
Submitted in partial fulfillment of the requirements for the degree of Master of Science in Distributed

Computing Technology in the School of Computing and Informatics of the University of Nairobi

UNIVERSITY OF NAIROBI

Using Neural Networks to reduce noise in Internet of

Things data streams

Samuel Magondu - P53/79707/2015

Supervisor: Prof Peter Waiganjo Wagacha

November 2016

i

ABSTRACT

Noise in the Internet of Things is threatening to drown out sensor data. The problem is growing as

more and more devices are being connected to the internet. The noise comes from the electric

components both within and without the IoT devices. Other sources of noise include poor

calibration. There is thus a need to ensure accurate data is collected in a cost effective way as noisy

data might prove disastrous.

This study sought to find out the suitability of using neural networks as a filter and also compared

its performance to a Kalman filter. An Artificial Neural Network filter application was developed

using rapid application prototyping using simulated data to test. The results showed that the

Artificial Neural Network filter was reliable to filter out the noise compared to other filtering

solutions such as the Kalman filter. Despite the Artificial Neural Network being about 15 times

slower than the Kalman filter, it was found to be more accurate. It was thus found that an Artificial

Neural Network is much more accurate than a Kalman filter and makes a good noise filter for IoT

devices.

ii

DECLARATION

I, Samuel Magondu Njenga, do hereby declare that this research project is entirely my own work

and where there is work or contributions of other individuals, it has been duly acknowledged.

To the best of my knowledge, similar research work has not been carried out before or previously

presented to any other educational institutions in the world of similar purposes or form.

Sign: ---------------------------------- Date: ------------------------------------

Name: Samuel Magondu Njenga

Reg.No. P53/79707/2015

Supervised By:

This project has been submitted in partial fulfillment of the requirement for the Master of Science

degree in Distributed Computing Technology of the University of Nairobi with my approval as the

University supervisor.

Sign: -------------------------------- Date: -------------------------------------

Prof. Peter Waiganjo Wagacha

iii

DEDICATION

To my fiancée, Eunice Wairimu Kamau

Parents, Peter Njenga and Margaret Njeri

and

My siblings, Sarah Wairimu and Eliud Ngorongo

iv

ACKNOWLEDGEMENT

First, I wish to thank God for his grace and mercies for without him, I wouldn’t have made it this

far.

Secondly, I would like to relay my sincere gratitude to my supervisor, Prof Peter Waiganjo

Wagacha and panelists, Dr. Samuel Ruhiu, Dr. Daniel Orwa and Mr. Christopher Moturi for their

guidance, positive feedback and above all their valuable time and advice throughout my project

work.

I would also like to thank the team at Upande Ltd for their technical assistance throughout this

project. They were helpful in providing advice as well resources needed to make this project

possible.

Finally, I wish to express my appreciation to my parents Peter and Margaret for the sacrifice they

made for the sake of my education. They have been the shoulders of giants I have stood on all

through my education, my fiancée Eunice for her unconditional support, prayers, and

encouragement throughout my study. Without them, this project would not be successful.

v

TABLE OF CONTENT

Contents
ABSTRACT ... i

DECLARATION .. ii

DEDICATION ... iii

ACKNOWLEDGEMENT ... iv

TABLE OF CONTENT ... v

LIST OF TABLES ... ix

LIST OF FIGURES ... x

ABBREVIATIONS ... xi

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Objectives .. 3

1.4 Significance.. 3

CHAPTER 2: LITERATURE REVIEW ... 5

2.1 Introduction .. 5

2.2 Application of Internet of Things .. 6

2.3 Electrical Noise .. 6

2.4 Categories of Noise in Embedded Systems ... 6

vi

2.5 Cleaning Noise in IoT data streams ... 7

2.6 Filtering Methods ... 8

2.6.1 Algorithms .. 8

2.6.2 Use of Neural Networks .. 11

2.7 Artificial Neural Networks .. 12

2.7.1 How Artificial Neural Networks works .. 12

2.7.2 Types of Neural Networks .. 14

2.7.3 Training in Neural Networks .. 15

2.7.4 Training Algorithms used ... 16

2.7.5 Activation Functions ... 17

2.8 Uses of Neural Networks in IoT .. 19

2.9 Kalman Filter ... 20

2.10 Use of Sensors.. 21

2.11 Noise control in sensors ... 21

2.11.1 Error Rates in Sensors ... 22

2.12 Conceptual Framework .. 22

CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY .. 24

3.1 Research Design... 24

3.2 Research Data .. 25

3.2.1 Source of Data... 25

vii

3.2.2 Volume of Data ... 25

3.3 Designing the Proposed Model .. 26

3.4 Application Development .. 26

3.4.1 Justification of Using RAD ... 26

3.4.2 RAD Lifecycle .. 27

3.4.3 Application Testing ... 28

3.5 Project Design .. 29

3.6 Application Architecture .. 30

CHAPTER 4: RESULTS ANALYSIS AND PRESENTATION .. 32

4.1 Introduction .. 32

4.2 Artificial Neural Network .. 32

4.2.1 Varying epoch sizes .. 33

4.2.2 Neurons in Hidden layer testing ... 35

4.3 Kalman Filter ... 36

4.4 Kalman Vs ANN results .. 38

4.5 Performance Metrics .. 38

4.5.1 Speed ... 39

4.5.2 Accuracy ... 39

CHAPTER 5: DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS 40

5.1 Introduction .. 40

viii

5.2 Summary of Findings ... 40

5.2.1 The tanh activation function works better than the sigmoid function. 40

5.2.2 The ANN produced optimal results at 50,000 epochs. ... 40

5.2.3 Three neurons in the hidden layer produced best results. ... 41

5.2.4 The Kalman filter is a good alternative to ANN but not as accurate. 41

5.3 Discussions .. 41

5.4 Conclusion ... 42

5.5 Recommendations .. 44

References .. 46

APPENDICES A: .. 49

ANN filter python code ... 49

Kalman Filter python code ... 53

ANN training data .. 56

ix

LIST OF TABLES

Table 1: ANN using tanh function and 3 neurons in the hidden layer with varying epochs 34

Table 2: ANN using sigmoid function and 3 neurons in the hidden layer with varying epochs 35

Table 3: ANN using sigmoid function and 50000 epochs with varying hidden layer size 36

Table 4: Kalman filter predictions at varying iterations .. 37

x

LIST OF FIGURES

Figure 2.1 Noisy data (Source: http://www0.cs.ucl.ac.uk/) ... 9

Figure 2.2 smoothened Kalman estimates (source: http://www0.cs.ucl.ac.uk/) 9

Figure 2.3 Median Filter (Source: mathwork.com) ... 10

Figure 2.4 Effects of the gaussian filter (Source: mathwork.com) ... 11

Figure 2.5 Natural neuron (source: Artificial Neural Networks for Beginners) 12

Figure 2.6: Artificial Neural Network (source: http://neuralnetworksanddeeplearning.com/) 13

Figure 2.7: Perceptron (source: http://neuralnetworksanddeeplearning.com/) 14

Figure 2.8 A sigmoid function (source: https://excel.ucf.edu) .. 18

Figure 2.9 Tanh function (source: http://slideplayer.com/slide/5867045/) 18

Figure 2.10 A linear function (source: www.intechopen.com) ... 19

Figure 2.11 Conceptual Framework .. 23

Figure 3.1 ANN and Kalman Filter Model .. 30

Figure 4.1 ANN testing: epochs... 33

Figure 4.2 ANN testing: neurons in hidden layer .. 35

Figure 4.3 Kalman testing .. 37

xi

ABBREVIATIONS

ANN Artificial Neural Networks

API Application Programming Interface

CASE Computer Aided Software Engineering

GPS Geographical Positioning System

IoT Internet of Things

JSON JavaScript Object Notation

RAD Rapid Application Development

RDBMS Relational DataBase Management System

RFID Radio Frequency Identification

UI User interface

1

CHAPTER 1: INTRODUCTION

Internet of Things (IoT) is changing the way we do things. Now more than ever, we have cheap

sensors. In addition, the internet is now pervasive and even basic devices such as television sets can

connect to the internet. This of course, poses a huge challenge in regards to the data produced. The

challenge is in the amount and quality of the data produced. Words like “Big Data” often associated

with IoT because of the streams of data flowing in.

Data collected via IoT has a sizable amount of noise. McHenry, et.al, 2015 go to an extent to claim

that IoT is drowning under radio frequency noise. Electronic devices near IoT devices are likely to

introduce noise and skew the reading. However, noise is not only introduced by electronic devices.

