DISSErTATION

TUMOUR DIFFERENTIATION AND HIGH RISK HISTOLOGY FEATURES AS PROGNOSTIC FACTORS AMONG PATIENTS WITH RETINOBLASTOMA AT KENYATTA NATIONAL HOSPITAL AND PRESBYTERIAN CHURCH OF EAST AFRICA KIKUYU HOSPITAL.

BY

DR JOHN MUTHURI M.B.Ch.B (University of Nairobi)

A dissertation submitted as part fulfillment of the requirement for the award of degree of Masters of Medicine in Human Pathology, University of Nairobi.

2016
DECLARATION

I declare that this dissertation is my original work under the guidance of my supervisors and has not been submitted for a degree at any other university.

CANDIDATE: DR JOHN MUTHURI (M.B.Ch.B UON)

Signature. ___________________________ Date. ___________________________

SUPERVISORS APPROVAL

This dissertation has been submitted for examination with our approval as University supervisors.

1. PROF. J. GITHANGA

 Associate Professor, Hematology Thematic Unit,
 Department of Human Pathology,
 University of Nairobi Kenya.

 Signature. ___________________________ Date. ___________________________

2. DR. W. WAWERU

 Senior Lecturer, Anatomic Pathology Thematic Unit,
 Department of Human Pathology,
 University of Nairobi, Kenya.

 Signature. ___________________________ Date. ___________________________
3. **DR. E. DIMBA**

 Senior Lecturer,

 Department of Oral and Maxillofacial Surgery, Oral Pathology and Oral Medicine,

 University of Nairobi, Kenya.

 Signature. _____________________________ Date. ____________________________

4. **DR. K. KIMANI**

 Senior Lecturer,

 Department of Ophthalmology,

 University of Nairobi, Kenya.

 Signature. _____________________________ Date. ____________________________

5. **DR. H. DIMARAS, PhD**

 Assistant Professor,

 Department of Ophthalmology & Vision Sciences,

 University of Toronto, Canada.

 Honorary Lecturer,

 Department of Human Pathology,

 University of Nairobi, Kenya

 Signature. _____________________________ Date. ____________________________
DEDICATION

This book is dedicated to all retinoblastoma patients and their parents/guardians.
ACKNOWLEDGEMENTS

The support from the following institutions and individuals made this study possible:

1. Grand Challenges Canada, Cancer Pathology in Africa grant, administered through Daisy’s Eye Cancer Fund-Kenya for sponsoring this study.
3. My Supervisors Prof. J. Githanga, Dr. W. Waweru, Dr. E. Dimba, Dr. K. Kimani and Dr. H. Dimaras for their guidance and support throughout the study period.
4. Dr. M. Mungania availability and willingness to assist as the tie breaker in case of histopathology discrepancy.
5. My family for standing with me throughout my life.
6. The staff of the Presbyterian Church of East Africa Kikuyu Hospital Eye Unit (especially Dr. J. Kabiru and Dr. A. M’bongo) and M.P. SHAH Hospital histology laboratory led by Dr. T. Onyuma for their facilitation during data collection.
7. Dr. E. Munyoro for her input in developing the telephone interview manuscript/document.
8. Mr. J. Gichana of Retinoblastoma Collaborative Laboratory University of Nairobi Dental School for preparing good histopathology slides.
9. Mr. J. King’ori and Mr. D. Wainaina of Kenyatta National Hospital and Presbyterian Church of East Africa Kikuyu Hospital Eye Unit registries respectively for their support in retrieval of medical records.
10. Dr. P. Wanzala and Mr. D. k’Owino for their assistance in data analysis.
11. My fellow postgraduate students, for your friendship and encouragement.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>College of American Pathologists.</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal Fluid.</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography.</td>
</tr>
<tr>
<td>EBRT</td>
<td>External-Beam Radiation Therapy.</td>
</tr>
<tr>
<td>ERC</td>
<td>Ethical Research Committee.</td>
</tr>
<tr>
<td>H &E</td>
<td>Haematoxylin and Eosin.</td>
</tr>
<tr>
<td>ICD-O</td>
<td>International Classification of Diseases-Oncology.</td>
</tr>
<tr>
<td>I/P no</td>
<td>In-Patient number.</td>
</tr>
<tr>
<td>KNH</td>
<td>Kenyatta National Hospital.</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MYCN</td>
<td>v-MYC avian myelocytomatosis viral-related oncogene, Neuroblastoma-derived.</td>
</tr>
<tr>
<td>RB</td>
<td>Retinoblastoma.</td>
</tr>
<tr>
<td>RBCOLAB</td>
<td>Retinoblastoma Collaborative Laboratory.</td>
</tr>
<tr>
<td>RB1</td>
<td>Retinoblastoma Tumour Suppressor gene.</td>
</tr>
<tr>
<td>RB1-/-</td>
<td>Bi-allelic inactivation of the RB1 gene.</td>
</tr>
<tr>
<td>RB1+/+ MYCN^</td>
<td>Amplification of MYCN gene associated with normal RB1 gene alleles</td>
</tr>
<tr>
<td>RCP</td>
<td>Royal College of Pathologists.</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedures.</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences.</td>
</tr>
<tr>
<td>PCEA-KH</td>
<td>Presbyterian church of East Africa Kikuyu Hospital.</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumour, Nodes and Metastasis.</td>
</tr>
<tr>
<td>U.K</td>
<td>United Kingdom.</td>
</tr>
<tr>
<td>U.O.N</td>
<td>University of Nairobi.</td>
</tr>
<tr>
<td>U.S.A</td>
<td>United States of America.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1: Illustration of the study design…………………………………………………………………………………..16
Figure 2: flow chart illustrating patients indentification, medical records, specimen block retrieval, data collection and entry…………………………………………………………………………………………………….21
Figure 3 Overview of the Cohort Cases……………………………………………………………………………………………………...24
Figure 4: Distribution of Hospital where enucleation was done: ………………………………………….25
Figure 5: Distribution of reasons for loss of follow-up for those contacted: ……………………………………….26
Figure 6: Distribution of participants by Sex:……………………………………………………………………………………………………..26
Figure 7: Distribution of participants by Laterality …………………………………………………………………………………..26
Figure 8: Distribution of participants by Age at presentation: ……………………………………………………………27
Figure 9: Age at presentation of participants in months vs. laterality …………………………………………28
Figure 10: Over view of participants outcome: ………………………………………………………………………………………………………..29
Figure 11: Distribution of the presenting Complaints……………………………………………………………………………………………………..31
Figure 12: Distribution of Adjuvant Chemotherapy Regimens……………………………………………………………………………………………………..31
Figure 13: Distribution of completed Adjuvant Chemotherapy …………………………………………………………………………………..32
Figure 14: Kaplan Meier Overall Survival probability curve:……………………………………………………………………………………………………..36
Figure 15: Comparison of the survival according to the degree of differentiation……………………………..36
Figure 16: Comparison of the survival according to the degree of choroidal Invasion: …………………….37
Figure 17: Comparison of the survival according to the degree of sclera Invasion: …………………….37
Figure 18: Comparison of the survival according to the degree of Optic nerve Invasion: ………………..38
Figure 19: Comparison of the survival according to TNM staging: ………………………………………………………………………………………………………..39
LIST OF TABLES

Table 1: Association among Laterality, Family history, Leukocoria, Proptosis and Outcome of participants: ... 30
Table 2: Association among Adjuvant Chemotherapy and Outcome of participants............. 32
Table 3: Association among Metastasis, Recurrence and outcome of participants 33
Table 4: Summary of Characteristic Histopathologic Features of enucleated eyes.................... 34
Table 5: Association between Degree of differentiation, choroidal Invasion, Scleral invasion, Optic nerve invasion and Outcome of participants: ... 35
Table 6: Association between TNM Staging and Outcome of participants:............................ 36
Table 7: Multivariate Analysis: .. 40
TABLE OF CONTENTS

DECLARATION.. ii
DEDICATION... iv
ACKNOWLEDGEMENTS.. v
ABBREVIATIONS... vi
LIST OF FIGURES.. vii
LIST OF TABLES... viii
TABLE OF CONTENTS... ix
ABSTRACT... xi
1.0 INTRODUCTION:... 1
2.0 LITERATURE REVIEW... 2
 2.1 Epidemiology of Retinoblastoma:... 2
 2.2. Etiology of RB:.. 2
 2.2.1 Genetic Etiology [RB1/-]:... 2
 2.2.2 Genetic RB1+/+ MYCNÂ RB: .. 4
 2.3 Clinical presentation of RB:... 4
 2.4. Differential diagnosis of RB:.. 5
 2.5. Investigations of RB:... 5
 2.6. Histological features of RB:.. 6
 2.6.1 RB -/- Microscopic: Histiogenesis and Degree of tumour differentiation....... 6
 2.6.2 Microscopic: Extent of tumour spread... 7
 2.6.3. Pathological staging of RB:.. 8
 2.6.4 Histology of RB1+/+ MYCNÂ RB:.. 9
 2.7. Management of RB:... 9
 2.7.1 Enucleation:.. 9
 2.7.2 Systemic chemotherapy:.. 9
 2.7.3 External-beam radiation therapy (EBRT):... 10
 2.8. Patient outcome:... 10
 2.8.1 Mortality:... 11
 2.9. Retinoma:... 11
 2.9.1. Retinoma genetics:.. 12
APPENDIX IV: PCEA-KH APPROVAL LETTER: ... 62
APPENDIX V: TELEPHONE INTERVIEWS MANUSCRIPT: .. 63
APPENDIX VI: QUESTIONNAIRE: .. 66
APPENDIX VII: M.P. SHAH APPROVAL LETTER: ... 70
APPENDIX VIII: SOP FOR RETRIEVED SPECIMEN BLOCKS HANDLING AND PROCESSING: 71
APPENDIX IX. STUDY LABORATORY PROFORMA. .. 72
ABSTRACT

1. BACKGROUND

The management protocol for retinoblastoma (RB) post-enucleation, recommends adjuvant treatment for patients exhibiting high risk histopathology features. The degree of tumour differentiation in RB has not been shown to have significant prognostic association in most studies.

2. OBJECTIVES

To determine the prognostic value of the degree of tumour differentiation and high risk histopathologic features, and the frequencies of retinoma and histomorphology consistent RB+/+ MYCN^A among primarily enucleated RB cases at the KNH and PCEA-KH.

3. DESIGN

A retrospective cohort clinical-pathological review of primarily enucleated RB patient from January 2005 to June 2012 at KNH and PCEA-KH.

4. METHODS AND MATERIALS

One hundred and forty (140) patients’ medical records were retrieved from KNH and PCEA-KH. The clinical data obtained included: demographic data, surgical procedure, chemotherapy treatment, and patient outcome which were recorded in a structured questionnaire. Those whose outcome was unknown due loss to follow-up, their next of kin were contacted after seeking verbal consent.

Archived specimen eye blocks of these patients were retrieved, processed and microscopically assessed for: retinoma, RB/-, RB1+/+ MYCN^A RB consistent histomorphological features, degree of tumour differentiation, choroidal invasion, scleral invasion and optic nerve invasion which were recording in a structured proforma. Data was then entered into an Access computer program, cleaned and analysed using Statistical Package for Social Scientists (SPSS) version 20.0 Software.
5. RESULTS

Of the 140 patients eligible for this study, 106 had a known outcome, 76 (71.7%) being alive while 30 (28.3%) were deceased. The Kaplan-Meier survival probability of the 140 patients was 0.85 at 12 months, 0.78 at 36 months and 0.65 at 60 months.

Poorer outcome were noted in patients with bilateral disease (p=0.016), proptosis (p=0.039), not completing adjuvant chemotherapy (p=0.042) and metastasis or recurrence (p=<0.001). Patients with poorly differentiated tumours had also a significantly poorer outcome compared to those with well or moderately differentiated tumours (p=0.037), while the high risk histopathology features were confirmed to confer a significantly poorer outcome; massive choroidal invasion (p=0.002), scleral invasion (p= 0.006) and post-laminar optic nerve invasion (p=<0.001).

Multivariate analysis showed a significant association with poor outcome with: proptosis, metastasis, recurrence, poorly differentiated tumours, massive choroidal, sclera and post-laminar optic nerve invasion.

The frequency of retinoma was 2.8% among enucleated RB specimens, while no case histomorphologically consistent with RB +/+ MYCN^A was noted.

