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Abstract

The task of looking for conditions under which two quasisimilar operators have equal spectra or

essential spectra is quite evident in the extant literature of operator theory. However the case

of equality of Weyl spectra for such operators is often overlooked. In this thesis we strive to

fill this gap by considering mainly the intersection of classes of operators namely; dominant and

biquasitriangular operators, ω-hyponormal and biquasitriangular operators and hypercyclic and

biquasitriangular operators and possibly their subclasses. Many classes of operators defined on

Hilbert spaces are defined by means of some inequalities. Which are obtained by relaxing the

condition of normality. In this thesis we consider some of the spectral properties of classes of

operators, and more precisely, our main interest concerns how Weyl spectrum of an operator

say A, of dominant operator, ω-hyponormal operator and hypercyclic operators behaves with

the structures of quasisimilarity. Together with properties of SVEP, Durnford‘s and Bishop‘s

and Biquasitriangularity structure gives a general framework from which we explored the Weyl

spectrum of the classes of operators above.
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Chapter 2

Introduction and Preliminaries

2.1 General background

The concept of a Hilbert space as shown by P.Halmos in [1967], generalizes the notion of n-

dimensional space in the sense of extending the methods of vector algebra and calculus from

the two-dimensional planes and three-dimensional spaces to infinite dimensional spaces Polyanin

[2008]. Recall that Hilbert spaces are distinguished among Banach spaces by being most closely

linked to plane (and space). Euclidean geometry seems to be a correct description of our universe

at many scales. But before the development of Hilbert spaces, other generalizations of Euclidean

spaces were known to mathematicians and physicists. One of them was realized towards the end

of the 19th century. The idea of a space whose elements can be added together and multiplied

by scalars known as an abstract linear space, were introduced in the first decade of the 20th

century. And the parallel developments led to the introduction of Hilbert spaces. P.Halmos

[1967] showed that an Hilbert space is an abstract vector space possessing the structure of an

inner product that allows length and angle to be measured. The spaces arise naturally and

frequently in mathematics and physics, typically as infinite-dimensional function spaces. The

significance of the concept of a Hilbert space offers one of the best mathematical formulations of
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quantum mechanics Lambert-Mogiliansky et al [2012], thus a basic mathematical object which

is required for the description of particles in quantum mechanics. Since the quantum mechanical

system are vectors in a Hilbert space Lambert-Mogiliansky et al [2012], with observables being

self adjoint operators, the symmetries of the system are unitary operators and measurement are

orthogonal projections. Hilbert through his study developed the spectral theorem and recognized

the important work of Fredholm and others on integral operators, and thought to strengthen their

work using L2 space. He generalized what was then called the principal axis theorem to infinite

dimensions and coined the term spectrum, which was later used to prove some version of the

spectral theorem for self-adjoint operators E.B.Davies [2005]. Hilbert through his work discovered

that the spectrum need not be discrete. The spectral theory broadly defined could be generalised

as trying to classify all the structures of bounded operators on a Hilbert space. Broadly, history

of spectral theory goes way back to the nineteenth century, when the objects of study used to

be infinite systems of linear equations and integral equations. The subject was revolutionized in

the late 1920‘s by Von Neumann, when he defined the notion of an abstract Hilbert space and

considered bounded linear operators on it. In this modern sense a successful spectral theory was

soon obtained by Riesz for all compact operators as a direct extension of the theory of finite

square matrices. Operators are commonly used to perform a specific mathematical operation

on another function. The operation can be to take the derivative or integrate with respect to a

particular term, or to multiply, divide, add or substract a number or term with regards to the

initial function. Operators are commonly used in physics, mathematics and chemistry, often to

simplify complicated equations such as the Hamiltonian operator used to solve the Schrodinger

equation in order to figure out the energy of a wave function. Also for two physical quantities

to be simultaneously observable in quantum mechanics (that is, energy and time for example),

their operator representations must commute. In 1909 a German mathematician, Hermann Weyl

introduced a new concept in operator theory and developed a known classical Weyl theorem, and
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proved that given two self adjoint operators A and B Moslehian [2012], then spectrum of A and

A + B, have same limit points with B being a compact operator. In 1910 Weyl proved that the

essential spectra of a self adjoint operator is invariant under compact perturbations showed in S.

Sunder [2010]. Also generalised that compact perturbation of an operator is in some sense small,

and concluded that Fredholm index is a topological quantity. In 1935 von Neumann produced

the converse that, if the spectra of self adjoint operators A and B have the same limit points,

then given a compact operator K, it is a known fact that A + K and B are unitarily equivalent

Mc Guire et al [1988]. The study of Weyl spectrum was revealed and realised to be relevant

for infinite dimensional Hilbert spaces. Intuitively, in finite dimensional Hilbert spaces all the

operators are Fredholm operators of index zero, and the spectrum in this case consist of the set

of eigenvalues, so the Weyl spectrum is empty, that is

σω(A) = φ. (2.1)

Hence the study of spectrum in general and Weyl‘s spectrum in particular is trivial in finite

dimensional Hilbert spaces. The Weyl operators occurs in the theory of Fredholm operators, and

has been singled out to be those Fredholm operators of zero index. The study of spectrum in

general simplifies when the operators are decomposed into their simple forms.

It has been discovered by several reseachers that to investigate the structures of arbitrary

operator in Hilbert spaces, we look into how the operator can be familiarised by decomposing

it into its simple versions; namely direct sum decomposition (orthogonal decomposition), polar

decomposition and other forms of decompositions, this is with respect to separable Hilbert spaces.

A separable Hilbert space has its invariant subspaces, these are H = H1 ⊕ H2 with H1 closed

subspace and H2 orthogonal complement subspace. In Furuta [2001] a subspace H1 of H is said

to be invariant under A ∈ B(H) if for every vector

{x ∈ H1 : Ax ∈ H1.}
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A subspace H1 of H is said to reduce A if H1 and H2 are both invariant under A with H2 being

orthogonal complement of H1. Without loss of generality, the operator A has a decomposition

given as follows,

A1 = A \ H1 and A2 = A \ H2 (2.2)

thus A has a direct sum decomposition as

A = A1 ⊕ A2. (2.3)

The so-called direct sum decomposition is one of many known kinds of decomposition, which is

largely motivated by the work of Nagy and Foias [1970]. Hence studying the properties of A is

relaxed into studying the properties of its direct summands of A1 and A2 whose structures are

now known to be less complicated than that of A . The study of the structures and properties

of an arbitrary operator on Hilbert spaces is essentialy equivalent to study its complementary

parts, its invariant and hyperinvariant lattices. In the literature many researchers have shown

some tramendeous work. For instant L.R. William [1980] showed that every operator say A is

always unitarily equivalent to direct sum A1 ⊕ A2 where in B.P.Duggal [2005] A1 is normal and

A2 is pure (completely non normal). Nagy and Foias in [1970] on their theory of contraction

operators, proved that a contraction operator is a direct sum of a unitary part and completely

non unitary part. In other words, in studying linear operators which are not normal, one of

the major steps has been that of finding methods of decomposing such operators into various

parts which are easier to handle. Finite dimensional Hilbert spaces suggest that two linear maps,

which are linked by formula

AUi = UiB (2.4)

for some invertible operator Ui mapping H1 to H2 share many similar properties, since Ui corre-

sponds to change of basis in Hi. This fail in general in infinite dimensional case, where no good
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theory of basis exist. Similarly, one can redefine this idea if

H1 = H2 = H (2.5)

by considering the operators A and B mapping H to H such that

AU = UB, (2.6)

that is,

A = U−1BU (2.7)

which defines the notion of similarity between operators A and B. indeed an infinite dimensional

Hilbert spaces seems not to generalised things as seen in the basic theory of the spectrum in

B(H). It is a known fact that direct sum decomposition splits a bounded linear operator into

its normal and pure parts (completely non normal part) B.P.Duggal [2005]. The other form of

decomposition which is majorly used in this study is the polar decomposition.

2.2 Research problem

With respect to what researchers have done, there are many notions of equivalence of Hilbert

spaces operators. The most important are unitary equivalence, similarity and its weaker version

of quasisimilarity, others are almost similarity and metric equivalence. But the first three are

most important in the thesis. And inspite of what has been researched on, few have studied the

quasisimilarity of operators in infinite dimensional Hilbert spaces with respect to Weyl spectrum.

Thus, in this thesis we study the Weyl spectra of operators under the quasisimilarity relation.
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2.3 Objectives

Overall objective

In this thesis we investigate the role played by quasisimilarity on the Weyl spectra of some classes

of operators.

