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ABSTRACT

This research work is intended for Senior undergraduate course in analysis ,’The 3™ and 4"
year B.ed and B.sc mathematics options’ and first year student mastering in mathematics. The
project covers topics in calculus ,real analysis, measure theory and applications in time series.
The beginning chapters lay the setting to Riemann integration in contrast with other earlier
existing theories such us mid-ordinate rule and Trapezium method. Riemann defines partition of
independent ordinate and take variation of the dependent ordinate then proceed to take the
minimum and maximum sum of all the partitions possible and the integral is taken if the two
Riemann sum are equal. Some examples of integration are also provided. The theory of Riemann
stieltjes is an extension of Riemann theory that covers ;vector- valued functions and discontinuous

functions such unit step functions and signum functions. It’s bridge the gap of continuity and

discontinuity by use of convergence of series and also extend the real line to R"spaces. The

final and most notable extension is the lebesgue integration. The construction of the lebesgue
measure is done using countable base, whose members are open interval then the idea of
measurable functions is extensively discussed ,before it’s use in definition of measurable integral
isimportant ,the we proceed to define monotone convergence theorems and lebesgue dominated
convergence theorems. Finally the comparison of the two integration theories ‘Riemann and

lebesgue’ is done by citing a number of similarity and loopholes in evaluation of integral in areas
such as ;Bounded and Un bounded functions ,Complex and L, -spaces and recovery of derivative
functions. Finally application of the Fourier Series integrals in Time-Series Analysis is done by

by smoothing time plot by regression and other methods which allow finding of auto correlation ,

wavelet and spectrum analysis.



CHAPTER ONE
1.0 INTRODUCTION
1.1 General Introduction

Integration means bringing parts together ,it is the process that is inverse to differentiation.

Thus the definite integration, “Let f be defined on the interval [a,b],the definite integral of f

(b—-a)

n

b
Is given by If(x)dx = limz f (x;)Ax, ,provided the limits exists, where Ax = and X,
n—oo

isany value of X in i"™ interval. This definite integral is a number ( example of Riemann sum)

The fundamental Theorem of calculus,’let f be continuous on the interval[a,b] and let F be

b
any ant derivative of f .Then J-f(x)dx =F(b)-F(a)=F(x) |Z which shows connection of
between ant derivatives and definite integrals.Other important theorems allied to Riemann

includes the Archimedes( 287 —213B.C ) First Principles and mean value theorem.

Riemann integral became inadequate and could not give solutions in discontinuity as well as
Functions with increasing number of limits. Thus extensions such as Riemann Stieljes and
Lebesgue integration theories allows us to integrate a much larger class of functions such as
step-wise functions(discontinuous functions)and also many limits operations can be handled

with alot of ease.



1.2 PROBLEM STATEMENT
Many research studies has been done on the integration techniques ,butvery few of
their feedback narrow back to its development from reasonably well-behaved functions on

sub-intervals of real line. As well as developed theories of integrations that can be applied to much

large classes of functions whose domains are more or less arbitrary set,including subsets of R’
This research aim to put across different ways of approximating areas of the regions, the
Riemann theory and extensions by Stieltjes and Lebesgue and also its applications in time
series analysis

1.3 OBIJECTIVES

The overall objectives is to survey the formulation (or derivation) of both Riemann integral

and Lebesgue integral and make a brief comparison between theories.

1.4 Specific Objectives

1.Investigate the fundamental concepts of Riemann and Riemann-Stieltjes theory of integration.

2. Construction of the lebesgue measure and integration and some of the main theorems of the
theory.

3.Make a brief comparison stating where possible advantages of Lebesgue integral theory over
the Riemann integral theory.

4.Exhibit examples to show applications in Time Series Analysis.

1.5 SIGNIFICANCE OF STUDY

Lebesgue integration have wide range of applications in statistics of expectations, Solutions to
time series analysis and research methods. Furthermore integration and differentiation is very vital
in applied and Engineering mathematics. It also occupy a central place in analysis, in the study of

(L*-Spaces and L°-spaces).



CHAPTER 2
2.0 LITERATURE REVIEW
2.1 Motivation
Three Cambridge University Dons of mid —20" Century in their three books,
‘Cambridge Mathematics; Part [ ,Part II ,and Part II[ ,classified the subject into
(i)Mathematics for pre-university/undergraduate mathematics
(ii)Applied mathematics of specialized courses and
(iii)Mathematics Analysis
Riemann and Lebesgue Theories Of Integration are some of earlier stage of analysis and extending the
study of real lineto R" spaces just make it much involved .Furthermore application of orthogonal integral to
time series analysis is crucial in Biostatistics ,geophysics and financial fields

2.2 Background Information.
The concepts of integration dates backs to ( (287 —213B.C)) where Archimedes and his

contemporaries would apply the first principles to find area of planes figures even before the method
of differentiation was discovered. Otherwise, the concepts of integration as a technique that both acts

as a an inverse to the operation of differentiation and also compute area under curves ,goes back to the
origin of calculus and the work of Isaac Newton (1643 —1727) and Leibnitz (1646—-1716)
It was Leibnitz who introduced the I ...dx notation. The first rigorous attempt to

understand integration as a limiting operation within the spirit of analysis was due to

Bernard Riemann (1826 —1866).The approach of Riemann that is usually taught was however
developed by Jean-Gaston Dar boux (1842 —1917) .at the time it was developed this theory seemed
to be all that was needed but as the 19™ century drew closer, some problem appeared.

(i)One of the main tasks of integration is to recover a function f from it's derivative f'.

but some functions were discovered for which f ' was bounded but not Riemann integrable.

10



(ii)Suppose (fn) is a sequence of functions converging point wise to f . The Riemann integral

could not be used to find conditions for which jf(x)dx = limJ- f, (x)dx
n—oo

iii)Riemann integration was limited to computing integrals over with respect to Lebesgue measure,
ii)Ri int ti limited t ting int I R* with t toleb

although it is not yet apparent ,the emerging theory of probability would require the calculation of

expectations of random variables x; E(X) = Ix(w)dp(w) .The Lebesgue’s technique allows us to
Q

investigate If(x)dm(x) where  f;S — R isa ‘suitable’ measurable function defined on a measure

\)

space (S,Z,M) If we take M to be the Lebesgue measure on (R,B(R)). we recover

the familiar integral Jf(x)dx but we will now be able to integrate many more functions
R

(at least in principles)than Riemann and Darboux. If we take X to be arandom variable on a
probability space, we get it’s expectation E(x).
2.3 COMPARISON
Many authors such as have compared the two theories Riemann and Libesgue inform
of integral theorem, but much of comparisons tools will depend on the calculus

reader/student in identifying the key areas, applications and the successes or failure of each
method. This article cite five such areas namely; Integration of discontinuous functions, Relation
of differentiation and integration, complex functions and I —space s.

2.4 APPLICATION
There are wide range of stationary time series models methods for estimation of autocorrelation
and spectrum as well as methods for multivariate stationary series, and those that forecasting
future values . Authors who have written materials in this field includes

Priestly .M,” Spectral Analysis and Time Series’. Hannan. E.J,’ Time Series Analysis.” etc..

11



CHAPTER THREE
RIEMANN INTEGRATION

3.1.0 (Partition)

3.1.1 Definition; Let [a, b] be a compact interval. Then the set of points p = {xo D PR X, }
satisfying the inequality @ = X, <X, < X,.cuecuee. <x,=b iscalled a partition of [a,b]
|| >
@=X) Xjverreenrenns Xy X,=b

3.1.2 Consequences

(a)Ax, =x, —x_, such that Y Av, =b-a

k=1
(b) collection of all possible partition on [a,b] is denoted by Q(a,b) = P€ Qla,b]
I.e Pisa partition of [a,b]
3.2.0 Bounded Variation ( Bounded Variation )

3.2.1 Definition ; Let f be afunctionon [a,b]with Af (x,) = f(x,)— f(x,_,),if there exista

number M such that M>0 and Z| fOx)—f(x_ DM Vpe Qla,b]
Then the function f is said to be bounded variation on [a,b] and is denoted by f € B.V[a,b].
A

Y

ﬂ’:f(xk)

u=f(x_)

v

12



3.2.2 Theorem

If f is monotonicon [a,b] then f € BV]a,b]

Proof

A monotonic [ is either an increasing (T) or decreasing (xL) function on

an interval [a,b]. ()When f is increasing (T) on [a,b]

Then for every partition of [a,b] we have Af = f(x,)— f(x,_,)=0

n

Hence Z‘f(xk)_‘f(xk—l): i:f(xk)_if(xk—l)

=f)-f(a)

Putting f(b)— f(a)=M ,hence for all possible partitions,

f € BV]a,b] since Zl Afx, ISM

k=1
(iDIf f is decreasing ) on [a,b]
Then for every partition of [a,b]

We have Af (x,) = f(x,_)— f(x)20
Hence 31 f ()= f(x )= f ()= 2 F ()
= fB)- f(@)

Putting f(b)— f(a) =M implies that Z| Afx, ISM

=1
Hence for all partitions on [a,b], f € B.V[a,b]

13



3.2.3 Def (&— 0 ,definition of continuity)

A function f(x) is continuous ata point a if for every number € > 0 their exist d >0

Suchthat | x—alkk d =l f(x)— f(a)lk e

Y

o | @
f@ |
| % |

»
»

a X X
3.2.4 Example
. =5 . . X=5 .
The function f(x)= is continuous at x =5 since lim has a value(exist).
x—4 =5 x—4

On the contrary f(x) is not continuous at x =4, because its limit has no value.

Proof y

A
fx) | f(x)
E
(@] 4 ) |
i i

<+“——>

v

a X

=5
—4

In this case a=35, f(x)=

choose any €>0 and fix it such that | f(x)— f(a)lk &

2_ 2_ _
e 1570 20k on X 2=20x+80,
x—4 x—4
2_ — —
X205, =)D
x—4 x—4

14



x—15

x—4

= [(x=3)Il e

x—4

x—15

= |lx-S5kel

| — L(for x close to 5)
10

e Ix—5l<%:5 Thus §>0 andlx—5I< &

whenever | x=5I<0 =l f(x)— f(O) ke

3.2,5. Theorem; Let f be continuous in [a,b], if the derivative f 'of the function f exist

and is bounded on [a, b] such that for Vxe€ (a,b),then f is of bounded variation.

fv(tk) — f(-xk)_f(-xkfl)

Recall mean value theorem X, — X, and Af(x)=f(x)—f(x_)

by mean value theorem Af(x,)= f'(x )(x, —x,_,) = f'(t,)Ax, where x,_ <t <x,

Andhence Y |Af, I=Y | f()Ax, | < A(b—a)Putting A(b—a)=M ,

we have ZIAfk ISKM i.e f is a bounded variation.

15



3.3.0 Total Variation

3.3.1 Def;let f € B\V[a,b] andlet Sp = Zl f(x,)— f(x,_,) ]| corresponding to the partition

P ={%0 Xy Xy x, } f(x)4

v

a=xy Xj... Xp... b=x,

Let Qla,b] be the set of all partition of [a,b], the number

V (a,b)=Sup{s,;pe O(a,b) }

=Sup{sp IZ| f(x)—f(x_ )| PeQ(a,b)} iscalled the total variation of f on [a,b].

3.3.2 Theorem

Let fe BV(a,b) andlet a<c<b then fe€ BV[a,c] and f € BV][c,b] furthermore
7 [a,b]= Vila,cl+V, [c,b]

Proof

(DShowing V, (a,c)+V,(c,b) <V (a,b)

Let p, and p, beany arbitrary partitions of [a,c] and [c,b] respectively. Then Po-Pi,P, isa
partition of [a,b].Let Sp, = Z| f(x,)— f(x,_) 1, corresponds to the partitions p, (for arbitrary

appropriate interval) then Zpl + Z P, =58p, sV, (a,b)= Sp, and Sp, are bounded above by
V,(a,b) Which implies that Sp, = Y | f (x,)— f (x,_) €V, (a,b) and

Sp, = Z| f(x)—f(x, )€V, (a,b) hence f isofboundedon [a,c] and [c,b] and from above

we have V, (a,c)+V,(c,b) <V, (a,b)

16



(IDTo show V,(a,b) <V (a,c)+V,(c,b)

Let Py = Xgs Xyseeeeeeenne X, be partition on [a,b] andlet P'=PU{c } obtained by adjoining

apoint cin py.If c€ (x,,x,) then | f(x,)—(x DIl fle)= fx DI+ fe)+f(x)] so

that Sp, <Sp' .Thepoints P which belongs to [a,c] and the points of P which belongs to [c,b]

determines the partitions p, and p,hence Sp, <Sp'=S8p, +Sp,1.e Sp,<Sp,+Sp,
<Vf(a,c)+Vf(c,b) = v, (a,b) = Vi(a,0)+V,(c, b)

3.3.3 Theorem

Let fe€ BV[a,b] and consider the function F defined

v.(a,x)if..a<x<b
in [a, b] by f(x)={0f.( s

Jif x=a then F(T) and F-f(1)
Proof

For a<x<y<b we have V,(a,0)=V,(a,)+V,(x,) ceoc i
so that F(y)=F(x)+V,(x,y) =V,(x.y)=F(y)-F(x)
= F(y)-F(x)>0
= F(x)<F(y)but x<y = F Ti.e non decreasing.
Alsofor a<x<y<bwehave (F—f)y—(F—f)x=F(y)—f(y)=[F(x)—f(x)]
={[F()-F®I-[f(») - f0]
=V, (a,y)=V,(@,x)~[f(y) - f(2)]
=V, () -[f (- f(0]20
= F-fHy—(F-f)x=0

=S>F-f)x<(F-f)y but x<yle F—-f T hence non-decreasing

17



3.3.4 Theorem

A real valued function f defined on [a, b] is of bounded variation on [a, b]
if and onlyif f canbe expressed as a difference of two non-decreasing
functions f; and f, ie f(x)=f(x)— f,(x),

with f, and f, non-decreasing on [a b].
Proof
Let fe BV][a,b] then f=F—-(F-f),

V, = (a,x);a<x<b
Let F bedefinedas F(x)=

Where both F' and F' — f have been shown to be
non-decreasing (by previous theorem)
Putting F'=f, and F' — f = f, then f can be expressed asa

difference of two non-decreasing functions.