6. CONCLUSION

Patients with poorly differentiated tumour were associated with a poorer survival. High risk histopathology features, were confirmed to having a significant poorer survival. The frequency of retinoma in eyes primarily enucleated for RB was low compared to published figures, while no histomorphological consistent RB +/+ MYCN^A subtype was identified in this study.
1.0 INTRODUCTION

Retinoblastoma (RB) is a primitive embryonal tumour arising in the retina and it is the most common intraocular malignancy of childhood occurring before the age of five\(^1\). Its prognosis has tremendously improved over the years especially in developed countries with cure rates of more than 90% being achieved\(^2\). In the developing countries however, poor health care infrastructure and late presentation have resulted to 5 year survival of less than 50\% \(^3,4\). In Kenya a 3 year survival rate of 26.6\% was reported by Gichigo et al\(^5\).

Current treatment protocols recommend adjuvant therapy post-enucleation for patient exhibiting the following high risk histopathology features: post-laminar optic nerve invasion, massive choroid invasion and sclera invasion\(^6\) that have been associated with significant poor prognosis. The degree of tumour differentiation has been determined as a prognostic factor in most cancers such as pancreatic adenocarcinoma and colorectal carcinoma\(^7,8\). In case of RB, few studies have shown some prognostic association for tumour differentiation, though not statistically significant\(^9,10\) while other studies have shown no prognostic association\(^11,12\). Due to this controversy it’s not a feature used to direct adjuvant chemotherapy and therefore not routinely included in RB pathology reports.

The histologic features of retinoma the benign variant of RB are distinct from RB, with its frequency among enucleated RB cases being described in some studies ranging from 6\%\(^13\) to 20.4\%\(^14\). However no such data is locally available. It has long been thought that RB only occurred following RB1-/- mutation however, advances in RB1 molecular testing has recently demonstrated that approximately 1.4\% of unilateral non-familial RB cases have undetectable RB1 gene mutation (RB1+/+) and are induced by amplification of MYCN gene (MYCN\(^{A}\))\(^15\). These RB +/+ MYCN\(^{A}\) tumours have distinct histomorphologic feature from those of RB1/-/ tumour resembling neuroblastoma. In view of its recent discovery few if any cases have been reported locally hence its frequency is also unknown in the Kenyan RB population.

This study aims to determine the prognostic value of the degree of tumour differentiation and high risk histology features with the frequencies of both retinoma and histomorphology consistent RB1+/+ MYCN\(^{A}\) RB among primary enucleated RB cases locally.
2.0 LITERATURE REVIEW

2.1 Epidemiology of Retinoblastoma

Retinoblastoma (RB) accounts for 33% to 55% of ocular and orbital malignancies in children. In Nigeria Owoeye16 found 33\% of ocular tumours was RB. In the U.S.A RB accounts for 6\% of all pediatric malignancies under the age of 5 years (Broaddus et al)17 while in Kano (Nigeria) it accounts for 30\% of all pediatric cancers18. The worldwide incidence of RB for children aged 0-4 years varies from 3.4 per million in Bulgaria19 to a very high 42.5 per million in Mali20. In the U.S.A it ranges from 1: 15,000 to 1:20,000 live births per year1 while in Kenya the incidence is 1:17000 live births per year21.

There is no sex difference noted in most of the studies. In the U.S.A Eagle et al found the ratio between male and female to be 1.02:114 and in Nigeria Owoeye et al found male to female ratio of 1:1.216. However in Kenya, Kimani22 and Gichigo5 found a slight male predominance with no statistical significant difference, the male to female ratio was 1.26:1 and 1.16:1 respectively. While Nyamori21 and Maingi23 found a statistically significant male preponderance with a ratio of 1.49:1 and 1.5:1 respectively. The latter two studies speculated that either the findings were coincidental or boys are taken to hospital more preferentially than the girls.

2.2. Etiology of RB

RB was the first disease where a genetic etiology of cancer was described and the first tumour suppressor gene RB1 identified. It has therefore been long thought that RB only occurred following gene mutation RB1-/-, however advances in RB molecular testing have demonstrated cases with RB1+/+ MYCNA15.

2.2.1 Genetic Etiology [RB1-/-]

Knudson24 in 1971 developed the hypothesis that RB is caused by two mutational events whereby there is loss or mutation of both alleles of the RB gene [RB1-/-], localized at chromosome 13q1.4 which is required for disease development. The RB1 gene encodes a 110 KDa RB protein (pRB) which regulates the cell-cycle at the checkpoint between G1 and entry into the S-phase.
Numerous studies however have indicated that other molecular events, in addition to the loss of pRB, are necessary for tumorigenesis. A study by Dimaras et al on retinoma clarified that the two hits in RB1 (M1-M2) only lead to genomic instability with up regulation of the senescence-associated proteins p16INK4a and p130, suggesting that tumour progression occurs when there is further genomic rearrangement (M3-Mn)\(^25\). There are two forms of RB1-/- associated RB; germline (heritable) and somatic.

2.2.1.1 Germinal RB1-/-

This form accounts for 40% of all RB-/-, with the affected patients having a germline inactivated RB1 allele present in all body cells and a somatic loss of the second allele in retinal cells. They may have a family history of the disease, and are at risk of passing on the mutated RB1 gene to their offspring’s. They usually present with bilaterally disease, but 10% - 15% are unilateral. Identification of this mutation in a family should prompt follow-up of all young children in that family by an ophthalmologist in order to diagnose RB early. Patients with germline mutations are also at risk for developing trilateral RB\(^2\) and second non-ocular cancers\(^26\).

Trilateral RB refers to bilateral RB associated with an intracranial primitive neuroectodermal tumour in the pineal or suprasellar region. It usually occurs in the first 5 years and is found in approximately 3% of all children with RB and in 10% for those having bilateral or familial disease\(^2\). It has a dismal prognosis hence; patients with bilateral or familial RB are advised to have screening for pineoblastoma at least twice yearly for the first 5 years of life\(^27\).

The risk of developing second non-ocular tumours is higher in patients with germline mutation with a 5% chance of developing them during the first 10 years of follow-up, 18% during the first 20 years, and 26% within 30 years while the 30-year cumulative incidence is approximately 35% or even higher for those patients who received radiation therapy\(^28\). Most second malignancies are high-grade tumours having poor prognosis, they include: osteogenic sarcoma, neuroblastoma, chondrosarcoma, rhabdomyosarcoma, glioma, leukemia, squamous cell carcinoma and cutaneous melanoma.
2.2.1.2 Somatic RB1-/-

Somatic RB -/- accounts for 60% of cases whereby the affected individuals are born with two normal copies of the RB1 gene. Both copies of the RB1 gene are then inactivated somatically in a single developing retinal progenitor cell in early childhood. About 75% of the sporadic tumours are caused by this mechanism and are usually unilateral, unifocal and not heritable.

2.2.2 Genetic RB1+/+ MYCN^A RB

This form of RB has the following distinct genetic characteristic compared to classical RB-/- tumour; has no mutation at RB1 (RB +/+), expression of an intact functioning RB protein (pRB) and amplified 28 – 121 copies of MYCN gene (MYCN ^A)^15. MYCN is a member of the basic helix-loop-helix (bHLH) family of transcription factors involved in cell proliferation. It has therefore been postulated that; children having this type of RB may benefit from anti MYCN treatment, however further studies are necessary. Detection of histomorphologically consistent RB1+/+ MYCN^A RB in Kenya would therefore identify children who might benefit from such future anti-MYCN therapy.

2.3 Clinical presentation of RB

The majority of RB -/- cases are diagnosed by 3 years of age and 90% by the age of 5 years. In Kenya Gichigo found 63% presented by the age of 3 years at KNH^5. Children with bilateral RB constitute about 30-40% and unilateral 60-70%. In Kenya, Nyamori found 25.8% bilateral cases and 74.2% unilateral cases countrywide^21 while Gichigo found 28% of cases to be bilateral and 72% to be unilateral at KNH^5. Patients with bilateral RB present earlier than unilateral RB. Nyamori found bilateral cases to have a mean age of 26 months and unilateral cases 35.9 months^21 while Gichigo found bilateral cases to have a mean age of 24.3 months and unilateral cases 39.8 months^5.

The most common presentation of RB-/- in children is leukocoria^29; other presentations are strabismus, glaucoma, hyphema. Proptosis although rare in developed countries is still a frequent presentation in developing countries depicting late disease presentation^30. In Kenya Gichigo observed that 43% presented with leukocoria, 27% with ocular inflammation and 18% with proptosis^5.
Children with RB1+/+ MYCN^A tumours present at an earlier age of 3.5 to 10 months compared to RB -/- tumours that present at 15 to 37 months. The RB1+/+ MYCN^A tumours are usually unilateral, presenting with large masses with often optic invasion depicting its aggressive nature¹⁵.

2.4. Differential diagnosis of RB

There are many diseases that clinically mimic RB. Shield et al found the three most common conditions to be persistent fetal vasculature (28%), Coats disease (16%), and ocular toxocariasis (16%)³¹. Other less common conditions that may resemble RB include congenital cataract, retinopathy of prematurity, familial exudative vitreoretinopathy, Norrie disease, incontinentia pigmenti, and advanced rhabdomyosarcoma.

2.5. Investigations of RB

Patients suspected to have RB usually undergo indirect ophthalmoscopy and fundus photography. In young children, these examinations are typically done under general anaesthesia. Needle biopsies are rarely, if ever, indicated in RB, as puncturing the eye can lead to tumour seeding and orbital invasion because the tumour is loosely cohesive and friable³². Ultrasonography is useful as it demonstrates masses with high reflectivity that block sound, causing characteristic shadowing behind the tumor. False-positive results are however common. CT scan is more widely used in developing countries because its easily available and more affordable compared to MRI. CT scan shows calcification, with tumour extent or pineal lesion. Since a recent analysis has demonstrated an increased lifetime risk of leukemia and brain tumours in paediatric patients subjected to this imaging modality, MRI is now the preferred modality for imaging³³. MRI has excellent resolution in the diagnosis of extraocular soft-tissue disease and can readily distinguish between RB and Coats disease. One weakness of MRI is that calcification, a key feature of RB, is less readily demonstrable than with CT.

Cytological examinations of CSF is indicated when there is gross evidence of involvement of the optic nerve by imaging studies or histopathology involvement beyond the lamina cribrosa of the enucleated eye. A bone marrow examination and a bone scan are indicated only when the clinical examination is suggestive of metastases or when a blood count abnormality is present³⁴.
2.6. Histological features of RB

RB is ultimately confirmed by histology. The College of American Pathologist (CAP) and Royal College of Pathologist (RCP) guidelines on RB recommends that a total four cassettes composed of: the optic nerve stump, the Pupil-Orbital section, and the two minor calottes are sampled from the enucleated eyes and processed\(^{(35, 36)}\). From this the tumour histogenesis, grade and extent of spread are determined.

In-order to standardize RB histopathology reporting, a structured proforma capturing RB histopathology features, is recommended. An example (Appendix I) is currently being used at the retinoblastoma collaborative laboratory Kenya (RBCOLAB).

The RBCOLAB was started with the aim of establishing a coordinated national RB pathology service. This was an initiative of the wider Kenya National Retinoblastoma strategy that was set up in the year 2008 with the aim of developing a sustainable, locally managed diagnosis and treatment program for RB through various stake holders in the field of RB\(^{37}\).

2.6.1 RB -/- Microscopic: Histogenesis and Degree of tumour differentiation

RB-/- associated RB is characterized by sheets and nests of small round to polygonal blue cells that have a scanty cytoplasm and large basophilic hyper chromatic nuclei. In addition there is scanty stroma with frequent mitotic figures, calcification and areas of necrosis. The presence of Flexner-Wintersteiner is pathognomonic for RB and confers the degree of differentiation.

Some studies have attempted to grade the histology of RB-/- associated RB based on the presence and proportion of Flexner-Wintersteiner rosettes. These rosettes are characterized by tumour cells which are joined by connections analogous to the retina's external limiting membrane surrounding an empty central lumen. The three-tier system of well, moderate and poorly differentiated is used in majority of the studies\(^{12, 38}\) classifying the degree of differentiation according to the estimated percentage of Flexner-Wintersteiner rosettes in the available sections as follows; well differentiated; rosettes in >80% of tumour areas, moderate differentiated; any rosettes to <80% and poorly differentiated tumours no rosettes. Homer-Wright rosettes are not a sign of significant differentiation since they are not specific to RB being also seen in neuroblastoma or medulloblastoma.
Poorly differentiated tumours are more often noted in developing countries compared to the developed countries and this may be attributed to late disease presentation. A study done in France by Khelfaoul found, 42% of cases were well differentiated, 42% moderately differentiated and 16% poorly differentiated 12. In India Seema found poorly differentiated RB presented in 80.3% of eyes and well differentiated in 19.7%39. In Nigeria Ajaiyeoba found 45% of cases were moderate differentiated and 55% cases were poorly differentiated, but no well differentiated cases10. Maingi et al in Kenya found 9.7% well differentiated, 25.8% moderately differentiated, 48.4% poorly and undetermined 16.1%23.

