuence of the group not showing the attribute, has some appeal but

seems to be less practical interest than the criteria behind method 2 and 3. Comparing

method 2 and 3 , although the asymptotic variance might be an adequate approximation

to the mean squared error when n is large it might be misleading when n is small.

Asymptotically, method 1 and 2 asymptotic distribution is unchanged, this is because

the two methods yield group sizes that are independent of the value of n. In contrast,

method 3,minimising the exact mean squared error, generally yields a di�erent group size

for each di�erent value of n. Thus its behaviour as n tends to in�nity is clear of interest.

Under reasonable assumptions, the following theorem provided a simple limiting property
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of the group sizes yielded from the 3rd method.

Theorem

If the �rst derivative of MSE(p0; k; n) with respect to k equals zero at most once, k2 <1
and k3(n) � 1 for all n > np then limn!1 k3(n) = k2

This result says that under mild conditions, as n tends to in�nity the group sizes obtained

from minimizing the mean squared error converge to the group sizes obtained from min-

imising the asymptotic variance. This implication mildly suggests that the mean squared

error MSE converges to the asymptotic variance in probability as n tends to in�nity

Convergence in probability

De�nition: A sequence of random variables X1; X2; :::; Xnconverges in probability to X

if

lim
n!1

P (jXn �Xj � ") = 0

for all " > 0

Indeed this (that the mean squared error MSE converges to the asymptotic variance in

probability as n tends to in�nity )is expected but not immediate result that has the fol-

lowing desirable implication. Although for each di�erent value of n k3 has the potential

to be di�erent, the asymptotic distribution of the estimator p̂ has been the same form as

in method 2.

Moreover, as n tends to in�nity, k30(n) does not tend to k2 rather it tends to k20 . That

is,the e�ect of the initial p0 persist even in the limit.

To illustrate the mildness of Theorem above reabel shows the typical shape of the MSE

as a function of k. reabel shows the same function plotted against log k for 1 � k � 120:

in both �gures p=0.01 n=50. The function is not convex, but it is convex in a region

containing the minimum. Outside this area the function is strictly increasing.

Having established that Method 2 and 3 are asymptotically equivalent then it follows

that one would prefer the two methods over method 1 in an asymptotic sense.However,

unless the n is large enough so that MSE(p̂) approaches the asymptotic variance fairly

closely the value of k that minimises the asymptotic variance maybe highly ine�cient for

estimating the proportion.
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To examine the robustness of the group size yielded from methods 3 above we con-

struct the tables for several choices of p, p0 and n. For each value of p, the values of p0

shown are p0=0.5p, p, 1.5p, 2p. the tables shows the value of k (group size ) for these

choices as well as th true mean squared error of p̂ obtained with these di�erent group

sizes.

P p0
n

10 20 30 50 100 150 200

0.01

0.005
k 58 120 166 230 286 296 301

MSE(p,k) 0.000307 0.000788 0.00185 0.00521 0.00289 0.000369 0.000473

0.01
k 34 66 89 119 143 148 150

MSE(p,k) 0.000046 0.000013 0.000069 0.000036 0.000016 0.000010 0.000008

0.015
k 24 48 61 81 95 98 100

MSE(p,k) 0.000054 0.000015 0.000008 0.000004 0.000002 0.000001 0.0000008

0.02
k 19 36 47 62 71 73 75

MSE(p,k) 0.000065 0.000018 0.000010 0.000005 0.000002 0.000001 0.0000009

0.02

0.01
k 34 65 88 119 143 148 150

MSE(p,k) 0.000900 0.00193 0.00390 0.00868 0.00300 0.000391 0.000054

0.02
k 19 36 47 62 71 73 75

MSE(p,k) 0.000193 0.000048 0.000027 0.000014 0.000006 0.000004 0.000003

0.015
k 14 25 32 42 47 49 50

MSE(p,k) 0.000189 0.000057 0.000031 0.000015 0.000007 0.000005 0.000003

0.02
k 11 19 25 31 35 36 37

MSE(p,k) 0.000225 0.000068 0.000036 0.000018 0.000008 0.000005 0.000004

0.05

0.025
k 16 29 38 50 57 59 60

MSE(p,k) 0.00352 0.00587 0.00969 0.015100 0.003320 0.000486 0.000091

0.05
k 9 16 20 25 28 29 30

MSE(p,k) 0.000840 0.000274 0.000157 0.000084 0.000039 0.000025 0.000019

0.075
k 7 11 14 17 19 19 19

MSE(p,k) 0.000964 0.000317 0.000178 0.000094 0.000043 0.000028 0.000021

0.01
k 5 8 10 12 14 14 14

MSE(p,k) 0.001140 0.000375 0.000210 0.000109 0.000050 0.000033 0.000024

0.10

0.05
k 9 16 20 25 28 29 29

MSE(p,k) 0.009320 0.012800 0.017900 0.020500 0.004010 0.000727 0.000205

0.10
k 5 8 10 12 14 14 14

MSE(p,k) 0.002790 0.000983 0.000578 0.000317 0.000148 0.000097 0.000072

0.15
k 4 6 7 8 9 9 9

MSE(p,k) 0.003160 0.001130 0.000653 0.000352 0.000164 0.000107 0.000079

0.20
k 3 4 5 6 6 7 7

MSE(p,k) 0.003690 0.001330 0.000771 0.000414 0.000193 0.000125 0.000093

Table 2.8: Group sizes and their associated mean squared error for di�erent prior p.
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Taking a closer look on the sensitivity of the group size to the choice of the prior

proportion from table 2.8, for example when true proportion p=0.01, n=20 the optimal

(minimises the MSE = 0:000013) group size k=66. If the researcher prior information

suggest that the proportion (prior) is p0 = 0:005 then he/she will end up with the op-

timal group size k=120 with the true MSE=0.000806 which is 60 times the minimal

MSE. On the other hand if the researcher prior information suggest that the proportion

(prior)is p0 = 0:02, he/she will end up with the optimal group size k=36 with the true

MSE=0.000018 which is only 1.38 times the optimal MSE.