Specific objectives

Unlike in finite dimensional Hilbert spaces where unitary equivalence, similarity and quasisimi-

larity implies same thing, in infinite dimensional Hilbert spaces similarity and quasisimilarity are

weaker versions of unitary equivalence. Almost all the equivalence relations have been shown to

preserve the spectral pictures ( that is spectrum, essential spectra and index function). Specif-

ically in this thesis we study effects of quasisimilarity to the Weyl spectrum of some classes of

operators as enumerated below;

1. Weyl spectrum and quasisimilarity of Dominant operators.

2. Weyl spectrum and quasisimilarity of ω-hyponormal operators.

3. Weyl spectrum and quasisimilarity of Hypercyclic operators.

2.4 Definitions, Notations and Terminologies

Definition 2.4.1. Given H and K as two Hilbert spaces, an isomorphism is a 1 − to − 1

correspondent that preserves the linear operator between linear spaces, and hence preserves the

algebraic structure (see Kubrusly [2011]).

Theorem 2.4.2. Every separable Hilbert space of infinite dimension is isomorphic to `2.
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Remark 2.4.3. Note that there exists {en}∞n=1, for x ∈ H, with xi = 〈xi, ei〉 and

U(x) = (x1, x2, x3, ......).

And by Parseval‘s identity, the series Σ∞
i=1 | xi |2 coverges, so the sequence (x1, x2, x3, ....) belongs

to `2.

Definition 2.4.4. Suppose a Hilbert space H with H1 being a closed subspace of H. The orthog-

onal complement subspace H2 of H1 is defined by

H2 = {v ∈ H : 〈v, u〉 = 0∀u ∈ H1}.

In this case any vector w ∈ H is expressed as w = u + v, where u ∈ H1 and v ∈ H2, so that

H = H1 ⊕ H2 (see Adamyan [2006]).

Definition 2.4.5. A transformation A : H −→ H is called a linear operator if A satisfies

A(u + v) = A(u) + A(v) (2.8)

and

A(λu) = λA(u). (2.9)

(see Furuta [2001]).

Definition 2.4.6. Given a Hilbert space H, let A be any operator acting on H, the adjoint of A

denoted by A∗ is defined by

〈Au, v〉 = 〈u,w〉 = 〈u,A∗v〉 (2.10)

for all u, v ∈ H (see Furuta [2001]).

Remark 2.4.7. The concept of operator implies linear and bounded.

Definition 2.4.8. Given a Hilbert space H, any operator say A acting on H is bounded from

below if for any c > 0 we have ‖ Au ‖≤ c ‖ u ‖ for all u ∈ H and c a scalar. With operator
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norm of A denoted by ‖ A ‖, is a number defined by ‖ A ‖= inf{c > 0 :‖ Au ‖≤ c ‖ u ‖} for all

u ∈ H (see Furuta [2001]).

Definition 2.4.9. Let A be any operator acting on a Hilbert space, then A is left invertible if

there exists an operator L ∈ B(H) with LA = I, and right invertible if there exists R ∈ B(H)

with AR = I.

Classes of Operators

Definition 2.4.10. An operator A ∈ B(H) is;

• self-adjoint if A∗ = A.

• a projection if A2 = A and A = A∗.

• normal if A∗A = AA∗.

• If A commutes with the normal operator, that is A(A∗A) = (A∗A)A then A is quasinormal

operator.

• hyponormal if (A∗A) ≥ (AA∗).

• p-hyponormal if (A∗A)p ≥ (AA∗)p, with 0 < p ≤ 1.

• quasihyponormal if A∗{A∗A − AA∗}A ≥ 0.

• p-quasihyponormal if A∗{(A∗A)p − (AA∗)p}A ≥ 0

• log-hypornormal if it is invertible and satisfies log(A∗A) ≥ log(AA∗).

• dominant if R(A − λI) ⊂ R(A − λI)∗, ∀λ ∈ C (see Kubrusly [2012]).

• M-hyponormal if for M > 0 ‖(A − λ)∗x‖ ≤ M‖(A − λ)x‖, ∀λ ∈ C.

• (p, k)-quasihyponormal if A∗k(| A |2p − | A∗ |2p)A ≥ 0, 0 < p ≤ 1, k ∈ N .
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Remark 2.4.11. A 1-hyponormal operator is hyponormal and a 1
2
-hyponormal operator is

said to be semi-hyponormal (see Duggal[2004]).

• is paranormal operator if ‖ Ax ‖2 ≤‖ A2x ‖, ∀x ∈ H.

• is unitary if A∗A = AA∗ = I where I the identity operator, and in this case we have

A∗ = A−1.

• is called an isometry if A∗A = I.

• is a partial isometry if A = AA∗A.

Remark 2.4.12. If a partial isometry is invertible, then it is unitary, and therefore its

spectrum is a subset of the unit circle.

Lemma 2.4.13. If A is a contraction (‖ A ‖≤ 1), then A has a canonical decomposition

A = Ao ⊕ A1 on H = Ho ⊕ H1 such that Ao on Ho is unitary and A1 on H1 is completely

non unitary (see Jeon [2004]).

Lemma 2.4.14. If A is a normal operator, then A and A∗ have the same kernel and range.

Consequently, the range of A is dense if and only if A is injective.

• Is said to be compact operator if it maps bounded sets to relatively compact sets.

• Is Fredholm operator if dimker(A) < ∞, dimker(A∗) < ∞ and R(A) is closed, where A∗

is the adjoint of A.

Remark 2.4.15. The index of Fredholm operator is a continuous real-valued function given

by ind(A) = dimker(A)− dimker(A∗).

Remark 2.4.16. A bounded operator A : H −→ K is Fredholm if and only if there exists

orthogonal decomposition H = H1 ⊕H2 and K = K1 ⊕K2 such that H1 and K1 are closed

subspaces and H2 and K2 are finite dimensional subspaces.
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• Is Weyl operators if it is Fredholm operator of index zero, that is, dimker(A) = dimker(A∗)

(see M.Berkani [2002]).

Definition 2.4.17. The ascent p and the descent q of A ∈ B(H) at λ ∈ C are the

extended integers given by p = inf{n ≥ 0 : N(A − λ)n = N(A − λ)n+1} and q = inf{n ≥

0 : R(A − λ)n = R(A − λ)n+1}, respectively. If the ascent and the descent of A at λ ∈ C

are both finite, then p = q.

• Is Browder if it is Fredholm of finite ascent and descent.

Remark 2.4.18. If A ∈ B(H) is Weyl operator, then A∗ is also Weyl operator where

A∗ is the adjoint operator. Also ind(A∗) = −ind(A), since Weyl operators are Fredholm

operators of index zero.

• Is semi-Fredholm if either kerA or kerA∗ is finite dimensional and ranA is closed (see

H.Weyl [1950]).

• Is quasitriangular if and only if for each complex number λ with A − λ semi-Fredholm,

i(A− λ) ≥ 0 (see X.Cao, [2006]).

• Is biquasitriangular if both A and A∗ are quasitriangular (see Tanahashi [1999]).

• Equivalent A ∈ (BQT ) if and only if σle(A) = σre(A) = σe(A) = σω(A).

Remark 2.4.19. The class of biquasitriangular operators is denoted by BQT .

• Is ω-hyponormal if | Ã| ≥| A |≥ |Ã|∗.

Remark 2.4.20. The classes of operator are related by, the following inclusions

Self − Adjoint ⊂ Normal ⊂ Quasinormal ⊂ Hyponormal ⊂ Paranormal.

Hyponormal ⊂ p−hyponormal ⊂ quasi−hyponormal ⊂ (p)−quasihyponormal ⊂ (p, k)−quasihyponormal.
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also

Unitary ⊂ Isometry ⊂ Partial − Isometry.

Also

Fredholm ⊂ Weyl ⊂ Browder.

Definition 2.4.21. If there exist a pair of subspaces H1 and H2, of H that are invariant under

A, with H = H1 ⊕ H2. then the restriction map A\H2 is quasinilpotent if H2 = H1 = H. Every

quasinilpotent operator is nilpotent if H2 is finite dimensional.

Definition 2.4.22. Two operators A and B on Hilbert space H are unitarily equivalent so long

as we can find unitary operator U such that A = U∗BU . On the other hand A and B are similar

whenever A = U−1BU for some invertible operator U .

Definition 2.4.23. X ∈ B(H) is a quasi-affinity(quasi-invertible) if X is injective and has

dense range ( see Duggal [2002]). If given A ∈ B(H), B ∈ B(K) with quasi-affinities X and Y

such that AX = XB and Y A = BY then A and B are said to be quasi-similar.

Remark 2.4.24. The invertible operators are vector space isomorphisms and the only properties

of A, which survive similarity conjugation are algebraic in nature, these are spectra, multiplicity

of eigenvalues and so on.

Examples of Weyl Operators

Example 2.4.25. All linear operators in a finite dimensional Hilbert spaces are Weyl operators

and identity operator in an infinite dimensional Hilbert spaces is also a Weyl operator.

Remark 2.4.26. Given a Fredholm operator F , then index of F is zero if and only if F = A+K

for some invertible operator A and compact operator K.