Man-made activities can make the data noisy such as resetting devices etc. Another source of noise

in IoT devices is poor calibration. Cheap devices are often fitted with sensors that have high error

rates that contribute to errors in the data collected. The cost is often associated with the quality of

the device. As such, users collecting data may be forced to use low cost IoT devices in an effort to

save on costs which might lead to collection of erroneous data.

The noise in the data can be reduced using various methods and approaches. Filtering algorithms

can be used as well as introducing intelligent filters in the IoT devices. Sometimes, a combination

of both is used to improve on performance. Algorithms can be used to train intelligent applications

on what noisy data is thus replacing algorithms that might be resource intensive. Neural networks

can be trained and used as filters making such intelligent applications.

1.1 Background

Sensors are often placed in many devices we use daily. They are embedded in our environment to

collect data that is crucial in decision making. Given they are placed in the environment, they can

2

be subject to harsh conditions that impact their accuracy. For example, a temperature sensor could

easily be affected by passing objects that emit heat thus skewing their reading. This introduces

noise in the data which can be catastrophic depending on the kind of system the data is used in. The

problem if further compounded by the amount of devices out there. According to (Frenzel, 2016),

there will be about tens of billions of devices deployed in a few years to come according to

projections. The deployed devices will also interfere with nearby devices introducing noise.

Whereas this is good news for the IoT community as a whole, it is bad news for those looking to

collect accurate data.

Noise filtering algorithms are available and can easily be programmed into the sensors. However,

many sensors have limited computing resources (memory, processing capabilities) which might

hamper the efficiency of such algorithms. Another design goal when creating sensors is to make

sure they are energy efficient and thus, the designer has to make decisions regarding which tools to

use to save on energy. IoT sensors also have to work with limited bandwidth and connectivity thus

making it crucial to ensure the sanctity of the data.

As such, any engineer has to find a way to reduce the noise while taking into consideration the

resources available on the sensors. The usage of sensors is growing and domain specific solutions

are not scalable. We thus need to find a way to reduce noise that is generic enough to be deployed

in most sensors in use.

1.2 Problem Statement

In sensors, we have constant streams of data flowing in from the environment. Noise in this data

flow makes it difficult to have precision in any measurement. In many cases, a reading from an IoT

3

device is likely to be used for further decision making either by humans or by automated means. It

is important to have precision.

The aim of this research study was to establish how neural networks and noise filtering algorithms

can be used to reduce the noise in data in the most efficient way.

1.3 Objectives

1. To identify the current solutions used to reduce noise in IoT sensors

2. To compare the various noise reduction algorithms used in sensors.

3. To identify how neural networks can be used to incorporate intelligence in sensors.

4. To create and implement a neural network used to reduce noise in IoT sensors.

5. To evaluate the results of using intelligent noise reduction in IoT sensors.

1.4 Significance

Sensors send a constant stream of data of some set parameter from the environment. For most

sensors, these are measurements taken per unit time. Usually, the observer has a good idea of what

the limits of the readings should be i.e both the lower bound and upper bound of expected reading.

Thus, it would be easy to detect outliers in the data as errors.

Noise reduction algorithms can be used but they pose challenges of their own such as accuracy and

heavy usage of computing resources. Such resources are very limited in many sensors thus it would

not be practical to have them run at all times. We can then utilize neural networks at this point. The

network can be taught on what is “noisy” data while using a small portion of the computing

resources on the sensor. This way, an energy-efficient filter is utilized.

4

The study sought to demonstrate how neural networks can be used in IoT devices to filter out the

noise in sensors. The study considered various parameters in neural networks. The ANN was

tweaked till the optimal combination of parameters could be found for use. The study also

compared the success of the ANN to a Kalman filter to establish if it was justified to have an ANN

instead of a traditional filter. This information will be useful to the IoT community as well as

researchers using IoT devices to collect data.

For other researchers, the study has provided useful insights and reference material on usage of

neural networks as a noise filter in IoT devices. The study also exposed areas that will be worth

pursuing for further research to expand knowledge.

5

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

IoT devices are basically embedded systems with sensors detecting some environment variable.

Any embedded system consists of three parts, sensors, actuators, and controllers. Sensors collect

data from the environment and feed it to the controller. The controller then makes a decision based

on the input data and sends a command to the actuator to perform some action depending on the

data. As such, it is vital that the information collected is correct.

There are various sources of noise in a sensor device as listed by (Lita et al., 2007) namely;

1. Device noise (Noise originating from active and passive devices inside the sensor device)

2. Conducted noise (Noise transmitted in the wires)

3. Radiated noise (Noise from nearby devices)

This noise comes from electronic devices. However, human activity can lead to the introduction of

noise in the data. Resetting of devices that are active could actually cause the sensor to report

inaccurate data where a data point depends on the previous data point e.g for cumulative values.

Some solutions have been proposed to deal with noise in sensor data and are broadly categorized

into two groups:

1. Hardware solutions

2. Software solutions

The two types of solutions are mainly used together and thus complement each other to improve the

quality of data. This study details a software-based solution that utilizes machine learning

techniques to solve the problem

6

2.2 Application of Internet of Things

The Internet of Things has many wide applications. Applications are however mainly divided into

the following three categories:

1. Smart homes

2. Smart cities

3. Smart industries

Noise could be found in all but is, however, least prevalent in homes due to the controlled

environment. Sun Youwei and Su Shaohua (2015) clearly show that where power lines are located

close to IoT devices, the data is bound to be noisy. Such heavy power lines are not likely to be

found within homes. However, other forms of noise in data can be collected in homes. Some

services work better outdoors e.g GPS and thus might report incorrect data if used indoors.

2.3 Electrical Noise

Generally speaking, electrical noise in data is a false reading introduced in electrical devices due to

interference by the environment. These electronic devices could be within the actual IoT sensor or

without and it will cause some variation in the data collected.

2.4 Categories of Noise in Embedded Systems

Noise in electronic systems is quite common but falls under various categories. According to (Bai

et al., 2007), who looked at using RFID tags to collect data, there are various scenarios that can

introduce noise in embedded systems.

1. False Negatives

7

2. False positives

3. Duplicate data.

These categories of noise are quite straightforward. Given RFID tags work by transmitting boolean

data, these categories are not sufficient to express the noise that can be found in data streams. As

such, another category can be added namely, incorrect data. This is data that is transmitted as a

value but such values are not representative of the actual value in the environment.

We looked at the fourth category of data, incorrect data in this study. This is because advanced

sensors send an actual value as opposed to either a true or false value.

2.5 Cleaning Noise in IoT data streams

There are various methods used to clean out data streams in IoT data streams. According to (Zhu et

al, 2008), they can be classified between local and global solutions.

Local Filtering

Local solutions are solutions based on the sensor. The sensor filters the data locally then transmits

the cleaned data. The sensor does not collaborate with any other device to clean out the data. This

has a disadvantage in that a faulty or biased sensor can transmit incorrect data. One advantage,

however, is that it reduces the data overhead in the network saving bandwidth. The sensor will not

transmit faulty data only for it to be discarded later on.

Global Filtering

Global filtering takes advantage of the fact that sensors do not work in isolation but work

collaboratively to provide holistic data. Thus, data is transmitted to a centralized node where it is

8

cleaned based on multiple sources of data. This has the advantage of having multiple sources of

data to compare against. The disadvantage is that it uses energy and bandwidth to transmit data.

Energy in embedded systems is volatile thus any solution needs to consider energy usage in the

sensor.

Our study employed a local filtering solution.

2.6 Filtering Methods

2.6.1 Algorithms

1. Kalman Filters

A Kalman filter is an algorithm that uses observable readings over time and uses previous reading

to predict missing values or to check the validity of current readings. Sinharay, Pal and Bhowmick,

(2011) shows that a Kalman filter works as a typical linear system. Using a Kalman filter, one can

give it a set of past values that are correct and it can output a set of valid values with noisy data

being filtered out.

9

Figure 2.1 Noisy data (Source: http://www0.cs.ucl.ac.uk/)

Figure 2.2 smoothened Kalman estimates (source: http://www0.cs.ucl.ac.uk/)

10

2. Median Filter

A median filter works by passing through the data and replacing a data point with the value of its

nearest neighbours. One can set the threshold of how many neighbours to be used in calculating the

median.

Figure 2.3 Median Filter (Source: mathwork.com)

3. Gaussian Filter

Gaussian filters work to smooth out a signal/stream of data. Common illustrations show a bell curve

as the effect of passing a set of data through a Gaussian filter.

11

Figure 2.4 Effects of the gaussian filter (Source: mathwork.com)

2.6.2 Use of Neural Networks

Neural networks can also be used to filter out noise in data. Zeng and Martinez (2003) show us that

we can use neural networks in two ways to clean out noise in data.

1. Pattern recognition techniques

We can use neural networks to compare data points based on their nearest neighbour so as to detect

noise in that data. Nearest neighbour algorithms can be used to detect the expected value of the data

and thus clean out erroneous values.