Conversely

Let f=f —f, when f and f, arenon-decreasing functions on [a, b]
f, and f, are monotonic on [a, b]

Thus f, and f, are of bounded variation on [a, b].

Hence the difference f, — f, is of bounded variation on [a, b]

l.e f=f —f, is of bounded variation.

18



3.4.0 RIEMANN INTEGRATION

3.4.1. Definition; Let f be continuous and bounded on [a,b], divide [a,b] into n sub-divisions by points

Thus partition P ={x0,x1, ........ ,X, } such that @ =X, <X <.ooveeee. <x,=b .
Let the largest sub-interval have value Axk =X, — X,

et M, =sup f(x)=sup{f(x);xe (x,_,,x,)} for x,_, <x<x,

m, =1inf(x) = inf{f(x);xe (x,_,x.) } ,for x,_; <x <X, and for each partition

n

formthesum S =M (x; = X))+ M, (X, = X)eererennnn M, (x,—x,_,) = ZMkAxk
=1

Sp and 8, are called the upper and lower sum respectively ,by varying the partition we obtain

set of S, and s, let U =inf S, = = g.l.b ofthevalues of S(p)V possible partition. Let

(p) (p)

L= Sups(p) =lu.b of all values of s(p)V possible partition. These values which always exist

b
are called upper and lower Riemann integrals of f over[a,b] denotedby U =If(x)dx and

a

b
L= J.f(x)dx If L=U i.e Ifthelower and upper integralsare equal then f is said be

19



b
Riemann-integrable over [a,b] and the common integral is denoted by [ = If(x)dx

a

Wif U # L f is not integrable over the interval [a,b]

(ii) the expression [ :J‘f(x)dx is called the Riemann integral.

3.4.2 Theorem
b c b
Let f be continuous on [a,b] and a<c<b then If(x)dxz.[f(x)dx+.[f(x)dx

Proof

Let p, and p, be partition of [a,c] and [c,b] respectivelyand P = p, U p,

i.e P consists of at least one of the sets p; and p, ,whereby L =SupS(p)

b
clearly S(P)=S(p,)+S(p,) moreover S(P)<L< If(x)dx ,then givenany p, of [a,b]

b b
and p, of [a,b] :>S(p1)+S(p2)SIf(x)dx 3S(pl)SIf(x)dx—S(p2) ........... (i)
Forany part p, of (c,b) therighthand side of (7) forms an upper bound of S(p,),

b
:>SupS(pl)SJ.f(x)dX—S(P2)

= SupS(p) < [ f()dx < [ f()dx=S(p,) ie [f0dx<[f(x)dv=S(p,)

20



To show the reverse inequality

Let P be any partition of [a, b] and Q be the partition obtained from P

by adjoining a point C in [a, b]

P
* . >
a " C ) !
«—> —>
D D, then s(p)<s(Q)

Let p, be the part of [a,b] consisting those points of O which lie on [a, c] and p, be part

of [a, b] consisting of those points of Q which lie on [c, b] then

c b
S(P)<s(Q)=s(p)+s(p,) <[ fdx+] f(x)dx

c b
ies(p)< J‘f(x)dx+.|‘f(x)dx V, possible partition P on [a, b]

SupS(p) < j f(x)dx+j f(x)dx - SupS(p)< j F(x)dx < j F(x)dx+ j f(x)dx

b c b
By * and ** equality is established i. e If(x)dXZIf(x)dx+If(x)dx

3.4.3 Theorem
Let f be continuous on [a,b] with M =max f(x) and m =min f(x) on [a,b]
Then m(b—a) < j F(x)dx<M(b-a)

Proof

Let S, = szAx Sy = kaAxk since m<m, <M, <M ,taking summation

21



from k=1ton ZmAXk < kaAXk < ZMKAxk < ZMAXk For all possible partitions over

[a,b] thus we have mY_ Ax, <s., <S., <MD Ax, = m(b—a) < Sups,, <inf S, <M (b-a)

(p) —

b b
But Sups,, < [ f(x)dx<inf S, hence m(b—a)< [ f(x)dx <M (b-a)
3.4.4 Properties of Riemann integral

b
1If f(x)=c where ¢ is constant then J‘f(x)dx=c(b—a).

b b
2.Let f be continuous then j{f(x)+c} = If(x)dx-l—c(b—a)
3.If f iscontinuous and integrable on [a,b],then there exist a number ¢ between a and b

b
such that j f(x)dx=(—-a)f(c).

4
3.4.5Example1  Find the integral of j(x+ 1)dx We need to decide on some partitions that
2

would involve smaller and smaller segments, hoping that the corresponding upper and lower sums will

getinto N equal segments. P ;x, =2 +%(4 -2)=2 +2—]\];, k=0,1,...N

We determine the sup rema and inf ima for the sum, but this should be easy (see diag)

t — W
/
Y m M,
/ Vl
| N
i
2 X, X, 4 X



N No242 2
U )= F )@ 50 =3 *Z'V">+1>.;

N N
:Ezl_,_izzkzg_]\u_iz'm
Nk:l N k=1 N N 2
=6+2N+1

N

S i 2(k—1 2
L(f’ pN) = Zf(xk_1)(xk - xk—l) = Z((2+ (k ) +1).—
K=1 k=1 N N

_O Ny 4 N B NINED

N N? N2 2

N N

When we send N to infinity ,the sums approximate the area as well

I (U (f.p) S Tm(U( py) = lim(6+ 2250 =8

SuplUCF.p)) 2 lm(L(f p, ) = lim(6 -+ 2500 =8
Thus
8< Sup(U(f. p)) =inf{U(f. p)} <8

Sup{U(f,p)}=inf{U(f,p)}=8
4
Hence the function is Riemann integrable on and j(x +Ddx =8

2

23



3.4.6 Example 2

b
Show that a constant function k is integrable and Ikdx =k(b—-a)

a

For any partition p of the interval [a,b],
we have L(p, f)=kAx, +kAx, +........ +kAx,

= k(AX, +AX, +..oooo.+ Ax ) = k(b—a)

jkdx =supL(p, f)=k(b—a)

[kax=inf U (p, f)=k(b-a)

Thus jikdx = jikdx =k(b—a)

3.4.7 Example3
Show that the function f defined by

0;when..x. is..rational
fx)= f(x)= o _ is not integrable on any interval
1; when..x. is..irrational

Let us consider a partition P ofaninterval [a,b]

U(p, f)=Y M Ax, =1Ax, +1Ax, +......+1Ax, =b—a

i=1

;
jfdx=infU(p,f)=b—a

L(p, f)=sup{0Ax, +0AX, +.......+ 0Ax } =0
b

[ fdx=supL(p. f)

a

b b
Thus .[fdx # Ifdx , hence, the function f isnot integrable.

a

24



3.5.0. Some Calculus Theorems Allied to Riemann Integral

3.5.1 Definition
Let f be differentiable and defined on (a,b) andlet f be continuous on [a,b],
If f satisfies F'(x) = f(x)Vxe (a,b), then F is called the anti derivative or primitive of f

3.5.2 Example

.X3

For F(x)=x" then anti derivative of f(x) isdefinedby F(x)= ?+ c
3.5.3 Theorem
Let F' be anti derivative for f and G be defined on [a,b] .Then G isa primitive for f
on [a,b] ifand only if for some constants c¢,G(x)=F(x)+c
Proof
F(x)+c isaprimitive of f on [a,b] ,suppose G isa primitive of f on [a,b]
then F —G is continuous and differentiable on [a, D]
= D[F(x)-G(x)]=F'(x)—G'(x)
=f'(0)-f'()
=0
=>FXx)-Gx)=c

=Gx)=F(x)+c

25



3.5.4 Theorem(Fundamental theorem of integral calculus)

Any function f whichis continuous on [a,b] has a primitive on [a,b] .
b
If G isany primitive of f Then jf(x)dx =GMb)-G(a) = [G(l‘)]Z

Proof

b
Let F be defined on [a,b] by F(x):j f(Hdt ¥V xela,bl,

b
then j f(t)dt = F(b)—F(a)

={(Gb)+c)—(G(a)+0)}
= G(b)-G(a) =[G,
3.5.5 Theorem

Let f and g be continuous on [a,b] and A, i€ R,

b b b
Then j(/i F(x)+ g (x))dx = A j F(x)dx+ u j g(x)dx

Proof

Let F and G be primitive of f and g on [a,b],

then h=AF + uG, isaprimitiveof Af +ug
b
and j{/l @)+ g (®)}ydt =[AF (1) + uG(1)’ by FT.I.C
=AF O, +ulGO],

= /1.? f(®dt +u]1 g()dt
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3.5.6 Theorem(Integration by parts)

Suppose f and g are continuous on [a@,b] and have primitives F and G respectively on [a,b]
b b
Then j FOGHdt =[F(HG®)] - j F(t)dt where F'= f(x) and G'= g(x)

Proof

A(FG)=GAF + FAG =Gf +Fg

= FG isaprimitive of fG+ Fg on [a,b] by previous theorem (fundamental theorem of integral
calculus) = j'( fOGH)+F(t)g(t)dt = [F(t)G(t)]’;

Distributing integration signs, we have

[ FOG@dr+ [ Fyg@yde=[F ()G,

b b
= jf(l‘)G(l‘)dt = [F(l‘)G(l‘)]Z - j F(t)g(t)dt , hence integration by parts.

3.5.7 Theorem (Cauchy Criterion)

Let (f,) be a sequence of functions definedon S R

then their exist a function f ,such that f, converges uniformly on §
iff the following is satisfied,

Ve>0 3N such that | f (x)—f(x)l<e Vxes and mn>N
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3.5.8 Theorem (Cauchy -schwarz inequality)

Suppose f and g are continuous on [a,b]

then {[ f(Dg(dr) < [{f W)Y dr.[{g) di
Proof,
b b b b
For any x€ [a,b], osj{xf(z)+g(z)}2dr:xzj{f(r)}%iz+2xjf(z).g(z)dz+j{g(z)}2dz

= Ax’ +Bx+C
ie Ax*+2Bx+C =0, such a quadratic equation cannot have two different
Roots implies = b> —4ac <0 i.e b*> <4ac Substituting (23)2 <4AC= B*<AC
b b b
= [{f0emdry < [{f Y dt{g®) di
3.5.9 Theorem (M.V.T of Integral Calculus)

b
Let f be continuous on [a,b] ,then 3 &€ (a,b) for which If(x)dx =b-a)f(&)

F(b)-F(a)

where f(&)= P

Proof

b
Since f is continuous on [a,b] then f isRiemann integrable [m(b—a)< .[f(x)dx <Mb-a)]

b
thus 3 4 between min and max such that jf(t)dt=,u(b—a) ,but f is continuous

a

and takes all the values between min and max =3 e (a,b) suchthat f(&)=u
b
e [ f()dt = f(&)b-a)
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RIEMANN-STIELJES INTEGRAL

4.3.0 Review;

In Riemann integral M, = Sup{ f (x);x,_, <x<x;} and m. =inf{ f(x);x_, <x<x}, Ax, =x,—x,_,

The upper and lower sums are defined by U = ZMiAxi =u(p,f) and L= ZmiAxi =L(p,f)

i=1 i=1

b b
And further [ f(x)=inf g =inf u(p, f) ) [ f(x)dx=supL=supL(p,f) .G

Remark. Inf and Sup taken over all possible partition P of [a, b]. If (i) and (ii) are equal
ie u(p,f)=L(p,[f) then f issaidtobe Riemann -Integrable on [a b].
4.3.1 Def (RS integrals)

Let ¢ be areal value on which f is monotonically (T) on [a,b] since @(a) and a(b)

are finite .It follows that & isbounded on [a,b],corresponding to each partition P of [a,b]

We write A =a(x,)—a(x,_,) .Clearly, Aa 20 for any real valued function f whichis

bounded on [a,b], We have u(p,f,a)=ZMiAa'i , L(p,f,a)zzm.Aa'i

i=1 i=1

b b b b
We define jf(x)da’(x) = jfd(a) =Inf(p,f,&) and If(x)da(x) = J.fda(x) =SupL(p, f,x)

Hfﬁa:jﬁa:fﬁa ................. &)

Equation (1) is called the Riemann -Stieltjes integral of f with respect to a over [a,b] .

