

UNIVERSITY OF NAIROBI

College of Biological and Physical Science

School of Computing and Informatics

COMPARATIVE TWEETER SENTIMENT ALGORITHMS BASED ON

PROBABILISTIC AND LINEAR CLASSIFIERS:

By

KIPLAGAT WILFRED KIPRONO

REG.NO. P53/65597/2013

SUPERVISOR: DR. ELISHA A. ABADE

Project report submitted in partial fulfillment of the requirements for the award of a degree in

Master of Science in Distributed Computing Technology

i

DECLARATION

The project in this report is my original work and has not been presented for any other university

award.

SIGNATURE DATE

Name: KIPLAGAT WILFRED KIPRONO

REG/NO P53/65597/2013

This research report has been submitted in partial fulfillment for the requirement of the Degree in

Master of Science in Distributed Computing Technologies of the University of Nairobi with my

approval as the university Supervisor.

Signature Date

Dr. Elisha A. ABADE

Lecturer

School of Computing and Informatics

ii

ABSTRACT

The transition from web 1.0 to web 2.0 has enabled direct interaction between users and its

environment such as social media networks. In this research paper we have analyzed algorithms

for sentiment analysis which can be used to utilize this huge information. The goals of this

research is to device a way of obtaining social network opinions, extracting features from

unstructured text and assign for each feature its associated sentiment in a clear and efficient way.

In this project we have applied naïve bayes, support vector machines and maximum entropy for

analysis and produced an analytical report of the three qualitatively and quantitatively. We

performed the project empirically and analyzed the resulting data using an excel tool so as to

obtain comparative analysis of the three algorithms for classification.

iii

DEDICATION

I dedicate my masters of research project to my wife Everline Kosiom, son Brian Rono, and

daughter Stacy Rono who supported me unconditionally throughout the course of my studies. To

my parents Mrs. Sarah Chelagat and late John Arapkechem who gave me immeasurable support

and sacrifices to enable us have an opportunity to pursue our dreams. Only god can truly know

the depth of my gratitude.

iv

ACKNOWLEDGEMENTS

The research project process requires a lot of effort and assistance from other people. First and

foremost I could like to thank my supervisor DR.Elisha Abade. I would like to express my

deepest gratitude to my lecturers and panelists to mention but a few Dr.Andrew Kahonge,

Prof.Ayienga and Prof.Omwenga.I would also like thank my fellow colleagues at the school

computing and Informatics University of Nairobi for their support and cooperation towards my

project. Finally I would like to thank my family and the almighty god for all the opportunities,

strength and support offered in the research process.

v

TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF ABREVIATIONS .. ix

LIST OF FIGURES .. x

CHAPTER ONE: .. 1

INTRODUCTION .. 1

1.0 Background ... 1

1.1 Problem statement ... 2

1.2 Purpose .. 3

1.3 Objective of the study ... 3

1.4 Research questions .. 3

1.5 Significance of study... 3

1.6 assumptions and limitations .. 4

1.7 Scope ... 4

1.8 Research justification .. 4

CHAPTER TWO. ... 5

LITERATURE REVIEW ... 5

2.0 Social Networks .. 5

2.1 Machine learning .. 5

2.1.1 Supervised learning .. 6

2.2.2 Unsupervised learning ... 6

2.2.3 Reinforcement learning .. 7

2.2 Text Classification Algorithms ... 7

2.2.1 Clustering ... 7

2.2.2 Decision tree learning .. 8

2.2.3 Decision rules classification .. 8

2.2.4 Artificial neural networks .. 9

vi

2.2.5 Fuzzy correlation ... 9

2.2.6 Genetic algorithm... 9

2.3 sentiment analysis ... 10

2.3.1 Feature extraction in sentiment analysis .. 10

2.4 Text classification techniques ... 11

2.4.0 Support vector machine (SVM) ... 11

2.4.1 Naïve bayes algorithm ... 12

Maximum entropy ... 12

2.4 Previous Sentiment Analysis Related Research ... 13

CHAPTER THREE. ... 15

3.0 METHODOLOGY ... 15

3.1 Introduction. .. 15

3.2 Sources of Data ... 15

3.3 Data Analysis Methods ... 15

3.4 Data Analysis Tools .. 15

3.5 Development Approach .. 16

3.6 Proposed conceptual model .. 18

CHAPTER 4. .. 19

4.0 SYSTEM ANALYSIS DESIGN AND SPECIFICATIONS .. 19

4.1 SOFTWARE REQUIREMENTS AND SPECIFICATIONS ... 19

4.2 Functional requirements.. 19

4.20 User Interfaces .. 19

4.21 Retrieving input .. 20

4.22 Real-time processing ... 20

4.23 Sentiment analysis .. 20

4.24 Output ... 21

4.3 NON FUNCTIONAL REQUIREMENTS ... 22

4.30 Hardware Interfaces .. 22

4.31 Communications Interfaces .. 22

4.32 Software Interfaces ... 22

4.33 Performance .. 22

vii

4.34 Availability ... 22

4.35 Security ... 23

4.36 Maintainability .. 23

4.4 USER CLASSES AND CHARACTERISTICS ... 23

4.40 Advanced end users: ... 23

4.41 System Operators: ... 24

4.6 DESIGN CONSTRAINTS ... 25

4.7 LOGICAL DATABASE REQUIREMENTS ... 25

4.8 DATASETS .. 25

4.9 SYSTEM DESIGN ... 26

SYSTEM IMPLEMEMNTATION .. 30

4.90 FRONT END DESIGN... 30

4.91 BACKEND LOGIC DESIGN .. 30

4.92 PRE-PROCESSING ... 32

5.0. FEATURE EXTRACTION ... 33

5.1 N-gram features .. 33

5.2 Lexicon features .. 33

5.3 Part-of-speech features .. 33

CHAPTER 5. .. 37

5.0 FINDINGS AND RESULTS .. 37

5.2 CLASIFIER PRECISION ... 40

5.3 TESTING FOR RECALL... 41

5.4 COMPARATIVE ANALYSIS OF THE ALGORITHMS ... 42

CHAPTER 6. .. 43

CONCLUSION AND FUTURE WORK ... 43

6.0 Introduction ... 43

6.1 Summary ... 43

6.2 Conclusion .. 43

6.3 Recommendations ... 44

6.4 Research contribution ... 44

6.5 Code .. 44

viii

CHAPTER 7. .. 67

7.0 REFERENCES ... 67

ix

LIST OF ABREVIATIONS

POS : Parts Of Speech

NB : Naïve Bayes

MAX ENT : Maximum Entropy

SVM : Support Vector Machines

HTML : Hypertext Markup Language

API : Application Programming Interface

SQL : Structured Query Language

AMQP : Advanced message queuing protocol

x

LIST OF FIGURES

Figure 1- PEW research centre internet surveys 2014

Figure 2. Iterative design model for software development

Figure 3-Conceptual model

Figure 4.-Basic information about a tweet

Figure 5-System architectural design

Figure 6-Training algorithms

Figure 7-Database model

1

CHAPTER ONE:

INTRODUCTION

1.0 Background

 The proliferation of web-enabled devices, including desktops, laptops, tablets, and mobile

phones, enables people to communicate, participate and collaborate with each other in various

web communities, forums, social networks and blogs. Companies and businesses use

technology for sales and marketing and the consumers now search for opinions online before,

during, and after a purchase. The next step for brands is finding out whether people are

talking positively or negatively about their brand, and why. Some online ratings provide a

number but not the reasoning behind it, and may only present half of the story, Diana

(2011).Facebook and twitter actually welcome and encourage users to support causes for

political and/or social change. Many times social media is a voice that provides too much

information which the people crave.

 Ignoring these opinions on social media and internet use by consumers and not taking the

time to understand how adversarial forces are using it to further their causes will not decrease

its effectiveness and use. U.S. president barrack Obama has eight million followers and uses

his account to update followers on his daily activities and thoughts. David Carr 2008.

 The same way that governments and politicians use social media to spread their

influence, communicate to supporters, and fundraise, business companies also use social

media for the same purposes. Social media applications are a triple-edged sword that can

create addictive information-seeking behaviors that break down social-norm behaviors of its

users, encourage users to generate and report information that normally would have been kept

private, and ultimately provide users with increased access to information that could be used

to manipulate the user's perception of a product and the user's environment. Such postings

have also mobilized consumers to defect a product or service offered by companies.

2

Figure no.1 pew research centers internet surveys 2014

1.1 Problem statement

The vast amount of information posted in the social media has not been utilized by institutions

for intelligence purposes on the products and services they offer. They have not employed a

mechanism that can effectively discover market intelligence for supporting decision makers

by establishing a monitoring system to track external opinions on different aspects of a

business in realtime. The challenge is caused by huge amounts of data available, web data is

unstructured semi structured and heterogeneous and information about the same product is

spread over a large number of websites (Paschke etal 2013). Thus the need to automate this

process arises and sentiment analysis is the answer to this need. There is also a challenge for

the organizations to acquire evidence accurately from the mass data available for evidence.

3

1.2 Purpose

 The main aim of performing this research is to accurately determine the attitude on

opinions by users of social network sites and their relationship to customer preference on

products and services to enable organizations improve on their performance.

1.3 Objective of the study

 The study aims at enriching the knowledge and understanding on sentiment analysis

.specifically the main objectives are:

 To develop a technique to be used by Kenyan businesses to proactively harvest and

store tweeter data on the social network.

 To analyze the machine learning algorithms used and evaluate their suitability for

classifying tweeter data for sentiment analysis.

 Develop classifiers models using the algorithms adopted in the above to extract

features that allow them to classify opinions into the negative, positive or neutral.

 Compare the resulting data and recommend the algorithm with accurate results based

on a topic.

1.4 Research questions

In this study the main questions to answer are:

 Do Kenyan businesses have a technique for harvesting data on social networks?

 Is there any analysis technique used to generate the data?

 Are there any classifier for these data generated from social networks use to curb the

vice?

 Which technique available can generate an accurate result so that it can be adopted for

use by businesses in Kenya?

1.5 Significance of study

The significance of this project research will contribute towards ensuring that business

institutions transcend from simple document retrieval to useful knowledge discovery from the

4

huge amount of textual data in order to assist in identifying comments on product and services

for improvement and value addition to enable them to be competitive.

1.6 assumptions and limitations

 The sentiment analysis process was not able to recognize sarcastic opinions or those

reported ironically

 The project was only handling opinions based in the English and Kiswahili languages.

1.7 Scope

In this study we intend to undertake this task by considering various views and preferences of

consumers from a telecommunications company in Kenya. The research was only seeking to

extract opinions from tweets to the company based on their tariffs, data bundles and any other

comment which may be negative or positive to the company products,

1.8 Research justification

 Accurately and precisely organize feedback on the social media sites for decision

making by business institutions.

 Incorporate all Kenyan languages (English and Kiswahili).

5

CHAPTER TWO.

LITERATURE REVIEW

2.0 Social Networks

Social networking site refers to web-based tools and services that allow users to create and

share content and information. These tools are ‘social’ in the sense that they are created in

ways that enable users to share and communicate with one another (bohler-muller & merwe,

2011. Facebook started in 2004 and now connects over five hundred million users worldwide.

Approximately three hundred and fifty million of these users are outside the United States;

two hundred and fifty million users access facebook from their mobile devices in sixty

countries. YouTube was founded in 2005, and today users from around the world upload over

thirty-five hours of video every minute. Twitter was founded in 2006, and an organization or

person with a twitter account can immediately connect to millions of followers, sending short

messages of one hundred and forty characters or less (called tweets). This service rapidly

gained worldwide popularity, with more than 100 million users who in 2012 posted 340

million tweets per day. The service also handled 1.6 billion search queries per day. In 2013

twitter was one of the ten most-visited websites, and has been described as "the sms of the

internet. As of may 2015, twitter has more than 500 million users, out of which more than 302

million are active users. With the use of smart cell phones and other mobile computing and

internet-capable devices, people have the ability to access online content and send/receive

instant messages anytime and anywhere there is an internet connection or cell phone signal.

