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ABSTRACT 
 

Relationships between two or more variables are considered a phenomenon of interest in a world 

where modelling risk is becoming more and more popular. This is especially important for the 

insurance sector whose core business is protecting individuals from occurrences of risk. Some of 

the risks insurance companies face includes holding inefficient reserve amounts for claims 

policyholders take time to report. 

 Having a variable that can explain the behavior of another can prove an important aid in 

understanding the variable of interest. In the case of insurance companies; establishing the 

relationship that claim amounts have to the time policyholders take to report the claim could help 

establish how much should be kept aside for claims not yet reported. 

This relationship is described as dependence between variables. The most common measure used 

to quantify dependence between variables is the Pearson’s correlation coefficient. This is a 

measure that requires the use of the covariance between the variables and their individual 

variances. However, the Pearson’s correlation coefficient is a measure that assumes linear 

dependence between variables. This limits the effectiveness of its use as a measure; since it 

cannot explain dependence in the case of a non-linear relationship. Furthermore the Pearson’s 

correlation coefficient is only a single figure and therefore limits the amount of information we 

can derive from it concerning the dependence between the variables. This leads us to the use of 

copulas as a measure of dependence between variables. Copulas; being distributions themselves; 

have the advantage of being able to portray more information concerning the dependence 

structures between the two variables.  

The following is a study that seeks to establish the relationship between claim amounts and the 

report delay period for claims in an insurance company using copulas. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background of the Study 

 

A simple definition of an insurance company is a company that makes a contract with an 

individual whereby in exchange for a certain payment or series of payments will indemnify the 

individual on occurrence of a given event that causes a certain loss. Brown (1988) defines a loss 

reserve as the amount an insurance company sets aside to settle claims. Qaiser (2006) argues that 

working out adequate and appropriate reserves is a very important aspect in the functioning of an 

insurance company. Qaiser (2006) goes on to emphasize that an insurance company at any given 

point in time must be in a position to honor its promise of indemnifying losses as can be seen 

foreseen reasonably.  

A possible result of inefficient reserves held by an insurance company could lead to its 

insolvency. This has been demonstrated by a study done by A M Best insolvency report in 2004 

concerning the sources of insurance companies’ involuntary exit in America. The study 

identified that 37% of failures of insurance companies is attributed to deficient loss reserves and 

inadequate pricing. The financial services authority in UK also analyzed experiences of failed 

insurance companies across 15 countries in the European Union based on the Sharma report 

(2002) and concluded 60% of the companies showed poor underwriting and reserving as a 

contributing factor.  

There are different types of reserves that insurance companies hold in order to remain solvent. 

Gile (1994) classifies claims reserves in insurance companies into three types; case estimates for 

reported claims, reserves for additional development of reported claims and reserves for claims 

incurred but not reported. Gile (1994) goes on to demonstrate that for calculation of the incurred 

but not reported reserve for an insurance company, three variables play a huge role. These 

variables include; the count of claims the claim amounts and the report lags.  

Correlational research is used to see if two variables are related and to make predictions based on 

this relationship. Wolley (1997) argues that one way of explaining how certain events predict an 

outcome is by measuring how predictive variables are, when measured together. With this 

argument in mind, establishing a relationship between two of the variables suggested by Gile 
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(1994) could go a long way into developing predictive methods of estimating the incurred but 

not reported claims reserve in an insurance company.  

The idea of Copulas can be dated back to 1940s where Hoeffding (1940) studied standardized 

distribution functions with support in the square [-1/2, 1/2]
2
 and margins in the interval [-1/2, 

1/2]. He obtained the best-possible bounds for these functions and also studied dependence 

measures that are invariant under strictly increasing transformations. Fretchet (1950) also 

obtained the same results; and from these came the Fretchet-Hoeffding bounds.  

Sklar (1959) first used the term ‘copula’ when he proposed the Sklar theorem; which shows the 

relationship between multi-variate distributions and copulas by joining the marginal distributions 

of the individual variables. Sklar and Schweizer (1986); later went on to develop the 

Archimedean copulas; which are the most common type of copulas. Since that time a lot of 

studies have been done and many copulas proposed; to study the different types of dependence 

structures.  

While a lot of work has been done on the copulas that explain positive dependence between 

variables, not as much work has been done on the negative dependence between variables. Some 

of the work that has been done on negative dependence includes; Hua (2015) who proposed a 

copula that explained negative tail dependence. However; it is important to note that the paper 

focused on variables where the extreme values; referred to as the tail values, rather than all the 

values, showed negative dependence. Stander (2011) also contributed to the work on negative 

dependence by seeking to find multi-variate copulas that explain negative dependence between 

more than two variables from bivariate copulas.  

This study sought to add to the work already done on copulas by focusing on copulas that 

explain negative dependence between variables. The paper focused on Archimedean copulas 

already established to be able to explain the dependence between the time it takes an individual 

to report a claim and the amount of loss in that claim. In particular, the research focused on 

copulas used to model; weak negative dependence, those that only allow negative dependence 

and those that model all types of dependence 

The study proposed that in the insurance industry setting; when a claim amount is large; the 

delay period for reporting is expected to be short and when the claim amount is small; the delay 



3 
 

period is expected to be longer. The study sought to establish to what extent this is true and how 

strong or weak the dependence will be if any. 
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1.2 Statement of the Problem 

 

The main problem that this study sought to address was; finding a way to understand claim 

amounts based on their relationship with their report lag. Such a relationship would aid in 

improvement of the predictive techniques in existence. One of the major issues facing the 

insurance industry today is the inability to effectively predict claims. Due to this, there exists a 

huge challenge in determining efficient reserves for claims that are yet to be reported or settled. 

Various studies have been done with regard to this problem to determine to what extent under 

reserving would cost an insurance company. One such study was conducted by A.M. Best and 

Financial Services Authority which showed; under reserving exposes insurance companies to the 

risk of being insolvent. This implies that there is a need to improve on the existing predictive 

techniques to help take care of this issue in the insurance industry. 
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1.3 Objectives of the Study 

 

1.3.1 General Objective 

 

The general objective of the study was to ascertain an effective copula that explains the 

dependence structure between the delay it takes for an insured party to report a claim and the 

claim amount. 

 

1.3.2 Specific Objectives 

 

The study was guided by the following specific objectives; 

i. To fit marginal distributions to the report lag and claim amount variables for an insurance 

company.  

 

ii. To fit different copulas to the report lag and claim amount variables using the marginal 

distributions obtained.  

 

iii. To test the goodness of fit of the copulas in order to determine the copula that best fits the 

data. 

 

 

 

 

 

 

 

 

 

 

 



6 
 

1.4 Hypothesis of the study 

 

 The study proposed the null hypotheses that; for a typical insurance company,  

i. The report lags and claim amount variables can be fit to individual marginal distributions. 

ii. There exists dependence between the report lag and claim amount variables that can be 

modeled using copulas 

iii. Different copulas represent the report lag and claim amount dependence to different 

extents and therefore some copulas can be considered to explain the dependence better 

than others.  
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1.5 Scope and Limitations of the Study 

 

This study was aimed at the insurance sector and in particular the general insurance industry. The 

study sought to establish a relationship between the report lag variable and claim amounts in a 

given insurance company. As such the study was not necessarily limited geographically; and as 

such can be applied anywhere in an insurance setting; however it is expected that different 

insurance companies may result in different results in accordance to their respective claims 

experience. For purposes of illustration this study considered one insurance company in Kenya in 

which the methodology was applied. 

One of the limitations experienced in the study was the definition of the claim amount variable. 

An ideal definition of the claim amount variable for the study would be the exact amount 

expected to be paid once a claim is reported. However; in practice it is quite difficult to ascertain 

this exact amount and as such most insurance companies apply a certain random estimate based 

on their judgement and the type of claim and revise the amount later once assessments and 

valuations have been completed. Data can only be retrived for the initial estimate; since it may 

prove difficult to obtain information on the revised amounts given that revisions for a specific 

claim could occur more than once. However; given that the study sought to establish a 

relationship between the report lag and the claim amount variable based the initial perception of 

the loss estimate; the initial estimates provided by the insurance companies during reporting of 

the claim proved to be useful estimates. Hence this study made use of the initial estimate as the 

claim amount variable. 

It is worth noting that study was also not able to cater for any human errors at the data entry level 

and the models proposed are also subject to model and parametric errors. 
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1.6 Justification of the study 

 

This study sought to find a suitable explicit copula that can be used to explain the relationship 

between report delay period and claim amount and therefore would be useful for further research 

in trying to find expected claim amounts from the past delay periods information. 

