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ABSTRACT 

Noise in the Internet of Things is threatening to drown out sensor data. The problem is growing as 

more and more devices are being connected to the internet. The noise comes from the electric 

components both within and without the IoT devices. Other sources of noise include poor 

calibration. There is thus a need to ensure accurate data is collected in a cost effective way as noisy 

data might prove disastrous.  

This study sought to find out the suitability of using neural networks as a filter and also compared 

its performance to a Kalman filter. An Artificial Neural Network filter application was developed 

using rapid application prototyping using simulated data to test. The results showed that the 

Artificial Neural Network filter was reliable to filter out the noise compared to other filtering 

solutions such as the Kalman filter. Despite the Artificial Neural Network being about 15 times 

slower than the Kalman filter, it was found to be more accurate.  It was thus found that an Artificial 

Neural Network is much more accurate than a Kalman filter and makes a good noise filter for IoT 

devices. 
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CHAPTER 1: INTRODUCTION 

Internet of Things (IoT) is changing the way we do things. Now more than ever, we have cheap 

sensors. In addition, the internet is now pervasive and even basic devices such as television sets can 

connect to the internet. This of course, poses a huge challenge in regards to the data produced. The 

challenge is in the amount and quality of the data produced. Words like “Big Data” often associated 

with IoT because of the streams of data flowing in.  

Data collected via IoT has a sizable amount of noise. McHenry, et.al, 2015 go to an extent to claim 

that IoT is drowning under radio frequency noise. Electronic devices near IoT devices are likely to 

introduce noise and skew the reading. However, noise is not only introduced by electronic devices. 

Man-made activities can make the data noisy such as resetting devices etc. Another source of noise 

in IoT devices is poor calibration. Cheap devices are often fitted with sensors that have high error 

rates that contribute to errors in the data collected. The cost is often associated with the quality of 

the device. As such, users collecting data may be forced to use low cost IoT devices in an effort to 

save on costs which might lead to collection of erroneous data. 

The noise in the data can be reduced using various methods and approaches. Filtering algorithms 

can be used as well as introducing intelligent filters in the IoT devices. Sometimes, a combination 

of both is used to improve on performance. Algorithms can be used to train intelligent applications 

on what noisy data is thus replacing algorithms that might be resource intensive. Neural networks 

can be trained and used as filters making such intelligent applications. 

1.1 Background 

Sensors are often placed in many devices we use daily. They are embedded in our environment to 

collect data that is crucial in decision making. Given they are placed in the environment, they can 
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be subject to harsh conditions that impact their accuracy. For example, a temperature sensor could 

easily be affected by passing objects that emit heat thus skewing their reading. This introduces 

noise in the data which can be catastrophic depending on the kind of system the data is used in. The 

problem if further compounded by the amount of devices out there. According to (Frenzel, 2016), 

there will be about tens of billions of devices deployed in a few years to come according to 

projections. The deployed devices will also interfere with nearby devices introducing noise. 

Whereas this is good news for the IoT community as a whole, it is bad news for those looking to 

collect accurate data. 

Noise filtering algorithms are available and can easily be programmed into the sensors. However, 

many sensors have limited computing resources (memory, processing capabilities) which might 

hamper the efficiency of such algorithms. Another design goal when creating sensors is to make 

sure they are energy efficient and thus, the designer has to make decisions regarding which tools to 

use to save on energy. IoT sensors also have to work with limited bandwidth and connectivity thus 

making it crucial to ensure the sanctity of the data. 

As such, any engineer has to find a way to reduce the noise while taking into consideration the 

resources available on the sensors. The usage of sensors is growing and domain specific solutions 

are not scalable. We thus need to find a way to reduce noise that is generic enough to be deployed 

in most sensors in use.  

1.2 Problem Statement 

In sensors, we have constant streams of data flowing in from the environment. Noise in this data 

flow makes it difficult to have precision in any measurement. In many cases, a reading from an IoT 
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device is likely to be used for further decision making either by humans or by automated means. It 

is important to have precision. 

The aim of this research study was to establish how neural networks and noise filtering algorithms 

can be used to reduce the noise in data in the most efficient way.  

1.3 Objectives 

1. To identify the current solutions used to reduce noise in IoT sensors 

2. To compare the various noise reduction algorithms used in sensors.  

3. To identify how neural networks can be used to incorporate intelligence in sensors. 

4. To create and implement a neural network used to reduce noise in IoT sensors. 

5. To evaluate the results of using intelligent noise reduction in IoT sensors.  

1.4 Significance 

Sensors send a constant stream of data of some set parameter from the environment. For most 

sensors, these are measurements taken per unit time. Usually, the observer has a good idea of what 

the limits of the readings should be i.e both the lower bound and upper bound of expected reading. 

Thus, it would be easy to detect outliers in the data as errors. 

Noise reduction algorithms can be used but they pose challenges of their own such as accuracy and 

heavy usage of computing resources. Such resources are very limited in many sensors thus it would 

not be practical to have them run at all times. We can then utilize neural networks at this point. The 

network can be taught on what is “noisy” data while using a small portion of the computing 

resources on the sensor. This way, an energy-efficient filter is utilized.  
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The study sought to demonstrate how neural networks can be used in IoT devices to filter out the 

noise in sensors. The study considered various parameters in neural networks. The ANN was 

tweaked till the optimal combination of parameters could be found for use. The study also 

compared the success of the ANN to a Kalman filter to establish if it was justified to have an ANN 

instead of a traditional filter. This information will be useful to the IoT community as well as 

researchers using IoT devices to collect data.  

For other researchers, the study has provided useful insights and reference material on usage of 

neural networks as a noise filter in IoT devices. The study also exposed areas that will be worth 

pursuing for further research to expand knowledge.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

IoT devices are basically embedded systems with sensors detecting some environment variable. 

Any embedded system consists of three parts, sensors, actuators, and controllers. Sensors collect 

data from the environment and feed it to the controller. The controller then makes a decision based 

on the input data and sends a command to the actuator to perform some action depending on the 

data. As such, it is vital that the information collected is correct.  

There are various sources of noise in a sensor device as listed by (Lita et al., 2007) namely; 

1. Device noise (Noise originating from active and passive devices inside the sensor device) 

2. Conducted noise (Noise transmitted in the wires) 

3. Radiated noise (Noise from nearby devices) 

This noise comes from electronic devices. However, human activity can lead to the introduction of 

noise in the data. Resetting of devices that are active could actually cause the sensor to report 

inaccurate data where a data point depends on the previous data point e.g for cumulative values. 

Some solutions have been proposed to deal with noise in sensor data and are broadly categorized 

into two groups: 

1. Hardware solutions 

2. Software solutions 

The two types of solutions are mainly used together and thus complement each other to improve the 

quality of data. This study details a software-based solution that utilizes machine learning 

techniques to solve the problem 



6                                                                                                             

2.2 Application of Internet of Things 

The Internet of Things has many wide applications. Applications are however mainly divided into 

the following three categories: 

1. Smart homes 

2. Smart cities 

3. Smart industries 

Noise could be found in all but is, however, least prevalent in homes due to the controlled 

environment. Sun Youwei and Su Shaohua (2015) clearly show that where power lines are located 

close to IoT devices, the data is bound to be noisy. Such heavy power lines are not likely to be 

found within homes. However, other forms of noise in data can be collected in homes. Some 

services work better outdoors e.g GPS and thus might report incorrect data if used indoors. 

2.3 Electrical Noise  

Generally speaking, electrical noise in data is a false reading introduced in electrical devices due to 

interference by the environment. These electronic devices could be within the actual IoT sensor or 

without and it will cause some variation in the data collected. 

