

UNIVERSITY OFNAIROBI

COLLEGEOFBIOLOGICALANDPHYSICALSCIENCES

SCHOOL OFCOMPUTINGANDINFORMATICS

RESEARCH REPORT

Title: A Methodology to Test the Richness of Forensic

Evidence of Database Storage Engine: Analysis of MySQL

Update Operation in InnoDB and MyISAM Storage

Engines.

BY: JAMES ORENGO OGUTU

P53/72922/2014

SUPERVISOR: DR.ELISHA O. ABADE.

A research Report submitted in partial fulfilment of the requirements for the award

of Master of Science Degree in Distributed Computing Technology.

November, 2016

i

ABSTRACT

Digital forensic investigation requires forensic evidence data to prove a claimed crime.

Forensic evidence can either be volatile or persistent wherein persistent evidence is of

great importance while investigating a case in a system that has once been shut down or

powered off after the claimed violation since volatile evidence will disappear when the

system is powered off. With the possibility of performing database forensic as a file

system coupled with the fact that there are several storage engines that can be

implemented in a database, there is need to know the forensic implication of using a

particular storage engine with focus on how much forensic footprint it leaves behind.

This work investigated the impact of MyISAM and InnoDB storage engines in generation

of persistent forensic data in MySQL DBMS system. A comparison was done on the

number of logs and files affected by an update operation in MySQL DBMS

implementing either of the storage engines. It was found that more files were affected in

InnoDB than in MyISAM implementation.

ii

TABLE OF CONTENTS Page

ABSTRACT .. i

LIST OF FIGURES ... iv

LIST OF TABLES .. v

LIST OF ACRONYMS AND ABBREVIATIONS ... vi

CHAPTER ONE: INTODUCTION .. 1

1.1 Background to the Study ... 1

1.2 Problem Statement .. 3

1.3 Research Objectives .. 5

1.4 Significance of the research .. 5

1.5 Scope and limitation ... 6

1.6 Assumptions .. 6

CHAPTER TWO: LITERATURE REVIEW .. 7

2.1 Related Works ... 7

2.2 Justification ... 10

2.3 Conceptual Framework ... 10

CHAPTE THREE: RESEARCH METHODOLOGY .. 12

3.1 Methodology ... 12

3.2 Design ... 12

3.3 Research Tools .. 12

3.4 Procedure .. 14

3.4.1 Measurement Metrics ... 14

CHAPTER FOUR: RESULT, ANALYSIS AND INTERPRETATION 16

4.1 Introduction ... 16

4.2 Analysis of the Results.. 17

4.2.1 InnoDB Image Results. .. 17

4.2.2 MyISAM Image Results .. 26

4.3 Discussion and Interpretation. .. 32

CHAPTER FIVE: CONCLUSION AND RECOMENDATION 36

5.1 Introduction ... 36

iii

5.2 Evaluation of the research objectives ... 36

5.3 Limitations .. 36

5.4 Conclusions ... 37

REFERENCES .. 38

iv

LIST OF FIGURES

Figure 1: MySQL Architecture .. 3

Figure 2: Conceptual Framework ... 11

Figure 3: Autopsy result window .. 17

Figure 4: Proposed Methodology...34

v

LIST OF TABLES

Table 1: Comparison between MyISAM and InnoDB storage engines.............................4

Table 2: summary of the result. .. 33

vi

LIST OF ACRONYMS AND ABBREVIATIONS

Artefacts - Traces left in the system as a result of an activity

Digital evidence - Proof of an activity

DBMS - Database Management System

RDBMS - Relational Database Management System

MAC time - Modify Access Create Time

ACID - Atomicity, Consistency, Isolating, and Durability

FTK - Forensic Tool Kit

ANSI - American National Standard Institute

1

CHAPTER ONE: INTODUCTION

1.1 Background to the Study

The need for an organized manner of storing information belonging to an organization

was the motivation for coming up with the concept of a database. Databases have

evolved from simple lists of items to more complex transactional databases that are run

on complex computer systems. A database can be defined as: “persistent, logically

coherent collection of inherently meaningful data, relevant to some aspect of the real

world” (Robbins, 1994).

Databases play a pivotal role in businesses as they store variety of data from asset

inventory to orders and financial transactions. With the up surge of databases in many

business applications, there comes the need to maintain integrity, consistency and

reliability of the data stored in the databases. Some of these functions have been

integrated in the software systems that are used to run database applications which

restrict access by requiring user to authenticate using passwords. These applications are

called database management systems (DBMS). However, DBMSs can only ensure

integrity, consistency and reliability with the assumption that the system is configured

properly and authorised users use the system in the authorised way. But because this may

not always happen in real world, there has been need to provide extra measures to

mitigate the effect of unauthorised manipulation of the database by authorised or

authorised database user acting maliciously. The role of database security expert then

comes in to ensure that the data contained in the database is reliable and protected from

unauthorized access and manipulation, and in the event that there is a disputed or

unlawful manipulation, then an acceptable procedure and evidence can be used to prove

that the claimed violation actually took place. The act of proving a past occurrence in

database using acceptable data evidence constitutes database forensics. The aim of

database forensics is to find out and prove what happened when and to prevent

unauthorized data manipulation (Weippl, 2010).

Analysis of architectural components of a database system is critical for the

understanding of database forensic analyst in which a forensic examiner identifies areas

2

to get evidence about a past activity in a database. Some of the areas in a database where

evidence about past activities can be found include metadata, data files; redo logs,

transaction logs and storage engines. With the constant security threat to databases and

the possibility of data being altered, there has been a deliberate effort in the research

community to try to resolve some breaches and challenges in the database world. An

overview of some common database systems is given below.

1. MS Access -Was developed by Microsoft Corporation and stores data in its own

format based on the Access Jet database engine

2. MySQL -Is an open-source DBMS developed by MySQL AB Company and uses

multiple storage engines. It is the most popular DBMS among open source DBMSs

(The Windows Club, 2015).

3. Oracle - An object oriented DBMS Developed by Oracle Corporation.

4. Microsoft SQL Server – Is a relational database server developed by Microsoft

Corporation.

5. Other DBMSs include Ingress, Postgress, and InterBase.

MySQL has been chosen for this research because of its popularity amongst users.

According to database storage engine ranking site, http://db-engines.com, MySQL has

remained second in popularity after Oracle in the year 2014, 2015 and 2016

consecutively. Holc et. al, 2008 estimated that there were 500,000 downloads per day

and 7.5 billion active user of MySQL world-wide. In addition to this, MySQL is open

source. The motivation for MySQL popularity is fuelled by the fact that it is open source

in addition to its versatility (Bassil, 2012).

The figure below is an architectural illustration of MySQL database system.

http://db-engines.com/

3

Figure 1: MySQL Architecture (Courtesy of: http://www.datadisk.co.uk).

