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Abstract

Fluid mechanics is a branch of mechanics that is concerned with the study of �uids, their

properties and the e�ects of forces acting on them. It can be used to model a large number

of �uid systems including the �ow of water down the bathroom sink to the complex

systems of ocean and atmospheric circulations. This project analyzes key components of

the ocean circulation modeling and presents the physical and computational issues raised

in numerical solution of equations generated in the study of shallow water �ows in the

earth’s atmosphere. We describe ocean circulation into detail and outline the relationship

between oceanic and atmospheric circulation. The ocean-atmospheric circulation discussed

in chapter one is made to help us understand the e�ects of Ocean circulation on weather,

climate and the global energy transfer. The main equations connected to ocean circulation

(in a rotating framework) have been introduced and systematically modi�ed by applying

some standard approximations to obtain the so called shallow water equations (SWEs).

SWEs, as example of hyperbolic system of partial di�erential equations, have been most of

the time solved using the Finite Di�erences Method (FDM). Finite Element methods (FEM)

and Finite Volume methods (FVM) have also been used. The 2D SWE representing oceanic

circulation has not been solved in this work. At a later stage of this work, we derive the 1D

shallow water equations which are free of the Coriolis parameter and the e�ect of rotation.

This 1D SWE is then solved using the Discontinuous Galerkin Finite Element Method

(DGFEM). The reason why we choose this method over the many numerical methods

is because it combines the advantages of the FEM and FVM and seems to present well

balanced solutions. In particular we use the Runge-Kutta DGFEM in �nding our solution

due to the following reasons:

1- Its ability to preserve the capability of the FEM of handling complicated geometries.

2- It increases the degree of approximating polynomials locally. This allows e�cient

p-adaptivity for each element independently.

3- Allows data communication only between neighboring elements. This gives room

for an e�cient parallelization.

Although recent advances on the DGFEM for the shallow water equations with topography

source terms have been considered, we limit ourselves on the solution of one dimensional

shallow water equations which are free of th Coriolis parameter and the e�ects of rotation.

This choice is made so that we can easily illustrate the main advantages of this method

especially if the dam break problem is concerned.
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1 Introduction: Ocean circulation Modelling

1.1 Oceans and Ocean circulation

About two-thirds of the earth’s surface is occupied by water bodies. The water bodies
include oceans, seas, lakes, rivers, swamps artificial water reservoirs such as dams. In
this project, we are going to study shallow water flows in these systems, study oceanic
hydrodynamics and solve a one dimensional shallow water flow then apply the solution
obtained to the dam break problem.

Oceans play a very important role in the global weather and climatic pa�erns. They act as
a regulatory devices for the global climate, for instance by transporting huge amounts of
heat from the tropical regions to the poles. During the process of ocean circulation, large
amounts of energy are transported around the world. This is done by both surface and
deep ocean currents which flow within the oceans like rivers; some currents are violent on
their course whereas others are slow and meander along their course. Ocean circulation
is caused by a combination of winds and variations in both temperature and salinity.
The movements of the earth especially its rotation play a very important role in dictating
the paths taken by water masses during ocean circulation. Wind-driven circulation mainly
occur within a region between the surface of the ocean and a depth of a few hundred of
meters. Changes in temperature and salinity of the ocean water lead to variation in density
which is a key factor contributing to massive water movements. Density-driven circulation
is mainly dominant near the ocean bo�om and takes place in form of "thermohaline"
circulation. This is because it is caused by temperature di�erences and changes in salinity.
Thermohaline circulation is also termed as "overturning" circulation and involves vertical
water movements, whereby warm water flows towards the poles near the surface, at the
poles, it gets cooled, sinks and flows back towards the equator in the interior. This form of
circulation is very significant for support of aquatic life as convectional e�ect causes cold
water from beneath to rise upwards to fill the gap le� by the misplaced water a process
called "upwelling". The upwelling part of thermohaline circulation is important as it brings
nutrient-rich deep water up to the surface hence playing as a mode for supplying nutrients
to ocean living organisms. Radiocarbon tests shows that this mode of ocean circulation
turns over all the ocean water within periodic intervals of about 600yrs. This form of
circulation transports about 1015W of heat energy towards the poles hence playing a very
crucial role in the earth’s climatic changes.

Factors that influence ocean circulation
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Temperature: This Ocean property is mainly dependent on the atmosphere which
takes or adds heat on the surface of the water. Temperature di�erences in di�erent layers
of the ocean water influences circulation through convectional currents.

Salinity: This refers to the quantity of salts dissolved in the water. Sea water is composed
of 3.5 percent salt with Sodium chloride being the most common salt. This property varies
by small ranges in the surface zone. This variation is su�icient to a�ect water circulation.

Pressure: It is the e�ect of the weight of overlying water mass felt at a given depth.
This property varies with depth. The atmosphere also exerts pressure on the water surface.
Variation in pressure on the water layers may cause the density to change which in turn
trigger density-driven ocean circulation.

Density: We define density as mass per unit volume. In water bodies, density increases
with depth. It is dependent on temperature, salinity and pressure and its variation between
two regions of the ocean trigger mass movements of water. In most models, density
variations are usually ignored and eliminated by applying the Boussinesq approximation
to obtain the so called Boussinesq equations.

In modeling of natural phenomena such as weather and climate, dynamics in both the
oceanic and atmospheric systems are very important. This is because a lot of exchanges
take place between these two including exchange of di�erent forms of energy such as
heat, exchange of moisture and water in the processes of evaporation and precipitation
respectively. Due to these inter-relationships, we cannot talk about oceanic circulation
without touching on atmospheric circulation.

1.1.1 General Atmosphere-Ocean circulation

Models of the ocean and the atmosphere deal with descriptions of circulations of heat,
water, air and other components of these systems. In the circulations that take place in
both systems, a lot of exchanges take place and this makes it possible to come up with
a combined model design. A combined ocean-atmosphere general circulation is used to
study the features of the ocean circulation and its impacts on the climate of the world
(Toggweiler, 1994). This is achieved in a succession of global experiments and models that
help predict the future changes in the climate resulting from e�ects of ocean circulation.
The oceans play a very vital role acting as a storage site for heat to regulate seasonal
changes in the atmosphere as well as act as a transport media, moving heat all over around
the globe. Heat transported by the ocean is a very important component of the global
heat budget, (Trenberth and Caron, 2001). Di�erent ocean circulation models developed
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by di�erent researchers have been observed to come up with a fine detail.
Changes in the land surface configurations (topography) adjacent to the ocean coast
causes variation in temperatures, winds and rainfall. This is because heat transports
within the system are a�ected to some extend. Study indicates that if all the ocean
transport was to be inhibited, it would lead to a reduction in the global mean of 8oC,
coupled with a sharpening of the meridional temperature gradient. This is because ocean
transport is very important in in determining the global atmospheric humidity. The level
of humidity (amount of water vapor in the air) determines the tropical albedo hence acting
as a regulator of global surface temperatures.
The atmospheric and oceanic systems are complex ones, with processes and feedbacks
that operate over timescales ranging from seconds to thousands of years and spacial scales
ranging from millimeters to tens of thousands of kilometers. This complexity together with
the inability to perform controlled experiments has led to invention of more sophisticated
climatic and oceanic models e.g. Gordon et al. [2000]; Roeckner et al. [2003]; Marsland
et al. [2003] which are climatic models capable of providing suitable feedbacks between
components. However, due to the high costs of integrating these models, they are only
appropriate for use in questions of the past, current and future climatic systems. To
counter this, more general and simpler models are coming up for purposes of learning
specific processes that function in our climatic systems. According to Broecker, (1985) and
McManus, (2004), changes in the thermohaline part of ocean circulation are considered
to have been very influential in the climatic changes that has been experienced over the
earth’s history.
The e�ects of changes in the ocean circulation and transport systems has been analysed
in a number of studies. The first general ocean circulation model was developed by
Stommel (1948) and Munk, (1950). They generated analytical models of wind-driven ocean
circulation confined in rectangular basins. This they did by applying simplified dessipative
laws. The first numerical ocean circulation models were developed by Bryan and Cox
(1967) while the impacts of ocean circulation on climate were addressed later in time with
the development of coupled atmosphere-ocean circulation models.
The strong interdependence between ocean circulation and the climate means that a
model designed to predict climatic changes must include aspects of ocean circulation and
mixing as well as aspects of atmospheric circulation plus the physics of weather factors.

1.1.2 Numerical ocean Modelling

Numerical ocean modelling entails computational techniques that describes mathemat-
ically aspects of the ocean. It is important in making predictions of ocean processes to
some points in the future. It gives a convenient way of mathematically representing
phenomena connected to this complex geophysical system. Oceanic models are used
widely by oceanographers and weather/climate scientists as experimental tools. With
great improvements in the understanding of ocean models together with development
in related computer programs, we can today model very realistic ocean fluid dynamics
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representations.
Today this field is growing rapidly due to its many applications. Some of the applications
of ocean model design include; studies of climate change, oceanography and ultra-refined
resolution process studies. The challenge being faced today by developers is that of code
distinctions which prevents mathematicians from interchanging algorithms. This makes
it di�icult to compare simulations directly or reproduce them using di�erent codes hence
increasing burdens of model design maintenance.
Numerical ocean modelling involves solving geophysical fluid dynamics equations. Dif-
ferent modelers take di�erent approaches to represent the ocean fluid dynamics i.e. in
terms of the model equations and the method used to solve them. The type of model also
depends on the aspect of the ocean being modeled. Models such as Dale B. Haidvogel,
John L. Wilkin and Robert young (1988) use the complete primitive equations with sigma-
vertical coordinates to study regional and basin-scale ocean circulation processes. This is
just an example which presents just a grain of sand in the desert in terms of models that
are 3-dimensional.
Many modelers have made modifications on the complex original 3D equations to obtain
forms of equations that best suits their area of study. An example of modified equations
is the shallow water equations which are simplifications of the 3-D set of equations
containing the Navier-Stokes equations, equations representing tracer distribution and
the equation of state. Oceanic wave modelling for waves that have large wavelengths is
done using the shallow water equations (E. Hanert, V. Legat and E. Deleersnijder, 2002).
Models are usually associated with partial di�erential equations called primitive equations
which have to be solved at the end. To solve the final model equations three numerical
methods have been used in the history of oceanic-atmospheric modelling, namely; the
finite di�erence methods (FDM), Spectral methods (SM) and the finite element methods
(FEM). Using these solutions, approximations are then made to interpret the properties of
flows in the ocean. Manipulations are done on the obtained equations mainly through
integrations over the ocean depth to obtain other forms of the equations known as Shallow
water equations.
Modeling practices are usually associated with a wide range of di�iculties. The modeler is
faced by challenges of making decisions on the choice of the numerous approaches that
can be undertaken to accomplish the task of modelling. The section below presents the
physical and computational issues encountered in oceanic modeling.

1.1.3 Physical and computational issues in numerical ocean circulation mod-
elling

The process of modeling involves physical, mathematical and computational aspects that
has to be handled in order to arrive at the final results and conclusions. The modeler has
to make decisions on;

a). The choice of scales (time- and spatial scales)
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The ocean basins are thousands of kilometers in width and length. Circulations here
present themselves in a wide range of time, space and mixing scales. The choice of the
time- and spatial-scales has a significant e�ect on the numerical scheme to be used to
model them.

b). choice of vertical coordinates
The depth of the ocean varies with some regions having depths of up to 5kms in aver-
age. The dominant form of circulation in the vertical is the thermohaline circulation.
Vertically, the scale is normally very small compared to the horizontal scale, a property
known as shallow water condition . In such flows the vertical accelerations of the fluid
are negligible implying an hydrostatic nature of the fluid. Most of the flows that take
place on the surface of the earth are shallow water flows. .
Traditional vertical coordinates can either be geopotential, terrain-following, isopycnal,
hybrid or pressure coordinates. The terrain-following coordinate is suitable for represent-
ing an irregular bo�om topography. Isopycnal coordinates are commonly adopted for
idealized adiabatic simulations. They are widely used in global climate based simulations
especially in a combination with the pressure coordinates. The hybrid coordinates are
used in models aimed at generalizing vertical coordinate formulation. They allow other
di�erent vertical coordinates to be fixed depending on the model application and the fluid
regime hence providing a specific area to work on for their next development.

c). Acoustic modes and gravity waves
The shallow water equations are linear in nature and this allows the existence of a large
assortment of waves that are seen in the large scale circulation of the ocean. These waves
are characterized by wavelengths which are long relative to the ocean depth and can
be classified as external or internal waves. Waves that can be supported by a fluid in
a rotating framework include the inertia-gravity, Kelvin and Rossby waves. Rossby
waves, also called planetary waves are created by variation of the Coriolis parameter or by
changes in the elevation of the bo�om floor They greatly contribute in the development
of large scale circulations of the ocean. Gravity waves on the other hand are generated by
gravity and they are much faster than the Rossby waves.
Kelvin waves are caused by a combination of variation of the Coriolis parameter and
the existence of dynamical boundaries. They have a minor impact on the general ocean
circulation as they transport very small portions of the total ocean energy budget.

d). Assumptions
Valid assumptions and approximations on the original equations have to be considered.
These approximations help to simplify the equations by eliminating acoustic modes and
linearizing non-linear terms. The approximations used include; Boussinesq approximation,
hydrostatic approximation, Newtonian fluid approximation and the spherical geopotential.
The approximations used in this work are discussed in the next section.
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e). Rotation of the earth
The geopotential approximation assumes that the earth is spherical, (Hanert, 2004) and
in constant spinning about its axis, a movement called rotation. The e�ects of a rotating
framework of reference on the equations of motion must be put into consideration during
derivation of the primitive equations. The earth’s rotation vector is defined by Ω̂ = Ω k̂
where k̂ = cosθ êy+sinθ êz is a unit vector along the rotation axis of the earth. The Coriolis
acceleration is given as

2Ω × v̂ = f∗êy× v̂+ f êz× v̂

where f = 2Ω sinθ is known as the Coriolis parameter and f∗ = 2Ω cosθ is the reciprocal
of the Coriolis parameter. We also assume the gravitational acceleration, g to be constant.

f). Mixing scales
A major part of oceanic flows is involved with the transport of tracers such as temperature,
salinity and other biochemical species. Temperature and salinity directly a�ects density of
the ocean water and hence influence the dynamics of the oceans. These two are classified
as active tracers while the other tracers which have less influence on the dynamics of the
fluid are called passive tracers.
Tracer concentration is a�ected by the convergence of tracer flux plus the potentially
non-zero sources or sinks. Alternatively, tracer concentration may be caused to vary
by the mixing caused by small-scale turbulent motions having lengths as small as just
a few centimeters. The full extend of these small-scale motions in the ocean model is
parameterized by use of some di�usion operator to outline their large-scale e�ects.
On the surface layer, the tracer concentration keeps on changing as a result of; addition
of fresh water from rivers and precipitation and heat exchange with the atmosphere.
The process of balancing tracer concentration is a continuous one. This is achieved via
di�usion and oceanic fluid movements (both horizontal and thermohaline circulations).

g). The governing equations
Some physical and computational challenges are encountered during the simulation. The
oceanic general circulation includes the horizontal and vertical transport of water, heat,
air, salts and other biogeochemical species. All these components of the ocean are involved
in establishing the dynamical balances in the oceanic systems. The circulation therefore
includes associated pressure, salinity and temperature fields which influence currents
through the density variations. Due to the rapid growth of this field, alot of time and
resources are being devoted to research activities. Many questions arise during the design
of models with some remaining partially answered while others remain completely unan-
swered. These fundamental questions give the motivation to mathematicians, physicists
and oceonographers to venture in studies in these fields so as to come up with valid
answers. Ocean circulation is normally described by the Navier-Stokes equations sed
in a rotating framework plus the equations relating conservation of tracer deposits and
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the equation of state. These are the equations that modelers aim to discretize and most
of the questions asked in the field of ocean circulation modeling are connected to these
equations. The questions to answer include;

• The question of whether the equations used in the model should be hydrostatic or
non-hydrostatic? The model of Marshal et al. (1997) states that both forms of models
are equally su�icient.