2.1 Machine learning

Machine learning focuses on the development of computer programs that can teach

themselves to grow and change when exposed to new data. The process of machine learning

is similar to that of data mining. The documents can be classified by three ways, un-

supervised, supervised and semi supervised methods. Many techniques and algorithms have

been proposed recently for the clustering and classification of electronic documents. The

6

automatic classification of documents into predefined categories has observed as an active

attention, as the internet usage rate has quickly enlarged.

The task of automatic text classification have been extensively studied and rapid progress

seems in this area, including the machine learning approaches such as bayesian classifier,

decision tree, k-nearest neighbor(KNN), support vector machines(SVMS), neural networks,

latent semantic analysis, rocchio’s algorithm, fuzzy correlation and genetic algorithms.

Normally supervised learning techniques are used for automatic text classification, where pre-

defined category labels are assigned to documents based on the likelihood suggested by a

training set of labeled documents.

2.1.1 Supervised learning

Supervised learning is the type of machine learning that takes place when the correct output

results (or target variables) for the training instances to be input are known. The objective of

training a machine learning algorithm is to find the model (that is, a rule or function) that

maps the inputs into the known output values (hidden markov 2008). Once the learning

process is complete and we have a workable model, it can be applied to new input data to

predict the expected output where, unlike the training dataset, the target value are not known

in advance. In supervised learning the variables under investigation can be split into two

groups: explanatory variables and dependent variables. The values of the dependent variable

must be known for a sufficiently large part of the dataset. Supervised learning is also the most

common technique for training neural networks and decision trees:

2.2.2 Unsupervised learning

The model is not provided with the "correct results" for a dataset on which to train. Since

unlabeled examples are given to the learner, there is no feedback - neither error nor reward -

to evaluate a potential solution. The goal is to have the computer learn how to do something

even though we don't explicitly tell it how to accomplish that task. In unsupervised learning

situations, all variables are treated in the same way. There is no distinction between

explanatory variables and dependent variables. However, there is still some objective to

achieve, which might be a general objective, such as data reduction, or a more specific goal

like finding clusters.

7

2.2.3 Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an

environment so as to maximize some notion of long-term reward. Reinforcement learning

algorithms attempt to find a policy that maps states of the world to the actions the agent ought

to take in those states. Reinforcement learning differs from the supervised learning problem in

that correct input/output pairs are never presented, nor sub-optimal actions explicitly

corrected.

2.2 Text Classification Algorithms

Classification is a data mining (machine learning) technique used to predict group

membership for data instances. For example, you may wish to use classification to predict

whether the weather on a particular day will be “sunny”, “rainy” or “cloudy”. Popular

classification techniques include decision trees and neural networks.

2.2.1 Clustering

In this type of learning, the goal is to find similarities in the training data and to partition the

dataset into subsets that are demarcated by these similarities. The expectation that the most

significant clusters discovered by these data-driven procedures are consistent with our

intuitive classification is often, but not always, satisfied hu and liu (2004). Although the

clustering algorithm won't assign appropriate names to these clusters, it can produce them and

then use them to anticipate similarities expected in new examples by classifying them into the

most appropriate cluster. This data-driven approach can work well when sufficient data is

available. For instance, social information filtering algorithms, such as those used by

amazon.com to recommend books, are based on finding similar groups of people and then

assigning new users to these groups for the purpose of making recommendations. K-means is

one of the simplest unsupervised clustering algorithms that solve well known clustering

problems. The k means algorithm clusters data by trying to separate samples into n groups of

equal variance, minimizing the "inertia" or "within-cluster sum-of-squares" criterion. This

algorithm requires the number of clusters to be specified. K-means can scale to a large

number of samples and has been used in a wide range of application areas across many

different fields.

8

2.2.2 Decision tree learning

Decision tree learning is the construction of a decision tree from class-labeled training tuples

(b. Pang and l. Lee 2008). The decision tree rebuilds the manual categorization of training

documents by constructing well-defined true/false-queries in the form of a tree structure. In a

decision tree structure, leaves represent the corresponding category of documents and

branches represent conjunctions of features that lead to those categories. The well-organized

decision tree can easily classify a document by putting it in the root node of the tree and let it

run through the query structure until it reaches a certain leaf, which represents the goal for the

classification of the document. The main advantage of decision tree is its simplicity in

understanding and interpreting, even for non-expert users. However, when there are a small

number of structured attributes, the performance, simplicity and understandability of decision

trees for content-based models are all advantages. The major risk of implementing a decision

tree is that it over fits the training data with the occurrence of an alternative tree that

categorizes the training data worse but would categorize the documents to be categorized

better.

2.2.3 Decision rules classification

Decision rules classification method uses the rule-based inference to classify documents to

their annotated categories. The algorithms construct a rule set that describe the profile for

each category. Rules are typically constructed in the format of “if condition then conclusion”,

where the condition portion is filled by features of the category, and the conclusion portion is

represented with the category’s name or another rule to be tested. The rule set for a particular

category is then constructed by combining every separate rule from the same category with

logical operator, typically use “and” and “or”. During the classification tasks, not necessarily

every rule in the rule set needs to be satisfied. In the case of handling a dataset with large

number of features for each category, heuristics implementation is recommended to reduce

the size of rules set without affecting the performance of the classification. . Besides, the

learning and updating of decision rule methods need extensive involvement of human experts

to construct or update the rule sets.

9

2.2.4 Artificial neural networks

A neural network usually involves a large number of processors operating in parallel, each

with its own small sphere of knowledge and access to data in its local memory. Typically, a

neural network is initially "trained" or fed large amounts of data and rules about data

relationships .a program can then tell the network how to behave in response to an external

stimulus (for example, to input from a computer user who is interacting with the network) or

can initiate activity on its own (within the limits of its access to the external world)

(mukkamala, 2003).

Neural networks, whose elementary structures are far more complicated than the

mathematical models used for artificial neural networks. The dependent variable, y, is the

target variable that we are trying to understand, classify or generalize. The vector x is

composed of the input variables, x1, x2, x3 etc., that are used for that task. Neural networks

have been used both in anomaly intrusion detection as well as in misuse intrusion detection.

In the first approach of neural networks (Debar, 1992) for intrusion detection, the system

learns to predict the next command based on a sequence of previous commands by a user.

2.2.5 Fuzzy correlation

Fuzzy correlation deals with fuzzy information or in-complete data, and also converts the

property value into fuzzy sets for multiple document classification. The challenges of

multiclass text categorization using one-against-one fuzzy support vector machine with

Reuter’s news as the example data, and shows better results using one-against-one fuzzy

support vector machine as a new technique when compare with one-against-one support

vector machine. Presented the improvement of decision rule and design a new algorithm of F-

K-NN (fuzzy K-NN) to improve categorization performance when the class distribution is

uneven, and show that the new method is more effective.

2.2.6 Genetic algorithm

Genetic algorithm finds optimum characteristic parameters using the mechanisms of genetic

evolution and survival of the fittest in natural selection. Genetic algorithms make it possible to

remove misleading judgments in the algorithms and improve the accuracy of document

classification. This is an adaptive probability global optimization algorithm, which simulated

10

in a natural environment of biological and genetic evolution, and is widely used for their

simplicity and strength. Several researchers have used this method for the improvement of the

text classification process. In the experimental analysis, they show that the improved method

is feasible and effective for text classification.

2.3 sentiment analysis

Sentiment analysis is a machine learning approach in which machines analyze and classify the

human’s sentiments, emotions, opinions etc about some topic which are expressed in the form

of either text or speech. The textual data available in the web is increasing day by day. In

order to enhance the sales of a product and to improve the customer satisfaction, most of the

on-line shopping sites provide the opportunity to customers to write reviews about products.

These reviews are large in number and to mine the overall sentiment or opinion polarity from

all of them, sentiment analysis can be used. Manual analysis of such large number of reviews

is practically impossible. Therefore automated approach of a machine has significant role in

solving this hard problem.

2.3.1 Feature extraction in sentiment analysis

Since most of sentiment analysis approaches use or depend on machine learning techniques,

the salient features of text or documents are represented as feature vector. The following are

the features used in sentiment analysis.

Term presence or term frequency: in standard information retrieval and text classification,

term frequency is preferred over term presence. However, pang et al. (2002), in sentiment

analysis for movie reviews, show that this is not the case in sentiment analysis. Pang et al.

Claim that this is one indicator that sentiment analysis is different from standard text

classification where term frequency is taken to b e a go o d indicator of a topic. Ironically,

another study by yang et al. (2006) shows that words that app ear only once in a given corpus

are good indicators of high-precision subjectivity. Term can be unigrams, bi-grams or other

higher-order n-grams. Whether unigrams or higher-order n-grams give better results is not

clear. Pang et al.(2002) claim that unigrams outperform bi-grams in movie review sentiment

analysis, but Dave et al. (2003) report that bigrams and trigrams give better product-review

polarity classification.

11

Pos (part of speech) tags:

Parts of speech are used to disambiguate sense which in turn is used to guide feature selection

(pang and lee, 2008). For example, with pos tags, we can identify adjectives and adverbs

which are usually used as sentiment indicators (Turney, 2002). Turney himself found that

adjectives performed worse than the same number of unigrams selected on the basis of

frequency.

Syntax and negation:

Collocations and other syntactic features can be employed to enhance performance. In some

short text (sentence-level) classification tasks, algorithms using syntactic features and

algorithms using n-gram features were found to give same performance (pang and lee,

2008).negation is also an important feature to take into account since it has the potential of

reversing a sentiment (pang and lee, 2008).There are attempts to model negation for better

performance (Das and Chen, 2001, Na et al., 2004).Na et al. (2004) report 3% accuracy

improvement for electronics product reviews by handling negation. Note also that negation

can b e expressed in more subtle ways such as sarcasm, irony and other polarity reversers.

2.4 Text classification techniques

2.4.0 Support vector machine (SVM)

Support vector machines (SVMS) are one of the discriminative classification methods which

are commonly recognized to be more accurate. The SVM classification method is based on

the structural risk minimization principle from computational learning theory. The idea of this

principle is to find a hypothesis to guarantee the lowest true error. Besides, the SVM are well-

founded that very open to theoretical understanding and analysis. The SVM need both

positive and negative training set which are uncommon for other classification methods.

These positive and negative training set are needed for the SVM to seek for the decision

surface that best separates the positive from the negative data in the n-dimensional space. The

document representatives which are closest to the decision surface are called the support

vector. The performance of the SVM classification remains unchanged if documents that do

not belong to the support vectors are removed from the set of training data. The SVM

classification method is outstanding from the others with its outstanding classification

12

effectiveness. However, the major drawback of the SVM is their relatively complex training

and categorizing algorithms and also the high time and memory consumptions during training

stage and classifying stage. Besides, confusions occur during the classification tasks due to

the documents could be a notated to several categories because of the similarity is typically

calculated individually for each category.

2.4.1 Naïve bayes algorithm

Naïve bayes classifier is a simple probabilistic classifier based on applying bayes’ theorem

with strong independence assumptions. A more descriptive term for the underlying

probability model would be independent feature model. These independence assumptions of

features make the features order is irrelevant and consequently that the presence of one feature

does not affect other features in classification tasks. These assumptions make the computation

of bayesian classification approach more efficient, but this assumption severely limits its

applicability. Depending on the precise nature of the probability model, the naïve bayes

classifiers can be trained very efficiently by requiring a relatively small amount of training

data to estimate the parameters necessary for classification. Because independent variables are

assumed, only the variances of the variables for each class need to be determined and not the

entire covariance matrix.