In this case f issaidtobe R.S integral andisdenotedby f € R()
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4.3.2 Remark
If a(x)=x thenthe R.S integral reduces to Riemann integral

4.3.3 Theorem
If P* isarefinementof P ,then L(p,f,)<L(P* f,a).(0) U(p,f,@)<U(p,f,a) (i)

Proof

To prove (i) ,suppose P * contains only one point more than P and let x* be the extra point

Such that x,_, < x < X; where x_ and x, are consecutive of P.

Weput W, =Inf{f(x);x_, <x<x*} and W, =Inf{f(x);x*<x<x]}

Let M, =Inf{f(x);x,, <x<x;} ,then clearly w, 2m, and w, 2m,

Andso L(p*, f,x)—L(p, f,x) =wla(x*)—o(x_)]+w,[a(x;,)—o(x*)]—m[a(x,)—a(x,_,)]
=(w, —m)lo(x*)—o(x,_) ]+ (w, —m)[a(x,) —a(x*)] 20

=SLp,.f.0)-L(p,f.0)20 = L(p,f,a)<L(p* f,a)

4.3.4 Corollary

[ Fodat) =[ foda)

a

Proof

Let P* be the common refinement of two partition p, and p, = P*=p Up, by theorem

above L(pl,f,a)SL(p*,f,a’)SU(p*,f,a’)SU(pz,f,a’) Hence L(p,f,)<U(p,,f.x)

and if p, isfixedand Sup taken over all possible partition p,

b
SupL(p, f.a)= [ f(x)dx<U(p,, f. @)
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b
Thus If(x)da(x) is alower bound, taking inf imum over all possible partition p,,

a

b

we obtain j fx)da(x) < InfU (p,, f, )

a

j‘fdaSInfU(pz,f,a):jfda. :jfdasjfda

4.3.5 Example

1;if ..rational
Let @(x)=x anddefine f on [0,1] as f(x)= if .rationa
0;if ...irrational

A

f ()

Show that j Fx)da(x) < j f(x)d(ax) f(a)
0 0

m Mi

v

Solutions 0 ' 1

For every partitions of [0,1], M, =Sup{ f(x);x€[0,1]} =1 and m, = Inf{f(x);x<[0,1]} =0
Since every sub-interval [X,_,,X;] contains both rational and irrational and this holds to

each partitions hence VP u(p, f,a)=u(p, f)=1, L(p,f.x)=L(p,f)=0

Thus j Fo)da(x) < j f(x)d(ax)
Thus the If(x)dx =supL(p, f)=0 and .[f(x)dx = Inf(p, f) =1 .Then we compare the two

Since 0#1 i.e. 0<1 and then j f(x)da(x)sj F(x)d(ax)
0 0
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4.3.6 Theorem

f € R(@) on [a,b] if forevery € >0 3partition P s.t U(p, f,&)—L(p,f,x)<E ...

(a criterion to show integral)

Proof

b b
For every point P we have L(p,f,O()SdeaijdaSU(p,f,Ol)

Thus Osjffda—j.fda<e

Since £ is arbitrary chosen

b b
[fda=|fda=|fda ie f is R=S integraland fe R(@)

Conversely

Suppose f € R(¢) andlet € >0 , then there are partitions p, and p, of [a,b]

Let P be common refinements of p, and p,

b
Then U(p. /@) SU(p,.f. )5 +| fd

Hence we have u(p,f,a)Su(pz,f,a)§<L(po,Ol)+8

=u(p, f,0)<e+L(p, f,)

te. u(p,f.a@)—L(p,,f,a)<& where fe R(x)
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4.3.7 Properties of R.S integration
@If fie R(), f,€ R(®) onla,b] then f * f, e R(x)

by linearity c.f € R(&) VceR.

OIF f,(X)< f(x,) then [ fida< [ fyda.

@If f€R(@) onla,b] , f(X)SM, then || fdal< Mla(bh)-a(a)]
(e)Linearity, If f€ R(¢,) and f€ R(a,)
b b b b
Then j fla+a,)= j fda, + j fde, And fe R(ca)=c j fdo

Proof (e)

If f=f+/f, and Pisany partition of [a,b]

We have that L(p, f, &)+ L(p, f,.@) < L(p, f,a) <U(p, f,a) <U(p, f, ) +U (p, >, ).
If fi€ R(@) and f,€ R(@), let € >0 be given. There are partitions p,(j=1,2)

such that U(p;, f,,®)—L(p;, f;,&) < € These inequalities persists if p, and p, are

replaced by their common refinement p .Thus U(p, f,&)—L(p, f,0) <2& which proves
that f € R(@) and for this pwehave U(p,f; &)< .[f].da+8 (j=12)

= Ide! <U(p,f.a)< j]ﬂda+jf2da+ 2¢& Since € was arbitrary ,we have that
_[fdaS Iflda+jf2da ............ (a) If we replace f, and f, in(a)

by —f, and —f, the inequality is reversed and equality is proved.

33



4.4.1 Definition; Unit Step function
A function & defined on [a, b] is said to be a step function if 3 a partition P = {xo, X,
With a=Xx, <X, <

............ <x,= b such that a is constants on each interval.

The number a(x;)—a(x, ) iscalled thejumpat x, for 1<k <h

A
ax) Fh
a’,2
&
Xg=a X, Xy.... x,=b

4.4.2 Example

100) 0;x<0 O:x<e
x>0 and in general I(x—&) L . the partition provides link

X
between R.S integral and finite series

4.4.3 Theorem
Let @ be f, on[a,b] with @, =a(x)—a(x,) asinabove.

Let f be defined such thatboth f and & are notdiscontinued from

b
Right to left at each X, then jfda exists

a

and [ f(0da=Y f(x)
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4.4.4 Example (step function)

Let [x] be the largest integer less than or equal to x,

referred to as greatest integer function,[x]<x<[x]+1 e.g. [7], [e]=2

] 1 ] I } »

Ll
1 T 3 T Is X

Note [e] is continuous from the right with @, =1. ThusIf f is continuous on [2,5] and

5 5
a(x)=[x] Then jf(x)da'(x) = ff(x)d[x] from theorem above

5
= f)=1+2+3+4+5=15
i=1
Now suppose f was x2
p > 2 2
[XPdla)=) 7 =1 +2+3’+4"+5
0 i=1

=1+4+9+16+25=55

4.4.5 Example 2

5

j(xzd(x+[x]) = j x2dx+ix2d[x]
0 0

(=}

x° >
5 )
SIS,
3 pary

=%+1+4+9+16+25=96%
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4.5.0 Theorem (change of variable)

Suppose A is a strictly increasing continuous function that maps an interval [A, B] onto [a,b]

Suppose & is monotonically increasingon [a,b] and f € R(&) on [a,b],

Define  andgon [A, B] by B(y)=a(u(y)) ) =F(U(Y)) i Q)
B b
then g€ R(f) and J.gdﬂ=J.fda' ............. (1)
A a
Proof
To each partition P = {)CO,)C1 yereeenees X, } of [a,b] corresponds a partition Q ={y, y,»..ccec.. v,} of

[A,B] suchthat x;, =¢(y,) andall partitionsare obtained in this way .Since the values taken by f
on [X,_;,x;] are exactly the same as those as those takenby g on [y, ,,y;] ,we see that

U,g.0)=U(p,f,a), LQ,g.B)=LP,.f,a) ... (1IN Since f € R(@),

can be chosen so thatboth U(p, f,&) and L(p, f,&) are close to dea and

B b

U(p, f,&)—L(p, f,&) <&, then g€ R(f) and thus jgdﬁ=jfda,ifa(x)=x and

A

B=¢and if 9'e R on [A,B] then [ f(x)dx=[ f(@(y)¢'(y)dy

4.5.1 Example
Evaluate .[Sinz xcos xdx

solution

) du
Let u =sinx, then d_ =cosx;du = cos xdx
x

3 3
. u sin” x
Thus J‘sm2 xcosxdxzjuzdu =?+c = 3 +c
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4.6.0 Integration Of Vector-Valued Functions

. k -th . .
in R" whose j= co-ordinates is ijda

4.6.1 Theorem

If f maps [a,b] into R and f e R(cx) for some monotonically increasing ¢ on [a,b]
b b

Then | f € R() and | j fda|sj| flda...(a)

Proof

1
If fen f, are components of f then| fI= (fl2 +oe +fn2)2,each of fize R(x)

and hence does their sum. Since square root function is continuous on [0,M] for

everyrealM, | f € R(),

To prove (a)Let y =(¥;,......y,) where y, = .[f].da’ then we have that y= Ifda
=lyl= Z y = Zyjjfjda = I(Z y;f;), bythe Schwarz inequality

Yy fOAYIF@O  (a<t<b) hence 1y’ K yl[l flda....b)

If y=0 a istrivial, If y#0,division of (b) by | y| gives (a).
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4.6.2 Example

If A=Q3x"+6y)i—14yzi+20x7°k
Evaluate IA.dr from (0,0,0) to (1,1,1) along the following paths C

where x=t¢ ,y=t2 Z=t1

Solution

Points (0,0,0) and (1,1,1) corresponds to =0 and =1 respectively

dx=dt ,dy=2dt ,dz=3tdt

t=1
jA.dr= j (32 +6t7)dt —14(6>)(#)2dt +20(0)(3)*33dt

t=0

1
= j 912dt — 28¢%dt + 601°dt
0

]
= I(9t2 —28t°+60t")dt =3t —4t" +6t" [|=5
0
4.6.3 Example2
Compute the length of the arc x = (¢’ cost)i+(e'sint)j+e'k —oco<t<oo
dt

t t
dx N . .
S :.[I—Idt:.[Ie’cost—e’smt)z+(e’smt+e’cost)]+e’kIdt
0 0

t 1
= I[ez’ (—2costsint) +e* (2costsint + 1) + > |2dt
0

=\/§Ie’dt :\/g(e’ -1
0
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4.7.0 Rectifiable Curves
4.7.1 Definition ;For each curve ¥ in Rk there is associated a subset of Rk ,

i.e. the range of J ,but different curves may have the same range.

We associate to each partition P ={x,, X,,......... ,xX } of[a,b] andtoeach Curve ¥ on [a,b]

the number A(P,¥) = Z| y(x)—y(x_,)| the i" term in this sum is the distance (in R")
i1

between the points Y(x;_;) and Y(x;).
Hence A(p,y) isthelength of a polygonal path with vertices at Y(x,), (X, ), ..c...... y(x,)
in this order. As our partitions becomes finer and finer this polygon approaches the range of ¥ more
and more closely and is reasonable to define the length of yas A(Y) =supA (p, %),
where the supre mum is taken over all partitions of [a,b].
If A(Y)<oo ,we saythat ¥ isrectifiable.
In certain cases, A(}) is given by a Riemann integral, this can be proved for

curves ¥ whose derivatives ' is continuous.

4.7.2 Theorem

b
If ¥'iscontinuouson [a,b],then ¥ isrectifiable and A(Y)= jl y'(¢) | dt

Proof

MIf a<x,<x<b then |y(x)=y(x )= [ y()dri j | y'(6) | dt

i-1 i-1

b b
Hence A(p,7) < Il Y'(t)|dt for every partition P of [a,b]thus A(Y) < II y'(t)ldt ...(0)
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(i) To prove the reverse inequality let £ >0 be given, Since ¥' is uniformly continuous on [a,b] ,
there exist O >0 such that |¥'(s)—y(t)lke if |s—tl<d.
Let P={X,, X, cccccuue x,} be a partition of [a,b] with Ax, < forall i,

If x_, <t<x itnow followsthat|y'(t)I<ly'(x,)+é&

hence j |7'(0) 1 dt < y'(x,) | Ax, + Ax,

Xiq

= j (') + 7'(x,)— ¥'(0)]dt | +€Ax,

Xi1

<! f y'(ndt1+] I [7'(x) = 7'())dt | +€Ax,

Xie1 Xiet
< y(x)—y(x )| +2eAx,
If we add these inequalities, we obtained

j| Y@ dt < A(p,y)+2e(b—a)

SA(Y)+2&(b—a) and since € was arbitrary

b b
Thus j| YOldt S AD e, (ii) From (i) and (i) we have A(Y) = j | y'(t) | dt
4.7.3 Example 1
If x= f(t),a<t<b isarectifiable arc, show that given an arbitrary d >0 and &£ >0,
there existasubdivision a =7 <f, <.....[, = b with polygonal approximations P such
that (i) ,—¢_, =L.....,n (i) Ils—s(p)l<€& ,where s and s(P) are the lengths
of x= f(t) and P respectively.