A few studies have shown close prognostic association of RB tumour differentiation although not statistically significant(9,10) while other studies have shown no association(11,12). Due to this inconsistent, it is not a feature used to direct adjuvant chemotherapy and therefore not routinely reported. The current RBCOLAB reporting proforma does not include RB tumour grade (Appendix I).

2.6.2 Microscopic: Extent of tumour spread

Determining the extent of tumour spread helps identify those in need for adjuvant chemotherapy. The sites assessed are: the optic nerve, choroid, and sclera invasion. The following criteria are applied to determine the extent of optic nerve invasion; prelaminar, laminar, retrolaminar and tumour at optic nerve surgical margin40. In Tanzania Bowman found 45% with retro-laminar optic nerve involvement and 29% with optic nerve resection margin involvement4. In Kenya Maingi found 33.3% optic nerve involvement with 3.2% prelaminar, 12.9%, at laminar, 32.2% post laminar and 51.6% involving the surgical margin23. Optic nerve invasion especially past the laminar cribrosa has been identified as a significant poor prognostic factor41. Once the tumour crosses the lamina cribrosa, there is a higher chance of tumour cells having easy access to the pia-arachnoid, with spread to the central nervous system via the cerebrospinal fluid. The risk for extraocular relapse also increases significantly especially if the resection margin is invaded by tumor. It’s therefore recommended to reset at least 10 mm of the optic nerve during enucleation42.
The extent of choroid invasion (focal or massive) by the tumour should be stated. Focal choroidal invasion; is defined as a solid nest of tumour that measures less than 3 mm in maximum diameter (width or thickness), while massive choroidal invasion; is defined as a solid tumour nest 3 mm or more in maximum diameter (width or thickness) in contact with the underlying sclera. The degree of choroidal invasion varies among RB studies. In the U.S.A Shield found 23% cases in Tanzania Bowman found 62% cases with choroidal invasion. Massive choroidal invasion has been associated poor prognosis. In Kenya 5 out of 6 patients who had choroidal invasion died within a 3 year period.

Scleral invasion by RB occurs when the tumour extends beyond the choroid into the sclera. True sclera invasion should be differentiated on histopathologic grounds from “floaters,” which are free neoplastic cells that are dragged passively to the sclera during tissue processing thereby simulating scleral invasion. The extent is categorised as intrascleral or extrascleral invasion. Intrascleral, when tumour cells invade the sclera without surpassing the episclera while extrascleral, when tumour cells invade the whole width of the sclera to the periorbital tissue. At KNH Maingi found 1.1% of cases with intrascleral invasion and 21.5% with extra-scleral invasion while Gichigo found 24% with extra-scleral spread. Any degree of scleral invasion is associated with poor prognosis.

2.6.3. Pathological staging of RB
Following histological evaluation of RB, staging is done in reference to the current Pathologic TNM system 7th edition (Appendix II). Where T is the tumour size; N nodal involvement and M metastasis are demonstrated on histology.

Tumours confined to the retina are staged pT1 while those with minimal optic nerve invasion not beyond the lamina and or focal choroid invasion are staged pT2. Tumours invading the optic nerve past lamina cribrosa but not to surgical resection line and or exhibiting massive choroidal invasion are staged pT3, while tumours invading the optic nerve to resection line and or extra-ocular extension are staged pT4.
2. 6.4 Histology of RB1+/+ MYCN A RB
Has distinct histomorphology features from RB-/ comprising of; undifferentiated large cells with prominent multiple nucleoli, frequent apoptotic bodies, little calcification, necrosis, absent Flexner-Wintersteiner and Homer Wright rosettes. These histopathology features are almost similar to those observed in MYCN-amplified neuroblastoma (45,46) probably due to their shared genetic mechanism. Due to its aggressiveness, it’s mostly associated with involvement of extra ocular structures.

2.7. Management of RB
To optimize RB treatment, a multidisciplinary team that includes; an ophthalmologist, pathologist, paediatric oncologist, and radiation oncologist is involved. The goals of management are: to save the patient's life, preserve as much vision as possible, and decrease risk of late sequela from treatment particularly subsequent neoplasm.

2.7.1 Enucleation
Patients considered for enucleation include those with advanced RB in one or both eyes, active tumour in a blind eye, and painful glaucoma from tumour invasion. More than 99% of patients with unilateral RB without microscopic or macroscopic extraocular disease (pT1) are cured with this procedure.

Critical elements of the surgery include obtaining a long stump of optic nerve usually more than 10 mm and avoiding any perforation of the globe. Enucleated globes are evaluated for high-risk histopathology features.

2.7.2 Systemic chemotherapy
There are two forms systemic therapy pre-enucleation chemo-reduction and post enucleation adjuvant therapy. Side effects when present include myelosuppression with increased susceptibility to bacterial infections and bleeding tendencies. The goal of chemo-reduction is to reduce tumour size, facilitating more focused and safer therapy in advanced cases. However its use has come into scrutiny after a study by Zhao et al found that chemo-reduction leads to down staging and underestimating the histopathology features, hence, increasing the risk of dissemination47.
Adjuvant chemotherapy is provided for patients with high risk RB histology features post-enucleation helping in preventing metastasis and improving survival\(^6\). In a study by Kaliki analysing 52 eyes with high-risk RB features managed with post-enucleation adjuvant chemotherapy using vincristine, etoposide, and carboplatin showed no evidence of systemic metastasis in any case over a mean follow-up of 66 months\(^{48}\). Khelfaoul found a higher 3 year disease free interval in patients with high risk histopathology features treated with adjuvant chemotherapy compared to patients with no chemotherapy treatment which was statistically significant\(^{12}\).

2.7.3 External-beam radiation therapy (EBRT)

RB is very radiosensitive with EBRT doses ranging from 35 Gy to 46 Gy usually result in long-term remissions however EBRT has been associated with the risk of subsequent neoplasms in children with hereditary RB\(^{49}\). Newer methods of delivering EBRT are being used at many centers in an attempt to reduce adverse long-term effects. This includes intensity-modulated radiation therapy, stereotactic radiation therapy, and proton-beam radiation therapy\(^{50}\).

2.8. Patient outcome

The possible outcomes in patient with RB include: cure, tumour recurrence, tumour metastasis or mortality. In developed countries cure rates of more than 90% have being achieved\(^2\). This has been attributed to early clinical diagnosis, improved diagnostic criteria and treatment. In developing countries however, the prognosis remains poor with cure rates of less than 50%\(^3\) and\(^4\).

Recurrence may occur after aggressive local and systemic therapy or following enucleation. Following chemo-reduction and focal consolidation, tumor recurrence was found in 18% of tumors at 7 years by Shield\(^{51}\). At KNH Gichigo found 30% of patient with recurrent masses\(^5\). Orbital RB recurrence occurs within 12 months after enucleation, in a study by Kim et al 69 of the 71 patients (97%) who had tumour recurrence were diagnosed within the first 12 months\(^{52}\).

Metastasis generally develops within 1 year of intraocular tumour diagnosis. Those at greatest risk for metastasis are patient with delayed clinical diagnosis and high risk histology features\(^{53}\). Kopelman reported a 2.5 times increased chance of metastasis and death in patient with delayed clinical diagnosis\(^{54}\). Patients with evidence of these poor prognostic histology features should therefore be treated with adjuvant chemotherapy to prevent metastases.
The sites of RB metastasis include local extension to the orbit and CNS as well as distant metastasis involving the lungs, bones, and bone marrow. There are different routes of metastasis to these sites: Orbital RB occurs as a result of progression of the tumour through the emissary vessels and sclera, intracranial dissemination occurs by direct extension through the optic nerve while distant metastasis occurs through haematogenous spread following choroidal invasion.

2.8.1 Mortality
Mortality from RB is increased in patient with; extraocular disease, metastasis, trilateral RB and second malignant neoplasms. The prognosis for metastatic RB is dismal and the presence of CNS involvement has been shown to have a worse outcome. In Turkey a study by Gündüz et al assessed 18 patients with RB metastasis and found 9 had CNS metastasis, 4 patients had distant metastasis and 5 had both CNS and other distant site metastasis. At a mean follow-up of 24 months all patients who had any form of CNS metastasis were deceased while the 4 patients who had distant metastasis without CNS involvement were alive. In Mexico Leal et al assessed 81 patients with metastasis, 68 of whom had CNS involvement. 46 of those patients with CNS involvement died despite treatment. In Kenya Gichigo found 21 patients with CNS metastasis, all 21 dying within 2 to 23 months of admission.

Studies done by Paulino and Kivelä showed that patients diagnosed with trilateral RB have median survival of 6 to 9 months. While in Netherlands; Marees et al reported an almost 13 fold increase of second malignancy death while comparing hereditary RB survivors to the general population.

2.9. Retinoma
Retinoma has distinct clinical and histological features from RB. It is frequently found adjacent to RB suggesting that it is a common precursor of RB. Its incidence in the general population is unknown however its frequency has been described among the population with RB following either clinical or histological evaluation. With those observed clinically ranging from 1.8% (Gallie) to 3.2% (Abouzeid) among RB cases, while those observed histologically range from 6% (Ts’o) to 20.4% (Eagle).
2.9.1. Retinoma genetics
Several theoretical mechanisms have been proposed to explain the development of retinoma. Recently, it has been demonstrated that the two mutational events inactivating RB1 gene are already present in retinomas. A study by Dimaras25 on retinoma showed that the two hits in RB1 (M1-M2) do not inevitably cause a malignant phenotype, but lead to genomic instability and up regulation of the senescence-associated proteins p16INK4a and p130. These senescence-associated proteins are thought to prevent tumor progression.

2.9.2. Retinoma diagnostic clinical features
They were described by Gallie et al in 1982; characterized by a homogenous translucent grey elevated mass, opaque white calcified flecks having appearance of cottage-cheese and retinal pigment epithelium migration59. Singh noted another feature; presence of a zone of chorioretinal atrophy62.

2.9.3. Retinoma microscopic features and Immunostains
Retinoma histopathology features described by Ts’o et al and Margo et al are characterized by: smaller and less hyperchromatic nuclei than in RB, abundant eosinophilic cytoplasm and intercellular matrix, absent or very rare mitotic figures, typically absent necrosis, calcification in non-necrotic tumour and differentiation into fleurettes and lack of Homer Wright and Flexner-Wintersteiner rosettes (13,60).

The term ‘fleurette’ denotes a bouquet-like arrangement of cytologically benign cells joined by a series of zonulae adherentes that may form a short segment of neoplastic external limiting membrane. Bulbous eosinophilic processes that represent abortive photoreceptor inner segments form the ‘flowers’ of the bouquet.

Immunostains Ki67, PCNA, p53 and p130 are used to distinguish between retinoma and RB. Dimaras et al showed, proliferation markers Ki67 and PCNA stained strongly positive in RB, but were undetectable in retinomas. Occasional cell in retinomas stained faintly with p53, but strong staining was observed only in a subset of cells in RB, while p130 was strong in retinoma but not detected in RB25.
2.9.4. Retinoma prognosis and follow-up

The vast majority of adult patients with clinically diagnosed retinoma are asymptomatic and is usually non-progressive therefore does not require treatment. However a few may transform to malignancy with a range of 4% (Singh et al)61 to 12% (Abouzeid et al)62. Eagle et al in 1989 reported a case of retinoma in a young girl; the tumor was dormant for two years following diagnosis but later underwent malignant transformation and was enucleated at 34 months after presentation63. Hence ocular examination should be performed on an annual basis for possible risk of malignant transformation.
3.0. JUSTIFICATION

Current treatment protocols for RB patients post-enucleation recommend adjuvant therapy for those exhibiting high risk histopathology features such as, post-laminar optic nerve invasion, massive choroid invasion and sclera invasion\(^6\) that have been associated with significant poor prognosis. The degree of tumour differentiation in most cancers such as colorectal cancer has a bearing in patient management due to its significant prognostic association\(^8\); however in RB it shows no statistical significant association and therefore not currently used to direct on adjuvant treatment post enucleation. There is no local study assessing whether the degree of tumor differentiation and the high risk histology features have any significant prognostic impact among primarily enucleated RB patients.

