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Abstract
Kyoto Protocol is an international agreement which commits Annex 1 parties by setting in-

ternational binding carbon emission reduction targets. Carbon emission trading involves the

buying and selling of carbon allowances in the event of non-compliance with the emission

reduction targets. There is a lot of price volatility in the carbon emissions market. Most

traders use option derivatives to deal with the risks. The non-compliance event defines the

price process of the carbon allowances. The non-compliance event is modelled using the

normal inverse Gaussian distribution and Brownian motion. The carbon price data is fitted

in NIG distribution and Brownian motion using MLE. This helps us know which distribu-

tion best fits our data set. The results suggest that normal inverse Gaussian model has a

better than Brownian motion. A simple analytic expression for the Fourier transforms using

NIG and Brownian motion characteristic functions is defined and used to solve the European

time option prices. The results suggest that NIG gives a higher option price than Brownian

motion.
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Chapter 1. Introduction

1.1 Background

Greenhouse gas is produced from burned fossil fuels. The fossil fuels are a source of energy

and so they are popularly used in production and consumption in the world. The developed

world are known to be the main source of GHG emissions because of industrialisation and

existence of free markets. The emissions are still low in the developing world and emerging

markets when compared to the developed world. However, it is reported that the emissions

in the developing world and emerging markets, have grown by approximately 42% between

1990 and 2011. GHG emissions have negative impacts on the earth’s natural resources.

We see increased heat waves, land slides, flooding and shrinking water supplies. People

are dying of cancer, water and vector-borne diseases that are being caused by air pollution.

The changing weather patterns and extreme events are affecting the agriculture and tourism

sectors In order to address these climate-related crisis, the Kyoto Protocol was introduced.

The Kyoto Protocol is an international agreement which commits its parties by setting in-

ternational binding emission reduction targets for a given period of time which is called the

compliance phase, The first compliance phase started in the year 2008 and ended in the year

2012. Through this, the Kyoto Protocol helps curb Climate change as its participants have

committed to cut GHG emissions. The participants under the Kyoto Protocol are called An-

nex 1 parties. It was launched in Kyoto, Japan, on 11 December 1997 and started operations

on 16th February, 2005.

Binding emissions reduction commitment for participants meant that the space to pollute

was limited, and what is scarce and essential commands a price. Greenhouse gas emissions-

most prevalently carbon dioxide was now seen to have monetary value because it was con-

sidered as an unpriced externality. Moving forward, we will use carbon dioxide emissions

instead of GHG emissions because the carbon dioxide is the principle gas in GHG.

Annex 1 parties can cut on GHG emissions and meet their targets, by changing some of

the everyday activities that have a great impact on the environment. However, they can

also meet their targets through three-based market mechanisms. This implies that they have
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to invest in a cost effective project that is being launched anywhere in the world, whether

in the developed or developing world, that helps remove or reduce GHG emissions in the

atmosphere. These mechanisms are International Emissions Trading, Clean Development

Mechanism and Joint Implementation.

Each Annex 1 member is given a limit of the amount of carbon dioxide they should emit

in the atmosphere, over a 5-year period. The limit is known as cap. The cap is converted

to Assigned Amount Units,where one tonne of carbon dioxide is equivalent to one AAU.

When a member exceeds the cap, they face a penalty.

The African continent is growing rapidly because of changes in governance, increased in-

centives in industrialisation and free markets. With this in mind, The Africa continent could

become a developed world over the next two decades. The problem with GHG emissions in

Africa might not be viewed as a problem now but that might change soon because of where

our economy is headed. According to UNFCC, the Kenya’s carbon emissions trajectory is

quickly changing because the economy is making alot of progress. This progress is result-

ing to increased demands for energy, thus more burning of fossil fuels. There was an article

on Business Daily Africa that said that Carbon trading is expected to start soon in Kenya.

Therefore, Kenyan companies with carbon credits would be able to sell to foreign countries

or manufacturers. There are plans ongoing to list carbon permits in the Nairobi Securities

Exchange. Some companies like Kengen and East Africa Portland Cement already partici-

pate in carbon trading.