• Should the fluid flow be taken to be compressible or should it be incompressible?
Incompressibility of the fluid is achieved by applying the Boussinesq approximation
(discussed later in this chapter). Some modelers today are opting to use non-Boussinesq
fluid conditions in their work to represent sea level changes due to steric e�ects, Gri�ies
(2004); Marshall et al. (2003); Lorsch et al. (2004).

• Another dilemma encountered is whether to consider the upper free surface of the
ocean as non-varying in time (Bryan [1969]) or should we allow it to fluctuate naturally
due to water motions? A fluctuating/varying surface puts into consideration the e�ects
of addition of fresh water onto the surface and lose of water in form of water vapour
into the atmosphere.

• A�er selecting the model equations known as primitive equations, the question of
the choice of vertical coordinates to be adopted arises. We have a wide range of
vertical coordinates to choose from which include terrain-following sigma coordi-
nates, geopotential coordinates, isopycnal coordinates and the generalized hybrid
coordinates.

• Which horizontal grid system should be used? In the solution of the primitive equations,
we have to discretize the domain using horizontal grids. Some of the commonly used
grid systems are the traditional A, B, C, D and E grids of Arakawa and Lamb (1997),
the spectral methods discussed by Haidvogel and Beckmann (1999).
Numerical methods are very important for time-stepping the ocean forward. The
numerical methods used include, Finite volume methods (FVM), Finite di�erence
methods (FDM), Finite element Methods (FEM), Continuous/Discontinuous Galerkin
Finite Element Method and spectral methods

As a result of all these issues associated to ocean circulation models, specific accurate
approximations and assumptions are applied to reduce the original equations to simpler
forms. In this work, we choose to modify our original equations into the shallow water
equations (SWE). We begin with the continuum equations of hydrodynamics expressed in
a rotating framework and reduce them to the shallow-water equations form. This way
of connecting from the 3D hydrodynamics equations to 2D SWEs also helps us avoid
the di�iculty encountered solving the full 3D equations. SWEs are suitable for modeling
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waves in the atmosphere, rivers, lakes, dams, oceans and seas that have large wavelengths
compared to the depth of the water basin. They are applied in models of Rossby and
Kelvin waves and under some conditions the gravity waves. SWEs are used to model tides
which have very large wavelengths of roughly up to 100 kilometers. Hence the very deep
ocean may be assumed to be shallow when it comes to tidal motion since the depth is
much smaller than the tidal wavelength.
In this work we choose the shallow water type of model since our work is to the larger
extend based on ocean circulation that involve oceanic waves such as the Kelvin and
Rossby waves which display very large wavelengths. In their linearized form the shallow
water equations still display the main features of these waves. The acoustic waves are
eliminated by making the flow incompressible. This is done by applying the Boussinesq
approximation which assumes that no density variations in the fluid. The acoustic/sound
waves make use of compressibility of the water and are very fast to be relevant for
geophysical flows. The incompressibility of the flow implies non-divergence and we call
this type of flow barotropic (flow with no density variations). The only driving forces in
these flows are the gravity and Coriolis force and the waves propagated in this kind of
flows are the Kelvin and Rossby waves. The type of shallow water equations on which our
model will be based takes the form given below. The derivation of these equation is done
in chapter 3. The 2-D SWE derived in chapter 3 is not solved in this work, it has been le�
to be solved in further work.
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2 Background of the problem

The origin of the shallow water equations dates back to the mid 19th century. The concept
of shallow water flows was first initiated by a French mathematician and mechanician,
Adhemar Jean Claude Barre de Saint-Venant (1797-1886). He contributed significantly
in the initial stress analysis and developed the unsteady open channel flow shallow water
equations (also known as the Saint-Venant equations).
With the advancement of computational technology, many applications of these equations
have mushroomed in di�erent disciplines. For instance, they are used in modeling of
oceanographic and atmospheric fluid flows to design models that describe phenomena in
these systems. For example, modelers have come up with designs that help in prediction
of climatic changes, spread of pollutants polar ice-cap melting, e.t.c to mention but a
few. With the growing interest of research in the fields of oceanography and atmospheric
studies, di�erent researchers have come up with shallow water models that suit di�erent
purposes. Dronkers (1964) describes the use of shallow water equations to determine
ocean circulation pa�erns and tidal elevations at the interior of an enclosed region subject
to tidal waves. Kahawarn (1978) proves the relevance of the shallow water equations in
the prediction of tsunami waves which are known for causing severe flooding destruction
of property and loss of lives. Research being still active in this field, mathematicians,
physicists and oceanographers are still seeking for the possibility of using these equations
to model schemes that would be useful for conversion of tidal energy into commercially
utilizable forms. A�empts in this interesting field are outlined in the works of Charlier
(1982) and Gray and Gashaus (1972). Leendertse, 1967, used SWEs model to describe the
e�ect of waves originating from explosion of military nuclear bombs near ocean surfaces
or in the interior of the ocean water.
The numerical solution of shallow water equations was among the first numerical simula-
tions to be carried out on digital computers during their invention in the 1950’s. Hensen,
(1956) used computational power to model oceanographic flows using SWES while Char-
ney et al. (1950) modeled atmospheric flows.
All authors and/or researchers have arrived to the SWES through successive approxi-
mations of the general equations governing fluid motions. These general equations are
normally the well-known Navier-Stokes equations plus the equations of conservation of
tracer deposits (heat, salt and biogeochemical tracers) and the equation of state. Several
numerical methods have been applied to solve the final exact form of the SWES with the
mostly used method being the Finite Di�erence Method (FDM). Hanert (2004) in his PHD
thesis uses the FEM with unstructured grids to arrive at quite nice results. Other methods
which have been applied to solve these equations include the Riemann solver for SWES
(J. Bohacek [2015]; L. George [2004]; D. Ambrosi [1995]), the collocated coupled solution
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method (CCSM) used by Aukje de Boer (2003). There are several more methods which
have been proved to give very accurate solutions.
In this work, we use the Discontinuous Galerkin Finite Element Method to solve the
one-dimensional shallow water equation for a flow through a channel.

2.1 Problem statement

Our main task in this project is to study and understand the numerical methods of solving
SWEs and specifically apply the Discontinuous Galerkin finite element method to solve
the 1D SWE;

∂tu+∂x f (u) = s(u)

subject to initial conditions defined by a dam channel domain:

h(x,0) =

{
hL, if 0≤ x≤ 300

hR, if 300 < x≤ 1000

u(x,0) = 0 0≤ x≤ 1000

This equation is the conservation law form of the 1D SWE derived in chapter 3.

2.1.1 Main objective

To study and understand Shallow water flows, translate the dynamics mathematically
into equations and use these equations to come up with a model that can be of importance
in the societies in which we live.

2.1.2 Specific objectives

1. To study and understand fluid flows on the sphere and relate the flows to the shallow
water equations.

2. To apply the SWEs to model flows in a channel.

3. To study and understand the FEM and the DG finite element method for solving PDEs.

4. To apply step-wise DG formulation to the 1D-SWE to determine its numerical solution.

2.2 Applications of SWEs

Shallow water flows are experienced in oceans, rivers, coastal estuaries, lakes and the
atmosphere. In addition to ocean circulation modeling the shallow water equations have
many more practical applications in di�erent disciplines. These include;
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i. In oceanography to determine tsunami-wave propagation and prediction of tidal cur-
rents. This is important for navigation purposes in seas and oceans and prediction of
disasters.

ii. Analysis of the dam-breaking problem and the associated flood elevation.

iii. Determination of pollutant dispersion and storm surges.

iv. In meteorology and atmospheric flows to predict weather and climatic changes.

v. Planetary flows (Vreugdenhill, 2004) and internal flows.

2.3 Literature review

Rigorous research has been undertaken in the study of oceanic and atmospheric circula-
tions. Di�erent numerical models that describe the dynamics in these complex geophysical
systems has been on the growth for the last over 50 years.
The first model of ocean circulation was designed in the 1900’s a�er Ekman, (1905)
described the e�ects of the rotation of the earth on oceanic currents. Sverdrup, 1947,
described the e�ects of rotation on wind-driven currents. He came up with a simple law
governing this relation. However, these initial models were non-numerical, they formed a
basis for the development of modern numerical models. Bryan and Cox, (1967) combined
the very first numerical ocean circulation model. Since their pioneering, models that
aim at predicting di�erent physical phenomena have been on the rise. Haidvogel and
Beckmann, (1999), give a more detailed overview of the numerical modelling.
Dale B. Haidvogel, (1991) uses spectral methods with vertical sigma coordinates and or-
thogonal curvilinear horizontal coordinates to solve the full equations of ocean circulation.
His model becomes very e�icient for irregular basin geometries with non-uniform bo�om
topography.

Bernard Bernier, Patrick Marchesiello, Anne Pimenta and Macky Coulibaly, (1995) de-
scribes the terrain-following σ−coordinates numerical model for a case study of circulation
in the south Atlantic. Their model is of the semi-primitive type-a model introduced by
Haidvogel et al., (1991). In this work, they investigate the advantage of σ−coordinates in
the calculation of pressure gradient and the di�usion of tracers. They make use of open
boundary conditions based on radiation conditions and climatology relaxation.

Haidvogel and Beckmann, (1999) ocean model give a good description of the general ocean
circulation. They present 3-D ocean models using the Modular Ocean Model (MOM)
approach, Spectral coordinate models (SPEM), Miami Isopycnic Model (MICOM) and
Spectral Element Ocean Model (SEOM). They give detail applications of each of these
types of models and proceeds to give a case study on the North Atlantic ocean model
using the SPEM approach.
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Many authors and researchers have made use of the Finite Di�erence Method (FDM)
and the Finite Volume Method (FVM). �ing Wang, (2007) describes a FEM ocean model
and its aspect of vertical discretization. He concentrates mainly on the study of the
performance of di�erent vertical grids by using a couple of numerical experiments based
on the FE ocean models. He also develops a new version of a Finite Element Ocean circu-
lation Model (FEOM). The horizontal span in his work is based on unstructured triangular
element grids and prismatic grids in the vertical sense. He makes use of continuous linear
equations to describe the horizontal aspects such as velocity, temperature and salinity.
The standard set of hydrostatic primitive equations are solved with the characteristic
based split (CBS) scheme which is used to suppress computational pressure modes.
The FE method has not been used as widely as the FD method. Since the use of this
method by Fix (1975), the most applications of the FE method has been mainly on the
coastal and shelf regions. Fix described the nice properties of this method in his early
work-the methods gives a natural treatment of boundaries and has the property of en-
ergy conservation which is a very important aspect of these methods. The most renown
oceanic models that apply the FE method are Lynch and Gray, (1979); Lynch et al. (1996);
Platzman, (1981); Le Provost et al., (1995); Le Roux et al. (1998); Walters, (2008) which
all focus on on coastal and shelf region modeling. Some finite element models also deal
with stationary-state ocean inverse problems (Brasseur, [1991]; Schlichtholz and Houssais
[1999]; Dobrindt and Schroter [2003] and Losch et al. [2005]). A combination of of the FEM
and unstructured grids gives a very fine detail of resolution (Danilov et al. [2004]; Ford
et al. [2004], Hanert [2004] and White et al. [2007]). The FEM in general becomes more
accurate on unstructured meshes (Hanert, 2004). The FEOM supports a couple of vertical
grids namely z-level, sigma and z+σ grids but it does not support isopycnal grids. Until
present, there are only a few 3D FE ocean circulation models whereby of all these none
of them has been designed for large-scale ocean circulation on decadal time scales. The
most commonly used models are QUODDY (Lynch and Naimie, 1993) and ADCIRC which
apply FE method discretization only in the horizontal direction and they are designed
for tidal and coastal applications within relatively short time periods (just a number of
months). Sergey Danilov, Gennady Kivman and Jens Schroter, (2002) describes a 3D FE
ocean model for investigating the large scale ocean circulation on time-scales from years
to decades. In their model they solve the primitive equations in the dynamical part and
the advection-di�usion equations for temperature and salinity in the thermodynamical
part. Their model makes use of linear functions to represent horizontal velocities on the
tetrahedra used in the 3D mesh. The tracers on the tetrahedra and the surface elevation
on the surface triangles are also represented using linear functions.

Another form of models in this field is the Shallow water modelling. These models are
a simplification of the real world whereby the ocean is represented by a single layer of
fluid of a varying height and a constant density. SWE models have been widely developed
for di�erent applications such as modeling tidal currents, modeling the problem of dam-
break (Robert Brandoni and Gerald Freitas, 2012). Other works that make use of SWEs
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to model dam-break problems include Szu-Hsein Peng (2012), C. Ancey, R. M. Inverson,
M. Rentschler and R. P. Denlinger, (2008). Hossam S. Hassan, Khaled T. Ramadan and
Sarwat N. Hanna, (2010) uses the FEM to solve 2D ocean model equations. The work out
rigorous calculations by employing fractional steps in the numerical procedure to obtain
the solutions.