Therefore, if p0 < p we end up choosing a larger group than when p = p0 which exag-

gerates the true MSE compromising the precision of the estimator. However, if p0 > p

we end up with the a group size that is less than the optimal group size p = p0 which

although it increases the true MSE it is still applicable. Hence we can conclude that it

is safer to overestimate the prior than to underestimate it. Although, ideally, one would

like p0 as close to the true p as possible , if in-doubt take p0 too large for a conservative

choice of k.
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2.3 Bayesian Estimates

Bayesian estimation starts with an assumed probability distribution of the parameters

space. With this approach the parameter itself is a random variable and the observations

are conditionally independent given the parameters.

The assumed p.d.f of the parameter is called the prior distribution, together the prior

and the parametric family give the joint distribution. The joint distribution is used

to �nd the marginal distribution of the observation and by the use of Bayes Theorem

the conditional distribution of the parameter given the observation which is called the

posterior distribution is computed. Bayes Theorem For Events A and B

P (A=B) =
P (B=A)P (A)

P (B)
(2.69)

Thus with the appropriate densities we can write the bayes formula as

f(�=x) =
f(x=�)f(�)

f(x)
(2.70)

2.3.1 Bayes Estimator

In this case, the observations are said to be binomial distributed while the parameter P

is assumed to be Beta distributed.

f(x=p) =

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (2.71)

while

f(p) =
p��1(1� p)��1

B(�; �)
(2.72)

By use of bayes theorem

f(x; p) =

�
n

x

�
B(�; �)�1p��1(1� p)kn�kx+��1[1� (1� p)k]x (2.73)
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The marginal of x can therefore be found by

f(x) =

Z 1

0

�
n

x

�
B(�; �)�1p��1(1� p)kn�kx+��1[1� (1� p)k]xdp (2.74)

using of the binomial theorem

[1� (1� p)k] becomesPx
j=0

�
x
j

�
(�1)j(1� p)kj

f(x) =

�
n

x

�
B(�; �)�1

xX
j=0

�
x

j

�
(�1)j

Z 1

0

p��1(1� p)kn+kj�kx+��1dp (2.75)

f(x) =

�
n

x

�
B(�; �)�1

xX
j=0

�
x

j

�
(�1)jB(�; kn+ kj � kx+ �) (2.76)

The posterior of p can therefore be evaluated as

f(p=x) =
p��1(1� p)kn�kx+��1[1� (1� p)k]xPx
j=0

�
x
j

�
(�1)jB(�; kn+ kj � kx+ �)

(2.77)

Then the Bayes estimator of P is given by

p̂1 = E(p=x) =

Z 1

0

pf(p=x)dp (2.78)

p̂1 =

Z 1

0

p
p��1(1� p)kn�kx+��1[1� (1� p)k]xPx
j=0

�
x
j

�
(�1)jB(�; kn+ kj � kx+ �)

dp (2.79)

p̂1 =

Z 1

0

p�(1� p)kn�kx+��1[1� (1� p)k]xPx
j=0

�
x
j

�
(�1)jB(�; kn+ kj � kx+ �)

dp (2.80)

p̂1 =

Px
j=0

�
x
j

�
(�1)jB(� + 1; kn+ kj � kx+ �)Px

j=0

�
x
j

�
(�1)jB(�; kn+ kj � kx+ �)

(2.81)

However, Beta distribution can have a number of shapes. The prior should correspond

to your belief about the proportion.

The �gure 2.7 shows the variety of shapes a beta distribution can take. When � < � the

density has more weight on the lower half and when � > � the density has more weight

on the upper half. When � = � the distribution is symmetric.
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Figure 2.7: Di�erent shapes of beta distribution

The prior beta distribution chosen should correspond to your belief about the pro-

portion. That is a ditribution that matches the location (mean) and scale (standard

deviation) of the believed proportion.

For instance if the prior mean of the proportion is P 00 and let �0 be the prior standard

deviation for the proportion. Then equating these with the mean ( �
�+�

)and the standard

deviation(
q

��
(�+�)2(�+�+1)

) respectively.

We obtain P 00 =
�

�+�
and �0 =

q
��

(�+�)2(�+�+1)

bearing in mind that 1� P 00 =
�

�+�
then �0 =

q
P 0

0(1�P
0

0)

(�+�+1)

solving these two equations for � and � one can obtain the beta parameters of the prior

distribution. If we do not have any idea before hand what the proportion P is we might

be like to chose a prior that does not favour any one value over the other. In this case

w should use the uniform prior that gives equal weight to to all possible values of the

proportion.
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2.3.2 Empirical Bayes estimator

Empirical Bayesian estimation is a special type of Bayesian estimation which instead of

�xing(making an assumption) the prior distribution it is estimated from the data.

Since group testing is only economically viable if the proportion of the defectives is small,

we would like to use a family of prior distributions appropriate for small p. the Beta(1; �)

is such a family. this is because for large values of of � the majority f the probability

distribution of the random variable p is close to zero.