The options derivatives represent a small but growing percentage of carbon market activ-

ity. It emerged in the second half of 2008. The increasing market for options in the carbon

market is believed to be driven by the existence of arbitrage in the market. It is therefore

necessary to study the price behavior of historic price data and model the price of carbon as

well as value carbon options.

1.2 Statement of the problem

Carbon spot prices are volatile and carbon market is facing the risk all the time. They need

derivatives for dealing with such risks. Options are mostly preferred due to their simplicity.

However the prices are so much volatile that it may be difficult for the option sellers to deal

with the risk they have to take. They may decide to ask for high prices in return, which ruin
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the attractiveness of option derivatives. It is therefore necessary to do an option valuation

the in the carbon market.

1.3 General objective

Identify whether NIG distribution is a suitable model for option valuation in the carbon

emissions market.

1.3.1 Specific objectives

1. To model the carbon log returns using the NIG distribution and Brownian motion.

2. To develop a simple analytic expression for the Fourier transforms using NIG and

Brownian motion characteristic functions.

3. To evaluate European time option price.

1.4 Significance of the study

• Brownian motion has always been considered the best method when it comes to fi-

nancial modelling. However, this method rules out alot of factors that need to be put

into consideration. Unlike Brownian motion, NIG distributions explain the behavior

of derivative prices through volatility, kurtosis and skewness.

• It will be an important study to scholars who need information on pricing and valua-

tion of carbon emissions when doing research related to this study.
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Chapter 2. Literature review
Carmona and Hinz.(2011) , explains that European call and put options are mostly traded

on the carbon emissions markets. He goes ahead to express that it is not evident how option

valuation is done in the carbon emissions market. Regardless of the methods of valuations,

the option price should be based on an underlying martingale with a binary terminal value.

According to the option quotes (in Euros) published on January 2008, the call options had

strike prices ranging between 20 Euros and 50 Euros.

Burger uses options to calibrate his processes. He uses data from European Climate Ex-

change (ECX), because they are available online. He explains that only options expiring in

2008 are available for different strike prices

Chevallier and Benoit. (2014) , argues that there is evidence to show that carbon prices

move essentially by jumps and so this should be put into consideration when modelling

carbon spot prices. He has even suggest models that could be useful when pricing carbon

derivatives whose underlying accomodate a pure jump process. More information about

these models can be looked up at Cont and Tankov (2004), the CGMY model (Carr et al.

(2002)).

Seifert et al. (2008) argued that traders of carbon emissions need a carbon price model so

that it is possible to value any carbon derivatives they decide to use to hedge the risks in

the carbon emissions market. The models ease the decision they have to make regarding

investments in the carbon markets.One of the most important property of the carbon price

model is that it should be a martingale

Hamza et al.(2005) , considers option pricing when the distribution of the underlying price

is NIG and variance-Gamma. The paper explains how the underlying with these type of

distributions is developed so as to satisfy the martingale property. Afterwards, the option

pricing formula is developed using cumulative distribution functions.

Bu.(2007) , models an asset price process using Normal inverse Gaussian, Meixner and

Brownian motion distributions. After making necessary comparisons he concluded that all

the non-Gaussian Levy processes are more reliable for modelling the asset price process

when compared to the Brownian motion Levy process.

Saebo.(2009) argues that Normal inverse Gaussian process can be used in modelling the
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stocks. He explores the properties of the NIG market model in comparison to empirical

findings in the financial markets.

Carr et al.(1998) , describes an expression that prices options efficiently, using the Fast

Fourier transform. He assumes that the expression for the fast Fourier transform is well

developed if and only if the characteristic function of the risk-neutral density is known ana-

lytically.

Bolviken and Benth. (2000) , argue that the family of normal inverse Gaussian distribu-

tions is able to portray stochastic phenomena that have heavy tails or are strongly skewed.