Our current study involves solution of 1D SWEs for modeling a flow with a uniform
cross-section. We use a practical problem of a dam with a rectangular cross-section to
test our results. The method we use to solve the equations is aimed at improving the
resolution. We aim to obtain very accurate solutions that can be interpreted and applied
in risk management in case a dam fails.
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3 The shallow water equations

The SWEs representing ocean circulation contain the e�ects of rotation of the earth.
They cater for centrifugal forces and e�ects of gravity. They are linear equations and
can be represented on a plane (in two dimensions). The two-dimensional shallow water
equations interprets properties and e�ects of shallow flows under specified initial and
boundary conditions. The basic equations that govern the dynamics of fluids are built on
the principles of conservation of mass, momentum and energy which are well represented
in the Navier-Stokes equations. Due to the nature of ocean/sea water, these equations
together with equations of conservation of heat, salt and the equation of state are used to
represent oceanic fluid dynamics. These initial equations are non-linear in many terms
and they support fast acoustic modes making them both di�icult to solve and costly to
work with. We apply a series of approximations and assumptions to these equations to
simplify them to the primitive equations which are then used in the model. The general
equations in a rotating framework are given by

∂ (ρ~v)
∂ t

+∇.ρ~v~v+2~Ω ∧ρ~v+gρ k̂+∇p = ∇.τ (1)

∂ρ

∂ t
+∇.ρ~v = 0 (2)

∂ (ρS)
∂ t

+∇.ρS~v = 0 (3)

∂ (ρT )
∂ t

+∇.ρT~v =
1

cpS
∇.FT (4)

ρ = ρ(T,S, p) (5)

where as described previously,
ρ is mass density ,~v velocity , p the pressure ,S represent the salinity ,

T the potential temperature which add up to 7 independent variables while
~Ω is the rotation vector of a sphere,g the gravitational accceleration and cp

the specific heat capacity at a constant pressure τ is the stress tensor and FT

represent non-advective heat fluxes

Eq (1) and (2) represent the Navier-Stokes equations of expressed in a rotating framework
of reference. Equations (3) and (4) relates conservation of tracer deposits, while the last
equation, (5) is known as the equation of state.
Acoustic modes arise from the dependence of the density on pressure. These modes
are very fast and are not of any importance in geostrophic fluid flow and they can be
eliminated from the equations.
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Sound waves

Using the equation of continuity, (2), we can write

Dρ

Dt
=−ρ∇.~v (6)

where D
Dt =

∂

∂ t +~v.∇ stands for the material derivative and ∇. is the divergence. Also using
the chain rule to di�erentiate the equation of state (5), we obtain

Dρ

Dt
=

∂ρ

∂T
|S,pDtT +

∂ p
∂S
|T,pDtS+

∂ρ

∂ p
|T,SDt p (7)

where using Eq (6) and Eq (7) to eliminate Dt p we can write for adiabatic motion;

1
c2

s
Dt p =−ρ∇.~v+ρλDtT −ργDtS (8)

with cs, λ and γ (all functions of T, S and p) respectively representing sound speed, thermal
expansion and the coe�icient of haline expansion. This equation in its linear form together
with the equations of momentum in linear form describes sound waves;

ρ̄∂t~v =−∇p

∂t p =−ρ̄c2
s ∇.v̄

or

∂tt p = c2
s ∇

2 p

These waves travel at an average speed of 1500ms−s in water which translates to 100km
of distance they cover in a minute. This is unpractical for ocean scale calculations and
therefore it is necessary to filter the equations of these acoustic modes by removing
density dependence on pressure. This is achieved by making the approximations discussed
below

Boussinesq approximation

This approximation assumes that the density is constant throughout the domain Ω except
where gravitational body forces are involved. Thus dρ

dt = 0. Using this we can represent the
water density as a sum of some constant density and a smaller time- and spatial-varying
perturbation;

ρ(x,y,z, t) = ρ0 + ρ̂(x,y,z, t)
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where ρ̂(x,y,z, t)� ρ0 is a space- and time-varying term. Boussinesq approximation states
that we may ignore ρ̂ at all points except when gravitational forces are involved. As a
result the equation of mass conservation (2) reduces to an equation of volume conservation

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0

In this case we call the flow incompressible. This kind of approximation helps us to linearize
terms involving products of density with other dependent terms. For example ρ~v−→ ρ̄~v
where ρ̄ is the background mean, a scalar. With this approximation and assuming that
the flow is non-divergent, the equations (1) to (5) are modified to the non-hydrostatic
Boussinesq equations below

Dt~v+2~Ω ∧~v+ gρ k̂
ρ̄

+
1
ρ̄

∇p =
1
ρ̄

∇.τ (9)

∇.v = 0 (10)

DtS = 0 (11)

DtT =
1

ρ̄cpS
∇.FT (12)

ρ = ρ(T,S,z) (13)

This new system of equations does not support acoustic modes. These equations are
however not easy to solve as they are prognostic in three components of velocity. We
simplify these equations further by make the hydrostatic approximation.

Hydrostatic approximations

From equation (9) the vertical component of the modified Boussinesq momentum is given
by

Dw
Dt

+2Ω cosφν +
gρ

ρ̄

∂ p
∂ z

=
1
ρ̄

∇.τw

Using the fact that the horizontal scale is large compared to the vertical one, we can
show that the vertical pressure gradient may be given as a product of the density and
gravitational acceleration. The dominant balance from a scaling for each term is

∂ p
∂ z

=−gρ

We use the boundary condition p = 0 at z = η (where z = η is the surface elevation at
the top) to obtain the internal pressure

p =
∫

η

z
gρdz
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Let z = −H(x,y) be the length of the water column from some fixed level z = 0 to the
bo�om and z = η(x,y, t) be the height from z = 0 to the surface of the fluid as shown in.
Integrating the non-divergent continuity equation vertically using the limits −H ≤ z≤ η∫

η

−H
∂zwdz = [w]η−H =−

∫
η

−H
∇h.~vhdz

using the Leibniz’s rule∫
η

−H
∇h.~vhdz = ∇h.

∫
η

−H
~vhdz−~vh|z=η .∇hη +~vh|z=−H .∇h(−H)

The vertical normal velocity into the solid bo�om is given by

w|z=−H = w(−H) =−~vh.∇hH

At the free surface, fluctuations of the fluid are dominant and the rate of variation of the
surface elevation with time is given by

Dη

Dt
= w|z=η +(P−E)

where D
Dt =

∂

∂ t +~v.∇ is the material derivative and−(P−E) is the excess evaporation over
addition of water on the top surface. We can therefore write the free surface equation as

Dtη +~vh.∇hH =−∇h.
∫

η

−H
~vhdz+~vh|z=η .∇hη−~vh|z=−H .∇h(−H)+(P−E)

or
∂η

∂ t
+∇h.

∫
η

−H
~vhdz = (P−E)

This is the hydrostatic equation of continuity. The equations (1) to (5) then reduce to a
new set of equations of the form

Dt~vh + f k̂∧~vh +
1
ρ̄

∇h p =
1
ρ̄

∇.~τh (14)

p =
∫

η

−H
gρdz (15)

∂zw =−∇h.~vh (16)

DtS = 0 (17)

DtT =
1

ρ̄cp
∇.F (18)

ρ = ρ(T,S,z) (19)

∂tη =−∇h.
∫

η

−H
~vhdz+(P−E) (20)
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where ∇h =
∂

∂x êx +
∂

∂y êy is the horizontal gradient operator,~vh is the horizontal kinematic
eddy viscosity. Equations (14) to (20) are the hydrostatic primitive equations (HPEs).
These are equations for variables u,v,w, pand ρ together with the turbulence closure
schemes for the di�usion and viscosity coe�icients. The HPEs form the basis for most
ocean general circulation models. Eq (14) represents the horizontal momentum, (15) is
an equation of hydrostatic balance, (16) represents the vertical variation of motion, (17)
to (19) represent distribution of tracers and the last equation is the hydrostatic equation
of continuity. Equations (15), (16) and (19) are diagnostic one for each of ρ, p and w
while equations (14), (17), (18) and (20) are prognostic and describe baroclinic or three-
dimensional evolution. The four prognostic equations corresponds to a pair of gravity
modes, a geostrophic mode (Rossby waves) and a thermo-haline mode. The free surface
equation couples with the depth-integrated momentum equations to give a pair of external
gravity modes and an external Rossby mode. We will derive the shallow water equations
from further simplification of the HPEs.

Coordinate System

The equations we are dealing with are two dimensional. We therefore choose a 2D
coordinate system called the β -plane coordinate system. In this system the x−,y− plane
is considered to be tangent to the earth at the latitude under consideration. The x−axis
is taken to be in the direction of the latitude at that point whereas the y−axis is taken
to be in the direction of the longitude. The z−axis is taken to be in the direction of the
outward normal to the Earth’s surface. The domain under consideration is the ocean and
we denote it by Ω and the boundaries of this region by ∂Ω .

Boundary conditions

The boundary ∂Ω of the domain includes the open/closed vertical surfaces that encloses
Ω , the free surface and the impermeable bo�om of the domain. The free surface is given
as

z = η(x,y, t)

and the velocity there as

~v = (0,0,
∂η

∂ t
)

and for a particle within the fluid the velocity is given by~u = (u,v,w). We assume that
the fluid particles do not cross the free surface hence

~v.~n =~u.~n
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where~n = (−∂ν

∂x ,−
∂ν

∂y ,1) is the unit normal drawn outwards at the free surface. Equating
terms in the dot product above yields

∂ν

∂ t
=−u

∂ν

∂x
− v

∂ν

∂y
+w

Since the free surface is at z = H +h then we have η(x,y, t) = H(x,y)+h(x,y, t). Using
this in the above equation gives us the boundary condition at the surface as

∂h
∂ t

+ û
∂

∂x
(H +h)+ v̂

∂

∂y
(H +h)− ŵ = 0

where the "hat" on the velocity components indicates that they are evaluated at the
free surface. In a similar manner, since fluid cannot penetrate the impermeable bo�om
Ω(z =−H), we obtain

ŭ
∂H
∂x

+ v̆
∂H
∂y
− w̆ = 0

where the breve is used to indicate the velocities are those at the bo�om. We can apply
the "no-slip" condition so that

ŭ = v̆ = w̆ = 0

3.0.1 Time-step limitations on the HPEs

The HPEs have time-step limitations due to existence of fast external gravity and Rossby
modes. External waves as mentioned previously have propagation speeds as high as
200ms−1. This speed, c is obtained from the relation c =

√
gH , where g is the gravitational

acceleration and H is the height of the water column.

3.0.2 External gravity waves

We have have already seen that acoustic waves if permi�ed can limit the time-step of an
explicit large scale model to only the order of seconds. The HPEs are free of these waves
since we already filtered the initial equations of these very fast speed modes. External
gravity waves are the next fast modes a�er sound waves. We analyze these motions by
depth-integrating the equations.
If the pressure is split into two parts

p =
∫

η

z
gρ̄dz+

∫
η

z
g(ρ− ρ̄)dz

then the external gradients of the first term on the right hand side will be uniform with
depth and a function only of the free surface height:

1
ρ̄

∇h

∫
η

z
gρ̄dz = g∇hη



20

Using this in the depth averaged momentum equations (14) and the free surface equations
we summarize

∂

∂ t

∫
Ω

~vhdΩ +g∇hη = ...

∂

∂ t
η +∇.H

∫
Ω

~vhdΩ = ...

Combining the two summary representations above we get

∂ 2

∂ t2 η−∇h.gH∇hη = ...

which is a representation of waves whose phase speed is given as cw =
√

gH . For instance
if H = 4000m then cw = 200ms−1 which is very fast.
For resolutions of 10km and 100 km such an explicit time-step would be limited to an order
of 1 minute and 8 minutes respectively. We can avoid these time limitations by filtering
HPEs to remove the external waves. This is accomplished by use of three conventional
methods namely;

i. Rigid-lid approximation

ii. the split-explicit method and

iii. the implicit method

3.0.3 Rigid-lid approximation

In the hydrostatic primitive equations, the total height of the water column is given as
h(x,y, t) = H(x,y)+η(x,y, t) where z = η(x,y, t) is the surface elevation and z =−H(x,y)
is the length of the water column beneath a fixed level z = 0. In rigid-lid approximation
we first assume that the free surface is at z = 0 and non-varying such that

Dtη = 0

As a result, equation (20) is modified into

∇.
∫ 0

−H
~vhdz = 0

The second step is to work on the pressure equation. We partition the pressure into two
parts, one associated with the rigid lid denoted by ps and an hydrostatic part ph so that

p = ps + ph
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The surface pressure, ps is the pressure exerted by the rigid lid on the level surface z = 0
while the hydrostatic pressure is obtained by vertically integrating the hydrostatic equation
from z = 0 to an arbitrary depth z and applying the boundary condition ph(0) = 0;

ph =
∫ 0

z

gρ

ρ̄
dz

This further modifies the modifies the momentum equations to new form

∂t~vh +
1
ρ̄

∇h ps = ~Gh

where ~Gh contains all the other missing terms including the lateral gradient of hydrostatic
pressure. Discretization of this equation in time yields

~vn+1
h +

∆ t
ρ̄

∇h ps =~vn
h +∆ t~Gh

Using this equation in the depth-integrated continuity equation gives

∆ t
ρ̄

∇h.H∇h ps = ∇.
∫ 0

−H
(~vn

h +∆ t~Gh)dz

This form of approximation requires that we find ~Gh and then solve the elliptic equations
to obtain the surface pressure. This is known as the pressure method and ensures non-
divergence of the depth-integrated flows.
To solve the 2-D elliptic equations we require to specify the stream functions at the coasts
(i.e. at H = 0) so as to be able to obtain the boundary conditions. The stream function
was first used by Bryan and Cox in their first ocean model and clarifies that the elliptic
equation need not be solved accurately.

3.0.4 Implicit free surface

The method is applied in time treatment of the free surface equation. It is a very stable
method and does not limit the time step. For all types of oceanic flows, the free surface
elevations are very small as compared to the nominal depth of the ocean |η |<< H . This
fact gives us a justification for linearizing the free surface equation (20) for the purposes
of applying the implicit method (the implicit method is only suitable for linear terms).
The equation for pressure (15) can be split into three integrals and wri�en as

p =
∫

η

z
gρdz =

∫
η

0
gρ̄dz+

∫
η

0
g(ρ− ρ̄)dz+

∫ 0

z
gρdz

≈ gρ̄η +
∫ 0

z
gρdz
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We next seek to linearize the free surface equation by making the assumption that (ρ(η)−
ρ̄)<< ρ̄ so that the approximate above becomes

p = gρ̄η +
∫ 0

z
gρdz

The next thing we do is to discretize the free-surface equation using the implicit backward
method

~vn+1
h +∆ tg∇η

n+1 =~vn
h +∆ t~Gh (21)

η
n+1 +∆ t∇.

∫ 0

−H
~vn+1

h d∇z = η
n +∆ t(P−E) (22)

Using equation (21) in Eq (22) to eliminate~vn+1
h we get

η
n+1 +∆ t2

∇.gH∇η
n+1 = η

n +∆ t(P−E)−∆ t∇.
∫ 0

−H
(~vn

h +∆ t~Gh)dz (23)

an elliptic equation which we need to solve for ηn+1 at each level in the model and then
step forward the momentum equation.

3.0.5 Split-Explicit method

This one involves treating the depth-integrated equation di�erently from the rest of the
equations in the system. The idea here is that we split this equation from the rest and
integrate it using a shorter time-step. This is applied on this single equation because it
is the equation that causes time-step limitations due to external gravity waves. First we
find an approximate of the barotropic momentum equations

∂t

∫
Ω

~vhdΩ +g∇η =
∫

Ω

~GhdΩ (24)

where
∫

Ω
~GhdΩ is the depth average of all the terms of the momentum equation. Next

we integrate this Eq (24) with the free-surface equation forward using a short time step,
∆ t
M , with ∆ t being the regular time step for the entire full model. This is done using the
forward-backward method outlined below

η
n+(m+1)

M = η
n+m

M +
∆ t
M

∇.(H +η
n+m

M )~v
n+m

M
h

~v
n+(m+1)

M
h =~v

n+m
M

h +
∆ t
M

(g∇η
n+(m+1)

M +< ~Gh >)

These equations are then stepped forward M times to give the approximation for ηn+1.
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3.0.6 Accelerating to equilibrium

Several manipulations are made on the equations to a�ain a fast convergence to equi-
librium. A typical physical general circulation model would require roughly 7× 1011

operations with 4050 grids to perform a complete computational model. This means that
spinning up an ocean-climate model to equilibrium would take at least 1000 years. Thanks
to Bryan for coming up with acceleration mechanism to help mathematicians realize
accurate ocean models within a sensible time duration. Bryan, 1984, analyzed the method
of accelerating ocean-climate models to converge fast to equilibrium. Accelerating the
approach to equilibrium reduces the time needed to carry out computations by a large
extend and eliminates the di�iculty of the process. The consequences of the accelerating
approach has been investigated extensively by Danabasoglu, McWilliams and Large J.
Clim (1996) who gave support to the approach. In the following subsections, we will derive
the dispersion relations for internal gravity waves then finally analyze the distortion.

3.0.7 Vertical modes

The linearized equations of motion are

∂t~vh + f k̂∧~vh +
1
ρ

∇h p = 0 (25)

−b+
1
ρ

∂z p = 0 (26)

∇h.~vh +∂zw = 0 (27)

∂tb+wN2 = 0 (28)

where b = −gρ

ρ̄
is the buoyancy variable N2 = ∂zb0(z) is the background stratification

for buoyancy. These equations are used for analysis of wave motions. To avoid the 3-D
nature of these equations, we need to describe the vertical structure in terms of modes.
To do this we use the Fourier modes and assume that the background stratification, N2 is
a constant. Every field can be described as a set of time and space dependent coe�icients
multiplying a vertical structure.