The architectural illustration of MySQL DBMS depicts its major components in the

hierarchy of their interaction from user side on the upper level to the file system at the

lower level. The highest level interfacing with applications connecting to the database is

the connection pool that offers authentication to users, manages the use of threads,

establishes connection limits, and checks memory and caches. The management services

and utility manages backups and recovery, security replications, clusters, administrator

configurations, migration and metadata. The storage engine performs memory, index and

storage management. The operations of the storage engine write data to the files and logs

residing in the file system. By analysing what data has been written to the logs and files

in the file system, one can get evidence of an operation that was executed in the database.

Evidence data can either be volatile or persistent. Volatile evidence data is the type of

data that disappears when the machine is switched off or restarted while persistent

evidence data is that data that does not disappear with system shutdown nor restart.

1.2 Problem Statement

MySQL is one of the most widely used DBMSs. It uses structured query language (SQL)

and is able to handle large databases in much faster way than existing applications.

MySQL offers multi-user, multi-thread and robust server storage system. It has the

capability to implement different storage engines depending on what type of operations

http://www.datadisk.co.uk/

4

the system is targeting, that will leverage specific capabilities of a particular engine. The

most popular storage engines for MySQL are MyISAM and InnoDB (Tocci, 2013). The

strength of MyISAM is in the referential and read-only applications and full-text searches

while its weakness is that it doesn’t support transactional operations. InnoDB on the other

hand supports transactional operations because of its ACID (Atomicity, Consistency,

Isolating, and Durability) compliance. MyISAM was the default storage engine in earlier

versions of MySQL but from MySQL 5.5 and above versions, InnoDB has remained the

default storage engine (Oracle, 2014). The use of MyISAM and other storage engines can

still be specified and be implemented in these later versions where InnoDB is the default

storage engine.

The interchangeable use of MyISAM and InnoDB storage engines in MySQL

applications has been of interest of researchers to explore the advantages and

disadvantages of using either (Oracle, 2014). Some of the differences between MyISAM

and InnoDB that have been documented are listed in the table below.

Feature InnoDB MyISAM

ACID transactions Yes No

Crash Safe Yes No

Foreign Key Support Yes No

Full text Searches No Yes

B-Tree Indexes Yes Yes

Raw-level Locking granularity Yes No (Table level)

Table (1.): Comparison between MyISAM and InnoDB storage engines

From the table above, it can be seen that comparative analysis of MyISAM and InnoDB

storage engines done in the past have been focused on performance, versatility and data

type handling capabilities of the two storage engines. While there are researches that have

touched on forensics of databases implementing the various storage engines, none has

given a comparative analysis of the forensic consequences of implementing either

5

MyISAM or InnoDB. This research undertook to perform a comparative analysis of

MyISAM and InnoDB storage engines to find out if the implementation of either can

influence the level of persistent forensic evidence data in database forensics. The focus of

this research was be on the richness of persistent data as generated by the two storage

engine implemented independently on separate identical MySQL installations. The

richness was defined by the multiplicity of the locations evidence data is written when an

identical update operation is performed. The storage engine implementation with higher

number of evidence locations was deemed richer because it provides a forensic

investigator with more location for sources of proof.

1.3 Research Objectives

The general objective of this research undertaking was to find out the forensic

implications of using MyISAM or InnoDB storage engines in MySQL database. This

would strengthen forensic discourse for choice of storage engine at policy formulation

level. The product of this research is a report that details the implications of

implementing either of the storage engines which enables policy makers to make

informed decision with forensic consideration.

Main Objectives

1. To investigate the forensic implications of using MyISAM or InnoDB storage

engines in MySQL database.

2. To study how MyISAM and InnoDB storage engines individually generate

persistent forensic evidence data in the logs.

3. To perform an analysis to determine the number of occurrence of the persistent

forensic data in each case and make a comparison.

1.4. Significance of the research

As the field of digital forensics matures, forensics should be part of policy consideration

rather than being a post-occurrence undertaking that aims at trying to unveil or

reconstruct a past activity. Rather, policy makers should bear in mind the possibility that

6

there would be need to carry out some investigation in future and therefore make a choice

of forensically friendly system components. The findings of this research will give a

forensic standpoint for policy makers if a choice is to be made between the two storage

engines considered in this work.

1.5. Scope and limitation

This research focused on two storage engines namely MyISAM and InnoDB even though

there are several other storage engines, these being just two among other several engines,

more research need to be done in comparability of the storage engines before the results

are generalized. However the choice of these storage engines is reasonable to forensic

community because MyISAM and InnoDB are the only storage engines that have been

fronted as default storage engines for MySQL and have therefore enjoyed popularity that

all other storage engines have not. In the aspect of evidence data, this research limit itself

to serializing of files that hat their metadata changed after UPDATE operation and did

not consider persistent data not residing in the files, volatile class of data or comparing

the actual contents of the files.

The limitation of the research was that the comparison was done based on observable

changes in file metadata and not considering the actual content of the file or volatile data

that may perhaps have stronger evidence than findings of this research.

1.6 Assumptions

It was assumed that:

1. The changes observed on the metadata of the target files were exclusively as a

result of the UPDATE operation as implemented by the specific storage engine.

2. The installations of MySQL were properly configured and working correctly.

3. The analysis tool that was used was working correctly and gave the correct result.

The rest of this document is organised in the following order; chapter two discusses

previous works relevant to the study, chapter three discusses the methodology, design,

procedures and tools used in the study. Results and their interpretations are finally given

in chapter five.

7

CHAPTER TWO: LITERATURE REVIEW

2.1Related Works

A database is a collection of information that is organized so that it can easily be

accessed, managed and updated (Sheing, 2006). This section of the document will

highlight past research works done on database systems that are relevant to database

forensics.

With the definition of database as a collection of organised information, (Rodriguez,

2004) explains how this collection of organized data can be managed using a database

management system (DBMS) which is a combination of data, hardware, software and

users. Database hardware is a standard computer system with memory. The statements

that are used for manipulating data in a database are structure query language (SQL)

which performs retrieval and update of data. Retrieval is the collecting of data from the

database for data that match the specification of the user query while updating involves

modification, deletion and insertion of data into the database. This work also highlights

various database architectures such as; functional, application and logical architectures.

Database can also assume two or multi-tier architecture. The logical architecture, also

known as ANSI architecture has three distinct layers of data abstraction which are

physical, logical and user layer.

Relational database model has been discussed by (Sheing, 2006) as the foundation of the

contemporary database. It consists of tables which are classes of data structures,

relational algebra that are the methods used to build a new table from the initial one and

constraints that are imposed on the data contained in the tables. Tables in a relational

database have three distinguished features; table name, the heading of the content (each

as a column entry), and the content of the table as list of rows. Referential integrity

ensures that the entity being referred to in the table by users has a meaningful value.