In addition to that, normal inverse Gaussian distributions are not confined to the positive half

axis. Therefore, with the NIG distribution the financial analyst has at its disposal a model

that can be adapted to many different shapes while the distribution of sums of independent

random variables are still tractable to compute.
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Chapter 3. Methodology

3.1 Levy Process

Definition 1.1 A cadlag real valued stochastic process (K(t))t≥0 such that K(0) = 0 is

called a Levy Process if it has stationary independent increments and is stochastically con-

tinuous.

3.1.1 Brownian motion

A random variable that has Brownian motion is normally distributed with mean µ and vari-

ance σ2 if

P (K > k) =
1

√
2πσ2

∫ ∞
k

e
− (u−µ2)

2σ2 du
, (3.1)

for all k ∈ R

Definition 1.2 A real-valued stochastic process B(t) : t ≥ 0 is called a Brownian motion in

k ∈ R if the following holds:

1. B(0) = k

2. The increments are independent thus, for all times 0 ≤ t1 ≤ t2... ≤ tn the incre-

ments B(tn)−B(tn−1), B(tn−1)−B(tn−2), ...B(t2)−B(t1) are independent random

variables.

3. For t ≥ 0 and x > 0 increments B(t + x) − B(t) are normally distributed with

expectation zero and variance x.

4. Almost surely, the function t 7→ B(t) is continuous.

We say B(t) : t ≥ 0 is a standard Brownian motion if k = 0. Hence, it follows from part

(3) of the definition that B(t) has probability density function given by

fK(k) =
1

√
2πx

∫ ∞
k

e−
(k2)
2x

du, k ∈ R (3.2)
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3.1.2 Normal inverse Gaussian process

The Normal inverse Gaussian process (NIG) is a Levy process (K(t))t≥0 that has normal in-

verse Gaussian distributed increments. Specifically,K(t) has a distribution with parameters

α > 0, | β |< α, δ > 0 and µ ∈ R

The NIG(α, β, δ, µ)-distribution has a probability density function

fNIG(k;α,β,δ,µ) =
αδ

π

L1(α
√
α2 − (k − µ)2)
√
α2+(k−µ)2

eδ
√
α2−β2−β(k−µ) (3.3)

where

Ln(z) =
1

2

∫ ∞
0

uυ−1e−
z
2
u+ 1

udu (3.4)

modified Bessel function of the third kind.

The characteristic function is given by,

φNIG(m) = e−δ(
√
−α2−(β+im)2−

√
α2−β2)eimµ (3.5)

For NIG distribution we know the population moments as:

E[K] = µ+
αδ

√
α2−β2

(3.6)

V ar[K] =
α2δ

(
√
α2−β2)2

(3.7)

skew[K] =
3β

α(δ
√
α2−β2)

1
2

(3.8)

Kurt[K] = 3(1 +
α2+4β2

δα2
√
α2−β2

) (3.9)

Where Skew[K] and Kurt[K] are the Skewness and Kurtosis of K respectively.

3.1.3 Symmetric NIG

The Symmetric NIG Levy process has symmetric NIG marginals. When the skewness pa-

rameter β = 0, the NIG distribution is symmetric with the following density function:

fNIG(k) =
α

π

L1(αδ
√

1 + (k−µ
δ

)2)√
1+(

k−µ
δ

)2
eαδ (3.10)
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It follows from the equations of the mean, variance and kurtosis, that µ is mean, δα is variance

and 3 + 3
αδ

is kurtosis. Let S-NIG(α, 0, δ, µ) denote the symmetric NIG.

The characteristic function for S-NIG(α, 0, δ, µ)

φ(m) = eαδ(1−
√

1+(mα )2eimµ (3.11)

The equation,

φ(m) = e
ζ(1−

√
1+( 2υ

ζ
) (3.12)

is know as the characteristic generator of S-NIG(α, 0, δ, µ), where, ζ = αβ

3.2 Basic modeling of the compliance

At the beginning of a compliance phase, Annex 1 parties are allocated assigned amount units

that are equivalent to the amount of emission cap,H,set for them by the emissions regulator.