2. Supervised learning

We could use filtering algorithms beforehand to train the neural networks in what should be the

correct data. Once trained, the neural networks is deployed with the weights already configured.

This way the algorithm is ready for use once deployed in the sensor.

Supervised learning is used to teach the algorithm on the kind of data expected. The Kalman filters

was used to provide a comparison to the ANN filter on how well it works as a noise filter. The

12

Kalman filter was chosen because it uses past data to make decisions which is close to how a neural

network works. The neural network was then be deployed in a test environment

2.7 Artificial Neural Networks

Artificial neural networks are conceptual applications that were inspired by the studies conducted

on brains and the nervous systems of many animals. It falls under the broader category of artificial

intelligence in computer science. Artificial Neural Networks were developed in the 1950s with an

aim of imitating the biological brain architecture. Neural networks employ a “divide and conquer”

approach to solving big problems (Gershenson, 2003). An Artificial Neural Network basically

consists of a set of nodes and the connections between the nodes. Neural networks have been used

in a wide array of fields such as Physics, Computer Science, Finance and much more.

2.7.1 How Artificial Neural Networks works

Artificial Neural Networks draw their inspiration from how our brains work and their

interconnections. They are inspired by natural neurons found in brains. Natural neurons get a signal

via synapses that are located on the dendrites. If the signal is stronger than a certain set threshold,

the neuron is activated and thus a signal is emitted. If not, nothing happens.

Figure 2.5 Natural neuron (source: Artificial Neural Networks for Beginners)

13

The nodes are computational units since they receive some input, perform some operation and then

produce an output. Sometimes these operations could be simple or complicated. Since they are in a

network, information flows from one end to another. The direction of the signal flow could be one

way or bidirectional. The various thresholds and operations in the network create a perceivable

global behavior of the whole network.

ANNs are designed to find patterns in data over time and use that information to make better

decisions. A basic ANN comprises of three layers, input layer, output layer and hidden layers. An

ANN has the ability to learn and over time it adjusts its weights and bias to match the desired

output.

Figure 2.6: Artificial Neural Network (source: http://neuralnetworksanddeeplearning.com/)

A perceptron has several inputs and one output. Each input has weights that are adjusted until the

ANN produces the correct results.

14

Figure 2.7: Perceptron (source: http://neuralnetworksanddeeplearning.com/)

Each neuron is weighted. The higher the weight, the stronger the input has to be to trigger the

threshold. Some weights can also be negative. During training, the weights are adjusted to obtain

the desired output based on certain inputs. The processes of finding the optimal weights is learning.

2.7.2 Types of Neural Networks

Maxwell, (2015) shows that some common neural networks are

1. Feedforward networks

2. Feedback/recurrent networks

The classification is based on how data flows through the network.

2.7.2.1 Feedforward Neural Networks

Feedforward networks have an architecture in which no loops exists. The signal flows from the

input layer all the way to the output layer without any movement backwards. The weighted

connections thus only have their activations fed in a forward direction. The most commonly used

feedforward neural networks are multilayered feedforward neural networks. The neurons are

arranged into layers comprising of an input layer, an output layer and hidden layer(s). A network

could have one or more layers in the hidden layer.

http://neuralnetworksanddeeplearning.com/

15

The connections between layers are all unidirectional, moving from the input layer to the output

layer. A multilayer feedforward neural network was used this study. We also sought to find the

optimal number of neurons in a hidden layer.

2.7.2.2 Recurrent Neural Networks

Recurrent neural networks have loops in their connections. As such, the weighted connections are

used to feed previous activations in the network backwards. The data thus flows in both directions.

2.7.3 Training in Neural Networks

Neural networks are used to find the desired output depending on some input provided. The neural

network, therefore, has to be trained in how to obtain the correct output given some given input. At

the beginning of the training, weight values are randomly assigned and thus the network has no

insight into the problem it is being trained on (Maxwell, 2015). With training, the weights are

adjusted in a way that the collective network produces the desired output. Training stops when the

produced output is at the desired level compared to the expected output.

1. Supervised learning

In supervised learning, both inputs and their respective outputs are provided to the network. The

various weights are then adjusted based on the output against the expected output.

2. Unsupervised learning

In unsupervised learning, the correct output is not labelled for the input data. The network finds the

correct output by cluster analysis.

3. Reinforcement learning

16

This one is a combination of both supervised and unsupervised learning. The network penalizes

wrong output and rewards correct input.

2.7.3.1 Factors affecting training

1. Epoch size

Epochs are the number of iterations that the training data is passed through the network. In each

iteration, the weights are adjusted based on the error calculated.

2. Learning rate

Learning rate is a constant value that is used in a network that employs back propagation to

calculate the error and adjust weights. The learning rate affects the speed of learning. With a

smaller learning rate, the network takes longer to get to a point where it can stop iterations on the

epoch (Maxwell, 2015).

3. Activation function

The activation function is the mathematical formula used to compute the weighted sum of the

inputs and produce an output inside a neuron. Activation functions are discussed in detail in section

2.7.4 Training Algorithms used

Training of the neural network is an unavoidable task to get the ANN to work. There are various

training algorithms used in ANN and the user has to make decisions on which to use depending on

the use. We shall look at the most common training algorithm used in feedforward neural networks

and back-propagation algorithm.

17

2.7.4.1 Back propagation

This algorithm is used in feed-forward ANNs. In a neural network organized in layers, the signal is

sent forward. This means that the signal flows from input to the output through the various layers

thus it is considered the signal is being sent forward. The signal goes through the various hidden

layers which are weighted to provide the desired output.

The backpropagation algorithm uses supervised learning to calculate the error. Examples of the

correct results are provided and the results are then compared to the output. The error is calculated

and errors are propagated backwards from the output to the input. Initially, the neurons are assigned

random weights. As the error is calculated in each cycle, the weights are adjusted so as to reduce

the output error. Over time, the network learns the data and gives less erroneous data.

2.7.5 Activation Functions

The activation functions used in neurons can also be referred to as transfer functions. The neurons

use the transfer function to produce an output based on the weighted sum of the inputs. The

activation functions perform mathematical operations on the input to produce the output. The input

layer performs this operation on the training data whereas the hidden and output layers use the

output from the interconnection with previous layers as input.

Some of the common activation functions used in neural networks are:

1. Sigmoid (logistic) function

A sigmoid function is a common activation function in neural networks. The formula for a sigmoid

function is

f(x) = 1/(1+exp(-x))

18

Below is an illustration of the sigmoid function

Figure 2.8 a sigmoid function (source: https://excel.ucf.edu)

2. Tanh function

Kenda et al. (2013) notes that tanh is a rescaled version of the sigmoid function with its output

range from -1 to 1 instead of 0 to 1 for the sigmoid function. The formula is

f(x) = (2/(1+exp(-2x)))-1

Figure 2.9 Tanh function (source: http://slideplayer.com/slide/5867045/)

19

3. Linear function

The formula for a linear function is

f(x) = x

Figure 2.10 A linear function (source: www.intechopen.com)

Maxwell (2015) shows the logistic function is the most common activation function used in neural

networks. This is because “it combines nearly linear behavior, curvilinear behavior and nearly

constant behavior, depending on the value of the input.” Our study has looked at the effects of

various activation functions on the results.

2.8 Uses of Neural Networks in IoT

Neural networks are used in sensors to make them intelligent improving their efficiency.

Razafimandimby et al. (2016) demonstrate that using neural networks, robots can actively

cooperate and exchange data which makes them more efficient over time. Such robots collect data

and learn on how to better cooperate and be more efficient.

http://www.intechopen.com/books/speech-technologies/nonlinear-dimensionality-reduction-methods-for-use-with-automatic-speech-recognition

20

Wu et al. (2013) proposes a neural network solution that will be used to detect situations in coal

mines. Due to the intelligence of neural networks, the solution is able to identify common situations

in coal mines early as well as identify anomalies.

2.9 Kalman Filter

The Kalman filter is used to provide a solution to filtering on data accurately (Haykin, 2001). It is a

recursive solution that makes use of past predictions to filter out current data. Kalman filter works

well with linear time series data (Yonglong and Dongyan, 2015).

However, the Kalman filter is often used with other filters to improve accuracy. Kalman filters are

currently widely used together with recurrent neural networks to solve problems. In (Alessandri et

al., 2003) and (Sum et al., 1999), it is used to train neural networks. In (Sum et al., 1999) it is also

used to prune a feed forward neural network.

The Kalman filter is essentially useful to predict future data from past data. The more data that

comes in the better decision the filter can make. The difference with other filters is that the Kalman

filter does not wait for all the data to arrive rather it makes predictions as more data arrives.