Corollary 2.4.27. Any Weyl operator W ∈ B(H) can be decomposed canonically as W = A+K

for some invertible and compact operators A and K respectively.
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Definition 2.4.28. A ∈ B(H) on a Hilbert space H is invertible if,

‖ Ax ‖≥ c ‖ x ‖

for any x ∈ H and R(A) is dense in H, that is R(A = H.

Definition 2.4.29. We say that A ∈ B(H) has the single valued extension property (SVEP) at

λ ∈ C if the following assertion is true: If D is an open neighborhood of λ and if f : D −→ H is

an H-valued analytic function such that (µ − A)f(µ) = 0, ∀µ ∈ D, then f is identically zero on

D. When A has SVEP at every λ ∈ C, we simply say that A has SVEP (see F.Kimura [2004]).

Definition 2.4.30. We say that A has Bishop property (property (β)) at λ ∈ C if the following

assertion is true: If D is an open neighborhood of λ and if fn : D −→ H (n = 1, 2, ...) are

H-valued analytic functions such that (µ − A)fn(µ) −→ 0 uniformly on every compact subset of

D (see F.Kimura [2004]).

Definition 2.4.31. We say that A has Dunford‘s property (C) if A has SVEP (see Duggal and

Kubrusly [2014]), and also for every closed subset F of the complex plane, and corresponding

local spectrum subspace HA(F ) = {x ∈ H;σ(A,x) ⊂ F} is closed (see Duggal [2002]).

Definition 2.4.32. A bounded operator A is pure if A has no non-trivial reducing subspace in

H with the restriction of A on the subspace is normal (see I.H.Jeon [2003]).

Definition 2.4.33. Let A ∈ B(H), then the set {x,Ax,A2x, ...., Anx, ..} is an orbit of x under

A. If some orbit is dense in H then A is a hypercyclic operator and x a hypercyclic vector of A,

( see Eungil Ko [2006]).

Definition 2.4.34. If A has a polar decomposition A = U | A | with U an isometry operator,

then the 1st Aluthge transform is defined by Ã=| A | 12 U | A | 12 , and then Ã∈ H is a p-hyponormal

with p = 1
2
, and defines semi-hyponormal operator (see Aluthge [1990]).
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Spectrum of an Operator

Definition 2.4.35. Let A ∈ B(H), then the set σ(A) = {λ ∈ C : A − λI is not invertible} is

called the spectrum of A, whereas, the complement of the spectrum of A is called the resolvent of

A.

Remark 2.4.36. The set σ(A) is a compact subset of the complex plane, whereas its complement

in an open subset of the complex plane.

Definition 2.4.37. Let A ∈ B(H), we say that Weyl‘s theorem holds for A if there is equality

σ(A)\σω(A) = π00(A). Where π00(A) is the set of isolated points of σ(A) which are eigenvalues

of finite multiplicity.

Definition 2.4.38. Let A ∈ B(H), then the set σp(A) = {λ ∈ C : Ax = λx for x 6= 0} is called

the point spectrum of A.

Definition 2.4.39. Let A ∈ B(H), then the set σap(A) = {λ ∈ C : A−λI is not bounded below}

is called the approximate point spectrum of A.

Definition 2.4.40. The set of λ ∈ C for which A−λI is injective but does not have dense range

is known as the residual spectrum or compression spectrum of A and is denoted by σr(A).

Definition 2.4.41. The set of all λ ∈ (C) for which A − λI is injective and has dense range,

but is not surjective is called continuous spectrum and is denoted by σc(A).

Remark 2.4.42. Under the classical spectral theory, we have σ(A) = σp(A) ∪ σc(A) ∪ σr(A),

where σp(A), σc(A) and σr(A)are mutually disjoint parts of σ(A). Thus they partition the σ(A).

Remark 2.4.43. The boundedness of the spectrum follows from the bound of ‖ A ‖, which also

shows the closedness of the spectrum. Thus, the spectrum of an unbounded operator is in general

a closed, possibly empty subset of the complex plane (See Djordjevic [2002]).
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Definition 2.4.44. Let A ∈ B(H),then the spectral radius of A is given by the set

r(A) = sup{| λ |: λ ∈ σ(A)}.

Definition 2.4.45. Let A ∈ B(H), the essential spectrum denoted by σe(A) is the set given by

σe(A) = {λ ∈ C : A − λI is not Fredholm}.

Definition 2.4.46. Let A ∈ B(H), the Weyl spectrum of A is the set defined by σω(A) = {λ ∈

C : (λI −A) is not Weyl}.

Definition 2.4.47. let A ∈ B(H), the upper semi-Fredholm spectrum of A is the set definen by

σSF+(A) = {λ ∈ C : (A− λI) is not upper semi-Fredholm}.

Definition 2.4.48. let A ∈ B(H), the lower semi-Fredholm spectrum of A is the set definen by

σSF−(A) = {λ ∈ C : (A− λI) is not lower semi-Fredholm}.

Definition 2.4.49. Let A ∈ B(H), the Browder spectrum is the set defined by σb(A) = {λ ∈ C :

A − λI is not Browder}.

Remark 2.4.50. Under the modern spectral theory we have σe(A) ⊆ σω(A) ⊆ σb(A) ⊆ σ(A).

Where σe(A), σω(A), σb(A) and σ(A) forms the nested type of set (see Oyoo and Khalagai [2016]).

Definition 2.4.51. The set SP (A) denote the spectral picture of A ∈ B(H) consisting of the

essential spectrum , hole in σe(A) which is a non empty bounded component of C \ σe(A) and a

pseudohole in σe(A) which is a non empty component of σe(A) \ σre(A) or of σe(A) \ σle(A).

Theorem 2.4.52. If A is a hypercyclic operator, then any operator in the uniformly closed,

unital algebra generated by A is quasitriangular (see V.Matache [1993]).

Definition 2.4.53. The set ∂σ(A) defines the boundary of spectrum of operator A.



Chapter 3

Literature review

The spectra of operators have been studied by several authors with respect to properties of

unitary equivalence, similarity and quasisimilarity. Similarly the essential spectra with relation

to the same properties has been captured by several authors as well. We note that equality of

spectra, essential spectra and Weyl spectra of similar operators is obvious but the spectra and

essential spectra results under the quasisimilarity relation depends on the individual operators.

And the Weyl spectra under quasisimilarity have been overlooked. The Weyl spectrum occurs in

the theory of perturbation by compact operators and has the property of being invariant under

perturbation. Coburn in [1996] used perturbation formula to define Weyl‘s spectrum, and proved

that σω(A) = {0} when A is compact and the space is infinite dimensional. Coburn extended a

classical result of Weyl for normal operators, to hyponormal operator, then showed that

σω(A) = σ(A)− π00(A)

where π00(A) denotes isolated points of σ(A) and represent the eigenvalues of finite multiplicity

(see Eungil Ko [2006]). It is a known fact that Weyl‘s theorem may or may not hold for direct

sum of operators for which Weyl‘s theorem holds (see Duggal [2005] and W.Y.Lee [2001]) have

15
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both shown that if A and B are isoloid satisfying Weyl‘s theorem, then Weyl‘s theorem holds for

A =




A 0

0 B


 ⇐⇒ ω




A 0

0 B


 = ω(A) ∪ ω(B).

Many researchers have studied the equality of spectrum and essential spectrum via quasi-similarities

of operators. Douglas [1969,1966] showed that quasi-similar normal operators are unitarily equiv-

alent, thus have equal spectra and essential spectra. Clary [1975] and I.H.Jeon [2008] proved that

quassisimilar hyponormal have equal spectra and asked if it has equal essential spectra. William

[1980] showed quasisimilar quasinormal operators and gave conditions under which quasisimilar

hyponormal operators have equal essential spectra, that is if A and B are both hyponormal,

partial isometry or are quasinormal. Gupta in [1985] and An-Hyun Kim [2006] showed that qua-

sisimilar k-quasihyponormal and biquasitriangular operators have equal essential spectra. Yang

[1993] proved that quasisimilar M-hyponormal operators have equal essential spectra. Zhang

[2006] studied the invertibility and spectra of MA0 where two operators A and B acting on

H ⊕ K as having a matrix representation

MA0 =




A A0

0 B




with A0 ∈ B(K,H)

Duggal [1996] showed that if Ai, i = 1, 2 are quasisimilar and Ui unitary in a representation

Ai = Ui | Ai | implies A1 and A2 have equal spectra and essential spectra, went further and

showed that if A ∈ HU(p), then σ(A)=σ(Ã) and σω(A)=σω(Ã) where HU(p) is the class of p-

hyponormal A with U,A = U | A |. Khalagai and Nyamai [1998], Fumihiko Kimura [2004] both

proved that quasi-similar M-hyponormal operators have equal spectra. I.H.Jeon [2008] proved

that quasisimilar p-hyponormal operators having equal spectra and essential spectra. I.H.Jeon

[2008] proved that quasisimilar ω-hyponormal operators have equal spectra and essential spectra.