2.4 Categories of Noise in Embedded Systems 

Noise in electronic systems is quite common but falls under various categories. According to (Bai 

et al., 2007), who looked at using RFID tags to collect data, there are various scenarios that can 

introduce noise in embedded systems.  

1. False Negatives 
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2. False positives 

3. Duplicate data. 

These categories of noise are quite straightforward. Given RFID tags work by transmitting boolean 

data, these categories are not sufficient to express the noise that can be found in data streams. As 

such, another category can be added namely, incorrect data. This is data that is transmitted as a 

value but such values are not representative of the actual value in the environment.  

We looked at the fourth category of data, incorrect data in this study. This is because advanced 

sensors send an actual value as opposed to either a true or false value.  

2.5 Cleaning Noise in IoT data streams 

There are various methods used to clean out data streams in IoT data streams. According to (Zhu et 

al, 2008), they can be classified between local and global solutions. 

Local Filtering 

Local solutions are solutions based on the sensor. The sensor filters the data locally then transmits 

the cleaned data. The sensor does not collaborate with any other device to clean out the data. This 

has a disadvantage in that a faulty or biased sensor can transmit incorrect data. One advantage, 

however, is that it reduces the data overhead in the network saving bandwidth. The sensor will not 

transmit faulty data only for it to be discarded later on.   

Global Filtering 

Global filtering takes advantage of the fact that sensors do not work in isolation but work 

collaboratively to provide holistic data. Thus, data is transmitted to a centralized node where it is 
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cleaned based on multiple sources of data. This has the advantage of having multiple sources of 

data to compare against. The disadvantage is that it uses energy and bandwidth to transmit data. 

Energy in embedded systems is volatile thus any solution needs to consider energy usage in the 

sensor.  

Our study employed a local filtering solution. 

2.6 Filtering Methods  

2.6.1 Algorithms 

1. Kalman Filters 

A Kalman filter is an algorithm that uses observable readings over time and uses previous reading 

to predict missing values or to check the validity of current readings. Sinharay, Pal and Bhowmick, 

(2011) shows that a Kalman filter works as a typical linear system. Using a Kalman filter, one can 

give it a set of past values that are correct and it can output a set of valid values with noisy data 

being filtered out.  
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Figure 2.1 Noisy data (Source: http://www0.cs.ucl.ac.uk/) 

 

Figure 2.2 smoothened Kalman estimates (source: http://www0.cs.ucl.ac.uk/) 
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2. Median Filter 

A median filter works by passing through the data and replacing a data point with the value of its 

nearest neighbours. One can set the threshold of how many neighbours to be used in calculating the 

median.  

 

Figure 2.3 Median Filter (Source: mathwork.com) 

3. Gaussian Filter 

Gaussian filters work to smooth out a signal/stream of data. Common illustrations show a bell curve 

as the effect of passing a set of data through a Gaussian filter.  
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Figure 2.4 Effects of the gaussian filter (Source:  mathwork.com) 

2.6.2 Use of Neural Networks 

Neural networks can also be used to filter out noise in data. Zeng and Martinez (2003) show us that 

we can use neural networks in two ways to clean out noise in data. 

1. Pattern recognition techniques 

We can use neural networks to compare data points based on their nearest neighbour so as to detect 

noise in that data. Nearest neighbour algorithms can be used to detect the expected value of the data 

and thus clean out erroneous values. 

2. Supervised learning 

We could use filtering algorithms beforehand to train the neural networks in what should be the 

correct data. Once trained, the neural networks is deployed with the weights already configured. 

This way the algorithm is ready for use once deployed in the sensor. 

Supervised learning is used to teach the algorithm on the kind of data expected. The Kalman filters 

was used to provide a comparison to the ANN filter on how well it works as a noise filter. The 
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Kalman filter was chosen because it uses past data to make decisions which is close to how a neural 

network works. The neural network was then be deployed in a test environment  

2.7 Artificial Neural Networks   

Artificial neural networks are conceptual applications that were inspired by the studies conducted 

on brains and the nervous systems of many animals. It falls under the broader category of artificial 

intelligence in computer science. Artificial Neural Networks were developed in the 1950s with an 

aim of imitating the biological brain architecture.  Neural networks employ a “divide and conquer” 

approach to solving big problems (Gershenson, 2003). An Artificial Neural Network basically 

consists of a set of nodes and the connections between the nodes. Neural networks have been used 

in a wide array of fields such as Physics, Computer Science, Finance and much more.     

2.7.1 How Artificial Neural Networks works 

Artificial Neural Networks draw their inspiration from how our brains work and their 

interconnections. They are inspired by natural neurons found in brains. Natural neurons get a signal 

via synapses that are located on the dendrites. If the signal is stronger than a certain set threshold, 

the neuron is activated and thus a signal is emitted. If not, nothing happens.    

 

Figure 2.5 Natural neuron (source: Artificial Neural Networks for Beginners) 
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The nodes are computational units since they receive some input, perform some operation and then 

produce an output. Sometimes these operations could be simple or complicated. Since they are in a 

network, information flows from one end to another. The direction of the signal flow could be one 

way or bidirectional. The various thresholds and operations in the network create a perceivable 

global behavior of the whole network.  

ANNs are designed to find patterns in data over time and use that information to make better 

decisions. A basic ANN comprises of three layers, input layer, output layer and hidden layers. An 

ANN has the ability to learn and over time it adjusts its weights and bias to match the desired 

output. 

 

Figure 2.6: Artificial Neural Network (source: http://neuralnetworksanddeeplearning.com/) 

 

A perceptron has several inputs and one output. Each input has weights that are adjusted until the 

ANN produces the correct results.  
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Figure 2.7: Perceptron (source: http://neuralnetworksanddeeplearning.com/) 

Each neuron is weighted. The higher the weight, the stronger the input has to be to trigger the 

threshold. Some weights can also be negative. During training, the weights are adjusted to obtain 

the desired output based on certain inputs. The processes of finding the optimal weights is learning. 

2.7.2 Types of Neural Networks 

Maxwell, (2015) shows that some common neural networks are 

1. Feedforward networks 

2. Feedback/recurrent networks 

The classification is based on how data flows through the network. 

2.7.2.1 Feedforward Neural Networks 

Feedforward networks have an architecture in which no loops exists. The signal flows from the 

input layer all the way to the output layer without any movement backwards. The weighted 

connections thus only have their activations fed in a forward direction. The most commonly used 

feedforward neural networks are multilayered feedforward neural networks. The neurons are 

arranged into layers comprising of an input layer, an output layer and hidden layer(s). A network 

could have one or more layers in the hidden layer. 

http://neuralnetworksanddeeplearning.com/
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The connections between layers are all unidirectional, moving from the input layer to the output 

layer. A multilayer feedforward neural network was used this study. We also sought to find the 

optimal number of neurons in a hidden layer. 

2.7.2.2 Recurrent Neural Networks 

Recurrent neural networks have loops in their connections. As such, the weighted connections are 

used to feed previous activations in the network backwards. The data thus flows in both directions. 

2.7.3 Training in Neural Networks 

Neural networks are used to find the desired output depending on some input provided. The neural 

network, therefore, has to be trained in how to obtain the correct output given some given input. At 

the beginning of the training, weight values are randomly assigned and thus the network has no 

insight into the problem it is being trained on (Maxwell, 2015). With training, the weights are 

adjusted in a way that the collective network produces the desired output. Training stops when the 

produced output is at the desired level compared to the expected output. 

