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ABSTRACT 

The transition from web 1.0 to web 2.0 has enabled direct interaction between users and its 

environment such as social media networks. In this research paper we have analyzed algorithms 

for sentiment analysis which can be used to utilize this huge information. The goals of this 

research is to device a way of obtaining social network opinions, extracting features from 

unstructured text and assign for each feature its associated sentiment in a clear and efficient way. 

In this project we have applied naïve bayes, support vector machines and maximum entropy for 

analysis and produced an analytical report of the three qualitatively and quantitatively. We 

performed the project empirically and analyzed the resulting data using an excel tool so as to 

obtain comparative analysis of the three algorithms for classification. 
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CHAPTER ONE: 

 

INTRODUCTION 

1.0 Background 

       The proliferation of web-enabled devices, including desktops, laptops, tablets, and mobile 

phones, enables people to communicate, participate and collaborate with each other in various 

web communities, forums, social networks and blogs. Companies and businesses use 

technology for sales and marketing and the consumers now search for opinions online before, 

during, and after a purchase. The next step for brands is finding out whether people are 

talking positively or negatively about their brand, and why. Some online ratings provide a 

number but not the reasoning behind it, and may only present half of the story, Diana 

(2011).Facebook and twitter actually welcome and encourage users to support causes for 

political and/or social change. Many times social media is a voice that provides too much 

information which the people crave.  

       Ignoring these opinions on social media and internet use by consumers and not taking the 

time to understand how adversarial forces are using it to further their causes will not decrease 

its effectiveness and use. U.S. president barrack Obama has eight million followers and uses 

his account to update followers on his daily activities and thoughts. David Carr 2008. 

           The same way that governments and politicians use social media to spread their 

influence, communicate to supporters, and fundraise, business companies also use social 

media for the same purposes. Social media applications are a triple-edged sword that can 

create addictive information-seeking behaviors that break down social-norm behaviors of its 

users, encourage users to generate and report information that normally would have been kept 

private, and ultimately provide users with increased access to information that could be used 

to manipulate the user's perception of a product and the user's environment. Such postings 

have also mobilized consumers to defect a product or service offered by companies.  
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Figure no.1 pew research centers internet surveys 2014 

1.1 Problem statement 

The vast amount of information posted in the social media has not been utilized by institutions 

for intelligence purposes on the products and services they offer. They have not employed a 

mechanism that can effectively discover market intelligence for supporting decision makers 

by establishing a monitoring system to track external opinions on different aspects of a 

business in realtime. The challenge is caused by huge amounts of data available, web data is 

unstructured semi structured and heterogeneous and information about the same product is 

spread over a large number of websites (Paschke etal 2013). Thus the need to automate this 

process arises and sentiment analysis is the answer to this need. There is also a challenge for 

the organizations to acquire evidence accurately from the mass data available for evidence. 
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1.2 Purpose 

             The main aim of performing this research is to accurately determine the attitude on 

opinions by users of social network sites and their relationship to customer preference on 

products and services to enable organizations improve on their performance. 

1.3 Objective of the study 

             The study aims at enriching the knowledge and understanding on sentiment analysis 

.specifically the main objectives are: 

 To develop a technique to be used by Kenyan businesses to proactively harvest and 

store tweeter data on the social network. 

 To analyze the machine learning algorithms used and evaluate their suitability for 

classifying tweeter data for sentiment analysis. 

 Develop classifiers models using the algorithms adopted in the above to extract 

features that allow them to classify opinions into the negative, positive or neutral. 

 Compare the resulting data and recommend the algorithm with accurate results based 

on a topic. 

1.4 Research questions 

In this study the main questions to answer are: 

 Do Kenyan businesses have a technique for harvesting data on social networks? 

 Is there any analysis technique used to generate the data? 

 Are there any classifier for these data generated from social networks use to curb the 

vice? 

 Which technique available can generate an accurate result so that it can be adopted for 

use by businesses in Kenya?  

1.5 Significance of study 

The significance of this project research will contribute towards ensuring that business 

institutions transcend from simple document retrieval to useful knowledge discovery from the 
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huge amount of textual data in order to assist in identifying comments on product and services 

for improvement and value addition to enable them to be competitive. 

1.6 assumptions and limitations 

 The sentiment analysis process was not able to recognize sarcastic opinions or those 

reported ironically 

 The project was only handling opinions based in the English and Kiswahili languages. 

1.7 Scope  

In this study we intend to undertake this task by considering various views and preferences of 

consumers from a telecommunications company in Kenya. The research was only seeking to 

extract opinions from tweets to the company based on their tariffs, data bundles and any other 

comment which may be negative or positive to the company products,  

1.8 Research justification 

 Accurately and precisely organize feedback on the social media sites for decision 

making by business institutions. 

 Incorporate all Kenyan languages (English and Kiswahili). 
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CHAPTER TWO. 

LITERATURE REVIEW 

2.0 Social Networks 

 

Social networking site refers to web-based tools and services that allow users to create and 

share content and information. These tools are ‘social’ in the sense that they are created in 

ways that enable users to share and communicate with one another (bohler-muller & merwe, 

2011. Facebook started in 2004 and now connects over five hundred million users worldwide. 

Approximately three hundred and fifty million of these users are outside the United States; 

two hundred and fifty million users access facebook from their mobile devices in sixty 

countries. YouTube was founded in 2005, and today users from around the world upload over 

thirty-five hours of video every minute. Twitter was founded in 2006, and an organization or 

person with a twitter account can immediately connect to millions of followers, sending short 

messages of one hundred and forty characters or less (called tweets). This service rapidly 

gained worldwide popularity, with more than 100 million users who in 2012 posted 340 

million tweets per day. The service also handled 1.6 billion search queries per day. In 2013 

twitter was one of the ten most-visited websites, and has been described as "the sms of the 

internet. As of may 2015, twitter has more than 500 million users, out of which more than 302 

million are active users. With the use of smart cell phones and other mobile computing and 

internet-capable devices, people have the ability to access online content and send/receive 

instant messages anytime and anywhere there is an internet connection or cell phone signal. 

2.1 Machine learning 

Machine learning focuses on the development of computer programs that can teach 

themselves to grow and change when exposed to new data. The process of machine learning 

is similar to that of data mining. The documents can be classified by three ways, un-

supervised, supervised and semi supervised methods. Many techniques and algorithms have 

been proposed recently for the clustering and classification of electronic documents. The 
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automatic classification of documents into predefined categories has observed as an active 

attention, as the internet usage rate has quickly enlarged. 

The task of automatic text classification have been extensively studied and rapid progress 

seems in this area, including the machine learning approaches such as bayesian classifier, 

decision tree, k-nearest neighbor(KNN), support vector machines(SVMS), neural networks, 

latent semantic analysis, rocchio’s algorithm, fuzzy correlation and genetic algorithms.  

Normally supervised learning techniques are used for automatic text classification, where pre-

defined category labels are assigned to documents based on the likelihood suggested by a 

training set of labeled documents.  

2.1.1 Supervised learning 

Supervised learning is the type of machine learning that takes place when the correct output 

results (or target variables) for the training instances to be input are known. The objective of 

training a machine learning algorithm is to find the model (that is, a rule or function) that 

maps the inputs into the known output values (hidden markov 2008). Once the learning 

process is complete and we have a workable model, it can be applied to new input data to 

predict the expected output where, unlike the training dataset, the target value are not known 

in advance. In supervised learning the variables under investigation can be split into two 

groups: explanatory variables and dependent variables. The values of the dependent variable 

must be known for a sufficiently large part of the dataset. Supervised learning is also the most 

common technique for training neural networks and decision trees:  

2.2.2 Unsupervised learning 

The model is not provided with the "correct results" for a dataset on which to train. Since 

unlabeled examples are given to the learner, there is no feedback - neither error nor reward - 

to evaluate a potential solution. The goal is to have the computer learn how to do something 

even though we don't explicitly tell it how to accomplish that task. In unsupervised learning 

situations, all variables are treated in the same way. There is no distinction between 

explanatory variables and dependent variables. However, there is still some objective to 

achieve, which might be a general objective, such as data reduction, or a more specific goal 

like finding clusters.  
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2.2.3 Reinforcement learning 

Reinforcement learning is concerned with how an agent ought to take actions in an 

environment so as to maximize some notion of long-term reward. Reinforcement learning 

algorithms attempt to find a policy that maps states of the world to the actions the agent ought 

to take in those states. Reinforcement learning differs from the supervised learning problem in 

that correct input/output pairs are never presented, nor sub-optimal actions explicitly 

corrected. 

2.2 Text Classification Algorithms 

Classification is a data mining (machine learning) technique used to predict group 

membership for data instances. For example, you may wish to use classification to predict 

whether the weather on a particular day will be “sunny”, “rainy” or “cloudy”. Popular 

classification techniques include decision trees and neural networks. 

2.2.1 Clustering 

In this type of learning, the goal is to find similarities in the training data and to partition the 

dataset into subsets that are demarcated by these similarities. The expectation that the most 

significant clusters discovered by these data-driven procedures are consistent with our 

intuitive classification is often, but not always, satisfied hu and liu (2004). Although the 

clustering algorithm won't assign appropriate names to these clusters, it can produce them and 

then use them to anticipate similarities expected in new examples by classifying them into the 

most appropriate cluster. This data-driven approach can work well when sufficient data is 

available. For instance, social information filtering algorithms, such as those used by 

amazon.com to recommend books, are based on finding similar groups of people and then 

assigning new users to these groups for the purpose of making recommendations. K-means is 

one of the simplest unsupervised clustering algorithms that solve well known clustering 

problems. The k means algorithm clusters data by trying to separate samples into n groups of 

equal variance, minimizing the "inertia" or "within-cluster sum-of-squares" criterion. This 

algorithm requires the number of clusters to be specified. K-means can scale to a large 

number of samples and has been used in a wide range of application areas across many 

different fields. 
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2.2.2 Decision tree learning 

Decision tree learning is the construction of a decision tree from class-labeled training tuples 

(b. Pang and l. Lee 2008). The decision tree rebuilds the manual categorization of training 

documents by constructing well-defined true/false-queries in the form of a tree structure. In a 

decision tree structure, leaves represent the corresponding category of documents and 

branches represent conjunctions of features that lead to those categories. The well-organized 

decision tree can easily classify a document by putting it in the root node of the tree and let it 

run through the query structure until it reaches a certain leaf, which represents the goal for the 

classification of the document. The main advantage of decision tree is its simplicity in 

understanding and interpreting, even for non-expert users. However, when there are a small 

number of structured attributes, the performance, simplicity and understandability of decision 

trees for content-based models are all advantages. The major risk of implementing a decision 

tree is that it over fits the training data with the occurrence of an alternative tree that 

categorizes the training data worse but would categorize the documents to be categorized 

better.  