Luketero et al [2015] and B.P.Duggal [1996] both showed equality of spectra and essential spectra
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for classes of operators that satisfy the Putnam-Fuglede property. Duggal and Kubrusly [2014]

in their paper of biquasitriangularity and derivations it was shown that A ∈ (BQT ) if and

only if σe(A) = σω(A). Rashid et al [2008] and I.H.Jeon [2008] proved that quasisimilar (p,k)-

quasihyponormal operators have the same Weyl spectra. Yang [1993] showed equality of spectra

and essential spectra of quasisimilar M -hyponormal operators. extended further and use the

result by Gupta [1985] who considered biquasitriangular and quasi-similar k-quasihyponormal

operators having equal essential spectra. Yingbin and Zikun [2000], Fumihiko Kimura [2004]

both showed that quasisimilar p-hyponormal having equal spectra, essential spectra. I.H. Kim

[1998] showed that quasisimilar (p,k)-quasihyponormal operators have equal spectra and also

equal essential spectra. Perez-Fernandez et al [2011] showed (as a corollary) that quasisimilar

p-hyponormal or log-hyponormal or injective p-quasihyponormal operators have same spectra

and essential spectra. I.H.Jeon et al [2004] proved that the normal parts of quasisimilar log-

hyponormal operators are unitarily equivalent, a log-hyponormal operator compactly quasisimilar

to an isometry is unitary, and a log-hyponormal spectral operator is normal. Apostol et al [1973]

and William [1980] extended and showed that for A and B biquasitriangular, then σe(A) = σe(B).

Duggal and Kubrusly [2014] showed that A ∈ BQT if and only if σe(A) has no holes and

pseudoholes, thus it is immediate from the definition that σe(A) = σω(A) for every A ∈ BQT .

Since BQT is the class of all biquasitriangular operators in B(H), let (BQT )qs be the set of all

operators A ∈ B(H) such that A is quasisimilar to some biquasitriangular operator (see Duggal

and Kubrusly [2014]). Thus by Nagy and Foias [1970], it was shown that the set (BQT )qs is a

properly superset of BQT , and the set (BQT )qs is at least norm dense in B(H), (which answers

the problem whether (BQT )qs = B(H)). Note that the hypothesis that the Hilbert space H is

separable, is the hypothesis which quarantees SVEP for A ∈ B(H) (see Duggal [2004]). The open

problem in operator theory known as the invariant subspace problem asserts that, any Hilbert

space operator acting on an infinite-dimensional, separable, complex Hilbert space operator has
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proper invariant subspaces in (Read C. [1988]), showed a negative answer to this problem in the

case of a Banach space operators. As for Hilbert space operators, this is also an open problem.

V.Matache [1993], proved that this problem had a negative answers if and only if there is some

hypercyclic operator A on the Hilbert space H, such that any nonzero x in H is a hypercyclic

vector of A. Hence interest in hypercyclic operators arises from the invariant subspace problem.

C. Kitai [1982], proved that hyponormal operators are not hypercyclic. Duggal in 1996 gave a

necessary and sufficient conditions for hypercyclic Banach spaces operator to satisfy a-Weyl‘s

theorem. V.Matache in [1993], proved that if A ∈ B(H) is hypercyclic and σ(A) has no interior

point, then A is biquasitriangular.

3.1 Knowledge Gap

From the extant literature it is clear that researchers have done almost exhaustively on essential

spectra and spectra of operators under quasisimilarity, but very little on Weyl spectrum. And

due to the fact that Weyl spectra under quasisimilarity have been overlooked, in this thesis

we explore the Weyl spectra of Dominant, ω-hyponormal and hypercyclic operators under the

quasisimilarity.



Chapter 4

Weyl Spectrum and quasisimilarity of

dominant operators

4.1 Introduction

It is a known fact that every operator A ∈ B(H) can be decomposed directly as A = A1 ⊕ A2

(with respect to decomposition H = H1 ⊕ H2) (see Duggal [1996]). In this chapter we look for

conditions under which two quasisimilar operators have same Weyl spectrum. We do this by

mainly intersecting quasisimilar dominant operators and biquasitriangularity. Recall X ∈ B(H)

is a quasi-affinity when X is both one-to-one and has dense range (see S.Clary [1975]). If given

quasi-affinities X and Y with

AX = XB

and

BY = Y A,

then A and B are said to be quasisimilar. It is well known in operator theory that two similar

operators have same spectrum and essential spectrum (see S.Clary [1975] and William [1980]).

19
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However, in the case of quasi-similarity it is not necessarily true.

Remark 4.1.1. We note that from the flow of the extant literature above, authors are hardly

considering equality of Weyl spectrum for quasisimilar operators. In this chapter we attempt to

bridge this gap by mainly considering intersection of dominant and biquasitriangular operators.

Remark 4.1.2. Recall that A ∈ B(H) is said to be dominant if for each λ ∈ C there exists a

positive number Mλ such that

(A − λ)(A − λ)∗ ≤ Mλ(A − λ)∗(A− λ)(seeWilliam[1980]). (4.1)

If constant Mλ are bounded by a positive number M , that is Mλ < M , then A is said to be

M-hyponormal (see Khalagai and Nyamai [1998]).

We have the following set inclusions among the classes of operators mentioned above.

{Normal} ⊂ {hyponormal} ⊂ {M − Hyponormal} ⊂ {Dominant}

and

{Normal} ⊂ {biquasitriangular}.

From Mecheri, Salah [2016] it is a known fact that an operator A need not be hyponormal even

though A and A∗ are both M -hyponormal and from [Douglas [1966], Theorem 1] it is clear that

every hyponormal operator is dominant. We require the following sequence of theorems;

Theorem 4.1.3. L.R.William[1980]. Let A and B be dominant operators having Durnford‘s

property (C) and are also quasisimilar with one of the intertwining quasi-affinities compact.

Then σe(A) = σe(B) and σ(A) = σ(B).

Theorem 4.1.4. B.P.Duggal[2014]. Let A ∈ B(H). Then A ∈ BQT if and only if σSF+(A) =

σSF−(A) = σe(A) = σω(A).
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Theorem 4.1.5. L.R.William[1980]. If A is a dominant operator, then A is biquasitriangular

if and only if σ(A) = σap(A).

Theorem 4.1.6. L.R.William[1980]. Given A and B as quasisimilar pure dominant operators

with one of the intertwining quasi-invertibles compact. Then we have σe(A) = σ(A) and σe(B) =

σ(B).

Remark 4.1.7. We note that in Theorem 3.2.4 above the equality σe(A) = σω(A) or σω(A) =

σ(A) follows trivially since σe(A) ⊂ σω(A) ⊂ σ(A). In our results we strive to look at cases

where equality involving Weyl spectrum is explicit.

From the above sequence of theorems we obtain following results;

4.2 Main Results

Theorem 4.2.1. Maina and Khalagai[2016]. Let A,B ∈ B(H) be quasisimilar dominant oper-

ators, which are biquasitriangular and satisfying Dunford‘s property (C) with one of the inter-

twining quasiaffinities compact. Then σe(A) = σe(B), σω(A) = σω(B) and σ(A) = σ(B).

Proof. Since A and B are biquasitriangular, implies σe(A) = σω(A) and σe(B) = σω(B) (see

B.P.Duggal [2005]). But A and B are dominant operators which satisfy Durnfod‘s property (C).

Hence by Theorem 3.2.1, we have σe(A) = σe(B) and σ(A) = σ(B), (see B.P.Duggal [2011]), thus

σe(A) = σω(A) = σe(B) = σω(B), that is σω(A) = σω(B). Hence σe(A) = σe(B), σω(A) = σω(B)

and σ(A) = σ(B).

Corollary 4.2.2. Maina and Khalagai[2016]. Let A,B ∈ B(H) be quasisimilar dominant and

biquasitriangular operators, such that AB and BA are also quasisimilar dominant and biquasi-

triangular operators satisfying Durnford‘s property (C), if A and B are quasiaffinities with one

of them compact, then we have σe(AB) = σe(BA), σω(AB) = σω(BA) and σ(AB) = σ(BA).
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Proof. It can easily be verified that in this case AB and BA are quasisimilar, since (AB)A =

A(BA) and (BA)B = B(AB). Hence the result follows from the Theorem 3.2.6.

Remark 4.2.3. From B.P.Duggal [1996], note that if the operators A and B are restricted to

the class of M-hyponormal, then in Theorem 3.2.1 we can drop the Dunford‘s property (C) as

the following corollary shows.

Corollary 4.2.4. Maina and Khalagai[2016]. Let A,B ∈ B(H) be quasisimilar M-hyponormal

and biquasitriangular operators. Then we have σω(A) = σω(B).