1. Supervised learning 

In supervised learning, both inputs and their respective outputs are provided to the network. The 

various weights are then adjusted based on the output against the expected output. 

2. Unsupervised learning 

In unsupervised learning, the correct output is not labelled for the input data. The network finds the 

correct output by cluster analysis. 

3. Reinforcement learning 
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This one is a combination of both supervised and unsupervised learning. The network penalizes 

wrong output and rewards correct input. 

2.7.3.1 Factors affecting training 

1. Epoch size 

Epochs are the number of iterations that the training data is passed through the network. In each 

iteration, the weights are adjusted based on the error calculated. 

2. Learning rate 

Learning rate is a constant value that is used in a network that employs back propagation to 

calculate the error and adjust weights. The learning rate affects the speed of learning. With a 

smaller learning rate, the network takes longer to get to a point where it can stop iterations on the 

epoch (Maxwell, 2015).  

3. Activation function 

The activation function is the mathematical formula used to compute the weighted sum of the 

inputs and produce an output inside a neuron. Activation functions are discussed in detail in section  

2.7.4 Training Algorithms used 

Training of the neural network is an unavoidable task to get the ANN to work. There are various 

training algorithms used in ANN and the user has to make decisions on which to use depending on 

the use. We shall look at the most common training algorithm used in feedforward neural networks 

and back-propagation algorithm. 
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2.7.4.1 Back propagation 

This algorithm is used in feed-forward ANNs. In a neural network organized in layers, the signal is 

sent forward. This means that the signal flows from input to the output through the various layers 

thus it is considered the signal is being sent forward. The signal goes through the various hidden 

layers which are weighted to provide the desired output. 

The backpropagation algorithm uses supervised learning to calculate the error. Examples of the 

correct results are provided and the results are then compared to the output. The error is calculated 

and errors are propagated backwards from the output to the input. Initially, the neurons are assigned 

random weights. As the error is calculated in each cycle, the weights are adjusted so as to reduce 

the output error. Over time, the network learns the data and gives less erroneous data.  

2.7.5 Activation Functions 

The activation functions used in neurons can also be referred to as transfer functions. The neurons 

use the transfer function to produce an output based on the weighted sum of the inputs. The 

activation functions perform mathematical operations on the input to produce the output. The input 

layer performs this operation on the training data whereas the hidden and output layers use the 

output from the interconnection with previous layers as input.  

Some of the common activation functions used in neural networks are: 

1. Sigmoid (logistic) function 

A sigmoid function is a common activation function in neural networks. The formula for a sigmoid 

function is  

f(x) = 1/(1+exp(-x)) 
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Below is an illustration of the sigmoid function 

 

Figure 2.8 a sigmoid function (source: https://excel.ucf.edu) 

2. Tanh function 

Kenda et al. (2013) notes that tanh is a rescaled version of the sigmoid function with its output 

range from -1 to 1 instead of 0 to 1 for the sigmoid function. The formula is  

f(x) = (2/(1+exp(-2x)))-1 

 

Figure 2.9 Tanh function (source: http://slideplayer.com/slide/5867045/) 
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3. Linear function 

The formula for a linear function is  

f(x) = x  

 

Figure 2.10 A linear function (source: www.intechopen.com) 

Maxwell (2015) shows the logistic function is the most common activation function used in neural 

networks. This is because “it combines nearly linear behavior, curvilinear behavior and nearly 

constant behavior, depending on the value of the input.” Our study has looked at the effects of 

various activation functions on the results.  

2.8 Uses of Neural Networks in IoT 

Neural networks are used in sensors to make them intelligent improving their efficiency. 

Razafimandimby et al. (2016) demonstrate that using neural networks, robots can actively 

cooperate and exchange data which makes them more efficient over time. Such robots collect data 

and learn on how to better cooperate and be more efficient. 

http://www.intechopen.com/books/speech-technologies/nonlinear-dimensionality-reduction-methods-for-use-with-automatic-speech-recognition
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Wu et al. (2013) proposes a neural network solution that will be used to detect situations in coal 

mines. Due to the intelligence of neural networks, the solution is able to identify common situations 

in coal mines early as well as identify anomalies.  

2.9 Kalman Filter 

The Kalman filter is used to provide a solution to filtering on data accurately (Haykin, 2001). It is a 

recursive solution that makes use of past predictions to filter out current data. Kalman filter works 

well with linear time series data (Yonglong and Dongyan, 2015). 

However, the Kalman filter is often used with other filters to improve accuracy. Kalman filters are 

currently widely used together with recurrent neural networks to solve problems. In (Alessandri et 

al., 2003) and (Sum et al., 1999), it is used to train neural networks. In (Sum et al., 1999) it is also 

used to prune a feed forward neural network. 

The Kalman filter is essentially useful to predict future data from past data. The more data that 

comes in the better decision the filter can make. The difference with other filters is that the Kalman 

filter does not wait for all the data to arrive rather it makes predictions as more data arrives. 

Laaraiedh (2016) provides the formula 

The formula tries to estimate the state x ∈ℜn of a discrete-time controlled process that is governed 

by the linear stochastic difference equation 

xk = Axk−1 + Buk +wk−1 

with a measurement m y ∈ℜm that is  

yk = Hxk + vk 
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Wk and vk are random variables that represent process and measurement noise.  

2.10 Use of Sensors 

IoT sensors are mainly passive. They collect data from a specific environment variable and send 

that to some central location for a decision to be taken. Razafimandimby et al. (2016) shows that in 

an environment where robots need to work together to achieve a common task, they can use IoT 

sensors to communicate and share information about their location to ensure they are always in 

communication range. This thus ensures global connectivity of the Multi-Robot System.  

2.11 Noise control in sensors 

When dealing with any electric devices, errors are inevitable. IoT devices are however quite 

susceptible to electronic interference. Several techniques to mitigate this noise have been proposed.  

Galambos and Sujbert (2015) proposes an Active Noise Control for IoT. A variant of Least Mean 

Squares algorithm is used to actively detect and remove noise from a microphone before 

transporting the result via an ethernet cable. Sun Youwei and Su Shaohua (2015) on the other hand 

focuses on noise from power lines on IoT sensors. Robust Independent component analysis 

algorithm was used to effectively improve the signal-to-noise ratio. Zhang et al. (2011) uses a 

wavelet function to reduce noise in an intelligent building. A wireless sensor network is setup in the 

building to collect data on temperature. A threshold is set and the data is passed through the wavelet 

function and the data is reconstructed removing the noise. Das and Panda (2004) looks to deal with 

noise pollution where speakers are in use. The study uses a similar technique to (Galambos and 

Sujbert, 2015) but opts for an artificial neural network to do the filtering. Raeisy and Golbahar 

Haghighi (2012) also uses a neural network to filter the data for active noise control. 
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2.11.1 Error Rates in Sensors 

Data in sensors is bound to be noisy because of various factors such as nearby electronic devices 

and faulty equipment. Errors are caused by various factors as noted by (Elnahrawy and Nath, 2003). 

Some of the factors include: 

1. Software errors 

2. Unreliable communication channel 

3. Poorly calibrated equipment 

These factors contribute to high error rates in sensor data especially when you have inexpensive 

equipment. How to deal with the errors has been handled in other parts of literature. McHenry et al. 

(2015) shows that while near high voltage lines, the collected noise via IoT is likely to be 10% 

higher than under normal circumstances. The study however also notes that a complete study into 

RF noise is lacking since over 30 years ago and thus it is difficult to give informative figures on the 

error rates in IoT.  