Laaraiedh (2016) provides the formula

The formula tries to estimate the state x ∈ℜn of a discrete-time controlled process that is governed

by the linear stochastic difference equation

xk = Axk−1 + Buk +wk−1

with a measurement m y ∈ℜm that is

yk = Hxk + vk

21

Wk and vk are random variables that represent process and measurement noise.

2.10 Use of Sensors

IoT sensors are mainly passive. They collect data from a specific environment variable and send

that to some central location for a decision to be taken. Razafimandimby et al. (2016) shows that in

an environment where robots need to work together to achieve a common task, they can use IoT

sensors to communicate and share information about their location to ensure they are always in

communication range. This thus ensures global connectivity of the Multi-Robot System.

2.11 Noise control in sensors

When dealing with any electric devices, errors are inevitable. IoT devices are however quite

susceptible to electronic interference. Several techniques to mitigate this noise have been proposed.

Galambos and Sujbert (2015) proposes an Active Noise Control for IoT. A variant of Least Mean

Squares algorithm is used to actively detect and remove noise from a microphone before

transporting the result via an ethernet cable. Sun Youwei and Su Shaohua (2015) on the other hand

focuses on noise from power lines on IoT sensors. Robust Independent component analysis

algorithm was used to effectively improve the signal-to-noise ratio. Zhang et al. (2011) uses a

wavelet function to reduce noise in an intelligent building. A wireless sensor network is setup in the

building to collect data on temperature. A threshold is set and the data is passed through the wavelet

function and the data is reconstructed removing the noise. Das and Panda (2004) looks to deal with

noise pollution where speakers are in use. The study uses a similar technique to (Galambos and

Sujbert, 2015) but opts for an artificial neural network to do the filtering. Raeisy and Golbahar

Haghighi (2012) also uses a neural network to filter the data for active noise control.

22

2.11.1 Error Rates in Sensors

Data in sensors is bound to be noisy because of various factors such as nearby electronic devices

and faulty equipment. Errors are caused by various factors as noted by (Elnahrawy and Nath, 2003).

Some of the factors include:

1. Software errors

2. Unreliable communication channel

3. Poorly calibrated equipment

These factors contribute to high error rates in sensor data especially when you have inexpensive

equipment. How to deal with the errors has been handled in other parts of literature. McHenry et al.

(2015) shows that while near high voltage lines, the collected noise via IoT is likely to be 10%

higher than under normal circumstances. The study however also notes that a complete study into

RF noise is lacking since over 30 years ago and thus it is difficult to give informative figures on the

error rates in IoT.

2.12 Conceptual Framework

23

Figure 2.11 Conceptual Framework

According to the diagram, ANN filtering performance is affected by the ANN architecture which is

the number of nodes in the hidden layer and the activation function used. The intervening variables

are in this case the epoch size and the learning rate parameters which have been observed in

literature to have major contributions to neural network performance.

24

CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY

3.1 Research Design
The methodology employed for this study was quantitative using applied research method. In the

study, a specific intelligent tool was created based on a specific model and tested for a particular set

of data. An alternative tool was also developed in comparison to the intelligent tool. Chapter 2

showed there is need for a tool to filter out noise in data.

An Artificial Intelligence model was designed based on an ANN algorithm. The algorithm was then

used to create a working prototype to test the model. The ANN that was the output of this process

was a multi-layer perceptron using backpropagation as the training algorithm. The ANN was

trained using supervised learning.

The Kalman filter was also designed as a tool for comparison with the ANN. It was designed based

on the mathematical formula:

xk = Axk−1 + Buk +wk−1

Both algorithms were developed using the python programming language. This required having the

python environment working on a computer while testing. Other requirements for the application

were documented in a requirements file to assist in quick setup of the environment.

The noise filter could be used generically across any domain with data that is noisy. The focus of

this study however was IoT devices and thus the filter was tested against simulated noisy

temperature data.

25

3.2 Research Data

3.2.1 Source of Data

The data used to evaluate the ANN and Kalman filter tool was simulated to reflect what a faulty

sensor would send in. A python script was created to generate noisy data that follows an upward

trend. This enabled a direct simulation of the data streams coming in from sensor devices deployed

in some environment. The data was fed into the ANN tool for both training and testing. The holdout

method was chosen in which some data was used for training the ANN and a smaller portion of the

data was used for testing. The smaller portion would then prove the accuracy of the filtering tool be

it the ANN or the Kalman filter. In the study, there was one input and one output on the ANN tool.

The input was the noisy data and the output would be compared to the expected value where the

error would be corrected. Using back-propagation, the ANN tool would then be trained using the

training data. Once the training phase was done, the testing data was fed in as input and the output

compared to the true value.

3.2.2 Volume of Data

In the study, 100 data points were used to simulate noisy data points from a sensor. This volume

would approximately be a day's data reading. This corresponds to a reading being recorded every

quarter hour. The approach was considered to be sufficient for training and testing the ANN tool as

well as for use by the Kalman filter tool.

26

3.3 Designing the Proposed Model

The proposed model had one input neuron and one output neuron. The model was designed to have

a variable number of neurons in the hidden layer and that was tested. The number of neurons in the

hidden layers was varied and an optimal configuration was found. The same case was applied to the

activation function. Two activation functions were considered, sigmoid/logistic and the tanh

activation functions. The proposed model, was then developed as discussed in chapter 4.

3.4 Application Development

In this study, the application was implemented using the Rapid Application Development (RAD)

software development process. This involved prototyping and improving the prototype. This

method worked well in this study since it was a research project with a prototype and the various

steps of development were not well defined. The overall result of using RAD was very high-quality

software developed very quickly which was the point of this study.

3.4.1 Justification of Using RAD

This methodology offers a viable option since it enables software to be developed quickly with the

requirements not well defined beforehand. In this study, the requirements could have easily

changed during development.

The time given to complete the project is quite constraining also. The study period was 6-8 months

which was not enough to create a conclusive product using traditional methodology such as the

waterfall model. CASE tools have also been developed which were a huge help in creating the

27

solution. With these tools, we were able to design and implement the application faster and more

feasibly making RAD a very viable option.

Finally, adopting this methodology, we were at liberty to improve the application with ease. This

demanded developing the application using an object-oriented approach. The various functionalities

were modular.

3.4.2 RAD Lifecycle

Below is a brief overview of the RAD process, which consists of four lifecycle stages:

Requirements Planning, User Design, Construction, and Implementation.

3.4.2.1 Requirements Planning Phase

The requirements planning stage consisted of developing a high-level list of initial requirements as

well as setting the research scope. This stage involved reviewing of current solutions and talking to

the users of such systems.

3.4.2.2 User Design Phase

The various requirements were collected and modelled. A prototype of the user interface was

created to communicate the idea behind the final solution. This stage was a continuous interactive

process that allowed the understanding of the proposed solution, modifying, and eventual approval

of a working model of the system.

28

3.4.2.3 Construction Phase

Here, the application was developed through iterative prototyping. Specific modules were created

in isolation till they were operational. Input from various stakeholders was also taken into account

to accommodate the various requirements. Once the specific modules were created, they were

loosely coupled and designed to communicate via API calls.

3.4.2.4 Implementation Phase

As soon as the application was stable and is deemed to be ready for use, it was deployed. Here all

functionality that were turned on for debugging were turned off. All resources needed for

deployment were also be provisioned and configured.

3.4.3 Application Testing

Once the application was developed and deployed there was the need to verify that it was working

in reducing noise in data. The solution was run through a series of tests. In order to validate the

application and guarantee its correctness, the specifications and properties that we were trying to

prove were verified. Three verification goals were focused on:

1. Each component of the application must work correctly when considered in isolation. As

such, unit tests were written for each module and updated from time to time once the code

changed.

2. After these individual components were proven to work, they were integrated then run

through rigorous black box testing to ensure they can correctly work together. Some more

tests were written as part of the application code that tested the end to end functionality.

29

3. The application was then deployed in a computing device where it can be tested. Noisy data

was generated to simulate a sensor in the field.

3.5 Project Design

This research employed a modular approach to developing software where modules were developed

in an incremental manner. This was to adhere to the rules of RAD. Each module was developed

then tested and if it was working, the next module was created and added to the existing one. This

cycle continued till the project was completed.

The underlying architecture used is client-server architecture. This is because the sensors are

perceived as clients transmitting data to a centralized server. Data processing also happened at the

simulated IoT device. The presentation, views, and the data management were logically separate

processes on the IoT device.

The application had a user interface, middleware for handling sensor requests and the database.

Multi-tier application architecture provided a model that enables the creation of a flexible and

reusable application by breaking it up into several manageable application tiers. This enabled each

tier to be handled separately which was very convenient.