(~vh,w, p,b) = ∑
m
(~vm,wm, pm,bm)eimz

This way we replace the vertical derivatives with im where m = 2π

hm
is the vertical wave

number. Equations (26), (27) and (28) becomes respectively

bm = impm

imwm =−∇h.~vm

∂tbm = N2wm
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These three are then combined together to give

m2
∂t

pm

ρ̄
+N2

∇hvm = 0

and the four equations of motion (25) - (28) then reduces to

∂t~vh + f k̂∧~vh +
1
ρ

∇h p = 0 (29)

∂t
pm

ρ̄
+

N2

m2 ∇hvm = 0 (30)

where N
m is the gravity wave speed. These two are the equations that govern every vertical

mode. They both take the form of shallow water equations. To obtain the dispersion
relation for internal waves we assume another form for the vertical modes given by
ei(kx+ly−wt) for each vertical mode. Working with this yields a dispersion relation of the
form

ω = f 2 +(
N
m
)2(k2 + l2)

Note that the background stratification N2 can also be allowed to vary vertically as used
bt Bryan, 1984. In this work we choose N2 = constant to avoid complications since the
results obtained in both choices have just a slight di�erence.

3.0.8 Slowing down inertia-gravity waves

To accelerate the motion we use shorter time steps in the momentum equation than in
any other of the equations.

∆ t~v =
1
α

∆ t

where ∆ t~v is the horizontal time step, ∆ t the regular time step used in the full model and
α is the distortion factor. This scales all the terms in the equation of momentum by α so
that the new system becomes

∂t~vh +
1
α
( f k̂∧~vh +

1
ρ

∇h p) = 0 (31)

−b+
1
ρ

∂z p = 0 (32)

∇h.~vh +∂zw = 0 (33)

∂tb+wN2 = 0 (34)

Using this new form of equations with a new time step applied to the momentum equation
we repeat the process used in the previous subsection to reduce equations (32), (33) and
(34) into a common equation. For the three combined together we get

∂t
pm

ρ̄
+(

N
m
)2

∇h.~vm = 0
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so that the resulting equations for each vertical mode are given by

α∂t~vh + f k̂∧~vh +
1
ρ

∇h
pm

ρ̄
= 0 (35)

∂t
pm

ρ̄
+(

N
m
)2

∇h.~vm = 0 (36)

The dispersion relation for internal waves is obtained by another form of vertical modes
given by ekx+ly−wt for each vertical mode. The dispersion relation is:

ω
2 =

f 2

α2 +
N2

αm2 (k
2 + l2)

For long waves (k2 + l2)<< N2

( f m)2 where the frequencies approach the Coriolis frequency,

the distorted frequency is lower than α and the gravity wave speed is
√

α slower. The
application of smaller time-step in the momentum equation slows down the fast waves.

Distorted Rossby waves

Using shorter time-step in the momentum equation also a�ects the Rossby waves (Rossby
waves are also distorted). The geostrophic balance remains una�ected by the distortion
factor α since the Coriolis and pressure gradient terms are equally scaled by α :

f k̂∧ vm =
1
ρ

∇h pm

so that the vorticity can be wri�en as

ζm =
1
ρ

∇
2
h

pm

ρ̄

Using this we express the vorticity equation as

α∂tξm + f ∇h~vm +βvm = 0

and the potential vorticity equation is

α

f
∂t∇

2
h pm− f

m2

N2 ∂t pm +
β

f
∂x pm = 0

The dispersion relation of Rossby waves is given by

ω =
−βk

α(k2 + l2)+ f 2m2

N2
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For long waves (k2 + l2) << 1
L2

r
and the distortion becomes negligible. Distortion can

a�ect the stability of the models at western boundaries since short waves are slowed by
time-stepping. The shallow water equations are given by

α∂t~vh + f k̂∧~vh +
1
ρ

∇h
pm

ρ̄
= 0 (37)

∂t
pm

ρ̄
+(

N
m
)2

∇h.~vm = 0 (38)

Spli�ing the momentum equation (37) into x- and y- components we have

α∂tum−βyvm +∂x
pm

ρ̄
= 0 (39)

α∂tvm +βyum +∂y
pm

ρ̄
= 0 (40)

∂t
pm

ρ̄
+

N2

m2 ∇~vm = 0 (41)

Equations (39), (40)and (41) are the linear shallow water equations on the β -plane. These
equations can be combined into a single equation of the form

∂t [α
2
∂tt +(βy)2−α

N2

m2 ∇
2
h]m−β

N2

m2 ∂xvm = 0 (42)

We applied a rescaling to the meridional coordinates so that the new coordinates are
y, =

√
βy(αm2

N2 )
1
4 . This results to a weak modification of equatorially trapped waves. The

distorted linear bouyancy is given by

∂tb+
ωN2

µ(z)
= 0

where µ(z) = 1 at the surface and less than 1 in the interior of the fluid. N2 being a
constant indicates that N2

µ(z) is purely a function of z or simply a function of depth. Hence

modal decomposition of N2

µ(z) must reflect the approximate vertical structure and the
Fourier decomposition fails to work.
The method we have used here aims at accelerating the approach to equilibrium. It
modifies the time-scales of the system to allow longer e�ective time-steps. We have
used di�erent time-steps for the thermodynamic tracer equations and the momentum
equations. The convergence of this approach is most meaningful if there exists a steady
state solution. This equation, (42) is not easy to solve. We will not solve this equation
in this work, it is le� to be solved in a further study by applying an appropriate method.
This is the equation we intend to solve using the Discontinuous Galerkin Finite Element
Method as per the topic of this project. The Navier-Stokes equations are the govern-
ing equations to most fluid dynamic models. They are the basis equations for models
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concerning flows through thin channels (pipes), flows around aircra�s and ships, etc.
to mention but a few. These equations are usually complicated and di�icult to work
with. To simplify them we make an assumption that the vertical acceleration in a fluid
flow is negligible compared to the horizontal acceleration. This assumption is obvious
for most flows on the earth’s surface. Applying this assumption to the N-S equations
results in a hydrostatic pressure distribution and the shallow water equations which
are easy to deal with instead of the complicated N-S equations. The derivation here is
based on the work of Young et al. (1997), Vreugdenhil (1994) and Schwanenberg (2003)

3.1 SWE for a flow through a Channel

In this section we derive the shallow water equations in one-dimension beginning with
Navier Stokes equations which are free of the e�ects of rotation of the earth. For a small
scale flow such as flow in a river/channel, dam or a lake, we may ignore the e�ects of
earth’s rotation. This leaves us with less complicated equations which can be solved with
much ease. In this chapter we derive the 1D SWE. We begin with the N-S equations then
apply the Boussinesq and hydrostatic approximations to obtain the 3D SWEs. This is
then followed by application of subsequent conditions and integrations to the 3D SWE to
obtain the 2D depth-integrated SWEs from which we then derive the 1D SWE.

3.1.1 3D shallow water equations

For a liquid (water in this context), the mass density remains more or less constant during
motion. In this case we say that the flow is incompressible and we can express the density
as

ρ = ρ(t,x) = ρ0, (all through the domain of flow)

for some ρ0 > 0. In this case the equation of mass conservation is given by

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0

The nature of this equation is kinematic. However, some experiments show that there
exist flows whose velocity satisfy the equation above but whose density is dependent
on the variables t and x. The incompressible N-S equations are made up of equation of
conservation of mass above together with the equations of conservation of momentum.
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The Cartesian form of the N-S equations is

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (43)

∂u
∂ t

+
∂u2

∂x
+

∂ (uv)
∂y

+
∂ (uw)

∂ z
=− 1

ρ

∂ p
∂x

+ν(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 ) (44)

∂v
∂ t

+
∂ (vu)

∂x
+

∂v2

∂y
+

∂ (vw)
∂ z

=− 1
ρ

∂ p
∂y

+ν(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2 ) (45)

∂w
∂ t

+
∂ (wu)

∂x
+

∂ (wv)
∂y

+
∂w2

∂ z
=− 1

ρ

∂ p
∂ z

+ν(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2 ) (46)

where (u,v,w) are velocity components in the (x,y,z) directions and ν = µ

ρ
is the kinematic

viscosity, µ in the expression of ν is a constant representing the dynamic viscosity of
water. p is the pressure and ρ is the mass density of water.
Using vector notation, let us denote by v j the velocity components, x j the directional
indices, g the gravitational acceleration and σi j the deformation stresses then the N−S
equations can be represented using this notation as

∂x jv j = 0 (47)

∂tvi +∂x j(v jvi−
1
ρ

σi j) = gi (48)

where Eq (47) is the mass conservation equation and Eq (48) the equation of momentum
conservation. The index notation i, j ∈ {x,y,z} represent the spatial directions and the
partial derivatives are represented as ∂x j =

∂

∂x j
. The stresses of deformation are in the

form
σi j =−pδi j +µ(∂x jvi +∂xiv j)

where δi j is the Kronecker delta defined by

δi j =

{
1, if i = j

0, if i 6= j

In this conversion and in the entire work we assume that gx = gy = 0 and gz =−g
The depth of the fluid is given by H(x,y,z) is a variable. The variation is caused by
movements of water on the free water surface and changes in the level of the floor of the
channel. At the free surface z = η(x,y, t) but at the bo�om face of the water layer, since
we assume that the floor is not flat, the height there is depended on x and y but fixed in
time, i.e. z =−h(x,y). By fixing a reference level within the water layer at z = 0 then the
total depth will be given by

H(x,y, t) = h(x,y)+η(x,y, t) (49)
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The fluid depth and velocity are variables for which we seek solutions. The vertical
acceleration is assumed to be negligible from the definition of shallow water flows. Thus
in the z-momentum equation (46) we have that |Dw

Dt | � |g+
1
ρ

∂ p
∂ z | and |ν∇2w| � |g+ 1

ρ

∂ p
∂ z |

where Dw
Dt is the three dimensional material derivative given by Dw

Dt = ∂

∂ t +u ∂

∂x +v ∂

∂y +w ∂

∂ z

and ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 Thus the z-momentum equation can be approximately given by

1
ρ

∂ p
∂x

=−g (50)

which is the hydrostatic pressure distribution equation. Integrating this equation vertically
and assuming that the atmospheric pressure is constant yields

p = ρg(η− z) (51)

Using equation (51) in equations (44) and (45) to substitute the pressure yields

∂u
∂ t

+
∂u2

∂x
+

∂ (uv)
∂y

+
∂ (uw)

∂ z
=−g

∂η

∂x
+ν(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 ) (52)

∂v
∂ t

+
∂ (vu)

∂x
+

∂v2

∂y
+

∂ (vw)
∂ z

=−g
∂η

∂y
+ν(

∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2 ) (53)

The three equations (43), (51) (52) and (53) are the 3D shallow water equations (or incom-
pressible hydrostatic Navier-Stokes equations). The unknowns are the velocity components
u,v,w and the surface elevation η

We can evaluate the vertical velocity of a fluid particle at the free surface and that of a
fluid particle at the bo�om. To evaluate these velocities, we assume that a fluid particle
at the bo�om or at the top retains its position respectively.

At the surface: w|z=η =
Dη

DT
|z=−h = [

∂η

∂ t
+u

∂η

∂x
+ v

∂η

∂y
]z=η (54)

and at the bo�om: w|z=−h =−
Dh
Dt
|z=−h =−[u

∂h
∂x

+
∂h
∂y

]z=−h (55)

Equations (54) and (55) are known as the kinetic boundary conditions for the 3D SWEs.

3.1.2 2D shallow water equations

They are obtained by further integration of the 3D SWEs vertically over the water depth.
Starting with the continuity equation (43) and integrating over the interval z = [−h,η ];

∫
η

−h

∂

∂x
udz+

∫
η

−h

∂

∂y
vdz+

∫
η

−h

∂

∂ z
wdz = 0
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We recall the Leibniz’s theorem which asserts that;

∂

∂β

∫
λ2(β )

λ1(β )
f (λ ,β )dλ =

∫
λ2(β )

λ1(β )

∂

∂β
f dλ + f (λ2,β )

∂λ2

∂β
+ f (λ1,β )

∂λ1

∂β

Applying this we can integrate the above terms of the integrals of the continuity equation
to obtain

∂

∂x

∫
η

−h
udz−u|z=η

∂η

∂x
−u|z=−h

∂h
∂x

+
∂

∂y

∫
η

−h
vdz− v|z=−h

∂η

∂y
− v|z=−h

∂h
∂y

+w|z=η −w|z=−h = 0

The depth averaged velocity terms are given as

ū =
1
H

∫
η

−h
udz and v̄

∫
η

−h
vdz (56)

We use these definitions to eliminate the integrals from the equation above to obtain

∂ (ūH)

∂x
−u|z=η

∂η

∂x
−u|z=−h

∂h
∂x

+
∂ (v̄H)

∂y
− v|z=−h

∂η

∂y
− v|z=−h

∂h
∂y

+w|z=η −w|z=−h = 0

To obtain the boundary conditions at the bo�om and on the surface, we substitute the
kinetic boundary conditions (54) and (55) in this equation to get

∂η

∂ t
+

∂

∂x
(ūH)+

∂

∂y
(v̄H) = 0 (57)

From the definition of the height of the water column in Eq (49), η = H−h(x,y). This
guides us to seeing that the continuity equation in two-dimensions can be wri�en as

∂H
∂ t

+
∂

∂x
(ūH)+

∂

∂y
(v̄H) = 0 (58)

expressed in the form of derivatives of the depth averaged velocities and a time derivative
of the height of the column.
A similar treatment is carried out on the momentum equations i.e. depth-integrating the
individual terms. For the x-momentum equation, Eq (52), applying the Leibniz’s formula
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to integrate each term;

∫
η

−h

∂

∂ t
udz =

∂

∂ t

∫
η

−h
udz−u|z=η .

∂η

∂ t
(59)∫

η

−h

∂

∂x
u2dz =

∂

∂x

∫
η

−h
u2dz−u2|z=η .

∂η

∂x
−u2|z=−h.

∂h
∂x

(60)∫
η

−h

∂

∂y
(uv)dz =

∂

∂y

∫
η

−h
(uv)dz− (uv)|z=η .

∂η

∂y
− (uv)|z=−h.

∂h
∂y

(61)∫
η

−h

∂

∂ z
(uw)dz = (uw)|z=η − (uw)|z=−h (62)∫

η

−h
g

∂

∂x
ηdz = g

∂

∂x
η(η +h) = gH

∂

∂x
(H−h) (63)

Depth-integrating the last term on the right hand side of equation (52) we obtain the
depth-integrated friction denoted by S fx and given by

S fx =
∫

η

−h
ν(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 )dz

Since the velocity variation vertically is negligible we can take out the integrands involving
velocities from equations (59), (60) and (61) since the values of these terms turn out to be
negligible. Also let us take equality of the depth-integrated velocities to the horizontal
velocities,i.e. ū = u and v̄ = v. Then applying the kinetic boundary conditions (54) and (55)
to the depth-integrated x-momentum equation yields

∂

∂ t
(uH)+

∂

∂x
(u2H)+

∂

∂y
(uvH) = gH

∂

∂x
(h−H)+S fx (64)

where S fx =
∫ η

−h ν(∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 )dz is the depth-integrated term of the x-component.