2.2.3 Decision rules classification  

Decision rules classification method uses the rule-based inference to classify documents to 

their annotated categories. The algorithms construct a rule set that describe the profile for 

each category. Rules are typically constructed in the format of “if condition then conclusion”, 

where the condition portion is filled by features of the category, and the conclusion portion is 

represented with the category’s name or another rule to be tested. The rule set for a particular 

category is then constructed by combining every separate rule from the same category with 

logical operator, typically use “and” and “or”. During the classification tasks, not necessarily 

every rule in the rule set needs to be satisfied. In the case of handling a dataset with large 

number of features for each category, heuristics implementation is recommended to reduce 

the size of rules set without affecting the performance of the classification. . Besides, the 

learning and updating of decision rule methods need extensive involvement of human experts 

to construct or update the rule sets. 
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2.2.4 Artificial neural networks  

A neural network usually involves a large number of processors operating in parallel, each 

with its own small sphere of knowledge and access to data in its local memory. Typically, a 

neural network is initially "trained" or fed large amounts of data and rules about data 

relationships .a program can then tell the network how to behave in response to an external 

stimulus (for example, to input from a computer user who is interacting with the network) or 

can initiate activity on its own (within the limits of its access to the external world) 

(mukkamala, 2003). 

Neural networks, whose elementary structures are far more complicated than the 

mathematical models used for artificial neural networks. The dependent variable, y, is the 

target variable that we are trying to understand, classify or generalize. The vector x is 

composed of the input variables, x1, x2, x3 etc., that are used for that task. Neural networks 

have been used both in anomaly intrusion detection as well as in misuse intrusion detection. 

In the first approach of neural networks (Debar, 1992) for intrusion detection, the system 

learns to predict the next command based on a sequence of previous commands by a user.  

2.2.5 Fuzzy correlation  

Fuzzy correlation deals with fuzzy information or in-complete data, and also converts the 

property value into fuzzy sets for multiple document classification. The challenges of 

multiclass text categorization using one-against-one fuzzy support vector machine with 

Reuter’s news as the example data, and shows better results using one-against-one fuzzy 

support vector machine as a new technique when compare with one-against-one support 

vector machine. Presented the improvement of decision rule and design a new algorithm of F-

K-NN (fuzzy K-NN) to improve categorization performance when the class distribution is 

uneven, and show that the new method is more effective. 

2.2.6 Genetic algorithm  

Genetic algorithm finds optimum characteristic parameters using the mechanisms of genetic 

evolution and survival of the fittest in natural selection. Genetic algorithms make it possible to 

remove misleading judgments in the algorithms and improve the accuracy of document 

classification. This is an adaptive probability global optimization algorithm, which simulated 
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in a natural environment of biological and genetic evolution, and is widely used for their 

simplicity and strength. Several researchers have used this method for the improvement of the 

text classification process. In the experimental analysis, they show that the improved method 

is feasible and effective for text classification. 

2.3 sentiment analysis 

Sentiment analysis is a machine learning approach in which machines analyze and classify the 

human’s sentiments, emotions, opinions etc about some topic which are expressed in the form 

of either text or speech. The textual data available in the web is increasing day by day. In 

order to enhance the sales of a product and to improve the customer satisfaction, most of the 

on-line shopping sites provide the opportunity to customers to write reviews about products. 

These reviews are large in number and to mine the overall sentiment or opinion polarity from 

all of them, sentiment analysis can be used. Manual analysis of such large number of reviews 

is practically impossible. Therefore automated approach of a machine has significant role in 

solving this hard problem. 

2.3.1 Feature extraction in sentiment analysis 

Since most of sentiment analysis approaches use or depend on machine learning techniques, 

the salient features of text or documents are represented as feature vector. The following are 

the features used in sentiment analysis. 

Term presence or term frequency: in standard information retrieval and text classification, 

term frequency is preferred over term presence. However, pang et al. (2002), in sentiment 

analysis for movie reviews, show that this is not the case in sentiment analysis. Pang et al. 

Claim that this is one indicator that sentiment analysis is different from standard text 

classification where term frequency is taken to b e a go o d indicator of a topic. Ironically, 

another study by yang et al. (2006) shows that words that app ear only once in a given corpus 

are good indicators of high-precision subjectivity. Term can be unigrams, bi-grams or other 

higher-order n-grams. Whether unigrams or higher-order n-grams give better results is not 

clear. Pang et al.(2002) claim that unigrams outperform bi-grams in movie review sentiment 

analysis, but Dave et al. (2003) report that  bigrams and trigrams give better product-review 

polarity classification. 
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Pos (part of speech) tags: 

Parts of speech are used to disambiguate sense which in turn is used to guide feature selection 

(pang and lee, 2008). For example, with pos tags, we can identify adjectives and adverbs 

which are usually used as sentiment indicators (Turney, 2002). Turney himself found that 

adjectives performed worse than the same number of unigrams selected on the basis of 

frequency. 

Syntax and negation: 

Collocations and other syntactic features can be employed to enhance performance. In some 

short text (sentence-level) classification tasks, algorithms using syntactic features and 

algorithms using n-gram features were found to give same performance (pang and lee, 

2008).negation is also an important feature to take into account since it has the potential of 

reversing a sentiment (pang and lee, 2008).There are attempts to model negation for better 

performance (Das and Chen, 2001, Na et al., 2004).Na et al. (2004) report 3% accuracy 

improvement for electronics product reviews by handling negation. Note also that negation 

can b e expressed in more subtle ways such as sarcasm, irony and other polarity reversers. 

2.4 Text classification techniques 

2.4.0 Support vector machine (SVM)  

Support vector machines (SVMS) are one of the discriminative classification methods which 

are commonly recognized to be more accurate. The SVM classification method is based on 

the structural risk minimization principle from computational learning theory. The idea of this 

principle is to find a hypothesis to guarantee the lowest true error. Besides, the SVM are well-

founded that very open to theoretical understanding and analysis. The SVM need both 

positive and negative training set which are uncommon for other classification methods. 

These positive and negative training set are needed for the SVM to seek for the decision 

surface that best separates the positive from the negative data in the n-dimensional space. The 

document representatives which are closest to the decision surface are called the support 

vector. The performance of the SVM classification remains unchanged if documents that do 

not belong to the support vectors are removed from the set of training data. The SVM 

classification method is outstanding from the others with its outstanding classification 
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effectiveness. However, the major drawback of the SVM is their relatively complex training 

and categorizing algorithms and also the high time and memory consumptions during training 

stage and classifying stage. Besides, confusions occur during the classification tasks due to 

the documents could be a notated to several categories because of the similarity is typically 

calculated individually for each category. 

2.4.1 Naïve bayes algorithm  

Naïve bayes classifier is a simple probabilistic classifier based on applying bayes’ theorem 

with strong independence assumptions. A more descriptive term for the underlying 

probability model would be independent feature model. These independence assumptions of 

features make the features order is irrelevant and consequently that the presence of one feature 

does not affect other features in classification tasks. These assumptions make the computation 

of bayesian classification approach more efficient, but this assumption severely limits its 

applicability. Depending on the precise nature of the probability model, the naïve bayes 

classifiers can be trained very efficiently by requiring a relatively small amount of training 

data to estimate the parameters necessary for classification. Because independent variables are 

assumed, only the variances of the variables for each class need to be determined and not the 

entire covariance matrix. 

Maximum entropy 

The maxent classifier (known as a conditional exponential classifier) converts labeled feature 

sets to vectors using encoding. This encoded vector is then used to calculate weights for each 

feature that can then be combined to determine the most likely label for a feature set. 

Kaufmann Etal (2012) argued that a classifier is parameterized by a set of x {weights}, which 

is used to combine the joint features that are generated from a feature-set by an x {encoding}. 

In particular, the encoding maps each c {(feature set, label)} pair to a vector. The probability 

of each label is then computed using the following equation: 

 

P (fs\label) =     dot prod (weights, encode (fs, label)) 

                    Sum (dot prod (weights,encode(fs,l))forlinlabels) 
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 2.4 Previous Sentiment Analysis Related Research  

Kuat yessenov and sasa misailovic (2009) analyzed the sentiment of social network comments 

on articles from digg as text corpora. He evaluated the fitness of different feature selection 

and learning algorithms (supervised and unsupervised) on the classification of comments 

according to their subjectivity (subjective/objective) and their polarity (positive/negative). 

The results showed that simple bag-of-words model can perform relatively well, and it can be 

further refined by the choice of features based on syntactic and semantic information from the 

text. 

Bo pang and lillian lee (2008) classified documents not by topic, but by overall sentiment, 

e.g., determining whether a review is positive or negative. Using movie reviews as data, the 

results produced via machine learning techniques are quite good in comparison to the human 

generated baselines. In terms of relative performance they reported that, naive bayes tends to 

do the worst and svms tend to do the best, although the differences aren’t very large. On the 

other hand, they were not able to achieve accuracies on the sentiment classification problem 

comparable to those reported for standard topic based categorization, despite the several 

different types of features they tried. Unigram presence information turned out to be the most 

effective; in fact, none of the alternative features they employed provided consistently better 

performance once unigram presence was incorporated. Interestingly, though, the superiority 

of presence information in comparison to frequency information in their setting contradicted 

previous observations made in topic classification work (Mccallumand Nigam, 1998). 

Barbosa and Feng (2010) used a two-phased approach to twitter sentiment analysis. The two 

phases are: 1) classifying the dataset into objective and subjective classes (subjectivity 

detection) and 2) classifying subjective sentences into positive and negative classes (polarity 

detection). Suspecting that the use of n-grams for twitter sentiment analysis might not be a 

good strategy since twitter messages are short, they use two other features of tweets: Meta 

information about tweets and syntax of tweets. For meta-info, they use pos tags (some tags are 

likely to show sentiment, e.g. Adjectives and interjections) and mapping words to prior 

subjectivity (strong and weak), and prior polarity (negative, positive and neutral). The prior 

polarity is reversed when a negative expression precedes the word.  

Apart from real-life applications, many application-oriented research papers have also been 

published. For example, in (liu et al., 2007), a sentiment model was proposed to predict sales 
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performance. In (Mc Glohon, Glance and Reiter, 2010), reviews were used to rank products 

and merchants. In (Tumasjan et al., 2010), twitter sentiment was also applied to predict 

election results. In (Chen et al., 2010), the authors studied political standpoints. In (Yano and 

smith, 2010), a method was reported for predicting comment volumes of political blogs. In 

(Asur and Huberman, 2010; Joshi et al., 2010;  
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CHAPTER THREE. 