2.12 Conceptual Framework 
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Figure 2.11 Conceptual Framework 

According to the diagram, ANN filtering performance is affected by the ANN architecture which is 

the number of nodes in the hidden layer and the activation function used. The intervening variables 

are in this case the epoch size and the learning rate parameters which have been observed in 

literature to have major contributions to neural network performance.  
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CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

3.1 Research Design 
The methodology employed for this study was quantitative using applied research method. In the 

study, a specific intelligent tool was created based on a specific model and tested for a particular set 

of data. An alternative tool was also developed in comparison to the intelligent tool. Chapter 2 

showed there is need for a tool to filter out noise in data. 

An Artificial Intelligence model was designed based on an ANN algorithm. The algorithm was then 

used to create a working prototype to test the model. The ANN that was the output of this process 

was a multi-layer perceptron using backpropagation as the training algorithm. The ANN was 

trained using supervised learning.  

The Kalman filter was also designed as a tool for comparison with the ANN. It was designed based 

on the mathematical formula: 

xk = Axk−1 + Buk +wk−1 

Both algorithms were developed using the python programming language. This required having the 

python environment working on a computer while testing. Other requirements for the application 

were documented in a requirements file to assist in quick setup of the environment. 

The noise filter could be used generically across any domain with data that is noisy. The focus of 

this study however was IoT devices and thus the filter was tested against simulated noisy 

temperature data.  
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3.2 Research Data 

3.2.1 Source of Data 

The data used to evaluate the ANN and Kalman filter tool was simulated to reflect what a faulty 

sensor would send in. A python script was created to generate noisy data that follows an upward 

trend. This enabled a direct simulation of the data streams coming in from sensor devices deployed 

in some environment. The data was fed into the ANN tool for both training and testing. The holdout 

method was chosen in which some data was used for training the ANN and a smaller portion of the 

data was used for testing. The smaller portion would then prove the accuracy of the filtering tool be 

it the ANN or the Kalman filter. In the study, there was one input and one output on the ANN tool. 

The input was the noisy data and the output would be compared to the expected value where the 

error would be corrected. Using back-propagation, the ANN tool would then be trained using the 

training data. Once the training phase was done, the testing data was fed in as input and the output 

compared to the true value.  

3.2.2 Volume of Data 

In the study, 100 data points were used to simulate noisy data points from a sensor. This volume 

would approximately be a day's data reading. This corresponds to a reading being recorded every 

quarter hour. The approach was considered to be sufficient for training and testing the ANN tool as 

well as for use by the Kalman filter tool. 
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3.3 Designing the Proposed Model 

The proposed model had one input neuron and one output neuron. The model was designed to have 

a variable number of neurons in the hidden layer and that was tested. The number of neurons in the 

hidden layers was varied and an optimal configuration was found. The same case was applied to the 

activation function. Two activation functions were considered, sigmoid/logistic and the tanh 

activation functions. The proposed model, was then developed as discussed in chapter 4. 

3.4 Application Development 

In this study, the application was implemented using the Rapid Application Development (RAD) 

software development process. This involved prototyping and improving the prototype. This 

method worked well in this study since it was a research project with a prototype and the various 

steps of development were not well defined. The overall result of using RAD was very high-quality 

software developed very quickly which was the point of this study. 

3.4.1 Justification of Using RAD 

This methodology offers a viable option since it enables software to be developed quickly with the 

requirements not well defined beforehand. In this study, the requirements could have easily 

changed during development.  

The time given to complete the project is quite constraining also. The study period was 6-8 months 

which was not enough to create a conclusive product using traditional methodology such as the 

waterfall model. CASE tools have also been developed which were a huge help in creating the 
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solution. With these tools, we were able to design and implement the application faster and more 

feasibly making RAD a very viable option.  

Finally, adopting this methodology, we were at liberty to improve the application with ease. This 

demanded developing the application using an object-oriented approach. The various functionalities 

were modular. 

3.4.2 RAD Lifecycle 

Below is a brief overview of the RAD process, which consists of four lifecycle stages: 

Requirements Planning, User Design, Construction, and Implementation. 

3.4.2.1 Requirements Planning Phase 

The requirements planning stage consisted of developing a high-level list of initial requirements as 

well as setting the research scope. This stage involved reviewing of current solutions and talking to 

the users of such systems. 

3.4.2.2 User Design Phase 

The various requirements were collected and modelled. A prototype of the user interface was 

created to communicate the idea behind the final solution. This stage was a continuous interactive 

process that allowed the understanding of the proposed solution, modifying, and eventual approval 

of a working model of the system. 
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3.4.2.3 Construction Phase 

Here, the application was developed through iterative prototyping. Specific modules were created 

in isolation till they were operational. Input from various stakeholders was also taken into account 

to accommodate the various requirements. Once the specific modules were created, they were 

loosely coupled and designed to communicate via API calls.  

3.4.2.4 Implementation Phase 

As soon as the application was stable and is deemed to be ready for use, it was deployed. Here all 

functionality that were turned on for debugging were turned off. All resources needed for 

deployment were also be provisioned and configured.  

3.4.3 Application Testing 

Once the application was developed and deployed there was the need to verify that it was working 

in reducing noise in data. The solution was run through a series of tests. In order to validate the 

application and guarantee its correctness, the specifications and properties that we were trying to 

prove were verified. Three verification goals were focused on: 

1. Each component of the application must work correctly when considered in isolation. As 

such, unit tests were written for each module and updated from time to time once the code 

changed. 

2. After these individual components were proven to work, they were integrated then run 

through rigorous black box testing to ensure they can correctly work together. Some more 

tests were written as part of the application code that tested the end to end functionality.  
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3. The application was then deployed in a computing device where it can be tested. Noisy data 

was generated to simulate a sensor in the field. 

3.5 Project Design 

This research employed a modular approach to developing software where modules were developed 

in an incremental manner. This was to adhere to the rules of RAD. Each module was developed 

then tested and if it was working, the next module was created and added to the existing one. This 

cycle continued till the project was completed.  

The underlying architecture used is client-server architecture. This is because the sensors are 

perceived as clients transmitting data to a centralized server. Data processing also happened at the 

simulated IoT device. The presentation, views, and the data management were logically separate 

processes on the IoT device. 

The application had a user interface, middleware for handling sensor requests and the database. 

Multi-tier application architecture provided a model that enables the creation of a flexible and 

reusable application by breaking it up into several manageable application tiers. This enabled each 

tier to be handled separately which was very convenient. 

Typically, the user interface runs on a web browser. The UI was accessible to any device within the 

network thus it was deployed as a typical web application. Application logic consisted of one or 

more separate modules running on the server controlled by a web server. The data was managed 

using an RDBMS on a database server.  
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3.6 Application Architecture 

The Artificial Neural network was designed and integrated as part of the main application. The 

conceptual flow of how it would work was designed. Figure 3.1 is a diagram of its architecture.

 

Figure 3.1 ANN and Kalman Filter Model 

The neural network was broken down into three parts, initialization of the ANN, the training and 

finally the prediction part. This conceptual diagram was helpful and the application was designed to 

have the three parts separate. The Kalman filter was simpler to implement and thus only had two 

parts. Once the initialization happened, the prediction worked by running the data through the filter 

any desired number of times. 

The application was developed in python programming language and the code is provided in the 

appendix section. The applications could be accessed via an API that would pass the desired 
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parameters to filter and return the results as a JSON string. A simple user interface was developed 

to display the results of call.   
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CHAPTER 4: RESULTS ANALYSIS AND PRESENTATION 

4.1 Introduction 

This chapter presents findings of the study where various factors that influence the effectiveness of 

the neural network were examined. The study also compared the results of the neural network and 

the Kalman filter.  