Negative dependence is an aspect of dependence that occurs in the business environment. 

Understanding negative dependence is therefore important to be able to understand and cope 

with these instances. This study provides an analysis of negative dependence from the 

‘Archimedean-Copula’ point of view and therefore contributes to adding as a valuable reference 

guide in this field. 

As one of the measures of preparedness of the insurance sector, the insurance regulators have put 

guidelines that compel insurance companies to hold certain amount of reserves. The calculation 

of such reserves is based on past information and methods such as the Basic Chain Ladder 

method, the Bornheutter Ferguson method and just recently the Average Delay Method. The 

Basic Chain Ladder method (and to an extent the Bornheutter Ferguson method) is a method that 

studies the development patterns of claims to be able to evaluate what claims should be expected 

in the future. For one to obtain a dependable pattern there is usually need to remove the extreme 

claim amounts that distort the pattern. However to be able to realistically prepare the company 

from claims one must also take into account these extreme cases. One way to cater for these 

claims is to study the relationship between the delay periods and the claim amounts.  

Methods such as the average delay method could directly use the results obtained from copulas 

explaining the relationship between the delay period and claim amount; since copulas tend to 

explain the dependence structure in a better way than other common measures of dependence. 
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CHAPTER TWO: LITERATURE REVIEW 

 

Dependency in the insurance sector is well known concept especially from the actuarial 

perspective. Dependence in the sector has been considered between different variables that may 

relate to each other in one way or another such as; different claim types that are related in their 

occurrence, individual risks in a given portfolio where some dependence may occur due to 

exposure of similar risks and the relationship between loss and allocated loss expenses to 

mention a few.  

In order to effectively predict possible future occurrences, it is important to understand how 

different variables interact with each other. Different approaches have been proposed to model 

different relationships between the variables of interest in the sector. The copula method is one 

of the various ways of modeling dependence and as such is not new in the insurance sector 

applications. Through time, studies have been done into how efficient copulas are as a measure 

of dependence. The following is a review on the modeling of dependence in the insurance sector 

and attention is given to the report lag variable that is being considered in this research. The 

report lag variable also referred to as the report delay variable; is the variable that represents the 

time difference between when a claim was incurred and when it was reported to the insurance 

company. The review also considers the role that copulas have played in dependence in 

insurance.  

 

2.1 Theoretical Literature Review 

 

The concept of dependence between variables has been extensively studied throughout the years 

with a number of theories being developed for its study. For purposes of this study; we review 

two theories that are a favorite for studying dependence; the Bayesian Inference theory and the 

Sklars theorem-copula theorem. 
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2.1.1 Bayesian Inference Theorem 

 

The Bayes theorem was first introduced in the 1740s by Thomas Bayes who wanted to know 

how to infer causes from effects. The theorem was later rediscovered independently by Pierre 

Simon Laplace who gave it its modern mathematical form and scientific application. The 

theorem demonstrates how the probability of a given occurrence given some information can be 

expressed in terms of the initial estimate of the probability of the information given the 

occurrence and the probability of the occurrence. The theorem is stated in terms of joint, 

conditional and marginal distributions of the variables of interest. Many studies in different 

disciplines have proposed use of this theorem to study dependence. Examples of studies using 

the method in the insurance sector are demonstrated in the empirical review. 

 

2.1.2 Sklars Theorem 

 

Sklars theorem was introduced in 1959, by Abe Sklar. This theorem suggests use of copula 

models to demonstrate dependence between different variables. The theorem proposes that the 

joint distribution of two or more variables can be obtained by combining the individual marginal 

distributions with function s known as copulas that satisfy certain criteria. A lot of studies have 

been proposed to study dependence in different sectors using this theorem since its introduction. 

The following study is based on this theorem as the aim is to seek a suitable copula to explain 

dependence between the report lag and claim amount variables in insurance. 

 

2.2 Empirical Literature Review 

 

An application of dependence in insurance is demonstrated by Dhaene and Goovaerts (1996), 

who propose a dependence model that is able to calculate stop loss premiums while catering for 

any dependence between risks in a portfolio. Stop loss insurance is insurance that protects 

insurers against large claims. The insurers do not pay beyond a given retention limit of a loss that 

occurs. The authors estimate the expected maximal stop loss claim amounts based on 

assumptions that if a given individual survives, then all individuals with a probability of survival 

greater than that given individual will surely survive and vice-versa. This idea enables us to 
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modify the possible events of the sum of individual risks posed by the portfolio and creates a 

pattern from which we can deduce the distribution function for this modified sum of risks. The 

modified sum enables us to determine the stop loss premium since it gives rise to expected 

maximal stop loss claim amounts. The dependency between individual risks is modeled in this 

manner and stop loss premium is determined from that dependence. The model discussed is 

applicable for a fixed number of two point distributed risks. 

One of the contributions to the literature of modeling the report lag of claims independently in an 

insurance company is made by Weissner (1999); who proposes a truncated exponential 

distribution to model report lag. He proposes that the report lag of claims observed could be 

modeled with an exponential distribution conditioned on the unknown parameter of the 

distribution. To cater for claims incurred but not yet reported; and therefore assumed to have a 

longer report lag than observed; a distribution function of the report lag is used; whose upper 

limit is the maximum report lag of the claims observed. Using Bayes result the distribution of the 

report lag conditioned on both the unknown parameter and the maximum report lag of claims 

observed is estimated. This resulting distribution is a conditional truncated exponential 

distribution and using the method of maximum likelihood applied to claims data an estimate of 

the unknown parameter of the exponential distribution is obtained. It is mentioned that this 

method can also be applied to other distributions such as the log-normal distribution. 

The concept developed by Weissner (1999) on use of the exponential distribution for the report 

lag variable is further considered by De Souza and Veiga (2014); who propose a stochastic 

model to estimate IBNR. The model is expressed in terms of the distribution of the report lag of 

claims with the same occurrence day given the total number of claims in that day. The joint 

distribution of the reported delay, claims reported and claims occurred is obtained from the 

Bayes result; with the delay distribution conditioned on claims reported in the period and total 

claims that occurred in the period, the distribution of frequency of claims observed in the period 

and the distribution of total claims occurred in the period. While the Poisson distribution is used 

to model the frequency of claims and a binomial distribution to model claims reported given the 

number of claims that occurred, two different distributions are considered to model the time to 

report a claim (report lag); Simple exponential distribution and a mixture of two exponential 

distributions. 
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Estimation of parameters for the simple exponential distribution was based on maximizing the 

likelihood function of the delay distribution. From the three distributions used to obtain the 

report delay distribution; it can be observed that the number of occurred claims and delays of 

claims not reported are not known; this necessitated the application of the Expectation 

Maximization method, which is an iterative method to find estimates of maximum likelihood 

parameters in a statistical model where the model depends on unknown variables.  The mixture 

of exponential distribution entailed; fitting a mixture of exponential distribution to the delay 

distribution rather than a simple exponential and maximizing the log likelihood to obtain the 

parameters. Having obtained the parameters, the IBNR is estimated as the expectation of the 

difference between the claims occurred and claims reported in an occurrence period and the total 

of these is the IBNR. A difference between the paper by De Souza and Veiga (2014) and 

Weissner (1999) is that while De Souza and Veiga (2014) proposed modeling the report lag 

jointly with variables that may have a correlation with it, Weissner (1999) considered modeling 

the report lag independently. 

A paper that combines the concept of De Souza Veiga (2014) and Weissner (1999) by modeling 

the report lag independently but using this independent distribution to model the various joint 

distributions the report lag may have with other variables is by Walther Neahaus (2004); who 

proposes an approach to the problem of estimating outstanding claims based on three dimensions 

taking into account the time it takes to report an incurred claim and the time since reported to 

valuation separately. Most two dimension models combine these two delays into one 

development triangle. The author proposes modeling occurrence of accidents, with a certain 

delay period using Poisson process whose parameter depends on the reporting delay; which is 

assumed to have a fixed pattern of delay probabilities. He proposes using credibility estimates of 

the chain ladder method and a prior mean of the parameter of the Poisson distribution to obtain 

the credibility estimate of the parameter for the Poisson process. Having this parameter the 

Poisson distribution is fully determined and the IBNR claim number becomes the portion of 

claims in the distribution with a report delay larger than time already observed. The claim 

severities are assumed independent with a distribution that may also depend on the reporting 

delay distribution. The aggregate claim severities for claims not yet reported is taken to be a 

compound Poisson with frequency parameter dependent on the Poisson process mentioned for 

claims occurred with given reporting delays and a mixed severity distribution mentioned above. 