Recall that

f(x=p) =

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (2.82)

Now that

f(p) = �(1� p)��1 (2.83)

then

f(x; p) = �

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x(1� p)��1 (2.84)

Thus the marginal of x

f(xj�) = �

�
n

x

�Z 1

0

[1� (1� p)x](1� p)kn�kx+��1dp (2.85)

Using the change of variable technique

Let u = (1� p)k

which implies that p = 1� u
1
k

dp = �1
k
(1� p)1�kdu

thus

f(xj�) = �k�1
�
n

x

�Z 1

0

un�x+
�
k
�1(1� u)xdu (2.86)

f(xj�) = �k�1
�
n

x

�
B(n� x+

�

k
; x+ 1) (2.87)

f(xj�) = �k�1
�(n+ 1)

�(n� x+ 1);

�(n� x+ �
k
); )

�(n+ �
k
+ 1)

(2.88)
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Maximizing the above equation with respect to � may be done numerically by solving

@

@�
(f(xj�)) = 0

@

@�
[�k�1

�(n+ 1)

�(n� x+ 1);

�(n� x+ �
k
); )

�(n+ �
k
+ 1)

] (2.89)

Taking the logarithms

0 =
@

@�
flog � + log[�(n� x+

�

k
)]� log[�(n+

�

k
+ 1)]g

= ��1 + k�1[ (n� x+
�

k
)�  (n+

�

k
+ 1)]

(2.90)

Where  represents the digamma function.

Thus �̂ is the solution to 3.31. which is the optimal � and therefore � can be replaced

by �̂.

Hence, the posterior of p can be given as

f(p=x) =
�̂
�
n
x

�
(1� (1� p)k)xj((1� p)k)n�x+�̂�1

�̂k�1 �(n+1)
�(n�x+1);

�(n�x+ �̂
k
);)

�(n+ �̂
k
+1)

(2.91)

f(p=x) = k
�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

(1� (1� p)k)xj((1� p)k)n�x+
^��1 (2.92)

With f(p=x) and a given a loss function , say L(p; a) the empirical estimate of P' with

respect to L(p; a) is the value of a that minimizes

E[L(p; a)] =

Z 1

0

L(p; a)f(p=x)dp (2.93)

Considering the general loss function

L(p; a) = w(p)[p� a]2
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The bayes estimator of p corresponding to this loss function is given by

p̂eb =
E[w(p)pf(pjx)]
E[w(p)f(pjx)]

=

R 1
0
w(p)pf(pjx)dpR 1

0
w(p)f(pjx)dp

Empirical Bayes Estimate using Loss function L1(p; a) = (p� a)2

Where L(p; a) = (p�a)2 is the squared error loss, thus the mean of the empirical posterior

is the empirical estimator.

This is a special case with w(p)= 1. Thus the loss function is

L1(p; a) = (p� a)2

Therefore, the Bayes estimator of p with respect to the squared loss function is the

posterior mean E[p/x]

p̂eb =

Z 1

0

k
�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

p(1� (1� p)k)xj((1� p)k)n�x+
^��1dp (2.94)

Using the change of variable

Let u = (1� p)k

which implies that p = 1� u
1
k

dp = �1
k
(1� p)1�kdu

One obtains a closed form of expression for the posterior mean as

p̂eb1 = 1� �(n+ �
k
+ 1)� �(n� x+ �

k
+ 1)

�(n� x+ �
k
)� �(n+ �

k
+ 1 + 1=k)

(2.95)

Empirical Bayes Estimate Using Loss Function L2(p; a) =
(p� a)

p(1� p)

Let

w(p) =
1

p(1� p)
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Thus the empirical estimator is obtained as follows

p̂eb2 =

E[
1

(1� p)
f(pjx)]

E[
1

p(1� p)
f(pjx)]

=

R 1
0
[

1

(1� p)
]f(pjx)dp

R 1
0
[

1

p(1� p)
]f(pjx)dp

Z 1

0

[
1

(1� p)
]f(pjx)dp =

Z 1

0

k
�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

(1� (1� p)k)x((1� p)k)n�x+
^��2

(2.96)

Let u = (1� p)k: It follows that p = 1� u
1
k and dp = �u1=k�1 dk

k

=
�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

Z 1

0

(1� u)xun�x+(�̂=k)�(1=k)�1du (2.97)

=
�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

�(x+ 1)�(n� x+ �̂
k
� 1

k
)

�(n+ �̂
k
� 1

k
+ 1)

(2.98)

=
�(n+ �̂

k
+ 1)�(n� x+ �̂

k
� 1

k
)

�(n� x+ �̂
k
)�(n+ �̂

k
� 1

k
+ 1)

(2.99)

On the other hand

Z 1

0

[
1

p(1� p)
]f(pjx)dp =

Z 1

0

k�(n+ �̂
k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

p�1(1� (1� p)k)x((1� p)k)n�x+
^��2

(2.100)

Let u = (1� p): it follows that p = 1� u and dp = �du

=
k�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

Z 1

0

(1� uk)uk(n�x)+�̂�2

(1� u)
du (2.101)
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We know that 1� uk =
Pk�1

i=0 u
i(1� u)

=
k�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

Z 1

0

k�1X
i=0

(1� uk)x�1ui+k(n�x)+�̂�2du (2.102)

Further, we let uk = q: It follows that u = q
1
k and du = q

1
k
�1 dq

k

=
�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

Z 1

0

k�1X
i=0

qn�x+(i=k)�(1=k)�1(1� q)x�1dq (2.103)