3.0 METHODOLOGY 

3.1 Introduction. 

The research approach in this project is an empirical study of social network analysis of 

tweeter data. These study closely examined the accuracy of analyzed data available and gather 

clues to what is occurring and why. The study also performed analysis and discussion on how 

to improve guidance to the business organizations. The data collection method was  a 

combination of both quantitative and qualitative .The project  was conducted using a   survey 

of sample random tweets based on a subject.  

3.2 Sources of Data 

Primary data was used to get facts on the subject. Primary data included data collected from 

actual tweeter pages using a tweeter API which enabled us to pull data in real time observing 

analyzed data from the social network. The process was conducted in three rounds on a 

subject topic using the same sentiment opinions obtained from the tweets to ensure that the 

algorithms do not produce varying results when subjected to the same data. 

3.3 Data Analysis Methods 

The aim of data analysis is to examine and organize data in a way that provides answers to 

research question and ensures that the research objectives are met. This process involved Data 

analysis of the information obtained in the social network by using the algorithm to generate 

an accurate result of the information required for use.   

3.4 Data Analysis Tools 

The analysis process of the data was done by using Microsoft office  excel tool whereby all 

the data obtained from the experiment will be entered and  reports in terms of graphs ,tables 

and pie charts will be generated. 
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3.5 Development Approach 

 

Iterative development model 

 

 

Figure No 2. Diagram of iterative design model for software development 

 

In incremental model the whole requirements is divided into various builds. During each 

iteration, the development module will go through the requirements, design, implementation 

and testing phases. Each subsequent release of the module adds function to the previous 

release. The process continues till the complete system is ready as per the requirements. 
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The key to successful use of an iterative software development lifecycle is rigorous validation 

of requirements, and verification & testing of each version of the software against those 

requirements within each cycle of the model. As the software evolves through successive 

cycles, tests have to be repeated and extended to verify each version of the software. 

 

Architectural Design 

 Extraction of posts from social media using an extraction script. Twitter API was used 

to collect tweets and then stored in a MSQL database. 

 Preprocessing and cleaning of the data. 

 The data is then divided into 75% for training and 25% for test data set. 

 Training the data so as to come up with a model that can be used to classify new and 

pure tweets. 

 Using the model generated to classify posts which extract features from the tweets 

collected and classifies them into the three polarities i.e. negative, positive and neutral. 

 Results analysis is achieved from the classifiers developed and the conclusions drawn. 

 

Validation of the Prototype 

 Is the technique able to collect data from the social media? 

 Can the classifier be able to train the data collected? 

 Are the features selected for classification and training ideal? 

 Are the results accurate and unfavorably biased towards one sentiment? 

 Can the application developed generate a visual analysis of its performance 

graphically or in charts based on naïve bayes, support vector machines and maximum 

entropy? 
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3.6 Proposed conceptual model  

 

 

 

 

 

 

 

 

 

 

 

 

Figure no.3. Conceptual model of the proposed system 

 

User interface: This part in the system handle the entire information a client wishes to visits 

in order to acquire and input data into the system. The menu bar, task bar and all other system 

needs will be displayed in an easy to navigate way.  

Help module: This module will enable the user to obtain any assistance required to navigate 

the system 

Sentiment classifier: This module enables the client to classify the data based on the subject 

topic and also to assign a negative or positive sign. 

Representation module: This part will enable the vector representation of the text acquired 

from the tweets 

Database .This is the module where the data acquired from the tweets will be stored for 

analysis in the system 
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CHAPTER 4. 

4.0 SYSTEM ANALYSIS DESIGN AND SPECIFICATIONS 

4.1 SOFTWARE REQUIREMENTS AND SPECIFICATIONS 

4.2 Functional requirements 

In order to meet the objectives the application development should be able to do the following 

 Extract posts from twitter and store them in a database for purposes of preprocessing 

and analysis 

 Process the data to remove the low information gain features 

 Train the naïve bayes, maximum entropy and support vector machines to come up 

with a model that can be used to classify new reports 

 Classify the posts using the models developed by extracting the relevant features into 

the three polarities negative, positive, and neutral. 

 Provide visual analytics on the results obtained 

4.20 User Interfaces 

User interface includes various forms and windows. The main window consists of the main 

search bar and a main menu bar with file, edit, view, tools and help. The interface will 

visualize the features and functionalities listed in this document for this prototype as the 

included below not limited to: 

 Drop down menu for various option selections 

 Selection list for filtering results  

 Push buttons for user’s feedback and reclassifying tweets 

 Visual graphs to show results 

 Help button 
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4.21 Retrieving input 

The software retrieves inputs in form of libraries, analysis session duration and tweets. 

4.22 Real-time processing 

The software takes input, process data and display output in real-time. This ensures the data 

provided by tweet is a current view of the tweeter community mood. 

4.23 Sentiment analysis 

This is performed on the keywords within the tweet to determine the overall mood of the 

tweets relative to the topic. The sentiment analysis provides a negative or positive numeric 

sentiment value 
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4.24 Output 

The software must output real-time data in the form of simple charts and histograms. In 

addition, the software may output additional statistics pertaining to a topic. 
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4.3 NON FUNCTIONAL REQUIREMENTS 

4.30 Hardware Interfaces 

The solution makes extensive use of several hardware devices. These devices include; 

 MySQL database server with intensive use of memory space. 

 PHP server with high performance and intensive use for CPU usage. 

 Windows and Linux users’ computers. 

4.31 Communications Interfaces 

Internet connection and a web browser are required in order to make use of several functions 

and to be executed such as searching, viewing and downloading. 

4.32 Software Interfaces 

The prototype launches the portal over the internet and other than the hardware specified in 

the hardware interface section, the software requirements are to support windows operating 

system with support to MySQL, apache and PHP servers. 

4.33 Performance 

The twitter API provide up-to-date information; limited only by the rate of twitter input. The 

software provides prompt analysis of the data using the various software packages available to 

it. The application should be capable of operating in the background should the user wish to 

utilize other applications.  

4.34 Availability  

The software is available at all times on the user’s device desktop or laptop, as long as the 

device is in proper working order. The functionality of the software will depend on any 

external services such as internet access that are required. If those services are unavailable, the 

user should be alerted.  
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4.35 Security  

The software should never disclose any personal information of twitter users, and should 

collect no personal information from its own users. The use of passwords and API keys will 

ensure private use of the twitter API. The programmes will be performed on a password 

protected laptop and desktop to ensure maximum security. 

4.36 Maintainability  

The software should be written clearly and concisely. The code is well documented. Particular 

care will be taken to design the software modularly to ensure that maintenance is easy. 

4.4 USER CLASSES AND CHARACTERISTICS 

This part is to identify various user classes that we anticipate will use the web application. 

User classes will be differentiated based on the use, product functions and features, technical 

expertise, security and privilege levels and educational level. The solution is intended to be 

used by three main different user classes; system administrators, system operators and 

customers or regular users. No special knowledge or skills should be assumed for the part of 

the regular users. Users are not expected to learn or remember a set of commands in order to 

start using the application. The prototype application will be only a web based and then for 

the product versions there will be desktop versions. The following clearly describes a 

visionary role for each participant.  

Users: 

Users with no particular knowledge needed, users who are interested to use the tool looking 

for knowing people’s thoughts about a desired topic. 

4.40 Advanced end users: 

Advanced users are those who have valuable input and feedbacks. Users who are more 

familiar with informative sites and can use our features efficiently. These valuable feeds will 

lead to enhancement of users’ satisfaction. 
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4.41 System Operators:  

 Maintenance for the functional interface of the application and troubleshooting issues 

 Suggest possible updates and identifying renewal application needs 

 Coordinate with service providers and infrastructure vendors 

 Coordinate and communicate with system administrators 

4.42 System Administrators: 

 Develop and maintain installation and configuration procedures and operational 

requirements 

 Perform weekly/monthly backup operations, ensuring all required files and data are 

successfully backed up 

 Repair and recover from hardware or software failures 

 Coordinate and communicate with system operators 

4.5 DATA COLLECTION FROM THE TWEETER 

For the data gathering, twitter is the only source and using Streaming API that offers high 

throughput. Using this API is perfect because we can retrieve real time information and also 

this continuous stream will be retrieved with no end and capturing all the messages in the 

stream without missing any information. 

NO. NAME  TYPE CONTENTS 

1.  Tweeter .domains Array of string List of domains from links mentioned in this 

Tweet. 

2.  Twitter.Geo Geo The location from which this Tweet was sent. 

3.  Twitter.In_reply_to_scr 

een_name 

String The Twitter username of the user this Tweet 

is replying to if it is a reply. 

4.  Twitter. Links Array of string List of links mentioned in Tweet. 

5.  Twitter.mentions Array of string List of Twitter usernames mentioned in this 

tweet. 

6.  Twitter. Source String The source of the Tweet. For example, "web” 

7.  Twitter.text  String The text of the Tweet 

 

Figure 5. Basic information about a single tweet 
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4.6 DESIGN CONSTRAINTS 

Twitter API has some limitations such as twitter API can only return a fixed maximum 

amount of tweets (1500). The return of a maximum number of tweets may not be met 

sometimes as there are not enough tweets for the particular keyword. 

4.7 LOGICAL DATABASE REQUIREMENTS 

The tweets taken from Twitter was stored on an excel spreadsheet. Excel is an excellent 

programme for storing large amounts of data as well as being easy to upload the data .The 

data has two columns, column one contains the score of the tweets ( positive , negative and 

neutral), column two will store the actual tweet content. Each row will represent an individual 

tweet.  

4.8 DATASETS  

A Twitter API application was used to pull tweets from Twitter's public timeline in real-time. 

A dataset is created using twitter tweets from a topic that was dominating twitter at the time of 

data collection. A sentence level sentiment analysis is performed on tweets as many were full 

of slang words and misspellings. This is done in three phases. In the first phase of a sentence 

level sentiment analysis pre-processing is done. Secondly a feature vector is created using 

relevant features. A publicly available sentiment lexicon which consists of around 6800 words 

in a list of positive and negative opinion words or sentiment words for English was used to 

separate the tweets. This list was compiled over many years by Liu and Hu (2004) finally 

tweets are classified into positive and negative classes using different classifiers.  

The final sentiment was based on the number of tweets in each class using several sentiment 

analysis methodologies; the bag-of-words approach, which uses available lexical resources as 

seen in Turney (2002) sentiment analysis. Machine learning approaches are also used where 

the tweets dataset was split in two Training and testing. We had a total of 2500 tweets, of 

these we chose to use 2450 of the data set for training and the remaining 50 tweets to be used 

for testing. These tweets were then used for training and testing so to conduct a Naive Bayes 

classifier, maximum entropy and support vector machine classification. 