The frequency of retinoma in various studies ranges from 6%\(^{13}\) to 20.4%\(^{14}\) while the frequency of the histomorphologically consistent RB1+/+ MYCN\(^A\) RB among enucleated RB patients is 1.4%\(^{15}\). There is no local data for both retinoma and histomorphologically consistent RB1+/+ MYCN\(^A\) RB frequencies. This may be attributed to the fact that histopathology features of retinoma are not routinely reported and RB1+/+ MYCN\(^A\) RB being recently demonstrated none or few cases have been locally reported.

Determining the prognostic impact of the degree RB tumour differentiation and high risk histology features locally will form a good basis for subsequent patient management. While the frequencies of retinoma and histomorphology consistent RB1+/+ MYCN\(^A\) RB among enucleated RB patients will generate local data and also may be of importance in future patients management.
4.0. RESEARCH QUESTIONS

1. Does the degree of tumour differentiation have any prognostic association among primarily enucleated patients with RB at KNH and PCEA-KH?

2. Do the high risk histopathology features have any prognostic association among primarily enucleated patients with RB at KNH and PCEA-KH?

5.0. HYPOTHESIS

The degree of tumour differentiation and the high risk histopathology features will have no prognostic association among RB patients at KNH and PCEA-KH.

6.0. BROAD OBJECTIVE

To determine the prognostic association of the tumour differentiation and the high risk histopathology features among primarily enucleated patient with RB at KNH and PCEA-KH.

7.0. SPECIFIC OBJECTIVES

7.1. Primary Objectives

1. To determine the degree of tumour differentiation and the high risk histopathology features among primarily enucleated RB patients at KNH and PCEA-KH.

2. To determine patient outcome among primarily enucleated RB patients at KNH and PCEA-KH.

3. To correlate the degree of tumour differentiation and the high risk histopathology features with the patient outcome among primarily enucleated RB patients at KNH and PCEA-KH.

7.2. Secondary Objectives

1. Determine the frequency of retinoma among primarily enucleated RB patients at KNH and PCEA-KH.

2. Determine the frequency of histomorphologically consistent RB1+/+ MYCN^A RB among primarily enucleated RB patients at KNH and PCEA-KH.
8.0 METHODOLOGY

8.1 Study Design
This was a retrospective cohort clinical-pathological review of primary enucleated RB patient from January 2005 to June 2012 at KNH and PCEA-KH.

Study design illustration

The study population was the primarily enucleated RB patients who were retrospectively followed up from the first day of enucleation. The groups/cohorts were categorized based on presence of the independent variables; poorly differentiated tumour or presence of established high risk histopathology features for exposed group and well and moderately differentiated tumour with absence of established high risk histopathology for the unexposed group. The dependent variable (prognostic indicator) being the patients survival either dead for poor outcome or alive for good outcome, as illustrated in figure 1 below.

![Study design illustration](image)

Figure 1: Study design illustration.
8.2 Study Area
The study was conducted at KNH and PCEA-KH Ophthalmology Operating Theatres, Medical Records Registries and KNH, M.P. Shah and RBCOLAB histology laboratories.

The RBCOLAB was established in October 2011 as a centralized laboratory for histopathology evaluation of enucleated RB specimens in Kenya serving most of the hospitals including KNH and PCEA-KH. Prior to its set-up enucleated RB eyes from KNH and PCEA-KH were processed and reported at KNH and M.P. Shah histopathology laboratories respectively.

8.3. Study Population
One hundred and forty (140) patients who underwent primary enucleation at KNH and PCEA-KH in the period between January 2005 to June 2012 and their eye specimens histopathologically confirmed to have RB were recruited.

8.3.1 Inclusion Criteria
1. Primarily enucleated patients at KNH and PCEA-KH whose specimen were histopathologically confirmed to have RB from January 2005 to June 2012.

2. Patients with incomplete clinical data and their parents or guardian gave verbal consent to be interviewed.

8.3.2 Exclusion Criteria
1. Secondary enucleation.

2. Missing specimen blocks.

4. Those with fatal outcomes attributable to causes other than ocular RB such as road traffic accident.
8.4 Sample size determination
The sample size was determined using a two proportions formula\(^4\) illustrated below.

\[
n = \left(\frac{z_\alpha \left(2\pi_1 (1 - \pi_1) - z_\beta \sqrt{\pi_1 (1 - \pi_1) \pi_2 (1 - \pi_2)} \right)}{\pi_1 - \pi_2} \right)^2
\]

Substitution into the formula

\[n=108\]

Where;

- \(\pi_1\) Estimated proportion of RB survivors at 1 year with poor histopathology feature (optic nerve resection margins involvement) 60 %. (Khelfaoulet al\(^{12}\))

- \(\pi_2\) Estimated proportion of RB survivors at 1 year with no poor histopathology feature (no optic nerve invasion) 95%. (Khelfaoulet et al\(^{12}\))

- \(z_\alpha\) Is the two-tailed value of z related to null hypothesis (5%) -1.96

- \(z_\beta\) Is the lower one-tailed value of z related alternative hypothesis (80 % power) -0.84
8.5. Data Collection: Medical records retrieval, review and phone interview

Upon ethical approval (Appendix III) permission was sought from relevant authorities at KNH and PCEA-KH to retrieve and review medical records. Once permission was granted (Appendix IV), a list of patients who underwent enucleation from January 2005 to June 2012 for suspected RB was made manually from KNH and PCEA-KH ophthalmology operating theatres records. The medical files of the identified patients were retrieved using the International Classification of Diseases (ICD-10) coding system which codes 69.2 for RB by the help of research assistants well versed in medical records keeping from medical registries both in KNH and PCEA-KH.

Patients who underwent primary enucleation and diagnosed to have RB were identified from the retrieved medical records and accessed for:

1. Demographic data: age at presentation, sex and county of birth.
2. Presenting complaints,
3. RB Laterality: Unilateral or Bilateral,
4. Date and age at enucleation
5. Mode of enucleation: Primary or secondary,
6. Adjuvant therapy if provided: regimen and cycles,
7. Disease state post enucleation (metastasis or recurrence),
8. Patient survival status (alive or dead) where applicable
9. Last follow-up date.

In the case of patients who were lost to follow-up, telephone interviews (Appendix V) were used to collect data from their next of kin after seeking a verbal consent\(^6\). Information regarding reason for loss of follow-up, patient survival status (alive or dead), date of death and cause of death were obtained and entered in a structured questionnaire (Appendix VI).
8.7. Specimen retrieval and processing

After obtaining permission from chief administrators at KNH, M.P.Shah (Appendix VII) and RBCOLLAB laboratories, eyes specimen blocks of patient who underwent primary enucleation and reported as RB from Jan 2005 to June 2012 at KNH and PCEA-KH were retrieved using the patient’s in-patients (I/P) and specimen laboratory numbers. Upon retrieval they were assigned a study number and all processed at RBCOLLAB for standardization adhering to SOP (Appendix VIII).

8.8. Examination and reporting

All processed slides were assessed by the principal investigator and two pathologists (supervisors) and recorded in a proforma (Appendix IX). Where there was lack of consensus the slides were reviewed by a third blinded pathologist as the tie-breaker. The features assessed were:

1. Re-Confirmation of RB.
2. Presence of retinoma features,
3. Histomorphology features consistent with RB1+/+ MYCN^{A} RB (neuroblastoma like).
4. Degree of tumor differentiation (three tier system) based on the percentage of Flexner-Wintersteiner rosettes on the Pupil-Orbit section:
 A. Well differentiated: more than 80% of the tumor area
 B. Moderately differentiated: any to 80% of the tumor area
 C. Poorly differentiated: complete absence of rosettes
5. High risk histopathology feature:
 A. Extent of Optic nerve invasion; none, pre-laminar, laminar, post-laminar and surgical margins involvement.
 B. Extent of Choroidal invasion; none, focal or massive invasion
 C. Extent of Sclera involvement; none, intra scleral or extra sclera invasion.
6. Involvement of other ocular structures: Iris, ciliary body, lens and anterior chamber,
FIGURE 2: flow chart illustrating patients identification, medical records retrieval, specimen block retrieval, data collection and entry

Identification of suspected RB enucleated patients:
Principle Investigator accesses procedure records from RB operating theatres.

Enucleated RB patient's medical records retrieval from:
Medical Registries Coded [CD 10-RB coded 69.2]

Specimen blocks retrieval:
1. Using I/P numbers of Primary enucleated patients and assigned Lab numbers [Lab records]
2. specimen eye blocks retrieved from the initial processing lab

Specimens block processing analysis and entry:
1. All retrieved eye blocks taken and Processed at RBCOLLAB
2. Histopathology features analyzed
3. Data entered into a structured proforma

Primary enucleated patient identification
Patients who underwent primary enucleation identified from the retrieved files.

Clinical data collection and entry
1. Data reviewed from files
2. Contact made [in-complete data]
3. Data was entered into a structured questionnaire.
8.9. Quality Assurance

- A trained technologist on histology eye processing was hired.
- The retrieved eye blocks were clearly labeled.
- The retrieved blocks were processed adhering to standard operating procedure (S.O.P.).
- The principle investigator reviewed the histopathology features and diagnosis, two blinded supervising pathologist independently confirmed these findings. In case of lack of consensus that case was reviewed by a third blinded pathologist as the tie-breaker.
- Every tenth case, slides were also reviewed by the third blinded pathologist.
- Data was carefully entered into respective data collections forms to avoid mix-ups.

8.10. Ethical considerations

- Permission to conduct this study was sought and obtained from KNH/UON-ERC (Appendix III).
- Written authorization to access patient’s medical records and retrieve eye specimen block was obtained from PCEA-KH and M.P. Shah (Appendix IV and VII respectively).
- Information regarding the outcome of the children’s who were lost to follow-up was obtained from their guardian or parent after seeking a verbal consent.
- Confidentiality was maintained, with only the principal investigator, supervisors and statistician allowed to view the data with identifiers.
- This study had no adverse effects on subjects’ health and no extra cost was accorded to the patient.
- The retrieved blocks were returned to their corresponding archives after processing.

8.11. Data collecting instruments

- Clinical and histology data was collected using predesigned questionnaire (Appendix VI) and reporting proforma (Appendix IX) respectively
8.12. Variables
1. The Independent variables were the degree of tumour differentiation, established poor prognostic histological features, gender, laterality, age at tumor presentation, age at enucleation, treatment and presence of tumour recurrence and metastasis.

2. The dependent variables (prognostic indicator): Time to event from enucleation to present, determined by patient survival either dead or alive.

8.13. Data management and statistical analysis plan
- All participants were assigned a unique study number and data collected using a structured questionnaire and proforma. Once collected data was stored safely in a locked drawer. The data was then entered into access program and cleaned using Epi-info 7.
- All statistical tests were performed at 5% level of significance (95% confidence interval) using SSPS 20.0 software.
- Data frequencies were generated using bar charts, pie charts and graphs. Continuous variables were analyzed using measure of central tendency, measure of variation and Student t-test, while categorical variables were analyzed using Chi square test.
- Univariate and Multivariate regression methods analysis were used to determine prognostic factors associated with patient outcome. The overall disease free and survival interval were analyzed with Kaplan Meier method.
- A P-value of < 0.05 was considered to be statistically significant.
9.0 RESULTS

In the period under review a total of 280 patients from KNH and PCEA-KH underwent enucleation for suspected RB. 140 of these patients were excluded from the study: 70 cases had missing clinical files, 13 cases had RB ruled out on histology, 31 cases had undergone secondary enucleation, 3 patients died due to unrelated ocular RB (two had trilateral RB and one had pulmonary tuberculosis) and 23 cases had missing laboratory blocks. 140 cases were eligible for the study, with 106 known and 34 Unknown outcomes respectively. Figure 3 below demonstrates the cohort overview.

Figure 3: Overview of the cohort participants.

Key RB = Retinoblastoma.
Hospital where primary enucleation was done

Of the 106 participants with known outcome majority 69 (65.09%) were enucleated at KNH compared to 37 (34.91%) at PCEA-KH, as illustrated in figure 4 below.

![Figure 4: Distribution of hospitals where enucleation was done (n=106)](image)

Obtained clinical data

Of the 106 participants whose outcome was known, 88 (83.02%) had complete clinical data and were on follow-up, while 18 (16.98%) had incomplete clinical data due to loss of follow-up with their outcome being established after contacting their guardian or parents on phone.

Mean follow-up period in months for patients with complete clinical data (n=88) was 44.93, median 41.50, Range 2.00 - 118.00.

Mean follow-up period in months for patients with in-complete clinical data (n=18) was 10.3, median 7.0, Range 0.10 – 37.0.
Distribution for the reasons of loss of follow-up for those contacted

The major reason for loss of follow-up among the 18 cases whose parents or guardians were contacted, was financial constraints in 12 (66.67%) of cases, as illustrated in figure 5 below.