At this stage, the tools were designed and run with the variables tweaked at each stage. After this, 

the results were observed. These tests were run on both the Kalman filter and the ANN. The 

following metrics were to be observed and recorded 

1. Accuracy 

2. Speed 

3. Complexity 

4.2 Artificial Neural Network 

Once the ANN was designed and deployed in a testing environment, the following variables were 

modified and the effect was observed. 

1. Training data 

2. Epochs 

3. Hidden Layers 

4. Activation function 
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4.2.1 Varying epoch sizes 

 

Figure 4.1 ANN testing: epochs 

In varying the size of the epoch, it was observed that the network get closer to the correct prediction 

at 40,000 epochs. It was thus noted, to obtain reliable results, the training data had to be iterated 

over at least 40,000 times. After 40,000 iterations, the results remained largely close to 22 with the 

largest variance being 0.9 at 110,000 epochs. For our study, however, 50,000 was used because it 

had a smaller error compared to 40,000 epochs. This was done with three hidden layers and the 

tanh activation function. It was also observed that at 10,000 epochs, a prediction close to the 

expected result was found but based on results from close range epochs, the result was ignored as a 

“good guess.” 

Epochs Hidden Layer 

size 

Activation 

Function 
Output Error/ 

Variance 

Training 

/Expected 

value 

5000 3 tanh 21.18 0.82 22 
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10000 3 tanh 21.90 0.10 22 

20000 3 tanh 20.86 1.14 22 

30000 3 tanh 20.70 1.30 22 

40000 3 tanh 21.60 0.40 22 

50000 3 tanh 21.68 0.32 22 

60000 3 tanh 21.27 0.73 22 

70000 3 tanh 21.16 0.84 22 

80000 3 tanh 21.68 0.32 22 

90000 3 tanh 21.29 0.71 22 

100000 3 tanh 21.72 0.28 22 

110000 3 tanh 21.11 0.89 22 

Table 1: ANN using tanh function and 3 neurons in the hidden layer with varying epochs 

As noted earlier in literature, the sigmoid function is similar to the tanh activation function with the 

exception of having a smaller range(0 to 1) compared to the tanh (-1 to 1). The tests were repeated 

using the sigmoid function and these were the results 

Epochs Layers Activation 

Function 
Output Error/ 

Variance 

Training 

/Expected value 

5000 3 sigmoid 19.90 2.10 22 

10000 3 sigmoid 19.80 2.20 22 

20000 3 sigmoid 20.40 1.60 22 

30000 3 sigmoid 20.38 1.62 22 

40000 3 sigmoid 19.75 2.25 22 

50000 3 sigmoid 19.88 2.12 22 

60000 3 sigmoid 20.25 1.75 22 

70000 3 sigmoid 20.31 1.69 22 
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80000 3 sigmoid 20.70 1.30 22 

90000 3 sigmoid 20.00 2.00 22 

100000 3 sigmoid 20.99 1.01 22 

110000 3 sigmoid 20.91 1.09 22 

Table 2: ANN using sigmoid function and 3 neurons in the hidden layer with varying epochs 

The results indicate that the sigmoid function is more erroneous compared to the tanh activation 

function. The smallest error using a tanh function was 0.10 compared to 1.01 using a sigmoid 

function. While using the sigmoid function, the errors seem to be higher compared to the tanh 

function with the same number of epochs. As such, the tanh function was used as the activation 

function for this study. 

4.2.2 Neurons in Hidden layer testing 

 

Figure 4.2 ANN testing: neurons in hidden layer 

The number of neurons in the hidden layer was varied and the results observed. 2 neurons were 

observed to be sufficient in the hidden layer. The best results were however observed to be at 3 
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neurons in the hidden layer. Additional neurons added complexity without improving results 

greatly on the neural network.  

Epochs Layers Activation 

Function 
Output Error/ Variance Training /Expected 

value 

50000 1 tanh 20.84 1.16 22 

50000 2 tanh 21.36 0.64 22 

50000 3 tanh 21.68 0.32 22 

50000 4 tanh 21.09 0.91 22 

50000 5 tanh 21.21 0.79 22 

50000 6 tanh 20.46 1.54 22 

50000 7 tanh 20.71 1.29 22 

50000 8 tanh 20.77 1.23 22 

50000 9 tanh 20.34 1.66 22 

Table 3: ANN using sigmoid function and 50000 epochs with varying hidden layer size 

4.3 Kalman Filter 

The Kalman was designed and deployed in a testing environment, the iterations were varied and the 

effect was observed. 
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Figure 4.3 Kalman testing 

The Kalman filter was used to compare how effective the ANN network was. The Kalman filter 

was observed to converge faster to the estimated answer but made huge errors compared to the 

ANN over time. Below are the results over time. 

Iterations Initial guess Prediction Expected 

result 

Error Time 

(seconds) 

50 20 18.99 20.5 1.51 0 

100 20 20 22 2.0 0 

Table 4: Kalman filter predictions at varying iterations 

From the data above, it can be observed that the Kalman filter is quick to make a guess. This is 

based on the amount of time in seconds as shown in the table plus the diagram above. But the 

estimation gets worse as the iterations grow. In fact, the error was less after 50 iterations compared 

to 100. As such, despite the Kalman filter having quick convergence time, the error rate is higher 
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compared to the ANN. The Kalman filter however is able to observe the trend and keep with the 

pattern. 

4.4 Kalman Vs. ANN results 

The ANN is proven to produce better results than a Kalman filter from the results above. The ANN 

is bound to make more erratic errors with few iterations but the variance from the estimated result 

is still lower compared to the prediction from the Kalman filter. One major advantage of the ANN 

is that it produces better results over time whereas the Kalman filter is not observed to produce 

better results over time. This points to having a neural network as a more reliable filter in sensors. 

In terms of complexity, the Kalman filter is easier to implement and get working. The ease, 

however, comes at a cost in accuracy. Modern devices have sufficient resources to run complex 

applications thus complexity is not a major factor to consider in IoT sensors. Accuracy, however, is 

key and should be considered as an important factor in determining the tool to use. In this case, 

neural networks come out winning. The code for each tool can be seen in the appendix section. 

4.5 Performance Metrics 

As noted in literature, sensors have very limited resources compared to traditional computing 

devices. They have limited memory, disc space and processing capability. As such, it was necessary 

to also observe how the two solutions performed. During testing, time taken to perform operations 

was collected and stored. Each took less than a second. However, the Kalman filter was found to be 

faster than the ANN at the same number of iterations. At 100 iterations, the Kalman filter took 

0.0432 sec while the ANN took 0.6832 sec. That implies that the Kalman filter is 15 times faster 

than the ANN. This was due to the loops in the ANN increasing complexity. 
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4.5.1 Speed 

Each filter was fast under 50,000 iterations and produced results in less than a second. However, as 

the number of iterations grew, the neural network was shown to be slower under the same 

environment. Based on the timing tests, the Kalman filter was found to be 15 times faster than the 

ANN at the same number of iterations. 

4.5.2 Accuracy 

From the results shown above, it was proven beyond doubt that the ANN was by far more accurate 

than the Kalman filter. This was especially the case after more data was passed to the filters. The 

Kalman filter does slowly converge towards the correct answer over time but results are still highly 

inaccurate. The ANN, however, does improve its results over time but does reach a peak at some 

point where more iterations on training to not produce better results. As such, for accuracy, the 

ANN is by far the better alternative. 