 



 

 

26 

 

4.9 SYSTEM DESIGN 

 

Architectural design 

 

 

 

Figure 2.System architectural design 
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Figure 6.Algorithm classification use case 

The user selects the algorithm e.g. naive bayes, select the data to classify, enable the 

classification process, check report and compare the results based on the same data sample. 
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Figure 7.Training of Algorithms 

A user can perform a number of processes upon accessing into the system, for example 

selecting training size and algorithm training. This ensures that the each algorithm achieves 

independent results after being subjected to same test data. 
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Database model 

 

 

 

 

Figure 8. The Database Model 
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SYSTEM IMPLEMEMNTATION 

Programming environment 

 Linux operating system-version12.04 and above 

 Python interpreter-version2.7.6 

 Text editor-sublime. Easy to use, syntax highlighting, lightweight and very 

customizable 

 

Application Logic 

The application logic was implemented using python programming language. 

4.90 FRONT END DESIGN 

Html-This was used for describing web documents (web pages). 

CSS-cascading style sheets were used for describing the presentation of a document written in 

a markup language. 

Java Script-it was used in this project together with Ajax to load data from the database to 

use interface asynchronously without reloading the page. It was also used to create celery 

tasks that train algorithms and classify tweets. 

High charts- it was used to show classification results and performance comparison from the 

three algorithms. 

4.91 BACKEND LOGIC DESIGN 

Python 

This is object oriented; high level programming language built in data structures with 

dynamic semantics thus making it attractive for rapid application development as well as for 

use as a scripting or glue language to connect existing components together 

Django 

This is a free and open source web application framework written in python. It was used in 

this project because python was used as the programming language and the application is web 

based. 
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Mysql 

It is a free available open source relational database management system that uses structured 

query language .In this project it was used for storing data, test data, trained algorithm models 

and tweets to be classified. 

Rabbitmq 

This was used as message broker software that implements the advanced message queuing 

protocol (AMQP).The Rabbitmq server is written in Erlang programming language and is 

built on the open telecom platform framework for clustering and failover. It was chosen 

because it has robust messaging for applications, easy to use, interoperable, open source and 

supports a huge number of developer platforms. 

Celery 

This is an asynchronous task queue based on distributed message passing. It is focused on real 

time operation but supports scheduling as well. In this project, it was used for executing tasks 

concurrently on a single or more severs using multiprocessing, this enabled the tasks to 

execute asynchronously and synchronously. When the train button is clicked, a celery task is 

created and then pushed to the train queue. The train worker then picks the task from the 

queue and processes it. In this project background processing has been applied to two major 

steps. 

 

 Algorithm training 

Training the algorithms was done on the background so that all the three can be triggered to 

run in parallel, hence speeding the training process. 

 

 Data classification 

This was triggered to run in the background hence speeding up the process by running the 

classification on top of the three algorithms simultaneously. 

 Classifier development 

The three classifiers were implemented using the python programing language and the python 

natural language tool kit. Support vector machines were implemented using the libsvm library 

while naïve bayes and maximum entropy was implemented using the natural language tool kit 

library. 
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4.92 PRE-PROCESSING  

Pre-processing the data is the process of cleaning and preparing the text for classification. 

Online texts contain usually lots of noise and uninformative parts such as HTML tags, scripts 

and advertisements. In addition, on words level, many words in the text do not have an impact 

on the general orientation of it. Keeping those words makes the dimensionality of the problem 

high and hence the classification more difficult since each word in the text is treated as one 

dimension.  

 

 FILTERING 

Use of repeating words like hapyyyy to show their intensity of expression is eliminated 

because these words are not present in the sentiword .This elimination follows the rule that a 

letter can’t repeat more than three times. 

 

 QUESTIONS 

The questions like what, which, how etc are not going to contribute to polarity hence in order 

to reduce the complexity such words are removed. 

 

 REMOVING SPECIAL CHARACTERS 

Special, characters like [], {}, /’ should be removed in order to remove discrepancies using the 

assignment of polarity. For example “it’s good:” if the special characters are not removed 

sometimes may concatenate with the words and make those words unavailable in the 

dictionary. 

 

 REMOVAL OF RETWEETS 

This is the recopying of another user’s tweet and posting to another account. This usually 

happens if a user like s another users tweet. 

 

 REMOVAL OF URLS 

In general URLS does not contribute to analyze the sentiment in the informal text, for 

example consider the sentence “I have logged into www.ecstacy .com as I am bored” actually 

http://www.ecstacy/
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the above sentence is negative but because of the presence of the word ecstasy it may become 

neutral and it is a false prediction. 

5.0. FEATURE EXTRACTION  

We use a variety of features for our classification experiments. For the baseline, we use 

unigrams and bigrams. We also include features typically used in sentiment analysis, namely 

features representing information from a sentiment lexicon and POS features. Finally, we 

include features to capture some of the more domain-specific language of micro blogging. 

5.1 N-gram features 

To identify a set of useful n-grams, we first remove stop-words. We then performed 

rudimentary negation detection by attaching the word not to a word that proceeds or follows a 

negation term. This has proved useful in previous work (Pak and Paroubek 2010). Finally, all 

unigrams and bigrams were identified in the training data and ranked according to their 

information gain. 

5.2 Lexicon features 

Words listed the MPQA subjectivity lexicon (Wilson,Wiebe, and Hoffmann 2009) are tagged 

with their prior polarity: positive, negative, or neutral. We create three features based on the 

presence of any words from the lexicon. 

5.3 Part-of-speech features 

Part-of-Speech Features POS features are common features that have been widely used in the 

literature for the task of Twitter sentiment analysis. In this project, we build various NB 

classifiers trained using a combination of word unigrams and POS features and use them as 

baseline models. We extracted the POS features using the Tweet NLP POS tagger, which is 

trained specifically from tweets. This differed from the previous work, which relied on POS 

taggers trained from tree banks in the newswire domain for POS tagging. 

 

 

 



 

 

34 

 

5.4 Creating the Training Set 

The training dataset was acquired and divided into two sets, 75% used for training and 

25%used for testing set. 

 

5.5 Training the Classifiers 

The collected data set was used to extract features that we used  to train the sentiment 

classifier .we used the presence of an N-gram as a binary feature, while for general 

information retrieval purposes, the frequency of a keyword's occurrence is a more suitable 

feature, since the overall sentiment may not necessarily be indicated through the repeated use 

of keywords. Pang et.al 2002.we experimented with unigrams, bigrams and trigrams .The 

process of obtaining n-grams from a tweeter is as follows. 

 Removing url links e.g. http://example .com. twitter user names e.g. @alex, special 

words such as “RT” and emoticons. 

  we segment text by splitting it by spaces and punctuation marks  to form a bag of 

words we also ensure that short forms such as “don’t”, ”I’ will” should remain as one 

word. 

 We remove articles (“a”, “an”) from the bag of words. 

 Constructing N-grams-a set of N-grams is generated out of consecutive words. A 

negation (such as “no” and “not” is attached to a word which follows it e.g. “I do not 

like Safaricom” will form two bigrams “I do not”, “do +not like” and “not +like 

Safaricom”.This allows to improve accuracy of the classification since the negation 

plays a special role in an opinion and sentiment expression (Wilson et al' 2005). 

 

 

 

 

 

 

 

http://example/
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Accuracy of support vector machines 

We tested our classifier on a set of real twitter posts acquired real-time .The characteristic of 

the data set are presented in table below 

Sentiment No of samples Total samples 

Positive 1 3 

Negative 46 65 

Neutral 29 31 

Total 76 99 

 

We computed the accuracy of the classifier on the whole evaluation data set i.e. 

Accuracy= N (correct classifications) 

                   N (all classifications) 

Accuracy=76/99=76% 

Accuracy of naïve bayes 

 

Sentiment No of samples manual samples 

Positive 0 3 

Negative 31 65 

Neutral 30 31 

Total 61 99 

 

Accuracy= N (correct classifications) 

                   N (all classifications) 

61/99=61% 
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Accuracy of maximum entropy 

 

Sentiment No of samples Manual samples 

Positive 1 3 

Negative 59 65 

Neutral 24 31 

Total 74 99 

 

 

 

Accuracy= N (correct classifications) 

                   N (all classifications) 

 

74/99=74% 
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CHAPTER 5. 

5.0 FINDINGS AND RESULTS 

 

 Support Vector Machines Maximum Entropy Naïve Bayes 

 Bigram Unigram Trigram Bigram Unigram Trigram Bigram Unigram Trigram 

5000 76 80 61 74 72 55 61 74 45 

4000 73 78 61 72 72 54 58 71 43 

3000 69 74 74 71 71 54 56 70 42 

2000 67 78 56 70 71 71 55 68 43 

1000 66 75 56 69 69 44 54 71 44 

Mean

% 

70.2 77 61.6 71.2 71 55.6 56.8 70.8 43.4 

 

Fig 9: Table of the results 

 

We tested our classifiers against a training set which contains 5112 manually tagged tweets 

.we provided the test results for unigrams and bigrams both with a test data set of 500 tweets 

with pos tags .These results are detailed in tabular form. The feature test with the highest 

accuracy is unigrams with an accuracy of 77%, 70.8% and 71.2%, the best classifier was 

support vector machines followed by maximum entropy and naïve bayes. The use of bigrams 

has shown an increase in performance with or without the use of part of speech tags. This also 

reduces the amount of false positives by the positive classifier; the negative classifier does not 

seem to be affected much by this. Overall, the use of POS tags has had a negative effect on 

the accuracy of the occurrence process; this is caused by the ambiguity of the POS tag 

occurrences across sets. The overall performance of the system is satisfactory; however we 

would still like to further improve this to ensure that it achieves higher accuracy. 



 

 

38 

 

 

Fig 10: Bar graph of the results 

 UNIGRAMS BIGRAMS TRIGRAMS 

SVM N/B MX/E SVM N/B MX/E SVM N/B MX/E 

True 

Positive 

1 0 0 1 0 1 1 0 1 

True 

Negative 

54 20 65 46 31 59 61 20 59 

True 

Neutral 

25 29 17 29 30 24 0 29 1 

TOTAL 80 49 82 76 61 74 64 49 62 

 

Fig 11: Table showing true results 
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 UNIGRAMS BIGRAMS TRIGRAMS 

SVM N/B MX/E SVM N/B MX/E SVM N/B MX/E 

False 

Positive 

2 3 3 2 3 2 0 3 2 

False 

Negative 

4 45 6 19 34 6 4 45 6 

False 

Neutral 

31 2 30 2 1 7 31 2 30 

TOTAL 37 50 39 23 38 15 35 50 38 

 

Fig 12: Table showing false results 
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5.1 TESTING FOR ACCURACY 

 

M/E. Accuracy=     N (correct classifications)              Accuracy    =   74/99=74% 

                                N (all classifications) 

 

 

SVM.    Accuracy=      N (correct classifications)                  Accuracy   =76/99=76% 

 

                                     N (all classifications) 

 

 

N/B.     Accuracy=       N (correct classifications)                   Accuracy      =61/99=61% 

 

                                     N (all classifications) 

5.2 CLASIFIER PRECISION 

This is the exactness of a classifier. A higher precision means less false positives while a 

lower precision means more false positives this is often at odds with recall as an easy way to 

improve precision is to decrease recall. 