Since s is the supremum of all possible s(P), there exists subdivisions a = t;, < tl' <..< t;l =b
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with polygonal approximations P' suchthat s(P") > s — & .For otherwise, s(P)<s—¢& for all

s(P), sothat s — & is anupper bound of the s(P) less than the supre mum s ,not impossible.
Now the above subdivision does not satisfy (i),a finer subdivision a=t <t, <...<t =b
satisfying (tl. —l‘i_l) <0 canbe obtained by introducing additional points. But the new

polygonal arc P' obtained this way satisfies s(P) < s(P')< & and therefore also | s—s(P)I< &

4.7.4 Example 2

Show thataregular arc x= f(t), a <t <b, isrectifiable .

let a=t <t <...<t =bbearbitrary subdivision,

Then s(P)= Y |x,—x_ =Y 1f)—f(t.)]
= Y1) = f @, i+ (f,) = f2(,)) ) +(f3,) =, )k
<YM AE) = [ D+ 0= f0, ) HAG) = £, )]

< Z[l fl(an) | (tn _tn—l)+ | (f2(0n) I (tn _tn—l)+ I f3(61) | (ti _ti—l)]

where we used the mean value theorem for the f,(¢),and since fl(t) are

continuous on closed interval a <t < b they are bounded on a <t <b,sayby M, Hence

S(PYS(M,+M,+M )Y (t,—t, ) S(M,+ M, +M,)(b—a)

Thus the s(P) are all bounded by (M, +M,+M,)(b—a) and so the arc is rectifiable M .
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CHAPTER FIVE

The LEBESGUE INTEGRATION
5.0 Introduction

5.1 Interval of a real line

Let I beaninterval of real line and points (a,b), where a<b ie I is
either of the following types (a,b),[a,b],(a,b],[a,b) .Then the real number b—a is called
the length of either of these interval, we denoteitby A(I), Inthiscase [ isbounded

and is of the form [a,b] .And thelength taken as +oo.

Remark

If a=b ,thenthelength A(I)=0,thus thevoid set & hasalength i.e u(J)=0.

5.2.0 The Lebesgue Measure

5.2.1 Theorem

Consider R with the metric (Euclidean) then any open subsets E of the real line can be
expressed as the union of atmost countable family of mutually disjoint sub-interval of R.

Proof

Let A be any subsets of the real line R' then there is at least one open subsetof R which
Contains A ( for instance R contains A ),Let this open subset be expressed as a union of

at most countable family of open sub-interval of R. Hence any subset A of R canbe covered

by atmost countable family of open intervals denoted by S(A) 1. e the class of all
such at most countable covers of A

If ¥ is at most countable collection of open sub-interval’sof R and thus y=([ ),

where each (/) isanopeninterval and U I, =S(A),Vye S(A)

n=1
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5.2.2 The Outer Lebesgue Measure

Let ¥ representany at most countable collection of open sub-intervals of R'

Weput ¥={I ;ne€ N} ,eachof I isanopensub-Intervalof R'.such
that the non-negative extended real number A4 *(y)= 2/1(1) i.e A*(y) -represent’s sum

of the length’s of all sub-interval in the collection ¥ .Let E be any subsetsof R and let ¥

be any at most countable collection of open sub-interval’s that covers E which implies that

7€ (S(E)) . The extended real number inf{A*(¥);y€ (S(E))} is called the outer lebesgue
measure of E denoted by m*(E) .
Equivalently

Let Y€ (S(E)) ,at most countable sub-interval that covers E i.e ¥ =(I, ) _ -then the extended
real number A*(y)= Z/l(ln) i.e y€ S(E) isasetofreal numbers A*(¥), 1*(%,)....

Then we proceed to take the infimum, inf{A4*(y);y€ S(E)}

and  m*(E)=inf{A*(y);y€ S(E)}

Hence for each subsetE of R’ there corresponds a unique non-negative extended
number m*(E) >0 and it’s infimum is such that m*; P(R") — R;

extended real number is called the outer Lebesgue measure.

5.2.3 Remark ; Lebesgue measure is complete .For if EeM and M(E)=0 and ACE
then AeM and M*(A)=0

Proof; Let M*(E)=0, and ACE, then by motone property M*(A) <M*(E)=0

= 0 < M *(A) <0...thus..M *(A)
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5.2.4 Theorem
Let m* denote the outer lebesgue measure on R'
Then ()m*(¢9)=0
(i) m*(E) =0 ,whenever E € F (non-negative)
(i) If A,Be€ P(R) and Ac B then m*(A)<m*(B)

{monotone property of M*}

Proof
()We choose y=¢ = Y€ (S(@)) then A*(y)=0 Vye (S5(9®))

Now m*(¢)=inf{A*(»);S(¢)}=0

xX—€ x+€&
, } covers {x} also
2 2

(i)Let xe R' consider E={x} then y={

X+&€ x—-€&

ﬂ*(}’):Zﬂ(In):( 5 - 5 ) ,The measure m*({x})<A*(y)=¢

Implying the measure of infimum is positive ie. 0 Sm*({x}<A*(y)=¢€ ,

and m*({x})=0 ify=93

(iii)Since Ac B ,S(A)c S(B)
Indeed if implying y€ S(B) ,
Then {A4*(), 7€ S(A)} = {A*(y); 7€ S(B)}

and hence m*(A) <m*(B)
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5.2.5 Theorem

M * is countably sub-additivei.eif (E,)’  isasequence of subsets of R'

then m*(( ))<D m*(E,)........ (i)
n=1
Proof ;Suppose m™*(E, )=+ for some n, € N then the right hand side of (i)

diverges, however since £ C U E  introducing the measure m*(E, )<m* (U E)

n=1 n=l

thus 4oo <jp* (UEn) hence(i) holds true for m* (En ) = o0
Assume jp * (E,)<oo by definition of ,,* itfollows that for each

£
2]’!

e>0 3Jy,e S(E) suchthat 3x(y y<m*(E )+—,n=1,..

Let 7:U7” then y is atmost countable collection of open interval which covers UEn

n=1 n=l1

Ye S(DEn)The measure of the union m*(OEn)S/i*(Dyn) =A%(p)

n=l1 n=1 n=1

m*(OE) Si/i*(}/n) <i(m*(En)+§) :im*(En)+€

n=l n=1 n=l

m*(OEn)Sim*(En)
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5.2.6 Thm;If E'¢ M then thereisasubset A of E with finite positive measure (0 <m*(A) < o)

Proof

Since the measure E'¢ M by definition 3x C R' such that m*(x) <m*(xNE)+m*(xNE")
Suppose m*(x M E) =+co Since x D xM E by monotone property m™* (x) 2m*(x N E) =+oo
Thus m*(x)=+co andhence m*(x N E) <o

Next suppose m*(xME)=0 Thus m*(x)<m*(xNE"),

This is a contradiction since x D XN E‘ hence m*(x)Dm*(xNE’) =>m*(xNE)>0

e O<m*(xNE)<ocobutting xNME=A wehave 0<m*(A)<oo where ACE
5.2.7 Theorem
If A,Be M thensois AU B ,Any finite union is measurable or M is closed under the union operation

Proof
Let Ae M by definition it follows thatany X C R'i.e m*(x)=m*(xNA)+m*(xNA°)....(Q)
Similary Be M= 3Y C R suchthat m*(Y)=m*(Y N"B)+m* (Y N B°)....>i7)

In particular ¥ = X M A° ...... (jii) ,using (iii) and (ii) we have

that m*(xNA)=m*(xNA°NB) +m*(xN A N B°).....(iv)

Substituting (iv) and (i) gives m*(x)=m*(xNA) +m*(xNA N B)+m*(xNA N B°)

or m*(x)=m*(xN(AUB)) +(AUB)*

Hence by finite sub-additivity of m*, m*(xN(AUB) <m*(xNA)+m*(xN(A° N B°))

=>m*(x)2m*(xN(AUB)) +m*(xN(ANB)°) = 3Ix Z R suchthat

m*(x)Z2m*(xN(AUB))+m*(xN (AU B)) and from definition we have AU Be M
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5.2.8 Theorem

If A andB are both L-measurable then AN Be M

Proof

A,Be M from definition,=> A“e M,B‘°e M
= A" UB‘eM
=(ANnB)eM
=ANBeM

5.2.9 Definition (2 — Algebra or {2 — Field)
Let X beanon-void set and & be aclass of subsets of X satisfying

the following (1) @€ ¢

(2) If E€ g then E‘eg

(3) If (E,),, isasequence of membersof ¢ then UEn € UEn EF
n=1 n=1

Then iscalled a 2 — algebra of subsetsof X

5.2.10 Theorem (Disjoint Lemma)

Let X be anon-void set and {2 be an algebra of X

If (E,),, isanysequence of sets in Q such that
D, cCE,

(i) D, "D, = whenever m#n where (D,)"_ ispair wise disjoint

(iii) U D = U E_ ,Then X belongs to atleast one of the E 's
n=l n=l
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Proof

) D,cE, Vne N since E € £ is an algebra
and Dn's are obtained from En's .Using operations of union of sets
on finite number of sets i.e D=FE and (E,UE,U....E) n>1and clearly that D, C E,

(i) D, "D, =, whenever (D,) is pairwise disjoint

From constructionof D, 's it follows that D, N D = D for n#m

(iii) [J D, = CJ E,
n=l1 n=l1

D

From constructionof D, 's it follows

D, that D ND = @ for n#m thus D cE,

= U D, c U E, the reverse inequality is clear from (i) and UDn = UEn

n=l1 n=1 n=l1 n=l1

Since X € UEH’ then X belongs to atleast one of the E s

n=l1
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5.3.0 The Lebesgue Integral For Non-negative Simple Functions

5.3.1 Definition, Indicator or Characteristic Functions
Let (£, F) be a measurable space foraset A C € define

O;xe A

X, —{0,1} by Z, (x)= {1_ A this function is called the characteristic

or the indicator function of aset. If f =1, where i.e [,;Q— R,

Lixe A

N [2a0du=1.0(A)+0.u(A%)

and 1,(x) :{

5.3.2 Defination ; Simple Functions

Suppose the range of S consists of the distinct numbers a,,a,......... a,

define simple non-negative function S;2— R, by S(x)= Zai,}jA_ (x) where g, 20,VA € F

i=1
and |J Ae€Q, with ANA =0 i=j.
i=l
5.3.3 Example

L;if ..x..is..rational

0;if ..x..is..irrational

Consider ([0,1],M, &) ,define f(x) 2{
This is a simple function with A =QN[0,1] and A, =A =0 N[0,1]
Note that feM and | fdu=14(QN[0,1) +0.4(Q° N[0.1))=0

[0.1]

since rational s are countable then ((Q N[0,1])=0
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5.4.0 Lebesgue Integration
5.4.1 Lebesgue Integral Of Non-negative Simple Functions

Integration is defined on a measure X inwhich F isthe Q—ring of measurable sets and u

is the measure on it. Suppose  S(x) = Zai,‘{AI (x) where VA eF LJA7 =Q and
i=1 "=l

a,20e R ismeasurable and if S ismeasurable space (2, F, /) and non-negative,

we define [S(x)du =Y apu(A)=[Sdu or [Sdu=Supl,(s) ...«
i=1 E

The left side of (a) is the lebesgue integral of § ,with respectto & over the set E

5.4.2 Properties Of The Integral

1. The integral is a non-negative extended real number 0 < ISd,u < oo
2.1f s5,5,5,€ L, and @€ R, suchthat >0, the

(@ asel, and j(as)dﬂ:ajsdﬂ
(b) s,+5,€ L, then I(sl+s2)dﬂ=J.sldﬂ+Is2dﬂ

(©If 5 <5, then [s,du<[s,du

(@If {s,,n=1} isanincreasing sequence functionsin L; suchthat lim S (x)=s(x)
n—oo

Vxe R then [s(x)du(x)=lim[s,(x)du(x)
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5.5.0 The Integral Of a Non-Negative Measurable Functions

5.5.1 Definition

Let (Q,F) be ameasurable space ,the non-negative functions f;€Q — R, issaidtobe

F —measurable, If 3 an increasing sequence {S, ;n =1} suchthat limS, (x) = f(x)
n—oo

Vxe Q, we shall denote the class of all non-negative measurable function by L".
5.5.2 Theorem

