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ABSTRACT 

The Arabuko Sokoke forest ecosystem is characterized by degradation from natural and 

anthropogenic drivers. Despite these challenges the forest has no study on how climate 

change will impact on forest biomass and species distribution. The main aim of this study 

was to project how climate change would impact on the tree biomass in the Arabuko 

Sokoke forest ecosystem. Experimental research design was used to determine the biomass 

accumulation rates of vegetation types as well as how climate change would impacts its 

distribution based on Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 using 

MaxEnt model. Tree data was collected through direct measurement of Diameter at Breast 

Height (DBH), while species were identified and recorded together with the plot centre 

coordinates. The total tree biomass was calculated using allometric equation and shoot: 

root ratios. The historical rainfall, mean maximum and minimum temperature were 

collected from meteorological station in Malindi Airport, while the future climate data were 

downloaded from Worldclim data and downscaled to Arabuko Sokoke forest using 

geographical information system. The analyzed results for the study indicated that tree 

biomass accumulated in brachystegia (335MgC-ha), Mixed forest (164.5Mg C-ha) and 

Cynometra (92.1Mg C-ha) in the last 25 years. Statistical analysis confirms that the 

accumulation was significant (F1 68. =43.5, p=0.00). While the trend analysis for mean 

minimum temperature had significant trend (S = 338, p = 0.00). The results further show 

that the tree biomass related significantly with rainfall, maximum temperature and 

minimum temperatures (F1 67. =9.78, p=0.00, R2=0.55), (F1 67. =32.00, p=0.00, R2=0.55) 

and (F2 68. =40.27, p=0.00, R2=0.54) respectively. The MaxEnt model prediction based on 

RCP 4.5 and 8.5 indicated well  the geographical distribution of brachystegia and mixed 

forest at 2050 and 2070 ( AUC= 0.80-0.90), while cynometra forest had a poor model fit 

(AUC=0.60-0.70). Based on jackknife test and analysis of variable contribution the mean 

annual, anomalies and extremes of precipitations and temperature had an impact on the 

predictive power of three models for Arabuko Sokoke. In conclusion the study findings 

indicated that tree biomass in Arabuko Sokoke has significantly accumulated over time. 

Secondly, the evidence provided by this study indicated that there was significant 

temperature and rainfall variability between 1990 and 2014 in Arabuko Sokoke forest. 

Thirdly, the finding indicates that rainfall and temperature significantly related with 
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biomass across the forest landscape. Fourthly, the results shows that the site suitability for 

mixed and brachystegia forests can be predicted using Maxent Model based on general 

climate model scenarios of RCP 4.5 and RCP 8. Lastly, species distribution predictive 

model for Arabuko Sokoke was strongly influenced by annual trends, seasonality and 

extremities of temperature and rainfall parameters. Based on the findings, the study 

recommended that the forest managers consider development of strategies to deal with 

possible shift species and fundamental niche reduction for key species in Arabuko Sokoke 

forest. Secondly, communities are advised to diversify their sources of livelihoods and 

reduce their dependency on forest. Thirdly, carbon accounting systems and greenhouse 

gases systems should take into consideration carbon accumulation and possible impacts of 

climate change on tree biomass in Arabuko Sokoke and finally further research is 

recommended on species distribution modeling with inclusion of non-climatic parameters 

such as forest use pressure and natural forest disturbances. 
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DEFINITION OF TERMS 

Biomass –This the sum of all organic matter that has been accumulated by a tree upper 

structure which is normally above the ground level and is expressed oven-dry tons per unit 

area 

Diameter – This the girth of a growing tree as arrived at through measurement of over 

bark at a height of 1.3 m above the ground  and is regularly called breast height (hence the 

expression diameter at breast height – dbh).  

Climate change- It is changes in the climate system associated natural causes, directly or 

indirectly to anthropogenic activities, that brings about variation in the composition of the 

global atmosphere that can be detected within comparable durations  
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CHAPTER ONE: INTRODUCTION 

1.1 Background  

Forests provides a range of ecosystem goods and services, however they are facing 

pressures from increasing human population specifically the need for land for settlements 

and agriculture (Aye et al., 2014). The net effect of land conversion from forests to other 

land uses includes loss of habitats, biodiversity and the increased greenhouse gases in form 

of CO2 within the atmosphere leading to global warming and subsequently changes in 

climate system (Fujisaka et al., 1998;Pielke et al., 2002;Foley et al., 2007;Pellikka et al., 

2009). 