![Distribution of reasons for loss of follow-up](image)

Figure 5: Distribution for the reasons for loss of follow-up for those contacted (n=18).

Distribution of participants by sex

There was no significant sex difference observed between, male 56(52.8%) and female 50(47.2%), with a Ratio of 1.30:1 and p = 0.627. Figure 6 below illustrates the distribution of participants by sex.

![Distribution of participants by sex](image)

Figure 6 Distribution of participants by sex (n=106).
Distribution of participants by laterality

Majority of patients 84 (79%) had unilateral RB with 22 (21%) having bilateral disease, as illustrated in figure 7 below.

![Figure 7: Distribution of participants by laterality (n=106).](image)

Distribution of participants by age at presentation

The mean age at presentation was 26.8 months (SD 16.82), median 24.00 months, mode 36.00 months and Range 2.00 - 81.00 months. Majority of patients were diagnosed by 5 years of age or less (98%), as shown in figure 8 below.

![Figure 8: Distribution of participants by age at presentation (n=106).](image)
Age at presentation of participants in months vs. laterality

Patients with bilateral disease presented at an earlier age with all cases presenting below 48 months, in comparison to unilateral disease where some patients presented above 60 months of age.

The mean age of the patients with unilateral disease was 28.99 months, compared to 18.45 months among the patients with bilateral disease; the mean difference was 8.75 which was statistically significant ($p=0.008$).

Figure 9 below illustrates the age at presentation of participants in months vs. laterality.

![Figure 9: Age at presentation of participants in months vs. laterality (n=106).](image)
Overview of outcome of participants

A total of 140 participants were eligible for the study with 34 unknown outcomes. Of the 106 participants whose outcome was known, 76 were alive and 30 were dead. Figure 10 below indicate the overview of the outcome of participants.

![Flowchart]

Figure 10: Overview of the outcome of participants.

The mean survival time of those with fatal outcome (n=30) following enucleation was 17.7 months (SD 14.1), Range 2 - 54, for the surviving group (n=76) was 59.5 months (SD 25.4) Range 13 – 118.

The difference in the mean age between the two groups (41.8 months) was statistically significant (p = <0.001).
Association among laterality, family history, leukocoria, proptosis and outcome of participants

n =106

Patient with Bilateral disease were 3 times more likely to die than those with Unilateral disease which was statistically significant \((p=0.016)\)

Positive family history was not associated with a significant poorer outcome \((p=0.415)\)

Patients who presented with leukocoria were not associated with poor outcome \((p=0.324)\)

The patient who presented with proptosis had a 4 times risk of fatal outcome which was statistically significant \((p=0.039)\).

Table 1: Association among laterality, family history, leukocoria, proptosis and outcome of participants

<table>
<thead>
<tr>
<th>(n=106)</th>
<th>OUTCOME</th>
<th>OR(95% CI)</th>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATERALITY</td>
<td>DEAD n (%)</td>
<td>ALIVE n (%)</td>
<td></td>
</tr>
<tr>
<td>Bilateral</td>
<td>11 (50.0%)</td>
<td>11(50.0%)</td>
<td>3.2 (1.07 - 9.46)</td>
</tr>
<tr>
<td>Unilateral</td>
<td>20(23.0%)</td>
<td>64 (77.0%)</td>
<td></td>
</tr>
</tbody>
</table>

FAMILY HISTORY				
Positive	3(42.86%)	4 (57.14%)	1.9(0.26– 11.96)	0.415
Negative	28(28.28%)	71(71.72%)		

LEUKOCORIA ONLY				
Yes	21 (25.9%)	60 (74.1%)	.622 (.239 - 1.619)	0.324
No	9 (36.0%)	16 (64.0%)		

PROPTOSIS				
Yes	5 (62.5%)	3 (37.5%)	4.867(1.084 -21.848)	0.039
No	25 (25.5%)	73 (74.5%)		
Presenting Complaints of participants

Majority of the patients presented with white reflex only 86 (81.3%), while 8 (7.5%) had an initial white reflex but presented with orbital swelling. Figure 11 below shows the distribution of presenting Complaints.

<table>
<thead>
<tr>
<th>Presenting Complaints</th>
<th>Number (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White reflex only</td>
<td>86 (81.13%)</td>
</tr>
<tr>
<td>Squint</td>
<td>3 (2.83%)</td>
</tr>
<tr>
<td>Redness</td>
<td>2 (1.89%)</td>
</tr>
<tr>
<td>Orbital swelling</td>
<td>0</td>
</tr>
<tr>
<td>White reflex and Squint</td>
<td>3 (2.83%)</td>
</tr>
<tr>
<td>White reflex and Redness</td>
<td>5 (4.72%)</td>
</tr>
<tr>
<td>White reflex and Orbital swelling</td>
<td>8 (7.55%)</td>
</tr>
<tr>
<td>White reflex and Others</td>
<td>4 (3.77%)</td>
</tr>
</tbody>
</table>

Figure 11: Distribution of presenting Complaints (n=106)

Types of adjuvant chemotherapy regimens administered to participants

Fifty five patients were initiated on adjuvant chemotherapy 36 (65.45%) of whom received Vincristine, Etoposide and Carboplatin (VEC) regimen and 19 (34.55%) received Vincristine, Adriamycin, Carboplatin and Cisplatin (VACIS) regimen, as indicated in figure 12 below.

Figure 12: Types adjuvant chemotherapy regimens administered to participants (n=55).
Completion rate of adjuvant chemotherapy by participants

Of the 55 patient initiated on adjuvant chemotherapy, 44 (80%) completed the cycles whereas 11 (20%) did not complete. The majority of patients in the latter group were lost to follow up. Figure 13 below shows completion rate of adjuvant chemotherapy by participants.

![Completion rate of adjuvant chemotherapy by participants](n=55)

Association between completion adjuvant chemotherapy and outcome of participants

The patient who did not complete adjuvant chemotherapy had a poorer outcome in comparison to those who completed adjuvant chemotherapy which was statistically significant \((p=0.042)\).

Table 2: Association between completion adjuvant chemotherapy and outcome of participants

<table>
<thead>
<tr>
<th>n=55</th>
<th>OUTCOME</th>
<th>OR(95% CI)</th>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant chemotherapy</td>
<td>DEAD n (%)</td>
<td>ALIVE n (%)</td>
<td></td>
</tr>
<tr>
<td>Not completed</td>
<td>8(72.7%)</td>
<td>3 (27.3%)</td>
<td></td>
</tr>
<tr>
<td>Completed</td>
<td>17(38.6%)</td>
<td>27(61.4%)</td>
<td>4.24 (0.84 - 27.49)</td>
</tr>
</tbody>
</table>
Association among metastasis, recurrence and outcome of participants

Patients who had metastasis or recurrence had a poor outcome (100% and 90% mortality respectively), both being statistically significant ($p=<0.001$).

Table 3: Association among metastasis, recurrence and outcome of participants

<table>
<thead>
<tr>
<th>n=106</th>
<th>Metastasis</th>
<th>Outcome</th>
<th>OR(95% CI)</th>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dead n</td>
<td>Alive n</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7 (100.0%)</td>
<td>0 (0.0%)</td>
<td>4.263(2.88</td>
<td><.001</td>
</tr>
<tr>
<td>No</td>
<td>19 (23.5%)</td>
<td>62 (76.5%)</td>
<td>6.32)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Recurrence</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>9 (90.0%)</td>
<td>1 (10.0%)</td>
<td>32.294 (3.819 -273.049)</td>
</tr>
<tr>
<td>No</td>
<td>17 (21.8%)</td>
<td>61 (78.2%)</td>
<td></td>
</tr>
</tbody>
</table>

Characteristic histopathology findings

All the 106 were confirmed to have RB -/- features. No case histomorphologically consistent with RB +/- MYCN^A RB was noted and 2.8% had retinoma features.

The majority of participants had moderately differentiated tumour 57 (53.8%) with 40 (37.7%) cases having massive choroidal invasion and only 8 (7.6%) having scleral invasion. 34 (32.1%) had post laminar optic nerve invasion. Histopathologic features are summarised in table 4 below.
Table 4: Summary of characteristic histopathologic features of participants enucleated eyes

n=106

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histomorphology features:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB -/-</td>
<td>106</td>
<td>100%</td>
</tr>
<tr>
<td>RB +/+ [MYCN^A]</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Retinoma features present:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>2.8%</td>
</tr>
<tr>
<td>No</td>
<td>103</td>
<td>97.2%</td>
</tr>
<tr>
<td>Degree of differentiation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Differentiated,</td>
<td>9</td>
<td>8.4%</td>
</tr>
<tr>
<td>Moderately Differentiated,</td>
<td>57</td>
<td>53.8%</td>
</tr>
<tr>
<td>Poorly Differentiated,</td>
<td>40</td>
<td>37.8%</td>
</tr>
<tr>
<td>Choroidal Invasion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Involved,</td>
<td>55</td>
<td>51.9%</td>
</tr>
<tr>
<td>Focal Invasion,</td>
<td>11</td>
<td>10.4%</td>
</tr>
<tr>
<td>Massive Invasion,</td>
<td>40</td>
<td>37.7%</td>
</tr>
<tr>
<td>Scleral Invasion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Involved,</td>
<td>98</td>
<td>92.5%</td>
</tr>
<tr>
<td>Intrasclera,</td>
<td>2</td>
<td>1.9%</td>
</tr>
<tr>
<td>Extrasclera,</td>
<td>6</td>
<td>5.7%</td>
</tr>
<tr>
<td>Optic Nerve Involvement:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Involved,</td>
<td>48</td>
<td>45.3%</td>
</tr>
<tr>
<td>Pre Laminar,</td>
<td>15</td>
<td>14.2%</td>
</tr>
<tr>
<td>At Laminar,</td>
<td>9</td>
<td>8.5%</td>
</tr>
<tr>
<td>Post Laminar but margins free,</td>
<td>18</td>
<td>17.0%</td>
</tr>
<tr>
<td>Post Laminar and margins.</td>
<td>16</td>
<td>15.1%</td>
</tr>
<tr>
<td>TNM Staging:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT1</td>
<td>34</td>
<td>32.1%</td>
</tr>
<tr>
<td>pT2</td>
<td>11</td>
<td>19.8%</td>
</tr>
<tr>
<td>pT3</td>
<td>35</td>
<td>33.0%</td>
</tr>
<tr>
<td>pT4</td>
<td>16</td>
<td>15.1%</td>
</tr>
</tbody>
</table>
Association among degree of differentiation, choroidal invasion, scleral invasion, optic nerve invasion and outcome of participant

Patient’s with poorly differentiated tumour had a poorer outcome in comparison to those who had well and moderately differentiated tumours which was statistically significant (p= 0.037).

Massive choroidal Invasion was also associated with a poorer outcome which was statistically significant (p=0.002). Patient’s with sclera involvement had a poorer outcome in comparison to those with no involvement which was statistically significant (p= 0.006)

Patient’s with post laminar or surgical margin optic nerve invasion were 8 times more likely to die which was statistically significant (p=<0.001).

Table 5: Association among degree of differentiation, choroidal invasion, scleral invasion, optic nerve invasion and outcome of participant

<table>
<thead>
<tr>
<th>n=106.</th>
<th>OUTCOME</th>
<th>OR(95% CI)</th>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of differentiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poorly</td>
<td>DEAD n (%)</td>
<td>16 (40.0%)</td>
<td>24 (60.0%)</td>
</tr>
<tr>
<td></td>
<td>ALIVE n (%)</td>
<td>2.48 (1.95 - 6.43)</td>
<td>0.037</td>
</tr>
<tr>
<td>Well & Moderately</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massive</td>
<td>25 (62.5%)</td>
<td>15 (37.5%)</td>
<td>16.67 (1.92 - 748.27)</td>
</tr>
<tr>
<td>Focal</td>
<td>1 (9.1%)</td>
<td>10 (90.9%)</td>
<td>9.25 (1.75 - 48.9)</td>
</tr>
<tr>
<td>Degree of Choroidal invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>6 (75%)</td>
<td>2 (25%)</td>
<td>9.25 (1.75 - 48.9)</td>
</tr>
<tr>
<td>Not involved</td>
<td>24 (24.5%)</td>
<td>74 (75.5%)</td>
<td></td>
</tr>
<tr>
<td>Sclera invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Laminar and at Surgical Margin</td>
<td>20 (58.8%)</td>
<td>14 (41.2%)</td>
<td>8.86 (3.09 - 25.82)</td>
</tr>
<tr>
<td>Pre laminar and at Laminar</td>
<td>10 (13.9%)</td>
<td>62 (86.1%)</td>
<td></td>
</tr>
</tbody>
</table>
Association between TNM Staging and outcome of participants

Patient who had a late stage (≥ pT3a) tumour had a poorer outcome which was statistically significant (p=< 0.001)

Table 6: Association between TNM Staging and outcome of participants:

<table>
<thead>
<tr>
<th>TNM Staging</th>
<th>Outcome</th>
<th>OR(95% CI)</th>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dead</td>
<td>Alive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>≥ pT3a</td>
<td>28 (56.0%)</td>
<td>22 (44.0%)</td>
<td>34.36 (7.35 - 310.26)</td>
</tr>
<tr>
<td>≤ pT2b</td>
<td>2 (3.6%)</td>
<td>54 (96.4%)</td>
<td></td>
</tr>
</tbody>
</table>

Kaplan Meier overall survival probability curve of participants

A total of 140 participants eligible for the study were included in the generation of the survival curves i.e. with known (106) and unknown (34) outcome. The latter 34 patients whose outcome was unknown were lost to follow-up but their parents or guardians were not contacted due to inaccurate, change or lack of mobile phone numbers. Each of these 34 patients was censored as at the last day known alive on the Kaplan Meier curve. Start point was day of enucleation, while the event was death. Figure 14 below indicates the overall survival probability curve of participants.