The two filters thus have strengths and weaknesses in various areas. The ANN, however, seems to 

emerge as a better filter since even at small iterations, it does produce better data compared to the 

Kalman filter.  
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CHAPTER 5: DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

The purpose of this study was to investigate how to use neural networks to filter out noise in IoT 

sensors. Various variables on both the neural network and the Kalman filter were examined and 

optimal configurations were identified. The two filters were then compared to each other. 

5.2 Summary of Findings 

The study findings were as follows: 

5.2.1 The tanh activation function works better than the sigmoid function. 

In the study, the tanh activation function was found to consistently perform better than the sigmoid 

function when it comes to predicting. When the sigmoid function was used, the data was more 

erroneous. As such, the activation function used in our study was the tanh activation function 

5.2.2 The ANN produced optimal results at 50,000 epochs. 

In the study, it was found that the ANN works best at 50,000 epochs. It did occur that best results 

were found at lower epochs but based on results of almost similar iterations, it was deemed to be 

inconclusive and could be the ANN got lucky. The best results that were deemed stable were found 

at 50,000 epochs and the prediction did not vary much after that.  
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5.2.3 Three neurons in the hidden layer produced best results. 

The best results in the ANN were found when using three neurons in the hidden layer. Three 

neurons produced the lowest error compared to the other hidden layer sizes. As such, three neurons 

in the hidden layer were adopted as the hidden layer size for this study. 

5.2.4 The Kalman filter is a good alternative to ANN but not as accurate. 

It was identified that the Kalman filter is a good alternative to the ANN filter. However, the filter 

had larger errors in prediction compared to the ANN based on the data at hand. The Kalman filter 

however is able to make predictions faster than the ANN. The Kalman filter was also able to find 

the pattern in the data despite the error making it a good alternative to the ANN filter. 

5.3 Discussions 

The first objective of this study was to identify the current solutions used to reduce noise in IoT 

sensors. It was determined that intelligent approaches are used to filter out noise in data as well as 

other filter solutions such as the Kalman filter and the median filter. The median filter was 

discussed in the literature while a Kalman filter and an ANN were tested and the performance was 

compared. Both can perform well as filters in noisy data. 

The second objective of this study was to compare the various noise reduction algorithms used in 

sensors. The Kalman filter algorithm was looked into and the median filter. The Kalman filter was 

implemented and tested. Results of the Kalman filter were collected and recorded. The Kalman 

filter is fast, compared to a neural network based filter and can find the noise pattern. However, the 

error rate was high compared to the ANN. 
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The third objective was to identify how neural networks can be used to incorporate intelligence in 

sensors. This was discussed in literature and it was shown that other studies have used ANNs to 

filter out noise in data. An ANN was developed in this study and the results were promising. With 

the right configurations of its parameters, the ANN was found to work well as a noise filter in IoT 

sensors. 

The fourth objective was to create and implement a neural network used to reduce noise in IoT 

sensors. The neural network was implemented and tested. The application can be found in the 

appendix section. The findings show that the developed ANN can perform well as a noise filter 

compared to other filters. 

The last objective was to evaluate the results of using intelligent noise reduction in IoT sensors. The 

results were positive based on our findings. The ANN was found to be less erroneous compared to  

the Kalman filter despite being slower and more complex. 

5.4 Conclusion 

In the study, the potential of using an ANN as a filter in cheap IoT devices was explored. This 

confirmed the findings of (Raeisy and Golbahar Haghighi, 2012). An alternative filter, the Kalman 

filter was developed and used to compare its potential as a filter compared to the ANN. The study 

relied on simulated data that was used to provide input to both filters with the expected output also 

generated. 

The neural network was found to be optimal with a tanh activation function and 3 neurons in the 

hidden layer. Back-propagation training method was used for the ANN and results were good as 
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shown in chapter 4. Finding the correct number of neurons in the hidden layer was a trial and error 

process and after some tests, 3 was found to be an optimal number. 

A basic Kalman filter was also developed to test its performance as a reliable filter for noisy data. 

Though quite fast in making a prediction, the filter was found to be more erroneous compared to the 

ANN and thus was found to be useful but not ideal in predicting correct values from noisy data. As 

computing resources keep growing cheaper, speed can be improved over time by obtaining sensors 

with better resources. Performance, however, is mainly handled on the software end in which the 

ANN comes out ahead. The filter was a simple solution to create too compared to the ANN.  

It was thus observed that using an ANN filter is better compared to a Kalman filter. Results for 

each filter were compared with the ANN performing better in terms of accuracy of the prediction. 

The ANN was however found to be slower as the number of iterations grew where the Kalman 

filter was quite fast even with large iterations. The main undoing however for the Kalman filter was 

that even as the number of iterations grew, the Kalman filter was not able to converge to an 

accurate result in contrast to an ANN. It was thus observed that a neural network solution would 

provide a better alternative. 

The study also looked at the various factors that influence the performance of the ANN. Here, the 

activation function used was tested, the number of neurons in the hidden layer as well as the 

number of epochs when training the ANN. Two activation functions, the sigmoid function and the 

tanh function were tested. Both functions performed well but the tanh activation function was found 

to produce better results. The error on the predicted data compared to the expected result was found 

to be smaller using the tanh function after various tests where the number of epochs was varied. 

The epochs when training the network were also tested and the network would provide best results 

at 50,000 iterations after which more epochs would not improve the prediction. The number of 
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neurons in the hidden layer was also tested and 3 was found to be the optimal value. The result did 

not improve as the number of neurons grew. 

5.5 Recommendations 

- Collect data on error rates in sensors. It was noted during the research project that there is 

little data regarding error rates in IoT sensors. McHenry et al. (2015) shows it is a major 

problem but it is difficult to qualify that assertion with data. As such, research into error 

rates in IoT devices is a highly recommended research area. 

- The study recommends exploring other training methods such as Levenberg-Marquardt 

Optimization Algorithm to improve ANN performance. The data collected was tested using 

the most common training method, back-propagation. This was because of the amount of 

time and scope of the research. However, the study would benefit greatly if other training 

methods were used and compared to back-propagation method used to train the data in the 

current study. 

- The study recommends trying other activation functions other than the sigmoid and tanh 

activation function and compare performance for reasons similar to those listed above for 

the training function 

- The study would recommend combining the Kalman filter and ANN to improve the results 

of the IoT filter. This would have an integrated application that ensures that both filters are 

used together with the Kalman filter complementing the ANN. 

- The study simulated data in a lab setting for use in testing. More research can be conducted 

by collecting data from IoT sensor that have been deployed in the field with ANN filter to 

test performance and also collect data for training other ANN filters. 
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- The study focused on constant linear values as test data. Research can be conducted on the 

performance of both filters when having non-linear data that is noisy.  

- More research can be conducted into how the ANN filter performs against other filters 

except the Kalman filter 

- Finally, research can be conducted into the performance of the ANN filter in other fields 

other than IoT sensors. This can include filtering noise in data collected via conventional 

means such as questionnaires. 
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APPENDICES A:  

ANN filter python code 

from __future__ import division 

import numpy as np 

def tanh(x): 

    return np.tanh(x) 

def tanh_deriv(x): 

    return 1.0 - np.tanh(x)**2 

def logistic(x): 

    return 1/(1 + np.exp(-x)) 

def logistic_derivative(x): 

    return logistic(x)*(1-logistic(x)) 

def _scale_to_binary(e, minV, maxV): 

    result = ((e-minV)/(maxV-minV))*(1-0)+0 

    return result 

def rescale_from_binary(e, minV, maxV): 

    result = e*(maxV-minV) + minV 

    return result 

class NeuralNetwork: 
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    def __init__(self, layers, activation='tanh'): 

        """ 

        :param layers: A list containing the number of units in each layer. 