(a)Suppose f is measurable and nonnegative on X .For A€ M, define
P(A) = Ifd,u ,then @ is countably additive on M
A

(b)The same conclusion holdsif f e L(¢) on X

Proof

To show @(A) = Z¢(An), In general case, we have ,for every measurable simple

n=1

functions § suchthat 0<s< f ,jsd,u = i j sdu< i¢(An) S P(A) < iﬂA,,)
n=l1

A n=l 4, n=1

Now if @(A,)=+co forsomen,is trivial since P(A) =@(A )

suppose @(A ) <oo forevery n,suchthat @(A UA,)#=@(A)+@(A,)

it now follows that for every . @(AU...... UA)Z2@P(A)+.....+@(A,) since

5.5.3 Definition ;For a function fe L , we define the integral of f withrespectto

by [ f(0)dp(x) =lim| S, (x)dpx
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5.5.4 Properties Of the Integrals

Let f,,f,,f; then the following holds
L [fdu=0 and for £,2f, ={[fduz[fdu
2For a, 520 , wehave af, +af,e L'

and [(af,+Bf)du=[afdu+|Bldu =af fdu+ B fdu

3.For every E€ F , wehave },f€ L andif v (E)=I,‘(Efd,u is ameasureon F

And U(E)=0 iff u(E)=0, theintegral I,{Efdﬂ = J.fd,u.
E

5.6.0 Monotone Convergence Theorem(M .C.T" theorem)

Let (X,X,/) beameasure space, (f,) be asequence on M*(X,N) s.t f,<f. VneN
and f, — f pointwiseon X, then J.(fnd,u)::l converges to Ifd,u in R ie

lim [ f,d = [ imf,)dp = fp

n—oo
Proof

f,em*(x)) VneR and f, — f pointwise on X = fem*(X,y)

since  f, < f . <f bymonotone properties of S, we have that Ifnd,u < Ifmdﬂ < Ifd,u...(i)

Thus the sequence (J. f,d);_, isincreasing in R: and hence
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Conversely, If A ={xe X;0¢0x< f (x)} itcanbeshownthat A € X Vne N
Moreover (i) A, € A ,, (i) UAn =X
n=1

Since integral is a count ably additive set function &@(x) < f (x) on x€ A ,

by monotone property of J. on m*(x, X ), J.a¢)d,usj.fnd,u

ie 0!_[¢dﬂ£_[fnd,uﬁjfnd,uﬁjfd,u ............ (ii)
A, X
the two inequalities proof the theorem.
Remark; If we define A; X - R, by ﬂ(E)ZI¢d,U VEe X
E

The A(E) is ameasure and therefore A is continuous from below.

Proof

oeL=0=Daz,, QA=Q
EeF= gy, = Zazz - Za;cA
where  A(E) = [ ¢y, du = gal.,u(Ai A E) is it a measure or not
() A(@) = ?MA D) = ga,.mz) ~0

(iDSince @, >0 and (A NE)>0 =Y au(ANE)=0

i=1
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(iii) A is countable additive for let E = UE_I.;E]. € F foreach j

=

then to show that A(E) = i/l(Ej) AE)= Zn:ai,u(Ai NE)) = Zn:an,u(Ai GOEJ.)
i=1 = j=

J=1

i=1

=Y aulJ(ANE) =Y a3 uanE)

:Z:;Za"’u(Amej) :Z:;/?“(Ej) . A(E) is ameasure.

5.6.1 Some Applications Of M.C.T.

Theorem; Let (X, N, ) be a measure space and m*(X,X) and C non-negative

real ,then (i) Icfdﬂ:cjfdﬂ (ii)j(f+g)d,ll=jfd,u+jgd,u

Proof

Let (@),(¥,) be increasing (T) sequence of simple f,(s)e M *(X,X) such

that (Ql)increases('r) to f and (Wn)increases(T)to g.

=> c@, is increasing sequence by M.C.T ,limj¢ndn =I(1im¢n)dn =Ifd,u

mjcgz)ndn =[cfdpt o But [epdu=c|fau

Thus from * and ** we have J.cfd,u:cj.fd,u .
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(i) by mcT  lim [y, du = [(limp,)dp = [ gdp

Now (@, +V/,) increases (1) to f +g by M.C.T

Since @, and ¥, are simple f,'se M*(X,X)

[@,+v)du=[gdu+[w,du

Thus %EEJ.(@-"Wn)dﬂ:J.fdﬂ"‘J.gdﬂ * %

From * and ** we have I(f+g)dﬂ:_[fdﬂ+jgdﬂ
5.6.2 Example

Let (R, B(R), /t) be a measurable space, where i isthe lebesgue measure on B(R)

Let f;l :Z(O,n)

Vne N ,where fn is monotonic increasingto f € K(0.400]

and f, and f are B(R) measurable functions

J.f”d'u - IZ[0,11]dﬂ =u0,n]=n
and [ fdp = [ z0,0d 1t = ([0, +e]) = o0

Now Ifd,u =+ oco=limn=+co and - M.C.T applies.

n—oo
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5.7.0 Fatou’s Lemma

Let (X, X , &) bea measure space,

and (f,) be a sequence of elements of M (x,X),

Then [ (limf,)du <lim [ f,du

Proof

Foreach ne N Jlet f, =inf{f , f ., .ccccoee },

clearly f, € M*(x,X) Vne N and (fn)T=limfn
HencebyM.CT lim [ £,dp = [(limf,)du

ie  [(imf)du=lim|fdu...*

now f <f Vm<n

By monotone property J.fnd,u < I f.du

Taking the limits

iiilgojfmdﬂsliilgjfndﬂ ......... ek

from *and **, we have J.(limfn )du < limJ.fn
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5.7.1 Theorem

Let (X, X, /) be ameasurespaceand f,g€ M*(x,,u) and f<g
Let £ and F e X suchthat £ C F then(i) J.fd,uSJ.gd,u and (ii) J.fd,usj.fd,u
E F

Proof
(DIf ¢ M"(x, X) issimpleand @< f then @< g furtherif Q(f) isasetofall simple

functions ,such that @< f then @€ Q(g) (simple functionss.t @< g) i.e Q(f)e Q(g)

and hence Sup j o¢du < Sup j pdu ie Ifd,uﬁjgd,u

Q) Q(g)

(ii)Consider fX,; X, € M (x,X)) Since ECF, = X, <X,

By part (i) and monotony IfXEdﬂSIfXFdﬂ andjfd,tl S_[fd,u
E F

5.7.2 Example

Consider ([0,1], F, ) ,and take g, =ny ,,
[=—1

nn

Note that g, — 0 in [0,1], now J.gndn ZIH.ZI ) dn=n,u([l,g]) = n.l=l
e nn n

= },EEI g,du=1iml =1 Such that Igdn =0+ }gllj‘ g,d, M.C.T. does not apply

n—oo

Now g, >0 on [0,1], ie [(liminf g,)du=[0du=0

And liminf [ g,du=liminf1=1.  [(liminf g,)=0<Tliminf [ g,du,

n—oo

fatou’s lemma apply
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5.8.0 Lebesgue Dominated Convergence Theorem(L.D.C.T)

Suppose (fn)‘lm is a sequence of measurable functions which converges (i.a,e toafunction f
Let g be an integrable functions such that | f, I< g Then f is integrable and limjfndﬂ = Ifd,u ,
n—oo

the function g is called a dominating function for the sequence  (f,); .

Proof.

Since f,+g20 ,fatou’s lemma shows that J.(f+g)d,LlSIimian.(fn+g)d,u e
E

[ fdu <timinf [ f,dp...)since g—f, >0 similarly

E

J(e=prdustimint [(s~f)du =] fdp<liminfl~[ f,du)
E E E

which is the same as Ifd,u 2 lim SupI f,dy ..(i0) From (i) and (ii) we have limjfndﬂ = J.fd,u
E E E E

n,xe (O;%)

5.8.1 Example.Let f, =ny , for n=12,3, ,..This functions f (x)=
.1 0;otherwises

hence fn (x) cannot be dominated by a single integrable functions .Further at any pointin (0,1]
the sequence contains only finite number of non-zero terms and indefinite number of zeros and at

any point outside (0,1], each term of the sequence is zero Hence lim f,(x) =0 forall xe n,
n—oo

1

Thus we have Further Iandx = In,‘(  dx= nI dx =nm((0, l] = nl =1
: 0.5 . n n

n—co

[Thus j f,(x)dx=1 forall Hence lim j fdx=1£0= j lim £, (x)dx .
R R R e
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5.8.2 Example2

1

) nx
Show that llmjfn (x)=0 ,where f, = 2.2

ney 1+n°x
Sol

1+n°x?
Let nx =———— so that > 2<_
2 1+n°x n

1
Let g(x)= E . since a constant is integrable, g(x) is integrable
nx . . . .
Hence f, (x)= P < g(x), f,(x) is dominated by an integrable function g(x)
+n"x

. . nx
Further lim f (x) = hmﬁ =0, So that f,(x)—0 asn—oo
e =el4+nx

1

1
. nx
Hence by lebesgue’s dominated convergence theorem lim ﬁdx = Ide =0
ned 14+ n2x
0 0

5.8.3 Properties Of Lebesgue Integral For Bounded Measurable Functions

(a)If f is measurable and bounded on E ,and (#(E)<oo ,then fe€ ((i) on E

MIf a<f(x)<b for xe E,and U(E)<-+oo ,then a,u(E)Sj fdu<bu(E) .
E

()HIf f and g€ (i) on E andif f(x)< g(x) for x€ E then Ifd,uSIgd,u
E E

(DIf fel(u) on E ,then ¢f € {(i) on E ,and jcfdﬂZCIfdﬂ
E E

(e)If fel(u) on E and AC E then fe /(i) on A.
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CHAPTER SIX

COMPARISON OF RIEMANN INTEGRAL AND LIBESGUE INTEGRAL THEORIES

6.1.0 Theorem(Equivalence of Riemann and Lebesgue)

b b
(@ f fe R on[a,b], the fe L onlab] and J-fdx=RJ-fdx.

(b) Suppose f isbounded on [a,b],the f€ R on [a,b] if and only if f

is continuous almost everywhere on [a,b].

Proof ;(a)Suppose f is bounded, then there is a sequence {p,} of partitions of [a,b]such that

1
{ P} suchthat the distance between the adjacent points of P, is less than —and such that
}Zig}L(pk, f)= ijdx, }gl:U(pk,f) = ijdx, all the integrals are taken over [a,b].

if p, ={x,,X,.....x,} with x, =a and x, =b define ,Putting U, (a)=M, and L (a)=m, for
X, <x<x,1<i<n and henceL(pk,f)ZJ.Lkdx, Uk(pk,f)ZJ.dex so that

L(x)<L(x)<.... f(X)....U,(x) SU,(x)for all x€[a,b],since p,,, refines p, .Thus there exist

L(x)=limL (x) U, =limU,(x)and we observe that L and U are bounded and measurable
k—o0 n—oo0

’

functions on [a,b]that L(x) < f(x)SU(x) where (a<x<b),and that dex = ijdx,

jUdXZRIfdx, by the monotone convergence theorem, where the only assumption is that f is a

bounded real function on [a,b].We note that f € R,if and only if its upper and lower

Riemann integrals are equal. hence if and only if J.dezj.de, since LU ,J.dezj.de

happens if and onlyif L(x)=U(x) for all x€[a,b],

in this case L(x) < f(x)SU(x)= L(x)= f(x)=U(x)

b b
almost everywhere on [a,b], so that f is measurable, thus J-fdx=RJ- fdx

a a
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(b)Furthermore ,if x belongs to number p, ,itis quite easy to see that U (x) = L(x) if and only
if f is continuous at Xx .Since the union of sets Pk is countable, it's measure is 0,and we

conclude that f is continuous almost everywhere on [a,b] if and only if L(x)=U (x) almost
b b

everywhere, Hence Ifdx:RIfdx if and only if f € R.This completes the proof.

a

S 0;0<x<1
6.1.1 Example ; Evaluate Jf(x)dx= 1;{1SXS2}U{3S)€S4} by using the Riemann
’ 2:{2<x<3}uf{4<x<5}

and Libesgue definitions of integrals.

()Using Riemann definition of the integrals(where the subdivisions is taken of the segments [a,b])

by the subdivisions points X,,X;,X,,........ x, on X —axis.

Y

»
I L

o 1 2 3 4 5 X

the upper and lower Riemann sums tends to common value

b
01-0)+12-1D)+23-2)+1(4-3)+2(5—-4)=6 thus ij(x)dx:6
(I)Evaluating the lebesgue integral where the sub-divisions is that of the interval [0,2+ 5],52 0

weget ,O[I-0]+1[(2-1)+(4-3)]+2[(3-2)+(5-4)]=6 thus Ljf(x)dx:6
0
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6.1.2 Example 2

0;if ..x..rational
Let f bedefined on [a,b] as follows f(x)=9 o , prove that f s
L;if ..x..is..irrational

lebesgue integrable but not Riemann integrable.