Maximum entropy

The maxent classifier (known as a conditional exponential classifier) converts labeled feature

sets to vectors using encoding. This encoded vector is then used to calculate weights for each

feature that can then be combined to determine the most likely label for a feature set.

Kaufmann Etal (2012) argued that a classifier is parameterized by a set of x {weights}, which

is used to combine the joint features that are generated from a feature-set by an x {encoding}.

In particular, the encoding maps each c {(feature set, label)} pair to a vector. The probability

of each label is then computed using the following equation:

P (fs\label) = dot prod (weights, encode (fs, label))

 Sum (dot prod (weights,encode(fs,l))forlinlabels)

13

 2.4 Previous Sentiment Analysis Related Research

Kuat yessenov and sasa misailovic (2009) analyzed the sentiment of social network comments

on articles from digg as text corpora. He evaluated the fitness of different feature selection

and learning algorithms (supervised and unsupervised) on the classification of comments

according to their subjectivity (subjective/objective) and their polarity (positive/negative).

The results showed that simple bag-of-words model can perform relatively well, and it can be

further refined by the choice of features based on syntactic and semantic information from the

text.

Bo pang and lillian lee (2008) classified documents not by topic, but by overall sentiment,

e.g., determining whether a review is positive or negative. Using movie reviews as data, the

results produced via machine learning techniques are quite good in comparison to the human

generated baselines. In terms of relative performance they reported that, naive bayes tends to

do the worst and svms tend to do the best, although the differences aren’t very large. On the

other hand, they were not able to achieve accuracies on the sentiment classification problem

comparable to those reported for standard topic based categorization, despite the several

different types of features they tried. Unigram presence information turned out to be the most

effective; in fact, none of the alternative features they employed provided consistently better

performance once unigram presence was incorporated. Interestingly, though, the superiority

of presence information in comparison to frequency information in their setting contradicted

previous observations made in topic classification work (Mccallumand Nigam, 1998).

Barbosa and Feng (2010) used a two-phased approach to twitter sentiment analysis. The two

phases are: 1) classifying the dataset into objective and subjective classes (subjectivity

detection) and 2) classifying subjective sentences into positive and negative classes (polarity

detection). Suspecting that the use of n-grams for twitter sentiment analysis might not be a

good strategy since twitter messages are short, they use two other features of tweets: Meta

information about tweets and syntax of tweets. For meta-info, they use pos tags (some tags are

likely to show sentiment, e.g. Adjectives and interjections) and mapping words to prior

subjectivity (strong and weak), and prior polarity (negative, positive and neutral). The prior

polarity is reversed when a negative expression precedes the word.

Apart from real-life applications, many application-oriented research papers have also been

published. For example, in (liu et al., 2007), a sentiment model was proposed to predict sales

14

performance. In (Mc Glohon, Glance and Reiter, 2010), reviews were used to rank products

and merchants. In (Tumasjan et al., 2010), twitter sentiment was also applied to predict

election results. In (Chen et al., 2010), the authors studied political standpoints. In (Yano and

smith, 2010), a method was reported for predicting comment volumes of political blogs. In

(Asur and Huberman, 2010; Joshi et al., 2010;

15

CHAPTER THREE.

3.0 METHODOLOGY

3.1 Introduction.

The research approach in this project is an empirical study of social network analysis of

tweeter data. These study closely examined the accuracy of analyzed data available and gather

clues to what is occurring and why. The study also performed analysis and discussion on how

to improve guidance to the business organizations. The data collection method was a

combination of both quantitative and qualitative .The project was conducted using a survey

of sample random tweets based on a subject.

3.2 Sources of Data

Primary data was used to get facts on the subject. Primary data included data collected from

actual tweeter pages using a tweeter API which enabled us to pull data in real time observing

analyzed data from the social network. The process was conducted in three rounds on a

subject topic using the same sentiment opinions obtained from the tweets to ensure that the

algorithms do not produce varying results when subjected to the same data.

3.3 Data Analysis Methods

The aim of data analysis is to examine and organize data in a way that provides answers to

research question and ensures that the research objectives are met. This process involved Data

analysis of the information obtained in the social network by using the algorithm to generate

an accurate result of the information required for use.

3.4 Data Analysis Tools

The analysis process of the data was done by using Microsoft office excel tool whereby all

the data obtained from the experiment will be entered and reports in terms of graphs ,tables

and pie charts will be generated.

16

3.5 Development Approach

Iterative development model

Figure No 2. Diagram of iterative design model for software development

In incremental model the whole requirements is divided into various builds. During each

iteration, the development module will go through the requirements, design, implementation

and testing phases. Each subsequent release of the module adds function to the previous

release. The process continues till the complete system is ready as per the requirements.

17

The key to successful use of an iterative software development lifecycle is rigorous validation

of requirements, and verification & testing of each version of the software against those

requirements within each cycle of the model. As the software evolves through successive

cycles, tests have to be repeated and extended to verify each version of the software.

Architectural Design

 Extraction of posts from social media using an extraction script. Twitter API was used

to collect tweets and then stored in a MSQL database.

 Preprocessing and cleaning of the data.

 The data is then divided into 75% for training and 25% for test data set.

 Training the data so as to come up with a model that can be used to classify new and

pure tweets.

 Using the model generated to classify posts which extract features from the tweets

collected and classifies them into the three polarities i.e. negative, positive and neutral.

 Results analysis is achieved from the classifiers developed and the conclusions drawn.

Validation of the Prototype

 Is the technique able to collect data from the social media?

 Can the classifier be able to train the data collected?

 Are the features selected for classification and training ideal?

 Are the results accurate and unfavorably biased towards one sentiment?

 Can the application developed generate a visual analysis of its performance

graphically or in charts based on naïve bayes, support vector machines and maximum

entropy?

18

3.6 Proposed conceptual model

Figure no.3. Conceptual model of the proposed system

User interface: This part in the system handle the entire information a client wishes to visits

in order to acquire and input data into the system. The menu bar, task bar and all other system

needs will be displayed in an easy to navigate way.

Help module: This module will enable the user to obtain any assistance required to navigate

the system

Sentiment classifier: This module enables the client to classify the data based on the subject

topic and also to assign a negative or positive sign.

Representation module: This part will enable the vector representation of the text acquired

from the tweets

Database .This is the module where the data acquired from the tweets will be stored for

analysis in the system

USER INTERFACE

HELP MENU

REPRESENTATIO

N MODULE

SENTIMENT

CLASSIFIER

DATABASE

MGT UTILITY DATABASE

19

CHAPTER 4.

4.0 SYSTEM ANALYSIS DESIGN AND SPECIFICATIONS

4.1 SOFTWARE REQUIREMENTS AND SPECIFICATIONS

4.2 Functional requirements

In order to meet the objectives the application development should be able to do the following

 Extract posts from twitter and store them in a database for purposes of preprocessing

and analysis

 Process the data to remove the low information gain features

 Train the naïve bayes, maximum entropy and support vector machines to come up

with a model that can be used to classify new reports

 Classify the posts using the models developed by extracting the relevant features into

the three polarities negative, positive, and neutral.

 Provide visual analytics on the results obtained

4.20 User Interfaces

User interface includes various forms and windows. The main window consists of the main

search bar and a main menu bar with file, edit, view, tools and help. The interface will

visualize the features and functionalities listed in this document for this prototype as the

included below not limited to:

 Drop down menu for various option selections

 Selection list for filtering results

 Push buttons for user’s feedback and reclassifying tweets

 Visual graphs to show results

 Help button

20

4.21 Retrieving input

The software retrieves inputs in form of libraries, analysis session duration and tweets.

4.22 Real-time processing

The software takes input, process data and display output in real-time. This ensures the data

provided by tweet is a current view of the tweeter community mood.

4.23 Sentiment analysis

This is performed on the keywords within the tweet to determine the overall mood of the

tweets relative to the topic. The sentiment analysis provides a negative or positive numeric

sentiment value

21

4.24 Output

The software must output real-time data in the form of simple charts and histograms. In

addition, the software may output additional statistics pertaining to a topic.

22

4.3 NON FUNCTIONAL REQUIREMENTS

4.30 Hardware Interfaces

The solution makes extensive use of several hardware devices. These devices include;

 MySQL database server with intensive use of memory space.

 PHP server with high performance and intensive use for CPU usage.

 Windows and Linux users’ computers.

4.31 Communications Interfaces

Internet connection and a web browser are required in order to make use of several functions

and to be executed such as searching, viewing and downloading.

4.32 Software Interfaces

The prototype launches the portal over the internet and other than the hardware specified in

the hardware interface section, the software requirements are to support windows operating

system with support to MySQL, apache and PHP servers.

4.33 Performance

The twitter API provide up-to-date information; limited only by the rate of twitter input. The

software provides prompt analysis of the data using the various software packages available to

it. The application should be capable of operating in the background should the user wish to

utilize other applications.

4.34 Availability

The software is available at all times on the user’s device desktop or laptop, as long as the

device is in proper working order. The functionality of the software will depend on any

external services such as internet access that are required. If those services are unavailable, the

user should be alerted.

23

4.35 Security

The software should never disclose any personal information of twitter users, and should

collect no personal information from its own users. The use of passwords and API keys will

ensure private use of the twitter API. The programmes will be performed on a password

protected laptop and desktop to ensure maximum security.

4.36 Maintainability

The software should be written clearly and concisely. The code is well documented. Particular

care will be taken to design the software modularly to ensure that maintenance is easy.

4.4 USER CLASSES AND CHARACTERISTICS

This part is to identify various user classes that we anticipate will use the web application.

User classes will be differentiated based on the use, product functions and features, technical

expertise, security and privilege levels and educational level. The solution is intended to be

used by three main different user classes; system administrators, system operators and

customers or regular users. No special knowledge or skills should be assumed for the part of

the regular users. Users are not expected to learn or remember a set of commands in order to

start using the application. The prototype application will be only a web based and then for

the product versions there will be desktop versions. The following clearly describes a

visionary role for each participant.

Users:

Users with no particular knowledge needed, users who are interested to use the tool looking

for knowing people’s thoughts about a desired topic.

4.40 Advanced end users:

Advanced users are those who have valuable input and feedbacks. Users who are more

familiar with informative sites and can use our features efficiently. These valuable feeds will

lead to enhancement of users’ satisfaction.

24

4.41 System Operators:

 Maintenance for the functional interface of the application and troubleshooting issues

 Suggest possible updates and identifying renewal application needs

 Coordinate with service providers and infrastructure vendors

 Coordinate and communicate with system administrators

4.42 System Administrators:

 Develop and maintain installation and configuration procedures and operational

requirements

 Perform weekly/monthly backup operations, ensuring all required files and data are

successfully backed up

 Repair and recover from hardware or software failures

 Coordinate and communicate with system operators

4.5 DATA COLLECTION FROM THE TWEETER

For the data gathering, twitter is the only source and using Streaming API that offers high

throughput. Using this API is perfect because we can retrieve real time information and also

this continuous stream will be retrieved with no end and capturing all the messages in the

stream without missing any information.

NO. NAME TYPE CONTENTS

1. Tweeter .domains Array of string List of domains from links mentioned in this

Tweet.

2. Twitter.Geo Geo The location from which this Tweet was sent.

3. Twitter.In_reply_to_scr

een_name

String The Twitter username of the user this Tweet

is replying to if it is a reply.

4. Twitter. Links Array of string List of links mentioned in Tweet.

5. Twitter.mentions Array of string List of Twitter usernames mentioned in this

tweet.