Proof. Since A and B are quasisimilar M-hyponormal operators, we have by the result of (William

[1980]) that σe(A) = σe(B). But A and B are biquasitriangular implies σe(A) = σω(A) and

σe(B) = σω(B) by Theorem 3.2.2. Thus σω(A) = σe(A) = σω(B) = σe(B).

Corollary 4.2.5. Maina and Khalagai[2016]. Given A,B ∈ B(H) a quasi-invertibles with AB

and BA as M-hyponormal and biquasitriangular operators. Then we have σω(AB) = σω(BA).

Proof. In this case AB and BA are quasisimilar and result follows from Colollary 3.2.7.

Remark 4.2.6. Note that for an operator A ∈ B(H) it has been said that A is consistent in

invertibility (with respect to multiplication) or briefly that A is CI operator if for each B ∈ B(H)

AB and BA are invertible or non invertible together. Thus A is CI operator implies σ(AB) =

σ(BA). It is clearly shown that if A ∈ B(H) is quasiinvertible (quasiaffinity), then A is a CI

operator (see Luketero et al[2015]). In view of this result we have the following theorem;

Theorem 4.2.7. Maina and Khalagai[2016]. Given A ∈ B(H) a quasiinvertible and B ∈ B(H)

is such that AB and BA are quasisimilar M-hyponormal operators, then σ(AB) = σ(BA) and

σe(AB) = σe(BA).

Proof. Since A CI operator (see Luketero et al[2015]), it follows that for any B ∈ B(H), σ(AB) =

σ(BA) (see B.P.Duggal[2005]). The fact that σe(AB) = σe(BA) follows from result by (Luketero

et al[2015]).
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Corollary 4.2.8. Maina and Khalagai[2016]. Given A ∈ B(H) a quasiaffinity, B ∈ B(H)

be such that AB and BA are both M-hyponormal and biquasitriangular quasisimilar operators.

Then we have σ(AB) = σ(BA), σe(AB) = σe(BA) and σω(AB) = σω(BA).

Proof. We note that σ(AB) = σ(BA) follows from the fact that A is quasiaffinity and hence CI

operator, while σe(AB) = σe(BA) follows from result by (Luketero et al [2015]), and σω(AB) =

σω(BA) follows from the fact that AB and BA are biquasitriangular.

Remark 4.2.9. Duggal and Kubrusly [2014] proved the following result which shows that BQT

operators are invariant under similarity.

Theorem 4.2.10. Duggal and Kubrusly [2014]. Given A, B and S such that A ∈ BQT , S is

invertible and AS = SB. Then B ∈ BQT .

The following result attempts to extend Theorem 3.2.15 to the property of quasisimilarity.

Theorem 4.2.11. Maina and Khalagai[2016]. Let A and B be dominant operators which are

quasisimilar with one of the intertwining quasi-invertibles compact and satisfy Dunford‘s condi-

tion (C). If A ∈ BQT then σa(B) = σa(A).

Proof. In view of Theorem 3.2.1 we have σ(A) = σ(B). Now by Theorem 3.2.3 we have that

σ(A) = σa(A), but A and B are dominant quasisimilar and satisfy Dunford‘s property (C) implies

σe(A) = σe(B), σ(A) = σ(B) B.P.Duggal [2011], thus σ(A) = σa(A) and σ(B) = σa(B), that is

σa(B) = σa(A), since A and B are quasisimilar.

Corollary 4.2.12. Maina and Khalagai[2016]. Let A,B ∈ B(H) be quasiaffinities with one of

them compact. If AB and BA are dominant operators satisfying Dunford‘s condition (C), then

we have that AB ∈ BQT implies σa(BA) ⊂ σa(AB).

Proof. In this case AB and BA are quasisimilar since (AB)A = A(BA) and (BA)B = B(AB).

Hence the result follows from Theorem 3.2.16.
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Remark 4.2.13. Theorem 3.2.10 we do not know whether the condition σa(B) ⊂ σa(A) for

A ∈ BQT would imply B ∈ BQT . If the answer to this question is affirmative then we can

assert that the class of biquasitriangular intersection dominant operators which satisfy Durnford‘s

condition (C) is invariant under quasisimilarity. Consequently this would generalise Theorem

3.2.10.



Chapter 5

Weyl Spectrum and quasisimilarity of

ω-Hyponormal operators

5.1 Introduction

In this chapter our task is to look at the classes of ω-hyponormal operators, by investigating

the conditions under which two quasisimilar ω-hyponormal operators say A and B have equal

Weyl spectrum. It is a known fact (see Aluthge and Wang[2000]), that every A ∈ B(H) has

decomposition A = A1⊕A2, and every A ∈ B(H) has a decomposition given by A = U | A |, with

U partial isometry and | A |= (A∗A)
1
2 (see Aluthge and Wang [2000]). Thus every ω-hyponormal

A has a direct sum decomposition [20], given by A = A1 ⊕ A2, where A1 is also ω-hyponormal

operator (see Rashid et al [2008]).

Remark 5.1.1. Note that from the flow of the extant literature, authors are hardly considering

equality of Weyl spectrum for quasisimilar operators. In this chapter we attempt to bridge this

gap by mainly considering ω-hyponormal operators and possible subclasses.

Remark 5.1.2. Note that in Duggal [1996], if A is a p-quasihyponormal with dense range, then

25
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A is p-hyponormal, so p-hyponormal operators is p-quasihyponormal. Also if A has a polar

decomposition A = U | A |, with U a partial isometry, then Ã=| A | 12 U | A | 12 , with Ã∈

H(p + 1
2
), which defines semi-hyponormality (see Aluthge [1990]). And if we define the 2nd

Aluthge transforms of A, then we obtain hyponormal operator. In (Aluthge [1990]), the 1st

Aluthge transform denoted by operator Ã is defined Ã= | A | 12 U | A | 12 . Also recall that A is

ω-hyponormal if | Ã| ≥| A |≥ |Ã|∗.

We have the following set inclusions among the classes of operators under consideration.

Normal ⊂ Hyponormal ⊂ log − hyponormal ⊂ ω − hyponormal,

Normal ⊂ hyponormal ⊂ p − hyponormal ⊂ p − quasihyponormal ⊂ ω − hyponormal

and

Normal ⊂ Biquasitriangular

5.2 Log-hyponormal operators

Recall A ∈ B(H) is log-hyponormal implies A is invertible and satisfies the following inequality

log(A∗A) ≥ log(AA∗).

This section investigate conditions under which two quasisimilar log-hyponormal operators have

equal Weyl spectrum.

Remark 5.2.1. Note that every decomposable operator on H is biquasitriangular (see Funza

[1971]). Also note that if A is a log-hyponormal operator, then the 1st Aluthge transformation is

semi-hyponormal and 2nd Aluthge transform is hyponormal (see Aluthge [1990] and Tanahashi

[1999]).

In order to develope the main result, we first require the following sequence of results.



5.2. LOG-HYPONORMAL OPERATORS 27

Theorem 5.2.2. I.H.Jeon[2008]. Let A ∈ B(H) be log-hyponormal. Then A = A1 ⊕ A2 on

H = H1 ⊕ H2 where A1 is normal and A2 is pure and log-hyponormal.

Theorem 5.2.3. B.P.Duggal[2002]. If A is a log-hyponormal operator, then σ∗(A) = σ∗(Ã).

Where σ∗ denotes the σ(A), σp(A), σap(A), σe(A) or σω(A).

Theorem 5.2.4. B.P.Duggal[2002]. Let A be log-hyponormal, then Weyl‘s theorem holds for A;

that is

σω(A) = σ(A)− π00(A)

. Where π00(A) is the set of isolated eigenvalues of finite multiplicity.

Theorem 5.2.5. S.Jung[2011]. If log-hyponormal operators A and B are quasisimilar, then

σ(A) = σ(B),

σe(A) = σe(B)

.

In this direction we now prove the following results.

Theorem 5.2.6. Maina and Khalagai[2016]. Let A,B ∈ B(H) be quasisimilar log-hyponormal

operators which are also biquasitriangular, then σe(A) = σe(B), σω(A) = σω(B) and σ(A) =

σ(B).

Proof. Since A and B are log-hyponormal, their polar decomposition are A = U | A | and

B = V | B |, let Ã and B̃ be the 1st Aluthge transforms of A and B. Since A and B are

quasisimilar and from Theorem 4.2.3 σ(A)=σ(Ã), σe(A)=σe(Ã) and σω(A)=σω(Ã). Similarly

σ(B)=σ(B̃), σe(B)=σe(B̃) and σω(B)=σω(B̃) (see Yingbin and Zikun [2000]), but quasisimilar

log-hyponormal have equal spectra and essential spectra by Theorem 4.1.6, also A and B being

biquasitriangular implies σe(A) = σω(A) and σe(B) = σω(B) (see A.H.Kim [2006]). Hence
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we have the result follows from the inclusion σe(A) ⊆ σω(A) ⊆ σ(A) for A ∈ B(H), thus

σe(A) = σe(B), σω(A) = σω(B) and σ(A) = σ(B).