The estimate of the IBNR therefore becomes the mean of this compound distribution. The idea in 
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this method shows dependence may not only exist between the report lag and the claim 

severities, but also between the report lag and the claim frequencies.  

Another study of how the report lag variable may be modeled jointly with another variable is 

considered by Verrall et al (2010), who model incurred but not reported claims and reported but 

not settled claims by focusing the possible delays a claim suffers when incurred; the report delay 

and the settlement delay. Run off triangles are developed for claims paid data and number of 

claims reported and a stochastic model is proposed using assumptions of individual claims. The 

number of claims incurred but not reported is obtained from the claims reported runoff using the 

usual development factors. However the data for RBNS needs to consider the number of claims 

paid and their delay period. A multinomial distribution is proposed to model the number of 

claims reported and paid with a given delay period conditioned on the number of claims 

reported. An over-dispersed Poisson model is then fitted to the paid claims and parameters 

estimated using the maximum likelihood method. The estimates of outstanding claims are 

obtained by summing the predicted values of incremental claims and this is done using 

bootstrapping and Bayesian methods.  

A limitation posed by Verrall et al (2010) in modeling RBNS is that claims were assumed to be 

paid in one lump sum which is not usually the case. Schiegl (2010) took this into account when 

modeling the relationship between report delay and number of claims. Schiegl (2010) proposed a 

three dimensional stochastic model to estimate incurred but not reported and the reported but not 

settled claims. The 3-dimensional approach involves looking at the computation of the reserves 

required from three aspects; claims occurrence, claims reporting and claims payment. The 

number of claims in an occurrence year is modeled using a Poisson distribution. She then opted 

to model the number of claims occurred conditioned on the report delays using a multinomial 

distribution with a parameter for each delay period. To take into account active claims which 

include; claims incurred and reported but not yet fully settled, a survival process is proposed 

resulting in a binomial distribution for the number of active claims with a particular delay period. 

The claims paid amounts was then modeled using a gamma distribution and the aggregate claims 

paid modeled using the individual risk model. The aggregate claims paid data and the number of 

active claims paid with a given report delay distributions allowed for computation of expected 

claims paid for claims incurred but not reported with report delay beyond the date of valuation. 

She went on to demonstrate the application of the model using data from a Monte Carlo 

simulation. 
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As mentioned copula is a favorite for modeling dependence. One application of copula in 

modeling dependence in insurance is by considering claim types and the influence they might 

have with each other. This is illustrated by Frees and Valdez (2007); who propose a hierarchical 

approach to modeling loss insurance. The hierarchical arrangement consists of three components; 

frequency of claims, types of claims and severity of claims. The authors proposes that rather than 

the normal univariate modeling of claim loss, consider cases where the event can trigger more 

than one type of claim and treat it as a multivariate model. The main idea expressed in the paper 

is that claim amounts can be modeled as a joint distribution of the claim frequency, claim types 

and the claim severity. The authors propose that this joint distribution can be obtained as a 

product of the claims frequency distribution, the claim type distribution conditioned on the claim 

frequency and the claim severity distribution conditioned on the claim type and the claim 

severity which is the Bayes result.  

Frequency of claims is modeled with the negative binomial regression model with use of 

covariates that may affect the frequency of claims. The type of claims was modeled using the 

multinomial logit model taking into account all possible combination of the claim types. The 

severities of claims; after being categorized into their respective claim types, was modeled using 

the generalized beta of the second kind long tailed distribution for each claim type. Then taking 

into effect the influence which can be recognized as dependence that certain claim types have on 

others; copula models are considered. Specifically the Normal copula and the t distribution 

copulas were considered with the generalized beta distributions as the margins. An illustration of 

the model described is then applied to detailed micro-level automobile insurance records with the 

help of maximum likelihood method to fit the models.  The different types of claims we have in 

the automobile insurance sector include; injury to third party, third party property damage, 

insured’s own vehicle damage and within this context one claim can give rise to more than one 

type of claim. 

Another illustration of the application of copula in the insurance sector is by Christian Genest et 

al (2002); who show how the Compound Poisson distribution can be used to approximate total 

claim amount in the context of individual risk models; where dependency between individual 

contracts arises. They show how dependence can be incorporated in the individual risk model 

using three approaches; General multi-class shock model where the number of classes; also 

referred to as risks; in which the portfolio can be categorized and shock variables depending on 

whether the entire portfolio or a given risk would be affected by the shock are applied. Our 
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interest is the second approach which is the single class risk model based on copulas. In this 

case, they considered a portfolio whose individual policies are under the same risk. The risk 

variable is represented as a product of the possible loss amount and a Bernoulli variable 

dependent on whether the risk occurs or not. The concept behind the second approach is 

modeling dependence between the Bernoulli variables which is the dependence between chances 

of an event in two different policies using copula. Focus is given to the Frechet-mixture model 

and Archimedean copulas. The final approach considered is the multi class risk models based on 

copulas; this is an extension of the previous single case approach. 

Studies have also been conducted in the area of negative dependence modelling using Copulas. 

Stander (2011) was a research paper aimed at construction of multi-variate Archimedean copulas 

from bivariate copulas. The paper focused on multivariate copulas capable of modelling negative 

dependence. This idea was first proposed by Joe (2007) though was not applied for any specific 

Archimedean copulas. Stander (2011) aimed at deriving the necessary constraints to ensure that 

when building multivariate copulas from bivariate copulas that capture negative dependence that 

the multivariate copula will also be able to capture negative dependence. She considers a method 

proposed by Joe (1997) using nested generator functions to model the multivariate copula. The 

parameters of the generator developed are then determined through numerical techniques. The 

method is applied to two Frank generator functions, two Clayton copulas, and two of the copulas 

proposed by Nelson (2006). The model is also extended to consider two different copulas to nest. 

An application of the model is illustrated in the finance sector; in computation of asset allocation 

and in wrong way risk in counter-party credit exposure. The paper describes in detail regarding 

copulas and in particular; copulas that model negative dependence. Five of the copulas described 

are considered to model the report lag and claim amount relationship in this research.  

Perhaps the research closest home to the focus of this paper was a method proposed by Weke 

and Ratemo (2013) on use of copula in calculating IBNR. The dependence between the report 

delay and claim amount was modeled with Archimedean copulas; Clayton, Frank and Gumbel. 

Having fit log-normal distributions to the two variables of interest; report delay and claim sizes, 

the three copulas were fit to the data. The Clayton copula proved the best fit for the data and an 

estimation of the IBNR was then proposed to be the product of the average claim size obtained 

from the copula and the average number of claims obtained by fitting a distribution to the 

number of claims. 
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Modeling the relationship between report lag and claim severities one should also take into 

account the different characteristics of the variables. Insurance companies do not necessarily 

suffer the entire losses of all claims. It is common insurance practice to have policy limits. This 

is the maximum amount a policyholder can claim, previously referred to as stop loss insurance. 

Losses in an insurance company are also usually cushioned by re-insurers and therefore 

insurance companies do not necessarily settle large claims themselves. This brings in the idea 

that claims data should be censored to the limit. Hence the claim severities in insurance for 

instance should take into account censoring for such cases. Two papers that have taken this 

concept into modeling this dependence are by Frees and Valdez (1997) and Denuit et al (2006) 

Frees and Valdez (1997) introduce the aspect of copula in the actuarial sector as a useful tool for 

understanding the relationships among multivariate outcomes. They apply the concept of copulas 

to modeling the loss-allocated loss adjustment expenses (ALAE) relationship. ALAE are the 

expenses associated with settling of claims in insurance Frees and Valdez fitted the marginal 

distributions using the Pareto distribution for the ALAE and to cater for censoring in the loss 

variable; the Kaplan Meier empirical distribution for the loss variable. They fitted the Frank 

Gumbel Hougaard copula and they used the inference maximum likelihood method (IML) to 

find parameters of the copula. 

Taking censoring into account when modelling dependence using copula was also illustrated by 

Michel Denuit et al (2006) who also proposed use of Archimedean copulas to model the 

relationship between loss and the allocated loss insurance in general insurance. They improve on 

a concept proposed by Genest and Rivest (1993) that involved obtaining the best fit of copula for 

data by comparing a parametric estimate of a function of the generator function of the 

Archimedean copula with a non-parametric estimate of that same function from the data. They 

argue that it is possible to obtain a non-parametric estimate of the function of the generator that 

takes a given limit into account. He applied the methodology described to fit the Clayton, 

Gumbel, Frank and Joe copulas to insurance data. 