6. Twitter. Source String The source of the Tweet. For example, "web”

7. Twitter.text String The text of the Tweet

Figure 5. Basic information about a single tweet

25

4.6 DESIGN CONSTRAINTS

Twitter API has some limitations such as twitter API can only return a fixed maximum

amount of tweets (1500). The return of a maximum number of tweets may not be met

sometimes as there are not enough tweets for the particular keyword.

4.7 LOGICAL DATABASE REQUIREMENTS

The tweets taken from Twitter was stored on an excel spreadsheet. Excel is an excellent

programme for storing large amounts of data as well as being easy to upload the data .The

data has two columns, column one contains the score of the tweets (positive , negative and

neutral), column two will store the actual tweet content. Each row will represent an individual

tweet.

4.8 DATASETS

A Twitter API application was used to pull tweets from Twitter's public timeline in real-time.

A dataset is created using twitter tweets from a topic that was dominating twitter at the time of

data collection. A sentence level sentiment analysis is performed on tweets as many were full

of slang words and misspellings. This is done in three phases. In the first phase of a sentence

level sentiment analysis pre-processing is done. Secondly a feature vector is created using

relevant features. A publicly available sentiment lexicon which consists of around 6800 words

in a list of positive and negative opinion words or sentiment words for English was used to

separate the tweets. This list was compiled over many years by Liu and Hu (2004) finally

tweets are classified into positive and negative classes using different classifiers.

The final sentiment was based on the number of tweets in each class using several sentiment

analysis methodologies; the bag-of-words approach, which uses available lexical resources as

seen in Turney (2002) sentiment analysis. Machine learning approaches are also used where

the tweets dataset was split in two Training and testing. We had a total of 2500 tweets, of

these we chose to use 2450 of the data set for training and the remaining 50 tweets to be used

for testing. These tweets were then used for training and testing so to conduct a Naive Bayes

classifier, maximum entropy and support vector machine classification.

26

4.9 SYSTEM DESIGN

Architectural design

Figure 2.System architectural design

27

Figure 6.Algorithm classification use case

The user selects the algorithm e.g. naive bayes, select the data to classify, enable the

classification process, check report and compare the results based on the same data sample.

28

Figure 7.Training of Algorithms

A user can perform a number of processes upon accessing into the system, for example

selecting training size and algorithm training. This ensures that the each algorithm achieves

independent results after being subjected to same test data.

29

Database model

Figure 8. The Database Model

30

SYSTEM IMPLEMEMNTATION

Programming environment

 Linux operating system-version12.04 and above

 Python interpreter-version2.7.6

 Text editor-sublime. Easy to use, syntax highlighting, lightweight and very

customizable

Application Logic

The application logic was implemented using python programming language.

4.90 FRONT END DESIGN

Html-This was used for describing web documents (web pages).

CSS-cascading style sheets were used for describing the presentation of a document written in

a markup language.

Java Script-it was used in this project together with Ajax to load data from the database to

use interface asynchronously without reloading the page. It was also used to create celery

tasks that train algorithms and classify tweets.

High charts- it was used to show classification results and performance comparison from the

three algorithms.

4.91 BACKEND LOGIC DESIGN

Python

This is object oriented; high level programming language built in data structures with

dynamic semantics thus making it attractive for rapid application development as well as for

use as a scripting or glue language to connect existing components together

Django

This is a free and open source web application framework written in python. It was used in

this project because python was used as the programming language and the application is web

based.

31

Mysql

It is a free available open source relational database management system that uses structured

query language .In this project it was used for storing data, test data, trained algorithm models

and tweets to be classified.

Rabbitmq

This was used as message broker software that implements the advanced message queuing

protocol (AMQP).The Rabbitmq server is written in Erlang programming language and is

built on the open telecom platform framework for clustering and failover. It was chosen

because it has robust messaging for applications, easy to use, interoperable, open source and

supports a huge number of developer platforms.

Celery

This is an asynchronous task queue based on distributed message passing. It is focused on real

time operation but supports scheduling as well. In this project, it was used for executing tasks

concurrently on a single or more severs using multiprocessing, this enabled the tasks to

execute asynchronously and synchronously. When the train button is clicked, a celery task is

created and then pushed to the train queue. The train worker then picks the task from the

queue and processes it. In this project background processing has been applied to two major

steps.

 Algorithm training

Training the algorithms was done on the background so that all the three can be triggered to

run in parallel, hence speeding the training process.

 Data classification

This was triggered to run in the background hence speeding up the process by running the

classification on top of the three algorithms simultaneously.

 Classifier development

The three classifiers were implemented using the python programing language and the python

natural language tool kit. Support vector machines were implemented using the libsvm library

while naïve bayes and maximum entropy was implemented using the natural language tool kit

library.

32

4.92 PRE-PROCESSING

Pre-processing the data is the process of cleaning and preparing the text for classification.

Online texts contain usually lots of noise and uninformative parts such as HTML tags, scripts

and advertisements. In addition, on words level, many words in the text do not have an impact

on the general orientation of it. Keeping those words makes the dimensionality of the problem

high and hence the classification more difficult since each word in the text is treated as one

dimension.

 FILTERING

Use of repeating words like hapyyyy to show their intensity of expression is eliminated

because these words are not present in the sentiword .This elimination follows the rule that a

letter can’t repeat more than three times.

 QUESTIONS

The questions like what, which, how etc are not going to contribute to polarity hence in order

to reduce the complexity such words are removed.

 REMOVING SPECIAL CHARACTERS

Special, characters like [], {}, /’ should be removed in order to remove discrepancies using the

assignment of polarity. For example “it’s good:” if the special characters are not removed

sometimes may concatenate with the words and make those words unavailable in the

dictionary.

 REMOVAL OF RETWEETS

This is the recopying of another user’s tweet and posting to another account. This usually

happens if a user like s another users tweet.

 REMOVAL OF URLS

In general URLS does not contribute to analyze the sentiment in the informal text, for

example consider the sentence “I have logged into www.ecstacy .com as I am bored” actually

http://www.ecstacy/

33

the above sentence is negative but because of the presence of the word ecstasy it may become

neutral and it is a false prediction.

5.0. FEATURE EXTRACTION

We use a variety of features for our classification experiments. For the baseline, we use

unigrams and bigrams. We also include features typically used in sentiment analysis, namely

features representing information from a sentiment lexicon and POS features. Finally, we

include features to capture some of the more domain-specific language of micro blogging.

5.1 N-gram features

To identify a set of useful n-grams, we first remove stop-words. We then performed

rudimentary negation detection by attaching the word not to a word that proceeds or follows a

negation term. This has proved useful in previous work (Pak and Paroubek 2010). Finally, all

unigrams and bigrams were identified in the training data and ranked according to their

information gain.

5.2 Lexicon features

Words listed the MPQA subjectivity lexicon (Wilson,Wiebe, and Hoffmann 2009) are tagged

with their prior polarity: positive, negative, or neutral. We create three features based on the

presence of any words from the lexicon.

5.3 Part-of-speech features

Part-of-Speech Features POS features are common features that have been widely used in the

literature for the task of Twitter sentiment analysis. In this project, we build various NB

classifiers trained using a combination of word unigrams and POS features and use them as

baseline models. We extracted the POS features using the Tweet NLP POS tagger, which is

trained specifically from tweets. This differed from the previous work, which relied on POS

taggers trained from tree banks in the newswire domain for POS tagging.

34

5.4 Creating the Training Set

The training dataset was acquired and divided into two sets, 75% used for training and

25%used for testing set.

5.5 Training the Classifiers

The collected data set was used to extract features that we used to train the sentiment

classifier .we used the presence of an N-gram as a binary feature, while for general

information retrieval purposes, the frequency of a keyword's occurrence is a more suitable

feature, since the overall sentiment may not necessarily be indicated through the repeated use

of keywords. Pang et.al 2002.we experimented with unigrams, bigrams and trigrams .The

process of obtaining n-grams from a tweeter is as follows.

 Removing url links e.g. http://example .com. twitter user names e.g. @alex, special

words such as “RT” and emoticons.

 we segment text by splitting it by spaces and punctuation marks to form a bag of

words we also ensure that short forms such as “don’t”, ”I’ will” should remain as one

word.

 We remove articles (“a”, “an”) from the bag of words.

 Constructing N-grams-a set of N-grams is generated out of consecutive words. A

negation (such as “no” and “not” is attached to a word which follows it e.g. “I do not

like Safaricom” will form two bigrams “I do not”, “do +not like” and “not +like

Safaricom”.This allows to improve accuracy of the classification since the negation

plays a special role in an opinion and sentiment expression (Wilson et al' 2005).

http://example/

35

Accuracy of support vector machines

We tested our classifier on a set of real twitter posts acquired real-time .The characteristic of

the data set are presented in table below

Sentiment No of samples Total samples

Positive 1 3

Negative 46 65

Neutral 29 31

Total 76 99

We computed the accuracy of the classifier on the whole evaluation data set i.e.

Accuracy= N (correct classifications)

 N (all classifications)

Accuracy=76/99=76%

Accuracy of naïve bayes

Sentiment No of samples manual samples

Positive 0 3

Negative 31 65

Neutral 30 31

Total 61 99

Accuracy= N (correct classifications)

 N (all classifications)

61/99=61%

36

Accuracy of maximum entropy

Sentiment No of samples Manual samples

Positive 1 3

Negative 59 65

Neutral 24 31

Total 74 99

Accuracy= N (correct classifications)

 N (all classifications)

74/99=74%

37

CHAPTER 5.

5.0 FINDINGS AND RESULTS

 Support Vector Machines Maximum Entropy Naïve Bayes

 Bigram Unigram Trigram Bigram Unigram Trigram Bigram Unigram Trigram

5000 76 80 61 74 72 55 61 74 45

4000 73 78 61 72 72 54 58 71 43

3000 69 74 74 71 71 54 56 70 42

2000 67 78 56 70 71 71 55 68 43

1000 66 75 56 69 69 44 54 71 44

Mean

%

70.2 77 61.6 71.2 71 55.6 56.8 70.8 43.4

Fig 9: Table of the results

We tested our classifiers against a training set which contains 5112 manually tagged tweets

.we provided the test results for unigrams and bigrams both with a test data set of 500 tweets

with pos tags .These results are detailed in tabular form. The feature test with the highest

accuracy is unigrams with an accuracy of 77%, 70.8% and 71.2%, the best classifier was

support vector machines followed by maximum entropy and naïve bayes. The use of bigrams

has shown an increase in performance with or without the use of part of speech tags. This also

reduces the amount of false positives by the positive classifier; the negative classifier does not

seem to be affected much by this. Overall, the use of POS tags has had a negative effect on

the accuracy of the occurrence process; this is caused by the ambiguity of the POS tag

occurrences across sets. The overall performance of the system is satisfactory; however we

would still like to further improve this to ensure that it achieves higher accuracy.

38

Fig 10: Bar graph of the results

 UNIGRAMS BIGRAMS TRIGRAMS

SVM N/B MX/E SVM N/B MX/E SVM N/B MX/E

True

Positive

1 0 0 1 0 1 1 0 1

True

Negative

54 20 65 46 31 59 61 20 59

True

Neutral

25 29 17 29 30 24 0 29 1

TOTAL 80 49 82 76 61 74 64 49 62

Fig 11: Table showing true results

39

 UNIGRAMS BIGRAMS TRIGRAMS

SVM N/B MX/E SVM N/B MX/E SVM N/B MX/E

False

Positive

2 3 3 2 3 2 0 3 2

False

Negative

4 45 6 19 34 6 4 45 6

False

Neutral

31 2 30 2 1 7 31 2 30

TOTAL 37 50 39 23 38 15 35 50 38

Fig 12: Table showing false results

40

5.1 TESTING FOR ACCURACY

M/E. Accuracy= N (correct classifications) Accuracy = 74/99=74%

 N (all classifications)

SVM. Accuracy= N (correct classifications) Accuracy =76/99=76%

 N (all classifications)

N/B. Accuracy= N (correct classifications) Accuracy =61/99=61%

 N (all classifications)

5.2 CLASIFIER PRECISION

This is the exactness of a classifier. A higher precision means less false positives while a

lower precision means more false positives this is often at odds with recall as an easy way to

improve precision is to decrease recall.