Lemma 5.2.7. Maina and Khalagai[2016]. Given A and B as quasisimilar log-hyponormal

operators and biquasitriangular with Ā and B̄ also biquasitriangular then, σω(Ã)=σω(B̃).

Proof. Since A and B are quasisimilar and log-hyponormal implies their 1st Aluthge transforms

are semi-hyponormal. But it is a known fact from the literature review that quasisimilar p-

hyponormal operators have equal spectra and essential spectra, also since Ã and B̃ are biquasi-

triangular, the result follows from Theorem 4.2.6.

Corollary 5.2.8. Maina and Khalagai[2016]. Given A,B ∈ B(H) with AB and BA as log-

hyponormal and biquasitriangular operators, if A and B are quasiaffinities with one of them

compact, then we have σe(AB) = σe(BA), σω(AB) = σω(BA) and σ(AB) = σ(BA)

Proof. It can easily be verified that in this case AB and BA are quasisimilar since (AB)A =

A(BA) and (BA)B = B(AB), then the result follows from Theorem 4.2.6, that is σe(AB) =

σe(BA), σω(AB) = σω(BA) and σ(AB) = σ(BA).

5.3 ω-hyponormal operators

Ahmed B.et al [2016] proved that if A is p-hyponormal and its Aluthge transform Ã=| A | 12

U | A | 12 is normal, then A is normal and A=Ã. In (Duggal [2005]) it was proved that if A is

ω-hyponormal, ker(A) ⊂ ker(A∗) and its Aluthge transform Ã is normal, then A is normal and

A=Ã. To construct our result we first consider the following results:

Theorem 5.3.1. M.Putinar[1992]. Let A be invertible ω-hyponormal and completely non-normal

operator. Then the point spectrum of A is empty.

Theorem 5.3.2. M.Putinar[1992]. If A is ω-hyponormal operator, then σω(A) = σ(A)−π00(A).
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Lemma 5.3.3. Aluthge and Wang[2000]. For any operator A, σ(A)=σ(Ã)=σ(˜Ã).

Theorem 5.3.4. C.Muneo[2005]. Let A,B ∈ B(H) be injective ω-hyponormal operators, if A

and B are quasisimilar, then they have same spectra and essential spectra.

Theorem 5.3.5. F.Kimura[2004]. If Ai ∈ B(Hi), (i = 1, 2) are quasi-similar ω-hyponormal

operators, then σ(A1) = σ(A2) and σe(A1) = σe(A2).

Theorem 5.3.6. M.Putinar[1992]. Given A∗ as p-hyponormal, B as ω-hyponormal and XA =

BX for X ∈ B(H) quasi-affinity, then XA∗ = B∗X.

Theorem 5.3.7. M.Putinar[1992]. Let A be ω-hyponormal and N normal operator. If X ∈

B(H) has dense range with AX = AN , then A is also a normal operator.

Corollary 5.3.8. Let A as ω-hyponormal operator with kerA ⊂ kerA∗ and B ∈ B(H) be a

normal operator. If AX = XB where X is a quasi-affinity, then A and B are unitarily equivalent

normal operators.

From the immediate results, we now prove the following results.

5.3.1 Main Results

Theorem 5.3.9. Maina and Khalagai[2016]. Let A∗ be p-hyponormal, B ∈ B(H) be ω-hyponormal,

where A and B are quasiaffinities. If XA = BX for X ∈ B(H) a quasiaffinity, then A and B

are unitarily equivalent normal operators. Consequently σ(A) = σ(B), σe(A) = σe(B) and

σω(A) = σω(B).

Proof. Since XA = BX we have by Theorem 4.3.6 that XA∗ = B∗X, thus XA = BX and

XA∗ = B∗X ..........(1). Now by associativity property of operators we have

B(XA) = (BX)A.
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Let Y = XA = BX. Then Y is a quasiaffinity and we have

Y A = BY.

Now by Theorem 4.3.6 again Y A∗ = B∗Y .......(2). By (2) we have

BXA∗ = B∗XA.

By (1) we have B∗XA = B∗BX and BXA∗ = BB∗X. Since B∗XA = BXA∗ we have

BB∗X = B∗BX,

that is

(BB∗ − B∗B)X = 0

and BB∗ = B∗B since X is a quasiaffinity. Similarly, by (1) we have XAA∗ = BXA∗ and

XA∗A = B∗XA, that is,

XAA∗ = XA∗A,

implies

X(AA∗ − A∗A) = 0

thus AA∗ = A∗A so that A and B are normal operators. Now taking adjoint on XA∗ = B∗X

gives AX∗ = X∗B. Thus XA = BX and AX∗ = X∗B where X is quasiaffinity implies A and

B are quasisimilar normal operators by Corollary 4.3.8, A and B are unitarily equivalent and

σω(A) = σω(B),σe(A) = σe(B) and σ(A) = σ(B).

Corollary 5.3.10. Maina and Khalagai[2016]. Given A∗ p-hyponormal and B ω-hyponormal

with A, B quasi-affinities. Then AB and BA are unitarily equivalent operators. Consequently

σ(AB) = σ(BA), σe(AB) = σe(BA) and σω(AB) = σω(BA).

Proof. It can be easily verified that in this case AB and BA are quasisimilar, since (AB)A =

A(BA) and (BA)B = B(AB), and the result follows from theorem above, that is σ(AB) =

σ(BA), σe(AB) = σe(BA) and σω(AB) = σω(BA).
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Lemma 5.3.11. Maina and Khalagai[2016]. Given A ∈ B(H) a ω-hyponormal operator with

σ(A) = σ(Ã). Then, σω(A) = σω(Ã).

Proof. Since A is ω-hyponormal operator, then by (Aluthge and Wang [2000]), Ã is semi-

hyponormal, thus σω(Ã)=σ(Ã)-π00(Ã). Now by (Duggal and Kubrusly [2014]) σ(A) = σ(Ã).

Thus, σω(A) = σ(A)− π00(A) = σ(Ã)-π00(Ã)=σω(Ã). That is, σω(A) = σω(Ã) and result follows

immediately.

Theorem 5.3.12. Maina and Khalagai[2016]. Given A,B ∈ B(H) as quasisimilar ω-hyponormal

and biquasitriangular operators, we have σe(A) = σe(B), σω(A) = σω(B) and σ(A) = σ(B).

Proof. Since A and B are quasisimilar ω-hyponormal, we have σe(A) = σe(B) and σ(A) = σ(B)

(see An-Hyun Kim [2006]). But A and B are biquasitriangular implies σe(A) = σω(A) and

σe(B) = σω(B) (see Duggal and Kubrusly [2014]). Always σe(A) ⊂ σω(A) ⊂ σ(A) and σe(B) ⊂

σω(B) ⊂ σ(B) for any bounded operators A and B (see Duggal [2011]). From the above fact the

result follows immediately.

Remark 5.3.13. Note any A ∈ B(H) we say that A is consistent in invertibility (with respect

to multiplication) if for any B ∈ B(H) AB and BA are invertible or non invertible together.

Thus A is completely invertible operator implies σ(AB) = σ(BA). By (Luketero et al[2015]) if

A ∈ B(H) is quasiinvertible (quasiaffinity), then A is CI operator.

In this direction we have the following result.

Theorem 5.3.14. Maina and Khalagai[2016]. Let A,B ∈ B(H) be ω-hyponormal and biqua-

sitriangular operators such that AB and BA are quasi-affinities, with one of the quasi-affinity

compact Then we have σ(AB) = σ(BA), σe(AB) = σe(BA) and σω(AB) = σω(BA).

Proof. Using the fact from Luketero et al [2015], it follows that A,B ∈ B(H), σ(AB) = σ(BA)

(see Muneo Cho [2005]). The fact that σe(AB) = σe(BA) follows from Luketero et al[2015] and

σω(AB) = σω(BA) follows from the biquasitriangularity property.



32CHAPTER 5. WEYL SPECTRUM AND QUASISIMILARITYOF ω-HYPONORMAL OPERATORS

F.Kimura [2004] showed that any operator A ∈ B(H) has property (β) if Ã has Bishop‘s

property (β). Thus we obtain the following result;

Corollary 5.3.15. Maina and Khalagai[2016]. Given A,B ∈ B(H) quasisimilar ω-hyponormal

operators with A and B satisfying Bishop‘s property (β), and σe(Ã)=σe(B̃). Then, σω(Ã)=σω(B̃).

Proof. First recall for operator A,B ∈ B(H) implies σ(Ã)=σ(A) and σ(B̃)=σ(B) (see Springer

proceedings in mathematics [2015]). But A and B are ω-hyponormal and satisfy property (β) im-

plies Ã and B̃ also satisfies property (β) (see B.P.Duggal [2011]). But Ã and B̃ are p-hyponormal

operators (see An-Hyun Kim [2006]) and quasisimilar. With the above facts the result follows

immediately and, σe(Ã)=σe(B̃) and σω(Ã)=σω(B̃).