The copula method has also been extended to combining conditional distributions rather than just 

marginal distributions. Applications of such copulas have been demonstrated by Purwono (2005) 

in the insurance sector; specifically life insurance. Copula has been proposed as a better tool in 

modelling joint life assurances. The assumption of independence between lives has been 

disputed especially in cases where the two lives being considered are spouses; since they are 
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exposed to many similar risks as a result of living together and having the same lifestyle. 

Purwono (2005) was a paper that showed how the theory of copulas could be applied to multiple 

lives analysis. He proposed use of a conditional Bayesian copula model whose construction is 

based on application of copula mixing to conditional rather than to marginal survival functions. 

Copulas with conditional marginals have played a huge role in their application even in the 

finance sector. One such application of copula in finance was by; Patton (2004) which was a 

research paper that sought to explore the application of copula especially in economics and 

finance. The paper included a study on conditional copulas; conditioning a copula on one 

variable. He later applied this concept in modeling the Deustch mark – US dollar and the Yen – 

US dollar mark; where the copula was conditioned on the US dollar. The method proposed in the 

research by Patton (2004) could also be applied to the calculation of IBNR in insurance. By 

conditioning the claim amount and the number of claims on the report delay, one could find a 

copula that describes the relationship between claim amounts and number of claims given a 

certain report lag. 

In summary dependence in the insurance sector is an area where much has been done. However 

modifications of the various ideas proposed could further the field of study. For instance 

Weissner (1999) proposed an exponential distribution to study the distribution of the report lag 

based on the method of maximum likelihood. A similar concept is proposed in this study. 

However this study sought to apply a discrete distribution to model the report lag variable in this 

study taking the lag as days-hence discrete. The truncation method demonstrated by Weissner 

(1999) could also be studied for the negative binomial distribution. A lot has been done in 

modeling distributions of related variables even without the copula method. Neahaus (2010) for 

instance proposed use of the compound distribution to model dependence between number of 

claims unreported and claim amounts. The copula method could also be applied to the two 

variables instead. However a number of papers reviewed have demonstrate the use of copula in 

dependence; Frees and Valdez (2007) for instance relate two variables with a copula based on 

their individual marginal distributions. The following research is an application of this concept to 

the variables report delay and claim amount in the insurance sector. The idea of copulas could 

also further be extended in calculation of the IBNR rather than just the dependence. The model 

developed by Stander (2011) for instance could also be considered to model IBNR claims in the 

insurance sector especially if three variables; report lag, claim amount and number of claims are 

used to develop the multivariate copula. The conditional copula described by Purwono (2004) 
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and Patton (2002) could also be applied by conditioning the number of claims and the claim 

amounts on the report lag. This would propose a model that demonstrates the claim amount and 

number of claims with a given report delay. 

Various limitations have also been observed in modeling the dependence between report delay 

and claim amounts. An example; Verrall et al (2010) describes the limitation of using reported 

claims paid rather than paid claims data; reported claims are merely estimates of the loss suffered 

while claims paid is the actual loss suffered. However there is also another disadvantage with the 

claims paid data; payments of claims are rarely made as a lump sum, rather they are made as a 

series of payments. It is due to this disadvantage that the model proposed in this research opts for 

reported claims data rather than claims paid. The disadvantage of reported claims amount is 

catered for by taking into consideration that the model that we seek to develop is purely meant to 

estimate how long an individual would take to report a claim based on the initial perception of 

the claim loss which is the initial estimate. It is important to note a model that used current 

estimates; estimates adjusted with payments made, would be an even better model than both the 

cases described above. 

The Schiegl (2010) model proposed poses a solution for claims that are not paid as per a lump-

sum with the survival probability in the binomial distribution. It also offers use of claims paid 

data rather than report paid data which are merely estimates and therefore a better realistic 

model. However it may prove difficult though not impossible to obtain data aggregated to the 

extent described in the model from insurance records. Furthermore, the dependence implied in 

this model was between the number of claims and the report delay; our model on the other hand 

seeks to establish the dependence between the report delay and the claim amount. 
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2.3 Conceptual Framework 

As has been mentioned, the main aim of this study was to determine the relationship between 

variables report lag and claim amount using copula. This involved obtaining the marginal 

distribution of the report lag and that of the claim amount. Then using a copula; the two 

distributions were joined to obtain a distribution that shows how the two variables relate with 

each other.  
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CHAPTER THREE: COPULA AND DEPENDENCE MEASURES 

3.1 Dependence 

Dependence is a statistical term used to explain the relationship that exists between two or more 

given variables. Variables are said to be dependent if the movement of one affects another. This 

can be in the case that an increase (decrease) in one variable results in an increase (decrease) in 

another; this is referred to as positive dependence. The case where an increase (decrease) in one 

variable leads to a decrease (increase) in another is referred to as negative dependence. 

Independent variables are variables whose movement has no effect on the other.  

In order to understand just how dependent two or more variables are, one has to be able to 

measure that dependence. Common measures of dependence include; 

 Concordance measures 

 Quadrant dependence 

 Tail dependence 

3.1.1 Concordance Measures 

Concordance is described as the agreement between two or more variables. A pair of random 

variables is concordant if large (or small values) tend to occur together. Consider the case of a 

pair of variables; say      and  

If , then the pair  and  are said to be concordant. 

If , then the pair  and  are said to be discordant. 

If , then the pair  and  are said to be neither 

concordant nor discordant. 

The measures used to determine concordance between variables include; 

 Pearson’s correlation coefficient 

 Kendall’s tau 

 Spearman’s rho 
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3.1.1.1 Pearson’s correlation coefficient 

This is the simplest and most common measure of concordance in use. It simply requires the 

covariance between two variables and their individual variances. It measures the linear 

correlation between the variables and this has proved to be one of its major weaknesses. It is 

expressed as; 

 

(3.1) 

It will also prove impossible to obtain the Pearson’s correlation coefficient if either of the 

variables has an infinite variance. This is another weakness that the Pearson’s correlation 

coefficient has. 

 

3.1.1.2 Kendall’s tau 

Another common measure of concordance is the Kendall’s tau. The population version of 

Kendall’s tau is the probability of concordance minus the probability of discordance for a pair 

,  . The population version of Kendall’s tau is; 

 

 

(3.2) 

Computation of Kendall’s tau for a given sample requires one to find count of the concordant 

and discordant pairs. It is expressed as; 

 

 (3.3) 

3.1.1.3 Spearman’s rho 

Spearman’s correlation coefficient is a statistical measure of the strength of a monotonic 

relationship between paired variables. A monotonic relationship is a causal relationship between 

two variables whereby if one increases the other will either increase or decrease. 

Let ,  and  be independent random vectors with a common joint 

distribution function H. The population version of the Spearman’s rho is the difference between 
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the probabilities of concordance and discordance of the vectors  and  (Kruskal 

1958). 

The calculation of a samples’ Spearman’s rho requires one to first find the ranks of the variables; 

and then compute the Pearson’s correlation coefficient on the ranked values (ranks). 

Spearman’s rho of X and Y is in-fact the linear correlation of  and . 

3.1.2 Positive Quadrant Dependence 

Positive quadrant dependence is a specific type of dependence such that; 

 

In simple terms, this implies that the probability that two random variables are jointly large is 

greater than or equal to when they are looked at independently. 

 

3.1.3 Tail dependence measure  

Tail dependence measure is a dependence measure that looks at the concordance between 

extreme values of the two variables. It is a measure of dependence in the upper right and lower 

left quadrant of the distribution. The definition is divided into two parts; one for the upper and 

one for the lower. 

Definition: Upper tail dependence 

Consider two random variables  and  with cumulative distribution functions  and  

respectively. The coefficient for upper tail dependence of  and  is; 

 

            (3.4) 

Provided a limit  exists and is between 0 and 1, then  and  are said to be asymptotically 

dependent in the upper tail. If the limit is equal to 0, then  and  are said to be asymptotically 

independent. 
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Definition: Lower tail dependence 

Consider again two random variables  and  with distribution functions  and  

respectively. The coefficient for lower tail dependence of  and  is; 

 

            (3.5) 

Provided a limit ʎL exists and is between 0 and 1, then X and Y are said to be asymptotically 

dependent in the lower tail. If the limit is equal to 0, then X and Y are said to be asymptotically 

independent. 
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3.2 Copula 

A copula is a function which joins or “couples” a multivariate distribution function to its one 

dimensional marginal distribution functions (Roger B. Nelson (2006)).  

Sklar (1953) defined a copula by showing the relationship between the copula and the joint 

distribution function the copula by joining the marginal distribution functions. 