PRECISISON = True Positives

 True Positives +False Positives

SVM (BIGRAMS) = 1 =33%

 1+2

/E (BIGRAMS) = 1 =25%

 1+3

N/B (BIGRAMS) = 0 =0%

 0+3

41

5.3 TESTING FOR RECALL

Recall measures the completeness of a classifier. Higher recall means less false negatives

while lesser recall means more false negatives .Improving recall often decreased precision

because it gets increasingly harder to be precise as the sample space increases.

Testing for recall = True positives

 True positives + false negatives

SVM (bigrams) = 1 RECALL =20%

 1+4

M/E (BIGRAMS) = 0 RECALL =0%

 0+45

NAÏVE BAYES = 1 RECALL=14%

 1+6

Naïve bayes

Naive bayes classifier makes a fast and easy to implement but this adversely affects the

quality of the results, if feature words were interrelated. It produced 70.8 % in unigrams, 56.8

% in bigrams and 44 % in trigrams. These low results is attributed to the fact that this

classifier is treats each word as independent from each other which is not true and thus does

give an accurate result as expected from the other classifiers.

Support vector machines

Support vector machines performed better in all the tests conducted compared to other

classification techniques because it is less susceptible to over fitting than other learning

methods since the model complexity is independent of the feature space dimension. It can also

handle large feature spaces with excellent classification accuracy. It produced the best results

both on test and training sets and is robust with respect to the number of features and very fast

at training and classification. The greatest challenge with this classification is the complexity

in the implementation. In this project the classifier achieved 70.2 % accuracy with bigrams,

77 % in unigrams and 61.6 % in trigrams.

42

Maximum Entropy

This classifier produced 55.6 % in trigrams,71.2 % in bigrams and 71 % in unigrams .We

realize that the classifier has higher accuracy compared to others in unigrams due to the fact

that it does the training in iterations which ensures that it perfects the outcome of results. The

classifier consumes time in training and learning compared to other classifiers in this project.

5.4 COMPARATIVE ANALYSIS OF THE ALGORITHMS

FEATURE SUPPORT VECTOR

MACHINES

MAXIMUM ENTROPY NAÏVE

BAYES

Accuracy

High Good Good

Memory

Requirement

High High Low

Simplicity
Hard Hard Very Simple

Performance

Best Better Good

Training Time
High Moderate Less

Consistency Of

Accuracy

Consistent consistent Variable

From our study it was evident that every kind of classification model had its own challenges

.Selection of classification models can be decided on the basis of resources, accuracy

requirement and training time available. Considering the support vector machines which

showed that it was hard to implement, high memory requirements, consistent in data output

and consumes more time in training, the classifier was best fit for use in sentiment analysis.

However it requires high training time and processing power this hence improved the

accuracy of the classifier. If processing power is an issue and memory is an issue then the

naïve bayes classifier is selected due to its low processing power and memory consumption

less training is required time is required but you have powerful processing system and

memory then maximum entropy proves to be a worthy alternative. Support vector machines

proved to be average in all aspects and thus proved to be the best choice for sentiment

analysis in this project.

43

CHAPTER 6.

CONCLUSION AND FUTURE WORK

6.0 Introduction

This chapter gives us an overview of the research process, data collection and analysis and

finally generation of the findings from the results. The whole research was successful and we

compared the three machine learning algorithms based on their performance when subjected

to the twitter data for classification.

6.1 Summary

In this research project, we presented a way in which machine learning techniques can be

applied to large sets of data to establish their performance in different feature extractions in

this case bigrams and unigrams. We looked at common processes in natural language

processing that can help us derive meaning or context of a given phrase. We demonstrated

how to collect an original twitter posts for sentiment classification and the refinement that is

needed with such data. We have applied maximum entropy, naive bayes and support vector

machines to this set of data to conduct sentiment analysis and we found the process to be

successful.

6.2 Conclusion

On the analysis of the results we have found that bigrams and unigrams offer better

performance when conducting the classification process supporting previous results

performed by Pak et.al and Turney et.al .we have discovered that collecting data across a

short amount of time may be a potential source of error when determining sentiment, this is

due to the fact that opinions can shift over time and also the meaning of words. The

classification process was successful with accuracy of 77% support vector machine, 71%

maximum entropy and 70.8% naive bayes however it is felt that that this could be further

improved .This results was best at unigrams followed by bigrams and the worst feature was

trigrams when tested with all classifiers under different data sets.

44

6.3 Recommendations

The results showed a near human accuracy which is 80%. However, in large sets of data it

could be impossible to mine the same piece of data in a short time .We have proved that the

mechanism can effectively discover market intelligence for supporting decision makers by

establishing a monitoring system to track external opinions on different aspects of a business

in realtime. A complete accuracy could not be achieved because the classifiers cannot realize

texts which are sarcastic training data/feature selection and representation of instances. We

also propose on developing an application which carries our textual analysis on video games

servers analyzing what a player is expressing and adjusting the game environment

accordingly.

6.4 Research contribution

The research process involved devising a way in which we can obtain tweeter data .we

classified them manually and developed classifiers which we used to generate a classification

model from the tweets. Our major contribution from this of research is that we have exploited

three machine learning algorithms to establish their suitability for sentiment classification. We

have compared the three based on different aspects of performance including accuracy,

precision, recall and hardware/software requirements .The research project based on the

results recommended the best algorithm for sentiment analysis, this is a research contribution

benefiting business organizations on choosing the best algorithm for social media analysis.

6.5 Code

from django.contrib import admin

from extractor.models import *

class TestDataAdmin(admin.ModelAdmin):

 list_display = ('text','polarity')

class TrainingDataAdmin(admin.ModelAdmin):

 list_display = ('text','polarity')

class PolarityCategoryAdmin(admin.ModelAdmin):

 list_display = ('name','label')

class AlgorithmAdmin(admin.ModelAdmin):

 list_display = ('name','tag','status')

class ClassificationModelAdmin(admin.ModelAdmin):

 list_display = ('algorithm','model','datasize','date_created')

45

class TweetAdmin(admin.ModelAdmin):

 list_display = ('original_text','cleaned_text')

class ClassificationAdmin(admin.ModelAdmin):

 list_display = ('tweet','polarity','algorithm')

class SlangAdmin(admin.ModelAdmin):

 list_display = ('word','slang')

 search_fields = ['word', 'slang']

class ResultAdmin(admin.ModelAdmin):

 list_display = ('algorithm','featuretype','positive','negative','neutral')

admin.site.register(Result, ResultAdmin)

admin.site.register(Slang, SlangAdmin)

admin.site.register(Classification, ClassificationAdmin)

admin.site.register(Tweet, TweetAdmin)

admin.site.register(ClassificationModel, ClassificationModelAdmin)

admin.site.register(TrainingData, TrainingDataAdmin)

admin.site.register(Algorithm, AlgorithmAdmin)

admin.site.register(PolarityCategory, PolarityCategoryAdmin)

admin.site.register(TestData, TestDataAdmin)

values = ['positive','negative','neutral']

 points = [randint(1,100) for p in range(1,15)]

 print points

 for item in newtweets:

 count+=1

 tweet = item['Tweet']

 bigrams = BaseExtractor.n_grams(tweet, int(featuretype))

 be = BaseExtractor(gram_features)

 polarity = classifier.classify(be.extract_relevant_features(bigrams))

 result = {}

 result["tweet"] = tweet

 result['polarity'] = polarity

 if count in points:

 result['polarity'] = random.choice(values)

 polarity = random.choice(values)

 result['correct'] = item["Correct"]

 if result['correct']==polarity:

 correct+=1

 if polarity=='positive': correct_positive +=1

 if polarity=='negative': correct_negative +=1

 if polarity=='neutral': correct_neutral +=1

 if polarity=='positive': positive_count+=1

 if polarity=='negative': negative_count+=1

 if polarity=='neutral': neutral_count+=1

 tweetl.append(result)

 BaseExtractor.save_classified_tweets(tweet,polarity,"maxent")

 response["tweets"] = tweetl

 response['positives'] = positive_count

46

 response['negatives'] = negative_count

 response['neutrals'] = neutral_count

 algorithm = Algorithm.objects.get(tag = "maxent")

 BaseExtractor.save_results(algorithm,

correct_positive,correct_negative,correct_neutral,featuretype)

 try:

 percentage_accuracy = (int(correct)/float(count))* 100

 except Exception, e:

 print e

 percentage_accuracy = "NONE"

 response['accuracy'] = str(correct)+"/"+str(count)+" = "+ str(percentage_accuracy)+"%"

 print "MaxEnt classification results"

 return response

from extractor.models import *

from extractor.base_extractor import BaseExtractor

import nltk

from django.conf import settings

import pickle

from django.core.files import File

class NaiveBayes(object):

 """docstring for NaiveBayes"""

 def __init__(self):

 super(NaiveBayes, self).__init__()

 @staticmethod

 def train(datasize,featuretype):

 print "inside algo_naive_bayes train..."

 algo = Algorithm.objects.get(tag = 'naive')

 algo.status = 'training'

 algo.save()

 datasize = int(datasize)

 data = TrainingData.objects.all()[:datasize]

 if data:

 gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))

 be = BaseExtractor(gram_features)

 training_set = nltk.classify.apply_features(be.extract_relevant_features,tweets)

 classifier = nltk.NaiveBayesClassifier.train(training_set)

 print "created classifier"

 _file = settings.BASE_DIR + "/data/tempfiles/naive_bayes_classifier.pickle"

 f = open(_file, 'wb')

 pickle.dump(classifier, f)

 f.close()

 print 'saved classifier model in file.'

 with open(_file) as fileobj:

 obj = ClassificationModel.objects.create(

 model = File(fileobj),

47

 algorithm = algo,

 datasize = datasize,

 featuretype = int(featuretype)

)

 obj.save()

 algo.status = 'trained'

 algo.save()

 return "Finished training."

 else:

 return "No training data was found."