Solution

Consider a partition P={a=1x,,<Xx <........ <x=b} of [a,b]. Then M, =1in[x_,,x]

and m; =0 in [x,_,x] Hence §, =Z(xi—xH)=b—a and s, =ZO(xl.—xH)=0

b b
so that R RJ- f(x)dx=((b—a) and RJ- f(x)dx =0 This showsthat f is not Riemann

integrable. We prove that f is lebesgue integrable.

Let Q bethe set of all rationales’ in [a,b],then CQ is the set of irrationalsin [a,b],where
[a,b]=QUCQ and QN CQ =D Since Q is countable set it has a measure and hence
it is measurable in [a,b] and since the complement of a set is measurable, CQ is measurable.
By definitions f is the characteristic functions of CQ ,Since CQ is measurable,

f is measurable function. As f is bounded, it is integrable.

b
The lebesgue integral of f is J‘fdx= I fdx = dex+ j fdx
a QuCQ Q co

as ONCO=0.m(Q)+1m(CQ) =m(CQ) .Next we find the measure CQ
If E, and E, are disjoint measurable sets then m(E,)+m(E,)=m(E, U E,)+m(E,NE,)
where E, =Q and E, =CQ, taking m(Q)+m(CQ)=m([a,b])+m(D),since m(J)=0 we have

b
m(CQ) =(b—a),thus Ifdx=(b—a).Hence f islebesgue integrable but not Riemann Integrable.
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6.2.0 Comparison of Lebesgue and Riemann Integrals For Unbounded Functions.

Let f be anon-negative measurable functions on [a,b] . For each x€ [a,b] and ne N.

f(0):0< f(x)=n

we definea function  F(x,n)=
n; f(x)>0

y4 Y

JUUK - v

X

Thus F(x,n)=min(f(x),n) , F(x,n) beingthe minimum of f(x) andhence measurable.

Which implies that for each ne N, F(x,n) is lebesgue integrable.

b
Now if lim I F(x,n)dx exist finitely then we say that the unbounded function f islebesgue

n—oo

b b
integrable and Ifdx =lim J‘ F(x,n)dx.

n—oo
a

If the limit does not exist finitely then f is notlebesgue integrable The function F'(x,n) is called

truncated function.

6.2.1 Example

/y ;0<x<1
Define X)= x3 show that f is lebesgue integrable on [0,1] and | 1/x2/3dx=3
g g
0;x=0

Find also F(x,2), since 1/x?/3—00, as x—0, so f is unbounded in [0,1]. In order to examine
Its lebesgue integral define d by F(x,n)=1/x2/3, if 1/n3/2<x<1
= -1/3n3/2if 0<x<1/n3/2

=0 ifx
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/%,if%nySI
x/3 2

Forn=2 F(x,2)= —ln_%,if,0<x</y
3 n’?

0,if ,x=0
(L
1 n% 1
Now j F(x,n)dx = j F(x,n)dx + j F(x,n)dx
0 0 1

3’)
W2

RN N U %o
3 dx+!x%dx \/_+3(1 (/) =3-

I’l%

2

—,Vn
Jn

o3

Thus by the definition of lebesgue integral of unbounded functions ,we have

[ £ (de =tim [ F(x,n)dx = lim(3-—=) =3

7

6.2.2 REMARK

The Riemann integral of f on unbounded set A can exist even though the Riemann integral of | f | does

not existon A. For example, RI
0

dx lim I—dx exists as an improper Riemann integral

n—oo

T osinx Tsinx
wheres the integral II | dx does not exist. On the contrary the lebesgue integral of L | ——dx does
X X
0 0

, Tosi
not exist because .[I
0

| dx doesnotexist ,It shows that there exists improper Riemann integrals
X

which are not integrable in lebesgue sense. This Indicates that nothing can be said about the equality of

the two integrals when A is unbounded, Riemann integrals may exists when the lebesgue integral does not

exists. Moreoverif | f | is Riemann integrable on A ,then f isboth Riemann and Lebesgue integrable

on A andthe two integrals are equal.
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6.3.0 (lll)Libesgue and Riemann Integrals and The Connection Between Integration And Different ion.

b—a
N

6.3.1 Definition, Let aninterval of R(a,b) bedividedinto N equal parts each of length Ax =

A

Y
a+iAx

»

a a+2Ax X, b=a+({+1)Ax ¥

N
Let x€[a+iAx,a+(i+1)Ax] then i}lcrr})z f(x)Ax as N —oo iscalled the definite
Y

b
integral of f(x) in the interval (a,b) and is denoted by If(x)dx.
6.3.2 Theorem(fundamental theorem of differential calculus)

Let f(x) have antiderivatives F'(x) intheinterval [a,b] Then F(b)—F(a)= If(x)dx.

proof, Let F'(x) be the anti derivatives of f(x) the from mean value theorem
F(x)-F(x,)=F'(c,)Ax

F(x,)—F(x)=F(c)Ax

F(xn+l)_F(‘xn):Fv(cn)Ax s . . _ _h
F(xnﬂ)_F(xn):F'(Ci)Ax which implies F(b) F(Cl)—;[F(x)dx

6.3.3 Connection ;This familiar connection between integration and differentiation is carried over into
lebesgue theory. For if f€ /¢ on [a,b] and F(x) ZJf(t)dt (a<x<b), then F'(x) = f(x) almost

everywhere on [a,b].Conversely, If F' is differentiable at every pointon [a,b]{almost everywhere not

b
good enough} Andif F'e L[a,b] then F(b)—F(a)= j F'(t) (a<x<b)
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6.3.4 Theorem

Let f be continuous function on [a, b], Then (i) f isintegrable on [ab]

(iDIf F(x)= If(t)dt ,where a < x < b, then F(x) is differentiable and F'(x) = f(x).

Proof

(i)Since f is continuous on [a,b],it is measurable on [a,b]
As a continuous functions is bounded on, let | f I< M taking g =M inthe property, thus
f isintegrable on [a,b].

(i)Let A=[a,x],B=[x,x+h] sothat AUB=[a,x+h]

X X+h
Now we have J- fdx = Ifdx + J- fdx, using notation F (x),we have
AUB a X
X+h X+h
F(x+h)=F(x)+ j fdx, which gives F(x+h)—F(x) = j ()i

Since f is continuous function and the measure is the lebesgue measure,

x+h
we obtained earlier that m(x,x+h) < J‘ f@®dt <(x,x+h)M where L f(t)<M

X

and t€ [x,x+h], For L and M are bounds of continuous function f on [a,b].

x+h

Hence there is a point € in[x, x+ /] such that J‘ f(@)dt =hfe...(2) where e=x+6.

using (1) and (2) we have that F(x+h)— F(x)=hf (€),since h# 0 dividing by

. F(x+h)-F(x
h and taking the limits as & — 0, we have lim ( ) ()

lim ) =f ()

which proves that F'(x) = f(x)

In term of recovery of derivative functions the two integral are are effective.
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6.4.0 (IV) Functions Of Class I’

As an application of the lebesgue theory, perseval theorem and Bessels theorem already proved for
Riemann integrable functions are extended to lebesgue functions.

Definitions

A trigonometric polynomials is a finite sum of the form

f(x)=a f(x)=a, +Z(an cosnx+b, sinnx) (x—real)

Where a,.......... aN’bl ............ bN are complete numbers, the sum can also
N .

be written in the form f(x)= chem (x—real)
-N

6.4.1 Definitions

We say a sequence of complex functions {¢n} is an orthonormal set of functions on a measurable

0;(n#m)

Space X if j¢n¢md,u= { ,in particular ,we must have @, :Ez(ﬂ), If fel’(u)

L;(n=m)
and If ¢ = .[f¢"dﬂ (n=1,2,3,cceuerrnn. ),we write f ~ ch¢n.
x n=1
The definitions of trigonometric Fourier series in r (orevento L) on(—7,7)

6.4.2 Theorem(Bessel Inequality)

If {¢,} isanorthonormal on [a,b] andif f(x) ~ch¢n (x)

n=1

n—oo

- b
Then ZI c, I’< J.I f(x)P dx ,inparticular limc, =0,

n=1

The bessel inequality hold forany f e 62(;1) .
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6.4.3 Parseval’s Theorem(Riemann version).

Suppose f and g are Riemann integrable functions with period 27 ,and f(x)~ ZCnem , ,

—oo

800 ~ 27" hen lim-— [17(0)=3,(f:0)F dx=0
- n—oo 7[

-

17 - =
o j f(x)g(X)dx=§,cn 7,

1 7 >

— I fPdx=>Ylc I

2%jﬂfu 2l
Proof

x 1
Using the notation |l 2 1l,= {2L I [h(x)1dx}? let £€>0 begiven.Since fe R and f(7)= f(-7x),
T -

by construction we obtain a continuous 27 — periodic function Awith Il f —hll< £ and we find a

trigonometric polynomials P such that | A(x)— p(x)I< & forall x.
Hence  Ilh—pli<e If P hasdegree No. Thus l2A—S, (W) I, <llh—pl<e ,forall N> N, .
by bessel’s inequality with A— f inplaceof f, I S, (h) =S, (f)IL,=NS,(h—f)IL<Ih-fl,<&

Now applying triangle inequality shows that Il f —S, (f)Il,<3¢ N =N,

V4

Thus limLJ‘If(x)—SN(f;x) P dx=0

noe Q7T 7

1 i - S 1 T inx o _ s »

Next ELSN(f)gdx:;cnﬂ_[re g(x)dx-%cn 7.,
And the Schwarz inequality shows that

1

I Fe=[Sv(Prgifif=Su(Hligisifif=S,1[Igl)2,

which tends to zero as N—oo if g = f
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2
6.4.4 Parseval Theorem For f € ¢ (i) {lebesgue version}

Let S be the partial sumof (a), Then lim|l f =S, =0

n—oo

and Yle, P =2LT|f|2dx
- T

Proof

b I
Let £>0 begiven ,sincell f—gll= {j(f —g)%dx}? < & , there is a continuous function g

a
I3 .
such that |l f—gli< ) .Moreover, we can arrange it so that g(7)= g(—x) ,then g
can be extended to a Periodic continuous function by Perseval Riemann version(earlier),

. . . . £
there is a trigonometric polynomial 7 ,of degree N ,say, such that Il g =T ll< 5 .

Hence by Bessels inequality (extended to 7 ), n2 N implies || S, — fIKIIT - fllk &

: S 1 7
thus lim Il f =S 1l=0 and hence Z| c, P =— I | f Pdx ,as proved in perseval Riemann version.
n—soo — 27T

—oco

6.4.5 Corollary

If fe(®on[-xx] andif I f(x)e™dx=0 (n=0,+1,£2,+.......... ) then Il £ ll=0 ,Thus if two

-

. . 2 . . .
functionsin /- have the same Fourier Series, they differ at most on a set of measure zero.

Libesgue integral simplify the norm and working sums in /* easier this is not the case with Riemann
integral.
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6.5.0 (V) Integration of Complex(Analytic)Expressions.

Complex expressions are well solved using U-substitution and Riemann improper integrals, we now
extend this to lebesgue theory.

Suppose f is a complex-valued function defined on a measurespace X and f =u+iv,
where # and Vv arereal. Wesay f ismeasurable ifand only if both u# and v are measurable.

It is easy to verify that sums and products of complex measurable functions

1
are again measurable since | f |= (u*> +v*)? .

Since | f | is measurable for every complex measurable f .Suppose u isameasureon X,

and FE isacomplex functionon X .Wesaythat f € /(u) on E providedthat f is

measurable and .[l fldu <40 and we define .[fdu = judu + i.[ vdu
E E E

Integral of | f'| isfinite since lu I<| f1, |vISI fland | fI<lul+1v| itisclear that finiteness of

integral of | f |, holdsifand onlyif u€ ¢(u) and ve f(u) on E .

We know |Ifdu |SJ| fldu . 1If fe l(u)on E, there isacomplex number ¢, |cl=1 Such
E E

that cjfdu =20 Ifweput g=cf =u+iv, u and v real
E

then | Ifdu |= C.[ Sfdu = .[ gdu = judu < Il f Idu the third of the above
E E E E

E

Equalities holds since the preceding one show that jgdu is real.
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6.6.0 The L, —spaces.

Let 0S p<oco and L, (4) or L, (Q) or L, (Q, F, i) denote the space of all complex valued

measurable functionson € such that .[l S 1" dp <oo Thespace L,(4) iscalled the

P" power integrable  function of (Q, F', &)

A measurable function f(x) defined on the segment [a,b] is called the P™" power

b
summable where P21 if Il f(x)1Pdu < oo, finite integrals.

The set of all such functions is denoted L, [a,b].