I.e. Let H be an n dimensional distribution function with margins; . Then a 

copula C exists such that for all ‘ ’ in  it follows that: 

 

            (3.6) 

Similarly, we can express the copula in terms of the distribution function as; 

 

 

            (3.7) 

Definition: Quasi-inverse 

The quasi-inverse of a function is defined as   such that; 

 

            (3.8) 

 

                     (3.9) 

In this form, the copula is expressed as a joint distribution of random variables uniformly 

distributed between 0 and 1. 

It is also worth noting that the density function  associated with a copula 

  is defined as;  

 

(3.10) 
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3.2.1 Properties of copulas 

To explain the properties of copulas; we consider a bivariate case where the copula is derived 

from two variables. For the bivariate case, a copula C is a function C: I
2
 -> I such that; 

1. Copula functions are grounded 

This property implies that C (0, v) = C (u, 0) = 0 

Consider a graphical representation; 

  

2. Copula functions are 2-increasing 

This is basically a two dimension version of non-decreasing functions in one dimension. 

Mathematically, this property can be represented as; C is 2-increasing: for a, b, c, d in I 

with  and  if; 

C (b, d) – C (a, d) – C (b, c) + C (a, c) > 0 

 

3. When one variable is equal to 1, the copula is equal to the other variable 

I.e. C (1, x) = C (x, 1) = x for all x in I 

 

4. Copula functions must lie between the Frechet-Hoeffding bounds 

 
 

 

Frechet-Hoeffding bounds 

The last property is an inequality known as the Frechet-Hoeffding bound inequality. Hoeffding 

(1940) and Fretchet (1950) proposed that for a copula to be considered valid, it must be within 

these bounds;- 

 

 

(3.11) 
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The functions W and M are known as the lower and upper bounds respectively. 

W and M are also copulas by themselves and along with another copula  = UV known as the 

product copula plays an important role in explaining copulas. These three copulas have the 

following interpretations; 

 The copula of U and V is M (u, v) if and only if U and V is almost surely an 

increasing function of the other. 

 The copula of U and V is W (u, v) if and only if U and V is almost surely a 

decreasing function of the other. 

 The copula of U and V is  if and only if U and V are independent. 

These three copulas form a class of copulas known as Fundamental copulas. With the fact that 

copulas have to be within the Frechet-Hoeffding bounds, we note that while some cover both 

bounds, others fail to cover all. Copulas that are capable of modelling all three copulas 

mentioned above are described as comprehensive copulas. 
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Consider the following graphs for the three fundamental copulas: 

 

 

 

Figure 3.1: Graphical representation for the Frechet Hoeffding bounds and the independence copula 

Copulas are considered better in modelling dependence because of their flexibility and the 

various types (variety) of dependence they allow for. 
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3.2.2 Copulas and dependence measures 

It is important to note that one of the reasons that copulas are a favorite for measuring 

dependence is that copulas can easily be connected to the dependence measures already 

discussed. Later it is mentioned how these connections are improved for the specific case of 

Archimedean copulas. 

Just to mention a few of these connections, and considering the dependence measures earlier 

discussed, we have; 

 

Kendall’s Tau: - Note that Kendall’s tau is related to copulas in general in the following way; 

 

or 

 

            (3.12) 

Spearman’s rho: - Spearman’s rho is related to copulas in the following ways;  

 

 

 

            (3.13) 

Positive Quadrant dependence: - In terms of copula; two variables are considered positive 

quadrant dependent if; 

 

            (3.14) 
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Upper tail dependence: - Consider the definition of upper tail dependence with regards to 

copula; if a bivariate copula C exists such that; 

 

            (3.15) 

If ʎU exists and is greater than 0 but less than or equal to 1 then C has upper tail dependence and 

if ʎU is 0 then C has upper tail independence. 

Lower tail dependence: - If a bivariate copula C exists such that; 

 

            (3.16) 

If ʎL exists then C has lower tail dependence as long as ʎL is greater than 0 but less than or equal 

to 1 and has lower tail independence if ʎL is equal to 0. 

 

3.2.3 Types of Copulas 

Copulas can be categorized into three types:  

 Fundamental - These copulas represent perfect positive dependence, independence and 

perfect negative dependence. These are the Frechet-Hoeffding bounds along with the 

independence copula. 

 Implicit - These copulas are extracted from well-known multivariate distributions and do 

not have closed form expressions. An example is the Gaussian copula. 

 Explicit (Archimedean) - These are simple closed form expressions and follow general 

mathematical construction to yield copulas. 

For purposes of this study, we focus on the Archimedean family of copulas. 
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3.3 Archimedean Copulas 

These are copulas that are derived from mathematical functions known as generator functions. 

Generator functions are represented by  and have specific properties as discussed below.  

3.3.1 Properties of the generator function include; 

 Continuous 

 Decreasing 

 Convex function with  

 

Consider ; a continuous and strictly decreasing generator function from I to [0, ∞) that 

. The Archimedean copula function C is then given by; 

 

            (3.17) 

Definition: pseudo-inverse 

The pseudo inverse function is defined as; 

 

            (3.18) 

Note that if , then  is said to be a strict generator and it follows that the resulting 

copula will be a strict Archimedean copula. 

3.3.2 Construction of the Generator Functions 

There are different ways to come up with the generator functions; a common one is the Laplace 

transform approach. 

Consider the inverse of the generator function;   
[-1] 

(t), and let G be a distribution function for 

a non-negative random variable (Z). Then the relationship between the two is the Laplace 

transform; 

 

            (3.19) 



31 
 

The inverse  
[-1] 

(t), of the generator has the following properties;  

  
[-1] 

(-t), is the moment generating function of the random variable Z. 

  
[-1] 

(t),  is continuous and strictly decreasing with  
[-1] 

(0)  = 1 and  
[-1] 

(∞) = 0 

  
[-1] 

(t), is a completely monotonic function. 

The Clayton copula generator is considered to have been derived from the Laplace transform 

approach where the random variable Z was from a gamma distribution with parameters (α, 1/α). 

Genest and Rivest (1993) pointed out a common feature of some copulas that appeared to be 

special cases of the independence and minimum copulas.  

 

3.3.3 Properties of Archimedean copulas 

 Archimedean copulas are symmetric in nature; i.e. C (u, v) = C (v, u) 

 They are associative in nature; i.e. C (C (u, v), w) = C (u, C (v, w)) 

 For any constant k>0, k (t) is also a generator 

 

3.3.4 Archimedean copulas and dependence measures 

One of the attractive features of Archimedean copulas is that they are easily related to 

dependence measures. 

For the special case of Archimedean copula, the Kendall’s tau is related to the generator function 

in the  

Following way; 

 

            (3.20) 

It is also worth noting that for Archimedean copulas, tail dependence can be expresses in terms 

of the generators. This was demonstrated by Joe (1997). If  is a strict generator such that 
-1

 

belongs to the class of Laplace transforms for strictly positive random variables. If 
’
(0) is finite 
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and different from zero then the Copula does not have tail dependence. If 
-1’

(0) is finite, then 

the copula from that generator function does not have upper tail dependence.  

If 
-1’

(0) = -∞ then the copula has upper tail dependence and it’s coefficient of upper tail 

dependence is given by;  

 

            (3.21) 

Similarly for lower tail dependence, consider the same generator function  as above, then, the 

coefficient of lower tail dependence is; 

 

            (3.22) 

However, as mentioned previously, we focus on Archimedean copulas that model negative 

dependence. Hence we consider the following; 

 The Clayton Copula 

 Frank’s Copula 

 The Gumbel-Barnett Copula 

 Nelson No. 7 

 Nelson No. 10 
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3.3.5 The Clayton Copula 

This is an Archimedean copula also known as the Pareto family of copulas. It was first 

introduced by Clayton (1978). Its generator function is taken to be; 

 

             (3.23) 

The Clayton Copula distribution is; 

 

            (3.24) 

This copula; 

 Is strict for α > 0 

 Is comprehensive 

The Clayton copula is related to Kendall’s tau in the following way; τ = 
α

α+2
. 

The Clayton copula does not have upper tail dependence but has lower tail dependence with 

coefficient; ʎL = 2 
- 1/ α

.  

 

3.3.6 Frank’s Copula 

The Frank’s copula (1979) is an Archimedean copula whose generator function is; 

 

            (3.25) 

The distribution function for the Frank’s copula is; 

 

            (3.26) 
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The Frank’s Copula; 

 Is a strict copula 

 Is comprehensive 

 Is radially symmetric 

Earlier, we had mentioned that Archimedean copulas are symmetric. However, the Frank Copula 

has the property of is radially symmetric in addition to the fore-mentioned plain symmetry 

property. Radial symmetry implies that; C (u, v) = u + v – 1 + C (1 - u, 1 - v). A radially 

symmetric copula has equivalent upper and lower tail dependence. 