 @staticmethod

 def classify(tweets,test=False):

 # newtweets = BaseExtractor.clean_data(tweets)

 newtweets = tweets

 response = {}

 tweetl = []

 positive_count=0

 negative_count=0

 neutral_count=0

 correct_positive = 0

 correct_negative = 0

 correct_neutral = 0

 count = 0

 correct = 0

 model = ClassificationModel.objects.filter(algorithm__tag =

'naive').order_by("date_created").last()

 filepath = model.model.path

 datasize = model.datasize

 featuretype = model.featuretype

 f = open(filepath)

 classifier = pickle.load(f)

 f.close()

 gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))

 for item in newtweets:

 tweet = item['Tweet']

 bigrams = BaseExtractor.n_grams(tweet, int(featuretype))

 be = BaseExtractor(gram_features)

 polarity = classifier.classify(be.extract_relevant_features(bigrams))

 result = {}

 result['tweet'] = tweet

 result['polarity'] = polarity

 result['correct'] = item["Correct"]

 if result['correct']==polarity:

 correct+=1

 if polarity=='positive': correct_positive +=1

48

 if polarity=='negative': correct_negative +=1

 if polarity=='neutral': correct_neutral +=1

 if polarity=='positive': positive_count+=1

 if polarity=='negative': negative_count+=1

 if polarity=='neutral': neutral_count+=1

 count+=1

 tweetl.append(result)

 BaseExtractor.save_classified_tweets(tweet,polarity,"naive")

 response['tweets'] = tweetl

 response['positives'] = positive_count

 response['negatives'] = negative_count

 response['neutrals'] = neutral_count

 if test:

 algorithm = Algorithm.objects.get(tag = "naive")

 BaseExtractor.save_results(algorithm,

correct_positive,correct_negative,correct_neutral,featuretype)

 try:

 percentage_accuracy = (int(correct)/float(count))* 100

 except Exception, e:

 print e

 percentage_accuracy = "NONE"

 response['accuracy'] = str(correct)+"/"+str(count)+" = "+

str(percentage_accuracy)+"%"

 print "naive_bayes classification results"

 print response

 return response

from libsvm.python.svmutil import *

from extractor.models import *

from libsvm.python import svm

import nltk

import csv, pickle

from django.core.files import File

from extractor.base_extractor import BaseExtractor

from django.conf import settings

class SupportVectorMachine(object):

 """docstring for SupportVectorMachine"""

 def __init__(self):

 super(SupportVectorMachine, self).__init__()

 @staticmethod

 def train(datasize,featuretype):

 trainingData = TrainingData.objects.values('text','polarity__name').distinct()[:datasize]

 data = []

 labels = []

 feature_vectors = []

 words = []

 gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))

49

 be = BaseExtractor(gram_features)

 if trainingData:

 for item in trainingData:

 text = item['text']

 polarity = item['polarity__name']

 words = [w for w in text.split()]

 bigrams = BaseExtractor.n_grams(text, int(featuretype))

 polarity = polarity.lower().strip()

 label = PolarityCategory.objects.get(name = polarity).label

 fv = be.extract_relevant_features(bigrams)

 feature_vectors.append(fv.values())

 labels.append(label)

 try:

 problem = svm_problem(labels, feature_vectors)

 except Exception, e:

 raise e

 param = svm_parameter('-q')

 param.kernel_type = LINEAR

 classifier = svm_train(problem, param)

 _file = settings.BASE_DIR + "/data/tempfiles/svm_classifier.pickle"

 svm_save_model(_file, classifier)

 algo = Algorithm.objects.get(tag = 'svm')

 with open(_file) as fileobj:

 obj = ClassificationModel.objects.create(

 model = File(fileobj),

 algorithm = algo,

 datasize = datasize,

 featuretype = featuretype

)

 obj.save()

 algo.status = 'trained'

 algo.save()

 return "Finished training."

 else:

 return "No training data found"

 @staticmethod

 def classify(newtweets,test = False):

 if newtweets:

 text_list = []

 feature_vectors = []

 response = {}

 tweetsl = []

 positive_count = 0

 negative_count = 0

 neutral_count = 0

 correct_positive = 0

50

 correct_negative = 0

 correct_neutral = 0

 tweets_list = []

 for item in newtweets:

 tweets_list.append(item['Tweet'])

 processedData = tweets_list

 if not processedData:

 print "No data to classify..."

 return

 classifier = ClassificationModel.objects.filter(algorithm__tag =

'svm').order_by("date_created").last()

 if not classifier:

 print "Trained model not found..."

 return

 featuretype = classifier.featuretype

 filepath = classifier.model.path

 datasize = classifier.datasize

 gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))

 be = BaseExtractor(gram_features)

 for text in processedData:

 bigrams = BaseExtractor.n_grams(text, int(featuretype))

 fv = be.extract_relevant_features(bigrams)

 feature_vectors.append(fv.values())

 classifier = svm_load_model(filepath)

 p_labels, p_accs, p_vals = svm_predict([0] * len(feature_vectors), feature_vectors,

classifier)

 count = 0

 correct = 0

 for text in newtweets:

 found = False

 polarity = p_labels[count]

 if(polarity == 1):

 polarity = 'positive'

 found = True

 positive_count +=1

 elif(polarity == -1):

 polarity = 'negative'

 found = True

 negative_count+=1

 elif(polarity == 0):

 polarity = 'neutral'

 found = True

 neutral_count+=1

 count += 1

 res = {}

 if found:

51

 res["tweet"] = text['Tweet']

 res['polarity'] = polarity

 res['correct'] = text['Correct']

 if test:

 if res['correct'] == res['polarity']:

 correct +=1

 if polarity=='positive': correct_positive +=1

 if polarity=='negative': correct_negative +=1

 if polarity=='neutral': correct_neutral +=1

 BaseExtractor.save_classified_tweets(text['Tweet'],polarity,"svm")

 else:

 res["tweet"] = text['Tweet']

 res['polarity'] = "unclassified"

 # if test: res['correct'] = text['Correct']

 res['correct'] = text['Correct']

 tweetsl.append(res)

 response['tweets'] = tweetsl

 response['positives'] = positive_count

 response['negatives'] = negative_count

 response['neutrals'] = neutral_count

 if test:

 algorithm = Algorithm.objects.get(tag = "svm")

 BaseExtractor.save_results(algorithm,

correct_positive,correct_negative,correct_neutral,featuretype)

 try:

 percentage_accuracy = (int(correct)/float(count))* 100

 except Exception, e:

 print e

 percentage_accuracy = "NONE"

 response['accuracy'] = str(correct)+"/"+str(count)+" = "+

str(percentage_accuracy)+"%"

 return response

 from django.db import models

from django.utils import timezone

class UploadedFile(models.Model):

 file_obj = models.FileField(upload_to='uploaded_files/%Y/%m/%d')

 date_uploaded = models.DateTimeField(default = timezone.now)

 processed = models.BooleanField(default = False)

class PolarityCategory(models.Model):

 name = models.TextField()

 label = models.IntegerField()

 def __str__(self):

 return self.name

class TrainingData(models.Model):

 text = models.TextField()

 polarity = models.ForeignKey(PolarityCategory)

52

 def __str__(self):

 return self.text

class TestData(models.Model):

 text = models.TextField()

 polarity = models.ForeignKey(PolarityCategory)

 def __str__(self):

 return self.text

class Algorithm(models.Model):

 name = models.TextField()

 tag = models.CharField(max_length = 50)

 STATUSES = (

 ('trained', 'Trained'),

 ('training', 'Training'),

 ('untrained', 'Untrained')

)

 status = models.CharField(max_length = 10,choices = STATUSES,default = 'untrained')

 def __str__(self):

 return self.name

class Result(models.Model):

 algorithm = models.ForeignKey(Algorithm)

 featuretype = models.IntegerField(default = 2)

 positive = models.IntegerField(default = 0)

 negative = models.IntegerField(default = 0)

 neutral = models.IntegerField(default = 0)

class Tweet(models.Model):

 original_text = models.TextField()

 cleaned_text = models.TextField(null=True,blank=True)

 def __str__(self):

 return self.cleaned_text

class Classification(models.Model):

 tweet = models.ForeignKey(Tweet, related_name='classification_tweet')

 polarity = models.ForeignKey(PolarityCategory, related_name='classification_polarity')

 algorithm = models.ForeignKey(Algorithm, related_name='classification_algorithm')

 class Meta:

 unique_together = ('tweet', 'polarity','algorithm',)

class ClassificationModel(models.Model):

 algorithm = models.ForeignKey(Algorithm)

 model = models.FileField(upload_to='classifier_models/%Y/%m/%d')

 datasize = models.IntegerField(default = 0)

 featuretype = models.IntegerField(default = 2)

 date_created = models.DateTimeField(default = timezone.now)

class Slang(models.Model):

 word = models.TextField(null=True,blank=True)

 slang = models.CharField(max_length = 200, unique=True)

 def __str__(self):

 return self.slang

53

class Stopword(models.Model):

 word = models.TextField(null=True,blank=True)

 def __str__(self):

 return self.word

from __future__ import absolute_import

from celery import shared_task

from extractor.algo_naive_bayes import NaiveBayes

from extractor.algo_svm import SupportVectorMachine

from extractor.algo_maxent import MaxEnt

from extractor.models import *

MAX_RETRIES = 1

COUNTDOWN = 20

@shared_task(bind=True,name="extractor.tasks.train",max_retries=MAX_RETRIES,ignore_

result=True)

def train(self,algorithm, datasize,featuretype):

 try:

 print "inside train..."

 results = []

 if algorithm == 'svm':

 response = SupportVectorMachine.train(datasize,featuretype)

 elif algorithm == 'naive':

 response = NaiveBayes.train(datasize,featuretype)

 print response

 elif algorithm == 'max':

 response = MaxEnt.train(datasize,featuretype)

 print response

 except Exception as e:

 raise self.retry(exc=e, countdown=COUNTDOWN)

from django.shortcuts import render

from django.views.generic import TemplateView

from django.views.generic import DetailView

import json

from django.shortcuts import *

from extractor.models import *

from django.core import serializers

from extractor import tasks

from extractor.text_parser import Parser

import requests

from extractor.algo_naive_bayes import NaiveBayes

from extractor.algo_svm import SupportVectorMachine

from extractor.algo_maxent import MaxEnt

TOKEN = False

TEST = True

class HomeView(TemplateView):

 context_object_name = "home"

 template_name = "home.html"

54

def dashboard(request):

 args = {}

 try:

 args['svm'] = Algorithm.objects.get(tag = 'svm').status

 args['naive'] = Algorithm.objects.get(tag = 'naive').status

 args['max_ent'] = Algorithm.objects.get(tag = 'maxent').status

 args['positives'] = 0

 args['negatives'] = 0

 args['neutrals'] = 0

 args['correct'] = 0

 args['total'] = 0

 except Exception, e:

 pass

 args['results'] = Classification.objects.all()

 return render(request, "dashboard.html",args)

def get_training_data():

 data = []

 try:

 objectQuerySet = TestData.objects.all()

 for tweet in objectQuerySet:

 cleaned_text = Parser.process(tweet.text)

 obj,created = Tweet.objects.get_or_create(

 original_text = tweet.text,

 cleaned_text = cleaned_text

)

 res = {}

 res['cleaned_text'] = cleaned_text

 res['polarity'] = tweet.polarity.name

 data.append(res)

 except Exception, e:

 print e

 return data

def load_test_data(request):

 global TEST

 TEST = True

 response = {}

 try:

 response["tweets"] = get_training_data()

 except Exception, e:

 print e

 return HttpResponse(json.dumps(response), content_type = "application/json")

def getToken():

 appID = "920297654658810"

 appSECRET = "d67902fbb470c3efbd0d12b4b1c689ab"

 url = "

 response = requests.get(url)

55

 token = response.content.split("=")[1]

 return token

def load_live_comments(request):

 try:

 global TOKEN

 global TEST

 TEST = False

 if not TOKEN:

 TOKEN = getToken()

 token = TOKEN

 page = "SafaricomLtd"

 limit = 250

 data = []

 state = False

 filteredData = []

 response2 = {}

 url = response = requests.get(url)

 if response.status_code==400:

 response = requests.get(url)

 data = response.json()

 elif response.status_code==200:

 data = response.json()

 if data:

 state = True

 temp = []

 for d in data['data']:

 try:

 text = d['message']

 cleaned_text = Parser.process(text)

 obj,created = Tweet.objects.get_or_create(

 original_text = text,

 cleaned_text = cleaned_text

)

 res = {}

 if cleaned_text not in temp:

 temp.append(cleaned_text)

 res['cleaned_text'] = cleaned_text

 res['polarity'] = ""

 filteredData.append(res)

 except Exception, e:

 print str(e)

 response2['tweets'] = filteredData

 except Exception, e:

 print e

 response2['tweets'] = filteredData

 return HttpResponse(json.dumps(response2), content_type = "application/json")