Deforestation and degradation within the tropics together with the interplay of global 

climate change have contributed towards the current studies which are mainly focusing on 

the of forests as carbon sinks (Glenday, 2006) and how it will be impacted by climate 

change (Desktop et al., 2010).  

Climate change has direct impact on the levels of temperature and precipitation being 

received at particular region in time such that any variability in temperature and rainfall 

has a direct impact on tree species distribution, growth process and respiration (Classen et 

al., 2015;Álvarez-Dávila et al., 2017). While species distribution  strongly determines the 

amount of biomass stored by trees within a given forest ecosystem (Pan et al., 2013) 

Kenya’s forests are  vulnerable to climate related effects and its likely to impacts on the  

species distribution, growth rates, regenerative capacity (Stiebert et al., 2012) has not been 

precisely documented. The vulnerability is higher for forest ecosystems that borders the 

oceans and seas like Arabuko Sokoke (Field et al., 2014).  Arabuko-Sokoke Forest  is  one 

of the remnants of  the larger coastal dry forest within the East African region (Glenday, 

2006) and it plays a multiplicity of functions that includes provision of ecosystem goods 

and services to local livelihoods, store of genetic diversity, habitat to endemic fauna and 

climate amelioration (Glenday, 2008;Oyugi et al., 2008;Musyoki et al., 2016).  

The need to predict species distribution and quantify the forest biomass have seen a suite 

of techniques ranging from those that utilize forest inventory data to those methodologies 

that combines field data with remote sensing technologies. Despite the array of approaches, 

the uncertainty of how climate affects species distribution and carbon stocks in tropical 
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forest still exists largely due to  conflicting and contrasting conclusion drawn from dynamic 

global vegetation models  (Vieilledent et al., 2016) 

Recent studies (Glenday, 2006;Devaranavadgi  et al., 2013;Chave et al., 2014;Poorter et 

al., 2015) have pointed out the role of altitude, temperature and precipitation influencing 

species distribution as well as tree parameters such as heights and diameter of trees in 

tropical forests and thus influencing on level of forest biomass. Additionally the effect of 

anthropogenic tropical deforestation on greenhouse gas emissions and climate change has 

been investigated (Field et al., 2014;Vieilledent et al., 2016)  and identified as a global 

issue although uncertainty exists as to how tropical  forests will respond to increased  

anthropogenic carbon dioxide emissions  and  carbon-cycle feedback due to climate change 

(Vieilledent et al., 2016) 

Dynamic global vegetation models (DGVM) are generally in agreement that the net 

primary productivity and forest carbon sinks will increase due to higher rates of plant 

photosynthesis and efficient usage of water coupled with increased carbon dioxide in the 

atmosphere, however reduction in productivity is anticipated due to increased rates of  plant 

respiration as a result of warmer temperatures (Moss et al., 2010;Cox et al., 

2013;Huntingford et al., 2013;Vieilledent et al., 2016) 

Despite these uncertainties associated with DGVMs (Field et al., 2014) , its capacity to 

project the possible effects of climate change on forests cannot be underestimated. Possible 

climatic effects on forest could range from limiting internal growth process such as less 

growth in maximal diameter and heights of the trees to limiting environmental conditions 

therefore influencing the species range. However these same traits can influences species 

niche, tree biomass and forest growth (Cox et al., 2013;Chave et al., 2014;Vieilledent et 

al., 2016) and thus it is most likely that a changes in climate could heavily constrain on 

tree species distribution and forest carbon sinks. The ability to predict how that will happen 

is therefore necessary and a simplified correlation method could offer quick and robust 

options in projecting  how climate change will impact on tree species distribution and  

carbon storage in tropical forests (Vieilledent et al., 2016). The study will focus on 

understanding how species distribution will respond to temperature and rainfall variability 
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this will be useful in explaining how forest biomass will be impacted by climate change 

within Arabuko Sokoke forest 

1.2 Statement of the Problem 

The question of how tropical forests, especially those that borders the oceans and seas like 

Arabuko Sokoke will respond to changing climate still remains unanswered (Chave et al., 

2014;Vieilledent et al., 2016). The Arabuko Sokoke forest ecosystem despite facing 

pressure from forest degrading activities supports a wide range of ecological and livelihood 

functions (Glenday, 2006;Oyugi et al., 2008;Musyoki et al., 2016). Very limited research 

(Mutangah, 1992;Glenday, 2008;Oyugi et al., 2008;Matiku et al., 2013;Musyoki et al., 

2016) has been undertaken on Arabuko Sokoke ecosystem and even much less focus has 

been given to how climate change will impact on tree biomass and species distribution (Pan 

et al., 2013) and therefore the need for this study    

1.3 Research questions 

1) How has tree biomass accumulated in Arabuko Sokoke forest? 