The Frank’s copula allows for negative dependence when α is negative and positive dependence 

when α is positive. The value of α also affects the level of dependence for the Frank’s copula. A 

higher level of α implies more dependence. 

The connection between Spearman’s rho and the Franks copula is;  

𝜌𝑠 = 1 − 12[𝐷2(−𝛼) − 𝐷1(−𝛼)]/𝛼 where 𝐷𝑘(𝛼) is the Debye function represented as;  

𝐷𝑘(𝛼)= 
𝑘

α𝑘 ∫
𝑡𝑘

𝑒𝑘−1
𝑑𝑡

α

0
 

Note the connection between Kendall’s tau and the Franks copula is; 𝜏 = 1 − 4[1 −  𝐷1(𝛼)]/𝛼 

with the same Debye function. 

 

3.3.7 The Gumbel-Barnett Copula 

This is an Archimedean copula whose generator function is; 

 

            (3.27) 

The copula distribution is; 

 

            (3.28) 
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The Gumbel-Barnett copula; 

 Is strict 

 Is not comprehensive with only one limit; C0 = π 

This copula does not exhibit tail dependence. The Gumbel-Barnett copula also only has the 

capability of modelling weak negative dependence. 

3.3.8 The Nelson No. 7 

This is an Archimedean copula whose generator function is; 

 

            (3.29) 

The copula distribution function is 

 

            (3.30) 

This copula is; 

 Not strict 

 Not comprehensive since it only has two limits; C1 = π and C0 = W 

The limits of this copula imply that this copula only allows for negative dependence. 

 

3.3.9 The Nelson No. 10 

This is an Archimedean copula whose generator function is; 

 

            (3.31) 

The copula distribution function is; 

 

            (3.32) 
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This copula is; 

 Strict 

 Not comprehensive with only one limit C0 = π 

This copula does not exhibit any tail dependence and only allows for weak negative dependence. 

 

3.4 Estimation of parameters 

Having mentioned the copulas considered for this study, the study then sought to estimate the 

parameters for the marginal distributions and the copulas. There are different approaches that can 

be considered in estimating the parameters. One can either use non-parametric methods or 

parametric methods. 

3.4.1 Non-Parametric (Empirical) method 

This refers to estimation of parameters from the observations themselves rather than making 

initial assumptions about the distributions of the data and later checking for the validity of the 

assumption. 

The main advantage of this method is that aspect of it does not make prior assumptions but rather 

based its findings purely on the data. 

3.4.2 Parametric methods 

There are various parametric methods that can be applied to data and to mention a few, we will 

describe two; full maximum likelihood estimation (FML) and Inference for margins (IFM). 

Full maximum likelihood estimation (FML)/Exact maximum likelihood method 

In this approach we maximize the log likelihood with an aim of finding the parameters of the 

marginal distributions and the copula simultaneously.  

This method is considered computationally exhausting and we therefore opt for the inference for 

margins method. 

Inference functions for margins (IFM) 

In this method parameters for the marginal distributions are computed individually and the 

results are used to compute the parameters for the copula. 
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3.5 Goodness of Fit Tests 

Once the parameters for the marginal distributions and for the copulas are determined, we the 

study then sought to find the goodness of fit of the different copulas. This helped in determining 

the best copula for the data and hence the properties that the data has. 

For the goodness of fit, we consider two tests; 

 The Akaike Information Criterion (AIC) 

 The Schwarz Information Criterion (SIC) 

3.5.1 The Akaike Information Criterion 

The Akaike information criterion was proposed in Akaike (1973) as a simple and versatile 

method for determining the suitability of statistical models. It is a method based on earlier works 

such as Neyman and Pearson (1928, 1933), Wald (1943) and Kullback (1959) among others. 

Kullback (1951) proposed determining the fitness of a model using the Kullback-Leibler (1951) 

information quantity. This is a measure of the distance between the model of interest and the true 

model (observations). He proposed that minimizing this distance would help determine just how 

helpful the model would be in explaining the observations. 

The Kullback-Leibler information quantity is a measure based on the expectation of the log 

likelihood of the distribution proposed and that of the log likelihood of the true distribution. 

Akaike (1977) proposed a new measure (mean log likelihood) as an estimate of the Kullback-

Leibler information quantity. 

From these the Akaike Information Criterion statistic was introduced; 

 

            (3.33) 

Where k represents the number of parameters. 
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3.5.2 The Schwarz Information Criterion 

This criterion was derived by Schwarz (1978). It is also commonly known as the Bayesian 

Information Criterion. The SIC computation is linked to Bayesian statistics but is considered 

more favorable at times since it does not require the input of the prior. 

The Schwarz Information Criteria statistic is given by; 

 

            (3.34) 

Where k represents the number of parameters. 
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CHAPTER FOUR: NUMERICAL RESULTS 

 

The method proposed was applied to data from an insurance company. The data considered was 

the claims reported in a period of one month. The data was arranged on a per claim basis and 

therefore the date of loss, date reported and amount per claim was easily attainable. 

The report delay was obtained as the number of days between when the claim was incurred and 

when the claim was reported. 

The amount considered in this case was the original estimate of the claim. The original estimate 

of the claim was preferred to claim amount paid since the premise of our hypothesis is that 

individuals who are under the impression of a large loss report earlier. Therefore the report delay 

is dependent on the first estimate of the loss. 

The data statistical results for the two variables under consideration; report delay and claim 

amount were as follows; 

 Report delay (days) Claim amount 

(KShs) 

Mean 56.24 93786.44 

Standard deviation 138.30 94866.09 

Skewness 5.03 1.28 

Kurtosis 28.98 2.62 

Sample size 79.00 79.00 

 

Table 4.1: General Statistics for the Variables 

 

The correlational results for the two variables were as follows; 

Pearson’s correlation coefficient: -0.07965 

Kendall’s tau: -0.2971 

Spearman’s rho: -0.4068 
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4.1 Fitting Marginal Distributions 

4.1.1 Report Lag Distribution 

The report delay was considered as a discrete distribution in terms of days. With this in mind the 

two favorable discrete distributions based on the comparison of their pdf curves and the 

histogram of the data were; the negative binomial distribution and the geometric distribution. 

The negative binomial distribution 

Using the maximum likelihood method to fit the negative binomial distribution to the report 

delay data, the following results were obtained; 

 Parameter estimate Standard error 

Size parameter 0.4725 0.0634 

Mu parameter 56.2458 9.2457 

 

Table 4.2: Results for the negative binomial fit to the report lag variable 

 

The fit that the negative binomial distribution had to the data could also be illustrated by super 

imposing the negative binomial density curve to the histogram of the observed data as shown in 

the following graph; 

 

Figure 4.1: Graphical illustration for the negative binomial fit to the report lag variable 
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The geometric distribution 

Using the maximum likelihood method to fit the geometric distribution, the following results 

were obtained; 

 Parameter estimate Standard error 

Probability 0.0175 0.0019 

 

Table 4.3: Results for the geometric distribution fit to the report lag variable 

 

The graphical fit of the geometric distribution to the report delay data could also be illustrated as 

shown; 

 

Figure 4.2: Graphical illustration for the geometric distribution fit to the report lag variable 
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Summary of report delay distribution marginal fit 

From graphical illustrations it clearly shows that both distributions could be considered a 

reasonable fit for the report delay data. Comparison between the log likelihoods, AIC and BIC 

for the two distributions was as follows; 

 

Distribution Log likelihood AIC BIC 

Negative Binomial -379.1867 762.3734 767.1123 

Geometric -398.0396 798.0791 800.4486 

 

Table 4.4: Results for the AIC and BIC statistics for the fitted marginal distributions  

 

To be able to determine which fit was better, the Kolmogorov Smirnov test was also carried out 

on both distributions and the results were as follows; 

 

 

Distribution Kolmogorov 

Statistic 

Kolmogorov  p-

value 

Negative Binomial 0.1529 0.049731 

Geometric 0.2877 0.000006 

 

Table 4.5: Results for the Kolmogorov test for the fitted marginal distributions 

 

It was noted that both the AIC and the BIC values for the negative binomial were less than that 

of the geometric distribution implying that the negative binomial distribution was the better fit 

for the data. The Kolmogorov statistic further confirmed this by showing the p-value of the 

Negative binomial to be greater than that of the Geometric distribution. Hence the better 

distribution for the marginal of the report delay data was taken to be the Negative binomial 

distribution. 
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4.1.2 Claim Amount Distribution 

 

Two continuous distribution curves were considered for fitting the claim amount; the log-normal 

distribution and the Weibull distribution. 