Weippal (2010) stated that the aim of database forensics is to find out what happened

when and to revert unauthorised data manipulation.

Khanuja and Adane (2011) stressed that when carrying out database forensic, one needs

to ensure that scientifically proven methods are used to gather, process, interpreter digital

8

evidence in order to give true reconstruction of the criminal activity. This work gives

methodologies for tamper detection in database using audit logs. It also explores the

vulnerabilities of using audit logs to perform database forensics in that a criminal can

change their contents to hide his criminal activities.

This work points at places to look for evidence when undertaking database forensics;

which are; system metadata, data files, redo logs, transaction logs and memory and trace

files. Some temper detection methodologies are also described and they include:

Notarization hash verification, more specialized forensic analysis algorithms such as

monochromatic, RGB, Tilled-bitmap and 3D are also described. Finally they categorize

artefacts in database forensics as resident or non-resident. Resident artefacts are those

artefacts that are found within files and memory locations strictly reserved for SQL

server while non-resident artefacts that are found in files not explicitly reserved for SQL

server use.

Progress made in database research can be found in (Hauger and Oliviery, 2015). This

work gives the two approaches to a database by forensic experts while performing

database forensic analysis; one way is to look at a database as files residing in file system

therefore database forensic can just be performed like forensics of other important

software applications like emails or web browsers in this aspect, database forensic

viewed as a sub discipline of file system forensic and some techniques like imaging and

file carving are applicable. The other approach to database forensic is to view a database

as complex multidimensional system with numerous interconnected components that

should be analysed together to expose accurate truth, crucial components considered here

are data model, data dictionary, application scheme and the application data.

A framework for performing database forensic analysis is given in (Khanuja and Adane,

2012). This framework gives a guide in how to undertake forensic activities of

identifying, preserving, collecting, analyzing, validating and interpreting digital evidence

in a database and finally generating a report.

By the virtue that DBMS write data items to multiple location and copies such as in

tables’ indexes, logs materialized views and temporary relations view then when data is

9

deleted in one location, it is not completely destroyed but its traces are left in some

database locations. These data traces can be recovered by performing forensics which

will extract data and information from database, logs, cache, data files, and table space

e.t.c. The undo logs which show older version of data and the redo log that stores

information used during crash to restore the status (recovery) are also high lightened.

Alexander (2014) describes what to look at when performing database forensic analysis

on MySQL server. The work describes places where artefacts may exist in MySQL server

which include server files such as database transaction logs, query logs, query cache and

key cache.

InnoDB as common and popular database storage engine is explored by (Fruhwist,

2010).The storage pattern of InnoDB in MySQL is described. InnoDB stores information

about each table in the directory of the database as a .frm file with the table name as the

file name and the size of the .frm is limited to four GB beyond which is transacted. By

default InnoDB stores all data of all tables in a single file. The InnoDB storage format

parts are; fill header, page heading, infinum and .supernum, user records, free space, page

directory and fill trailer are also discussed. This work finally proposes a tool that reads

hexadecimal data from the form then uses it to reconstruct the table and then uses the

table information to locate the data in the data storage file.

A database forensic approach using log files is presented in (Charana and Khanuja,

2014). It highlights the procedure for carrying out digital forensic using log files and

applying standard forensic steps of identification, acquisition and presentation,

examination and analysis, and finally documentation. However, due to complexity of

databases, database centric forensic follow steps of acquisition and presentation,

collection and analysis. The logs maintained by MySQL are also discussed, they include

error log, general query log, binary log, update log and slow query log. This work gives a

two part framework for database forensic analysis. The first part depicts the user

performing an action in the database and the second part is collecting and analysing

forensic data from the central database.

10

The binary log has an update log that contains information needed to recreate the

database since the server was last restored or the logs were flashed. A list of every query

that changed the data can also be found by passing the log-bin-option to the SQL server

(Mysqld). Whenever SQL server starts a new session, it opens a new log file in addition

to the old one such that if the previous log file was aden-bin.000001 then the new file will

be incremented to aden-bin.000002.SQL statements in the binary log file can be viewed

by using sqlbinlog command with full path of the binary log file for example, program

data/mysql/data/binlog. Procedures for accessing error log, querylog, redolog, undolog

and index logs are given.

While the existence of log files content in database are important for forensic

reconstruction, their existence can also be seen in bad side in that they can be exploited to

expose privacy. Grebhain, (2013) gives a user defined deletion process for data in

MySQL database in order to maintain privacy. As opposed to deletion by overwriting and

setting a delete bit, this approach deletes data from all inventories created by the system.

It gives a propagation strategy that performs deletion on multiple areas of a database.

2.2 Justification

While several researchers have undertaken comparative works between InnoDB and

MyISAM storage engines, little has been done in forensic perspective to explore the

forensic implication of using either of the storage engines. The aim of this research was

to bring out the strength of either of the storage engines in generating persistence forensic

evidence. It is in the view of this work that the storage engine that produces the most

persistent footprints will enable forensic analyst to retrieve more evidence for a case even

if the database system was once switched off. The results of this research will contribute

to the forensic discourse of having forensic consideration at policy making level rather

than undertaking forensic as a last resort when an inversion has already taken place.

2.3 Conceptual Framework

The concept of this research was based on fact that MySQL DBMS can be implemented

with a variety of storage engines. It is also documented that the various storage engines

have different ways in which they operate and manipulate data, MySQL 5.6 Reference

11

Manual (2013). It is in this sense that different storage engines are expected to generate

forensic evidence differently. The conceptual framework depicts the instances if InnoDB

and MyISAM storage engines interaction with MySQL DBMS and the scenarios of logs

artefacts analysis for each storage engine instance. The end results are two file systems

analyses for each storage engine implementation. Each corresponding file analysis, that

is; before the UPDATE and switch off and then after UPDATE and switch off were

compared and conclusion made on which storage engine implementation affects more

files out of the listed file targets.

Figure 2: Conceptual Framework

This conceptual framework shows that the storage engine implemented has an influence

in how an update operation writes to MySQL internals and consequently affects the

values of metadata. With the implementation of either InnoDB or MyISAM storage

engine, there was a presumed distinct system that is autonomous in the way it generates

and writes forensic data. Each instance of storage engine had the analysis of the artefacts

done in comparison to the same artefacts from the other storage engine implementation.

Storage Engine (InnoDB\

MyISAM)

Metadata values of DBMS

Internal files before UPDATE

operation

Metadata values of DBMS

Internal files and logs after

UPDATE operation

12

CHAPTE THREE: RESEARCH METHODOLOGY

3.1 Methodology

The methodology for this research was qualitative. This is because the research entailed

exploring and analysing the effect of the used storage engines to MySQL internals.

Hancock et al. (1998) elaborated that the application of qualitative methodology is

appropriate in research undertakings where the result or observations to be made cannot

be expressed in numbers; rather, they are explained and illustrated in words.