Carrying out a similar operation on Eq (53) we obtain the depth-integrated y-momentum
equation which takes the form

∂

∂ t
(vH)+

∂

∂x
(vH)+

∂

∂y
(v2H) = gH

∂

∂y
(h−H)+S fy (65)

where S fy is the depth-integrated friction term.
Equations (58), (64) and (65) are the two dimensional shallow water equations.

∂H
∂ t

+
∂

∂x
(ūH)+

∂

∂y
(v̄H) = 0 (66)

∂

∂ t
(uH)+

∂

∂x
(u2H)+

∂

∂y
(uvH) = gH

∂

∂x
(h−H)+S fx (67)

∂

∂ t
(vH)+

∂

∂x
(vH)+

∂

∂y
(v2H) = gH

∂

∂y
(h−H)+S fy (68)
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This is the system of shallow water equations representing mass and momentum conser-
vation. We can write them in the di�erential conservative law form as

∂~u
∂ t

+∇. f (~u) = S(~u) (69)

where ∇ f = ∂x fx +∂y fy,~u is a vector containing the unknown variables, ~f = (~fx,~fy) is a
flux vector and S(~u) is the vector containing the source terms. Here

~u =


H

uH

vH

 fx(~u) =


uH

u2H

uvH



fy(~u) =


vH

uvH

v2H

 and S(~u) =


0

−gH ∂η

∂x +S fx

−gH ∂η

∂y +S fy


or

~u =


H

uH

vH

 fx(~u) =


uH

u2H + 1
2gH2

uvH



fy(~u) =


vH

uvH

v2H + 1
2gH2

 and S(~u) =


0

gH ∂h
∂x +S fx

gH ∂h
∂y +S fy



3.1.3 One-dimensional SWE

For flows in channels and rivers we neglect the acceleration in the y-direction. This further
reduces the 2D SWE into a one-dimensional equation. The equations are simplified by
looking at the cross-section instead of the total water depth.
Consider an incompressible 1D flow. Let us take an infinitesimal fluid volume in the flow
of a cross-sectional areas A(x) on one face and A(x+ M x) on the other face. Also let the
pressure acting on the face of cross section A(x) be p(x) and that acting on the second
face be p(x+ M x). Then the Navier Stokes equations for this infinitesimal control volume
without viscous stress terms are given by

∂t(A M x)− (Au)(x)+(Au)(x+ M x) = 0 (70)
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∂t(Au M x)− (Au2)(x)+(Au2)(x+ M x)

=
1
ρ
[(Ap)(x)− (Ap)(x+ M x)]+

1
ρ

p[A(x+ M x)−A(x)] (71)

where M x is the length of the selected control volume and p is the normal pressure acting
on the infinitesimal control volume. Dividing equations (69) and (70) by M x and taking
the limit as M x−→ 0 we obtain the di�erential equations given below

∂tA+∂x(Au) = 0 (72)

∂t(Au)+∂x(Au2) =− 1
ρ

A∂x p (73)

Applying the hydrostatic pressure condition since the flow here is a shallow water flow,
the equations are further modified into

∂tA+∂x(Au) = 0 (74)

∂t(Au)+∂x(Au2) = gA∂x(h−H) (75)

These are the one-dimensional shallow water equations. To obtain the (quasi-) conservation
law form of these equations, we further di�erentiate the R.H.S term on equation (75) to
get

∂tA+∂x(Au) = 0 (76)

∂t(Au)+∂x(Au2 +gAH) = gA∂xh−gH∂xA (77)

We still need to modify the equations further to obtain the equations in a completely
conservation law form. We will do this by making the assumption that the channel is of a
constant width W , so that A = HW . Inserting this value of A in Eq (74) and (75) we obtain

∂tH +∂x(uH) = 0 (78)

∂t(uH)+∂x(u2H) = gH∂x(h−H) (79)

Let q= uH be the discharge and η the surface elevation then the equations further reduces
to the form

∂tH +∂x(q) = 0 (80)

∂t(q)+∂x(uq) =−gH∂xη (81)

The term on the right hand side of (81) represents the surface slope and it brings about
variations in the discharge.
If the conservative form of the equations are required to include the momentum flux,
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then we represent the bo�om slope as the source term so as to facilitate this. The surface
becomes no longer the source term as in the above equations and (80) is modified and we
have the new form of the equations as

∂tH +∂x(q) = 0 (82)

∂t(q)+∂x(
q2

H
+

1
2

gH2) = gH∂xh (83)

which can be wri�en in conservative law form as

∂tu+∂x f (u) = s(u) (84)

where

u =

H

q

 , f (u) =

 q
q2

H + 1
2gH2

 and s(u) =

 0

−gH∂xh

 (85)

This equation represents a one-dimensional SWE where f (u) =

 q
q2

H + 1
2gH2

 is the fluid

flux and s(u) =

 0

−gH∂xh

 is the source term. We will solve this equation using the

Discontinuous Galerkin finite element (DG) discussed in the next chapter.
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4 Finite Element Methods for PDEs

4.1 Introduction: Partial Di�erential Equations (PDEs)

PDEs are Mathematical expressions describing a relation between dependent variable
u(x) and independent variables x through multiplications and partial derivatives. The
order of a di�erential equation is defined as the order of the highest derivative of u(x)
that appears in the equation. A general second order PDE with constant coe�icients takes
the form

Auxx(x,y)+2Buxy(x,y)+ cuyy(x,y)+Dux(x,y)+Euy(x,y)+Fu(x,y) = G

The PDE is said to be homogeneous if G = 0 and non-homogeneous if otherwise. These
di�erential equations can either be classified as Elliptic, Parabolic or hyperbolic de-
pending on the value of the discriminant d = AC−B2. If d > 0 we say that the PDE is
Elliptic, if d = 0 we classify the PDE as Parabolic and if d < 0 the PDE is said to be
Hyperbolic. Examples:

i Elliptic: The Laplacian equation, d2u
dx2 +

d2u
dy2 = 0

ii Parabolic: Heat equation, du
dt −

d2u
dx2 = 0

iii Hyperbolic: Wave equation, d2u
dt2 − d2u

dx2 = 0

Initial conditions and/or boundary requirements are given together with these expressions.
Depending on the conditions given, we come up with three types of problems namely;
Initial Value Problems (IVP), Boundary Value Problems (BVP) and Initial Boundary
Value Problems(IBVP).

i. Initial value problem
An IVP is a problem in which the value of the dependent variable and its derivative is
specified at the initial point t = 0 or at some value of the independent variables in the
equation. Example: Below shows an IVP of the wave equation{

d2u
dt2 − d2u

dx2 = 0 −∞ < x < ∞ t > 0

u(x,0) = f (x), ut(x,0) = g(x), −∞ < x < ∞
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ii. Boundary value problem
In this type of a problem, the value of the dependent variable and possibly its derivatives
are specified at the extreme values of the independent variable. For example: The 1D
stationary heat equation{

−[a(x)u′(x)]′ = f (x), 0 < x < 1

u(0) = u0, u(1) = u1, where u0,u1 ∈ R

There are three types of boundary conditions namely;

1. Dirichlet boundary condition: The value of the depended variable u is specified at
the boundary.

u(x, t) = f (x), for x = (x1,x2, . . . ,xn) ∈ Rn, t > 0

2. Neumann boundary conditions: In this type of BC the derivative of the solution at
the direction of the outward normal vector is provided For the heat equation for
instance; {

du
dt −

d2u
dx2 = 0

∂u
∂n = n.grad(u) = n.∇u = f (x), x ∈ ∂Ω

where n = n(x) is an outward unit normal to ∂Ω at x ∈ ∂Ω

3. Robin boundary conditions: Also called Mixed boundary conditions. It is a combi-
nation of the Dirichlet and the Neumann boundary conditions.

iii. Initial boundary value problem
In this problem we have both the initial conditions and the boundary conditions given.

Solutions of PDEs can then use this information and give us predictions of the later
states of this information. Mathematically, partial di�erential equations are equations
which contains partial derivatives, three examples of PDEs have been used previously in
examples. Here we introduce another PDE called the Poisson equation which is given by

∆u = ∇
2 ∂ 2u

∂x2 +
∂ 2u
∂y2 = f (86)

4.1.1 Methods of solving PDEs

There are several solution methods that can be used depending on the nature of the
physical problem. These include the Finite di�erence method, finite element method and
the finite volume method. The finite di�erence method is the most commonly used. It
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uses discrete approximations from grid information to replace the partials. For example,
in the Poisson equation we have the following operator acting on u

L = ∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2

Then the equation can be wri�en as Lu = f . Finite Di�erence methods are based on
approximating this operator by a discrete operator. Unlike the FEM, the FDM is not very
accurate if the geometry of the domain is complex. This di�erence between these two
methods comes in at the point of discretizing the PDE. Reed and Hill, (1971) came up with
a modification of the finite element method namely the Discontinuous Galerkin finite
element method. The need of this new method was to solve the neutron transport equation.
Unlike the FEM, this method makes use of discontinuous approximating functions.

The finite element method is a very rigorous method for solving PDEs. PDEs are Mathe-
matical expressions describing a relation between dependent and independent variables
through multiplications and partial derivatives. Initial conditions and boundary require-
ments are given together with these expressions. Solutions of PDEs can then use this
information and give us predictions of the later states of this information. Mathematically,
partial di�erential equations are equations which contains partial derivatives, examples
of PDEs are the wave equations, heat equations, Laplace equations, Poisson equation etc.
The Poisson equation for example is given by

∆u = ∇
2 ∂ 2u

∂x2 +
∂ 2u
∂y2 = f (87)

We will use this example in the practical examples and when introducing the finite element
method (FEM). In this equation u depends symmetrically on x and y. So, if we choose a
symmetric Ω, the solution will be symmetric.
In solving this equation, we find the solution in the region Ωdefined byΩ = (−1,1)2..
These boundary conditions are fundamental for the formulation of the finite element
mathod.

4.1.2 Finite element Method

The finite element method is mathematically very rigorous. It has much stronger math-
ematical foundation than many other methods i.e. it is mathematically more elaborate
than many other methods, and particularly the finite di�erence method. FEM uses results
from real and functional analysis. In the practical example in the end, we have included
what we call the minimization principle. This is equivalent to the minimizing principle
used when deriving the conjugate gradient method by minimizing the quadratic function.
The answer to this minimization function is our solution. But there is another result, called
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Weak formulation, which, when true, also makes the minimization formulation true. So we
will start at the weak formulation and discuss the results we arrive at. FEM is a numerical
method of solving PDEs, and to achieve this objective, it is a characteristic feature of the
FE approach that the PDE in question is first reformulated into an equivalent form, and
this form has a weak form.

4.1.3 Steps in the Finite Element Approach

The final formulation of the FE method is a linear system Au = b. These are the steps
followed in the FE approach

i. Establish the strong formulation

ii. Obtain the weak formulation

iii. Choose approximations for the unknown functions, in this case u

iv. Choose the weight functions v

v. Solve the resulting linear system

4.1.4 Strong Formulation (Poisson Equation)

In this part we consider the Poisson equation chosen in the beginning. We want to solve
this in the region Ω = (0,1)2 We intend to use only Homogeneous Dirichlet boundary
conditions. This gives us

∆u =
∂ 2u
∂x2 +

∂ 2u
∂y2 = f ,defined onΩ = (0,1)2 (88)

u(∂Ω) ∂Ω = {(x,y)|x = 0,1 or y = 0,1}. (89)

This is called the strong formulation in Finite element, and says no more than the original
PDE formulation.

4.1.5 Weak Formulation (Poisson’s Equation)

The weak formulation is a re-formulation of the original PDE (strong form), and it is from
this form that we establish the final FE approach. To establish the weak form of the PDE,
we multiply equation (88) with an arbitrary function, so-called weight-function v(x,y) to
obtain

v∇
2u = f v (90)
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Integrating this expression over Ω . ∫
Ω

v∇
2u =

∫
Ω

f v (91)

v(x,y) should be chosen in such a way that the manipulations it undergoes are meaningful.
Let us define a space of functions and call it H1

H1(Ω) = {v : Ω −→ R :
∫

Ω

v2,
∫

Ω

v2
x ,
∫

Ω

v2
y <+∞} (92)

H1 is a function space where all the functions are bounded [quadratic integrable]. We
want our functions to be well-behaved, so that we can define operations on them within
the rules of, say, integration. Let us now define a sub-space X of H1 and let

X = {v ∈ H1(Ω) : v|∂Ω = 0 (93)

Integrating further eguation (92). Let u,v ∈ X . We know from calculus that ∇(v∇u =

∇v.∇u+ v∇2u). We can write ∫
Ω

v∇
2u =

∫
Ω

∇v.∇u (94)

Using Gauss’s theorem on ∇(v∇u) we get∫
Ω

(v∇u) =
∫

∂Ω

ν ν |∂Ω=0︸ ︷︷ ︸∇u.n̂dS = 0 (95)

In equation (95), we have transformed a surface integral to a line integral and dS refers to
an infinitesimal line segment. We have not put dA on the surface integrals, therefore, Eq
(94) reduces to ∫

Ω

v∇
2u =−

∫
Ω

∇v.∇u (96)

and, so we get

−
∫

Ω

∇v.∇udA =
∫

Ω

f vdA (97)

Advantages of Weak Form Compared to Strong Form

Eq (97) is the final weak formulation. It is equivalent to the strong form posed previously.
In the strong form, we have two separate partial derivatives of u, so the strong form
requires that u be continuously di�erentiable until at least second partial derivatives. Our
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new formulations has lowered this requirement to only first partial derivatives of u by
transforming one of the partial derivatives onto the weight-function v(x,y). This is the
first big advantage of the weak formulation.
X is a subspace of H1 because our weak form requires that the functions be in H1. The
strong form requires that u be 0 along the boundary, so X is the subspace of all functions
which are zero on the boundary. Note that, Dirichlet are essential and reflected in X . This
comes automatically when we use the weak form.

4.1.6 Approximating the Unknown u

In the FE method, the region is divided into smaller parts and the approximation is carried
out over these smaller parts, and then based on these results, it is established for the
entire region. The entire domain is split into smaller parts called finite elements, for which
we are able to give an approximation for u, then we are able to approximate u for the
whole geometry of any form. Hence we say that the approximation has been carried out
"elementwise", hence the name.
The following diagrams shows one dimensional elements;

Figure 1. Linear 1-D element

Figure 2. �adratic 1-D element

Figure 3. Cubic 1-D element

In 2-dimensions the elements are triangular and can be linear, quadratic or cubic as
shown in the next figure. The domain is first discretized into nodes, and then well-defined
triangulation is performed between the nodes. Elements may share nodes with some
even having four or more nodes. The advantage of triangulation is that it can be used to
approximate a huge range of geometries.