The lognormal distribution 

Using the maximum likelihood method to fit the lognormal distribution, the following results 

were obtained; 

 

 Parameter estimates Standard error 

Mean-log 10.71 0.0019 

Sd-log 1.42  

 

Table 4.6: Results for the lognormal distribution fit to the claim amount variable 

 

The graphical fit of the lognormal distribution to the claim amounts data is illustrated as shown; 

 

Figure 4.3: Graphical illustration for the lognormal distribution fit to the claim amount variable 
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The Weibull Distribution 

Using the maximum likelihood method to fit the Weibull distribution, the following results were 

obtained; 

 Parameter 

estimate 

Standard error 

Shape 8.71 0.0019 

Scale 8.81  

 

Table 4.7: Results for the Weibull distribution fit to the claim amount variable 

 

Summary of claim amount distribution marginal fit 

The summary results for fitting the distributions were as follows; 

 

Distribution Log likelihood AIC BIC 

Lognormal -985.6014 1975.20 1979.94 
Weibull -982.1955 1968.39 1973.13 

 

Table 4.8: Results for the AIC and BIC statistics for the fitted marginal distributions  

 

The Kolmogorov test statistic results on the claim amount data was as follows; 

 

Distribution Kolmogorov 
Statistic 

Kolmogorov  
p-value 

Lognormal distribution 0.2084 0.002093 

Weibull distribution 1 0.000000 

 

Table 4.9: Results for the Kolmogorov test for the fitted marginal distributions 

 

From Kolmogorov tests results the lognormal distribution is a better fit of the data. 
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4.2 Fitting the Copula Distributions 

 

The maximum likelihood method was employed to the copulas given the results obtained for the 

marginal distributions.  

The copula distributions first had to be converted to their respective probability density functions 

in order to obtain the likelihood function. The log likelihood function was then obtained for 

easier optimization.  

It is important to note that the likelihood and the log likelihood functions were not easily 

maximized and therefore for some of the copulas; a numeric iterative method – The Newton 

Raphson method was applied to obtain the parameter estimates. 

The variables used in the copula functions were the distribution values of the observed instances 

using the distribution functions that were maximized in the previous section. 

The results for the copulas were as follows; 
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4.2.1 Gumbel Barnett Copula  

 

The main results for the Gumbel Barnett Copula were as follows: 

 

Method of likelihood maximization Newton Raphson (7 iterations) 

Parameter estimate 1.4481 

Standard error 0.1968 

Log likelihood 65.29457 

AIC -128.5891 

 

Table 4.10: Results for the Gumbel Barnett Copula 

We note that the parameter value obtained is outside the bounds required for the Gumbel Barnet 

copula; (0, 1).  

In such a case; we find the maximum likelihood estimator within these bounds by plotting the 

graph of parameter values against the log likelihood to obtain the parameter value that 

maximizes the copula. The graph obtained is as below; 

 

 

Figure 4.4: The graphical representation of the maximum likelihood estimate for the Gumbel Barnett 

This shows that the parameter value that maximizes the log likelihood within the bounds is 1. 

Hence rather than 1.44 as obtained by the numerical analysis we settle for 1. 
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4.2.2 Nelson Number 10 

 

The results under the Nelson number 10 copula were as follows; 

Method of likelihood maximization Newton Raphson (7 iterations) 

Parameter estimate 0.6900 

Standard error 0.2983 

Log likelihood 5.078408 

AIC -8.156817 

                                                               

Table 4.11: Results for the Nelson No. 10 Copula 

                                                                                                                                                                                                                                                                                                                                                                                    

The parameter estimate obtained from numerical approach this time is within the required 

bounds (0, 1].  

This result can be complemented by the graph of the log likelihood function where the estimate 

is observed as the maximum point of the curve. 

 

 

Figure 4.5: The graphical representation of the maximum likelihood estimate for the Nelson No. 10 
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4.2.3 Franks Copula 

 

The results for Franks Copula were as follows: 

Method of likelihood maximization Newton Raphson (3 iterations) 

Parameter estimate -2.7171 

Standard error 0.7505 

Likelihood 6.775623 

AIC -11.55125 

 

Table 4.12: Results for the Franks Copula 

 

The result for the parameter estimate from the numerical approach was further complemented 

using the graphical approach as shown below; 

 

 

Figure 4.6: The graphical representation of the maximum likelihood estimate for Franks Copula 
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4.2.4 Clayton Copula 

 

The results for Clayton Copula were as follows: 

Method of likelihood maximization Newton Raphson (6 iterations) 

Parameter estimate -0.27312 

Standard error 0.03786 

Log likelihood 4.477831 

AIC -6.955661 

 

Table 4.13: Results for the Clayton Copula 

 

When the maximum likelihood graphical approach was considered, the results were as below; 

 

Figure 4.7: The graphical representation of the maximum likelihood estimate for Clayton Copula 

 

Furthermore; Kendall’s tau as implied by the Clayton copula is: - 0.1585 
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4.2.5 Nelson Number 7 Copula 

 

The results for Nelson Number 7 Copula were as follows: 

Method of likelihood maximization Estimation 

Parameter estimate 0.9968323 

Likelihood -0.2506438 

AIC -2.5012876 

 

Table 4.14: Results for Nelson Number 7 Copula 
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4.3 Summary of the copula fits to the data 

 

The results for the AIC test statistics for the copulas compared as follows; 

Copula AIC 

Gumbel Barnett -128.5891 

Clayton -6.955661 

Nelson number 7 -2.5012876 

Nelson number 10 -8.156817 

Franks Copula -11.55125 

 

Table 4.15: Results for the AIC statistics for the five copulas 
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CHAPTER FIVE: DISCUSSIONS AND CONCLUSIONS 

5.1 Discussions 

From the general results obtained for the two variables claim amount and report lag; it was 

observed that there exists a negative dependence. This was illustrated by the correlation 

measures; Pearson’s correlation coefficient, Kendall’s tau and spearman’s rho. In addition to the 

correlation measures being negative; it was also noted that the magnitude of the measures was 

significantly small. This implied existence of weak dependence.  

When fitting the Gumbel Barnett copula, the resulting parameter estimate was 1. The Gumbel 

Barnett copula is a favorite among the copulas in measuring weak negative dependence between 

variables. A result by Charpentier (2004); shows that when the parameter is equal to 0 the copula 

becomes the independence copula and as long as the parameter is less than 1; it remains within 

the Frechet Bounds. Hence from our result along with the nature of the Gumbel Barnett Copula; 

we can deduce that the obtained parameter implies existence of weak negative dependence 

between the variables. 

The Nelson number 10 copula is another copula suited to measure weak negative dependence. 

The nature of the copula itself implies existence of weak negative dependence between the two 

variables. 

Franks copula is comprehensive in nature and hence can measure all types of dependence. As 

earlier mentioned a negative value of the parameter implies a negative dependence and the 

higher the absolute value the higher the dependence. In this case the value obtained was a 

negative value indicating negative dependence and its low absolute nature implied weak 

dependence between the variables. This also showed the existence of weak negative dependence 

between the two variables 

The Clayton copula with parameter -1 implies a perfect negative dependence and with parameter 

0 implies perfect independence between the variables. The Clayton copula parameter estimate 

lies between -1 and 0 implying that there is indeed negative dependence between the two 

variables. One could also infer from the low absolute value of the parameter that the negative 

dependence is weak in nature. This was further emphasized with the Kendall’s tau estimate 

obtained as per the Claytons’ parameter. The Kendall’s tau estimate was found to be negative 



53 
 

and had a small absolute value implying existence of weak negative dependence between the two 

variables. 

The Nelson number 7 copula is suited to measure negative dependence between variables. The 

limits of the copulas’ parameter estimate are; 1 which implies independence and 0 which implies 

negative dependence. The parameter estimate obtained in our results was extremely close to 1 

implying that if indeed there exists negative dependence between the two variables; it is quite 

weak in nature tending to independence. 

 

5.2 Conclusion 

The correlational measures for the sample data; the Pearson’s correlation coefficient, Kendall’s 

tau and the Spearman’s rho all implied existence of weak negative dependence between the two 

variables; claim amounts and report lag. Two of the copulas considered in the study were 

comprehensive in nature. This implied that they could measure all types of dependence and 

therefore based on the parameter estimate obtained, they could be able to show what kind of 

dependence existed between the variables. The two comprehensive copulas were the Clayton and 

Frank’s copula. Results from both copulas confirmed that indeed weak negative dependence 

existed between the variables. 