The restriction of a ω-hyponormal to its reducing subspace is also ω-hyponormal operator by

(Rashid [2014]). We have seen that if A is ω-hyponormal then, it is of the form A = A1 ⊕ λI on

H = ker(A− λI) ⊕ ker(A− λI)⊥,

where A1 is ω-hyponormal operator with ker(A1 − λI) = 0 (see Rashid [2015]).



Chapter 6

Weyl Spectrum and quasisimilarity of

hypercyclic Operators

6.1 Introduction

Halmos [1967] observed that the first proof of the existence of invariant subspaces for compact

operators used the fact that such operators are very close to actually having an upper triangular

matrix in some orthonormal basis. Thus introduced the concept of quasitriangular operator.

This is simply an operator which can be written as an arbitrary small compact perturbation of

an upper triangular matrix. So if A is reduced by subspaces of H then H can also be decomposed

directly as

H = H1 ⊕H2

and relative to this A can have a matrix decomposition given by

A =




A \ H1 A0

0 A2




for operator

A0 : H2 −→ H1 (6.1)
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and

A2 : H2 −→ H2 (6.2)

where A \ H1 is the restriction of A to H1. Conversely, if an operator A can be written as the

triangulation

A =




A1 A0

0 A2




in terms of the decomposition

H = H1 ⊕ H2,

then

A1 = A \ H1 : H1 −→ H1.

It follows that A0 = 0 if and only if H1 reduces A. This result is found in (W.Lee[2001]). Thus

the direct summands of an operator A, are just the restrictions of A to reducing subspaces.

Recall that given x ∈ H and A operator on H. The set {x,Ax,A2x, ...., Anx, ..} is the orbit of

x under A (seeEungil Ko [2006]). If some orbit is dense in H then A is hypercyclic operator

and x a hypecyclic vector of A (see Eungil Ko [2006]). Recall that SP (A) denotes the spectral

picture of A ∈ B(H) consisting of the essential spectrum , hole in σe(A) which is a non empty

bounded component of C \σe(A) and a pseudohole in σe(A) which is a non empty component of

σe(A) \ σle(A) or of σe(A) \ σre(A). Recall that in our literature review we have already stated

that Duggal and Kubrusly [23] showed that A ∈ BQT if and only if σe(A) has no holes and

pseudoholes. Also (William [1980]) showed that for A and B biquasitriangular operators implies

σe(A) = σe(B).

Theorem 6.1.1. S.Mecheri[2016] If A is not biquasitriangular then, either A or A∗ has an

eiqenvalue.

Theorem 6.1.2. S.Mecheri[2016]. Suppose that A ∈ L(H) and SP (A) contains no holes or

pseudohole associated with a negative number, then A is quasitriangular.
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Theorem 6.1.3. B.P.Duggal[2014]. Let A ∈ B(H) with adjoint A∗, if both A and A∗ have the

SVEP, then A is biquasitriangular.

Theorem 6.1.4. [Cui, J. 2007]. Let A ∈ B(H). Then the following statements are equivalent:

A ∈ (BQT )

and

A = A0 ⊕ K,

where K is compact and A0 is quasisimilar to a normal operator.

Remark 6.1.5. It is clear from (Foias et al [1976]), that property of being biquasitriangular is not

preserved under quasisimilarity by giving several examples, though there exists a biquasitriangular

operator that is quasisimilar to non-quasitriangular operator. If we let θu(A) = {UAU∗ : U is

unitary in B(H)} where the norm closure of θu(A) is given by ¯θu(A).

Theorem 6.1.6. C.Apostol[1973] Let A be an operator in B(H), then there exist operators B ∈

BQT and A′ in ¯θu(A) (equivalently,A in ¯θu(A)) with A′ quasisimilar to B and σ(A) = σ(B)

and σe(A) = σω(B).

We note that in Theorem 5.1.6 the equality σe(A) = σω(A) = σ(A), follows trivially since

σe(A) ⊆ σω(A) ⊆ σ(A). In our results we try to look at cases where equality involving Weyl

spectrum is explicit.

6.1.1 Results

Theorem 6.1.7. Let A ∈ (BQT ) and B ∈ (BQT )qs, with A and B satisfying either Durnford‘s

property (C) or property β, with σe(A) = σe(B) by [0]. Then σω(A) = σω(B) and σ(A) = σ(B).

Proof. Since A is biquasitriangular, then

σe(A) = σω(A) (6.3)
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and B being quasisimilar to some biquasitriangular operators implies that B is in ¯θu(B) (see

Duggal [1996]), thus A and B are quasisimilar and

σe(A) = σω(B)andσ(A) = σ(B) (6.4)

Thus A and B are quasisimilar and satisfy either Durnfod‘s property or property (β). Indeed

σe(A) = σe(B)andσ(A) = σ(B). (6.5)

Thus from equations 5.3, 5.4 and 5.5 and the fact that σe(A) ⊆ σω(A) ⊆ σ(A) for any A ∈ B(H)

indeed σω(A) = σω(B). Since σe(A) = σe(B) (see B.P.Duggal [2005]), then σω(A) = σω(B) and

σ(A) = σ(B).

A normal operator is known to satisfy the SVEP, which is a useful property in the theory

of spectral decomposition. Thus for any A ∈ B(H) with adjoint A∗, if both A and A∗ have

the SVEP, then A is biquasitriangular. It follows that every decomposable operator on Hilbert

space is biquasitriangular, since decomposable operators and their adjoints have the SVEP (see

C.Apostol [1973]). It is well known (see Duggal and Kubrusly [2014]) that the operator A =

A1 ⊕ A2 ∈ B(H1 ⊕ H2). Thus we have the following;

Corollary 6.1.8. Let A,B ∈ (BQT ), with A = A1 ⊕ A2 and B = B1 ⊕ B2 quasisimilar and

satisfying Durnford‘s property and property (β), then

σω(A1) = σω(B1).

Proof. From (S.Funza [1971]) we have that every decomposable operator on H is biquasitriangu-

lar, thus A = A1 ⊕A2 and B = B1 ⊕B2, where A1 and B1 are quasisimilar to normal operators.

Thus A1 and B1 both have the SVEP and so are biquasitriangular. Implies both A1 and B1 are

biquasitriangular normal operators and quasisimilar normal operators have equal spectra and

essential spectra (see An-Hyun Kim [2006]), implying that σe(A1) = σe(B1) and σ(A1) = σ(B1).
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But a normal operator A ∈ B(H) is biquasitriangular if and only if σ(A) = σap(A), for any

A ∈ B(H), and biquasitriangularity implies σe(A) = σω(B). Indeed the result follows from the

inclusion σe(A) ⊂ σω(A) ⊂ σ(A), that is

σω(A1) = σω(B1).

Remark 6.1.9. We note that (Duggal and Kubrusly [2014]) were able to show that the class of

biquasitriangular operators is stable under similarities and under perturbation by compact oper-

ators. This result has a natural extension to being invariant under perturbations by commuting

(compact) operators (see Duggal [2011]). This lead to the following result

Corollary 6.1.10. Given A,B ∈ B(H) with AB and BA are biquasitriangular operators satis-

fying Dunford‘s property (C), if A and B are quasiaffinities with one of them compact, then we

have σe(AB) = σe(BA), σω(AB) = σω(BA) and σ(AB) = σ(BA)

Proof. It can easily be verified that in this case AB and BA are quasisimilar and since they are

biquasitriangular we have σe(AB) = σω(AB), since (AB)A = A(BA) and (BA)B = B(AB) and

satisfy property (C), we have σe(AB) = σe(BA). Hence the result follows from the Theorem

5.1.6.

6.2 On hypercyclic operator

Here we intend to investigate the conditions under which quasisimilar hypercyclic operators have

equal Weyl spectrum.

Remark 6.2.1. Note that in restricting operators A and B to the class of hypercyclic and bi-

quasitriangular operators, then in Corollary 5.1.10 we can drop the Durnford‘s property (C) or
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Bishop‘s property (β). Also we note that (V.Matache [1993]) gave various theorems related to

the class of hypercyclic and biquasitriangular operators as given below;

Theorem 6.2.2. V.Matache[1993]. If A is a hypercyclic operator, such that there exist non

constant polynomial p, B = p(A) then B is quasitriangular.

Theorem 6.2.3. V.Matache[1993]. If A is hypercyclic and σ(A) has no interior point, then A

is biquasitriangular.

Theorem 6.2.4. V.Matache[1993]. Given H and K as Hilbert spaces, and X dense range

operator acting from H into K. Let A be a hypercyclic operator on H and B an operator on K.

If X intertwines the pair (A,B), that is if XA = BX, then B is hypercyclic.