Figure 4. Nodes for a 2-D linear element
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Figure 5. 2-D �adratic element

Figure 6. 2-D cubic element

4.1.7 Basis Functions

The discretization of the 2D-domain is made up of triangles and each triangle has three
nodes. One node can be shared by several triangles whereby each triangle is an element.
The final formulation will give us a linear system of equations with dimensions N×N
where N is the number of nodes. This means that a�er solving the system, we will find
the values of u at the nodes.
We need to define basis functions for the 2D-domain. We will have as many basis functions
as we have nodes, i.e. each node has one basis function. We denote these basis functions
(for node number i) as φ(x j,y j) = δi j. Each φi(x,y) is non-zero only in elements which
share node i.
Going back to the weak form of our equation, Eq (97), let us look at the function u(x,y)
which is continuously di�erentiable. Note that all the functions φi are continuously
di�erentiable.
In our problem, we are in search of a function û(x,y) which is piecewise linear on each
element. The function we are looking for can be wri�en as a linear combination of the
basis functions as

û(x,y) =
N

∑
i=1

ûiφi(x,y) (98)

and again

û(x j,y j) =
N

∑
i=1

ûiφi(x j,y j) = û j,Nodal basis (99)
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We can define other forms say l and a so as to express our problem in an easy form. Let
us define these two forms as

a(u,v)≡
∫

Ω

∇v.∇u and l(v)≡
∫

Ω

f v (100)

Using integral rules we observe that a is a bilinear form and l is a linear form. Using Eq
(100) and the weak form Eq (97), the weak form can be re-wri�en as

a(u,v) = l(v), u,v ∈ X (101)

also notice that a(u,v) = a(v,u).
Note that the number N used in the summations above is the number of nodes, the
boundary nodes included. We can at this stage express our approximation function û and
our weight function v respectively as

û =
N

∑
i=1

ûiφi (102)

v =
N

∑
j=1

v jφ j (103)

Note that we are using v in terms of our basis functions. This is called the Galerkin method.
Pu�ing Eq (102) and (103) into the weak form, Eq (101) above we have

a(
N

∑
j=1

v jφ j,
N

∑
i=1

ûi) = l(
N

∑
j=1

v jφ j)

= a(v1φ1,
N

∑
j=2

v jφ j,
N

∑
i=1

ûiφi)

= a(v1φ1,
N

∑
i=1

ûiφi)+a(
N

∑
j=2

v jφ j,
N

∑
i=1

ûiφi)

=
N

∑
j=1

a(v jφ j,
N

∑
i=1

ûiφi)

=
N

∑
j=1

N

∑
i=1

a(v jφ j, ûiφi)

=
N

∑
j=1

v j

N

∑
i=1

a(φ j,φi)ûi =
N

∑
j=1

v jl(φ j) (104)

The last expression can be wri�en in compact form as

vT Aû = vT F =⇒ Aû = F (105)
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Here,

v = [v1,v3, ...,vN ]
T (106)

û = [û1, û3, ..., ûN ] (107)

and A and F are given by

A =


a(φ1,φ2 a(φ1,φ2) . . . a(φ1,φN)

a(φ2,φ1) a(φ2,φ2) . . . a(φ2,φN)

· · · · · · · · · · · ·

a(φN ,φ1) a(φN ,φ2) . . . a(φN ,φN)

 and F =
[
l(φ1 l(φ2) · · · l(φN)

]T
(108)

Note that the system Aû = F is not symmetric positive definite (SPD), a property that is a
prerequisite for the conjugate gradient method. The reason for this is because we have
not yet specified the boundary conditions. We have just set up the system for all nodes.
We need to change this system so that u = 0 along the boundary. Remember that we had
u = 0 in our strong form. We also have f = 1, so that there is no need to use quadrature
or any other numerical technique to calculate the l(φi) integral, since this integral is easy
to calculate.
If our node numbering is given as 1,2,3, ...,N, we can easily change our linear system
to an SPD by se�ing û = 0 for all nodes i which are boundary nodes. If for instance the
fourth node is a boundary node we remove the fourth column and the fourth row from
the matrix A. A�er removing all the rows and columns corresponding to the boundary
nodes, we will have the final SPD form of the linear system which can be solved by the
several numerical methods.
Towards our practical implementation, it will be convenient to define a reference triangular
element and define a 1−1 mapping between a general physical element in the physical
domain. All the integrals which make up A and F are performed in this reference element.
This is just a convenient substitution.

4.1.8 Solving the Poisson Equation

As seen previously, the Poisson equation is given as ∆u = ∇2u = f = 1, defined on the
region Ω = Let us denote the boundary by Γ

4.1.9 Minimization formulation
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We seek to find u ∈VD such that

u = arg min
w∈V D

J(w) (109)

J(w) =
1
2

∫
Ω

∇w.∇wdA−
∫

Ω

f wdA (110)

=
1
2

∫
Ω

∇w.∇wdA (111)

V D = {v ∈ H1(Ω)|v|Γ = 0} (112)

H1(Ω) = {v : R−→ R|
∫

Ω

v2,
∫

Ω

v2
x ,
∫

Ω

v2
y <++∞} (113)

4.1.10 Weak formulation

Let w = u+ v ∈V D.

J(w) = J(u+ v)

=
1
2

∫
Ω

∇(u+ v).∇(u+ v)dA

=
1
2

∫
Ω

∇u.∇vdA+
∫

Ω

∇u.∇vdA+
1
2

∫
Ω

∇v.∇vdA (114)

δJv(U) =
∫

Ω

∇u.∇vdA

=
∫

Ω

∇(v∇u)dA−
∫

Ω

v∇
2udA

=
∫

Γ

v∇u.n̂dS−
∫

Ω

v∇
2udA = 0 (115)

It follows from the above results that

J(w)≥ J(u) ∀w,u ∈V D, Weak formulation (116)

4.1.11 Geometric representation

Let φi|T = Ni. This is the function φi restricted to one element. T stands for an element.
We want to compute the integral over the element T

a(Ni,N j) =
∫

T

∂Ni

∂x
∂N j
∂x

+
∂Ni

∂y
∂N j

∂y
dA (117)
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In terms of programming, it is easier to calculate the element integral (117) by the
use of substitution. We define a linear and a�ine mapping between T and a refer-
ence element T̂ for simplicity. Basis functions for T̂ corresponding to the functions
N1(x,y),N2(x,y) and N3(x,y) are given by

N̂(ξ ,η) = 1−ξ −η

N̂2(ξ ,η) = ξ

N̂3(ξ ,η) = η (118)

The relationship between the coordinates (x,y) and (ξ ,η) is given by

x = xT
1 N̂1 + xT

2 N̂2 + xT
3 N̂3

y = yT
1 N̂1 + yT

2 N̂2 + yT
3 N̂3 (119)

We have

∂Ni

∂x
= (120)

We need to find ∂ξ

∂x ,
∂ξ

∂y ,
∂η

∂x and ∂ξ

∂y . Since x = x(ξ ,η) and y = y(ξ ,η), we getdx

dy

=

 ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

dξ

dη

 (121)

The Jacobian of matrix is given by

|J|= |
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

|= |
xT

2 − xT
1 xT

3 − xT
1

yT
2 − yT

1 yT
3 − yT

1

| (122)

And the inverse of (121) is given bydξ

dη

=

 ∂ξ

∂x
∂ξ

∂y
∂η

∂x
∂η

∂y

dx

dy

=
1
|J|

 ∂y
∂η

− ∂x
∂η

− ∂y
∂ξ

∂x
∂ξ

dx

dy

 (123)

This gives us

∂ξ

∂x
=

1
|J|

∂y
∂η

∂ξ

∂y
=

1
|J|

∂x
∂η

(124)

∂η

∂x
=

1
|J|

∂y
∂ξ

∂η

∂y
=

1
|J|

∂x
∂ξ

(125)
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It follows that

∂N1

∂x
=

1
|J|

(yT
2 − yT

3 )
∂N1

∂y
=

1
|J|

(xT
3 − yT

2 ) (126)

∂N2

∂x
=

1
|J|

(yT
3 − yT

1 )
∂N2

∂y
=

1
|J|

(xT
3 − xT

1 ) (127)

∂N3

∂x
=

1
|J|

(yT
2 − yT

1 )
∂N3

∂y
=

1
|J|

(xT
2 − xT

1 ) (128)

All the terms in equations (126), (127) and (128) are constants, and the area of T is denoted
by AT . The element sti�ness matrix for T is given by

KT = AT =


∂xN2

1 +∂yN2
1 ∂xN1∂xN2 +∂yN1∂yN2 ∂xN1∂xN3 +∂yN1∂yN3

∂xN2∂xN1 +∂yN2∂yN1 ∂xN2
2 +∂yN2

2 ∂xN2∂xN3 +∂yN2∂yN3

∂xN3∂xN1 +∂yN3∂yN1 ∂xN3∂xN2 +∂yN3∂yN2 ∂xN2
3 +∂yN2

3


(129)

In the Laplace equation discussed here, we have chosen to use a constant load function
f = 1. We make this choice so as to avoid problems that are not necessary in our final
formulation.
We know that the entry Fi in the right-hand vector F is given by

Fi = l(φi) =
∫

f φi(x,y)dA =
∫

φi(x,y)dA f = 1 (130)

Since for the element matrix, φi is non-zero at the elements which share node i, we can
also write the previous expression of the Jacobian as

Fhi =
s

∑
k=1

∫
Ni(x,y)dA (131)

where S is the number of elements in Ω over which the support of Ni is unequal zero.
Using the framework mapping between T and T̂ , we can define (131) in terms of reference
coordinates (ξ ,η). Using dA = |detJ|

∫
N̂i(ξ ,η)dξ dη we get

Fhi =
S

∑
k=1

∫
N̂i(ξ ,η)|detJ|dξ dη =

S

∑
k=1
|detJ|

∫
N̂i(ξ ,η)dξ dη (132)

The Jacobian J is independent of the elements S. The integral in (132) is simply

∫
N̂i(ξ ,η) =

1
6

∀i = 1,2,3 (133)
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So,

Fhi =
S

∑
k=1

∫
N̂i(ξ ,η)|detJ|dξ dη =

1
6

S

∑
k=1
|detJ| (134)

The element matrix derived above is only for one element, we have as many 3×3 matrices
as we have elements. To form the entire matrix, we need to place these element matrices
at their proper positions. Similar working is repeated for the vector F . A�er pu�ing the
system together, we need to remove the columns and rows corresponding to boundary
nodes, because there we have given function values, in our case u = 0 along the boundary.
Then what follows is solving the system using the appropriate methods and then plo�ing
it.

4.1.12 Summary

As we stated at the beginning, we associate a di�erential operator (say L) to every PDE. For
instance, for the Poisson, L = ∇2. The Finite di�erence method discretizes this operator by
replacing every di�erential with an approximate expression using di�erential formulas. It
does this by making a grid of nodes, and uses the step length, which in general may vary
between nodes to find expressions for these formulas. The Taylor series is very important
in doing this.
The idea of discretization of the domain in which the PDE is defined is a common exercise
for both FE an FD methods. We have nodes in both FE and FD.
The main di�erence of the two methods lies in the concept of approximation. FD discretizes
the operator whereas FE discretizes the underlying domain X . Recall that in the FE method
used in this work, we derived a weak formulation and based on it we defined a space of
functions in which we supposed ours was to be found. that is

X = {v ∈ H1(Ω) : v|∂Ω = 0} (135)

and (136)

H1(Ω) = {v : Ω −→ R :
∫

Ω

v2,
∫

Ω

v2
x ,
∫

Ω

v2
y < ∞} (137)

X is an infinite dimensional space; there is an infinite number of functions that are zero
on the boundary and quadratic integrable until first partial derivatives. In our example in
this paper, we have used functions which are linear polynomials for each element. The
solution is continuous across the element boundaries.

4.2 Discontinuous Galerkin method (DG)

Galerkin finite element methods are high order methods used to solve convection domi-
nated PDEs. Since they make use of finite elements just like the FEM, they are e�icient
for use in domains having complex geometry. The discontinuous Galerkin finite element
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methods makes use of discontinuous approximating functions and basis functions. This
makes the methods explicit in nature such that the solution can be developed at element
level hence allowing di�erent orders of accuracy for each element. This is one of the
advantages of the method over other numerical methods. Another advantage is that
the resulting mass matrix is local to the cell which allows for an explicit time stepping
and no systems to solve. Also, due to the localized nature of the method, it allows only
communication between elements that share a common boundary. This in turn leads to
e�icient parallelization (Flaherty et. al). This feature implies that the mass matrix in this
scheme is block diagonal hence easy to find its inverse. In addition, this method provides
stable numerical solutions for first order PDEs. We therefore choose this method for use
in this project.
The challenges that are encountered while using this method are that: It is more tedious
as compared to the FD method and also it involves more degrees of freedom unlike the
FV method.

4.2.1 Runge-Ku�a Discontinuous Galerkin method (RKDG)

These are DG methods that applies Runge-Ku�a methods at the point of time-discretization.
They are used for solving non-linear hyperbolic PDEs especially non-linear conservation
laws arising in:

• Shallow water models

• Gas dynamics models and

• Magneto-hydrodynamics models

4.2.2 Steps in the RKDG method

These are the steps followed in this method:

i. Spatial discretization: The domain in which we seek the solution is divided into
a finite number of elements just as done in the FEM. Let us consider a non-linear
hyperbolic conservation law of the form

ut +∇ f (u) = 0

The unknown u is approximated using a discontinuous piecewise smooth function Uh.
We choose Uh such that it it contained in a finite dimensional space VDG. Since this
approximating function is not continuous across the interface between elements, we
take in each element UL

h and UR
h to represent the le� and right limits respectively.
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ii. Choice of basis functions: This method gives freedom in the choice of the basis
functions. Bokhove (2003), chooses the basis functions as the mean and slope of the
approximating function. Cockburn (1998), uses Legendre polynomials Pl instead. In
the solution of the 1D SWE in the following chapter, we use the Legendre polynomials
as the approximating functions. The first four Legendre polynomials are given by:

P0(x) = 1

P1(x) = x

P2(x) =
1
2
(3x2−1) (138)

P3(x) =
1
2
(5x3−3x)

iii. Time discretization: From the first two steps the conservative law stated in step (i)
is reduced into an ODE of the form

d
dt

Uh = Rh(Uh)

We then discretize this system in time using an explicit Runge-Ku�a method (RK)
which is achieved in three steps;

1. Set U0
h =Un

h

2. For i = 1, ...,K determine the functions between U0
h and Un

h as

U (i)
h =

i−1

∑
i=0

µilω
il
h , where ω

il
h =U (l)

h + γil∆tnRh(U
(l)
h ) (139)

3. Set Un+1
h =UK

h

The stability of these methods relies on this step i.e. it depends on the stability of the
map

U (l)
h 7−→ ω

il
h (140)

This map may not always be stable. To enforce stability we use the last step described
below

iv. Slope limiter: The generalized slope limiter methods involve reconstruction of the
variables inside the elements using linear or quadratic elements. The standard repre-
sentation of the slope limiter is

∧
∏

K
h , Cockburn (1998). It is a non-linear projection

operator designed such that U l
h =

∧
∏h vh for some function vh. If this holds then the

mapping (141) is stable. The slope limiter algorithm is
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1. Set U0
h =Un

h

2. For i = 1, ...,K determine the functions between U0
h and Un

h as

U (i)
h =

∧
∏

h

i−1

∑
i=0

µilω
il
h

3. Set Un+1
h =UK

h

4.2.3 The general RKDG methods and their stability

In this section we give a detailed description of the steps stated above. We also elaborate
on how the stability of the methods is enforced. The forward Euler step defined by the
map (140) is not always stable in the L2-norm. We are therefore going to come up with a
weaker stability property for this operator and enforce it with the general slope limiter to
obtain a stable method.