        Should be at least two values 

        :param activation: The activation function to be used. Can be 

        "logistic" or "tanh" 

        """ 

        np.random.seed(0) 

        if activation == 'logistic': 

            self.activation = logistic 

            self.activation_deriv = logistic_derivative 

        elif activation == 'tanh': 

            self.activation = tanh 

            self.activation_deriv = tanh_deriv 

        self.weights = [] 

        for i in range(1, len(layers) - 1): 

            self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] 

                                + 1))-1)*2.0) 

        self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 

                            1]))-1)*2.0) 
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    def fit(self, X, y, learning_rate=2, epochs=50000): 

        X = np.atleast_2d(X) 

        temp = np.ones([X.shape[0], X.shape[1]+1]) 

        temp[:, 0:-1] = X   # adding the bias unit to the input layer 

        X = temp  # Create a new X but with an extra bias item 

        y = np.array(y) 

        for k in range(epochs): 

            i = np.random.randint(X.shape[0]) 

            a = [X[i]] 

            for l in range(len(self.weights)): 

                a.append(self.activation(np.dot(a[l], self.weights[l]))) 

            error = y[i] - a[-1] 

            deltas = [error * self.activation_deriv(a[-1])] 

            for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer 

                deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l])) 

            deltas.reverse() 

            for i in range(len(self.weights)): 

                layer = np.atleast_2d(a[i]) 

                delta = np.atleast_2d(deltas[i]) 

                self.weights[i] += learning_rate * layer.T.dot(delta) 

    def predict(self, x): 
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        x = np.array(x) 

        temp = np.ones(x.shape[0]+1) 

        temp[0:-1] = x 

        a = temp 

        for l in range(0, len(self.weights)): 

            a = self.activation(np.dot(a, self.weights[l])) 

        return a 
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Kalman Filter python code 
# Kalman filter in Python adopted from http://scipy-
cookbook.readthedocs.io/items/KalmanFiltering.html 

import numpy as np 

import matplotlib.pyplot as plt 

import time 

 

class KalmanFilter: 

    def __init__(self, base_value=24, iterations=200, initial_guess=20.0, posteri_estimate=4.0, 
data=[], plot=False): 

        # initial parameters 

        self.n_iter = iterations  # How many iterations to create test data 

        sz = (self.n_iter,)  # size of array 

        self.x = base_value  # This is the base value that shall be used to create noisy data. It 
is the true value 

        if len(data) == 0: 

            self.z = np.random.normal(self.x, 1, size=sz)  # observations (normal about x, 
sigma=0.1) 

        else: 

            self.z = data 

 

        self.Q = 1e-5 # process variance 

        # allocate space for arrays 

        self.xhat = np.zeros(sz)      # a posteri estimate of x 

        self.P = np.zeros(sz)         # a posteri error estimate 

        self.xhatminus = np.zeros(sz)  # a priori estimate of x 

        self.Pminus = np.zeros(sz) 

 

        # a priori error estimate 

        self.K = np.zeros(sz)         # gain or blending factor 

        self.R = 2 
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        # initial guesses 

        self.xhat[0] = initial_guess  # Initial estimate 

        self.P[0] = posteri_estimate  # Estimate of the error made 

        self.plot = plot 

 

    def filter(self): 

        start = time.time() 

        for k in range(1, self.n_iter): 

            # time update 

            self.xhatminus[k] = self.xhat[k-1] 

            self.Pminus[k] = self.P[k-1]+self.Q 

 

            # measurement update 

            self.K[k] = self.Pminus[k]/(self.Pminus[k]+self.R) 

            self.xhat[k] = self.xhatminus[k]+self.K[k]*(self.z[k]-self.xhatminus[k]) 

            self.P[k] = (1-self.K[k])*self.Pminus[k] 

        end = time.time() 

 

        print("Took %s seconds" % (time.time() - start)) 

 

        if self.plot: 

            plt = self.plot_results() 

        else: 

            plt = None 

        return self.z, self.xhat, self.x, plt 

 

    def plot_results(self): 

        plt.rcParams['figure.figsize'] = (10, 8) 

        plt.figure() 

        plt.plot(self.z, 'k+', label='noisy measurements') 
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        plt.plot(self.xhat, 'b-', label='a posteri estimate') 

        plt.axhline(self.x, color='g', label='truth value') 

        plt.legend() 

        plt.title('Estimate vs. iteration step', fontweight='bold') 

        plt.xlabel('Iteration') 

        plt.ylabel('Temperature') 

 

        return plt 
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ANN training data 

ID Noisy Data Actual Data 

301 21.5360465755 22.0 

300 21.8743646268 21.9595959596 

299 21.669130502 21.9191919192 

298 20.3472618312 21.8787878788 

297 21.7014780494 21.8383838384 

296 22.2256235741 21.797979798 

295 20.9565583577 21.7575757576 

294 22.0599013607 21.7171717172 

293 21.9491300859 21.6767676768 

292 22.9409266516 21.6363636364 

291 22.3309335226 21.595959596 

290 22.1939897915 21.5555555556 

289 22.0302445641 21.5151515152 

288 21.7298237087 21.4747474747 

287 20.6579092532 21.4343434343 

286 20.9922750258 21.3939393939 

285 22.1636777217 21.3535353535 

284 20.8706710452 21.3131313131 

283 20.9955494271 21.2727272727 

282 21.6130661663 21.2323232323 

281 20.4117530522 21.1919191919 

http://localhost:8000/admin/filter/trainingexample/299/change/
http://localhost:8000/admin/filter/trainingexample/298/change/
http://localhost:8000/admin/filter/trainingexample/297/change/
http://localhost:8000/admin/filter/trainingexample/296/change/
http://localhost:8000/admin/filter/trainingexample/295/change/
http://localhost:8000/admin/filter/trainingexample/294/change/
http://localhost:8000/admin/filter/trainingexample/293/change/
http://localhost:8000/admin/filter/trainingexample/292/change/
http://localhost:8000/admin/filter/trainingexample/291/change/
http://localhost:8000/admin/filter/trainingexample/290/change/
http://localhost:8000/admin/filter/trainingexample/289/change/
http://localhost:8000/admin/filter/trainingexample/288/change/
http://localhost:8000/admin/filter/trainingexample/287/change/
http://localhost:8000/admin/filter/trainingexample/286/change/
http://localhost:8000/admin/filter/trainingexample/285/change/
http://localhost:8000/admin/filter/trainingexample/284/change/
http://localhost:8000/admin/filter/trainingexample/283/change/
http://localhost:8000/admin/filter/trainingexample/282/change/
http://localhost:8000/admin/filter/trainingexample/281/change/
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280 21.0249838384 21.1515151515 