=
�(n+ �̂

k
+ 1)

x�(n� x+ �̂
k
);�(x+ 1)

k�1X
i=0

�(n� x+ i=k + �̂
k
� 1=k)

�(n� i=k + �̂
k
� (1=k)

(2.104)

Thus

p̂eb2 =

E[
1

(1� p)
f(pjx)]

E[
1

p(1� p)
f(pjx)]

=

�(n+ �̂
k
+ 1)�(n� x+ �̂

k
� 1

k
)

�(n� x+ �̂
k
)�(n+ �̂

k
� 1

k
+ 1)

�(n+ �̂
k
+1)

x�(n�x+ �̂
k
);�(x+1)

Pk�1
i=0

�(n� x+ i=k + �̂
k
� 1=k)

�(n� i=k + �̂
k
� (1=k)

=
x�(n� x+ �̂

k
)� 1

k

�(n+ �̂
k
� 1

k
+ 1)

Pk�1
i=0

�(n� x+ i=k + �̂
k
� 1=k)

�(n� i=k + �̂
k
� (1=k)

The di�erence between loss functions L1(p; a) = (p� a)2 and L2(p; a) =
(p� a)

p(1� p)
is that

w(p) = 1 for the �rst one and w(p) = 1
p(1�p)

for the second one. Therefore, for any

p�(0; 1), L1(p; a) = (p � a)2 has a constant weight 1 and L2(p; a) =
1

p(1� p)
increases

the weight for the loss (p� a)2 as p! 0 since group testing concerns only small p., it is

more appropriate to increase the weight for the loss as p is small.
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Empirical Bayes Estimate Using Loss Function L3(p; a) =
(p� a)2

p

Thus w(p) = 1
p
. In this case L3(p; a) =

(p� a)2

p
increases the weight monotonically as p

decreases, so it does note have the problem as L2(p; a):

Thus the estimator

p̂eb3 =
E[f(pjx)]
E[

1

p
f(pjx)]

=

R 1
0
f(pjx)dpR 1

0

1

p
f(pjx)dp

Given that f(pjx) is a probability density function. Then
R 1
0
f(pjx)dp = 1

On the other hand

Z 1

0

1

p
f(pjx)dp =

Z 1

0

k�(n+ �̂
k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

p�1(1� (1� p)k)x((1� p)k)n�x+
^��1 (2.105)

Let u = (1� p): it follows that p = 1� u and dp = �du

=
k�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

Z 1

0

(1� uk)uk(n�x)+�̂�1

(1� u)
du (2.106)

We know that 1� uk =
Pk�1

i=0 u
i(1� u)

=
k�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

Z 1

0

k�1X
i=0

(1� uk)x�1ui+k(n�x)+�̂�1du (2.107)

Further, we let uk = q: It follows that u = q
1
k and du = q

1
k
�1 dq

k

=
�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

Z 1

0

k�1X
i=0

qn�x+(i=k)�(1=k)(1� q)x�1dq (2.108)

=
�(n+ �̂

k
+ 1)

x�(n� x+ �̂
k
);�(x+ 1)

k�1X
i=0

�(n� x+ i=k + �̂
k
� 1=k)

�(n� i=k + �̂
k
)

(2.109)
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p̂eb3 =
E[f(pjx)]
E[

1

p
f(pjx)]

=
x

�(n+ �̂
k
+1)

�(n�x+ �̂
k
);�(x+1)

Pk�1
i=0

�(n� x+ i=k + �̂
k
� 1=k)

�(n� i=k + �̂
k
)
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Chapter 3

Interval Estimation

3.1 Interval Based on the MLE

Interval estimation is the use of sample data to calculate an interval of possible or probable

values of an unknown population parameter. In group testing the proportion of the

attribute is the unknown population parameter from a binomial distribution with n trials

and the probability of success as 1� (1� p)k; where k is the group size, compared to the

point estimates of group testing there is less literature on interval testing.

Here are some proposed estimation procedure

3.1.1 Wald Intervals

Wald con�dence intervals

1. Thompson (1962)

Thompson proposed a Wald interval of P that is based on the exact variance of P'.

Since the actual variance of the parameter P and (V ar(p)) is not known Thompson

used the variance of p̂(V are(p)) to approximate it. Due to this approximation the

students t distribution is used to construct the 100(1� �)% con�dence interval.

The �rst two moments of P' are given by

E(p̂)r =
nX

x=0

[1� (1� x

n
)1=k)]r

�
n

x

�
[1� (1� p)k]x(1� p)k(n�x) (3.1)
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for r=1,2. Thus the exact variance is given by V are(p) = E(p̂)2 � [E(p̂)]2. Thus

the Thompson's proposed interval

p̂� t�
p
V are(p) (3.2)

Because (V are(p̂)) is just a consistent estimate of (V ar(P )), one might not expect

this interval to perform well in situations where n is small.

Moreover, in the case where the p̂ is small this interval produces a negative lower

bound.

2. Bhattacharyya (1979)

Bhattacharyya (1979) provided an Wald type of interval based on the asymptotic

normal distribution of the estimator p̂. This is based on the fact that the asymptotic

distribution of p̂ is normal as mentioned above.

p
n(p̂� p)! Normal(0;

1� (1� p)k

k2(1� p)k�2
) (3.3)

Con�dence interval can be constructed using the estimator p̂ and its variance mul-

tiplied by the appropriate quantile of the standard normal distribution.

p̂� Z1��=2=

s
1� (1� p)k

k2(1� p)k�2
(3.4)

Because of its computationally simplicity, this interval is often used in practise.