Probability of survival at 12 months is 0.85, while at 36 months is 0.78 and at 60 months is 0.70.

Figure 14: Kaplan Meier overall survival probability curve of participants (n=140)
Comparison of the participant’s survival according to the degree of differentiation

The survival distributions for the three tumour grade groups were statistically significantly different \(p=0.032 \), as shown in figure 15 below.

![Survival Functions](image)

Figure 15: Comparison of the participant’s survival according to the degree of differentiation (n=140)

Comparison of the participant’s survival according to the degree of choroidal Invasion

The survival distributions for the three choroidal invasion groups were statistically significantly different \(p=0.001 \), as indicated in figure 16 below.

![Survival Functions](image)

Figure 16: Comparison of the participant’s survival according to the degree of choroidal invasion (n=140)
Comparison of the participant’s survival according to the degree of sclera invasion

The survival distributions for the three sclera invasion groups were statistically significantly different ($p = 0.02$), as illustrated in figure 17 below.

![Survival Functions](image)

Figure 17: Comparison of the participant’s survival according to the degree of sclera invasion (n=140)

Comparison of the participant’s survival according to the degree of optic nerve invasion

The survival distributions for the five groups were statistically significantly different, ($p < 0.001$), as indicated in figure 18 below.

![Survival Functions](image)

Figure 18: Comparison of the participant’s survival according to the degree of optic nerve invasion (n=140)
Comparison of the participant’s survival according to TNM staging

The survival distributions for the six groups were statistically significantly different, (p < 0.001), as illustrated in figure 19 below.

Figure 19: Comparison of the participant’s survival according to TNM staging (n=140)
Multivariate Analysis

n=140.

The variables which had a significant statistical association with outcome of the participants i.e. bilateral RB, proptosis, non-completion of adjuvant chemotherapy, metastasis, recurrence, poorly differentiated tumour, massive choroidal invasion, sclera invasion and post laminar optic nerve invasion were included in the multivariate analysis model.

The variables with significant impact on outcome after analyses were: bilateral RB, orbital swelling, metastasis, recurrence, poorly differentiated tumour, sclera invasion, massive choroidal invasion and post laminar optic nerve invasion. However non completion of adjuvant chemotherapy was not found to have a statistically significant impact (p= 0.073). As illustrated in table 7 below.

Table 7: Multivariate Analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hazard Ratio</th>
<th>95% confidence interval</th>
<th>P=Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral RB</td>
<td>0.376</td>
<td>0.179 – 0.791</td>
<td>0.010</td>
</tr>
<tr>
<td>Proptosis</td>
<td>3.436</td>
<td>1.301 – 9.079</td>
<td>0.013</td>
</tr>
<tr>
<td>Non completion of adjuvant chemotherapy</td>
<td>0.458</td>
<td>0.195 – 1.077</td>
<td>0.073</td>
</tr>
<tr>
<td>Metastasis</td>
<td>7.390</td>
<td>3.111 – 17.552</td>
<td>0.001</td>
</tr>
<tr>
<td>Recurrence</td>
<td>6.421</td>
<td>2.906 – 14.188</td>
<td>0.001</td>
</tr>
<tr>
<td>Poorly differentiated tumour</td>
<td>0.477</td>
<td>0.231 – 0.984</td>
<td>0.045</td>
</tr>
<tr>
<td>Massive choroid invasion</td>
<td>0.088</td>
<td>0.030 – 0.253</td>
<td>0.001</td>
</tr>
<tr>
<td>Sclera invasion</td>
<td>0.256</td>
<td>0.088 – 0.742</td>
<td>0.012</td>
</tr>
<tr>
<td>Post laminar optic nerve invasion</td>
<td>0.133</td>
<td>0.048 – 0.369</td>
<td>0.001</td>
</tr>
</tbody>
</table>
10.0 HISTOPATHOLOGY APPERANCES (PHOTOMICROGRAPHS)

Tumour differentiation and high risk histology features as prognostic factors among patients with retinoblastoma at Kenyatta National Hospital and Presbyterian Church of East Africa Kikuyu Hospital.

Plate 1:

(1a) characteristic Flexner Wintersteiner rosette (× 400) illustrated by the black pointer, (1b) Well differentiated RB (× 40) exhibiting numerous Flexner Wintersteiner rosettes’ appearing in > 80 % of the tumour.

Plate 2:

(2a) Moderately Differentiated RB exhibiting few Flexner Wintersteiner rosettos (× 400) illustrated by the black pointer (2b) Poorly differentiated RB comprising of sheets of small round blue cells with no Flexner Wintersteiner rossets (× 100).
Plate 3

(3a) Focal choroidal invasion (C) < 3mm illustrated by the black arrow, with no sclera involvement (S) (× 400). (3b) Massive choroidal by tumour (C) >3mm with no sclera invasion (S) noted (× 400).

Plate 4

(4a) Massive choroidal invasion (C) > 3mm with intrasclera invasion (S) illustrated by the white arrow. (× 400). (4b) Massive extrasclera soft tissue involvement (ET) illustrated by black pointer. (× 400).
Plate 5

(5a) Post laminar optic nerve invasion (L) illustrated by the black pointer surgical margins are tumour free (M) (× 100). (5b) Optic nerve invasion to the surgical margins (M) (× 400).

Plate 6

(6) Features of retinoma, characterized by small and less hyperchromatic nuclei than in retinoblastoma and differentiation into fleurettes pointed by the white arrow (× 400)
11.0 DISCUSSION

DEMOGRAPHICS OF THE PARTICIPANTS

There was a slight male preponderance with a male: female ratio of 1.12:1. This compares with other local studies where Kimani et al22 and Gichigo et al5 found ratios of 1.26:1 and 1.16:1 respectively. The majority of patients (80.9%) presented by the age of 3 years, the mean age at presentation was 26.8 months, with a median of 24 months, and a range of 2–81 months. The patients in our study presenting much earlier in comparison to other local studies undertaken at KNH; in Gichigo et al5 study 63% presented by age 3 years with mean age at presentation 35 months, Kimani et al22 the mean age at presentation was 32.4 months, while Maingi et al23 was 32.8 months. This may be explained by the fact that our study only considered patients who underwent primary enucleation, while the other studies included all RB groups. It could also mean that the Kenya National Retinoblastoma strategy37 has had an impact on reducing the number of patients presenting with late disease.

The proportion of those with unilateral RB was 79% and bilateral 21% which was similar to Nyamori et al21 study where 74.2% of cases with unilateral RB and 25.8% bilateral RB cases were found. The mean age at presentation for unilateral RB was 28.99 months compared to 18.45 months for bilateral RB which was statistically significant (p= 0.008). Both groups in our study presented earlier compared to other local studies Nyamori21 found unilateral cases presenting at 35.9 months and bilateral cases at 26 months, while Gichigo5 found unilateral cases presenting at 39.8 months and bilateral at 24.3 months. This may still be attributed to earlier presentation of the cohort in our study in comparison to the other studies and positive impact from the Kenya National Retinoblastoma strategy has described above. However in comparison to studies in the developed countries our cohort still presented much later. In Britain patients with Unilateral RB mean age at presentation was 18 months and 5 months for bilateral disease2.

In this study positive family history was identified in 7 cases (6.6%) which compares well to Nyamori et al. who found 4.3 % of cases21. In developed countries however, higher frequencies are noted, with Britain recording 12%2. The difference is more likely explained by the fact that children with RB in developed world have better survival and therefore more likely to attain adulthood and have offspring.
CLINICAL PRESENTATION OF THE PARTICIPANTS

The most common presenting symptom was white reflex which was the only presenting feature in 81% of patients. Other symptoms which presented together with white reflex were; proptosis (7.6%), redness of the eye (6.5%), squint (5.7%) and poor vision (3.8%). Gichigo et al found 72% had white reflex, with fewer (38%) presenting with white reflex only, while the remainder had associated proptosis. In Nigeria Owoeye et al found majority 84.6% to have proptosis and chemosis. In the USA leukocoria (60%), strabismus (20%) and ocular inflammation (5%) were noted to be the common presenting signs.

Local orbital recurrence was noted in 10 (9%) patients while metastasis was reported in 7 (6.6%) of cases where all being to the central nervous system. Gichigo et al however noted higher occurrence of both recurrence and metastasis with 30 % of patients having recurrence and 17 (16.1%) having metastasis mainly to the central nervous system.

HISTOPATHOLOGY FINDINGS

In our study, all the specimens were found to have the RB-/- histomorphology features. The frequency of retinoma was 2.8% which was lower in comparison to other studies where it ranges from 6% to 20.4%. No case with histomorphologic features consistent with RB +/+ MYCN A RB was noted. Rushlow et al having analyzed 1068 patients with non-familial unilateral RB found 29 (2.7%) of patients with RB+/+, 15 (1.4%) of whom had MYCN A and neuroblastoma like histomorphology features. This may probably be explained by the small numbers in our study of 106 patients in comparison to 1068 patients in the study by Rushlow et al. Patients with RB+/+ MYCN A RB may also have presented with advanced disease where primary enucleation was not feasible in view of its aggressive behaviour.

Majority of tumours in this study were moderately differentiated 53.8%, 37.8% were poorly differentiated and 8.5% were well differentiated. These findings are different from other studies in developing countries; in Kenya Maingi et al found 9.7% cases to be well differentiated, 25.8% were moderately differentiated and 48.4% poorly differentiated and 16.1% undetermined. In Nigeria, Ajaiyeoba et al found no case of well differentiated tumor with 45% being moderately differentiated and 55% poorly differentiated. However in developed countries majority are usually well differentiated with Khelfaoul et al in France finding 42% well differentiated, 42%
moderately differentiated and 16% poorly differentiated. It may be that patients who present early are more likely to have well differentiated tumours. In our study the distribution of the high risk histology features was as follows: Post laminar and surgical margins involvement in 34 (58.6%) of those with optic nerve involvement, choroidal invasion in 48% of cases, of which 37.7% of these had massive invasion and Sclera involvement was in 7.5% of cases. This differs from the study of Maingi et al. where 83.8% of those with optic nerve invasion had Post laminar cribrosa and surgical margin involvement, 62.6% had massive choroidal invasion and 22% had sclera invasion. Fewer cases with late RB stage > pT3a (48.1%) were found in this study in comparison to other studies where Gichigo et al found late disease in 71.7% while Nyamori et al found 74%. There were fewer cases of the high risk histologic features noted in our study compared to other previous local studies. This may be attributed to the early presentation in our cohort.

SURVIVAL OUTCOME OF THE PARTICIPANTS

Of the 106 patients with known outcome, 70 (71.6%) were alive, and 30 (28.4%) dead, this differs from a study done locally at KNH by Gichigo et al where 26.7% were alive and 73.4% dead. There was a higher overall survival rate in our study of 0.85 at 12 months, 0.78 at 3 years and 0.70 at 5 years in comparison to studies by Gichigo et al KNH and Bowman et al in Tanzania where the probability of survival at 3 years was lower at 0.2 in both studies. This may be attributed to the early presentation of our cohort in comparison to the two studies, where only patient amenable to primary enucleation were considered in our study while the latter studies considered all RB groups. This shows that early RB presentation and diagnosis improves survival.
ASSOCIATION BETWEEN CLINICAL PRESENTATIONS WITH OUTCOME OF THE PARTICIPANTS

Patients with bilateral RB were 3 times more likely to die than those with unilateral RB which was statistically significant (p=0.016). This differs from Gichigo et al5 where no statistical difference (p=0.532) between the two groups was found the later study incorporating all RB groups.