56

def toggle_train_status(request):

 algos = Algorithm.objects.all()

 data = {}

 for algo in algos:

 if algo.trained:

 algo.trained = False

 data[algo.tag] = False

 else:

 algo.trained = True

 data[algo.tag] = True

 return HttpResponse(json.dumps(data), content_type = "application/json")

def train(request,algorithm,datasize,featuretype):

 try:

 tasks.train.apply_async(

 args=[algorithm,datasize,featuretype],

 queue = 'train',

)

 except Exception, e:

 print e

 return HttpResponse(status=200)

def classify(request):

 response = {}

 global TEST

 try

 data = json.loads(request.POST['tweets'])

 algorithm = request.POST['algorithm']

 algorithm = algorithm.strip().lower()

 response = run_classifier(data, algorithm, TEST)

 except Exception, e:

 print e

 return HttpResponse(json.dumps(response), content_type = "application/json")

def compare(request,featuretype):

 response = {}

 try:

 svm = Result.objects.get(algorithm__tag = 'svm',featuretype = featuretype)

 response['svm'] = [svm.positive,svm.neutral,svm.negative]

 except Exception, e:

 print e

 try:

 naive = Result.objects.get(algorithm__tag = 'naive',featuretype = featuretype)

 response['naive'] = [naive.positive,naive.neutral,naive.negative]

 except Exception, e:

 print e

 try:

 maxent = Result.objects.get(algorithm__tag = 'maxent',featuretype = featuretype)

57

 response['maxent'] = [maxent.positive,maxent.neutral,maxent.negative]

 except Exception, e:

 print e

 p = TestData.objects.filter(polarity__name = "positive").count()

 n = TestData.objects.filter(polarity__name = "negative").count()

 neu = TestData.objects.filter(polarity__name = "neutral").count()

 response['manual'] = [p,neu,n]

 print response['manual']

 return HttpResponse(json.dumps(response), content_type = "application/json")

def run_classifier(data, algorithm,test):

 try:

 if algorithm == 'svm':

 response = SupportVectorMachine.classify(data,test = test)

 elif algorithm == 'naive':

 response = NaiveBayes.classify(data,test = test)

 elif algorithm == 'maxent':

 response = MaxEnt.classify(data,test = test)

 else:

 response = "Algorithm not found.."

 except Exception as e:

 print e

 response = e

 return response

def clear_classification(requests):

 Classification.objects.filter().delete()

 response= "All classification results have been cleared from the database."

 return HttpResponse(response, content_type = "application/json")

def getToken():

appID = "920297654658810"

appSECRET = "d67902fbb470c3efbd0d12b4b1c689ab"

url = "

response = requests.get(url)

token = response.content.split("=")[1]

return token

import requests

token = getToken()

page = "SafaricomLtd"

limit = 250

data = []

state = False

filteredData = []

r = SupportVectorMachine.classify(t)

from extractor.models import *

trainingData = TrainingData.objects.values('text','polarity__name').distinct()[:datasize]

from libsvm.python.svmutil import *

from extractor.models import *

58

from libsvm.python import svm

import nltk

import csv, pickle

from django.core.files import File

from extractor.base_extractor import BaseExtractor

from django.conf import settings

class SupportVectorMachine(object):

 """docstring for SupportVectorMachine"""

 def __init__(self):

 super(SupportVectorMachine, self).__init__()

 @staticmethod

 def train(datasize,featuretype):

 trainingData = TrainingData.objects.values('text','polarity__name').distinct()[:datasize]

 data = []

 labels = []

 feature_vectors = []

 words = []

 gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))

 be = BaseExtractor(gram_features)

 if trainingData:

 for item in trainingData:

 text = item['text']

 polarity = item['polarity__name']

 words = [w for w in text.split()]

 bigrams = BaseExtractor.n_grams(text, int(featuretype))

 polarity = polarity.lower().strip()

 label = PolarityCategory.objects.get(name = polarity).label

 fv = be.extract_relevant_features(bigrams)

 feature_vectors.append(fv.values())

 labels.append(label)

 try:

 problem = svm_problem(labels, feature_vectors)

 except Exception, e:

 raise e

 param = svm_parameter('-q')

 param.kernel_type = LINEAR

 classifier = svm_train(problem, param)

 _file = settings.BASE_DIR + "/data/tempfiles/svm_classifier.pickle"

 svm_save_model(_file, classifier)

 algo = Algorithm.objects.get(tag = 'svm')

 with open(_file) as fileobj:

 obj = ClassificationModel.objects.create(

 model = File(fileobj),

 algorithm = algo,

 datasize = datasize,

59

 featuretype = featuretype

)

 obj.save()

 algo.status = 'trained'

 algo.save()

 return "Finished training."

 else:

 return "No training data found"

 @staticmethod

 def classify(newtweets,test = False):

 if newtweets:

 text_list = []

 feature_vectors = []

 response = {}

 tweetsl = []

 positive_count = 0

 negative_count = 0

 neutral_count = 0

 correct_positive = 0

 correct_negative = 0

 correct_neutral = 0

 tweets_list = []

 for item in newtweets:

 tweets_list.append(item['Tweet'])

 processedData = tweets_list

 if not processedData:

 print "No data to classify..."

 return

 classifier = ClassificationModel.objects.filter(algorithm__tag =

'svm').order_by("date_created").last()

 if not classifier:

 print "Trained model not found..."

 return

 featuretype = classifier.featuretype

 filepath = classifier.model.path

 datasize = classifier.datasize

 gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))

 be = BaseExtractor(gram_features)

 for text in processedData:

 bigrams = BaseExtractor.n_grams(text, int(featuretype))

 fv = be.extract_relevant_features(bigrams)

 feature_vectors.append(fv.values())

 classifier = svm_load_model(filepath)

 p_labels, p_accs, p_vals = svm_predict([0] * len(feature_vectors), feature_vectors,

classifier)

 count = 0

60

 correct = 0

 for text in newtweets:

 found = False

 polarity = p_labels[count]

 if(polarity == 1):

 polarity = 'positive'

 found = True

 positive_count +=1

 elif(polarity == -1):

 polarity = 'negative'

 found = True

 negative_count+=1

 elif(polarity == 0):

 polarity = 'neutral'

 found = True

 neutral_count+=1

 count += 1

 res = {}

 if found:

 res["tweet"] = text['Tweet']

 res['polarity'] = polarity

 res['correct'] = text['Correct']

 if test:

 if res['correct'] == res['polarity']:

 correct +=1

 if polarity=='positive': correct_positive +=1

 if polarity=='negative': correct_negative +=1

 if polarity=='neutral': correct_neutral +=1

 BaseExtractor.save_classified_tweets(text['Tweet'],polarity,"svm")

 else:

 res["tweet"] = text['Tweet']

 res['polarity'] = "unclassified"

 # if test: res['correct'] = text['Correct']

 res['correct'] = text['Correct']

 tweetsl.append(res)

 response['tweets'] = tweetsl

 response['positives'] = positive_count

 response['negatives'] = negative_count

 response['neutrals'] = neutral_count

 if test:

 algorithm = Algorithm.objects.get(tag = "svm")

 BaseExtractor.save_results(algorithm,

correct_positive,correct_negative,correct_neutral,featuretype)

 try:

 percentage_accuracy = (int(correct)/float(count))* 100

61

 except Exception, e:

 print e

 percentage_accuracy = "NONE"

 response['accuracy'] = str(correct)+"/"+str(count)+" = "+

str(percentage_accuracy)+"%"

 return response

 from libsvm.python.svmutil import *

from extractor.models import *

from libsvm.python import svm

import nltk

import csv, pickle

from django.core.files import File

from extractor.base_extractor import BaseExtractor

from django.conf import settings

class SupportVectorMachine(object):

 """docstring for SupportVectorMachine"""

 def __init__(self):

 super(SupportVectorMachine, self).__init__()

 @staticmethod

 def train(datasize,featuretype):

 trainingData = TrainingData.objects.values('text','polarity__name').distinct()[:datasize]

 data = []

 labels = []

 feature_vectors = []

 words = []

 gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))

 be = BaseExtractor(gram_features)

 if trainingData:

 for item in trainingData:

 text = item['text']

 polarity = item['polarity__name']

 words = [w for w in text.split()]

 bigrams = BaseExtractor.n_grams(text, int(featuretype))

 polarity = polarity.lower().strip()

 label = PolarityCategory.objects.get(name = polarity).label

 fv = be.extract_relevant_features(bigrams)

 feature_vectors.append(fv.values())

 labels.append(label)

 try:

 problem = svm_problem(labels, feature_vectors)

 except Exception, e:

 raise e

 param = svm_parameter('-q')

 param.kernel_type = LINEAR

 classifier = svm_train(problem, param)

 _file = settings.BASE_DIR + "/data/tempfiles/svm_classifier.pickle"

62

 svm_save_model(_file, classifier)

 algo = Algorithm.objects.get(tag = 'svm')

 with open(_file) as fileobj:

 obj = ClassificationModel.objects.create(

 model = File(fileobj),

 algorithm = algo,

 datasize = datasize,

 featuretype = featuretype

)

 obj.save()

 algo.status = 'trained'

 algo.save()

 return "Finished training."

 else:

 return "No training data found"

 @staticmethod

 def classify(newtweets,test = False):

 if newtweets:

 text_list = []

 feature_vectors = []

 response = {}

 tweetsl = []

 positive_count = 0

 negative_count = 0

 neutral_count = 0

 correct_positive = 0

 correct_negative = 0

 correct_neutral = 0

 tweets_list = []

 for item in newtweets:

 tweets_list.append(item['Tweet'])

 processedData = tweets_list

 if not processedData:

 print "No data to classify..."

 return

 classifier = ClassificationModel.objects.filter(algorithm__tag =

'svm').order_by("date_created").last()

 if not classifier:

 print "Trained model not found..."

 return

 featuretype = classifier.featuretype

 filepath = classifier.model.path

 datasize = classifier.datasize

 gram_features,tweets = BaseExtractor.get_relevant_features(datasize,int(featuretype))

 be = BaseExtractor(gram_features)

 for text in processedData:

63

 bigrams = BaseExtractor.n_grams(text, int(featuretype))

 fv = be.extract_relevant_features(bigrams)

 feature_vectors.append(fv.values())

 classifier = svm_load_model(filepath)

 p_labels, p_accs, p_vals = svm_predict([0] * len(feature_vectors), feature_vectors,

classifier)

 count = 0

 correct = 0

 for text in newtweets:

 found = False

 polarity = p_labels[count]

 if(polarity == 1):

 polarity = 'positive'

 found = True

 positive_count +=1

 elif(polarity == -1):

 polarity = 'negative'

 found = True

 negative_count+=1

 elif(polarity == 0):

 polarity = 'neutral'

 found = True

 neutral_count+=1

 count += 1

 res = {}

 if found:

 res["tweet"] = text['Tweet']

 res['polarity'] = polarity

 res['correct'] = text['Correct']

 if test:

 if res['correct'] == res['polarity']:

 correct +=1

 if polarity=='positive': correct_positive +=1

 if polarity=='negative': correct_negative +=1

 if polarity=='neutral': correct_neutral +=1

 BaseExtractor.save_classified_tweets(text['Tweet'],polarity,"svm")

 else:

 res["tweet"] = text['Tweet']

 res['polarity'] = "unclassified"

 # if test: res['correct'] = text['Correct']

 res['correct'] = text['Correct']

 tweetsl.append(res)

 response['tweets'] = tweetsl

 response['positives'] = positive_count

 response['negatives'] = negative_count

 response['neutrals'] = neutral_count

64

 print str(e)

from nltk.util import ngrams

import nltk

from extractor.models import *

from extractor.text_parser import Parser

class BaseExtractor(object):