Typically, the user interface runs on a web browser. The UI was accessible to any device within the

network thus it was deployed as a typical web application. Application logic consisted of one or

more separate modules running on the server controlled by a web server. The data was managed

using an RDBMS on a database server.

30

3.6 Application Architecture

The Artificial Neural network was designed and integrated as part of the main application. The

conceptual flow of how it would work was designed. Figure 3.1 is a diagram of its architecture.

Figure 3.1 ANN and Kalman Filter Model

The neural network was broken down into three parts, initialization of the ANN, the training and

finally the prediction part. This conceptual diagram was helpful and the application was designed to

have the three parts separate. The Kalman filter was simpler to implement and thus only had two

parts. Once the initialization happened, the prediction worked by running the data through the filter

any desired number of times.

The application was developed in python programming language and the code is provided in the

appendix section. The applications could be accessed via an API that would pass the desired

31

parameters to filter and return the results as a JSON string. A simple user interface was developed

to display the results of call.

32

CHAPTER 4: RESULTS ANALYSIS AND PRESENTATION

4.1 Introduction

This chapter presents findings of the study where various factors that influence the effectiveness of

the neural network were examined. The study also compared the results of the neural network and

the Kalman filter.

At this stage, the tools were designed and run with the variables tweaked at each stage. After this,

the results were observed. These tests were run on both the Kalman filter and the ANN. The

following metrics were to be observed and recorded

1. Accuracy

2. Speed

3. Complexity

4.2 Artificial Neural Network

Once the ANN was designed and deployed in a testing environment, the following variables were

modified and the effect was observed.

1. Training data

2. Epochs

3. Hidden Layers

4. Activation function

33

4.2.1 Varying epoch sizes

Figure 4.1 ANN testing: epochs

In varying the size of the epoch, it was observed that the network get closer to the correct prediction

at 40,000 epochs. It was thus noted, to obtain reliable results, the training data had to be iterated

over at least 40,000 times. After 40,000 iterations, the results remained largely close to 22 with the

largest variance being 0.9 at 110,000 epochs. For our study, however, 50,000 was used because it

had a smaller error compared to 40,000 epochs. This was done with three hidden layers and the

tanh activation function. It was also observed that at 10,000 epochs, a prediction close to the

expected result was found but based on results from close range epochs, the result was ignored as a

“good guess.”

Epochs Hidden Layer

size

Activation

Function
Output Error/

Variance

Training

/Expected

value

5000 3 tanh 21.18 0.82 22

34

10000 3 tanh 21.90 0.10 22

20000 3 tanh 20.86 1.14 22

30000 3 tanh 20.70 1.30 22

40000 3 tanh 21.60 0.40 22

50000 3 tanh 21.68 0.32 22

60000 3 tanh 21.27 0.73 22

70000 3 tanh 21.16 0.84 22

80000 3 tanh 21.68 0.32 22

90000 3 tanh 21.29 0.71 22

100000 3 tanh 21.72 0.28 22

110000 3 tanh 21.11 0.89 22

Table 1: ANN using tanh function and 3 neurons in the hidden layer with varying epochs

As noted earlier in literature, the sigmoid function is similar to the tanh activation function with the

exception of having a smaller range(0 to 1) compared to the tanh (-1 to 1). The tests were repeated

using the sigmoid function and these were the results

Epochs Layers Activation

Function
Output Error/

Variance

Training

/Expected value

5000 3 sigmoid 19.90 2.10 22

10000 3 sigmoid 19.80 2.20 22

20000 3 sigmoid 20.40 1.60 22

30000 3 sigmoid 20.38 1.62 22

40000 3 sigmoid 19.75 2.25 22

50000 3 sigmoid 19.88 2.12 22

60000 3 sigmoid 20.25 1.75 22

70000 3 sigmoid 20.31 1.69 22

35

80000 3 sigmoid 20.70 1.30 22

90000 3 sigmoid 20.00 2.00 22

100000 3 sigmoid 20.99 1.01 22

110000 3 sigmoid 20.91 1.09 22

Table 2: ANN using sigmoid function and 3 neurons in the hidden layer with varying epochs

The results indicate that the sigmoid function is more erroneous compared to the tanh activation

function. The smallest error using a tanh function was 0.10 compared to 1.01 using a sigmoid

function. While using the sigmoid function, the errors seem to be higher compared to the tanh

function with the same number of epochs. As such, the tanh function was used as the activation

function for this study.

4.2.2 Neurons in Hidden layer testing

Figure 4.2 ANN testing: neurons in hidden layer

The number of neurons in the hidden layer was varied and the results observed. 2 neurons were

observed to be sufficient in the hidden layer. The best results were however observed to be at 3

36

neurons in the hidden layer. Additional neurons added complexity without improving results

greatly on the neural network.

Epochs Layers Activation

Function
Output Error/ Variance Training /Expected

value

50000 1 tanh 20.84 1.16 22

50000 2 tanh 21.36 0.64 22

50000 3 tanh 21.68 0.32 22

50000 4 tanh 21.09 0.91 22

50000 5 tanh 21.21 0.79 22

50000 6 tanh 20.46 1.54 22

50000 7 tanh 20.71 1.29 22

50000 8 tanh 20.77 1.23 22

50000 9 tanh 20.34 1.66 22

Table 3: ANN using sigmoid function and 50000 epochs with varying hidden layer size

4.3 Kalman Filter

The Kalman was designed and deployed in a testing environment, the iterations were varied and the

effect was observed.

37

Figure 4.3 Kalman testing

The Kalman filter was used to compare how effective the ANN network was. The Kalman filter

was observed to converge faster to the estimated answer but made huge errors compared to the

ANN over time. Below are the results over time.

Iterations Initial guess Prediction Expected

result

Error Time

(seconds)

50 20 18.99 20.5 1.51 0

100 20 20 22 2.0 0

Table 4: Kalman filter predictions at varying iterations

From the data above, it can be observed that the Kalman filter is quick to make a guess. This is

based on the amount of time in seconds as shown in the table plus the diagram above. But the

estimation gets worse as the iterations grow. In fact, the error was less after 50 iterations compared

to 100. As such, despite the Kalman filter having quick convergence time, the error rate is higher

38

compared to the ANN. The Kalman filter however is able to observe the trend and keep with the

pattern.

4.4 Kalman Vs. ANN results

The ANN is proven to produce better results than a Kalman filter from the results above. The ANN

is bound to make more erratic errors with few iterations but the variance from the estimated result

is still lower compared to the prediction from the Kalman filter. One major advantage of the ANN

is that it produces better results over time whereas the Kalman filter is not observed to produce

better results over time. This points to having a neural network as a more reliable filter in sensors.

In terms of complexity, the Kalman filter is easier to implement and get working. The ease,

however, comes at a cost in accuracy. Modern devices have sufficient resources to run complex

applications thus complexity is not a major factor to consider in IoT sensors. Accuracy, however, is

key and should be considered as an important factor in determining the tool to use. In this case,

neural networks come out winning. The code for each tool can be seen in the appendix section.

4.5 Performance Metrics

As noted in literature, sensors have very limited resources compared to traditional computing

devices. They have limited memory, disc space and processing capability. As such, it was necessary

to also observe how the two solutions performed. During testing, time taken to perform operations

was collected and stored. Each took less than a second. However, the Kalman filter was found to be

faster than the ANN at the same number of iterations. At 100 iterations, the Kalman filter took

0.0432 sec while the ANN took 0.6832 sec. That implies that the Kalman filter is 15 times faster

than the ANN. This was due to the loops in the ANN increasing complexity.

39

4.5.1 Speed

Each filter was fast under 50,000 iterations and produced results in less than a second. However, as

the number of iterations grew, the neural network was shown to be slower under the same

environment. Based on the timing tests, the Kalman filter was found to be 15 times faster than the

ANN at the same number of iterations.

4.5.2 Accuracy

From the results shown above, it was proven beyond doubt that the ANN was by far more accurate

than the Kalman filter. This was especially the case after more data was passed to the filters. The

Kalman filter does slowly converge towards the correct answer over time but results are still highly

inaccurate. The ANN, however, does improve its results over time but does reach a peak at some

point where more iterations on training to not produce better results. As such, for accuracy, the

ANN is by far the better alternative.

The two filters thus have strengths and weaknesses in various areas. The ANN, however, seems to

emerge as a better filter since even at small iterations, it does produce better data compared to the

Kalman filter.

40

CHAPTER 5: DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

The purpose of this study was to investigate how to use neural networks to filter out noise in IoT

sensors. Various variables on both the neural network and the Kalman filter were examined and

optimal configurations were identified. The two filters were then compared to each other.