Advanced disease was found to have a poorer outcome, with patients having orbital swelling associated with a 65% mortality which was statically significance (p=0.039) and compares to Gichigo et al5 found 100% mortality in those presenting with orbital swelling which was statically significant (p=0.001)

Patients with adjuvant chemotherapy was administered but failed to complete the cycles were 4 times likely to die compared to those who completed treatment which was statistically significant (p=0.042). Adjuvant chemotherapy for RB patients with high-risk histological features has been shown to improve patient’s survival; Kaliki et al48 observed that 57 patients on follow-up and completed treatment were disease free at 66 months.

Recurrence or Metastasis were associated with poor outcome with a 90% and 100% mortality respectively both being statistically significant (p=< 0.001). This compares with Gichigo et al5 where there was 100% mortality at 12 months for those with metastasis and Gündüz et al55 in Turkey where 100% mortality at 24 months for those with metastasis was noted.

HISTOPATHOLOGY ASSOCIATION AND OUTCOME OF PARTICIPANTS

The degree of tumour differentiation was found to have an impact on patients survival with those having poorly differentiated RB being 2.8 times likely to die than those with well or moderately differentiated tumour which was statistically significant (p=0.037). Ajaiyeoba et al10 found a close association between the poorly differentiated RB with poor outcome though not statistically significant (p=0.057) while other studies however have reported no association between the tumour grade and outcome12. The survival distribution between the three groups was also statistically significant (p = 0.034) in this study, however this differed with Khelfaoul et al12 where no statistical difference (p=0.11) was found.
The high-risk histological features were confirmed to impact significantly on patient’s poor outcome; massive choroidal invasion was $p=0.002$, sclera invasion was $p=0.006$ and optic nerve post laminar and surgical margins was $p<0.001$. This compares well with other studies, where Andrea et al in Argentina found massive choroidal invasion to be associated with poor outcome ($p = 0.04$)\(^ {13}\) while Cuenca et al still in Argentina found both sclera involvement and Optic nerve invasion post laminar invasion being associated with significant poor outcome with $p = 0.05$ and $p = 0.02$ respectively\(^ {44}\). The survival distributions among the five groups of optic nerve invasion was significant $p < 0.001$, which is consistent with findings by Khelfaoul et al at $p = 0.000^{12}$.

MULTIVARIATE STUDIES

The variables which had a significant association with outcome i.e. bilateral RB, proptosis, non-completion of adjuvant chemotherapy, metastasis, recurrence, poorly differentiated tumour, massive choroidal, invasion sclera invasion and post laminar optic nerve invasion were included in the model. Non-completion of adjuvant chemotherapy was the only variable that showed no statistically significant association ($p=0.073$) with the other variables showing significant association with poor outcome. Gichogo et al\(^ {5}\) found leucokoria only and tumour confined to the globe being associated with better outcome while Khelfaoul et al\(^ {12}\) found Massive choroidal invasion and retro-laminar optic nerve invasion being associated with poor outcome following multivariate analysis.

12.0 STUDY LIMITATIONS

The challenges encountered included:

- Missing and incomplete patient clinical records.
- Inability to contact the guardian or parent of those patients lost to follow-up due to missing or wrong telephone contacts.
- Missing specimen blocks.
- Different trimming techniques at KNH and M.P Shah Laboratories before the establishment of RBCOLAB. To overcome this, the specimens were re-blocked for standardized processing.
13.0 CONCLUSIONS

1. The distribution of degree of tumour differentiation was; 9 (8.5%) for well differentiated, 57 (53.8%) for moderately differentiated and 40 (37.8%) for poorly differentiated tumours. For the high risk histopathology features; massive choroidal invasion was found in 40 (37.7%) of cases, with few cases 8 (7.6%) having sclera invasion (intrascleral and extrascleral) and 34 (32.1%) with optic nerve post laminar cribrosa involvement.

2. There was a higher survival probability which was 85% at 12 months, 78% at 36 months and 70% at 60 months in comparison to previous studies done locally. This may be attributed to the earlier presentation of our cohort since only those who had undergone primary enucleation were considered, while the other previous studies included all the RB patients.

3. The degree of tumour differentiation was found to have a prognostic impact, with patients having poorly differentiated tumour being associated with a poorer survival. The high risk histologic features i.e. massive choroidal invasion, sclera invasion (intrascleral and extrascleral) and optic nerve post laminar cribrosa involvement were associated with poor outcome which compares to other studies.

4. The retinoma frequency was 2.8% which was low in comparison to other studies. While no single case was histomorphologically consistent with RB +/+ MYCN subtype was defined in this study.
14.0 RECOMMENDATIONS

1. The degree of tumour differentiation was found to have a prognostic impact among patients with RB, we therefore advocate for a consensus in the grading criteria and its inclusion in the reporting of RB.

2. Standardized synoptic reporting should be maintained with continued careful evaluation of the high risk RB histopathology features to guide on management.

3. A larger study is recommended to determine the frequency of histomorphologically consistent RB +/+ MYCN subtype.
15.0 REFERENCES

36. The Royal College of Pathologists. Standards and datasets for ocular retinoblastoma histopathology reports web: www.rcpath.org.2010

APPENDIX I: RBCOLAB RB PROFORMA

Patient name: Lab specimen number:
Date of birth (dd/mmm/yyyy): / / Sex: Female Male
Hospital: Ward: OP/IP number:
Date of procedure: / / Date received: / /
Time of collection: am pm
Doctor’s name:

CLINICAL INFORMATION PROVIDED BY DOCTOR (as per request form)
Laterality: Unilateral Bilateral Trilateral
Previous treatment: None Chemotherapy Other (specify): Clinical assessment: Optic nerve involvement Extra-orbital involvement Recurrence (specify): Metastasis (specify):
Other notes (e.g. nodal involvement, etc):
Family history of retinoblastoma? Yes No Unknown

MACROSCOPIC EXAMINATION
Type of specimen: Eye Orbital biopsy other (specify):
Side: Left Right Structures included: Medial rectus other:
Extra-ocular muscle marked for orientation: Medial rectus Other: None
Specimen dimensions: Anteroposterior: cm Horizontal: cm
Vertical: cm Optic nerve length: cm

Optic nerve thickness/diameter:
Distal end: mm Cannot determine (specify): Proximal end: mm Cannot determine (specify):
Tumour dimensions after grossing: Base at cut edge: mm Height at cut edge: cm
Cannot determine (specify):
Growth pattern: Endophytic Exophytic Diffuse
Cannot determine (specify):
MICROSCOPIC EXAMINATION

Percentage of retinal involvement:

Microscopic involvement of ocular structures.

- [] None
- [] Sclera
- [] Optic disc
- [] Vitreous
- [] Extrascleral extension
- [] Vortex veins
- [] Ciliary body
- [] Iris
- [] Anterior chamber
- [] Angle/Schlemm’s canal
- [] Cornea
- [] Lens
- [] Other (specify):

Choroid; maximum extent of choroidal invasion:

Notes:

Optic Nerve
- [] within lamina cribrosa
- [] Prelaminar
- [] Retrolaminar; specify extent of involvement:

Status of tumour at resection margin:
- [] Present
- [] Absent

Surgical margins
- [] cannot be assessed
- [] Tumour at margins.
- [] None

pT STAGING (EYE)

- [] pTX Primary tumour cannot be assessed
- [] pT0 No evidence of primary tumour
- [] pT1 Tumour confined to eye with no optic nerve or choroidal invasion
- [] PT2a Tumour superficially invades optic nerve head but does not extend past lamina cribrosa or tumour exhibits focal choroidal invasion.
- [] PT2b Tumour superficially invades optic nerve head but does not extend past lamina cribrosa and exhibits focal choroidal invasion.
- [] PT3a Tumour invades optic nerve past lamina cribrosa but not to surgical resection line or tumour exhibits massive choroidal invasion.
- [] PT3b Tumour invades optic nerve past lamina cribrosa but not to surgical resection line and exhibits massive choroidal invasion.
- [] PT4a Tumour invades optic nerve to resection line but no extra-ocular extension identified.
- [] PT4b Tumour invades optic nerve to resection line and extra-ocular extension identified.

FINAL REPORT

Name of Pathologist:

Date (dd/mmm/yyyy):

Signature:
APPENDIX II: TNM PATHOLOGICAL CLASSIFICATION OF OCCULAR RB

(ICD-O C69.2) (TNM 7th edition)

T Primary tumour
Pox: Primary tumour cannot be assessed

pT0: No evidence of primary tumour

pT1: Tumour confined to the eye with no optic nerve or choroidal invasion

pT2: Tumour with minimal optic nerve and/or choroidal invasion
 - pT2a: Tumour superficially invades optic nerve head but does not extend past lamina cribrosa or tumour exhibits focal choroidal invasion
 - pT2b: Tumour superficially invades optic nerve head but does not extend past lamina cribrosa and exhibits focal choroidal invasion

pT3: Tumour with significant optic nerve and/or choroidal invasion
 - pT3a: Tumour invades optic nerve past lamina cribrosa but not to surgical resection line or tumour exhibits massive choroidal invasion
 - pT3b: Tumour invades optic nerve past lamina cribrosa but not to surgical resection line and exhibits massive choroidal invasion

pT4: Tumour invades optic nerve to resection line or exhibits extraocular extension elsewhere
 - pT4a: Tumour invades optic nerve to resection line but no extraocular extension identified
 - pT4b: Tumour invades optic nerve to resection line and extraocular extension identified

pN: Regional lymph nodes
 - pNX: Regional lymph nodes cannot be assessed
 - pN0: No regional lymph node involvement
 - pN1: Regional lymph node involvement (pre-auricular, cervical)
 - pN2: Distant lymph node involvement
pM: Distant metastasis

- M0 No distant metastasis.
- pM1 Distant metastasis.
- pM1a Single metastasis to sites other than CNS.
- pM1b Multiple metastases to sites other than CNS.
- pM1c CNS metastasis.
- pM1d Discrete mass(es) without leptomeningeal and/or cerebral spinal fluid (CSF) involvement.
- pM1e Leptomeningeal and/or CSF involvement.
APPENDIX III: KNH/UON ETHICAL APPROVAL LETTER

UNIVERSITY OF NAIROBI
COLLEGE OF HEALTH SCIENCES
P O BOX 30676 Code 00202
Telephone: (204-020) 276200 Ext 44005

KENYATTA NATIONAL HOSPITAL
P O BOX 20723 Code 00202
Tel: 736369-9
Fax: 725272
Telephone: MEDIC P, Nairobi

Ref KNH-ERC/19

Dr. John Muthuri
Dept of Human Pathology
School of Medicine
University of Nairobi

Dear Dr. Muthuri

RESEARCH PROPOSAL: TUMOUR DIFFERENTIATION AS A PROGNOSTIC MODIFIER AMONG PATIENTS WITH RETINOBLASTOMA AT KENYATTA NATIONAL HOSPITAL AND P.C.E.A KIKUYU EYE UNIT (P496/09/2013)

This is to inform you that the KNH/UoN-Ethics & Research Committee (KNH/UoN-ERC) has reviewed and approved your above proposal. The approval periods are 30th January 2014 to 28th January 2015.

This approval is subject to compliance with the following requirements:

a) Only approved documents (informed consents, study instruments, advertising materials etc) will be used.
b) All changes (amendments, deviations, violations etc) are submitted for review and approval by KNH/UoN ERC before implementation.
c) Death and life threatening problems and severe adverse events (SAEs) or unexpected adverse events whether related or unrelated to the study must be reported to the KNH/UoN ERC within 72 hours of notification.
d) Any changes, anticipated or otherwise that may increase the risks or affect safety or welfare of study participants and others or affect the integrity of the research must be reported to KNH/UoN ERC within 72 hours.
e) Submission of a request for renewal of approval at least 60 days prior to expiry of the approval period. (Attach a comprehensive progress report to support the renewal).
f) Clearance for export of biological specimens must be obtained from KNH/UoN-Ethics & Research Committee for each batch of shipment.
g) Submission of an executive summary report within 90 days upon completion of the study. This information will form part of the data base that will be consulted in future when processing related research studies so as to minimize chances of study duplication and/or plagiarism.