The remaining three copulas are copulas suited to measure negative dependence and therefore 

could only aid in showing how strong or weak the negative dependence is if any. While the 

Nelson number 7 is suited for modelling negative dependence in general, the Gumbel Barnett 

and the Nelson number 10 are specifically suited for modelling weak negative dependence 

between variables. 

As already mentioned all the five copulas that were considered in the study showed that there 

exists weak negative dependence between the report lag variable and claim amount variable. 

However each copula measured this negative dependence to different extents. A comparison of 

the AIC values of each of the copulas was conducted. The Gumbel Barnett copula had the 

smallest AIC value while the Nelson number 7 copula had the largest AIC value. This result 

implied that according to the comparisons of the AIC values for the different copulas, the 

Gumbel Barnett is the best option in modeling dependence between the variables report delay 

and claim amount.  
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As per the results obtained from the sample correlational measures that implied weak negative 

dependence; the copula best suited to measure dependence between claim amounts and report lag 

based on the AIC results, is the Gumbel Barnett copula; which in itself is a copula suited to 

measure weak negative dependence. 
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APPENDIX 
 

R Code: 

 

Construction of fundamental copulas: 
 
x<-seq(from=0, to=1, by=0.1) 
y<-x 
f<-function(x,y){r=x*y;r} 
z<-outer(x, y, f) 
##################################################### 
r<-matrix(nrow=11, ncol=11) 
for (j in 1:11){ 
for (i in 1:11){r[i,j]=min(x[i],y[j])}   }  
z<-r    
###################################################### 
r<-matrix(nrow=11, ncol=11) 
for (j in 1:11){ 
for (i in 1:11){r[i,j]=max(x[i]+y[j]-1,0)}   }  
z<-r 
###################################################### 
nrz<-nrow(z) 
ncz<-ncol(z) 
jet.colors<-colorRampPalette(c("red", "purple")) 
nbcol<-100 
color<-jet.colors(nbcol) 
zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz] 
facetcol <- cut(zfacet, nbcol) 
persp(x, y, z, col = color[facetcol], phi = 30, theta = 130)->res 
 
 

  



58 
 

Fitting the marginal distributions 
 
library(fitdistrplus) 
library(maxLik) 
 
####### REPORT DELAY ############# 
table<-read.csv("C:/Users/samayi/Documents/Project.csv", header = TRUE) 
hist(table$Report, prob=TRUE, xlab="Report delay in days", main="Fitting the distribution") 
 
summary(fitdist(table$Report, "nbinom")) 
lines(x, dnbinom(x,size=0.4724853, mu=56.2457902), col="black") 
summary(fitdist(table$Report, "geom")) 
lines(x, dgeom(x,prob=0.01747015), col="orange") 
ks.test(table$Report, "pnbinom",size=0.4724853, mu=56.2457902) 
ks.test(table$Report, "pgeom" ,prob=0.01747015) 
 
######## CLAIM ESTIMATES ################ 
table<-read.csv("C:/Users/samayi/Documents/Project.csv", header = TRUE) 
hist(table$Estimate, prob=TRUE, xlab="Claim Amount", main="Fitting log normal distribution curve") 
x<-seq(from=10000,to=1000000, by=1) 
summary(fitdist(table$Estimate, "lnorm")) 
lines(x, dlnorm(x,meanlog=10.706871, sdlog=1.419291), col="black") 
summary(fitdist(table$Estimate, "weibull")) 
lines(x, dweibull(x,shape=0.8709962, scale=0.0008184679), col="blue") 
 

 

Fitting the Gumbel Barnett Copula 
 
############# GUMBEL BARNETT ################### 
 
x<-c(pnbinom(table$Report, size=0.4724853, mu=56.2457902)) 
y<-c(plnorm(table$Estimate, meanlog=10.706871, sdlog=1.419291)) 
n<-length(table$Estimate) 
GB<-function(alpha){ 
z<-alpha[1] 
zu<-(-1*z*log(x, base=exp(1))*log(y, base=exp(1))) 
zuu<-log( (1-z*(log(x, base=exp(1))+log(y, base=exp(1))-(z*log(x, base=exp(1))*log(y, base=exp(1)))-1)) 
,base=exp(1)) 
return(sum(zu)+sum(zuu)) 
} 
ml <- maxLik( GB, start = 0) 
summary(ml) 
AIC(ml) 
z<-seq(from=0, to=3, by=0.01) 
h<-NULL 
for (i in 1:301){ h[i]<-GB(z[i])} 
plot(z,h, type="l", xlab="Parameter value", ylab="Log likelihood", main="Maximum Likelihood Graphical 
Presentation", sub="Gumbel Barnett Copula") 
abline(h=GB(1), v=1) 
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Fitting the Nelson No. 10 Copula 
 
 
############# NELSON NUMBER 10 ######### 
 
x<-c(pnbinom(table$Report, size=0.4724853, mu=56.2457902)) 
y<-c(plnorm(table$Estimate, meanlog=10.706871, sdlog=1.419291)) 
NT<-function(alpha){ 
z<-alpha[1] 
m<-(1/(1+((1-x^z)*(1-y^z)))) 
n<-m^(1/z) 
o<-(x^z+y^z-((x^z)*(y^z)*(2+z)))*(m^((1+z)/z)) 
p<-(x^z*y^z*(1-x^z)*(1-y^z)*(z+1)*m^((1+(2*z))/z)) 
r <-n+o+p 
zu<-(log(r ,base=exp(1))) 
return(sum(zu)) 
} 
ml <- maxLik( NT, start = 0.5) 
summary(ml) 
z<-seq(from=0, to=1.5, by=0.01) 
h<-NULL 
for (i in 1:151){ h[i]<-NT(z[i])} 
plot(z,h, type="l", xlab="Parameter value", ylab="Log likelihood", main="Maximum Likelihood Graphical 
Presentation", sub="Nelson No. 10 Copula") 
abline(h=NT(0.69), v=0.69) 
 

 

Fitting Franks Copula 
 
########### FRANKS COPULA   ################ 
 
x<-c(pnbinom(table$Report, size=0.4724853, mu=56.2457902)) 
y<-c(plnorm(table$Estimate, meanlog=10.706871, sdlog=1.419291)) 
FC<-function(alpha){ 
z<-alpha[1] 
a<-(z*exp(-z*(x+y))) 
b<-((exp(-z*x)-1)*(exp(-z*y)-1)) 
c<-((exp(-z)-1)+b) 
d<-(a*((b/(c*c))-(1/c))) 
zu<-(log(d, base=exp(1))) 
return(sum(zu)) 
} 
ml <- maxLik( FC,start=-3) 
summary(ml) 
z<-seq(from=-4, to=-1, by=0.01) 
h<-NULL 
for (i in 1:301){ h[i]<-FC(z[i])} 
plot(z,h, type="l", xlab="Parameter value", ylab="Log likelihood", main="Maximum Likelihood Graphical 
Presentation", sub="Franks Copula") 
abline(h=FC(-2.7171), v=-2.7171) 
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Fitting the Clayton Copula 
 
########### CLAYTON COPULA   ################ 
 
x<-c(pnbinom(table$Report, size=0.4724853, mu=56.2457902)) 
y<-c(plnorm(table$Estimate, meanlog=10.706871, sdlog=1.419291)) 
CC<-function(alpha){ 
z<-alpha[1] 
a<-(1+z) 
b<-(x^(-z-1))*(y^(-z-1)) 
c<-((x^(-z)+y^(-z)-1)^((-1-(2*z))/z)) 
d<-a*b*c 
zu<-log(d, base=exp(1)) 
return(sum(zu)) 
} 
ml <- maxLik( CC ,start=-0.1) 
summary(ml) 
AIC(ml) 
z<-seq(from=-0.3, to=-0.01, by=0.01) 
h<-NULL 
for (i in 1:30){ h[i]<-CC(z[i])} 
plot(z,h, type="l", xlab="Parameter value", ylab="Log likelihood", main="Maximum Likelihood Graphical 
Presentation", sub="Clayton Copula") 
abline(h=CC(-0.27312), v=-0.27312) 
 

Fitting the Nelson No. 7 Copula 
 
############# NELSON NUMBER 7 ######### 
 
x<-c(pnbinom(table$Report, size=0.4724853, mu=56.2457902)) 
y<-c(plnorm(table$Estimate, meanlog=10.706871, sdlog=1.419291)) 
z<-max((1-x-y)/((x*y)-x-y+1)) 
z 
length(table$Estimate)*log(z, base=exp(1)) 