However, it faces the same shortcoming as the Thompson's interval of producing

negative endpoints.

3. Tebbs and Bilder 2004

Due to the shortcomings of the above methods of estimating the interval, Tebbs

and Bilder derived a variance-stablizing interval. Because the V ar(p̂) is a function

of p we consider a transformation whose variance will be free of p.

Suppose that g is a real valued di�erentiable function and consider the statistic
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g(p̂). A �rst order Taylor series expansion of g(p̂)about p is given by

g(p̂) = g(p) + g0(p)(p̂� p) (3.5)

Because g(p̂) is expressed as a linear function of p̂ and p converges almost surely

to P. It follow Slutky's Theorem that
p
n[g(p̂) � g(p)] converges to a N(0, g'(p)

Var(p'))

Proof We �rst state the Slutsky's Theorem.

Theorem : If Wn ! W in distribution and Zn ! C in probability where C is non

random constant then

WnZn ! CWindisribution

Wn + Zn ! W + Cindistribution

Then by Delta Method (A generalized central limit theorem)

Let Yn be a sequence of random variables that satisfy
p
n(Yn � �) ! N(0; �2) in

distribution. For a given function and a speci�c value of � , suppose that g0(�)exists

and is not 0. Then,

p
n(g(Yn)� g(�))! N(0; �2g0(�)2)

Proof The Taylor expansion of g0(Yn) around Yn = � is

g(Yn) = g(�) + g0(�)(Yn � �) +Remainder

Where the remainder ! 0 as Yn ! �. From the assumption that (Yn) satis�es the

standard CLT, We have (Yn ! �) in probability, so it follows that the remainder

! 0 in probability as well. Rearranging terms, we have

g(Yn) = g0(�)(Yn � �) +Remainder

Applying Slutsky's Theorem with Wn = g0(�)(Yn� �) and Zn as the remainder, we
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have the right-hand converging to N(0; �2g0(�)2)

Setting the g0(p)V ar(p̂) equal to a constant free of P say C0

C0 = g0(p)V ar(p̂)

where V ar(p̂) = 1�(1�p)k

k2(1�p)k�2

g0(p) =

s
C0k

2(1� p)k � 2

1� (1� p)k
(3.6)

Integrating both sides of the above di�erential equation, we get that

g(p) = k
p
C0

Z
(1� p)

k
2
�1p

1� (1� p)k
dp+ C1 (3.7)

where C1 is a constant free of P. Using a change of variable with t = 1� (1� p)k,

it follows that p = 1� (1� t)
1
k and that dp =

(1� t)1=k�1

k
Thus

g(P ) =
p
C0

Z
1p

t(1� t)
dt+ C1

= 2
p
C0(arcsin

p
t+ C2) + C1

= 2
p
C0[arcsin

p
1� (1� p)k + C2] + C1

(3.8)

where C2is a constant without P.

Taking C0 = 0 and C1 = C2 = 0, we get that

g(P ) = 2arcsin
p
1� (1� p)k (3.9)

Following that
p
n(g(Yn)� g(�)) converges to standard normal distribution

g(p̂)� Z1��=2=
p
n (3.10)
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serves as approximate 100(1� �)% con�dence intervals for g(P). Setting a= g(P)

a

2
= arcsin

p
1� (1� p)k

sin2(
a

2
) =
p
1� (1� p)k

1� (1� p)k = sin2(
a

2
)

(1� p)k = 1� sin2(
a

2
)

(1� p) = [1� sin2(
a

2
)]1=k

p = 1� [1� sin2(
a

2
)]1=k

Substituting g(p̂)�Z1��=2=
p
n for a we arrive at the lower limit and the upper limit

respectively of the approximate 100(1� �)% for P as

[1� (1� sin2(a=2))1=k; 1� (1� sin2(b=2))1=k]

Where a = g(p̂)� Z1��=2=
p
n and b = g(p̂) + Z1��=2=

p
n This interval have imme-

diate advantages over the Wald intervals discussed above

(a) The standard error in the con�dence interval calculation is free of estimates of

P.

(b) The interval like the underlying �nite distribution of p̂ is not symmetric.

(c) Negative lower con�dence limit are not possible.

This latter point is especially desirable in situations where p is small as is often

case in group testing experiments.

3.1.2 Exact con�dence intervals

Exact con�dence intervals guarantee nominal con�dence level. The number of positive

groups follow a binomial distribution. But because of the discreteness of the binomial

distribution they tend to be conservative. An exact con�dence interval is derived from

the exact test.
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The construction of exact con�dence intervals is on group scale, that is, a con�dence

interval [�l; �u] of group proportion � is �rst constructed using the estimator �̂ =
x

n
. This

interval is then transformed in a second step to a con�dence interval (Pl; Pu) for the

individual probability by applying p̂ = 1� (1� p)1=k on the con�dence limits of [�l; �u].

The methodology of transferring the con�dence intervals from the group scale to the

individual scale assumes that the relation between p and � is monotone for �xed values

of k. This assumption is checked using �gure 3.1 . Then, it is provided that positive

di�erence in [�l; �u] will result to a positive di�erence in (Pl; Pu). Because � = x=n is

Figure 3.1: Illustrates the monotone relationship of p̂ = 1� (1� �)1=k for di�erent group
sizes.

the estimator of a simple binomial proportion, the usual methods for construction of

con�dence limits for the binomial proportion can be applied this way. It follows that the
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lower limit of the proportion of positive groups � = (x=n) is

X
r�x

�
n

r

�
�rl (1� �l)

n�r =
�

2
(3.11)

And the corresponding upper limit is found

X
r�x

�
n

r

�
�ru(1� �u)

n�r =
�

2
(3.12)

The resulting con�dence interval is central with equal probabilities in the tails of the

distribution.