5.2 Summary of Findings

The study findings were as follows:

5.2.1 The tanh activation function works better than the sigmoid function.

In the study, the tanh activation function was found to consistently perform better than the sigmoid

function when it comes to predicting. When the sigmoid function was used, the data was more

erroneous. As such, the activation function used in our study was the tanh activation function

5.2.2 The ANN produced optimal results at 50,000 epochs.

In the study, it was found that the ANN works best at 50,000 epochs. It did occur that best results

were found at lower epochs but based on results of almost similar iterations, it was deemed to be

inconclusive and could be the ANN got lucky. The best results that were deemed stable were found

at 50,000 epochs and the prediction did not vary much after that.

41

5.2.3 Three neurons in the hidden layer produced best results.

The best results in the ANN were found when using three neurons in the hidden layer. Three

neurons produced the lowest error compared to the other hidden layer sizes. As such, three neurons

in the hidden layer were adopted as the hidden layer size for this study.

5.2.4 The Kalman filter is a good alternative to ANN but not as accurate.

It was identified that the Kalman filter is a good alternative to the ANN filter. However, the filter

had larger errors in prediction compared to the ANN based on the data at hand. The Kalman filter

however is able to make predictions faster than the ANN. The Kalman filter was also able to find

the pattern in the data despite the error making it a good alternative to the ANN filter.

5.3 Discussions

The first objective of this study was to identify the current solutions used to reduce noise in IoT

sensors. It was determined that intelligent approaches are used to filter out noise in data as well as

other filter solutions such as the Kalman filter and the median filter. The median filter was

discussed in the literature while a Kalman filter and an ANN were tested and the performance was

compared. Both can perform well as filters in noisy data.

The second objective of this study was to compare the various noise reduction algorithms used in

sensors. The Kalman filter algorithm was looked into and the median filter. The Kalman filter was

implemented and tested. Results of the Kalman filter were collected and recorded. The Kalman

filter is fast, compared to a neural network based filter and can find the noise pattern. However, the

error rate was high compared to the ANN.

42

The third objective was to identify how neural networks can be used to incorporate intelligence in

sensors. This was discussed in literature and it was shown that other studies have used ANNs to

filter out noise in data. An ANN was developed in this study and the results were promising. With

the right configurations of its parameters, the ANN was found to work well as a noise filter in IoT

sensors.

The fourth objective was to create and implement a neural network used to reduce noise in IoT

sensors. The neural network was implemented and tested. The application can be found in the

appendix section. The findings show that the developed ANN can perform well as a noise filter

compared to other filters.

The last objective was to evaluate the results of using intelligent noise reduction in IoT sensors. The

results were positive based on our findings. The ANN was found to be less erroneous compared to

the Kalman filter despite being slower and more complex.

5.4 Conclusion

In the study, the potential of using an ANN as a filter in cheap IoT devices was explored. This

confirmed the findings of (Raeisy and Golbahar Haghighi, 2012). An alternative filter, the Kalman

filter was developed and used to compare its potential as a filter compared to the ANN. The study

relied on simulated data that was used to provide input to both filters with the expected output also

generated.

The neural network was found to be optimal with a tanh activation function and 3 neurons in the

hidden layer. Back-propagation training method was used for the ANN and results were good as

43

shown in chapter 4. Finding the correct number of neurons in the hidden layer was a trial and error

process and after some tests, 3 was found to be an optimal number.

A basic Kalman filter was also developed to test its performance as a reliable filter for noisy data.

Though quite fast in making a prediction, the filter was found to be more erroneous compared to the

ANN and thus was found to be useful but not ideal in predicting correct values from noisy data. As

computing resources keep growing cheaper, speed can be improved over time by obtaining sensors

with better resources. Performance, however, is mainly handled on the software end in which the

ANN comes out ahead. The filter was a simple solution to create too compared to the ANN.

It was thus observed that using an ANN filter is better compared to a Kalman filter. Results for

each filter were compared with the ANN performing better in terms of accuracy of the prediction.

The ANN was however found to be slower as the number of iterations grew where the Kalman

filter was quite fast even with large iterations. The main undoing however for the Kalman filter was

that even as the number of iterations grew, the Kalman filter was not able to converge to an

accurate result in contrast to an ANN. It was thus observed that a neural network solution would

provide a better alternative.

The study also looked at the various factors that influence the performance of the ANN. Here, the

activation function used was tested, the number of neurons in the hidden layer as well as the

number of epochs when training the ANN. Two activation functions, the sigmoid function and the

tanh function were tested. Both functions performed well but the tanh activation function was found

to produce better results. The error on the predicted data compared to the expected result was found

to be smaller using the tanh function after various tests where the number of epochs was varied.

The epochs when training the network were also tested and the network would provide best results

at 50,000 iterations after which more epochs would not improve the prediction. The number of

44

neurons in the hidden layer was also tested and 3 was found to be the optimal value. The result did

not improve as the number of neurons grew.

5.5 Recommendations

- Collect data on error rates in sensors. It was noted during the research project that there is

little data regarding error rates in IoT sensors. McHenry et al. (2015) shows it is a major

problem but it is difficult to qualify that assertion with data. As such, research into error

rates in IoT devices is a highly recommended research area.

- The study recommends exploring other training methods such as Levenberg-Marquardt

Optimization Algorithm to improve ANN performance. The data collected was tested using

the most common training method, back-propagation. This was because of the amount of

time and scope of the research. However, the study would benefit greatly if other training

methods were used and compared to back-propagation method used to train the data in the

current study.

- The study recommends trying other activation functions other than the sigmoid and tanh

activation function and compare performance for reasons similar to those listed above for

the training function

- The study would recommend combining the Kalman filter and ANN to improve the results

of the IoT filter. This would have an integrated application that ensures that both filters are

used together with the Kalman filter complementing the ANN.

- The study simulated data in a lab setting for use in testing. More research can be conducted

by collecting data from IoT sensor that have been deployed in the field with ANN filter to

test performance and also collect data for training other ANN filters.

45

- The study focused on constant linear values as test data. Research can be conducted on the

performance of both filters when having non-linear data that is noisy.

- More research can be conducted into how the ANN filter performs against other filters

except the Kalman filter

- Finally, research can be conducted into the performance of the ANN filter in other fields

other than IoT sensors. This can include filtering noise in data collected via conventional

means such as questionnaires.

46

References

A. Nielsen, M. (2015). Michael A. Nielsen, Neural Networks and Deep Learning. 1st ed.

Determination Press. - Not user

Alessandri, A., Cirimele, G., Cuneo, M., Pagnan, S. and Sanguineti, M., (2003) EKF learning for

feedforward neural networks, European Control Conference (ECC), Cambridge, UK, 2003, pp.

1990-1995.

Bai, Y., Wang, F., Liu, P., Zaniolo, C. and Liu, S. (2007). RFID Data Processing with a Data

Stream Query Language. 2007 IEEE 23rd International Conference on Data Engineering.

Das, D. and Panda, G. (2004). Active Mitigation of Nonlinear Noise Processes Using a Novel

Filtered-s LMS Algorithm. IEEE Transactions on Speech and Audio Processing, 12(3), pp.313-322.

Elnahrawy, E. and Nath, B., (2003). Cleaning and querying noisy sensors. In Proceedings of the

2nd ACM international conference on Wireless sensor networks and applications (pp. 78-87).

ACM.

Frenzel, L. (2016). Will Noise and Interference Throttle the Internet of Things?. [online]

Electronicdesign.com. Available at: http://electronicdesign.com/blog/will-noise-and-interference-

throttle-internet-things. [Accessed 6 Oct. 2016].

Galambos, R. and Sujbert, L. (2015). Active noise control in the concept of IoT. Proceedings of the

2015 16th International Carpathian Control Conference (ICCC).

Gershenson, C. (2003). Artificial Neural Networks for Beginners. [online] Arxiv.org. Available at:

https://arxiv.org/abs/cs/0308031 [Accessed 14 Jul. 2016].

Haykin, S. (2001). Kalman filtering and neural networks. 1st ed. New York: Wiley.

Kenda, K., Škrbec, J. and Škrjanc, M., (2013). Usage of the Kalman Filter for Data Cleaning of

Sensor Data. proceedings of IS (Information Society).

Laaraiedh, M. (2016). Implementation of Kalman Filter with Python Language. [online] Arxiv.org.

Available at: http://arxiv.org/abs/1204.0375v1. [Accessed 16 Jun. 2016].

47

Lita, I., Visan, D., Oprea, S. and Cioc, B. (2007). Hardware Design for Noise Reduction in Data

Acquisition Modules. 2007 30th International Spring Seminar on Electronics Technology (ISSE).