The DG-spatial discretization

This method is locally conservative and has order k+ 1
2 if polynomials of degree k are

used. The resulting mass matrix in this step is a block diagonal which guarantees the
method to be highly parallelisable. Again the numerical trace f̂ relies on the traces of
uh on either side of the interface of any two elements. The choice of the numerical trace
is usually very delicate and a crucial aspect of the definition of the DG methods as it
can a�ect their consistency, stability and accuracy. Consistency of the method holds
that the approximate solution Uh can be replaced with the exact solution u in the weak
formulation without a�ecting the formulation. This means that the numerical trace Uh

should be chosen in a way such that Û = u.
Let us consider the initial value problem

d
dt

u(t) = f (t)u(t), t ∈ [0,T ], u(0) = u0 (141)

We want to find the approximate solution Uh on [0,T ]. We begin by first partitioning the
time interval (0,T ) into {tn}N

n=0 partitions and set In = (tn, tn+1) n = 0,1, ...,N− 1.
We then identify a function Uh on In which is a polynomial of degree not greater than kn,
multiply the equation by this function then integrate over In∫

In

uh(s)
d
dt

v(s)ds = ûhv|t
n+1

tn =
∫

In

f (s)u(s)v(s)ds (142)
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where v(s) is a test function and

Ûh(tn) =

{
u0, tn = 0

limε↓0Uh(tn− ε), otherwise

4.2.4 Stability

Still considering the ODE (141), if we multiply through by u and integrate over the entire
time interval we obtain

1
2

u2(T )− 1
2

u2
0 =

∫
[0,T ]

f (s)u2(s)ds (143)

This represents the L∞-stability of the solution. For the DG method, let us choose a test
function v = uh in the weak formulation Eq (142). Integrating by parts yields

N−1

∑
n=0

(−1
2

u2
h + ûhuh)|t

n+1

tn =
1
2

u2
h(T

L)+Θh(T )−
1
2

u2
0 =

∫ T

0
f (s)u2

h(s)ds (144)

with

Θh(T ) =−
1
2

u2
h(T

L)+
N−1

∑
n=0

(−1
2

u2
h + ûhuh)|t

n+1

tn +
1
2

u2
0

The stability of the DG methods holds if

Θh(T )≥ 0

. Let us set

uh(t) = u0, t < 0

{uh}=
1
2
(uL

h +uR
h )

[uh] = uL
h−uR

h

uL,R
h = lim

ε↓0
uh(t± ε)

then

Θh(T ) =−
1
2

u2
h(T

L)+(
1
2

u2
h(T

L)+ ûh(T )uh(TL))+
N−1

∑
n=0

(−1
2
[u2

h]+ ûh[uh])t
n

−(−1
2

u2
h(0

R)+ ûh(0)uh(0R)+
1
2

u2
0
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= (ûh(T )−uh(T L))uh(T L)+
N−1

∑
n=1

((ûh−{uh)[uh])(tn)

−(ûh(0)−u0)uh(0R)+
1
2
[uh]

2(0) (145)

where [u2
h] is an identity.

Then defining the trace

ûh(tn) =


u0, at t0 = 0

({uh}+Cn[uh])tn, if tn ∈ [0,T ]

uH(T L), tn = T

for Cn non-negative and se�ing C0 = 1
2 we have from (144)

Θh(T ) =
N−1

∑
n=0

Cn[uh]
2(tn)≥ 0 (146)

This is the condition for numerical stability which is dependent on the numerical trace uh

The RK-time discretisation

Let us consider the definition of the intermediate function given in (139). Let us choose
non-zero values for both µil and γil and let µil ≥ 0 satisfying that ∑

i−1
l=0 µil = 1. Using these

conditions and assuming that for a semi-norm |.|, we have that

|ω il
h | ≤ |u

(l)
h | (147)

then

|u(i)h |= |
i−1

∑
l=0

µilω
il
h |, by 139

≤
i−1

∑
l=0

µil|ω il
h |, by the positivity of µil

≤
i−1

∑
l=0

µil|u
(l)
h | by stability of 147

≤ max
0≤l≤i−1

|u(l)h | by the consistency property

From this we obtain that |un
h| ≤ |u

0
h| for all n≥ 0 (by induction). This indicates that the

stability of the Euler forward step (140) implies the stability of the RK method.
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4.2.5 Round-o� errors

The RK approach is explicit and may result to amplification of round-o� errors. This
defect has to be controlled by using some conditions in order to retain the accuracy of
the method. For the one-dimensional linear case f (u) = cu for example, a von Neumann
stability analysis gives a stability of

|c|M t
M x
≤ 1

2k+1
(148)

for a k+1-stage RK method where k is the degree of the approximating polynomials in
the DG discretization.

Stability of the step uh 7−→ ωh = uh +δRh(uh)

The map (140) is not stable in the L2-norm except in the situation where polynomials of
degree 0 are used. Otherwise, if the polynomials are not constants, the forward Euler
step (140) can only be stable if Mt

Mx is proportional to (M x)p(k) for p(k)> 0 e.g. p(1) = 1
2 ,

Chavent G. and Cockburn B. (1989). This condition can only apply where hyperbolic
problems are involved. To deal with this situation, weaker norms or semi-norms were
introduced for which the Euler step would satisfy stability. To illustrate this let us use the
one dimensional case and define the Euler step (140) as follows

∫
I j

(ωh−uh)

δ t
vhdx−

∫
I j

f (uh)(vh)xdx+ f̂ (uh)vh|
x

j+ 1
2

x
j− 1

2
= 0 (149)

Using vh = 1 we get from (149)

(ω̄ j− ū j)/δ t +( f̂ (uL
j+ 1

2
,uR

j+ 1
2
)− f̂ (uL

j− 1
2
,uR

j− 1
2
))/ M j= 0 (150)

where ū j is the mean of uh in I j, uL
j+ 1

2
and uR

j+ 1
2

are the le� and right hand side limits

of uh in I j respectively. Using a piecewise constant approximating function uh we get a
monotone scheme for small enough values of δ and as a result the scheme will be total
variation diminishing (TVD) i.e.

|ω̄h|TV (0,1) ≤ |ūh|TV (0,1) (151)

where |ūh|TV (0,1) ≡ ∑1≤ j≤N |ū j+1− ū j| denotes the total variation of the local means.
If the approximate solutions are not piecewise constant, then for (151) to hold we require
that

sign(uR
j+ 1

2
−uR

j− 1
2
) = sign(ū j+1− ū j)
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sign(uL
j+ 1

2
−uL

j− 1
2
) = sign(ū j− ū j−1) (152)

The conditions (152) are not necessarily satisfied hence we have to use the generalized
slope limiter

∧
∏h to enforce them, Cockburn B. (2001).

4.2.6 The generalized slope limiter

This is a technique used to construct a TVD method. It involves reconstruction of the
variables inside an element by use of linear or quadratic functions, Cockburn (1998). For
piecewise linear functions

vh|I j = v̄ j +(x− x j)vx, j, (153)

we define the slope limiter of vh as

uh|I j = v̄ j +(x− x j)m(vx, j,
v̄ j+1− v̄ j

M j /2
,
v̄ j− v̄ j−1

M j /2
) (154)

where

m(α1,α2,α3) =

{
smin1≤n≤3 |αn|, if s = sign(α1) = sign(α2) = sign(α3)

0, otherwise
is a midmod function. We can re-write the non-linear projection (154) as

uL
j+ 1

2
= v̄ j +m(vL

j+ 1
2
− v̄ j, v̄ j− v̄ j−1, v̄ j+1− v̄ j) (155)

uR
j− 1

2
= v̄ j−m(v̄ j− vR

j− 1
2
, v̄ j− v̄ j−1, v̄ j+1− v̄ j) (156)

For general discontinuous functions denote by v1
h the L2-projection of vh into the space of

piecewise linear functions. Then on I j the approximation uh is modified as

uh =
∧

∏
h
(vh) (157)

Then

i. compute uL
j+ 1

2
and uR

j− 1
2

using (155) and (156)

ii. If uL
j+ 1

2
= vL

j+ 1
2

and uR
j− 1

2
= vR

j− 1
2

set uh|I j = vh|I j

iii. If (ii) doesn’t apply take Uh|I j =
∧

∏
1
h(v

1
h)

This enforcement of sign conditions stabilizes the forward Euler step In the next chapter
we apply the Discontinuous Galerkin Finite element method to solve the one-dimensional
shallow water equation.
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5 The DG for solving the 1D SWE

In this chapter we make use of the RKDG to solve the 1D SWE (84). We opt to use this
method due to the following reasons;

i. It combines some properties from the FDM and FEM resulting to a high accuracy.

ii. It is suitable for complex geometries.

iii. It is well adapted to parallelization hence easy to use.

iv It can capture discontinuities without generating spurious oscillations.

The 1D shallow water equation in its conservation law form (84) has to be discretized
both in space, x and time, t . The spatial discretization is done by considering linear finite
elements in which the unknown u(x, t) is approximated by use of discontinuous piecewise
polynomials. We take our basis functions to be the Legendre polynomials Pl in this case
and the time discretization is done using the Runge-Ku�a method.

5.0.1 Spatial discretization

The linear interval J = [x0,xN ] is divided into a finite number of subintervals Ji = [xi− 1
2
,xi+ 1

2
].

The unknown is then approximated using piecewise smooth functions Ǔ(x, t) which are
not continuous between elements. These functions belong to the discontinuous Galerkin
finite element space defined by

VG = {v ∈ L1(J)|u ∈ pn(Ji),∀Ii ∈ J} (158)

where L1(J) is the space of Lebesque integrable functions on I and pn(Ji) is the space of
polynomials in Ji of degree n.
We choose the Legendre polynomials as our basis functions. This choice has also been
used by Schwanenberg (2003). The Legendre polynomials are usually orthogonal in L2

and we have on the interval [−1,1] that∫ 1

−1
pl(r)pm(r)dr =

2
2l +1

δlm (159)

where δlm =

{
1, l = m

0, l 6= m
is the Kronecker delta. This orthogonality is what we apply

to get a diagonal mass matrix M. The general form of the approximating function Ǔ(x, t)



56

is then given by

Ǔ(x, t) =
n

∑
l=0

ul
i(t)ψ

l
i (x), x ∈ [xi− 1

2
,xi+ 1

2
] (160)

where

ψ
l
i (x) = Pl(

2(x− xi)

hi
) (161)

are the basis functions, hi = xi+ 1
2
− xi− 1

2
and xi =

x
i+ 1

2
−x

i− 1
2

2 . This approach gives us an
approximate for u in each element in terms of degree n polynomials. We end up with n+1
unknowns which are the coe�icients ul

i, l = 0,1, ...,n. Using the N elements the matrix of
coe�icients is of the order N× (n+1).

5.0.2 The weak formulation

The weak formulation of the 1D SWE (84) is obtained by first multiplying it by a test
function ξ ∈ η and integrating over the interval Ji. Here η is a suitable functional space

∫
Ji

(
∂u
∂ t

ξ +
∂

∂x
f (u)ξ − s(u)ξ )dx = 0

since the approximates Ǔ(x) are linearly independent of each other, then for each element
Ji we have ∫ xi+

1
2

xi− 1
2

(
∂u
∂ t

ξ +
∂

∂x
f (u)ξ − s(u)ξ )dx = 0

or for the N elements the sum

N

∑
i=0

[
∫ xi+

1
2

xi− 1
2

(
∂u
∂ t

ξ +
∂

∂x
f (u)ξ − s(u)ξ )dx] = 0 (162)

Integrating the second term of this integral by parts we have

∫
∂ f
∂x

ξ dx =
∫

ξ
∂ f (u)

∂x
dx = f (u)ξ |xi+

1
2

xi− 1
2
−

∫
f (u)

∂ξ

∂x
dx

Using this in (162) we obtain

N

∑
i=0

[
∫ xi+

1
2

xi− 1
2

ξ
∂u
∂ t

dx+ f (u)ξ |xi+
1
2

xi− 1
2
−

∫ xi+
1
2

xi− 1
2

f (u)
∂ξ

∂x
dx−

∫ xi+
1
2

xi− 1
2

s(u)ξ dx] = 0 (163)

Eq (163) is the weak formulation of the equation (84). In this form we only require f (u) to
be integrable unlike in the strong formulation form where we required it to be continuously
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di�erentiable. This is the advantage of the weak formulation. Note that the approximate
Ǔ of u has two di�erent values in each element. Thus for the flux f (Ǔ), we approximate
it using

F(Ǔ(xi+ 1
2
, t)) = F(ǓL(xi+ 1

2
, t),ǓR(xi+ 1

2
, t)) (164)

where ǓL and ǓR represents the le� and the right limits of Ǔ respectively at the nodes
where Ǔ has a discontinuity. Recall that we put that Ǔ is contained in the space defined
by (158). We choose the weighted functions used to derive the weak formulation to be
contained in the same functional space. Again we take the test function to be similar to
the basis functions, so ξ = ψm

i (x) where m = 0,1, ..., l. Using the new form of our function
in (163) we get for each element Ji

∫ xi+
1
2

xi− 1
2

{∂t

n

∑
l=0

ul
iψ

l
i }ψm

i dx−
∫ xi+

1
2

xi− 1
2

f (Ǔ)ψ
′m
i dx−

∫ xi+
1
2

xi− 1
2

s(Ǔ)ψm
i dx

+F(Ǔ(xi+ 1
2
, t))− (−1)mF(Ǔ(xi− 1

2
, t)) = 0 (165)

where the prime on the second integral denotes di�erentiation with respect to x and we
used ψl(xi+ 1

2
) = Pl(1) = 1 and ψl(xi− 1

2
) = Pl(−1) = (−1)l . From (165)

∫ xi+
1
2

xi− 1
2

∂ t{
n

∑
l=0

ul
iψ

l
i }ψm

i dx = ∂t(
n

∑
l=0

[ul
i

∫ xi+
1
2

xi− 1
2

ψ
l
i ψ

m
i dx])

=
n

∑
i=0

∫ 1

−1
ψ

l
i ψ

m
i

dul
i

dt
dx

=
hi

2m+1
dum

i
dt

(166)

where we applied the orthogonality relation of Legendre polynomials (159) and the defini-
tion (161). As a consequence of this result, we end up with a diagonal mass matrix which
we have to solve.
Using (166) in (167), we find for i = 1, · · · ,N and for l = 0, · · · ,n that

u̇l
i =

2l +1
hi

[
∫ xi+

1
2

xi− 1
2

f (Ǔ)ψ
′l
i dx+

∫ xi+
1
2

xi− 1
2

S(Ǔ)ψ l
i dx]− 2l +1

hi
[F(Ǔ(xi+ 1

2
, t))−

(−1)lF(Ǔ(xi− 1
2
, t))] (167)
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where the dot indicates di�erentiation with respect to t . This is an ODE of the form

d
dt

Ǔh = Rh(Ǔh) (168)

with Ǔh defined by

Ǔh =


u0

1 u1
1 · · · un

1

u0
2 u1

2 · · · un
2

...
...