Once the limits of � are found from the above equations, the corresponding limits for p

can be found by substituting �l and �u for � in p = 1� (1� �)
1
k .
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3.2 Bayesian Interval Estimation

A Bayesian interval estimate is called a credible interval. Since in Bayesian estimation

both the data and the parameter are are random , the credible set is based on the posterior

distribution of the parameter.

Given the observation X = x the interval [Pl; Pu] is said to be a 100(1 � �)% credible

interval for P if the posterior probability of X being in

P (Pl � x � Pu) = 1� �

Z Pu

Pl

f(pjx; �; �) = 1� �

In practise Pl and Pu may be determined using an equal tail or the Highest Posterior

density (HPD) construction method.

The equal tail method is such that

Z Pl

0

f(pjx; �; �) = �

2

and

Z 1

Pu

f(pjx; �; �) = �

2

The resulting interval (Pl; Pu) serves as the 100(1��)% credible interval for P. This equal

tail interval is preferred because it is invariant under transformation.

On the other hand, a 100(1 � �)% HPD interval is a region that satis�es the following

two conditions.

1. The posterior probability of the region is 100(1� �).

2. The minimum density of any point within that region is equal to or larger than the

density of any point outside that region.
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The HPD is an interval in which most of the distribution lies. it is preferred because it

is smallest interval.

3.2.1 Bayesian Credible Interval

In the case, the observations are said to be binomial distributed while the parameter P

is assumed to be Beta distributed.

f(x=p) =

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (3.13)

while

f(p) =
p��1(1� p)��1

B(�; �)
(3.14)

By use of Bayes theorem

f(x; p) =

�
n

x

�
B(�; �)�1p��1(1� p)kn�kx+��1[1� (1� p)k]x (3.15)

The marginal of x can therefore be found by

f(x) =

Z 1

0

�
n

x

�
B(�; �)�1p��1(1� p)kn�kx+��1[1� (1� p)k]xdp (3.16)

using of the binomial theorem

[1� (1� p)k] becomesPx
j=0

�
x
j

�
(�1)j(1� p)kj

f(x) =

�
n

x

�
B(�; �)�1

xX
j=0

�
x

j

�
(�1)j

Z 1

0

p��1(1� p)kn+kj�kx+��1dp (3.17)

f(x) =

�
n

x

�
B(�; �)�1

xX
j=0

�
x

j

�
(�1)jB(�; kn+ kj � kx+ �) (3.18)

The posterior of p can therefore be evaluated as

f(p=x) =
p��1(1� p)kn�kx+��1[1� (1� p)k]xPx
j=0

�
x
j

�
(�1)jB(�; kn+ kj � kx+ �)

(3.19)
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Thus, the equal tail 100(1� �)% credible interval (Pl; Pu)is given by the solution to

Z Pl

0

p��1(1� p)kn�kx+��1[1� (1� p)k]xPx
j=0

�
x
j

�
(�1)jB(�; kn+ kj � kx+ �)

=
�

2
(3.20)

and Z 1

Pu

p��1(1� p)kn�kx+��1[1� (1� p)k]xPx
j=0

�
x
j

�
(�1)jB(�; kn+ kj � kx+ �)

=
�

2
(3.21)

However, the HPD 100(1� �)% is given by

Z Pu

Pl

p��1(1� p)kn�kx+��1[1� (1� p)k]xPx
j=0

�
x
j

�
(�1)jB(�; kn+ kj � kx+ �)

= 1� � (3.22)

3.2.2 Empirical Bayes credible interval

Group testing is only economically viable if the proportion of the defectives is small, we

would like to use a family of prior distributions appropriate for small p. the Beta(1; �)is

such a family. this is because for large values of of � the majority f the probability

distribution of the random variable p is close to zero.

Recall that

f(x=p) =

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x (3.23)

Now that

f(p) = �(1� p)��1 (3.24)

then

f(x; p) = �

�
n

x

�
(1� (1� p)k)x((1� p)k)n�x(1� p)��1 (3.25)

Thus the marginal of x

f(x) = �

�
n

x

�Z 1

0

[1� (1� p)x](1� p)kn�kx+��1dp (3.26)

Using the change of variable technique

Let u = (1� p)k

which implies that p = 1� u
1
k

56



dp = �1
k
(1� p)1�kdu

thus

f(x) = �k�1
�
n

x

�Z 1

0

un�x+
�
k
�1(1� u)xdu (3.27)

f(x) = �k�1
�
n

x

�
B(n� x+

�

k
; x+ 1) (3.28)

f(x) = �k�1
�(n+ 1)

�(n� x+ 1);

�(n� x+ �
k
); )

�(n+ �
k
+ 1)

(3.29)

Maximizing the above equation with respect to � may be done numerically by solving

@

@�
(f(xj�)) = 0

@

@�
[�k�1

�(n+ 1)

�(n� x+ 1);

�(n� x+ �
k
); )

�(n+ �
k
+ 1)

] (3.30)

Taking the logarithms

0 =
@

@�
flog � + log[�(n� x+

�

k
)]� log[�(n+

�

k
+ 1)]g

= ��1 + k�1[ (n� x+
�

k
)�  (n+

�

k
+ 1)]

(3.31)

Where  represents the digamma function.