6.6.1 Example
f(x)=%e L, ie. !f(x)dx:!'%

L

=J.x_5dx= al =2x_5=2\/;=_[f(x)=2\/; ly =2

0 ——+1

1
2

Bt fe L0.D) Since [ f(x)=] (%)%gxz j@

o X
1_
= Inlxl [j=c, Lp2 <L,

6.6.2 Example2

G-2ndx = [(5-20"dx =—LJ5-2071=2 feL
3 41

1
Now f(x)=[5-2xdx =5x-x"l)=4
0

fel ~L cL

P2 P2 P
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The two examples shows that integration in ?* and of complex valued functions is not

always guaranteed even though they were possible in R1 .Continuity and finiteness of

functions therefore must be considered when integrating.

6.6.3 Proposition

If p(Q)<eo and 1< p <ocothenl, CL,
Proof ;Take f€ Lp2

L FIn< FI2 41 VxeQ

= [Ifr du<|if1” du+[1dp <+

Thus I fI"<4e0 = fel, ~L, cL

D

6.6.4 Definition

1

For feL, (&), define Il fll= (J.Ifldlu); called the P" normof fe L, ()

6.6.5 Properties

(DIf f,g€ L,(u).Thefollowing hold Il f Il =0 iff f=0 a.e x(u).

@The lafll dall fII,  Vaec

Proof

1

lafi,=([laf 7d )"
=(al [Ifr du)’

“al(Ifr duy’ =allifil,
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30 fg I £+l gl

Proof

1 1
Letp>1and q>1 be suchthat —+—=1(p and q are conjugate)
P 4

1 '
Let fe€ Ep(,u) and g€/ (4)Then fge (,(u) and Ilfg I< (J.Ifld,u)”(J.lglq)q

Note thatif Il fIl,=0 orllgll,=0 = [I £V du=0 or [Igl"du=0

= fg=0 ae xi

Now assume Il fll=0 and Il gl #0

1
Apply the Holder’s lemma by putting f = —
p

iRy o 8y

a=(
Il f IIP g ll,
. . . fps t1.1-t
Substituting in the holders equalities a'b™ <ta+(-1)b gives
Lfl gl 1 1fl 1 lgl
/1 1el L Ly, L T8ty .. )

HFn gl pgn” gigl,

Integrating both sides of (1) with respect to measure L, we obtain

1 1 1

— L (ifeldus< L FI du+ 11" d
IIfIIpIIgIIq-[fg # pllfllpjf # qllgllqjg #
:;_[Ifgld,uﬁl—i-l:l

Ifiiigl, b g

= [1feldusifu,Igl, =l fgl<lif1ligl,
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CHAPTER SEVEN

APPLICATION OF RIEMANN AND LIBESGUE INTEGRAL TO TIME SERIES ANALYSIS
REVIEW (1)

7.1.0 VARIATION ;The variation in observation can be due to;-

(i)Treatment effect’s (ii)Random-error

The treatment model is an addition model of the form y, =U+1 +e;
where (1) i£;- is the grand mean i.e the mean yield if no treatment is applied.
(2) t;;- is effect of the i™ treatment .The i” treatment will either increase
or decrease of yield by f,.

(3) e; is the randomization error effect.

7.1.1 REGRESSION MODEL.
7.1.2 Definition ;A regression model is aformal means of expressing the two essential
ingredients of a statistical relation.
(a)The tendency of the dependent variable Y to vary both with the independent X
in a systematic fashion.

(b)A scattering of points around the line of a statistical relationship.

7.1.3 Definition, First order model When there are two independent variable X, and x, the
regression models becomes Y, = 8 + Sx,, + X, + & is called a first order regression model with
two independent variable. where Y, is the dependent variable and the parameters of the model

:Bo '131 and ,32 and the error term is & .The parameter ,31 indicates the change in the mean
response per unit increase in X, when X, is held constant. Also ,32 indicates the change in mean

response per unit increase in X, when X, is held constant.

74



7.1.4 Example

Suppose X, is held constant at level X, = 20, the regression function
E(Y)=20+0.95x,—0.5(20) becomes E(¥)=10+0.95x,

7.1.5 General Linear Regression Model In Matrix Terms.

In matrix terms the general linear regression model is ¥ =x f+¢£.....%%*
0 _ —

¥y I x, .. =x,
: ) Y2
where Y ;- is the vector of responses i.e Y = xX=
0 i i
Y, L ox, o X,

[ isthe vector of parameters. For example if Y, =+ fBx, + X, +..... +0,.%,4
0

2. : :
,32 ) and &€= is the vector of independent normal variables

with expectation E(£)=0.
7.1.6 LEAST SQUARES ESTIMATORS

Let us denote the vector of estimated regression coefficients b

0’

b.b,,...b , as b

b= .The least squires normal equations for general regression model *¥%
b

n—1

are (Xx)b=x'y and the least squires estimators are b=(x'x)"xy.
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7.1.7 FITTED VALUES AND RESIDUALS

A

Let the vectors of the fitted values Y, be denoted by Y and the vectors of the residual

o
M e
A
A A 62
terms ¢, =y, — Y, be denoted by e Y = Y2 and e=
— 0 . —
A €,
_yn_
A - A —
7.1.8 The fitted values are represented by Y = xb and residual terms by e=y—y=y—xb The
o o-- 0 -

A
vectors of the fitted values Y can be expressed in terms of the matrix H as follows

A

Y=HY where H=x(x'x)"x".
7.1.9 Similarly, the vector of the residuals can be expressed as follows e=(/—H)Y .
The variance-covariance matrix of the residual is o (e)=0"(I—H) which is

estimated by o’ (e)=MSE(I-H) .

7.2.0 FOURIER SERIES

7.2.1 Definition ,A trigonometric polynomial is a finite sum of the form

N
f(x)zao-f-Z(an cosnx+b, sinnx)...(a) where a,,......,ay, are complex numbers .

n=1

N
Equation (a) can be written as  f(x) ZZCne"” (x—real) .Every trigonometric polynomial is
-N

inx
e

is the derivative of ——, which also has a
mn

inx

periodic with period 27 .If n is a non zero integer ,¢e

. sinx and cosx satisfy f"(x)+ f(x)=0,

. s g {l(if..nZO)

period 27 . Hence L I e dx=
27 0(if.n=x1,£2....)

-

76



in general f'(X)+@ f(x)=0 is satisfied by sin@x and COS@Xx.

7.2.2 sinx is an odd function and COSX is even f(x) is said to be odd if
f(=x)=—f(x) and even if f(—x)= f(x).

eg sin(%) =-l= —sin(%) ----- odd  cos(-m)=1=cos7....even .
723 sinacosf= sin(@ + B) ; sin(a— /) coscos = cos(a+ f) —; cos(a— )

Sin arsin B = cos(a—ﬁ);cos(a+ﬁ)

7.2.4 Then if m and n are non-negative integers then

(i) Isinmxcos nxdx :% '[ [sin(m + n)x+sin(m —n)x]dx

-7 -

17 . 17 .
= 5_[rsm(m +n)xdx + EJ; sin(m—n)xdx=0

Following the same arguments

. ] . 0;if .m#n
) . 0;if..m#n i
Ismmxsmnxdx: _ (iii) J.cosmxcosnxdx myif.m=n>0
el mif.m=n>0 el ,
2wsif.m=n=0
(i),(ii) and (iii) are called the orthogonal formula.
7.2.5 Remark

Suppose the series

a - . . . .
—"+Z(an cosnx+b sinnx) converges then it's sum will be a function of x

n=l1

a - .
e f(x)=—=2+ Z(an cosnx+b, sinnx)

n=l1
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Suppose the convergence is uniform, then we can integrate term by term

T f(x)dx:% T dx+i[an ]{ l.cosnxdx+b, ]{ 1.sinnxdx .

n=1

For k=0. multiply by coskx

]E f(x)coskxdx = ]E %cos kxdx+i[an ]E 1.cos nxdx+bn_[1.sin nxdx
- n=l1 -

-

:% I coskxdx =rma, ie a, :%J;f(x)dx

-

For k=1 ,multiply by coskx

]E f(x)coskxdx = ]ﬂ a—zocoskxdx+2[an ]ﬂ cosnxcoskxdx+b, ]E sin xcos kxdx]

-

e T
a
= 70 coskxdx+ Y a, I cos nxcos kxdx

- -

Va Va
1
:anj.ﬂ'dx:anﬂ' when n—k >0 Thus an:—J.f(x)cosnxdx
T
-

-

Similarly ]i f(x)dx = ]{ a—2"+ Z[au T cosnxdx+b, T sin nxdx]

- -

Multiply by sinkx for k>1

| f(x)sinkxdx=a—2” [ sinkrdx+ [a, [ cosnxsinkxdx +b, [ sinnxsinkordx where k = n

- -

v v
=a, [ sinnxsinkor+b, [ sinnxsin kxdx
-

-

[ fosinkxdx=bx b, = % [ £0)sinkxdx
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7.2.6 Example 1
Compute the F series of f(x)=x when —T<x<T

Solution

17 1 x*

(i) a,=— | xdx=——I" =0

| ’ EJ; T2

(ii) a, =l'[xcosnxdx=0 (since xcosx is odd function)
T

1 : o
(iii) b :—Ixsmnxdx where xsinx is even
T

n
-

2% . 2 15 2(=1™
=—.[xs1nnxdx =———xcosnx|l; +— | cosnxdx = D
Ty nrx nrTy, n
7.2.7 Example 2
O;if..—r<x<0

Compute the F series of defined b X)=
P 4 A {1;1)‘..03x£7z‘

Solution

1 Va
a, =—If(x)dx divides the integral to corresponds with the intervals
/4

:If(x)dx+lff(x)dx zl.ﬂ'zl For n>1 an:lj.f(x)cosnxdx
- 7[0 4 ﬂ.fﬂ'

0 V4 V4
:l_[f(x)COSﬂxdx+ljf(x)cosnxdx :ljcosnxdx=0
T T, Ty,

—l(cos ni—cos0) = _—1((—1)” -1
niwx nrw

0;if..n..is..even

123
= Thus n)=—+—) sin
l;if..n..is..odd Jm 2 75;

niw

2k +1Dx
2k +1
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7.3.0 TIME SERIES

7.3.1 Definition; Time series is a set of data collected overtime

A time series can be expressed as a combination of cosine (or sine) waves with differing
periods, amplitude .This properties can be utilized to examine the periodic (cyclical)
behavior in a time series. Examples

(i).The prices of stocks and shares taken at regular intervals of time.

(ii)The temperature reading taken at regular interval in season at a place.

(iv)The values of brain activity measured every 2 seconds for 256 seconds

7.3.2 Example ;Picture of FTSE 100 share idex against time

0.03
]

0.01
]

FTSE 100
0.00
|

-0.01
1

-0.02
]

-0.03
|

I I I I I I
1996-06-28 1996-11-25 1997-04-25 1997-08-22 1998-02-20 1998-07-21

Time
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7.3.3 Methods for time series analysis may be divided into two classes
(i)Frequency-domain methods;-which spectral analysis and wavelets analysis
(ii)And time-domain methods;-which includes auto-correlation and cross-correlation analysis.
7.3.4 Objectives Of Time Series Analysis
(i)Provide experiment and historic data.it may consist of graphical representation or a
few summary statistic.
(ii)Monitoring of a time series to detect changes in behavior asthey occur.
(iii)To fore-cast future values of a series.
(iv)Analysis of accommodate dependence in series and help in making inferences on parameters.
(v)Development of models with a view of understanding underlying mechanisms which generate
the data.
7.4.0 Methods Of Analysis.
7.4.1 Time plot;-are pattern of plotted points or graphs of when the plotted and joined by straight lines.

7.4.2 Minimizing Randomness(Smoothing)

The process involves decomposing of independent variables y, to trend estimate s, and randomness 7,

A

i.e y, =y,+e such that using simple linear regression model Y, = u(t)+u(t)

A

implies that y is the estimate of the trend ur.
Ways of achieving stationary includes;- Moving averages, fitting polynomial regression, and spline
regression.

7.4.3 (I)Moving Averages

L O/ 5 V)

A simple moving average is of the form y, = 3

A )4
and generally Yy, :ZW,'Y:+/ it=p+1,.......... ,n— p where every increase
-p

positive integer p removes seasonal fluctuations but highlight more long-term trends.
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7.4.4 Polynomial Regression

This is the matrix regression method ,where a polynomial represented by Y = xb with residual terms
0 __
- A - A
by e=y—y=y—xb The vectors of the fitted values Y can be expressed in terms of the
i 0-

matrix H as follows Y=HY where H =x(x'x)"x' (i) such that the polynomial is of the form

A P -
Y =ZHY and for large p, the values of Y can be adjusted to Y=Y —-Y .
=0 - -
Y= f
where =1 .A further refinement can be done by replacing Y by orthogonal

n

polynomials (a)..I sin mx cos nxdx :% I [sin(m+ n)x+sin(m —n)x]dx

- -

= %J;Sin(m +n)xdx + %'[, sin(m—n)xdx =0

O;if..m#n

(b)jsinmxsinnxdxz _ or (c) '[cosmxcosnxdx= mif.m=n>0
Lif.m=n>0

- -

% {O;if...m;tn %
27;if ..m=n=0

where m and n are non-negative integers and the matrix (X 'X) in equation (i)

is diagonal.