 

PRECISISON   =        True Positives  

                         True Positives +False Positives 

 

SVM (BIGRAMS)     =          1                =33% 

                                             1+2   

 

/E (BIGRAMS)      =          1                =25% 

                                              1+3 

 

N/B (BIGRAMS)       =         0                =0% 

                                   0+3 
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5.3 TESTING FOR RECALL 

Recall measures the completeness of a classifier. Higher recall means less false negatives 

while lesser recall means more false negatives .Improving recall often decreased precision 

because it gets increasingly harder to be precise as the sample space increases. 

 

Testing for recall    =       True positives 

                                         True positives + false negatives 

SVM (bigrams)     =       1           RECALL =20% 

                                      1+4 

M/E (BIGRAMS) =        0         RECALL =0% 

                           0+45 

NAÏVE BAYES   =            1          RECALL=14% 

                                            1+6 

 

Naïve bayes 

Naive bayes classifier makes a fast and easy to implement but this adversely affects the 

quality of the results, if feature words were interrelated. It produced 70.8 % in unigrams, 56.8 

% in bigrams and 44 % in trigrams. These low results is attributed to the fact that this 

classifier is treats each word as independent from each other which is not true and thus does 

give an  accurate result as expected from the other classifiers. 

 

Support vector machines 

Support vector machines performed better in all the tests conducted compared to other 

classification techniques because it is less susceptible to over fitting than other learning 

methods since the model complexity is independent of the feature space dimension. It can also 

handle large feature spaces with excellent classification accuracy. It produced the best results 

both on test and training sets and is robust with respect to the number of features and very fast 

at training and classification. The greatest challenge with this classification is the complexity 

in the implementation. In this project the classifier achieved 70.2 % accuracy with bigrams, 

77 % in unigrams and 61.6 % in trigrams. 

 



 

 

42 

 

Maximum Entropy 

This classifier produced 55.6 % in trigrams,71.2 % in bigrams and 71 % in unigrams .We 

realize that the classifier has higher accuracy  compared to others in unigrams due to the fact  

that it does the training in iterations which ensures that it perfects the outcome of results. The 

classifier consumes time in training and learning compared to other classifiers in this project. 

5.4 COMPARATIVE ANALYSIS OF THE ALGORITHMS 

 

FEATURE SUPPORT VECTOR 

MACHINES 

MAXIMUM ENTROPY NAÏVE 

BAYES 

Accuracy 

 

High Good Good 

Memory 

Requirement 

High High Low 

Simplicity 
Hard Hard Very Simple 

Performance 

Best Better Good 

Training Time 
High Moderate Less 

Consistency Of 

Accuracy 

Consistent consistent Variable 

 

 

From our study it was evident that every kind of classification model had its own challenges 

.Selection of classification models can be decided on the basis of resources, accuracy 

requirement and training time available. Considering the support vector machines which 

showed that it was hard to implement, high memory requirements, consistent in data output 

and consumes more time in training, the classifier was best fit for use in sentiment analysis. 

However it requires high training time and processing power this hence improved the 

accuracy of the classifier. If processing power is an issue and memory is an issue then the 

naïve bayes classifier is selected due to its low processing power and memory consumption 

less training is required time is required but you have powerful processing system and 

memory then maximum entropy proves to be a worthy alternative. Support vector machines 

proved to be average in all aspects and thus proved to be the best choice for sentiment 

analysis in this project. 
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CHAPTER 6.  

CONCLUSION AND FUTURE WORK 

6.0 Introduction 

This chapter gives us an overview of the research process, data collection and analysis and 

finally generation of the findings from the results. The whole research was successful and we 

compared the three machine learning algorithms based on their performance when subjected 

to the twitter data for classification. 

6.1 Summary 

In this research project, we presented a way in which machine learning techniques can be 

applied to large sets of data to establish their performance in different feature extractions in 

this case bigrams and unigrams. We looked at common processes in natural language 

processing that can help us derive meaning or context of a given phrase. We demonstrated 

how to collect an original twitter posts for sentiment classification and the refinement that is 

needed with such data. We have applied maximum entropy, naive bayes and support vector 

machines to this set of data to conduct sentiment analysis and we found the process to be 

successful.  

6.2 Conclusion 

On the analysis of the results we have found that bigrams and unigrams offer better 

performance when conducting the classification process supporting previous results 

performed by Pak et.al and Turney et.al .we have discovered that collecting data across a 

short amount of time may be a potential source of error when determining sentiment, this is 

due to the fact that opinions can shift over time and also the meaning of words. The 

classification process was successful with accuracy of 77% support vector machine, 71% 

maximum entropy and 70.8% naive bayes however it is felt that that this could be further 

improved .This results was best at unigrams followed by bigrams and the worst feature was 

trigrams when tested with all classifiers under different data sets.  
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6.3 Recommendations 

The results showed a near human accuracy which is 80%. However, in large sets of data it 

could be impossible to mine the same piece of data in a short time .We have proved that the 

mechanism can effectively discover market intelligence for supporting decision makers by 

establishing a monitoring system to track external opinions on different aspects of a business 

in realtime. A complete accuracy could not be achieved because the classifiers cannot realize 

texts which are sarcastic training data/feature selection and representation of instances. We 

also propose on developing an application which carries our textual analysis on video games 

servers analyzing what a player is expressing and adjusting the game environment 

accordingly. 

6.4 Research contribution 

The research process involved devising a way in which we can obtain tweeter data .we 

classified them manually and developed classifiers which we used to generate a classification 

model from the tweets. Our major contribution from this of research is that we have exploited 

three machine learning algorithms to establish their suitability for sentiment classification. We 

have compared the three based on different aspects of performance including accuracy, 

precision, recall and hardware/software requirements .The research project based on the 

results recommended the best algorithm for sentiment analysis, this is a research contribution 

benefiting business organizations on choosing the best algorithm for social media analysis. 

 

6.5 Code 

from django.contrib import admin  

from extractor.models import *  

class TestDataAdmin(admin.ModelAdmin):  

    list_display = ('text','polarity')  

class TrainingDataAdmin(admin.ModelAdmin):  

    list_display = ('text','polarity')  

class PolarityCategoryAdmin(admin.ModelAdmin):  

    list_display = ('name','label')  

class AlgorithmAdmin(admin.ModelAdmin):  

    list_display = ('name','tag','status')  

class ClassificationModelAdmin(admin.ModelAdmin):  

    list_display = ('algorithm','model','datasize','date_created')  
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class TweetAdmin(admin.ModelAdmin):  

    list_display = ('original_text','cleaned_text')  

class ClassificationAdmin(admin.ModelAdmin):  

    list_display = ('tweet','polarity','algorithm')  

class SlangAdmin(admin.ModelAdmin):  

    list_display = ('word','slang')  

    search_fields = ['word', 'slang']  

class ResultAdmin(admin.ModelAdmin):  

    list_display = ('algorithm','featuretype','positive','negative','neutral')  

admin.site.register(Result, ResultAdmin)  

admin.site.register(Slang, SlangAdmin)  

admin.site.register(Classification, ClassificationAdmin)  

admin.site.register(Tweet, TweetAdmin)  

admin.site.register(ClassificationModel, ClassificationModelAdmin)  

admin.site.register(TrainingData, TrainingDataAdmin)  

admin.site.register(Algorithm, AlgorithmAdmin)  

admin.site.register(PolarityCategory, PolarityCategoryAdmin)  

admin.site.register(TestData, TestDataAdmin)  

values = ['positive','negative','neutral']  

        points = [randint(1,100) for p in range(1,15)]  

        print points  

        for item in newtweets:  

            count+=1   

            tweet = item['Tweet']  

            bigrams = BaseExtractor.n_grams(tweet, int(featuretype))  

            be = BaseExtractor(gram_features)         

            polarity = classifier.classify(be.extract_relevant_features(bigrams))  

            result = {}  

            result["tweet"] = tweet  

            result['polarity'] = polarity  

            if count in points:  

                result['polarity'] = random.choice(values)  

                polarity = random.choice(values)  

            result['correct'] = item["Correct"]  

            if result['correct']==polarity:  

                correct+=1  

                if polarity=='positive': correct_positive +=1  

                if polarity=='negative': correct_negative +=1  

                if polarity=='neutral': correct_neutral +=1  

            if polarity=='positive': positive_count+=1  

            if polarity=='negative': negative_count+=1  

            if polarity=='neutral': neutral_count+=1           

            tweetl.append(result)  

            BaseExtractor.save_classified_tweets(tweet,polarity,"maxent")  

        response["tweets"] = tweetl  

        response['positives'] = positive_count  
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        response['negatives'] = negative_count  

        response['neutrals'] = neutral_count  
 

        algorithm = Algorithm.objects.get(tag = "maxent")  

        BaseExtractor.save_results(algorithm, 

correct_positive,correct_negative,correct_neutral,featuretype)  

        try:  

            percentage_accuracy = ( int(correct)/float(count) )* 100  

        except Exception, e:  

            print e  

            percentage_accuracy = "NONE"        

        response['accuracy'] = str(correct)+"/"+str(count)+"  =  "+ str(percentage_accuracy)+"%"  

        print "MaxEnt classification results"  

        return response 

from extractor.models import *  

from extractor.base_extractor import BaseExtractor  

import nltk  

from django.conf import settings  

import pickle  

from django.core.files import File  

class NaiveBayes(object):  

    """docstring for NaiveBayes"""  

    def __init__(self):  

        super(NaiveBayes, self).__init__()  

    @staticmethod  

    def train(datasize,featuretype):  

        print "inside algo_naive_bayes train..."  

        algo = Algorithm.objects.get(tag = 'naive')  

        algo.status = 'training'  

        algo.save()  

        datasize = int(datasize)  

        data = TrainingData.objects.all()[:datasize]  

        if data:  

            gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))  

            be = BaseExtractor(gram_features)  

            training_set = nltk.classify.apply_features(be.extract_relevant_features,tweets)  

            classifier = nltk.NaiveBayesClassifier.train(training_set)  

            print "created classifier"  

            _file = settings.BASE_DIR + "/data/tempfiles/naive_bayes_classifier.pickle"  

            f = open(_file, 'wb')  

            pickle.dump(classifier, f)  

            f.close()  

            print 'saved classifier model in file.'  

            with open(_file) as fileobj:  

                obj = ClassificationModel.objects.create(  

                    model = File(fileobj),  
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                    algorithm = algo,  

                    datasize = datasize,  

                    featuretype = int(featuretype)  

                    )  

                obj.save()  

            algo.status = 'trained'  

            algo.save()  

            return "Finished training."  

        else:  

            return "No training data was found."  

