Show simple item record

dc.contributor.authorMaingi, Damian M.
dc.date.accessioned2013-05-07T10:51:43Z
dc.date.available2013-05-07T10:51:43Z
dc.date.issued2010
dc.identifier.citationInternational Journal of Algebra, Vol. 4, 2010, no. 10, 477 - 500en
dc.identifier.urihttp://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/19763
dc.description.abstractLet S be a general set of s points in P4, and R the homogeneous coordinate ring of P4. Then the ideal of S, IS has a minimal free resolution of the form: 0 −−−→ F3 −−−→ F2 −−−→ F1 −−−→ F0 −−−→ IS −−−→ 0 where Fp = R(−d − p)ap−1 R(−d − p − 1)bp , d being the smallest integer satifying s ≤ h0(P4,OP4 (d)) and ap = h0(TS ⊗ Ωp+1 P4 (d+ p + 1)), bp = h1(TS ⊗ Ωp+1 P4 (d + p + 1)) and d+3 4 < s ≤ d+4 4 , with 0 ≤ p ≤ 3 and when p = 0, we would have ap−1 = d+4 4 − s and when p = 3 then bp = s− d+3 4 . In this paper I prove that either a0 = 0 or b0 = 0 by proving maximal rank for the map: H0 ΩP4(d + 1) −→ s i=1 ΩP4(d + 1)|Si by use of the methods of Horace to prove bijectivity for a specific number of fibres and then maximal rank for a general set.en
dc.language.isoenen
dc.subjectMaximal rank,en
dc.subjectmethod of Horace,en
dc.subjectminimal resolutionen
dc.titleThe Application of the Method of Horace to Get Number of Generators for an Ideal of s General Points in P4en
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record