2) How is the trend in climate pattern of Arabuko Sokoke forest? 

3) How does biomass accumulation vary across vegetation types in relation to 

temporal climate patterns in Arabuko Sokoke forest? 

4) How will climate change impact on tree species distribution in Arabuko Sokoke 

forest? 

1.4 Objectives of the Study 

1.4.1 Broad objective 

The broad objective of this study was contributing towards better understanding of the 

effects of climate change on tree biomass and species distribution through modeling for 

sustainable forest management in Arabuko Sokoke forest reserve 

1.4.2 Specific objective 

1) To estimate tree biomass accumulation in Arabuko Sokoke forest  

2) To assess the temporal climate pattern of Arabuko Sokoke forest  
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3) To compare biomass accumulation between vegetation  types based on temporal  

climate pattern in Arabuko Sokoke forest 

4) To project the impacts of climate change on tree species distribution in Arabuko 

Sokoke forest 

1.5 Hypotheses 

1) There is no significant accumulation of tree biomass in Arabuko Sokoke  

2) The temporal climate pattern of Arabuko Sokoke forest has not changed  

3) There is no significant difference in biomass accumulation across vegetation      

types in Arabuko Sokoke forest 

4) Climate change will not impact on tree distribution in Arabuko Sokoke forest 

1.6  Justification of the Study 

Predicted effects of climate change are anticipated to impact on temperature and rainfall 

regimes. This expected climatic variability will have an influence on vegetation 

distribution through influencing niche conditions and functions such as net primary 

productivity, reproduction and respiration. The net effect of such scenarios is dependent on 

the ecosystem ability to adapt to the changes and in the event of extreme conditions, then 

possible flip over of ecosystems are expected.  

Theories have indicated species extinction may be part of the net effects of climate change. 

Though no species have been documented as lost within Arabuko Sokoke Forest 

ecosystem, its role as a reservoir of genetic diversity, habitat to endangered bird and 

mammal species increases the need for a better understanding of its dynamics especially in 

the face of climate change. 

 The forest is also a critical source of ecosystem good and services to the forest adjacent 

communities and therefore a drastic change within Arabuko Sokoke may curtail its 

productivity capacity and therefore jeopardizing the local community ability to meet their 

food security. The unique locality of the forest within the coastal strip of Indian ocean 

further create uncertainty of how the ecosystem will respond to climate change. 

 Therefore, a precise estimation of how the species distribution will respond to temperature 

and rainfall variability is vital in explaining how forest biomass would be impacted by 
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climate change within Arabuko Sokoke. Additionally the forest model will provide vital 

answer the forest adjacent communities for their livelihood planning and adaptation. 

Country processes such as System for Land based Emission Estimation in Kenya (SLEEK), 

REDD+ will benefit from information generated by the finding of this study. The forest 

models to be generated by the study on species suitability sites and distribution will be 

useful in planning and decision making for sustainable forest management in Arabuko 

Sokoke forest ecosystem.  

1.7 Scope of the Study 

The study was done in Arabuko Sokoke Forest located in Kilifi County. Total tree biomass 

were derived using tropical forest allometric equations that uses diameter at breast height 

(DBH) data only and root: shoot formula. MaxEnt model was used to predict how climate 

change will affect the species distribution based on RCPs 4.5 and 8.5 climate projections 

for the region (Field et al., 2014). RCP 4.5 postulates a situation in which the total radiative 

forcing is stabilized before 2100 by deployment of a raft of measures and interventions for 

diminishing greenhouse gas emissions. Whereas the RCP 8.5 is representative of the high 

range of policies that are not geared at climate change in fact, it predicts emissions of the 

order of 15 to 20 GtC by the end of the century. 
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Figure 1: Location of the study site 
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CHAPTER TWO: LITERATURE REVIEW 

This section focuses on the review of scientific literature on forest biomass, forest biomass 

accumulation and its importance to the current issue of climate change. The review looks 

at studies undertaken to understand how forest behave under the changing climate and how 

can climate change be model so as to capture how forest biomass will be impacted. The 

section has reviewed studies on climate change and climate extremes and forests of the 

world in order to answer whether climate change will influence how forests will be 

distributed. 