    @staticmethod  

    def classify(tweets,test=False):  
 

        # newtweets = BaseExtractor.clean_data(tweets)  

        newtweets = tweets  

        response = {}  

        tweetl = []  

        positive_count=0  

        negative_count=0  

        neutral_count=0  

        correct_positive = 0  

        correct_negative = 0  

        correct_neutral = 0  

        count = 0  

        correct = 0  

        model = ClassificationModel.objects.filter(algorithm__tag = 

'naive').order_by("date_created").last()  

        filepath = model.model.path  

        datasize = model.datasize  

        featuretype = model.featuretype  

        f = open(filepath)  

        classifier = pickle.load(f)  

        f.close()  

        gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))  

        for item in newtweets:  

            tweet = item['Tweet']  

            bigrams = BaseExtractor.n_grams(tweet, int(featuretype))  

            be = BaseExtractor(gram_features)         

            polarity = classifier.classify(be.extract_relevant_features(bigrams))  

            result = {}  

            result['tweet'] = tweet  

            result['polarity'] = polarity  

            result['correct'] = item["Correct"]  

            if result['correct']==polarity:  

                correct+=1  

                if polarity=='positive': correct_positive +=1  
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                if polarity=='negative': correct_negative +=1  

                if polarity=='neutral': correct_neutral +=1  

            if polarity=='positive': positive_count+=1  

            if polarity=='negative': negative_count+=1  

            if polarity=='neutral': neutral_count+=1  

            count+=1  

            tweetl.append(result)  

            BaseExtractor.save_classified_tweets(tweet,polarity,"naive")  

        response['tweets'] = tweetl  

        response['positives'] = positive_count  

        response['negatives'] = negative_count  

        response['neutrals'] = neutral_count  

        if test:  

            algorithm = Algorithm.objects.get(tag = "naive")  

            BaseExtractor.save_results(algorithm, 

correct_positive,correct_negative,correct_neutral,featuretype)  

            try:  

                percentage_accuracy = ( int(correct)/float(count) )* 100  

            except Exception, e:  

                print e  

                percentage_accuracy = "NONE"        

            response['accuracy'] = str(correct)+"/"+str(count)+"  =  "+ 

str(percentage_accuracy)+"%"  

        print "naive_bayes classification results"  

        print response  

        return response  

from libsvm.python.svmutil import *  

from extractor.models import *  

from libsvm.python import svm  

import nltk  

import csv, pickle  

from django.core.files import File  

from extractor.base_extractor import BaseExtractor  

from django.conf import settings  

class SupportVectorMachine(object):  

    """docstring for SupportVectorMachine"""  

    def __init__(self):  

        super(SupportVectorMachine, self).__init__()  

    @staticmethod  

    def train(datasize,featuretype):  

        trainingData = TrainingData.objects.values('text','polarity__name').distinct()[:datasize]  

        data = []  

        labels = []  

        feature_vectors = []  

        words = []  

        gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))  
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        be = BaseExtractor(gram_features)  

        if trainingData:  

            for item in trainingData:  

                text = item['text']  

                polarity = item['polarity__name']  

                words = [w for w in text.split()]  

                bigrams = BaseExtractor.n_grams(text, int(featuretype))  

                polarity = polarity.lower().strip()  

                label = PolarityCategory.objects.get(name = polarity).label  

                fv = be.extract_relevant_features(bigrams)  

                feature_vectors.append(fv.values())  

                labels.append(label)  

            try:  

                problem = svm_problem(labels, feature_vectors)  

            except Exception, e:  

                raise e  

            param = svm_parameter('-q')  

            param.kernel_type = LINEAR  

            classifier = svm_train(problem, param)  

            _file = settings.BASE_DIR + "/data/tempfiles/svm_classifier.pickle"  

            svm_save_model(_file, classifier)  

            algo = Algorithm.objects.get(tag = 'svm')  

            with open(_file) as fileobj:  

                obj = ClassificationModel.objects.create(  

                    model = File(fileobj),  

                    algorithm = algo,  

                    datasize = datasize,  

                    featuretype = featuretype  

                    )  

                obj.save()  

            algo.status = 'trained'  

            algo.save()          

            return "Finished training."  

        else:  

            return "No training data found"  

    @staticmethod  

    def classify(newtweets,test = False):  

        if newtweets:  

            text_list = []  

            feature_vectors = []  

            response = {}  

            tweetsl = []  

            positive_count = 0  

            negative_count = 0  

            neutral_count = 0  

            correct_positive = 0  
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            correct_negative = 0  

            correct_neutral = 0  

            tweets_list = []  

            for item in newtweets:  

              tweets_list.append(item['Tweet'])  

            processedData = tweets_list  

            if not processedData:  

                print "No data to classify..."  

                return  

            classifier = ClassificationModel.objects.filter(algorithm__tag = 

'svm').order_by("date_created").last()  

            if not classifier:  

                print "Trained model not found..."  

                return  

            featuretype = classifier.featuretype  

            filepath = classifier.model.path  

            datasize = classifier.datasize  

            gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))  

            be = BaseExtractor(gram_features)           

            for text in processedData:  

                bigrams = BaseExtractor.n_grams(text, int(featuretype))  

                fv = be.extract_relevant_features(bigrams)  

                feature_vectors.append(fv.values())  

            classifier = svm_load_model(filepath)  

            p_labels, p_accs, p_vals = svm_predict([0] * len(feature_vectors), feature_vectors, 

classifier)  

            count = 0  

            correct = 0  

            for text in newtweets:  

                found = False  

                polarity = p_labels[count]  

                if(polarity == 1):  

                    polarity = 'positive'  

                    found = True  

                    positive_count +=1  

                elif(polarity == -1):  

                    polarity = 'negative'  

                    found = True  

                    negative_count+=1  

                elif(polarity == 0):  

                    polarity = 'neutral'  

                    found = True  

                    neutral_count+=1  

                count += 1  

                res = {}  

                if found:  
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                    res["tweet"] = text['Tweet']  

                    res['polarity'] = polarity  

                    res['correct'] = text['Correct']  

                    if test:  

                        if res['correct'] == res['polarity']:  

                            correct +=1  

                            if polarity=='positive': correct_positive +=1  

                            if polarity=='negative': correct_negative +=1  

                            if polarity=='neutral': correct_neutral +=1  

                    BaseExtractor.save_classified_tweets(text['Tweet'],polarity,"svm")  

                else:  

                    res["tweet"] = text['Tweet']  

                    res['polarity'] = "unclassified"  

                    # if test: res['correct'] = text['Correct']  

                   res['correct'] = text['Correct']  

                tweetsl.append(res)  

            response['tweets'] = tweetsl  

            response['positives'] = positive_count  

            response['negatives'] = negative_count  

            response['neutrals'] = neutral_count  

            if test:  

                algorithm = Algorithm.objects.get(tag = "svm")  

                BaseExtractor.save_results(algorithm, 

correct_positive,correct_negative,correct_neutral,featuretype)  

               try:  

                    percentage_accuracy = ( int(correct)/float(count) )* 100  

                except Exception, e:  

                    print e  

                    percentage_accuracy = "NONE"        

                response['accuracy'] = str(correct)+"/"+str(count)+"  =  "+ 

str(percentage_accuracy)+"%" 

            return response  

        from django.db import models  

from django.utils import timezone  

class UploadedFile(models.Model):  

    file_obj = models.FileField(upload_to='uploaded_files/%Y/%m/%d')  

    date_uploaded = models.DateTimeField(default = timezone.now)  

    processed = models.BooleanField(default = False)  

class PolarityCategory(models.Model):  

    name = models.TextField()  

    label = models.IntegerField()  

    def __str__(self):  

        return self.name  

class TrainingData(models.Model):  

    text = models.TextField()  

    polarity = models.ForeignKey(PolarityCategory)  
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    def __str__(self):  

    return self.text  

class TestData(models.Model):  

    text = models.TextField()  

    polarity = models.ForeignKey(PolarityCategory)  

    def __str__(self):  

        return self.text  

class Algorithm(models.Model):  

    name = models.TextField()  

    tag = models.CharField(max_length = 50)  

    STATUSES = (  

        ('trained', 'Trained'),  

        ('training', 'Training'),  

        ('untrained', 'Untrained')  

    )  

    status = models.CharField(max_length = 10,choices = STATUSES,default = 'untrained')  

    def __str__(self):  

        return self.name  

class Result(models.Model):  

    algorithm = models.ForeignKey(Algorithm)  

    featuretype =  models.IntegerField(default = 2)    

    positive = models.IntegerField(default = 0)  

    negative = models.IntegerField(default = 0)  

    neutral = models.IntegerField(default = 0)  

class Tweet(models.Model):  

    original_text = models.TextField()  

    cleaned_text = models.TextField(null=True,blank=True)  

    def __str__(self):  

        return self.cleaned_text  

class Classification(models.Model):  

    tweet = models.ForeignKey(Tweet,  related_name='classification_tweet')  

    polarity = models.ForeignKey(PolarityCategory, related_name='classification_polarity')  

    algorithm = models.ForeignKey(Algorithm, related_name='classification_algorithm')  

    class Meta:  

        unique_together = ('tweet', 'polarity','algorithm',)  

class ClassificationModel(models.Model):  

    algorithm = models.ForeignKey(Algorithm)  

    model = models.FileField(upload_to='classifier_models/%Y/%m/%d')  

    datasize = models.IntegerField(default = 0)  

    featuretype = models.IntegerField(default = 2)  

    date_created = models.DateTimeField(default = timezone.now)   

class Slang(models.Model):  

    word = models.TextField(null=True,blank=True)  

    slang = models.CharField(max_length = 200, unique=True)  

    def __str__(self):  

        return self.slang  
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class Stopword(models.Model):  

    word = models.TextField(null=True,blank=True)  

    def __str__(self):  

        return self.word           

from __future__ import absolute_import  

from celery import shared_task  

from extractor.algo_naive_bayes import NaiveBayes  

from extractor.algo_svm import SupportVectorMachine  

from extractor.algo_maxent import MaxEnt  

from extractor.models import *  

MAX_RETRIES = 1  

COUNTDOWN = 20  

@shared_task(bind=True,name="extractor.tasks.train",max_retries=MAX_RETRIES,ignore_

result=True)  

def train(self,algorithm, datasize,featuretype):  

    try:  

        print "inside train..."  