During the compliance phase, the Annex 1 parties are required to have emissions that do not

exceed the emission cap. The parties that emit less than the emission cap have more AAUs

than required to offset their emissions, while for the parties that emit more, they require

more AAUs to offset their excess emissions. If they don’t have the AAUs to offset their

emissions they end up paying a penalty Θ per unit exceeding the emissions cap, at the end

of the compliance phase.

Equilibrium analysis shows that AAU price at time T is a random variable taking only the

values 0 and Θ. This implies that when the market position is long, the AAUs are deemed

worthless because banking of allowances is not allowed and so they have a value 0. How-

ever, when the market position is short, the AAU price will tend to the penalty level Θ.

The AAU price evolutions, (St)t∈[0,T ] are assumed to be given by adapted stochastic pro-

cesses on a filtered probability space (Ω, F, (Ft)t∈[0,T ],P) on which we fix an equivalent

probability measureQ ∼ P called the spot martingale measure.

We model (St)t∈[0,T ] with respect to the non-compliance event N. We define N as

N = ΥT > H

=
ΥT

H
> 1

Let γ = ΥT
H

, therefore, N = γT > 1. γT in our case is assumed to be a geometric Brownian

motion and an NIG distribution. The density of the AAU price process is thus,
8



ST

Θ1N , γ > 1

0, otherwise

Therefore, our price process,

ST = Θ1N (3.13)

In order to achieve the martingale property,

St = ΘEQ(1N |Ft), tε[0, T ]

= ΘEQ(1{ΥT≥1}|Ft)
(3.14)

To simplify the notation, we consider the normalized futures price process

at :=
St

Θ

= EQ(1{γT≥1}|Ft), tε[0, T ] (3.15)

The random variable γT is modelled by

γT = ezt (3.16)

where, zt has a geometric Brownian motion or a NIG distribution.

The random variable γT modeled by geometric Brownian motion (gbm) is given by

γT = γ0e
∫ T
0 σsdBs−1

2

∫ T
0 σsds (3.17)

WhereBt = standard Brownian motion and σ = is the Volatility parameter. Since µgbm = 0,

γT is a martingale with respect to the underlying Brownian motion. which is given by,

at = Φ(
ln γ0−

∫ T
0 σsds√∫ T

0 σsds
) = Φ(h) (3.18)

martingale, at, is a binary terminal value taking only the values 0 and 1, and satisfies

P{limt→T at ∈ {0, 1} = 1. We introduce the model for γT as a NIG levy process

γT = γ0e
[µnig(t)+Yt] (3.19)
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where, Yt has a normal inverse Gaussian distribution and its first two moments (expectation

and variance) are given by

E[Y1] =
αδ

√
α2−β2

V ar[Y1] =
α2δ

(
√
α2−β2)2

Since we have an infinitely divisible characteristic function, we can define the NIG process

Yt =
∑∞

t=0 Y1, which starts at zero. The parameters, α, β of the NIG for Yt remain un-

changed.

The convolution property states thatNIG(α, β, δ1) ∗NIG(α, β, δ2) = NIG(α, β, δ1 + δ2).

Therefore Yt ∼ NIG(α, β, δt).

We illustrate the relationship between the parameters in the geometric Brownian motion and

normal inverse Gaussian models

µgbm = µnig +
αδ

√
α2−β2

σ2 =
α2δ

(
√
α2−β2)2

,

The Levy-Khintchine representation of Yt is

Yt = µt+

∫ t

0

wNt(dw), µ = E[Y1], (3.20)

where,

N t = Nt − λt (3.21)

andNt is a poisson process whileN t is a compensated Poisson process. The Levy-Khintchine

representation has no Brownian component.Therefore NIG is a pure jump process.

Inorder to achieve the martingale property in our NIG model, µnig = 0. Hence,

E[Y1] =
αδ

√
α2−β2

= 0

E[Y1] = 0 when β = 0. This implies that our model Yt ∼ NIG(α, δt) is a symmetric NIG.