...

u0
N u1

N · · · un
N

 (169)

and Rh is a vector made up of the R.H.S of the equation. We applied the Gauss quadrature
formula to find the values of the integrals contained in Rh. The quadrature formula state
that ∫

β

α

g(x)dx∼=
q

∑
i=1

ξig(λi), α ≤ λi ≤ β (170)

where λi are called Gauss points. Using q = 3, we make a three point approximation. The
basis functions are constants. For instance, when n = 0 the equation (167) becomes

U̇0
i =− 1

M xi
[F(U0

i ,U
0
i+1)−F(U0

i−1,U
0
i )]+Si (171)

where F(U0
i ,U

0
i+1) is the flux between elements i and i+1 and Si =

1
Mxi

∫ x
i− 1

2
x

i− 1
2

The DG scheme is said to be monotone if F(UL,UR) is locally Lipsichitz, consistent and
monotone. The Harten-Lax-Van Leer (HLL) scheme, Harten et. al accounts for the le� and
right characteristics. This consideration separates the the flux into three states

FHLL(UL,UR) =


FL, if λmin ≥ 0

F∗, if λmin < 0λmax > 0

FR, if λmax ≤ 0

(172)

where FL = F(UL),FR = F(UR) and F∗ = λmaxFL−λminFR+λmaxλmin(UR−UL

λmax−λmin
The rarefaction waves determine the wave speeds

λmin = min(uL−
√

ghL,u∗−
√

gh∗)

λmax = max(uR−
√

ghR,u∗+
√

gh∗)

where

u∗ =
uL +uR

2
+
√

ghL−
√

ghR

√
gh∗ =

uL−uR

4
+

√
ghL +

√
ghR

2
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Time discretization

Time in this work is discretized using the Runge-Ku�a method (RK). Let us consider the
initial condition u(x,0) at t = 0. The initial approximation at this point is then given by
Uh0. The time interval [0,T ] is to be discretized into {tk}K

k=0, where T is the total time of
computation and M tk = tk+1− tk, k = 0,1, · · · ,K−1
Let us denote U0

h =Uh0 as the initial polynomial approximation. Then we can use iteration
methods to find Uk+1

h from Un
h . If we choose i = 1, · · · ,(m+1) and using RK methods of

the order (m+1) then

U j
h = (

j−1

∑
l=0

µ jlU l
h + γ jl M tkRh(U l

h)) (173)

Using the Runge-Ku�a method of the first order

Uk+1
h = µ1,0Uk

h + γ1,0 M tkRh(Uk
h ))

=Uk
h+ M tkRh(Uk

h ) (174)

A second order R-K method will be su�icient here since our basis functions are linear
Let us again denote the CFL-number by ζ . This number expresses the relationship of the
speed of the wave propagation in the actual domain and the grid speed. If M x is a spatial
grid variation within a time t =M t , the grid speed is given by Mx

Mt . In this case we are using
a linear domain Ji so we define

ζ =
M t
M x

(|v|+ c) (175)

where c is the wave speed. This gives

M t = ζ
M x

(|v|+ c)
(176)

The CFL-number ζ is non-negative and bounded above by 1. It is maximum for n = 0 and
decreases as the order of k increases. The table below shows the values of ζ used here
Sometimes the numerical solution U(x) at times may display unphysical oscillations.
To avoid this, we use the total variational diminishing (TVD) method. These methods
allows us to restrict the total variation which eliminates the oscillations. We define (for u
continuous)

TV (u) = lim
σ−→0

sup
1
σ

∫
∞

−∞

|u(x+σ)−u(x)|dx (177)
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If uk = {uk
i is a discrete function

TV (uk) =
∞

∑
i=−∞

|uk
i+1−uk

i | (178)

If the initial condition u(x,0) has bounded total variation then the exact solution of the
exact scalar conservation law

∂ t(u)+∂x f (u) = 0

has the property that

i. We cannot possibly create a new extrema in x

ii. The lower bound of the exact solution does not decrease and the upper bound does
not increase.

From these properties we see that TV (u(t)) is a decreasing function i.e.

TV (u(t1))≤ TV (u(t2)), ∀t1 ≤ t2

The numerical scheme is then termed as a Total Variation Diminishing scheme (TVD) and
it holds that

TV (uk+1)≤ TV (uk), ∀k (179)

The first order RKDG method satisfies this condition. We can extend this property to the
1D SWE by applying it to all the variables separately. In this work we use the slope limiter
technique to construct the TVD for the 1D SWE used in this project. Slope limiting in the
DG methods involves construction of the variables in each element using functions of the
first order or the second order. We modify our solution technique in a way that it will
satisfy the TVD property when k > 1.
Let us consider the linear part of our approximating function U(x, t) by

U(x, t) =
1

∑
l=0

ul
i(t)ψ

l
i (x) (180)

such that the coe�icients matrix will be

Vh =


u0

1 v1
1

u0
1 v1

1
...

...

u0
N v1

N





61

Let
∧

∏
k
h be the slope limiter, Cockburn (1998). We define the limit of Uh as Ulim =∧

∏
k
h(Uh) where we apply the slope limiter separately to all the characteristic variables

since we are dealing with a PDE system. We apply the following algorithm to determine
u0

lim,i and ui
lim,i for i = 1, ...,N

i. Find the transformed variables using the definition below

v1
i = B−1u1

i

vL
i = B−1(u0

i −u0
i−1)

vR
i = B−1(u0

i+1−u0
i )

where B =

 0 1√
gH0

i − (q0
i /H0

i )
2 2q0

i /H0
i


ii. Obtain the limiting case v1

i as follows v1
lim,i = m(v1

i ,v
L
i ,v

R
i ) where

m(α1,α2,α3) =

{
sign(α1)min1≤n≤3 |αn|, sign(α1) = sign(α2) = sign(α3)

0, otherwise
is the minmod function

iii. Reconvert the variables v1
lim,i to obtain the limited variable u1

i . Note that u0
i is not

modified since only the slope is limited

u0
lim,i = u0

i

u1
lim,i = Bv1

lim,i

and we get

Vlim =


v0

lim,1 v1
lim,1

v0
lim,2 v1

lim,2
...

...

v0
lim,N v1

lim,N


Equation (173) becomes

U j
h =

∧ k

∏
h
(

j−1

∑
l=0

µ jlU l
h + γ jl M tkRh(U l

h)) (181)

This results to the modification of the RK time discretization, Cockburn (1998).
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5.1 Practical problem: The dam break problem

In nearly all countries of the world, hydroelectric power is the main source of the energy
used for industrial processes, lighting among other uses. This power is generated in power
stations where a dam is constructed along a water pathway such as a river. The water
behind the dam possesses potential energy. This energy is used to rotate turbines in the
process of power generation. To cater for the growing need of electricity, dams have to be
made higher and stronger so that more water can be held behind the dam. The pressure
of the water held behind the dam poses a danger of the dam breaking. A one dimensional
dam-break physically represents an instantaneous collapse of an infinitesimal thin dam
wall in a wide infinitely long horizontal channel. We will use the dam fail problem to test
our solution in a channel of a finite water depth at each point downstream of the wall. If
proper measures are not taken for risk management, a dam failure may cause loss of lifes
and property. Therefore the risk of the dam breaking need to be assessed, in terms of;

1. The amount of water that will stream over the broken dam,

2. The speed with which the water will flow downstream

3. The water levels that are expected downstream

Knowing these will allow proper measures to be taken for protection. The water flow
a�er a dam breaks can be described using the shallow water equations, J.J. Stoker, "Water
Waves". The dependent variables are the water height, H and velocity, v and the only
depend on the distance x and time, t . We assume an initial no flow condition and that the
water domain is deeper in the dam at the right than at the le�. If the dam breaks at a
time t0 = 0, the water begins to flow rightwards. Two types of waves are generated by
this dam fail; a shock wave is propagated to the right while a rarefaction is propagated to
the le�. This leaves a constant water level in between.

5.1.1 Boundary conditions

The boundary conditions of the 1D domain (channel flow) are obtained by considering
the le� and right boundaries. We take the fluid flow in the le� to be inwardly directed
and on the right boundary to be outwardly directed. From equations (42) and (43) the 1D
SWE can be expressed in its quasi-linear form as

∂tu+B∂xu = s(u) (182)
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where B = d f
du =

 0 1

− q2

H2 +gH 2q
H

=

 0 1

c2−u2

 is the Jacobi matrix and c the celerity.

The eigenvalues for B are
λ1 = u− c

λ2 = u+ c

and the corresponding eigenvectors are

V1 =
H
2c

 1

u− c

 and V2 =
H
2c

 1

u+ c


so that B is then diagonalizable as

B = RPR−1 (183)

where P =

λ1 0

0 λ2

 is the diagonal matrix and R = (R1,R2).

Multiplying (181) by R−1 and using (182) yields

R−1
∂tu+PR−1

∂xu = R−1s or (184)

∂tr+P∂xr = ŝ (185)

where ŝ = R−1s and r =

r1

r2

 =

u−2c

u+2c

 are characteristic variables called Riemann

invariants. Equation (184) is the characteristic form of the 1D SWE. The characteristics of
the eigenvalues determines the direction of the characteristics along which the information
is conveyed. At this point, the boundary conditions are dependent on the Riemann
invariants u±2u.

We write a MATLAB program that solves the dam break problem. The Codes of the
work are wri�en in the Appendix page. These commands are used to obtain values
of the solutions H and v for di�erent time points and plot the graphs representing the
information. The output of these numerical values of height and velocity is 300 for each
variable and hence we have not included them in this work so as to safe space. We use a
height, H ∈ [0m,6m] and an horizontal stretch x ∈ [0m,1000m]. We choose N−1 = 400
and t ∈ [0,T ] where the period T = 70s.
We consider the domain Ω = [−D,D] which has a length of 1000m and the Dirichlet
boundary conditions h(−D, t) = hL,h(D, t) = hR with hL ≥ hR. The initial conditions are

h(x,0) =

{
hL, if 0≤ x≤ 300

hR, if 300 < x≤ 1000
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u(x,0) = 0 0≤ x≤ 1000 (186)

with hL > hR. This is the Riemann problem for our homogeneous problem. We will
compare our solution with the analytical solution derived by Stoker, 1957. The upstream
depth hL is maintained at 6m while the downstream depth is a variant. This leads to two
di�erent cases of flow:

1. hR
hL

> 0.5, a subcritical flow

2. hR
hL

<< 0.5, a supercritical flow

In a subcritical flow, the fluid velocity is less than the wave velocity. In the first case, let
us choose hR = 3.6 and hL = 6. The ratio of hR to hL gives hR

hL
= 0.6, which describes a

subcritical flow. The flow profile is then as shown in the graphs below, with the first plot
showing the variation of H versus x and another for the velocity v versus x. A rarefaction
occurs between 300 and 450m and a shock occurs downstream at 650m. This is due to
subcritical flow.

Fig 1: Variation of height with distance, x a�er Dam-break
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Fig 2: Velocity variation with distance, x a�er Dam-break (subcritical flow)

In the supercritical flow, let us take hR = 0.48 and hL = 6, then we have hR
hL

= 0.08. The
graphs below show the simulation of the flow profile for both height and velocity of water
for the dam break.

Fig 3: Variation of height with distance, x a�er Dam-break (supercritical flow)

Fig 4: Variation of velocity with distance, x a�er Dam-break (supercritical flow)

The rarefactions are much steeper and longer in this case whereas the shock is formed
much faster as compared to the previous case. This is because the flow is supercritical
downstream i.e. the velocity of the fluid is much greater than the velocity of the gravity
waves.
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6 Results, Conclusions and Recommendations

6.1 Results

If a village is located a distance 1 kilometer downstream for example from the dam, dam
experts want to know how long it will take for the flood to reach the village in case the
dam fails. The height h of the water and the velocity v of flow at di�erent points are
dependent on the distance x along the flow and time t .
The domain of obtaining the solution contains the reservoir the channel and the village. We
imposed a le� boundary at x= 0. This is justified because the sides of the channel are steep.
The right hand boundary is not clear. To find how long it takes the flood water to reach
the village, we need to calculate the grid index for the village. This is dependent on the
number of grids used in the domain. The Lax-Friedrich’s scheme gives the following results

Number of Grids (N) time(seconds)

100 308

200 369

400 402

800 414

1600 420

3200 423

6400 424

Table 1: Flood times for di�erent grid sizes

A grid independent solution is obtained using 6400 grid points. The flood takes 7 minutes to
reach the village. This indicates that if a dam breaks, the people at the village downstream
have 7 minutes until the flood arrives.

6.1.1 Conclusion

The shallow water equations has a much more potential than is discussed in this work.
They are well suited for tsunami wave wave modeling. They are used by tsunami warning
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centers to model the tsunami wave propagation. Also, many hydrodynamical phenomena
such as storm surges, river flooding and dam fail problem have been e�ectively treated
using the shallow water theory. Shallow water equations have been applied to model
landslides and avalanches. In the process of applying these equations to model the di�er-
ent phenomena, some limitations may be encountered. Tough restrictions are put in place
and an evaluation of the results obtained has to be done to verify their validity.
In the DG method the domain is discretized such that Ji = [xi− 1

2
,xi+ 1

2
] with i = 1,2, · · · ,N

where N is the number of elements. Multiplying by the weight function v(x) and integrat-
ing over the element Ji we have∫ x

i+ 1
2

x
i− 1

2

[Ut +F(U)x−S(U)]v(x)dx = 0

. We obtain for each element a weak formulation of the form

∫ xi+
1
2

xi− 1
2

ξ
∂u
∂ t

dx+ f (u)ξ |xi+
1
2

xi− 1
2
−

∫ xi+
1
2

xi− 1
2

f (u)
∂ξ

∂x
dx−

∫ xi+
1
2

xi− 1
2

s(u)ξ dx = 0

For each element the equation is integrated independently applying an explicit time-
stepping scheme. The problem of dam fail may lead to huge economic loses. It may lead
to loss of lives, damage to property and infrastructure. So, no ma�er how strong the dam
has been built, the risk of breaking of the dam need to be assessed. This risk assessment
is done in terms of; the depth of the flow and the velocities a�er the dam fails. A team of
experts involved with downstream flood prediction and early warning systems in the case
of a dam failure has to be put in place. Also, regular maintenance has to be carried on the
dam so that its life can be increased. If the dam is le� unmaintained, this exposes it to
weakening and hence a possible failure. For example, if trees are le� to grow near the dam,
the dam may develop cracks due to penetration of roots into the embankments. Through
leakage and flow of water through the cracks on the wall, the wall become eroded hence
weakening. The main factors which lead to dam failure include;

i. natural factors such as flooding which may lead to excess water capacity in the dam.

ii. use of poor construction materials which wear out and weaken with time.

iii. cracking of the dam embankment caused by piping and internal erosion of soil in the
embankment.

iv. inadequate maintenance services on the dam.

In the test/practical problem, we considered a representation of the water flow following
a dam break using 1D SWE. The results obtained show a very close match with those
obtained by P. Garcia-Navarro, A. Fras T. Villanueva, (1999) and Samir K. Das, Jafar Bagheri
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(2015).
The discontinuous Galerkin finite element is suitable for models that involve hyperbolic
PDEs. The non-linearity of the 1D shallow water equations used here results into a forma-
tion of a bore wave which propagates a finite speed within the domain. The discontinuous
bases used in this method are suitable for such shock waves. We used Roe Riemann solvers
to resolve the fluxes at the boundaries of the elements. These solvers accommodate the
physics of wave propagation. The RK-TVD method is used to ensure that the approximated
solution remains bounded in an arbitrary semi-norm |wn

h| ≤ |w
0
h|,∀n≥ 0. This applies if

the intermediate Euler steps, w(l)
h −→ vil

h , remains bounded at every intermediate step
in this arbitrary in this arbitrary semi-norm, |vil

h | ≤ |w
l
h|. According to Cockburn et al, if

degree 0 polynomials are used the DGFEM results in a monotone scheme and stability is
ensured in the total variation semi-norm,

|vn
h|TV ≤ |wn

h|TV

where the TV semi-norm is defined

|wh|TV =
N

∑
i=1
|w̄i+1− w̄i|

The slope limiter used eliminates fast oscillations which are experienced near the shock
fronts.

6.1.2 Recommendation

More work still remains undone in the field of SWE models and in the implementation of
the solution methods. Following the results of this work, we would recommend further
research on the following areas;

1. It is an advantage that the 2-dimensional ocean circulation SWE has been derived in
chapter 2. This equation need to be solved using the RKDGFEM.

2. There is a need that the slope limiter used in the RKDG method be modified so that it
can accommodate a varying bo�om of the domain.

3. The RKDG method still leaves room for modification so that it will be able to handle
moving boundaries. The boundary here changes due to flooding or drying. Thus
aflooding and drying algorithm still remains to be determined.
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7 Appendix

7.1 MatLab Code for the Problem
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