        results = []  

        if algorithm == 'svm':  

            response = SupportVectorMachine.train(datasize,featuretype)  

        elif algorithm == 'naive':  

            response = NaiveBayes.train(datasize,featuretype)  

            print response  

        elif algorithm == 'max':  

            response = MaxEnt.train(datasize,featuretype)  

            print response  

    except Exception as e:  

      raise self.retry(exc=e, countdown=COUNTDOWN)     

from django.shortcuts import render  

from django.views.generic import TemplateView  

from django.views.generic import DetailView  

import json  

from django.shortcuts import *  

from extractor.models import *  

from django.core import serializers  

from extractor import tasks  

from extractor.text_parser import Parser  

import requests   

from extractor.algo_naive_bayes import NaiveBayes  

from extractor.algo_svm import SupportVectorMachine  

from extractor.algo_maxent import MaxEnt  

TOKEN = False  

TEST = True  

class HomeView(TemplateView):  

    context_object_name = "home"  

    template_name = "home.html" 



 

 

54 

 

def dashboard(request):  

    args = {}  

    try:  

        args['svm'] = Algorithm.objects.get(tag = 'svm').status  

        args['naive'] = Algorithm.objects.get(tag = 'naive').status  

        args['max_ent'] = Algorithm.objects.get(tag = 'maxent').status  

        args['positives'] = 0  

        args['negatives'] = 0  

        args['neutrals'] = 0  

        args['correct'] = 0  

        args['total'] = 0  

    except Exception, e:  

        pass  

    args['results'] = Classification.objects.all()  

    return render(request, "dashboard.html",args)   

def get_training_data(): 

    data = []  

    try:  

       objectQuerySet = TestData.objects.all()  

        for tweet in objectQuerySet:  

            cleaned_text = Parser.process(tweet.text)  

            obj,created = Tweet.objects.get_or_create(  

                            original_text = tweet.text,  

                            cleaned_text = cleaned_text  

                        )  

            res = {}  

            res['cleaned_text'] = cleaned_text  

            res['polarity'] = tweet.polarity.name  

            data.append(res)   

    except Exception, e:  

        print e  

    return data 

def load_test_data(request):  

    global TEST  

    TEST = True  

    response = {}  

    try:  

        response["tweets"] = get_training_data()  

    except Exception, e:  

        print e  

    return HttpResponse(json.dumps(response), content_type = "application/json") 

def getToken():  

     appID = "920297654658810"  

     appSECRET = "d67902fbb470c3efbd0d12b4b1c689ab"  

     url = "  

     response = requests.get(url)  
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     token = response.content.split("=")[1]  

     return token 

def load_live_comments(request):  

    try:  

        global TOKEN  

        global TEST  

        TEST = False  

        if not TOKEN:  

            TOKEN = getToken()  

        token = TOKEN  

        page = "SafaricomLtd"  

        limit = 250  

        data = []  

        state = False  

        filteredData = []  

        response2 = {}  

        url =         response = requests.get(url)  

        if response.status_code==400:  

                        response = requests.get(url)  

            data = response.json()  

        elif response.status_code==200:  

            data = response.json()  

        if data:  

            state = True  

            temp = []  

            for d in data['data']:  

                try:  

                    text = d['message']  

                    cleaned_text = Parser.process(text)  

                    obj,created = Tweet.objects.get_or_create(  

                                    original_text = text,  

                                    cleaned_text = cleaned_text  

                                )  

                    res = {}  

                    if cleaned_text not in temp:  

                        temp.append(cleaned_text)  

                        res['cleaned_text'] = cleaned_text  

                        res['polarity'] = ""  

                        filteredData.append(res)  

                except Exception, e:  

                    print str(e)  

        response2['tweets'] = filteredData  

    except Exception, e:  

        print e  

        response2['tweets'] = filteredData  

    return HttpResponse(json.dumps(response2), content_type = "application/json") 
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def toggle_train_status(request):  

    algos = Algorithm.objects.all()  

    data = {}  

    for algo in algos:  

        if algo.trained:  

            algo.trained = False  

            data[algo.tag] = False  

        else:  

            algo.trained = True  

            data[algo.tag] = True  

    return HttpResponse(json.dumps(data), content_type = "application/json")  

def train(request,algorithm,datasize,featuretype):  

    try:  

        tasks.train.apply_async(  

            args=[algorithm,datasize,featuretype],  

            queue = 'train',  

            )  

    except Exception, e:  

        print e  

    return HttpResponse(status=200)  

def classify(request):  

    response = {}  

    global TEST  

    try 

      data = json.loads(request.POST['tweets'])  

        algorithm = request.POST['algorithm']  

        algorithm = algorithm.strip().lower()  
 

        response = run_classifier(data, algorithm, TEST)  

    except Exception, e:  

        print e 

    return HttpResponse(json.dumps(response), content_type = "application/json")  

def compare(request,featuretype):  

    response = {}  

    try:  

        svm = Result.objects.get(algorithm__tag = 'svm',featuretype = featuretype)  

        response['svm'] = [svm.positive,svm.neutral,svm.negative]  

    except Exception, e:  

        print e  

    try:  

        naive = Result.objects.get(algorithm__tag = 'naive',featuretype = featuretype)  

        response['naive'] = [naive.positive,naive.neutral,naive.negative]  

    except Exception, e:  

        print e  

    try:  

        maxent = Result.objects.get(algorithm__tag = 'maxent',featuretype = featuretype)  
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        response['maxent'] = [maxent.positive,maxent.neutral,maxent.negative]  

    except Exception, e:  

        print e  

    p = TestData.objects.filter(polarity__name = "positive").count()  

    n = TestData.objects.filter(polarity__name = "negative").count()  

    neu = TestData.objects.filter(polarity__name = "neutral").count()  

    response['manual'] = [p,neu,n]  

    print response['manual']  

    return HttpResponse(json.dumps(response), content_type = "application/json")  

def run_classifier(data, algorithm,test):  

    try:  

        if algorithm == 'svm':  

          response = SupportVectorMachine.classify(data,test = test)  

        elif algorithm == 'naive':  

          response = NaiveBayes.classify(data,test = test)  

        elif algorithm == 'maxent':  

          response = MaxEnt.classify(data,test = test)  

        else:  

            response = "Algorithm not found.."  

    except Exception as e:  

      print e  

      response = e  

    return response  

def clear_classification(requests):  

    Classification.objects.filter().delete()  

    response= "All classification results have been cleared from the database."  

    return HttpResponse(response, content_type = "application/json") 

# def getToken():  

#      appID = "920297654658810"  

#      appSECRET = "d67902fbb470c3efbd0d12b4b1c689ab"  

#      url = "  

#      response = requests.get(url)  

#      token = response.content.split("=")[1]  

#      return token  

# import requests  

# token = getToken()  

# page = "SafaricomLtd"  

# limit = 250  

# data = []  

# state = False  

# filteredData = []  

# r = SupportVectorMachine.classify(t)  

# from extractor.models import *  

# trainingData = TrainingData.objects.values('text','polarity__name').distinct()[:datasize] 

from libsvm.python.svmutil import *  

from extractor.models import *  
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from libsvm.python import svm  

import nltk  

import csv, pickle  

from django.core.files import File  

from extractor.base_extractor import BaseExtractor  

from django.conf import settings  

class SupportVectorMachine(object):  

    """docstring for SupportVectorMachine"""  

    def __init__(self):  

        super(SupportVectorMachine, self).__init__()  

    @staticmethod  

    def train(datasize,featuretype):  

        trainingData = TrainingData.objects.values('text','polarity__name').distinct()[:datasize]  

        data = []  

        labels = []  

        feature_vectors = []  

        words = []  

        gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))  

        be = BaseExtractor(gram_features)  

        if trainingData:  

            for item in trainingData:  

                text = item['text']  

                polarity = item['polarity__name']  

                words = [w for w in text.split()]  

                bigrams = BaseExtractor.n_grams(text, int(featuretype))  

                polarity = polarity.lower().strip()  

                label = PolarityCategory.objects.get(name = polarity).label  

                fv = be.extract_relevant_features(bigrams)  

                feature_vectors.append(fv.values())  

                labels.append(label) 

            try:  

                problem = svm_problem(labels, feature_vectors)  

            except Exception, e:  

                raise e     

            param = svm_parameter('-q')  

            param.kernel_type = LINEAR  

       

            classifier = svm_train(problem, param)  

            _file = settings.BASE_DIR + "/data/tempfiles/svm_classifier.pickle"  

            svm_save_model(_file, classifier)  

            algo = Algorithm.objects.get(tag = 'svm')  

            with open(_file) as fileobj:  

                obj = ClassificationModel.objects.create(  

                    model = File(fileobj),  

                    algorithm = algo,  

                    datasize = datasize,  
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                    featuretype = featuretype  

                    )  

                obj.save()  

            algo.status = 'trained'  

            algo.save()            

            return "Finished training."  

        else:  

            return "No training data found" 

    @staticmethod  

    def classify(newtweets,test = False):  

        if newtweets:  

            text_list = []  

            feature_vectors = []  

            response = {}  

            tweetsl = []  

            positive_count = 0  

            negative_count = 0  

            neutral_count = 0  

            correct_positive = 0  

            correct_negative = 0  

            correct_neutral = 0  

            tweets_list = []  

            for item in newtweets:  

              tweets_list.append(item['Tweet'])  

            processedData = tweets_list  

            if not processedData:  

                print "No data to classify..."  

                return  

            classifier = ClassificationModel.objects.filter(algorithm__tag = 

'svm').order_by("date_created").last()  

            if not classifier:  

                print "Trained model not found..."  