Therefore,

γT = γ0e
(Yt) (3.22)

Hence,
at = EQ[1γT≥1|Ft]

= Q[γT ≥ 1|Ft]

= Q[γ0e
Yt ≥ 1|Ft]

(3.23)
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3.3 Levy Processes with Symmetric Marginal Distributions

A Levy process is fully determined by its initial value, Y0 , here assumed to be nil, and

the distribution of the increment over one unit time interval, Y1. The distribution of Yt

is infinitely divisible for any t. Hamza, Kais,et al. (2015). Therefore Yt = tY1 and its

characteristic function satisfies

E(eimYt) = [E(eimY1 ]t, u = R (3.24)

The Levy-Khintchine representation is given by,

E(eimY1 = e∧(m) (3.25)

with characteristic component

∧ (m) = iµm−
1

2
c2m2 +

∫
R
(eimy − 1− imy1{|y|≥1})v(dy) (3.26)

where µ = R, and v is a Levy measure satisfying v(0) = 0 and
∫
R(1 ∧ y2)v(dy) <∞.

The triplet (µ, b, v) is referred to as the characteristic triplet of Y.

We denote by S-NIG(µ, σ2, ψ) the distribution of Y1 whose characteristic function is of the

form

φY1(m) = eimµψ(
σ2

2
m2), (3.27)

The function ψ(m) : [0,∞] is called the characteristic generator. It is unique up to scaling

and if chosen such that ψ′(u) = −1, yields that µ and σ2 are the mean and variance of Y1

respectively.

Let Q be the natural equivalent martingale measure for Yt. Then under Q , Yt remains a

symmetric NIG Levy process with characteristic triplet (µ, σ2, ψ) and the distribution of Y1

becomes S-NIG(µ, σ2, ψ) where

µ = r − lnψ(
−σ2

2
) (3.28)

r is the risk free rate.

Now it is easy to see that Q is also a natural equivalent martingale measure. Indeed, since

−Yt Levy process with P-characteristic triplets (−µ, b, v) and since the distribution of -Y1 is

S(−µ, σ2, ψ), Q1 is chosen so that

µ1 = r + lnψ(
−σ2

2
) (3.29)
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Q1 is unique because µ1 is unique

Under Q, Yt is a symmetric NIG Levy process with marginals from the family S(µt, σ2t, ψt)

Remark: ψt(v) = (ψ(v
t
))t

Proposition: Denote by FT the P-distribution function of the standardized variable (YT−µT )

σ
√
T

FT (y) = P(YT ≥ σ
√
T + µT )

Then

FT (y) = Q(YT ≤ σ
√
T + µT ) = Q1(YT ≤ σ

√
T + µ1T )

We will use the standard normal to approximate the standardized symmetric NIG distribu-

tion.
at = EQ[1ΥT≥1|Ft]

= Q[ΥT ≥ 1|Ft]

= Q[Υ0e
Yt ≥ 1|Ft]

= Φ(
ln Υ0+(r+lnψ(−σ

2

2
))t

σ
√
t

)

(3.30)

By equation (3.12) and ζ = αβ = α2σ2, we obtain

lnψ(
−σ2

2
) = ζ(1−

√
1− σ2

ζ
) = α2σ2 − ασ2

√
(α2 − 1).

Equation (3.30) becomes

Φ(
ln Υ0+(r+α2σ2−ασ2

√
(α2−1))t

σ
√
t

) = Φ(g) (3.31)

Remark: If the excess emissions have a normal distribution (Normal inverse Gaussian) then

the price process automatically becomes a normal distribution (Normal inverse Gaussian).