While tools were be used to read file information, the outcome is explained in words after

observation. The observations made were then be compared appropriately.

3.2Design

This research assumed experimental design. The subjects of the experiment were the

following files; Transaction logs, Redo logs, Index logs, Query logs, Error logs Undo

logs and Master Data File. The treatments were the two storage engines (MyISAM and

InnoDB).After installing the storage engines to separate instance of MySQL and

performing identical update operation on both, the observed changes brought about by

respective storage engines were compared. The specific parameters looked at were; MAC

times, size change of the file and the MD5 has value.

3.3 Research Tools

The use of LogExpert and SQL-Recovery as tools for the research was dropped because for

these tools to give meaningful result, they would require large log data as well as long

database operation time in order to have several functions and operation executed in the

database. This would require time and more resources to implement. Going with the

general objective of this work which was :“ To find out the forensic implications of using

MyISAM or InnoDB storage engines in MySQL database”, the objective would d still be

achieved by performing forensic analysis of a database as a file system and target the same

files that were to be analysed using log editor.

13

By using file system forensics approach, all the target files in the data base have their

metadata and content changes viewed and analysed using forensic tool for later

comparison. Autopsy (Sleuth Kit) for Windows is used in this analysis.

Autopsy is an open source forensic tool available for both windows and Linux platforms.

In this research we used Autopsy version 4.0 because of its stability and the ability to

give full view of files and folders and their metadata such as name, file type, size,

modified time, accessed time, created time, and the MD5 hash of the file. These

parameters will be the basis for viewing and analysing the changes that have taken place

in the file in question.

Our target files are as follows:

 Transaction log

 Redo log

 Index log

 Query log

 Error log

 Master Data File (MDF)

Applications, Tools and Equipment used in this experiment are as follows:

 MySQL 5.5.

 MySQL Workbench 6.3 CE.

 Access Data FTK imager.

 Autopsy sleuth Kit

 Two desktop computers installed with Windows 7 operating system.

14

3.4.1Procedure

1. Two freshly wiped computers were prepared and installed with window

operating system.

2. On each machine, MySQL (Version 5.5) was installed. One installation of

MySQL with InnoDB storage engine and the second one with MyISAM storage

engine.

3. MySQL Workbench (MySQL graphical user interface) was installed to each

computer to be used for database operation.

4. Identical databases (named ’Customer accounts’) were created in each MySQL

installation and in each database an identical table (name, records and settings) is

created and populated with similar records.

5. MySQL instances were stopped and the machines powered off for a short time.

The machines were then powered on and at this time it was assumed that all the

volatile evidence data got discarded when the machines were powered off.

6. Using FTK imager activated from USB derive, an image of the logical drive

where MySQL was installed was created and the image saved in a clean, wiped

external evidence hard drive. This was done to both installations.

7. MySQL instances were started again.

8. With the records in each table known and identical in both MySQL installations, a

specific record was updated to a common value in both systems.

9. MySQL instances were stopped and the machines were powered off to discard

volatile data.

10. A second set of images was taken using FTK imager and saved as in (6) above.

11. At this point there are four images to be subjected to analysis. Two images based

on MyISAM and another two based on InnoDB storage engines. These images

were then ingested and analysed one by one using Autopsy analysis procedures.

3.4.2Measurement Metrics

The measurement metrics for this research was the number of files whose metadata

changed after performing the update operation. More counts of affected files meant

15

potentially richer permanent forensic data while less count meant weaker permanent

forensic evidence data

16

CHAPTER FOUR: RESULT, ANALYSIS AND INTERPRETATION

4.1Introduction

The focus of the proposal was to identify the internal files of MySQL DBMS that bear

permanent evidence of a database operation (UPDATE in this case) as influenced by the

storage engine used by analysing the metadata of the files under investigation. The

experiment implemented an UPDATE operation in two database installations; one

implementing InnoDB Storage engine and the second one implementing MyISAM

storage engine.

Our target files are as follows:

 Transaction log

 Redo log

 Index log

 Query log

 Error log

 Master Data File (MDF)

After ingesting the image, Autopsy performs analysis and gives file information in the

following order;

 Size -Represents size of the file

 Modified -Shows when the content of the file most recently changed

 Accessed -Shows when the file was most recently opened for reading

 Created -Represents the time of creation of the file

 Changed/Change -When the file was first created or had the meta data

changed

 MD5 -the MD5 hash value of the file

The figure below shows Autopsy navigation window where file system can be explored

and metadata viewed with transaction log ib_log0 selected.

17

Figure, 3. Autopsy result window

4.2 Analysis of the Results.

In this section the analysis results are presented. The section is divided into two parts; the

first part presents the result of the analysis of the installation implementing InnoDB

storage engine while the second part presents the analysis result of the installation

implementing MyISAM. In each section, the results are organized in the order of the

target files. In each case a brief description of the target file is given, the forensic analysis

result of the file as present in the image taken before the UPDATE operation followed by

the forensic analysis result of the file as present in the image taken after UPDATE

operation. Finally, a brief observation and comparison for the result of the file in

consideration will be illustrated.

4.2.1 InnoDB Image Results.

i. Transaction log

Transaction log keeps log of all queries that have changed something in the database. It is

the equivalence of binary log in mysql 5.5(MySQL 5.6 Reference manual) it is located in

C:\program files/program data/mysql/mysql server5.5/data/mysql/ndb_binlog. The

18

logical paths to these files in the result may look different from the norm because all are

based on the image data is the base drive.

Transaction log before update

Name

/img_innodb1.E01/ProgramData/MySQL/MySQL

Server 5.5/data/mysql/ndb_binlog_index.frm

Type File System

Size 8778

File Name Allocation Allocated

Metadata Allocation Allocated

Modified 2016-09-08 08:12:40 EAT

Accessed 2016-09-08 09:31:35 EAT

Created 2016-09-08 08:12:40 EAT

Changed 2016-09-08 09:31:38 EAT

MD5 6f38a874f706c1883bd40fb7b0e72be2

Transaction log after UPDATE

Name
/img_InnoDB After Update.E01/ProgramData/MySQL/MySQL Server

5.5/data/mysql/ndb_binlog_index.frm

Type File System

Size 8778

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 08:12:40 EAT

Accessed 2016-09-08 10:13:35 EAT

Created 2016-09-08 08:12:40 EAT

Changed 2016-09-08 10:21:14 EAT

MD5
7d389b674f706c1883bd40fb7b0e72be2

19

Observation: The created time, modified time and file size has remained the same in the

image before UPDATE and after UPDATE. However the access time, change time and

MD5 have changed after UPDATE. This shows that the file was changed during the

update operation since the value of the change time corresponds to the time the UPDATE

operation was executed. The difference in MD5 hash value shows that the current state of

the file is different from the previous state.

ii. Re-Do log.