Remark 6.2.5. From Theorem 5.2.5, if X and Y are intertwiners with dense ranges and are

both one-to-one such that XA = BX and AY = Y B, then A and B are quasisimilar hypercyclic

operators (see An-Hyun Kim [2006]). Also Katai [1982] observed that hypercyclic operators are

quasitriangular and (Herrero [1991]), proved that a Hilbert space hypercyclic operator A has the

property σ(A) = σω(A). Thus we have

Theorem 6.2.6. V.Matache[1993]. Let A ∈ B(H) be hypercyclic and B ∈ {A}′, where {A}′ the

set of all operators commuting with A, then, ∂σ(B) = ∂σe(B) and σ(B) = σω(B).

Theorem 6.2.7. V.Matache[1993]. A ∈ B(H) is hypercyclic implies σe(A) = σle(A).

6.2.1 Result

Theorem 6.2.8. Let A, B be quasisimilar hypercyclic and biquasitriangular operators, with

σe(A) = σe(B). Then, σω(A) = σω(B) and σ(A) = σ(B).

Proof. Recall that A and B are quasisimilar implies there exists quasi-affinities X and Y such that

AX = XB and Y A = BY . Since A and B are hypercyclic, σω(A) = σ(A) and σω(B) = σ(B) by
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Herrero [33]. But A and B are also biquasitriangular, thus σe(A) = σω(A) and σe(B) = σω(B),

similarly, A and B are quasisimilar so σe(A) = σe(B) and σ(A) = σ(B) Cao, X. [64], hence result

follows with inclussion that σe(A) ⊆ σω(A) ⊆ σ(A).

Corollary 6.2.9. Given A,B ∈ B(H) with AB and BA are hypercyclic and biquasitriangular

operators. If A and B are quasiaffinities, then we have σe(AB) = σe(BA), σω(AB) = σω(BA)

and σ(AB) = σ(BA).

Proof. It can be verified that in this case AB and BA are quasisimilar, since (AB)A = A(BA)

and (BA)B = B(AB) Wei Chen [2009], and the result follows from theorem above. That is,

σe(AB) = σe(BA), σω(AB) = σω(BA) and σ(AB) = σ(BA).

Theorem 6.2.10. Let A ∈ B(H) be hypercyclic and B ∈ BQT with A quasisimilar to B, then

σω(A) = σω(B).

Proof. Since A is hypercyclic, then σe(A) = σle(A) and from Theorem 5.2.7 σ(A) ⊆ ∂σe(A) ⊆

σle(A) ∩ σre(A) ⊆ σe(A) ⊆ σ(A) (see B.P.Duggal [2005]). Similarly, by Theorem 5.2.3 together

with Theorem 5.2.7 we obtain σ(A) = σe(A) = σω(A) = σle(A), and in conclusion A is biquasi-

triangular. Since B is biquasitriangular, we have σe(B) = σω(B) = σle(B) and by theorem 5.2.8

B is hypercyclic and by Theorem 5.2.5 A and B are quasisimilar, hence the result follows.

Corollary 6.2.11. Let A ∈ B(H) be hypercyclic with B ∈ BQT , if A and B are quasi-affinities

then, σω(AB) = σω(BA).

Proof. From chapter three it has been verified that AB and BA are quasisimilar and the result

follows from theorem above.
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Chapter 7

Conclusion and Summary

7.1 Conclusion

Quasitriangular operators are easy to study since they have simple spectral structures. Operators

which can be transform as a triangular operators, can as well be decomposed as a direct sum

or as a polar decomposition. Fortunately, bounded linear operators acting on B(H) are either

triangularizable or reducible, such that every reducible operator can be expressed as a direct

sum of a normal and completely non normal operator. Generally, dominant, ω-hyponormal and

hypercyclic operators are not only non-normal but also quasitriangular. Using the concept of

biquasitriangularity we have made several key contributions by exposing the Weyl spectrum for

some classes of quasisimilar operators in Hilbert spaces by considering the equations XA = BX

and AY = Y B where X and Y are quasi-affinities then A and B are quasisimilar. Biquasi-

triangularity and dominant operators are dealt with in Chapter three, biquasitriangularity and

ω-hyponormal have been given in Chapter four and biquasitriangularity and hypercyclic opera-

tors have been given in chapter five. We have extended some results by looking at CI operators.

Most of the results in this thesis have shown the Weyl spectra of operators under the quasisimi-

larity relation.
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7.2 Summary of main results

In this thesis, we have made tramendeous contribution especially, the behavior of Weyl spectrum

under quasisimilarity of non-normal operators. In chapter one we considered some basic defini-

tions and terminologies which form the basis of the entire work. In chapter two we considered

the several contributions by other researchers from which we realise the knowledge gap. The ma-

jor contributions are found in chapter three where a breakthrough is realised to this end, using

the biquasitriangularity concept, we have proved independent result and deduced some valuable

consequences. First, recall for instance that, if an operator A is dominant and biquasitrian-

gular with Dunford property (C), then if they are quasisimilar then they have the same Weyl

spectrum. Since under no condition, quasisimilar dominant operators fail to have same spectra

and essential spectra. The concept is also extended to the product of two operators, Corollary

3.2.7. In chapter four we have tried to investigate the conditions under which two quasisimilar

ω-hyponormal operators and its possible subclasses have same Weyl spectrum. In this case we

make use of the 1st Aluthge transform to develop the concept of ω-hyponormal operators. In The-

orem 4.2.6 we have succeeded in looking at a subclass of ω-hyponormal operators, and found that

given A,B ∈ B(H), as quasisimilar log-hyponormal operators and also biquasitriangulal, then

σe(A) = σe(B), σω(A) = σω(B) and σ(A) = σ(B). In Theorem 4.3.9 we succeeded by intersect-

ing the ω-hyponormal and p-hyponormal operators, and obtained that if A∗ is p-hyponormal and

B ∈ B(H) a ω-hyponormal with A and B quasi-affinities, if XA = BX for X ∈ B(H) a quasi-

affinity, then A and B are unitarily equivalent normal operators. Consequently σ(A) = σ(B),

σe(A) = σe(B) and σω(A) = σω(B). In Theorem 4.3.12 we obtain the result by looking at the

intersection of ω-hyponormal and biquasitriangular operators,that is, given A,B ∈ B(H) a qua-

sisimilar ω-hyponormal and biquasitriangular operators, then σe(A) = σe(B), σω(A) = σω(B)

and σ(A) = σ(B). Theorem 4.3.14 we looked at the consistent in invertibility operators of ω-

hyponormal and biquasitriangular, such that AB and BA are quasi-affinities with one of the
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quasi-affinity compact. Then σ(AB) = σ(BA), σe(AB) = σe(BA) and σω(AB) = σω(BA).

In Chapter five, looked at the behaviour of Weyl spectrum under quasisimilarity of operators

which are completely non-normal, of hypercyclic and biquasitriangular operators. And obtain

the Weyl spectrum under quasisimilarity relation; that is in Theorem 5.2.9 we obtained that

if A and B a quasisimilar hypercyclic and biquasitriangular operators, with σe(A) = σe(B),

then σω(A) = σω(B) and σ(A) = σ(B). In Theorem 5.2.11 looked at condition under which A

hypercyclic and B biquasitriangular with A quasisimilar to B, then σω(A) = σω(B).

7.3 Recommendation for further Research

Results in this thesis have great contributions. By investigating and looking into the conditions

under which Weyl spectrum is equal to both the essential spectrum and spectrum of operators A

and B with under quasisimilarity. It is clear that direct decomposition, polar decomposition and

diagonalization of operators helps relax the complexities within operators, hence more familar

one. When quasisimilarity cannot be instant, more analysis might be carried out to determine

structures and properties of the spectra of operators under same relation. For instance, by using

the biquasitriangularity property, Single Value Extension Property (SVEP), Durnford‘s property

(C), Bishop property (β) as tools, we were able to link properties of Weyl spectrum with both

essential spectrum and spectrum of classes of operators under quasisimilarity. This study has

produced quite a number of results on quasisimilarity of operators. However, more are still in

waiting as far as the research topic is conserned as given below on future research.

• It is well known from this thesis that, quasisimilar dominant operators which satisfy Durn-

ford‘s property (C) and are biquasitriangular have equal Weyl spectrum. The nature of

Weyl spectrum of quasisimilar dominant operators is not known when these properties are

dropped.
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• Under the same properties, it is not clear if Weyl spectrum of dominant operators are equal

under almost similarity and metric equivalence.

• Also from this thesis it is clear that, quasisimilar and biquasitriangular log-hyponormal

and ω-hyponormal operators have equal Weyl spectrum. Can similar results be obtained

when the biquasitriangular property is dropped?. Or can we obtain the same results when

the properties are retained but, under almost similarity and metric equivalence.

• Is browder spectrum of classes of operators equal under quasisimilarity relation?.
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