3.4 Estimation of model parameters

We will need to get a calibration which is better fitted to the carbon price data. By using

the NIG model, it means that we have four parameters that need to be calibrated. While for

the normal distribution, only two parameters need to be calibrated. I will use the historical

approach to estimate the parameters. The maximum likelihood estimation method is widely

12



used to estimate parameters. By maximizing the likelihood function we increase the prob-

ability of getting the parameters that will give us the best fit for our data. The principal of

MLE states that the desired probability distribution is the one that makes the historical data

‘most likely’. Hence, we seek the parameter values that maximizes the likelihood function

L(θ1, θ2, . . . , θm) =
n∏
i=1

f(xi; θ1, θ2, . . . , θm) (3.32)

We obtain the MLE estimate by maximizing the log likelihood function.The log likelihood

function given a random sample of size n from a NIG(α, β, δ, µ) is given by

L = −n ln(π) + n ln(α) + n(∂δ − βµ)− 1

2

n∑
i=1

φ(xi) + β

n∑
i=1

xi +
n∑
i=1

K1(∂αφ(xi)
1
2 )

The log likelihood function of the normal distribution, N(µ, σ) given a sample of size n is

given by

L = σ−n(2π)−
n
2 e[− 1

2σ2

∑n
i=1(xi−µ)2]

The maximization of the log-likelihood function is done by a numerical optimization algo-

rithm, see Myung (2003).

3.5 Goodness of fit

After estimating our parameters, we need to check how well our NIG model and Brownian

motion model fit the historical carbon price data.

3.5.1 QQ-plots

The quantile-quantile plot is a graphical tool that explains if a set of data plausibly comes

from some theoretical distribution.

3.5.2 Anderson-Darling test statistic

Anderson-Darling test statistic is defined by:

AD = max
|Fn(k)− F (k)|√
F (k)(1− F (k))

13



Where, Fn(k) is the empirical cumulative distribution function and F (k) is the cumulative

distribution function.

A smaller value of AD means that the empirical distribution and fitted distribution are closer.

3.6 Option Pricing

For the valuation otions, we will consider European call options written on futures price

(St)t∈[0,T ] . A European call option gives the holder a right, but not an obligation, to buy at

the time of maturity T to a fix strike price U. Thus the payoff function is given by

Φ(ST ) = max(S(T )− U, 0)

3.6.1 Risk-neutral Option pricing

We assume that the price D(t) of a risk-free asset satisfies the differential equation

dD(t) = rD(t)dt, r ≥ 0

The first fundamental theorem of asset pricing states that there is no arbitrage, if and only if

a risk-neutral probability measure exists. In this case, risk-neutral probability is a martingale

measure Q which is equivalent to the original probability measure P. However,when using

the NIG market model, it is not practical to assume market completeness. Therefore the

options are said to be redundant in the NIG market model.

The arbitrage-free value of the option at time t<T can be defined as

Ct = e−r(T−t)EQ[max(S(T )− U, 0)] (3.33)

Key Assumptions:

• Options expire at the end of the compliance phase, that is, T=4.

• There is no banking of allowances.
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3.6.2 Option pricing using fast Fourier transform

The European call option value is dependent on the asset price process, St , with maturity

time T and strike price U . We let u = ln(u) and s(T ) = ln(S(T )) . CT (u) will denote the

option price and fT the risk –neutral probability density function of price ST .

The characteristic function of the density fT is:

φT (m) =

∫ ∞
−∞

eimsfT (s)ds. (3.34)

The link between the option value and the risk-neutral density fT is given by

CT (u) =

∫ ∞
−∞

e−rT (es − eu)fT (s)ds. (3.35)

Here CT (u) is not square integrable because when u → −∞ so that U → 0, we have

CT → S(0). However, if we consider the modified price cT (u) given by

ct(u) = eλuCt(u) (3.36)

then we obtain a square integrable function, for a suitable λ > 0. The value λ affects the

speed of convergence.

The fast Fourier of ct(u) is defined by

ϕT (υ) =

∫ ∞
−∞

eiυucT (u)du (3.37)

First we develop an analytical expression for ϕT (υ) in terms of characteristic function, φT ,

so that we can obtain call prices using the inverse transform.

CT (u) =
e−λu

2Π

∫ ∞
−∞

e−iυuϕT (υ)d(υ)

=
e−λu

Π

∫ ∞
0

e−iυuϕT (υ)d(υ)

(3.38)

Therefore,

ϕT (υ) =

∫ ∞
−∞

eiυu
∫ ∞
u

eλue−rT (es − eu)fT (s)dsdu.