This is physically present in the disk by default as a set of files going by the name;

ib_logfile0 and ib_logfile1. They are used during crash recovery to correct data written

by a transaction that did not complete executing. During normal operations, the redo log

encodes requests to change InnoDB table data that result from sql statements. The two

data structures are as bellow.

Ib_logfile0 before update

Name
/img_innodb1.E01/ProgramData/MySQL/MySQL Server

5.5/data/ib_logfile0

Type File System

Size 10485760

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 08:12:40 EAT

Accessed 2016-09-08 09:31:35 EAT

Created 2016-09-08 08:12:40 EAT

Changed 2016-09-08 09:31:30 EAT

MD5 7c6fbab3c474a8a07c7c7031bc58e1cb

Ib_logfile0 after update

Name
/img_InnoDB After Update.E01/ProgramData/MySQL/MySQL Server

5.5/data/ib_logfile0

Type File System

Size 10485760

20

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 08:12:40 EAT

Accessed 2016-09-08 09:31:35 EAT

Created 2016-09-08 08:12:40 EAT

Changed 2016-09-08 09:31:38 EAT

MD5 e2adb6b0586e713ae74292c336d5aeee

Observation: All parameters have remained the same apart from the MD5 value of the

file. This shows that there was a change made to Ib_logfile0 before file during update

operation.

Ib_logfile1 before UPDATE

Name
/img_innodb1.E01/ProgramData/MySQL/MySQL Server

5.5/data/ib_logfile1

Type File System

Size 10485760

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 08:12:40 EAT

Accessed 2016-09-08 09:31:35 EAT

Created 2016-09-08 08:12:40 EAT

Changed 2016-09-08 09:31:37 EAT

MD5 f1c9645dbc14efddc7d8a322685f26e9

Ib_logfile1 after update

Name
/img_InnoDB After Update.E01/ProgramData/MySQL/MySQL Server

5.5/data/ib_logfile1

Type File System

Size 10485760

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 08:12:40 EAT

Accessed 2016-09-08 10:13:35 EAT

Created 2016-09-08 08:12:40 EAT

21

Changed 2016-09-08 10:13:37 EAT

MD5 f1c9645dbc14efddc7d8a322685f26eb

Hash Lookup

Results
UNKNOWN

Internal ID 182038

Observation: The file sizes of Ib_logfile1have remained the same while the MD5 values

are different showing that there was a modification to the file.

iv. General Query log.

The General Query log records what mysqld is doing. The server writes information here

when a client connects or disconnects and logs each sql statement received from each

client. This file’s location is in the path: programdata/mysql/mysql server 5.5/data/uon-

pc.log

General query log before update

Name
/img_innodb1.E01/ProgramData/MySQL/MySQL Server

5.5/data/uon-PC.log

Type File System

Size 1096

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 08:20:42 EAT

Accessed 2016-09-08 08:20:42 EAT

Created 2016-09-08 08:20:42:EAT

Changed 2016-09-08 13:54:42 EAT

MD5 5bf18f35d316d2938a7b00f3617b44dd

From The Sleuth Kit istat Tool:

MFT Entry Header Values:

Entry: 70034 Sequence: 77

$LogFile Sequence Number: 780114566

Allocated File

Links: 1

$STANDARD_INFORMATION Attribute Values:

Flags: Archive, Not Content Indexed

Owner ID: 0

Security ID: 982 (S-1-5-32-544)

Last User Journal Update Sequence Number: 239710320

Created: 2016-09-08 08:20:42.198701100 (E. Africa Standard Time)

File Modified: 2016-09-08 08:20:42.108560100 (E. Africa Standard

Time)

22

MFT Modified: 2016-09-08 08:20:42.108560100 (E. Africa Standard

Time)

Accessed: 2016-09-08 08:20:42.198701100 (E. Africa Standard Time)

$FILE_NAME Attribute Values:

Flags: Archive, Not Content Indexed

Name: uon-PC.log

Parent MFT Entry: 57826 Sequence: 3

Allocated Size: 0 Actual Size: 0

Created: 2016-09-08 08:20:42.198701100 (E. Africa Standard Time)

File Modified: 2016-09-08 08:20:42.108560100 (E. Africa Standard

Time)

MFT Modified: 2016-09-08 08:20:42.108560100 (E. Africa Standard

Time)

Accessed: 2016-09-08 08:20:42.198701100 (E. Africa Standard Time)

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 72

Type: $FILE_NAME (48-2) Name: N/A Resident size: 86

Type: $DATA (128-3) Name: N/A Non-Resident size: 1096 init_size:

1096

1513850

General Quer log after UPDATE

Name
/img_InnoDB After Update.E01/ProgramData/MySQL/MySQL Server

5.5/data/uon-PC.log

Type File System

Size 2885

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-09 08:20:42 EAT

Accessed 2016-09-08 10:13:39 EAT

Created 2016-09-08 08:20:42 EAT

Changed 2016-09-09 10:13:39 EAT

MD5 418fa732cf5570ac08e82c6e89227a7b

Hash Lookup

Results
UNKNOWN

Internal ID 182142

…………………………………………………………………………………………

From The Sleuth Kit istat Tool:

MFT Entry Header Values:

Entry: 70034 Sequence: 77

$LogFile Sequence Number: 822891138

Allocated File

Links: 1

23

$STANDARD_INFORMATION Attribute Values:

Flags: Archive, Not Content Indexed

Owner ID: 0

Security ID: 982 (S-1-5-32-544)

Last User Journal Update Sequence Number: 246616720

Created: 2016-09-08 08:20:42.198701100 (E. Africa Standard Time)

File Modified: 2016-09-09 10:13:43.105062600 (E. Africa Standard Time)

MFT Modified: 2016-09-09 08:20:42.105062600 (E. Africa Standard Time)

Accessed: 2016-09-08 08:20:42.198701100 (E. Africa Standard Time)

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 72

Type: $FILE_NAME (48-2) Name: N/A Resident size: 86

Type: $DATA (128-3) Name: N/A Non-Resident size: 2885 init_size:

2885

1513850

Observation: The content of the file in both cases match the time that the queries were

run. Line 1 in the metadata in the image before UPBATE shows; ‘Created:
 2016-09-08 08:20:42.198701100 (E. Africa Standard

Time)’ which is the time at which the database was created while the attribute ‘File
Modified:2016-09-09 10:13:43.105062600 (E. Africa Standard Time)’ in the image after

UPDATE show when UDATE was run. I t can be seen that this file captures the

activities with their timeline however it doesn’t show the exact sql statement. The file

was affected by UPDATE operation.

(v). Error log.

This contains the information of when the server was started and stopped.