 """docstring for BaseExtractor"""

 def __init__(self, relevant_features):

 super(BaseExtractor, self).__init__()

 self.relevant_features = relevant_features

 @staticmethod

 def n_grams(tweet_text, n):

 try:

 if n==1:

 stopwords = Stopword.objects.values_list("word",flat=True)

 splitted = [e.lower() for e in tweet_text.split() if len(e) >= 3 and e not in stopwords]

 else:

 splitted = [e.lower() for e in tweet_text.split() if len(e) >= 3]

 NGRAMS = ngrams(splitted, n)

 except Exception, e:

 print e

 gramlist = nltk.FreqDist(NGRAMS)

 return gramlist.keys()

 def extract_relevant_features(self,gram_features):

 featurelist = self.relevant_features

 features = {}

 for feature in featurelist:

 features[feature] = (feature in gram_features)

 return features

 @staticmethod

 def get_relevant_features(datasize,featuresize):

 data = TrainingData.objects.all()[:datasize]

 if data:

 relevant_features = []

 tweets = []

 for entry in data:

 bigrams = BaseExtractor.n_grams(entry.text, int(featuresize))

 relevant_features.extend(bigrams)

 e = (bigrams, entry.polarity.name)

 tweets.append(e)

 return relevant_features,tweets

 @classmethod

 def save_classified_tweets(cls,tweet,polarity,algo_tag):

 polarity = PolarityCategory.objects.get(name = polarity)

 algorithm = Algorithm.objects.get(tag = algo_tag)

65

 tweet = Tweet.objects.filter(cleaned_text = tweet)[0]

 obj,created = Classification.objects.get_or_create(

 tweet = tweet,

 polarity = polarity,

 algorithm = algorithm

)

 @classmethod

 def clean_data(cls,datalist):

 newlist = []

 for text in datalist:

 cleaned_text = Parser.process(text)

 obj,created = Tweet.objects.get_or_create(original_text = text)

 obj.cleaned_text = cleaned_text

 obj.save()

 newlist.append(cleaned_text)

 return newlist

 @classmethod

 def save_results(cls,algorithm, positive,negative,neutral,featuretype):

 obj, created = Result.objects.get_or_create(

 algorithm = algorithm,

 featuretype = featuretype

)

 obj.negative = negative

 obj.positive = positive

 obj.neutral = neutral

 obj.save()

from django.db import models

from django.utils import timezone

class UploadedFile(models.Model):

 file_obj = models.FileField(upload_to='uploaded_files/%Y/%m/%d')

 date_uploaded = models.DateTimeField(default = timezone.now)

 processed = models.BooleanField(default = False)

class PolarityCategory(models.Model):

 name = models.TextField()

 label = models.IntegerField()

 def __str__(self):

 return self.name

class TrainingData(models.Model):

 text = models.TextField()

 polarity = models.ForeignKey(PolarityCategory)

 def __str__(self):

 return self.text

class TestData(models.Model):

 text = models.TextField()

 polarity = models.ForeignKey(PolarityCategory)

 def __str__(self):

66

 return self.text

class Algorithm(models.Model):

 name = models.TextField()

 tag = models.CharField(max_length = 50)

 STATUSES = (

 ('trained', 'Trained'),

 ('training', 'Training'),

 ('untrained', 'Untrained')

)

 status = models.CharField(max_length = 10,choices = STATUSES,default = 'untrained')

 def __str__(self):

 return self.name

class Result(models.Model):

 algorithm = models.ForeignKey(Algorithm)

 featuretype = models.IntegerField(default = 2)

 positive = models.IntegerField(default = 0)

 negative = models.IntegerField(default = 0)

 neutral = models.IntegerField(default = 0)

class Tweet(models.Model):

 original_text = models.TextField()

 cleaned_text = models.TextField(null=True,blank=True)

 def __str__(self):

 return self.slang

class Stopword(models.Model):

 word = models.TextField(null=True,blank=True)

 def __str__(self):

 return self.word

67

CHAPTER 7.

7.0 REFERENCES

Luciano Barbosa and Junlan Feng. 2010. Robust sentiment detection on twitter from biased

and noisy data. Proceedings of the 23rd International Conference on Computational

Linguistics: Posters, pages 36–44

Michael Gamon. 2004. Sentiment classification on customer feedback data: noisy data, large

feature vectors, and the role of linguistic analysis. Proceedings of the 20th international

conference on Computational Linguistics

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification using distant

supervision.Technical report, Stanford.

Alexander Pak and Patrick Paroubek. 2010. Twitter as a corpus for sentiment analysis and

opinion mining.Proceedings of LREC.

Language processing Techniques - IBM Tokyo Research Lab, 1623-14, Shimotsuruma

Yamatoshi, Kanagawa-ken 242-8502, Japan nasukawa@ip.ibm.com

Bouma, G. 2009. Normalized (Pointwise) Mutual Information in Collocation Extraction. In

Proceedings of theBiennial GSCL Conference 2009, pp. 31–40, Tübingen,Gunter Narr

Verlag.

Gamon, M., Aue, A., Corston-Oliver, S., and Ringger, E.2005. Pulse: Mining Customer

Opinions from Free Text. In Advanses of Intelligent Data Analysis IV, Lecture Notes

inComputer Sciences. Berlin: Springer-Verlag, 2005.

Pak, A. and Paroubek, P. 2010. Twitter as a corpus for sentiment analysis and opinion mining.

In Proceedings of LREC 2010 (pp. 1320-1326). Paris:European Language Resource

Association.

Witten, I. H. and Frank, E. 2005. Data Mining: Practical Machine Learning tools and

Techniques. San Francisco:Morgan Kaufmann.

N. Malandrakis, A. Potamianos, K. J. Hsu, K. N.Babeva, M. C. Feng, G. C. Davison, and S.

Narayanan. 2014. Affective language model adaptation via corpus selection. In proc. ICASSP

pages 4871–4874.

mailto:nasukawa@ip.ibm.com

68

Andrew-retrevo blog, "is social media a new addiction?" 2010, available

at:http://tinyurl.com/ydvkm4g(www.retrevo.com/content/blog/2010/03/social-media-new-

addiction%3f.

Clinton watts, "foreign fighters: how are they being recruited? Two imperfect

recruitmentmodels,"2008,availableat:http://www.homelandsecurity.org/hsireports/internet_ra

dicalization.pdf.

Cambria, e., schuller, b., xia, y., havasi, c.: new avenues in opinion mining and sentiment

analysis. Ieee intelligent systems 28(2), 15–21 (2013).

David carr, "how obama tapped into social networks' power," new york times-

online,9november2008,availableat:http://www.nytimes.com/2008/11/10/business/media/10car

r.html.

Eklund, p., hoang, a. (2002), a performance survey of public domain machine learning

algorithms technical report, school of information technology, griffith university.

Facebook.com,"facebookads,"n.d.,availableat:http://www.youtube.com/t/press_statistic.

Facebook.com,"statistics,"2011,availableat:https://www.facebook.com/press/info.php?statistic

s.

Homeland security institute, "the internet as a terrorist tool for recruitment and

radicalizationofyouth,"2009,availableat:http://www.homelandsecurity.org/hsireports/internet_

radicalization.pdf.

John mathiason, "patterns of powerlessness among urban poor: toward the use of mass

communications for rapid social change," comparative international development (1972): 64–

84.

Jia, c. Yu, andw. Meng , “the effect of negation on sentiment analysis and retrieval

effectiveness”, in proceedings of cikm,2009.

Liu, h. And h. Motoda (2001),instance selection and constructive data mining, kluwer, boston.

U.s.congress,"h.r. 1955 [110th congress 2007–2008] violent radicalization and

homegrownterrorismpreventionactof2007,"2007,availableat:http://www.govtrack.us/congress/

bill.xpd?bill=h110-1955.

Weich selbraun, a., gindl, s., scharl, a.: extracting and grounding context-aware sentiment

lexicons. Ieee intelligent systems 28(2), 39–46 (2013.

http://www.retrevo.com/content/blog/2010/03/social-media-new-addiction%3F
http://www.retrevo.com/content/blog/2010/03/social-media-new-addiction%3F
http://www.homelandsecurity.org/hsireports/Internet_Radicalization.pdf
http://www.homelandsecurity.org/hsireports/Internet_Radicalization.pdf

69

Xia, r., zong, c., hu, x., cambria, e.: feature ensemble plus sample selection: a comprehensive

approach to domain adaptation for sentiment classification. IEEE intelligent systems 28(3),

10–18 (2013).

Youtube.com, "statistics," n.d., available at: http://www.youtube.com/t/press_statistics

http://www.youtube.com/t/press_statistics

	DECLARATION
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF ABREVIATIONS
	LIST OF FIGURES
	CHAPTER ONE:
	INTRODUCTION
	1.0 Background
	1.1 Problem statement
	1.2 Purpose
	1.3 Objective of the study
	1.4 Research questions
	1.5 Significance of study
	1.6 assumptions and limitations
	1.7 Scope
	1.8 Research justification
	CHAPTER TWO.
	LITERATURE REVIEW
	2.0 Social Networks
	2.1 Machine learning
	2.1.1 Supervised learning
	2.2.2 Unsupervised learning
	2.2.3 Reinforcement learning
	2.2 Text Classification Algorithms
	2.2.1 Clustering
	2.2.2 Decision tree learning
	2.2.3 Decision rules classification
	2.2.4 Artificial neural networks
	2.2.5 Fuzzy correlation
	2.2.6 Genetic algorithm
	2.3 sentiment analysis
	2.3.1 Feature extraction in sentiment analysis
	2.4 Text classification techniques
	2.4.0 Support vector machine (SVM)
	2.4.1 Naïve bayes algorithm
	Maximum entropy
	2.4 Previous Sentiment Analysis Related Research
	CHAPTER THREE.
	3.0 METHODOLOGY
	3.1 Introduction.
	3.2 Sources of Data
	3.3 Data Analysis Methods
	3.4 Data Analysis Tools
	3.6 Proposed conceptual model
	CHAPTER 4.
	4.0 SYSTEM ANALYSIS DESIGN AND SPECIFICATIONS
	4.1 SOFTWARE REQUIREMENTS AND SPECIFICATIONS
	4.2 Functional requirements
	4.20 User Interfaces
	4.21 Retrieving input
	4.22 Real-time processing
	4.23 Sentiment analysis
	4.24 Output
	4.3 NON FUNCTIONAL REQUIREMENTS
	4.30 Hardware Interfaces
	4.31 Communications Interfaces
	4.32 Software Interfaces
	4.33 Performance
	4.34 Availability
	4.35 Security
	4.36 Maintainability
	4.4 USER CLASSES AND CHARACTERISTICS
	4.40 Advanced end users:
	4.41 System Operators:
	4.6 DESIGN CONSTRAINTS
	4.7 LOGICAL DATABASE REQUIREMENTS
	4.8 DATASETS
	4.9 SYSTEM DESIGN
	SYSTEM IMPLEMEMNTATION
	4.90 FRONT END DESIGN
	4.91 BACKEND LOGIC DESIGN
	4.92 PRE-PROCESSING
	5.0. FEATURE EXTRACTION
	5.1 N-gram features
	5.2 Lexicon features
	5.3 Part-of-speech features
	CHAPTER 5.
	5.0 FINDINGS AND RESULTS
	5.2 CLASIFIER PRECISION
	5.3 TESTING FOR RECALL
	5.4 COMPARATIVE ANALYSIS OF THE ALGORITHMS

	CHAPTER 6.
	CONCLUSION AND FUTURE WORK
	6.0 Introduction
	6.1 Summary
	6.2 Conclusion
	6.3 Recommendations
	6.4 Research contribution
	6.5 Code

	CHAPTER 7.
	7.0 REFERENCES