=

∫ ∞
−∞

e−rTfT (s)

∫ s

−∞
(es+λu − e(1+λ)u)eiυududs

=

∫ ∞
−∞

e−rTfT (s)(
e(λ+1+iυ)

λ+ iυ
− e(λ+1+iυ)

λ+ 1 + iυ
)ds

=
e−rTφT (υ−(λ+1)i

λ2+λ−υ2+i(2λ+1)υ

(3.39)
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By substituting (3.39)into(3.38) and performing integration for equation (3.38), we obtain

the call values. Since the FFT evaluates the integrand at υ = 0 , the use of eλu is required

and therefore we will use the condition ϕ(0) being finite provided that φT (−(λ + 1)i) is

finite. That way, the modified call value is square integrable. From the definition of the

characteristic function, this requires that

E[Sλ+1
T ] <∞ (3.40)

Carr and Madan (1998) suggest that, one may determine an upper bound on λ from the

analytical expression for the characteristic function and the condition (3.40). One quarter of

this upper bound serves as a good choice for λ, that is λ ≈ 0.75.

At υ = 0, equation (3.38) becomes,

CT (u) =
e−λu

Π
ϕT (0)

=
e−rTφT (−(λ+1)i

Π(λ2+λ)

(3.41)

The characteristic function of the log of ST , which follows a NIG distribution, is given by

φT (u) = elnπΦ(g)+T ((r+α2σ2−ασ2
√

(α2−iu))) (3.42)

φT (−(λ+ 1)i) = elnπΦ(g)+T ((r+α2σ2−ασ2
√

(α2−(λ+1)))) (3.43)

The equation to get the option price of an NIG model is therefore,

CT (u) =
e−λu

Π

elnπΦ(g)+T ((r+α2σ2−ασ2
√

(α2−(λ+1))))

λ2 + λ
(3.44)

We now get the expression for the characteristic function of the standard Brownian motion,

which is similar to standard normal distribution, and use it to get the option price.

The characteristic function of Brownian motion is given by

φT (u) = eiuµ − 1

2
σ2u2 (3.45)

The Brownian motion is a type of Levy process. Therefore, under Q, SNt (a random variable

that is defined by the Brownian motion) is a Levy process with characteristic triplet (µ, b, v)

and the distribution of SNt becomes sbm(µ, σ, ψ) , where

µ = r − lnψ(
−σ2

2
) (3.46)
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The standard Brownian motion is N ∼ (0,
∫ t

0
σ2ds) Therefore

φT (u) = e−
1
2

∫ t
0 σ

2u2ds (3.47)

φT (−(λ+ 1)i) = elnπΦ(h)+T (r−1
2

∫ T
0 σ2

t(λ+1)2dt) (3.48)

CT (u) =
e−λu

Π

elnπΦ(h)+T (r−1
2

∫ T
0 σ2

t(λ+1)2dt)

λ2 + λ
(3.49)

Remark: We will use AM92 Actuarial tables to get the values of Φ(h) and Φ(g) found in

equations (3.18) and (3.31) respectively.
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Chapter 4. RESULTS & CONCLUSIONS
This chapter deals with fitting data into the models proposed in chapter three as well as

determining the option values using FFT.

4.1 Data Description

The historical data I used was collected from the Europe union emissions market. The data

was collected during the first compliance period which was roughly between July 2008 and

July 2012.

Here is a link to the data: http://www.investing.com/commodities/carbon-emissions-historical-

data.

Table 4.1: Descriptive-statistics

N 534

mean -0.1

sd.deviation 0.45

variance 0.2025

skew -0.12

kurtosis -1.36

Data that is normally distributed has values for skewness and kurtosis as 0 and 3, respec-

tively. Our values for skewness and Kurtosis imply that our data is non-Gaussian. The value

of the skewness indicates that our data set is left long-tailed. The Kurtosis indicates that our

data has a “light tailed” distribution.