Error log before update

Name
/img_innodb1.E01/ProgramData/MySQL/MySQL Server

5.5/data/uon-PC.err

Type File System

Size 6562

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:54:43 EAT

Accessed 2016-09-08 09:37:13 EAT

Created 2016-09-08 09:37:13 EAT

24

Changed 2016-09-08 10:54:43 EAT

MD5 234883c6ef0f62999513388cb3bab8ca

Hash Lookup

Results
UNKNOWN

Internal ID 176109

Error log after UPDATE

Name
/img_InnoDB After Update.E01/ProgramData/MySQL/MySQL Server

5.5/data/uon-PC.err

Type File System

Size 8328

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 10:54:55 EAT

Accessed 2016-09-08 09:37:13 EAT

Created 2016-09-08 09:37:13 EAT

Changed 2016-09-00 10:14:55 EAT

MD5 00fd2b14b8c5be23501887375cc31daa

Observation: it can be seen that the size of the file has increased from 6562 to 8328. This

is reflective of the behaviour of error log in that its content increases with continued

operation of the database. The specific information can be mined from the log based on

the timeline of the activity.

vi. Undo logs

This is the storage area that holds versions of data modified by a currently active

transaction. It helps in ensuring transactional consistence and accuracy. It helps in

ensuring that another transaction sees the original version of data as a part of consistent

read operation. This area is physically part of system table space.

This concept will not be of importance in this research because the product of a rollback

segment is .ib data file which has the same content present in the general query log and

redo log.

vii. The .frm file:Account Balance.frm

This is the representation of the table on the disk that describes the table format. It bares

the same name as the table.

.frm before update

This is a representation of the structure of the table on the disk.

25

Name
/img_innodb1.E01/ProgramData/MySQL/MySQL Server

5.5/data/bank_details/account_balances.frm

Type File System

Size 8716

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 08:29:44 EAT

Accessed 2016-09-08 08:29:44 EAT

Created 2016-09-08 08:23:39 EAT

Changed 2016-09-08 08:28:14 EAT

MD5 2e5e8bc2c1f5029c640a230aaee07f8b

Hash Lookup

Results
UNKNOWN

Internal ID 176002

.frm after update

Name
/img_InnoDB After Update.E01/ProgramData/MySQL/MySQL Server

5.5/data/bank_details/account_balances.frm

Type File System

Size 8716

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 08:29:44 EAT

Accessed 2016-09-08 08:29:44 EAT

Created 2016-09-08 08:23:39 EAT

Changed 2016-09-08 08:28:14 EAT

MD5 2e5e8bc2c1f5029c640a230aaee07f8b

Hash Lookup

Results
UNKNOWN

Internal ID 182034

Observation: It can be seen that there were no changes in the metadata of the .frm in the

two images. This is theoretically correct because the .frm file does not change if there is

no change in the structure of the table.

26

4.2.2. MyISAM Image Results
i. Transaction log

Transaction log keeps log of all queries that have changed something in the database. It is the

equivalence of binary log in mysql 5.5(MySQL 5.6 Reference manual) it is located in

C:\program files/program data/mysql/mysql server5.5/data/mysql/ndb_binlog. The

logical paths to these files in the result may look different from the norm because all are

based on the image data is the base drive.

Transaction log before update

Name

/img_myisam1/ProgramData/MySQL/MySQL

Server 5.5/data/mysql/ndb_binlog_index.frm

Type File System

Size 8778

File Name Allocation Allocated

Metadata Allocation Allocated

Modified 2016-09-08 13:42:33 EAT

Accessed 2016-09-08 13:43:33 EAT

Created 2016-09-08 13:42:33 EAT

Changed 2016-09-08 13:4:33 EAT

MD5 7c38a874f706c1883bd40fb7b0e72be2

Transaction log after UPDATE

Name
/img_myisam2.E01/ProgramData/MySQL/MySQL Server

5.5/data/mysql/ndb_binlog_index.frm

Type File System

Size 8778

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:42:33 EAT

Accessed 2016-09-08 16:40:18 EAT

Created 2016-09-08 13:42:33 EAT

Changed 2016-09-08 16:40:18 EAT

MD5
8d38a874f706c1883bd40fb7b0e72be2

27

Observation: The created time and modified time has remained the same aster UPDATE

while change time access time and MD5 hash have changed after update. This shows that

the operation had affected the transaction log file.

ii. Re-Do log.

This is physically present in the disk by default as a set of files with reference names of

ib_logfile0 and ib_logfile1. They form a data structure is used during crash recovery to

correct data written by a transaction that did not complete its execution. Normally

operating, the redo log encodes requests forwarded to change InnoDB table data that

result from sql statements. The two data structures are as bellow.

Ib_logfile0 before update

Name
/img_myisam1/ProgramData/MySQL/MySQL Server

5.5/data/ib_logfile0

Type File System

Size 14487760

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:42:33 EAT

Accessed 2016-09-08 13:43:33 EAT

Created 2016-09-08 13:42:33 EAT

Changed 2016-09-08 13:4:33 EAT

MD5 5c7fbab3c474a8a07c7c7031bc58e1cb

Ib_logfile0 after update

Name
/img_myisam2/ProgramData/MySQL/MySQL Server

5.5/data/ib_logfile0

Type File System

Size 14487760

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:42:33 EAT

Accessed 2016-09-08 16:40:18 EAT

28

Created 2016-09-08 13:42:33 EAT

Changed 2016-09-08 16:40:19 EAT

MD5 e2adb6b0586e713ae74292c336d5aeee

Observation: There is evidence of the file being affected by the UPDATE operation

based on the transformation of the metadata. The MD5, the changed time accessed times

are different in the two images.

Ib_logfile1 before UPDATE

Name
/img_myisam1.E01/ProgramData/MySQL/MySQL Server

5.5/data/ib_logfile1

Type File System

Size 10485760

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:42:33 EAT

Accessed 2016-09-08 13:43:33 EAT

Created 2016-09-08 13:42:33 EAT

Changed 2016-09-08 13:43:33 EAT

MD5 c1c9645dbc14efddc7d8a322d85f26e9

Ib_logfile1 after update

Name
/img_myisam2.E01/ProgramData/MySQL/MySQL Server

5.5/data/ib_logfile1

Type File System

Size 10485760

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:42:33 EAT

Accessed 2016-09-08 13:43:33 EAT

Created 2016-09-08 13:42:33 EAT

Changed 2016-09-08 13:43:33 EAT

MD5 c1c9645dbc14efddc7d8a322d85f26e9

Internal ID 182038

29

Observation: all the values of metadata have remained the same therefore showing that

this file was not affected by the UPDATE operation

iii. General Query log

The General Query log records what Mysqld is doing. The server writes information here

when a client connects or disconnects and logs each sql statement received from each

client. This file is located in program data/mysql/mysql server 5.5/data/uon-pc.log

General query log before update

Name
/img_myisam.E01/ProgramData/MySQL/MySQL Server

5.5/data/uon-PC.log

Type File System

Size 144096

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:46:42 EAT

Accessed 2016-09-08 13:46:47 EAT

Created 2016-09-08 13:46:41:EAT

Changed 2016-09-08 13:46:47 EAT

MD5 7bf18f35d316d2938a7b00f3617b44dd

General Quer log after UPDATE

Name
/img_myisam2.E01/ProgramData/MySQL/MySQL Server

5.5/data/uon-PC.log

Type File System

Size 147096

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-09 13:46:42 EAT

Accessed 2016-09-08 16:40:39 EAT

Created 2016-09-08 13:46:41 EAT

Changed 2016-09-09 16:40:39 EAT

MD5 f78fa732cf5570ad06e82c6e89727a7b

30

Observation: the MD5, change date as well as access date and size have been changed

in the image after the UPDATE. This shows that the UPDATE operation has affected

general query log. The change in the size of the file is also theoretically correct because

general query log is continuously populated as more and more sql statements are

executed.

iv. Error log.