Maxwell, C. Odira. (2015) Prediction of River Discharge Using Neural Networks, University of

Nairobi eRepository

McHenry, M. A., Robertson, D., and Matheson, R. J. (2015), Electronic noise is drowning out the

Internet of things, IEEE Spectrum: Technology, Engineering, and Science News, Available at:

http://spectrum.ieee.org/telecom/wireless/electronic-noise-is-drowning-out-the-internet-of-things.

[Accessed: 3 Jun. 2016].

Raeisy, B. and Golbahar Haghighi, S. (2012). Active Noise Controller with reinforcement learning.

The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP

2012).

Razafimandimby, C., Loscri, V. and Vegni, A. (2016). A Neural Network and IoT Based Scheme

for Performance Assessment in Internet of Robotic Things. 2016 IEEE First International

Conference on Internet-of-Things Design and Implementation (IoTDI).

Sinharay, A., Pal, A. and Bhowmick, B. (2011). A Kalman Filter Based Approach to De-noise the

Stereo Vision Based Pedestrian Position Estimation. 2011 UkSim 13th International Conference on

Computer Modelling and Simulation.

Sum, J., Leung, C., Young, G. and Kan, W. (1999). On the Kalman filtering method in neural

network training and pruning. IEEE Transactions on Neural Networks, 10(1), pp.161-166.

Sun Youwei, and Su Shaohua, (2015). Research on noise reduction of internet of things based on

power line using independent component analysis. 2015 International Conference on Information

and Communications Technologies (ICT 2015).

Wu, X., Wu, J., Cheng, B. and Chen, J. (2013). Neural Network Based Situation Detection and

Service Provision in the Environment of IoT. 2013 IEEE 78th Vehicular Technology Conference

(VTC Fall).

48

Yonglong, Y. and Dongyan, C. (2015). Globally optimal Kalman filtering with correlated noises,

random one-step sensor delay and multiple packet dropouts. 2015 34th Chinese Control

Conference (CCC).

Zeng, X. and Martinez, T. (2003). A noise filtering method using neural networks. IEEE

International Workshop on Soft Computing Techniques in Instrumentation, Measurement and

Related Applications, 2003. SCIMA 2003..

Zhang, Z., Fang, Q., Cheng, H. and Cheng, L. (2011). Wavelet transform based noise reduction

method for temperature data sequence in intelligent building. Proceedings of 2011 International

Conference on Computer Science and Network Technology.

Zhu, X., Zhang, P., Wu, X., He, D., Zhang, C. and Shi, Y. (2008). Cleansing Noisy Data Streams.

2008 Eighth IEEE International Conference on Data Mining.

49

APPENDICES A:

ANN filter python code

from __future__ import division

import numpy as np

def tanh(x):

 return np.tanh(x)

def tanh_deriv(x):

 return 1.0 - np.tanh(x)**2

def logistic(x):

 return 1/(1 + np.exp(-x))

def logistic_derivative(x):

 return logistic(x)*(1-logistic(x))

def _scale_to_binary(e, minV, maxV):

 result = ((e-minV)/(maxV-minV))*(1-0)+0

 return result

def rescale_from_binary(e, minV, maxV):

 result = e*(maxV-minV) + minV

 return result

class NeuralNetwork:

50

 def __init__(self, layers, activation='tanh'):

 """

 :param layers: A list containing the number of units in each layer.

 Should be at least two values

 :param activation: The activation function to be used. Can be

 "logistic" or "tanh"

 """

 np.random.seed(0)

 if activation == 'logistic':

 self.activation = logistic

 self.activation_deriv = logistic_derivative

 elif activation == 'tanh':

 self.activation = tanh

 self.activation_deriv = tanh_deriv

 self.weights = []

 for i in range(1, len(layers) - 1):

 self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i]

 + 1))-1)*2.0)

 self.weights.append((2*np.random.random((layers[i] + 1, layers[i +

 1]))-1)*2.0)

51

 def fit(self, X, y, learning_rate=2, epochs=50000):

 X = np.atleast_2d(X)

 temp = np.ones([X.shape[0], X.shape[1]+1])

 temp[:, 0:-1] = X # adding the bias unit to the input layer

 X = temp # Create a new X but with an extra bias item

 y = np.array(y)

 for k in range(epochs):

 i = np.random.randint(X.shape[0])

 a = [X[i]]

 for l in range(len(self.weights)):

 a.append(self.activation(np.dot(a[l], self.weights[l])))

 error = y[i] - a[-1]

 deltas = [error * self.activation_deriv(a[-1])]

 for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer

 deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))

 deltas.reverse()

 for i in range(len(self.weights)):

 layer = np.atleast_2d(a[i])

 delta = np.atleast_2d(deltas[i])

 self.weights[i] += learning_rate * layer.T.dot(delta)

 def predict(self, x):

52

 x = np.array(x)

 temp = np.ones(x.shape[0]+1)

 temp[0:-1] = x

 a = temp

 for l in range(0, len(self.weights)):

 a = self.activation(np.dot(a, self.weights[l]))

 return a

53

Kalman Filter python code
Kalman filter in Python adopted from http://scipy-
cookbook.readthedocs.io/items/KalmanFiltering.html

import numpy as np

import matplotlib.pyplot as plt

import time

class KalmanFilter:

 def __init__(self, base_value=24, iterations=200, initial_guess=20.0, posteri_estimate=4.0,
data=[], plot=False):

 # initial parameters

 self.n_iter = iterations # How many iterations to create test data

 sz = (self.n_iter,) # size of array

 self.x = base_value # This is the base value that shall be used to create noisy data. It
is the true value

 if len(data) == 0:

 self.z = np.random.normal(self.x, 1, size=sz) # observations (normal about x,
sigma=0.1)

 else:

 self.z = data

 self.Q = 1e-5 # process variance

 # allocate space for arrays

 self.xhat = np.zeros(sz) # a posteri estimate of x

 self.P = np.zeros(sz) # a posteri error estimate

 self.xhatminus = np.zeros(sz) # a priori estimate of x

 self.Pminus = np.zeros(sz)

 # a priori error estimate

 self.K = np.zeros(sz) # gain or blending factor

 self.R = 2

54

 # initial guesses

 self.xhat[0] = initial_guess # Initial estimate

 self.P[0] = posteri_estimate # Estimate of the error made

 self.plot = plot

 def filter(self):

 start = time.time()

 for k in range(1, self.n_iter):

 # time update

 self.xhatminus[k] = self.xhat[k-1]

 self.Pminus[k] = self.P[k-1]+self.Q

 # measurement update

 self.K[k] = self.Pminus[k]/(self.Pminus[k]+self.R)

 self.xhat[k] = self.xhatminus[k]+self.K[k]*(self.z[k]-self.xhatminus[k])

 self.P[k] = (1-self.K[k])*self.Pminus[k]

 end = time.time()

 print("Took %s seconds" % (time.time() - start))

 if self.plot:

 plt = self.plot_results()

 else:

 plt = None

 return self.z, self.xhat, self.x, plt

 def plot_results(self):

 plt.rcParams['figure.figsize'] = (10, 8)

 plt.figure()

 plt.plot(self.z, 'k+', label='noisy measurements')

55

 plt.plot(self.xhat, 'b-', label='a posteri estimate')

 plt.axhline(self.x, color='g', label='truth value')

 plt.legend()

 plt.title('Estimate vs. iteration step', fontweight='bold')

 plt.xlabel('Iteration')

 plt.ylabel('Temperature')

 return plt

56

ANN training data

ID Noisy Data Actual Data

301 21.5360465755 22.0

300 21.8743646268 21.9595959596

299 21.669130502 21.9191919192

298 20.3472618312 21.8787878788

297 21.7014780494 21.8383838384

296 22.2256235741 21.797979798

295 20.9565583577 21.7575757576

294 22.0599013607 21.7171717172

293 21.9491300859 21.6767676768

292 22.9409266516 21.6363636364

291 22.3309335226 21.595959596

290 22.1939897915 21.5555555556

289 22.0302445641 21.5151515152

288 21.7298237087 21.4747474747

287 20.6579092532 21.4343434343

286 20.9922750258 21.3939393939

285 22.1636777217 21.3535353535

284 20.8706710452 21.3131313131

283 20.9955494271 21.2727272727

282 21.6130661663 21.2323232323

281 20.4117530522 21.1919191919

http://localhost:8000/admin/filter/trainingexample/299/change/
http://localhost:8000/admin/filter/trainingexample/298/change/
http://localhost:8000/admin/filter/trainingexample/297/change/
http://localhost:8000/admin/filter/trainingexample/296/change/
http://localhost:8000/admin/filter/trainingexample/295/change/
http://localhost:8000/admin/filter/trainingexample/294/change/
http://localhost:8000/admin/filter/trainingexample/293/change/
http://localhost:8000/admin/filter/trainingexample/292/change/
http://localhost:8000/admin/filter/trainingexample/291/change/
http://localhost:8000/admin/filter/trainingexample/290/change/
http://localhost:8000/admin/filter/trainingexample/289/change/
http://localhost:8000/admin/filter/trainingexample/288/change/
http://localhost:8000/admin/filter/trainingexample/287/change/
http://localhost:8000/admin/filter/trainingexample/286/change/
http://localhost:8000/admin/filter/trainingexample/285/change/
http://localhost:8000/admin/filter/trainingexample/284/change/
http://localhost:8000/admin/filter/trainingexample/283/change/
http://localhost:8000/admin/filter/trainingexample/282/change/
http://localhost:8000/admin/filter/trainingexample/281/change/