For more details consult the KNH/UoN ERC website www.uonbi.ac.ke/activities/KNHUoN.
Yours sincerely,

[Signature]

PROF. M. L. CHINDIA
SECRETARY, KNH/UoN-ERC

c.c.
Prof. A. N. Gaitai, Chairperson, KNH/UoN-ERC
The Deputy Director CS, KNH
The Principal, College of Health Sciences, UoN
The Dean, School of Medicine, UoN
The Chairman, Dept of Human Pathology, UoN
Assistant Director/Ken Health Information, KNH
Supervisors: Dr. E. Dimba, Dr. W. Waweu, Dr. J. Githanga, Dr. K. Kimani, Dr. H. Dimanis

[Protect to Discover]
9th April 2014

Dr. John Muthuri
Department of Pathology
UON
P.O. Box 19676-00202
NAIROBI

Dear Dr. Muthuri

RE: REQUEST TO ACCESS MEDICAL RECORDS

Your request to access medical records for your research study has been accepted.

You are welcome to the Eye Unit for data collection and will work with Dr. Kabiru who has been attending to retinoblastoma patients.

Dr. Kabiru is available on Wednesdays (morning hours) and Thursdays. You can get in touch with her on 0722-743807 for an appointment to discuss logistics.

Yours faithfully,

Dr. Daniel Mundia
Ag. Director of Clinical Services – Eye Unit

Cc Dr. Alain M’bongo
Dr. Joy Kabiru
APPENDIX V: TELEPHONE INTERVIEWS MANUSCRIPT

Tumour differentiation and high risk histology features as prognostic factors among patients with retinoblastoma at Kenyatta National Hospital and Presbyterian Church of East Africa Kikuyu Hospital.

Step 1: Introduction and Confirmation of the legal parent/guardian:

Hello, I am Dr John Muthuri from the department of pathology at the University of Nairobi. Am I talking to Mr./Mrs.………………… the parent or guardian to (child’s name) (If yes go to step 2. If no; thank the receiver and verify the number dialed)

Step 2: How the parent or guardian address was obtained:

I obtained your telephone number from the records at KNH or PKEU after approval from both the Kenyatta National Hospital/University of Nairobi Ethical research committee and KNH/PCEA-KH institution. Can you spare a few minutes (if yes go to step 3, if no confirm a better time to get back to them)

Step 3: Explaining the purpose of the call to the legal parent/guardian and obtaining a verbal consent.

This is in regard to a study am undertaking of the children who underwent eye surgery and were on follow up at KNH and PCEA-KH.

First, I’d like to explain to you more about the study and please feel free to stop me at any time you have a question.

The purpose of carrying out this study is to try to determine if some of the laboratory findings seen on the eye specimen after surgery have any significance on children wellbeing. This will enable us improve the care of children with RB. The information you will provide will be confidential and in no way will it be used to victimize you or your child.

Now that I've given you a basic idea concerning the study what questions do you have? (Answer appropriately)

Am kindly seeking your consent to inquire some details regarding your child. (If yes go to 4 if no thank them for their time)

Step 4: Inquiring of the knowledge on the child’s illness and clarification,

Before I continue, do you know what affected your child eye/eyes? (If yes let them expound if No take time and explain that the child had RB an eye cancer). Then let them know that eye specimen where taken to the laboratory for evaluation after surgery to confirm RB and its extent. (Then proceed to 5)
Step 5: How the child is doing.

Thank you, some of the questions may be a bit sensitive Please feel free to stop me at any time you get uncomfortable or you have any issues you would like me clarify.

How (child’s name) is doing? (Will get an idea if alive or dead).

(If alive go to step 6. If deceased go to step 7)

Step 6: Questions if child Alive.

A. How old is your child (child’s name)?

B. Which hospital was (Child’s name) being followed up?

C. The last follow-up month?

D. The reason for stopping the follow-up?

E. If the child is healthy? If no inquire more

F. If any other sibling or family member are affected by RB?

Thank you very much for your time but please (child’s name)’s need to resume follow-up (if not on follow-up).

Step 7: How parent/guardian is coping after the child’s Death.

Am so sorry for your loss how are you coping? (Follow as below)

- If coping well proceed to step 8.
- If not coping well: ask whether they require counseling and link them to KNH adult counseling team at clinic 24: by informing them that fare is to be refunded once they attend the clinic and that at-least five sessions of counseling will be paid for. The in-charge clinic 24 will be informed to facilitate in booking the appointment.
Step 8: Questions if the child is dead.

Kindly need to ask you few questions and in case you’re uncomfortable answering them or you have any issues you would like me clarify, feel free to stop me at any stage.

A. At what age did (child’s name)’s pass on?

B. Did it occur in hospital (which) or at home?

C. Please describe the circumstance surrounding the child’s death? (Aim to determining if RB related or due to other courses).

D. The last follow-up month?

E. The reason for loss follow-up?

F. If any other sibling or family member is affected.

Step 9: If other siblings or family members are affected link them to relevant RB care institutions.

Please for the other siblings or family members they need to be reviewed by eye specialists (refer them accordingly to either primary or secondary RB care center)

Thank you very much for your time.
APPENDIX VI: QUESTIONNAIRE

Tumour differentiation and high risk histology factors as prognostic factors among patients with retinoblastoma at Kenyatta National Hospital and Presbyterian Church of East Africa Kikuyu Hospital.

1.0. Demographic, Pre-surgical, surgical and post-surgical clinical information.

1.1. Study number

1.2. Hospital managed

1.3. Sex: Male □ female □

1.4. Age at presentation (months)

1.5. Presenting complaints:

1. White reflex □ □

2. Squint □ □

3. Redness □ □

4. Orbital swelling □ □

5. Others. □

PRESENTING COMPLAINS CODE: 1. YES, 2. NO

1.6 County of Birth

1.7 Guardian/parent contacts Provided YES □ NO □

1.8 Guardian/parent occupation

1.9 Guardian/parent level of education

1.10 Family history of RB: YES □ NO □ NOT INDICATED □
1.11. Laterality: Unilateral [] Bilateral [] Trilateral []

1.12. Affected Eye: RE [] LE []

1.13. Date of enucleation

1.14 Eye enucleated: RE: [] LE: []

1.15 Type of enucleation: Primary [] Secondary []

1.16. Age at enucleation (months): ___________________________

2.0 Mode of management post primary enucleation:

2.10. Chemotherapy YES [] NO []

2.11. Date Initiated ___________________________

2.12. Duration from date of enucleation in days: ___________________________

2.13 Regimens: VACI’S [] Cycles Number: VACI’S []

 VEC Cycles [] Number: VEC []

CODE REGIMENS: 1 YES, 2 NO.

Completed [] Not completed []

2.2 Radiotherapy: YES [] NO []

2.21 Number of Sessions ___________________________

Completed [] Not completed []
3.0. Outcome post primary enucleation and duration in months:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A] Alive disease free</td>
<td></td>
</tr>
<tr>
<td>B] Recurrence</td>
<td></td>
</tr>
<tr>
<td>C] Metastasis</td>
<td></td>
</tr>
<tr>
<td>D] Dead</td>
<td></td>
</tr>
<tr>
<td>E] Unknown.</td>
<td></td>
</tr>
</tbody>
</table>

OUTCOME CODE: 1. YES, 2. NO

4.0. Cause of death: Retinoblastoma related □ not Retinoblastoma related □

CODE: 1. Retinoblastoma related (Metastasis, recurrence, Chemotherapy related)
2. Not Retinoblastoma related (others)

4.1. Cause of death not retinoblastoma related where applicable

5.0. Date of last follow-up

6.0. Follow up period in months

7.0 Clinical data Information from records: complete □ In-complete □
8. Telephone interview for those with incomplete clinical data.

8.0. Guardian/parent contacts provided: YES ☐ NO ☐

8.1. Contact made: YES ☐ NO ☐

8.2. Verbal consent granted: YES ☐ NO ☐

8.3 Patient survival status: Alive ☐ Dead ☐

8.4 Date alive/dead ________________________________

8.5 Duration from enucleation in months ________________________________

8.4 Cause of death: Retinoblastoma related ☐ Not Retinoblastoma ☐

8.5. Cause of death not retinoblastoma related where applicable ________________________________

8.6 Reason why lost to follow up ________________________________

8.7 Parent/guardian needing and linked to counseling: YES ☐ NO ☐
SOCIAL SERVICES LEAGUE
M. P. SHAH HOSPITAL
P. O. Box 14497-00800,
WESTLANDS, NAIROBI, KENYA.
TEL: 374 2763 /64 /85 FAX: 375 4686
Email: Laboratory@mpshahhosp.org
Website: www.mpshahhosp.org

DEPARTMENT OF LABORATORY MEDICINE

John Muthuri
P. O. Box 19676-00200
Nairobi
Mobile: 0721 920 648

16th July 2014

Dear Sir,

Ref: Tissue Blocks Issued

Kindly find the attached cases of retinoblastoma list that was issued. We would like to have the blocks back for our audit purposes.

Thank you.

Yours sincerely,

Dr. Timothy Onyuma
Pathologist

Collected by:

Name: _______________________________________

Signature: ____________________________________

Date: ___

16/7/2014
APPENDIX VIII: SOP FOR RETRIEVED SPECIMEN BLOCKS HANDLING AND PROCESSING

1. The retrieved blocks were sectioned using microtome [3-5 microns] and the sections floated in warm water to remove wrinkles.

2. The sections were then be picked on a slide and placed in a warm oven for 15 minutes so to adhere to the slide.

3. The sections were then de-paraffined by dipping them in xylene to alcohol and then water.

4. Staining was done using standard Haematoxylin and Eosin techniques which entailed:
 A. Staining in Harris Haematoxylin for 5 minutes. Then,
 B. Washing in running tap water for 1 minute. Then,
 C. Dipping 3 to 5 times in 1% Acid Alcohol. Then,
 D. Wash in running tap water for 1 minute. Then,
 E. Rinse in 95% alcohol 10 dips
 F. Stain in working eosin Y, making sure stain covers slides completely.
 G. Wash in running tap water for 30 seconds
 H. Dehydrate in ascending alcohols levels and clear in three changes of xylene

5. The quality of staining was confirmed first before mounting.

6. A cover slip was applied to the slide and after drying microscopically examine.
APPENDIX IX: STUDY LABORATORY PROFORMA

Tumour differentiation and high risk histology features as prognostic factors among patients with retinoblastoma at Kenyatta National Hospital and Presbyterian Church of East Africa Kikuyu Hospital.

1.1 Study number

1.2 Blocks Retrieved: YES ☐ NO ☐

1.3 Laboratory initially processed

2. MICROSCOPIC EXAMINATION:

2.1 Histomorphologically consistent with:
 - A]. RB -/- associated RB ☐
 - B]. RB +/- MYCN A RB ☐
 - C]. Retinoma features ☐

 CODE: 1 YES, 2. NO

2.2 Histologic tumour grade P-O section:
 - A]. Well differentiated ☐
 - B]. Moderately differentiated ☐
 - C]. Poorly differentiated ☐

2.3. Extent of tumour spread:

2.3.1. Tumour limited to retina and or vitreous cavity only ☐

 CODE: 1 YES, 2. NO

2.3.2. Extent of choroid invasion:
 - A]. Not involved ☐
 - B]. Focal choroidal invasion [<3 mm]. ☐
 - C]. Massive choroidal invasion [>3 mm] ☐
2.3.3. Extent of Sclera invasion:

A] Not involved
 []
B] Intrascleral
 []
C] extra-sclera.
 []

2.3.4. Extent of optic nerve invasion:

A] Not involved
 []
B] Pre laminar optic nerve invasion
 []
C] At Laminar involvement
 []
D] Post laminar optic nerve invasion
 []
E] Optic nerve surgical margin involvement
 []
F] Cannot be determined.
 []

2.4. Involvement of other ocular structures:

A].Not Involved
 []
B].iris
 []
C].Optic disc
 []
D].Ciliary body
 []
E] Lens
 []
F] Anterior Chamber.
 []

CODE: 1. YES, 2. NO.
3.0. Staging: Pathologic TNM staging system:

pTx. Primary tumour cannot be assessed

pT0. No evidence of primary tumour

pT1. Tumour confined to retina with no optic nerve or choroidal invasion

pT2a. Tumour superficially invades optic nerve head but does not extend past lamina cribrosa or tumour exhibits focal choroidal invasion.

pT2b. Tumour superficially invades optic nerve head but does not extend past lamina cribrosa and exhibits focal choroidal invasion

pT3a. Tumour invades optic nerve past lamina cribrosa but not to surgical resection line or tumour exhibits massive choroidal invasion

pT3b. Tumour invades optic nerve past lamina cribrosa but not to surgical resection line and exhibits massive choroidal invasion

pT4a. Tumour invades optic nerve to resection line but no extra-ocular extension identified

pT4b. Tumour invades optic nerve to resection line and extra-ocular extension.