This contains the information of when the server was started and stopped.

Error log before update

Name
/img_myisam1.E01/ProgramData/MySQL/MySQL Server

5.5/data/uon-PC.err

Type File System

Size 7564

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:42:43 EAT

Accessed 2016-09-08 13:42:43 EAT

Created 2016-09-08 13:42:43 EAT

Changed 2016-09-08 13:42:43 EAT

MD5 2d4883c6ef0f62999513388cb3bab8ca

Hash Lookup

Results
UNKNOWN

Internal ID 176109

Error log after UPDATE

Name
/img_myisam2.E01/ProgramData/MySQL/MySQL Server

5.5/data/uon-PC.err

Type File System

Size 10134

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:42:43 EAT

Accessed 2016-09-08 16:40:39 EAT

Created 2016-09-08 13:42:43 EAT

Changed 2016-09-00 16:40:39 EAT

31

MD5 06fd2b14b8c5be23501887375cc31daf

Observation: It can be seen that the size of the file has increased from 7564 to 10134.

This is reflective of the behaviour of error log in that its content increases with continued

operation of the database hence the file has been affected by UPDATE operation.

v. Undo logs

This is the storage area which holds copies of data modified by a currently running

transaction. It helps in ensuring transactional consistence and accuracy. It helps in

ensuring that another transaction sees the original data while the current transaction is

still underway as a part of consistent read operation. This area is physically part of system

table space.

This concept will not be of importance in this research because the product of a rollback

segment is .ib data file which has the same content present in the general query log and

redo log.

vi. The .frm file:Account Balance.frm

This is the representation of the table on the disk that describes the table format. It bares

the same name as the table.

.fr. before update

This is a representation of the structure of the table on the disk.

Name
/img_myisam1.E01/ProgramData/MySQL/MySQL Server

5.5/data/bank_details/account_balances.frm

Type File System

Size 176002

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:46:38 EAT

Accessed 2016-09-08 13:46:38 EAT

Created 2016-09-08 13:46:38:EAT

Changed 2016-09-08 13:46:40 EAT

MD5 fe5e8bc2c1f5029c640a4c0aaee07f8b

.frm after update

Name /img_myisam2.E01/ProgramData/MySQL/MySQL Server

32

5.5/data/bank_details/account_balances.frm

Type File System

Size 7210

File Name

Allocation
Allocated

Metadata

Allocation
Allocated

Modified 2016-09-08 13:46:38 EAT

Accessed 2016-09-08 13:46:38 EAT

Created 2016-09-08 13:46:38:EAT

Changed 2016-09-08 13:46:40 EAT

MD5 fe5e8bc2c1f5029c640a4c0aaee07f8b

Hash Lookup

Results
UNKNOWN

Internal ID 182034

Observation: Just as with InnoDB image, it can be seen that there were no changes in

the metadata of the .frm in the two images. This is theoretically correct because the .frm

file does not change if there is no change in the structure of the table.

4.3 Discussion and Interpretation

The aim of the research was to show which files from the list of target files is affected by

UPDATE operation in the two installations. The means of telling which file has been

affected is by comparing the metadata of the file before the UPDATE operation and the

metadata of the file after. The result section shows various metadata but the most

important of them are the MAC (Modify, Access and Create) timeand the MD5 hash of

the file.

The importance of MAC time in forensics analysis is stressed in Naiqi and Yujie (2008),

in that it is crucial in event reconstruction. Whenever there is need for activity

reconstruction, then activity timeline can be matched with the MAC time of the files to

earmark files to be considered for forensic analysis. Filewhose MAC timeisclose to or

matching the timeline of the activity under investigation can then be subjected to forensic

analysis .The MD5 hash in the other hand shows the slightest change in data, a change as

small as a single bit. So if any operation or application makes the slightest change to a

file the MD5hash value will detect this.

33

By comparing these metadata, it is possible to tell which files were affected in the

research.The table below is the summary of how UPDATE operation affected the target

files in InnoDB and MyISAM storage engine implementations.

 TARGET FILES

STORAGE

ENGINES

Trans

action log

Re-Do

log(ib_0)

Re-Do

log(ib_1)

Query

log

Error

log

Master

Data File

.frm

InnoDB

MyISAM

Table2: Summary of the result

Legend:

 -File affected

-File not affected

File non-existent because of implementation reasons.

From this table, it can be seen that transaction log, redo log(ib_0), redo log(ib_1), query

log and Error log are affected in InnoDB implementation while transaction log, redo

log(ib_0), query log and Error log are affected in MyISAM implementation. Re-do

(ib_01) is however not affected in MyISAM implementation. The .frmfiles of the tables

are not affected in both implementations. Master Data File (MDF) is however not

analysed because the implementations were stand alone and could not implement the

concept of MDF.

34

4.4. Proposed methodology

Based on the steps followed in this research, a methodology is outlined as a summary of

the steps that were followed in undertaking the experiment. This methodology can be

used to test the footprints of any storage engine on the internal files of a DBMS. This will

help in flagging and listing files that have been affected by a particular database

operation. These file can then be analysed to interpret the actual content to see the nature

of change to determine the worth of the evidence.

It is important to remember that the metadata and file information used in this work were

as follows:

 Modified -when the content of the file most recently changed

 Accessed -when the file was most recently opened for reading

 Created -the time of creation

 Changed/Change-When the file was first created or had the meta data changed

 MD5 -the MD5 digest of the file

 Size -size of the file

In addition to Modified, Access, Created\Change time information of the files, the

forensic tool used should give the hash values and size of the file both before and after

the operation. In our case, Autopsy gave MD5 hash for the two file instances. The

strength of MD5 hash is that it can detect a change in a file as small as a single bit. The

size of the file was also observed to have changed for some files after the operation.

The proposed methodology for testing the forensic richness of a storage engine is

illustrated in the following diagram.

35

Fig, 3.Proposed methodology.

Stage 1: Preliminary analysis
 Create architectural visualization of the

DBMS with all the components and their

location within layered model of DBMS.