57

280 21.0249838384 21.1515151515

279 20.9702444598 21.1111111111

278 20.2699160068 21.0707070707

277 21.6204703317 21.0303030303

276 21.4166578375 20.9898989899

275 21.0459206569 20.9494949495

274 21.1216069379 20.9090909091

273 19.918905036 20.8686868687

272 20.5090086766 20.8282828283

271 21.3497810107 20.7878787879

270 20.2064608189 20.7474747475

269 20.7630025291 20.7070707071

268 20.0499821752 20.6666666667

267 20.8150497613 20.6262626263

266 20.9415470431 20.5858585859

265 19.8863318045 20.5454545455

264 21.1061980615 20.5050505051

263 20.7526920248 20.4646464646

262 19.7889036326 20.4242424242

261 20.4519889727 20.3838383838

260 21.1578233396 20.3434343434

259 20.6117224438 20.303030303

258 20.7146474916 20.2626262626

257 20.0132119971 20.2222222222

http://localhost:8000/admin/filter/trainingexample/280/change/
http://localhost:8000/admin/filter/trainingexample/279/change/
http://localhost:8000/admin/filter/trainingexample/278/change/
http://localhost:8000/admin/filter/trainingexample/277/change/
http://localhost:8000/admin/filter/trainingexample/276/change/
http://localhost:8000/admin/filter/trainingexample/275/change/
http://localhost:8000/admin/filter/trainingexample/274/change/
http://localhost:8000/admin/filter/trainingexample/273/change/
http://localhost:8000/admin/filter/trainingexample/272/change/
http://localhost:8000/admin/filter/trainingexample/271/change/
http://localhost:8000/admin/filter/trainingexample/270/change/
http://localhost:8000/admin/filter/trainingexample/269/change/
http://localhost:8000/admin/filter/trainingexample/268/change/
http://localhost:8000/admin/filter/trainingexample/267/change/
http://localhost:8000/admin/filter/trainingexample/266/change/
http://localhost:8000/admin/filter/trainingexample/265/change/
http://localhost:8000/admin/filter/trainingexample/264/change/
http://localhost:8000/admin/filter/trainingexample/263/change/
http://localhost:8000/admin/filter/trainingexample/262/change/
http://localhost:8000/admin/filter/trainingexample/261/change/
http://localhost:8000/admin/filter/trainingexample/260/change/
http://localhost:8000/admin/filter/trainingexample/259/change/
http://localhost:8000/admin/filter/trainingexample/258/change/
http://localhost:8000/admin/filter/trainingexample/257/change/

58

256 20.4716284368 20.1818181818

255 21.066358121 20.1414141414

254 19.6675153187 20.101010101

253 19.6303106708 20.0606060606

252 20.596889755 20.0202020202

251 20.1903302374 19.9797979798

250 21.2662359489 19.9393939394

249 20.2367059154 19.898989899

248 19.332725154 19.8585858586

247 19.3498430576 19.8181818182

246 19.5308710538 19.7777777778

245 20.4597874855 19.7373737374

244 19.6524812626 19.696969697

243 18.7240178902 19.6565656566

242 19.4912462044 19.6161616162

241 20.3267468795 19.5757575758

240 20.1333274298 19.5353535354

239 19.6486771259 19.4949494949

238 19.5165451707 19.4545454545

237 19.9189956103 19.4141414141

236 19.1699957128 19.3737373737

235 19.3572561508 19.3333333333

234 19.8612616344 19.2929292929

233 18.5020260599 19.2525252525

http://localhost:8000/admin/filter/trainingexample/256/change/
http://localhost:8000/admin/filter/trainingexample/255/change/
http://localhost:8000/admin/filter/trainingexample/254/change/
http://localhost:8000/admin/filter/trainingexample/253/change/
http://localhost:8000/admin/filter/trainingexample/252/change/
http://localhost:8000/admin/filter/trainingexample/251/change/
http://localhost:8000/admin/filter/trainingexample/250/change/
http://localhost:8000/admin/filter/trainingexample/249/change/
http://localhost:8000/admin/filter/trainingexample/248/change/
http://localhost:8000/admin/filter/trainingexample/247/change/
http://localhost:8000/admin/filter/trainingexample/246/change/
http://localhost:8000/admin/filter/trainingexample/245/change/
http://localhost:8000/admin/filter/trainingexample/244/change/
http://localhost:8000/admin/filter/trainingexample/242/change/
http://localhost:8000/admin/filter/trainingexample/241/change/
http://localhost:8000/admin/filter/trainingexample/240/change/
http://localhost:8000/admin/filter/trainingexample/239/change/
http://localhost:8000/admin/filter/trainingexample/238/change/
http://localhost:8000/admin/filter/trainingexample/237/change/
http://localhost:8000/admin/filter/trainingexample/236/change/
http://localhost:8000/admin/filter/trainingexample/235/change/
http://localhost:8000/admin/filter/trainingexample/234/change/
http://localhost:8000/admin/filter/trainingexample/233/change/

59

232 18.6395996908 19.2121212121

231 19.0873740855 19.1717171717

230 17.953096565 19.1313131313

229 18.9983707054 19.0909090909

228 19.8604632632 19.0505050505

227 18.2329009267 19.0101010101

226 18.221256918 18.9696969697

225 18.8133790121 18.9292929293

224 19.0802205583 18.8888888889

223 19.3186400839 18.8484848485

222 18.197885428 18.8080808081

221 18.6867889298 18.7676767677

220 18.3451264664 18.7272727273

219 18.5655546653 18.6868686869

218 17.9159654641 18.6464646465

217 18.2791599644 18.6060606061

216 18.7308372528 18.5656565657

215 19.3216908231 18.5252525253

214 18.0955224211 18.4848484848

213 18.4608168925 18.4444444444

212 17.7839901225 18.404040404

211 18.8085615061 18.3636363636

210 18.3699122103 18.3232323232

209 17.6350375581 18.2828282828

http://localhost:8000/admin/filter/trainingexample/232/change/
http://localhost:8000/admin/filter/trainingexample/231/change/
http://localhost:8000/admin/filter/trainingexample/230/change/
http://localhost:8000/admin/filter/trainingexample/229/change/
http://localhost:8000/admin/filter/trainingexample/228/change/
http://localhost:8000/admin/filter/trainingexample/227/change/
http://localhost:8000/admin/filter/trainingexample/226/change/
http://localhost:8000/admin/filter/trainingexample/225/change/
http://localhost:8000/admin/filter/trainingexample/224/change/
http://localhost:8000/admin/filter/trainingexample/223/change/
http://localhost:8000/admin/filter/trainingexample/222/change/
http://localhost:8000/admin/filter/trainingexample/221/change/
http://localhost:8000/admin/filter/trainingexample/220/change/
http://localhost:8000/admin/filter/trainingexample/219/change/
http://localhost:8000/admin/filter/trainingexample/218/change/
http://localhost:8000/admin/filter/trainingexample/217/change/
http://localhost:8000/admin/filter/trainingexample/216/change/
http://localhost:8000/admin/filter/trainingexample/215/change/
http://localhost:8000/admin/filter/trainingexample/214/change/
http://localhost:8000/admin/filter/trainingexample/213/change/
http://localhost:8000/admin/filter/trainingexample/212/change/
http://localhost:8000/admin/filter/trainingexample/211/change/
http://localhost:8000/admin/filter/trainingexample/210/change/
http://localhost:8000/admin/filter/trainingexample/209/change/

60

208 18.3562055601 18.2424242424

207 18.2416391104 18.202020202

206 17.5388401853 18.1616161616

205 17.9137578193 18.1212121212

204 18.2551065627 18.0808080808

203 17.9871842225 18.0404040404

202 18.0885932842 18.0

http://localhost:8000/admin/filter/trainingexample/208/change/
http://localhost:8000/admin/filter/trainingexample/205/change/
http://localhost:8000/admin/filter/trainingexample/204/change/
http://localhost:8000/admin/filter/trainingexample/203/change/
http://localhost:8000/admin/filter/trainingexample/202/change/