4.2 Goodness of fit

In order to determine the appropriate option price model, we need to establish which distri-

bution best fits the data. QQ-plots of the NIG and Brownian motions of the log returns of
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the carbon price data as shown in figure 4.1 indicates that the data fat negative tails and fat

positive tails. However, if you compare both QQ-plots, the Brownian motion QQ-plots has

more outliers that the NIG QQ-plot. Hence NIG distribution gives a better fit for our data

than the Brownian motion.

Figure 4.1: QQ-plots

4.2.1 Anderson-Darling (AD) test Statistic

Table 4.2: Anderson-Darling statistics

AD

NIG 131.7

Normal 208.5

The AD-statistic value imply that the empirical cumulative function and the fitted cumulative

function in the NIG distribution are closer than for the Brownian motion.

4.3 Parameter estimation

After fitting the log-returns of carbon emission prices to NIG processes and Brownian mo-

tion by maximum likelihood estimation (MLE), the results were as follows:
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Table 4.3: Estimated parameters

µ σ β α

NIG 1.562073917 0.003563 -1.650997 12.358663

Normal -0.0952422 0.44958767

4.4 A comparison of the two model results

Suppose the strike price, K, is 20 Euros, 25 Euros or 30 Euros, T=4 (compliance phase),Γ0 =

5 , and r=0.05. The value of the call option using NIG model and Brownian motion are:

Table 4.4: Option values-NIG model

K k CT (k)

20 2.995732 1.2535

25 3.2188 1.06

30 3.4012 0.92

Table 4.5: Option values-Brownian model

K k CT (k)

20 2.995732 0.00806

25 3.2188 0.00682

30 3.4012 0.00595

The option prices, (price for unit carbon allowance), in the NIG model are higher than those

of the Brownian model with respect to the given strike prices. As the strike price increase,

the value of the option decreases in both models.
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4.5 Conclusion

The non-compliance event has been modeled using NIG distributions and Brownian motion.

Both models satisfy the condition that the allowance price is a random variable taking only

the values 0 and π (the penalty coast for non-compliance). The MLE estimated parameters

in the NIG model are α and σ , while for the Brownian model the estimated parameter is

σ . The NIG distribution suggests a better goodness of fit than the Brownian motion since

the AD-statistic for NIG levy process is smaller than for the Brownian motion. Inaddition

to that, the Brownian motion QQ-plot has more outliers than the NIG QQ-plot even though

the both QQ-plots have fat tails. Using the fast Fourier transform, NIG distribution gives

higher option prices than the Brownian motion. However, there is need for adequate data on

the options in order to make comparisons with our findings.

4.6 Limitations of the study

1. Carbon emission trading is not yet established in Kenya. Therefore the relevant data

cannot be found for the application of the model.

2. The price data for the most recent compliance phase could not be implemented be-

cause the phase will end in the year 2020.

3. There is no option quotes data for the final year of the compliance phase. It is therefore

not possible to make any comparisons with our findings.
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Appendix:

Appendix 1 :R codes used in Analysis

Carbon=read.csv(file.choose())

Carbon

price<-carbon$Price

price

plot(price, xlab="Figure 1.1: Carbon prices ")

plot(log_returns4, type="l", xlab="Figure 2.2: Log returns of carbon prices", ylab="Log

returns")

log_returns4<-diff(log(price), lag=364)

log_returns4

par(mfrow=c(1,2))

qqnig(log_returns4, mu = 0, delta = 1, alpha = 1, beta = 0 , xlab="Figure 1.3: NIG QQ

plot")

qqnorm(log_returns4, xlab="Figure 1.4: Normal QQ plot")

qqline(log_returns4)

y1<-dnig(log_returns4)

y1

ad.test(y1)

x1<-dnorm(log_returns4)

x1

ad.test(x1)

fit<-fitdist(price, "dnig", method="mle", start=NULL) fit

m<-fit.NIGuv(log_returns4, opt.pars=c(alpha.bar=T, mu=F, sigma=T))

m

gofstat(fit)

fitdistr(log_returns4, "Normal")
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