 Identify Files and folders in layers below the

storage engines’ layer. They are the write

location by virtue of abstraction hierarchy.

These files and folders are set as target files.

 With target files identified, Use forensic tools

and procedures to create an initial image and

then collect metadata values of the

identified target files.

 Record the metadata of the target files.

Stage 2: Execution

 Execute a database operation recording the

timeline of the operation using the time

configuration of the host computer. This

time will be used to trace when the actual

change in metadata value took place.

 Use forensic tools and procedures to create a

second forensic image and then collect

metadata values of the identified target files.

Stage 3: Analysis Stage

 Compare the values of metadata of each file

before the database operation and after the

operation.

 Changes in metadata values after the

operation show that the file was affected or

written to during the operation.

 The files that have been affected by the

operation are flagged as possible evidence

location for further analysis to extract the

exact content which could be a structural

change, value change, sql command or a

system event.

36

CHAPTER FIVE: CONCLUSION AND RECOMENDATION

5.1 Introduction

This chapter evaluates how the objectives of the research were met, assesses the value of

the work, gives limitation and finally gives conclusion and recommendation.

5.2 Evaluation of the research objectives

i. Objectiveone; To investigate the forensic implications of using MyISAM or

InnoDB storage engines in MySQL database.

This objective has been met in that study has been carried out on key and comparable

internal DBMS files that are written by storage engines during database operation. While

only one operation (UPDATE) was used for the experiment, the same methodology can

be used with any other operation and any set of files to see the effect.

ii. Objective two; To study how MyISAM and InnoDB storage engines

individually generate persistent forensic evidence data in the logs.

This objective has been achieved by performing the experiment and showing the list of

files that have been affected by the operation. These files can then be listed as evidence

location and by analysing their content the actual evidence values can be shown.

iii. Objective three; To perform an analysis to determine the number of

occurrence of the persistent forensic data in each case and make a

comparison.

This objective has been met by performing analysis of the metadata values and showing

the number of files affected in each installation.

5.3 Limitations

While the study has given a methodology of how to list potential forensic evidence

locations in a file system, hence showing forensic richness, the study does not however

scrutinize the individual evidence location to show its content as either operation

37

instruction or data values. While this work gives the methodology of how to list evidence

location, more work is required is necessary to verify what type of evidence is present in

each listed location.

5.4 Conclusions

The following are the conclusions from the study.

 It has been shown that more files are affected in InnoDB than MyISAM

implementation hence InnoDB has a higher number of potential forensic evidence

locations than MyISAM.

 It is possible to list files affected by an operation in a database system by using a

forensic tool to perform a file system analysis

 The methodology shown in this research can be replicated in other file systems to

show which files or set of files are affected by an operation

 Because the content of a files are not always the same in different systems, this

methodology will help forensic examiners to sieve the files that have potential

evidence and then subject them to further analysis therefore eliminating the

problem of analysing all files, some of which may not contain any evidence.

38

REFERENCES

Alexander, K.B., (2014). Database Forensic Analysis. International Journal, 2(3).Apr 13,

2014 - Database Forensic Analysis Using Log Files.Mr.Jitendra R Chavan,

Prof.HarmeetKaurKhanuja. (Department of Computer Engineering.

Bassil, Y., 2012. A comparative study on the performance of the Top DBMS systems.

arXiv preprint arXiv:1205.2889.

Bannon, R., Chin, A., Kassam, F., Roszko, A. and Holt, R., (2002).Mysql conceptual

architecture.Technical report, University of Waterloo.

Bricki, N. and Green, J., (2007). A guide to using qualitative research methodology.

Flores, D.A., Angelopoulou, O. and Self, R.J., (2012).September.Combining Digital

Forensic Practices and Database Analysis as an Anti-Money Laundering Strategy

for Financial Institutions.In2012 Third International Conference on Emerging

Intelligent Data and Web Technologies (pp. 218-224).IEEE.

Fruhwirt, P., Huber, M., Mulazzani, M. and Weippl, E.R., (2010).April.Innodb database

forensics. In Advanced Information Networking and Applications (AINA), 2010

24th IEEE International Conference on (pp. 1028-1036). IEEE.

Gilfillan, I., (2003). Mastering MySQL 4.Sybex.

Grebhahn, A., Schäler, M. and Köppen, V., (2013). Secure Deletion: Towards Tailor-

Made Privacy in Database Systems. In BTW Workshops (pp. 99-113).

Hancock, B., Ockleford, E. and Windridge, K., (1998). An introduction to qualitative

research. Nottingham: Trent focus group.

Holck, J., Mahnke, V. and Zicari, R., (2008).Winning through incremental innovation:

The case of MySQL AB. IRIS.

Johnson, B., (2001). Toward a new classification of nonexperimental quantitative

research.Educational Researcher, 30(2), pp.3-13.

39

Khanuja, H.K. and Adane, D.D., (2011). Database security threats and challenges in

database forensic: A survey. In Proceedings of 2011 International Conference on

Advancements in Information Technology (AIT 2011), available at

http://www.ipcsit.com/vol20/33-ICAIT2011-A4072. pdf.

Khanuja, H.K. and Adane, D.S., (2012). A framework for database forensic

analysis.Computer Science & Engineering, 2(3), p.27.

Martini, B., Do, Q. and Choo, K.K.R., 2015. Conceptual evidence collection and analysis

methodology for Android devices.arXiv preprint arXiv:1506.05527.

Naiqi, L., Zhongshan, W. and Yujie, H., 2008, August. Computer Forensics Research and

Implementation Based on NTFS File System. In 2008 ISECS

InternationalColloquium on Computing, Communication, Control, and

Management(Vol. 1, pp. 519-523). IEEE.

Oracle, M., 5.6 Reference Manual, 2014.

Pozniak-Koszalka, I. and Helwich, M., (2005).Experimentation System for Evaluating

MySQL Database Management System Efficiency. In Databases and

Applications (pp. 94-98).

Robbins, R.J., (1994). Database Fundamentals.Johns Hopkins University, rrobbins@

gdb.org.

Rodr´ıguez A., (2004).Brief Introduction to Database Concepts.Summer School -

Castell´on.

Stahlberg, P., Miklau, G. and Levine, B.N., (2007). June. Threats to privacy in the

forensic analysis of database systems.InProceedings of the 2007 ACM SIGMOD

international conference on Management of data (pp. 91-102). ACM

Tocci, G., 2013. A Comparison of Leading Database Storage Engines in Support of

Online Analytical Processing in an Open Source Environment.

Vaswani, V., (2003).MySQL: The complete reference. McGraw Hill Professional.

40

Weippl, E., (2010). Database Forensics.InProceedings of the 24th IEEE International

Conference on Advanced Information Networking and Applications (AINA).

http://db-engines.com/en/ranking