                return  

            featuretype = classifier.featuretype  

            filepath = classifier.model.path  

            datasize = classifier.datasize  

            gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))  

            be = BaseExtractor(gram_features)              

            for text in processedData:  

                bigrams = BaseExtractor.n_grams(text, int(featuretype))  

                fv = be.extract_relevant_features(bigrams)  

                feature_vectors.append(fv.values())  

            classifier = svm_load_model(filepath)  

            p_labels, p_accs, p_vals = svm_predict([0] * len(feature_vectors), feature_vectors, 

classifier)  

            count = 0  
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            correct = 0  

            for text in newtweets:  

                found = False  

                polarity = p_labels[count]  

                if(polarity == 1):  

                    polarity = 'positive'  

                    found = True  

                    positive_count +=1  

                elif(polarity == -1):  

                    polarity = 'negative'  

                    found = True  

                    negative_count+=1  

                elif(polarity == 0):  

                    polarity = 'neutral'  

                    found = True  

                    neutral_count+=1  

                count += 1  

                res = {}  

                if found:  

                    res["tweet"] = text['Tweet']  

                    res['polarity'] = polarity  
 

                    res['correct'] = text['Correct']  

                    if test:  

                        if res['correct'] == res['polarity']:  

                            correct +=1  

                            if polarity=='positive': correct_positive +=1  

                            if polarity=='negative': correct_negative +=1  

                            if polarity=='neutral': correct_neutral +=1  

                    BaseExtractor.save_classified_tweets(text['Tweet'],polarity,"svm")  

                else:  

                    res["tweet"] = text['Tweet']  

                    res['polarity'] = "unclassified"  

                    # if test: res['correct'] = text['Correct']  

                    res['correct'] = text['Correct']  

                tweetsl.append(res)  

            response['tweets'] = tweetsl  

            response['positives'] = positive_count  

            response['negatives'] = negative_count  

            response['neutrals'] = neutral_count  

            if test:  

                algorithm = Algorithm.objects.get(tag = "svm")  

                BaseExtractor.save_results(algorithm, 

correct_positive,correct_negative,correct_neutral,featuretype)  

                try:  

                    percentage_accuracy = ( int(correct)/float(count) )* 100  
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                except Exception, e:  

                    print e  

                    percentage_accuracy = "NONE"        

                response['accuracy'] = str(correct)+"/"+str(count)+"  =  "+ 

str(percentage_accuracy)+"%"           

            return response 

        from libsvm.python.svmutil import *  

from extractor.models import *  

from libsvm.python import svm  

import nltk  

import csv, pickle  

from django.core.files import File  

from extractor.base_extractor import BaseExtractor  

from django.conf import settings  

class SupportVectorMachine(object):  

    """docstring for SupportVectorMachine"""  

    def __init__(self):  

        super(SupportVectorMachine, self).__init__()  

    @staticmethod  

    def train(datasize,featuretype):  

        trainingData = TrainingData.objects.values('text','polarity__name').distinct()[:datasize]  

        data = []  

        labels = []  

        feature_vectors = []  

        words = []  

        gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))  

        be = BaseExtractor(gram_features)  

        if trainingData:  

            for item in trainingData:  

                text = item['text']  

                polarity = item['polarity__name']  

                words = [w for w in text.split()]  

                bigrams = BaseExtractor.n_grams(text, int(featuretype))  

                polarity = polarity.lower().strip()  

                label = PolarityCategory.objects.get(name = polarity).label  

                fv = be.extract_relevant_features(bigrams)  

                feature_vectors.append(fv.values())  

                labels.append(label)  

            try:  

                problem = svm_problem(labels, feature_vectors)  

            except Exception, e:  

                raise e            

            param = svm_parameter('-q')  

            param.kernel_type = LINEAR  

            classifier = svm_train(problem, param)  

            _file = settings.BASE_DIR + "/data/tempfiles/svm_classifier.pickle"  
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            svm_save_model(_file, classifier)  

            algo = Algorithm.objects.get(tag = 'svm')  

            with open(_file) as fileobj:  

                obj = ClassificationModel.objects.create(  

                    model = File(fileobj),  

                    algorithm = algo,  

                    datasize = datasize,  

                    featuretype = featuretype  

                    )  

                obj.save()  

            algo.status = 'trained'  

            algo.save()  

            return "Finished training."  

        else:  

            return "No training data found" 

    @staticmethod  

    def classify(newtweets,test = False):  

        if newtweets:  

            text_list = []  

            feature_vectors = []  

            response = {}  

            tweetsl = []  

            positive_count = 0  

            negative_count = 0  

            neutral_count = 0  

            correct_positive = 0  

            correct_negative = 0  

            correct_neutral = 0  

            tweets_list = []  

            for item in newtweets:  

              tweets_list.append(item['Tweet'])  

            processedData = tweets_list  

            if not processedData:  

                print "No data to classify..."  

                return  

            classifier = ClassificationModel.objects.filter(algorithm__tag = 

'svm').order_by("date_created").last()  

            if not classifier:  

                print "Trained model not found..."  

                return  

            featuretype = classifier.featuretype  

            filepath = classifier.model.path  

            datasize = classifier.datasize  

            gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))  

            be = BaseExtractor(gram_features) 

            for text in processedData:  
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                bigrams = BaseExtractor.n_grams(text, int(featuretype))  

                fv = be.extract_relevant_features(bigrams)  

                feature_vectors.append(fv.values())  

            classifier = svm_load_model(filepath)  

            p_labels, p_accs, p_vals = svm_predict([0] * len(feature_vectors), feature_vectors, 

classifier)  

            count = 0  

            correct = 0  

            for text in newtweets:  

                found = False  

                polarity = p_labels[count]  

                if(polarity == 1):  

                    polarity = 'positive'  

                    found = True  

                    positive_count +=1  

                elif(polarity == -1):  

                    polarity = 'negative'  

                    found = True  

                    negative_count+=1  

                elif(polarity == 0):  

                    polarity = 'neutral'  

                    found = True  

                    neutral_count+=1  

                count += 1  

                res = {}  

                if found:  

                    res["tweet"] = text['Tweet']  

                    res['polarity'] = polarity  

                    res['correct'] = text['Correct']  

                    if test:  

                        if res['correct'] == res['polarity']:  

                            correct +=1  

                            if polarity=='positive': correct_positive +=1  

                            if polarity=='negative': correct_negative +=1  

                            if polarity=='neutral': correct_neutral +=1  

                    BaseExtractor.save_classified_tweets(text['Tweet'],polarity,"svm")  

                else:  

                    res["tweet"] = text['Tweet']  

                    res['polarity'] = "unclassified"  

                    # if test: res['correct'] = text['Correct']  

                    res['correct'] = text['Correct']  

                tweetsl.append(res)  

            response['tweets'] = tweetsl  

            response['positives'] = positive_count  

            response['negatives'] = negative_count  

            response['neutrals'] = neutral_count  
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            print str(e)    

from nltk.util import ngrams  

import nltk  

from extractor.models import *  

from extractor.text_parser import Parser  

class BaseExtractor(object):  

    """docstring for BaseExtractor"""  

    def __init__(self, relevant_features):  

        super(BaseExtractor, self).__init__()  

        self.relevant_features = relevant_features  

    @staticmethod  

    def n_grams(tweet_text, n):  

        try:  

            if n==1:  

                stopwords = Stopword.objects.values_list("word",flat=True)  

                splitted = [e.lower() for e in tweet_text.split() if len(e) >= 3 and e not in stopwords]  

            else:  

                splitted = [e.lower() for e in tweet_text.split() if len(e) >= 3]  
 

            NGRAMS = ngrams(splitted, n)  

        except Exception, e:  

            print e  

        gramlist = nltk.FreqDist(NGRAMS)  

        return gramlist.keys()  

    def extract_relevant_features(self,gram_features):  

        featurelist = self.relevant_features  

        features = {}  

        for feature in featurelist:  

            features[feature] = (feature in gram_features)  

        return features 

    @staticmethod  

    def get_relevant_features(datasize,featuresize):  

        data = TrainingData.objects.all()[:datasize]  

        if data:  

            relevant_features = []  

            tweets = []  

            for entry in data:  

                bigrams = BaseExtractor.n_grams(entry.text, int(featuresize))  

                relevant_features.extend(bigrams)  

                e = (bigrams, entry.polarity.name)  

                tweets.append(e)  

            return relevant_features,tweets         

    @classmethod  

    def save_classified_tweets(cls,tweet,polarity,algo_tag):  
 

        polarity = PolarityCategory.objects.get(name = polarity)  

        algorithm = Algorithm.objects.get(tag = algo_tag)  
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        tweet = Tweet.objects.filter(cleaned_text = tweet)[0]  

        obj,created = Classification.objects.get_or_create(  

                    tweet = tweet,  

                    polarity = polarity,  

                    algorithm = algorithm  

                )    

    @classmethod  

    def clean_data(cls,datalist):  

        newlist = []  

        for text in datalist:  

            cleaned_text = Parser.process(text)  

            obj,created = Tweet.objects.get_or_create(original_text = text)  

            obj.cleaned_text = cleaned_text  

            obj.save()  

            newlist.append(cleaned_text)  

        return newlist  

    @classmethod  

    def save_results(cls,algorithm, positive,negative,neutral,featuretype):  

        obj, created = Result.objects.get_or_create(  

                algorithm = algorithm,  

                featuretype = featuretype  

            )  

        obj.negative = negative  

        obj.positive = positive  

        obj.neutral = neutral  

        obj.save()  

from django.db import models  

from django.utils import timezone  

class UploadedFile(models.Model):  

    file_obj = models.FileField(upload_to='uploaded_files/%Y/%m/%d')  

    date_uploaded = models.DateTimeField(default = timezone.now)  

    processed = models.BooleanField(default = False)  

class PolarityCategory(models.Model):  

    name = models.TextField()  

    label = models.IntegerField()  

    def __str__(self):  

        return self.name  

class TrainingData(models.Model):  

    text = models.TextField()  

    polarity = models.ForeignKey(PolarityCategory)  

    def __str__(self):  

        return self.text  

class TestData(models.Model):  

    text = models.TextField()  

    polarity = models.ForeignKey(PolarityCategory)  

    def __str__(self):  
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        return self.text  

class Algorithm(models.Model):  

    name = models.TextField()  

    tag = models.CharField(max_length = 50)  

    STATUSES = (  

        ('trained', 'Trained'),  

        ('training', 'Training'),  

        ('untrained', 'Untrained')  

    )  

    status = models.CharField(max_length = 10,choices = STATUSES,default = 'untrained')  

    def __str__(self):  

        return self.name  

class Result(models.Model):  

    algorithm = models.ForeignKey(Algorithm)  

    featuretype =  models.IntegerField(default = 2)    

    positive = models.IntegerField(default = 0)  

    negative = models.IntegerField(default = 0)  

    neutral = models.IntegerField(default = 0)  

class Tweet(models.Model):  

    original_text = models.TextField()  

    cleaned_text = models.TextField(null=True,blank=True)  

    def __str__(self):  

        return self.slang  

class Stopword(models.Model):  

    word = models.TextField(null=True,blank=True)  

    def __str__(self):  

        return self.word           
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