7.4.5 Spline Regression is a method of weighted moving averages applied to gain

stationary which copes with arbitrary patterns of missing values in the data.
n * . >

Equation Q(0{)=Z{yi—,u(ti)}+0{j{,u (t)} dt. if o isclosetozero, we tolerate alot
i=1 e

of roughness in (it to fit the data. if & is large we get smooth M(t) and allow less close fit
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7.5.0 Auto Correlation ,Sometimes known as a correlograms is a plot of the sample autocorrelations

1, versus h the time lag. It is a measure of internal correlation within atime series.

o’(b,) o’bp) ... o’b,b,.)
c*(b.,b o*(b) ... o*(b,b
The variance-covariance matrix o (b) = (.1 ) ( ) ' ( 1' )
O'z(bp_lbo) O'z(bp_l)

where O'z(b)ZC)'2()c')c)_l implying that the auto covariance function of a stationary random function
Y() is ¢, =COV(bl.,bj_h) and since ¢(0) is the variance of Y, the auto correlation function becomes
C
7h=%.The resulting values of 7, will be between —land +1 i.e Ir(k)IS1 and for independent
0

variables 7, =0.(+1 )implies thereis a strong and positive association i.e the series values in two time

interval are similar. whilst (—1) shows strong negative association(dissimilar) observation.

2.
g -
5 81 5 2
s = 2
2- .
g 1 ,'i || . ” (B o ST H1H| """""
ririwnin ) —— i,
VAU WL U .
T 71 ] T
1943-ICI1-1? | 1956-|G1-{]6 | 1963-I1 2-2T7 [I} 5 'IID 'IIE ZI[} 2|5 30
Time Lag

Equivalently, if we consider a random sequence {Yt} defined by Y =0{Yt_1+Zt eeen(€) {Yt} is

t

stationary inthe range —l1<a@ <1 . Taking expectations of both sides of eqn (c) and giventhat
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E(Z)=0 ,wededuce that =0 therefore 1 =0. Now multipliying both sides by Y _, taking
expectations and dividingby Var(Y)) gives 0, =ap,_,. Finally, p, =1 gives the solution

P, =a*..;k=0,1... then we proceed to plot P, against k

7.5.1 Estimating The Autocorrelation Function For Equally Spaced Series(Correlograms)

QO

For a series {YI,Z‘ZL ....... ,n} we use y =

) h .
and define the k" sample auto covariance
n

D= =) ¢
coefficient g, ==k Then the k" sample autocorrelation coefficient is %, ==& A

n

o

plot of }, against K is calleda correlogram of that data {yt}Each correlogram includes a pair of

dashed horizontal lines representing the Iimitsi%—,which are used for informal assessment
n
of departure from randomness

Series fret

1.0

06 08
|

ACF
0.4
|

02

00
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7.6.0 Wavelet;- Analysis is the analysis of the dominant frequencies in atime series
. : . 1
7.6.1 Introduction ;For the cosine function X,=2005(2ﬂ'%t+0.67£) for t=1,2,......... ,500.
In addition normally distributed errors with mean 0 and variance 1
1 . . 1 .
P=50 a):% , Thus it takes 50 tlmes(w:%) to cycle through the cosine

function , before errors are added. The maximum and the minimum values are +2 and -2

+2

0 100 200 300 400 500

If we change period to 250 and w:L=0.004
250

then X, = 200S(2ELZ‘ +0.67) for t=1,500
250

+2

0 100 200 300 400 500
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m
If the regression models becomes take s a cyclic shape Zyt = ocos(ar) + Bsin(ax) +e,....(i7)
k=1

where Z, is the randomness,a)zz% the frequency and 6?:(05,,8) parameters estimated by

least square i.e @=(X'X)" XY and Suppose that we have observed at n distinct time points and

for conviniences,we assume

that n is even.our goal isto identify important frequencies inthe data.To pursue the
investigation,we consider the set of possible frequencies W, == for ]=1,2,....,5 ,This are
n

called the the harmonic frequencies.We will represent the time series as

o |
X, :Z[ﬁl(i)cosbr(a)/t)+,32(i)sin(27£(a)/.t) .This is a sum of sine and cosine functions
= n : n ‘
at the harmonic frequencies.Think of the ﬁl(l) and ,Bz(l) as the regression parameters.
n n

. n .
Then there are atotal of nparameters because welet j move from 1 to E This means that
we have n data points and n parameters. So the fit of regressin model will be exact.The first

step inthe creation of the periodogram is the estimation of the ﬁl(l) and ,Bz(l) parameters
n n

It actually not necessary to carry out regression (= (X'X)"' XY )to estimate this parameters

because Instead a mathematics device called the Fast Fourier Transform (FFT) is used.
After the parameters have been estimated we define p(l):,[)’l(i)+,[)’2(i) .This is the sum of
n n n

squared “regression” coefficients at the frequencies I
n
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7.6.2 Interpretation And Use

A relatively large value of p(l) indicates relatively more importance for the frequency I
n n
J . I . N .
(or near =) in explaining the oscillation in the observed series p(=) is proportional to
n n

. . : . ]
the squared correlation between the observed series and cosine wave with frequencies —.
n

The dorminant frequencies might be used to fit cosine( or sine) wave to the data or might

be used simply to describe the important periodicitiesin the series.

. . a4, '~ .
7.6.3 Equivalently from Fourier the series —”+Z(an cosnx+b, sinnx) we

n=1

17 17 .
where a, =— I f(x)cosnxdx and b, =— I f(x)sinkxdx thus we can write
T T
/4

-

2 {i Y, sin(ta))}

i Y, cos(ta))}
and p=

2{
parameters as O = =1 It can be

n
shown that the Fourier series of f(x) with @=0 and n is odd take initial y, =& +e,

t=1,........ n where  is the sample mean & =y Similarly for the even n, the Fourier series

fx)=xis y=a(-1)+¢e t=1,....n.

Equation (ii) show we can achieve an orthogonal partitioning of more variations by

PRGN

. . . . . 2
increasing m and since & = ' and associated sum of squares is &
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{Zn: v, cos(a)t)} {i Y, sin(a)t)}

t=1

if I(w)= . where 0<@<7and the partitioning

of the total variation in the series {yl} is Zylz =I(0)+221(27[%)+I(7[) ,j<%
=1 =]

The graph of (@) against @ s called periodo gram.

4e+07
|

2e+07 Je+07
| L
I

Spectrum of Measles for Londan

1e+07
|

Oe+00
L

0.0 0.5 1.0 1.5 2.0 2.5

Frequency (cycles/year)

The figure show the spectral analysis from the first of london measles time series.The
largest peak occurs at the frequency of 0.5 cycles/year of biennial oscillation. There is also

alarge peak corresponding to annual oscillation and also a slightly smaller one at three cycles

per two years
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7.6.4 The Connection Between The Correlogram And The Period gram
Though the two have different rationales.The presented arguments ,show a connection

between them .For Fourier frequency @, we can write

2

{Z y, cos(a)t)} + {Z v, sin(a)t)} {Z( y, - ;/cos(at)} + {Z( v, = y) sin(a)t)}
](a)) _ t: =1 _ t=1 t=1
n n

Since ZCOS(&I) = Zsin(a)t) =0. Expanding each squared term gives

t=1 t=1

(@)=Y (5, - y)*{cos>(wr)+sin* (@)} + 33" (3, = y)(y, = y){cos(er) cos(@s) +sin(ar)sin(ws)}

S#t

:Z(y’ _;])2 +2”Z_: Zn: o, _);)(yz—k _);)COS(k(’))

k=1 t=k+1

Now substituting the sample auto covariance coefficients we obtain

I ) n—1
Q: go +22 gk COS(ka)) express Fourier transform as a sample of auto covariance

8 =1
Finally dividing by g, defines normalized period gram

I @ n-1
Q: 1+22 Y cos(k@) as the Fourier transform of the correlogram

8, k=l

7.7.0 The Spectrum Of A Stationary Random Process.
Consider a stationary random sequence %=COV(Yt,Yt_k) .The corresponding auto covariance

generating function is G(Z)= z }/kzk...(4) whose arguments z,is a complex variable .If in equation
k=—co

w

(4). we now choose z=e " where @ isthereal variable ,we obtain the spectrum of {Y;}

’

f(w)=G(e™)= z 7,6 " .....(5) because ¥, =¥, and €“+e " =2cos@®we can write
k=—oo

equation (5) as f(w) =7y, + 22 ¥y, cos(kmw) ,

k=1
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revealing that spectrum isa real-valued function. If 0 denotes the variance of Yt

S (@)

we can similarly define a normalized spectrum f *(@) =-—; =1+2Zpk cos(kw)
o k=1

Note; The normalized spectrum bears the same relationship to the autocorrelation

function as does the spectrum to the auto covariance and any non-negative valued function f (@)
on ((0,7) defines a legitimate spectrum.

7.7.1 Example

A first —order autoregressive process. Suppose that {Yt} is defined byY; =0{Yt_1+Zt where {Zt}

is a randomized sequence and —1 <& <1 we havealready seen that the autocorrelation function {Yt} is

P, =a*k=0,1,..... ,Thus the normalized spectrum of {Y} is f* (@)= Z pke_ikw It can be shown
fmoo
-1
that f*(w)= (1—0(2){1—2(Icos(a))+(12} ....... (6) Normalized spectrum for each of a=-0.5,0.5

and 0.9 Note Fornegative &, f *(@) is an increasing function of @

@ 3.0 j (b) 4r
3}

2.5F

2.0r

150 5

fH(w)

1.0k ik
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w
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7.7.3 Discrete And Continuous Spectrum

Spectrum plots gives information about how power (or variance) in a series
is distributed according to frequencies'For auto covariance Ch :COV{Y[,Yl_h} and auto covariance

function is Z chzh and since ¢, =c_, and eim-i-e*iw:ZCos(a)) we write a spectrum real

h=—c0

valued f(w)=c, + 22 ¥, cos(h@) Conversion of time-indexed data into estimates of autocorrelation
h=1

or spectrum depends partly on Fourier transformation of ¢(7) to obtain F'(A).If Continuous component is

missing i.e f(ﬂ) =0 for all A.thetime spectrum is said to have a discrete spectrum (point spectrum).

C(r)= i eMkTp(ﬂ%) moreover i p(A4)=C(0)<oo

k=—c0 k=—c0

Thus since summable series are square summable Z pz(ﬂ%)<°0. It follows that the

k=—oc0

spectrum function can be obtained from auto covariance by the expression
: 1 T —iAT . .
p(ﬂk):hmEIC(T)e “dt  ,expression yields p(A) for all A and F,(A) canbe
t—o0
-T

o

obtained. For continuous spectrum C(7) = I e** f(A)dA is valid and I f(A)dA=C(0)<

—o0

The auto covariance and spectrum of an almost periodic function

Llet Xt = z Cjew be an almost periodic function with z | Cj I < oo

Jj=—o Jj=—o0
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—
\
C(0) / T F(A)

/1—3 /1—2 /1—1 /?0 =0 ﬂ's

7.7.4 Univariate Spectral Models

iAit

Using the properties of inner product and orthonormality of functions e We
can calculate the auto covariance functions for time series
C(r)=<x(t+7),x(t) >=< Z ce e Z c et >
Jj=—oo f=—c0
T~ T idk At At - 0 At
—_ J 7 k _ J
—Zchcke <e,e"™ > —Zlcjle
j=—00 k=—oo0 J=—o
_ 2
e, P ofor.A=A..j=02L,... CO= 2 1¢;!
=P = and J=—eo

0;....otherwise

In practice spectral analysis imposes smoothing techniques on the period gram with certain
assumptions .We can also create confidence interval to estimate the peak frequency regions.

Spectral analysis can also be used to examine the association between two different time series.
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RECOMMEDATION

To show further application of lebesgue integration in

(i) R" -spaces and stokes and green theorems.
(ii) Statistical methods such discrete
and continuous solutions of expectations

(iii)in Time Series Analysis Solutions
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CONCLUSION

This study describes the Extensions of Riemann theory of integrations, first to Riemann

Stieltjes integration, then to the most notable extensions, ‘'The Lebesgue Theory Of Integration.

As a result we are able to solve the discontinuous functions, such as step-functions, recover f(t) from

F’(t),and calculate areas covered by continuous functions with increased limits e.g R" spaces.
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