279 20.9702444598 21.1111111111 

278 20.2699160068 21.0707070707 

277 21.6204703317 21.0303030303 

276 21.4166578375 20.9898989899 

275 21.0459206569 20.9494949495 

274 21.1216069379 20.9090909091 

273 19.918905036 20.8686868687 

272 20.5090086766 20.8282828283 

271 21.3497810107 20.7878787879 

270 20.2064608189 20.7474747475 

269 20.7630025291 20.7070707071 

268 20.0499821752 20.6666666667 

267 20.8150497613 20.6262626263 

266 20.9415470431 20.5858585859 

265 19.8863318045 20.5454545455 

264 21.1061980615 20.5050505051 

263 20.7526920248 20.4646464646 

262 19.7889036326 20.4242424242 

261 20.4519889727 20.3838383838 

260 21.1578233396 20.3434343434 

259 20.6117224438 20.303030303 

258 20.7146474916 20.2626262626 

257 20.0132119971 20.2222222222 

http://localhost:8000/admin/filter/trainingexample/280/change/
http://localhost:8000/admin/filter/trainingexample/279/change/
http://localhost:8000/admin/filter/trainingexample/278/change/
http://localhost:8000/admin/filter/trainingexample/277/change/
http://localhost:8000/admin/filter/trainingexample/276/change/
http://localhost:8000/admin/filter/trainingexample/275/change/
http://localhost:8000/admin/filter/trainingexample/274/change/
http://localhost:8000/admin/filter/trainingexample/273/change/
http://localhost:8000/admin/filter/trainingexample/272/change/
http://localhost:8000/admin/filter/trainingexample/271/change/
http://localhost:8000/admin/filter/trainingexample/270/change/
http://localhost:8000/admin/filter/trainingexample/269/change/
http://localhost:8000/admin/filter/trainingexample/268/change/
http://localhost:8000/admin/filter/trainingexample/267/change/
http://localhost:8000/admin/filter/trainingexample/266/change/
http://localhost:8000/admin/filter/trainingexample/265/change/
http://localhost:8000/admin/filter/trainingexample/264/change/
http://localhost:8000/admin/filter/trainingexample/263/change/
http://localhost:8000/admin/filter/trainingexample/262/change/
http://localhost:8000/admin/filter/trainingexample/261/change/
http://localhost:8000/admin/filter/trainingexample/260/change/
http://localhost:8000/admin/filter/trainingexample/259/change/
http://localhost:8000/admin/filter/trainingexample/258/change/
http://localhost:8000/admin/filter/trainingexample/257/change/
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256 20.4716284368 20.1818181818 

255 21.066358121 20.1414141414 

254 19.6675153187 20.101010101 

253 19.6303106708 20.0606060606 

252 20.596889755 20.0202020202 

251 20.1903302374 19.9797979798 

250 21.2662359489 19.9393939394 

249 20.2367059154 19.898989899 

248 19.332725154 19.8585858586 

247 19.3498430576 19.8181818182 

246 19.5308710538 19.7777777778 

245 20.4597874855 19.7373737374 

244 19.6524812626 19.696969697 

243 18.7240178902 19.6565656566 

242 19.4912462044 19.6161616162 

241 20.3267468795 19.5757575758 

240 20.1333274298 19.5353535354 

239 19.6486771259 19.4949494949 

238 19.5165451707 19.4545454545 

237 19.9189956103 19.4141414141 

236 19.1699957128 19.3737373737 

235 19.3572561508 19.3333333333 

234 19.8612616344 19.2929292929 

233 18.5020260599 19.2525252525 

http://localhost:8000/admin/filter/trainingexample/256/change/
http://localhost:8000/admin/filter/trainingexample/255/change/
http://localhost:8000/admin/filter/trainingexample/254/change/
http://localhost:8000/admin/filter/trainingexample/253/change/
http://localhost:8000/admin/filter/trainingexample/252/change/
http://localhost:8000/admin/filter/trainingexample/251/change/
http://localhost:8000/admin/filter/trainingexample/250/change/
http://localhost:8000/admin/filter/trainingexample/249/change/
http://localhost:8000/admin/filter/trainingexample/248/change/
http://localhost:8000/admin/filter/trainingexample/247/change/
http://localhost:8000/admin/filter/trainingexample/246/change/
http://localhost:8000/admin/filter/trainingexample/245/change/
http://localhost:8000/admin/filter/trainingexample/244/change/
http://localhost:8000/admin/filter/trainingexample/242/change/
http://localhost:8000/admin/filter/trainingexample/241/change/
http://localhost:8000/admin/filter/trainingexample/240/change/
http://localhost:8000/admin/filter/trainingexample/239/change/
http://localhost:8000/admin/filter/trainingexample/238/change/
http://localhost:8000/admin/filter/trainingexample/237/change/
http://localhost:8000/admin/filter/trainingexample/236/change/
http://localhost:8000/admin/filter/trainingexample/235/change/
http://localhost:8000/admin/filter/trainingexample/234/change/
http://localhost:8000/admin/filter/trainingexample/233/change/


59                                                                                                             

232 18.6395996908 19.2121212121 

231 19.0873740855 19.1717171717 

230 17.953096565 19.1313131313 

229 18.9983707054 19.0909090909 

228 19.8604632632 19.0505050505 

227 18.2329009267 19.0101010101 

226 18.221256918 18.9696969697 

225 18.8133790121 18.9292929293 

224 19.0802205583 18.8888888889 

223 19.3186400839 18.8484848485 

222 18.197885428 18.8080808081 

221 18.6867889298 18.7676767677 

220 18.3451264664 18.7272727273 

219 18.5655546653 18.6868686869 

218 17.9159654641 18.6464646465 

217 18.2791599644 18.6060606061 

216 18.7308372528 18.5656565657 

215 19.3216908231 18.5252525253 

214 18.0955224211 18.4848484848 

213 18.4608168925 18.4444444444 

212 17.7839901225 18.404040404 

211 18.8085615061 18.3636363636 

210 18.3699122103 18.3232323232 

209 17.6350375581 18.2828282828 

http://localhost:8000/admin/filter/trainingexample/232/change/
http://localhost:8000/admin/filter/trainingexample/231/change/
http://localhost:8000/admin/filter/trainingexample/230/change/
http://localhost:8000/admin/filter/trainingexample/229/change/
http://localhost:8000/admin/filter/trainingexample/228/change/
http://localhost:8000/admin/filter/trainingexample/227/change/
http://localhost:8000/admin/filter/trainingexample/226/change/
http://localhost:8000/admin/filter/trainingexample/225/change/
http://localhost:8000/admin/filter/trainingexample/224/change/
http://localhost:8000/admin/filter/trainingexample/223/change/
http://localhost:8000/admin/filter/trainingexample/222/change/
http://localhost:8000/admin/filter/trainingexample/221/change/
http://localhost:8000/admin/filter/trainingexample/220/change/
http://localhost:8000/admin/filter/trainingexample/219/change/
http://localhost:8000/admin/filter/trainingexample/218/change/
http://localhost:8000/admin/filter/trainingexample/217/change/
http://localhost:8000/admin/filter/trainingexample/216/change/
http://localhost:8000/admin/filter/trainingexample/215/change/
http://localhost:8000/admin/filter/trainingexample/214/change/
http://localhost:8000/admin/filter/trainingexample/213/change/
http://localhost:8000/admin/filter/trainingexample/212/change/
http://localhost:8000/admin/filter/trainingexample/211/change/
http://localhost:8000/admin/filter/trainingexample/210/change/
http://localhost:8000/admin/filter/trainingexample/209/change/
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208 18.3562055601 18.2424242424 

207 18.2416391104 18.202020202 

206 17.5388401853 18.1616161616 

205 17.9137578193 18.1212121212 

204 18.2551065627 18.0808080808 

203 17.9871842225 18.0404040404 

202 18.0885932842 18.0 

 

http://localhost:8000/admin/filter/trainingexample/208/change/
http://localhost:8000/admin/filter/trainingexample/205/change/
http://localhost:8000/admin/filter/trainingexample/204/change/
http://localhost:8000/admin/filter/trainingexample/203/change/
http://localhost:8000/admin/filter/trainingexample/202/change/