Thus �̂ is the solution to 3.31. which is the optimal � and therefore � can be replaced

by �̂.

Hence, the posterior of p can be given as

f(p=x) =
�̂
�
n
x

�
(1� (1� p)k)xj((1� p)k)n�x+�̂�1

�̂k�1 �(n+1)
�(n�x+1);

�(n�x+ �̂
k
);)

�(n+ �̂
k
+1)

(3.32)

f(p=x) = k
�(n+ �̂

k
+ 1)

�(n� x+ �̂
k
);�(x+ 1)

(1� (1� p)k)xj((1� p)k)n�x+
^��1 (3.33)

Thus, the equal tail 100(1� �)% credible interval (Pl; Pu)is given by the solution to

Z Pl

0

�̂
�
n
x

�
(1� (1� p)k)xj((1� p)k)n�x+�̂�1

�̂k�1 �(n+1)
�(n�x+1);

�(n�x+ �̂
k
);)

�(n+ �̂
k
+1)

=
�

2
(3.34)
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and Z 1

Pu

�̂
�
n
x

�
(1� (1� p)k)xj((1� p)k)n�x+�̂�1

�̂k�1 �(n+1)
�(n�x+1);

�(n�x+ �̂
k
);)

�(n+ �̂
k
+1)

=
�

2
(3.35)

However, the HPD 100(1� �)% is given by

Z Pu

Pl

�̂
�
n
x

�
(1� (1� p)k)xj((1� p)k)n�x+�̂�1

�̂k�1 �(n+1)
�(n�x+1);

�(n�x+ �̂
k
);)

�(n+ �̂
k
+1)

= 1� � (3.36)
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Chapter 4

Conclusion and recommendation

At a glance this thesis has put together seven point estimators, four criteria of choosing

k, the group size, and six interval estimators. The maximum likelihood is the traditional

way of estimating the proportion in group testing. With its limitations such as its biased

nature, two bias corrected estimators are proposed and the case where prior information

is available then Bayesian estimation makes more sense in-order to make use of the

information. With Bayesian analysis we get the additional four di�erent point estimators.

With the realization that the bene�ts of group testing are highly dependent on the group

size and with ambiguity of how to go about their choice four ways of choosing them

are in the literature. For the Interval estimates we have three Wald interval based on

di�erent variances, exact interval estimate and the �nally two ways of going about interval

estimation in Bayesian.

Thus with a researcher considering the use of group testing in his/her estimation quest,

he/she might come to a point of confusion due to the large number of estimators available

and how speci�cally t design the experiment with four di�erent ways of choosing from.

This project, also puts into consideration of development of the theory.

4.1 Experiment Design

From this review we can conclusively conclude that choosing your group sizes based on

reducing MSE criteria is the best if the researcher has enough prior information of the
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phenomenon. This is because this method guarantees precision of the estimator. How-

ever, this method requires the researcher to have a prior proportion or at least its upper

bound which is hard to be certain of in the most cases of estimation problem. In the case

when the researcher lacks this vital information he/she can spit his/her testing procedure

into at least two testing stages and adapt/adjust the group size from one testing phase to

the next using all the accumulated data to obtain a �nal group size based on all the data

collected. This method guarantees precision since it ends up with an optimal group size

no matter the choice of the prior proportion. This adaptive method bears the limitation

that it requires a lot of resources and is mathematical computation intensive with the

researcher optimization the MSE at every stage/phase of testing.

For instance, consider a case where the researcher can only a�ord 30 test (n=30) and

the proportion is p=0.05 (unknown to the researcher), he/she chose the prior proportion

to be p0 = 0:025 then by optimizing MSE he/she obtains a group size of 38 (k=38).

Perhaps it is also important to not that if the prior proportion is bigger than the true

proportion the the group size used will be greater that optimal and poses more threat

when than when the prior is less than the true proportion in-terms of precision (MSE).

Thus was the bases of at the upper bound above. If x count the number of groups that

test positive, then x is distributed as a binomial random variable with parameters 30 and

1� (1� p)k = 0:876: Suppose that x=25 is observed the MLE would be p̂ = 0:046 with

MSE = 0:009156 estimated by 0.003973 with p replaced by p̂ everywhere.

On the other hand, if the researcher decides that his/her prior information is not su�-

cient and decide to adapt the group size k using two stages of testing and thus the half

of test (n=15) performed at the �rst stage with the same conservative prior p0 = 0:025.

Then by optimizing the MSE he/she obtains the �rst stage group size to be k1 = 23:

If x count the number of groups that test positive, then x is distributed as a binomial

random variable with parameters 15 and 1 � (1 � p)k = 0:6926: Suppose that x=10 is

observed then the intermediate proportion would be p̂1 = 0:0466: Using this estimate as

the prior proportion to determine the second testing stage group size k2 and optimizing

the MSE: The second stage group size would be k2 = 13 If x count the number of groups
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that test positive, then x is distributed as a binomial random variable with parameters

15 and 1� (1� p)k = 0:4867: Suppose that x=7 is observed the adaptive MLE would be

p̂A = 0:04682 with the true MSE = 0:000215 estimated by 0.000182 with p̂A in place of

p.

Thus, it is clear that the adaptive method is superior with not onlyMSE(p̂A)e <
^

MSE(̂ )p

but also that ^
MSE(̂ A)p is closer to MSE(p̂A) than

^
MSE(̂ A)p is to MSE(p̂): However, it is

computationally intensive and may not be attractive to non mathematicians.

It is also interesting to note that in this example the advantage of this adaptive estima-

tion increases if the cost of the individuals is high. Whereas in both adaptive and non

adaptive method estimates use the same number of test (n=30) the non adaptive uses

1140 (30�38) individuals units, whereas the adaptive estimate uses 540 (15�23+15�13):
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4.2 Point estimates

In the case where the researcher is interested on the point estimate of proportion, he/she

will be required to choose on the seven estimates discussed in this work. The most

traditional estimate is MLE: in the case where the choice of group size is determined

by the technical issues of the testing procedure, then the next thing for the researcher

to consider is the accuracy (bias) of the estimate. The MLE is positively biased. Bias

increases with increase of the true proportion, reduces as n increases and is increases

as group size increases. Thus the easy logic would to keep the group size small and

perform relatively many tests (n). This way the cost are hugely increases losing the

primary advantage of group testing. In such a dilemma the researcher would be advised

to use one of the bias corrected estimates discussed in this work. The Chaubey Li.

biased corrected estimate is however highly dependent on the group size and thus i would

recommend its use only if the researcher is con�dent that he/she is con�dent that the

group size used is optimal, otherwise the bias is hardly corrected and in some cases over

corrected as illustrated by table 2.3 with some cases of negative bias. On the other hand

if the researcher have doubts that the group sizes may di�er from the optimal group,

he/she is left to use the Burrows bias corrected MLE which performs well in p � 0:25

and n � 200 as illustrated by table 2.4. Outside this region the burrows bias corrected

estimate produces negative bias (over corrects the MLE) as shown in �gure 2.4.

The Bayesian estimates are characterized with randomizing the proportion. Thus if the

researcher can assign the proportion a probability distribution function he/she would

use any Bayes estimates.Traditionally the proportion is believed to be a beta random

variable. Thus by the use of classical Bayesian approach we get an additional two hyper-

parameters to be estimated as illustrated in this work. However, using the empirical

Bayesian approach then distribution is believed to be beta, generally when � < � as

shown by �gure 2.7 but speci�cally beta with � = 1 and large �:. With the posterior

mean a squared error loss function has been used. Additional empirical estimate ca be

obtained using di�erent loss function. In this work two scaled loss function have been

used to obtain their respective empirical Bayesian estimates. To illustrate the choice of
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the point estimates we illustrate an experiment done in the use on estimation of Hepatits

C estimation in the USA. Hepatits C(HCV) is a viral infection that causes cirrhosis and

cancer of the liver. Currently the worldwide sero-prevalence of HCV is estimated to be

around 3%. Cost associated with testing HCV are very high, this makes HCV screening

experiments excellent candidates for group testing. Neill and Conradie (1992, 1994)

proposed the use of group testing to screen for the prevalence of HCV. They determine

that commonly used kits could reliably test detect the HCV anti-bodies for group sizes

k � 8: In this application, biological constraint associated with the testing procedure

prohibit large group sizes.

Liu (1997) reported 1875 blood donors screened for HCV.using the group size k=5 and

in addition, researchers tested 1875 serum individually k=1 so that he could examine the

e�ciency of group testing.

Individual test Pooled tests

Number of pools 1875 375

Positive pools 42 37

Estimate of P 0.0224 p̂mle = 0:02056

p̂eb = 0:020557

With n=375 , k=5 and x=37 the empirical Bayes estimate of � is given by

�̂ = argmax��1f(�jx = 37) � 48:13

It is clearly observed from the above table p̂mle and p̂eb = 0:020557 provided similar

point estimates. Because of a relatively large n one might expect this. However, if the

researcher used the bias corrected estimates to correct bias of MLE then he/she would

have ended up with

Chaubey Li p̂� k�1
2nk2

[ x=n

1�x=n(k�1)=k ] = 0:0205391

Burrows 1� [2k(n�x)+k�1
2kn+k�1

]1=k = 0:0205368

The above two estimators seems to perform equally the same this is due to the fact that

n is relatively large (n=375) and probably the fact the n used was close to optimal (well

designed).
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4.3 Interval Estimation.

This thesis reviewed a total of six interval estimates. First we look at he three Wald

intervals generated from the asymptotic variance of the estimated proportion, the exact

variance of the estimated variance and a stabilized variance (a variance that is free of the

estimate of proportion). For this purpose of comparison we name them Wald, Thompson

and VSI (Variance Stabilized Interval). To measure their performance we use an exam-

ple of data obtained from an experiment in Argentina to study the e�ects of the Mal

Rio Cuarto (MRC) virus. The goal of this experiment was to estimate the probability

of virus transmission in natural Macropterous plant hoppers populations that are known

sources of virus. A total of n = 24 plants were used each allocated k=7 plant-hoppers. At

the end of the experiment x=3 plant were observed as infected yielding a point estimate

p̂ = 1� (1� 3
24
)1=7 � 0:019. The table 4.3 shows the three interval estimates obtained.

Interval 95% Length

Wald (-0.0023, 0.0401) 0.0424

Thompson (-0.0028, 0.0406) 0.0434

VSI 0.0037, 0.0465 0.0428

From table 4.3 it is clear that VSI overcomes the biggest shortcoming of the other two

of producing a negative endpoints. Thus we can con�dently conclude that the VSI is a

superior interval estimates and recommend its use in place of the Wald and the Thompson

interval estimates.

The exact and Bayesian interval estimates can be used depending on the researcher needs.
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