2.1 Forests biomass and accumulation patterns  

The international consensus based on studies (Law et al., 2004;Lal, 2005;Robert Jandl et 

al., 2007;Lüa et al., 2010;Moss et al., 2010;Pfeifer et al., 2012;Willcock et al., 2012 

;Field et al., 2014) seems to endorse the important role forest ecosystems play in the climate 

change dynamics. Increasingly governments and global organization such as UNFCCC 

have placed considerable importance on the need to monitoring, reporting and verification 

(MRV) on a periodic basis the forest carbon stocks.  

As countries work towards country specific values for national greenhouse gases 

inventories and other reporting. Intergovernmental Panel on Climate Change (IPCC) has  

availed default values for parameters such as biomass expansion factors (BEF) and root-

to-shoot ratios (RSR) for boreal, temperate and tropical zones in the “Good Practice 

Guidance for Land Use, Land-Use Change and Forestry” (Penman et al., 2003). The 

limitation with the using the default parameters is the great uncertainty associated with 

them at a local scale. And therefore the development of tree specific allometric values and 

carbon accounting values for national forest biomass assessment, monitoring and reporting 

has become of critical importance to many countries (Chave et al., 2014;Feng et al., 

2014;Poorter et al., 2015). 

Comparison of periodic monitoring data, changes in tree DBH, height, and density can be 

utilized in estimating biomass in a forest ecosystem. However, this approach cannot 

identify the underlying dynamics of annual carbon accumulation nor explain the reasons 

for carbon pool variation (Poudel et al., 2012;Zhao et al., 2014). 
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Forest disturbances and global climate change is the genesis of scientific inquiry on how 

forests acts as carbon sinks and sources. The forest biomass stocks for Arabuko Sokoke 

vary across the three vegetation types; Brachystegia, Cynometra and Mixed forests 

(Glenday, 2006), the uncertainty remains on how the forest carbon has accumulated over a 

longer time frame for example the last 25 years. 

2.2  Climate change  

The link between increased GHGs and climate change globally moved from a concern to 

the scientific community to an international public policy in the last decade (Service, 

1999).Warming trends of the Earth systems has been recorded over the last 150 years (Field 

et al., 2014) and the associated climate variability have resulted in serious perturbations of 

its components systems.  Studies (Bernstein et al., 2008;Field et al., 2014) have shown that 

the level of GHGs in the atmosphere are at a new scale. 

 The concentrations levels of methane (CH4), nitrous oxide (N2O) and carbon dioxide 

(CO2) have all shown exponential increase since 1750 (150%, 20% and 40% respectively). 

The increasing atmospheric GHGs is causing an increase earth’s surface temperature, rise 

in sea level, melting of ice and glaciers (Bernstein et al., 2008;Field et al., 2014) . Many 

authors including (Bernstein et al., 2008) have noted that changes in climate impacts on 

natural and human systems across continents and oceans. These impacts can be attributed 

to climate change in general. Such findings portray the fragibility of both natural and 

human systems to climate change.  

For example increasing temperature has significant impact on natural systems;  because it 

provides a longer growing season for the trees and favorable conditions for photosynthesis 

that stimulates Net Primary Production (NPP) especially in the boreal ecosystems (Bonan, 

2008;Cox et al., 2013). Further warming is expected from the continued emission of 

greenhouse gases and  the possible long-lasting effects s on all the  parts of the climate 

system, includes increased chances of extreme, pervasive and permanent impacts on  

human and  natural  ecosystems (Bernstein et al., 2008;Field et al., 2014). It’s imperative 

therefore that some action is needed.  
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The global commitment to changing the trends has been indicated by the ratification of  

Paris Climate agreement  by most countries (Clémençon, 2016). This strong global 

commitment is taking cognizant of recommendation from studies (Bernstein et al., 

2008;Field et al., 2014) which indicated that mitigating on climate change call for 

concerted efforts and paradigm shift towards reductions in GHGs and when it is coupled  

with adaptation the results will be minimization of climate change risks. The business as 

usual scenario for the climate change indicates increasing GHGs leading to climate 

variability and climate extremes. A study (Rockstrom et al., 2009) indicates that already 

three planetary boundaries has been crossed and climate change is one of them, the net 

effect is possible flip off  of the earth systems. 

2.3 Climate change and forests 

Forest process will most likely be affected by instability in climate patterns as it has been 

portrayed by Northward displacement of forests in North America and Europe in the 

Holocene period (Gates, 1990;Johnson and Curtis, 2001;Bonan, 2008). Forest ecosystems 

are shaped by climate; thus changes in the climate are likely to strongly affect forest 

ecosystems through influencing tree physiology, growth, mortality and reproduction, the 

biotic relationship, and disturbance (winds, wildfires, insect attacks). In general the 

increased concentration of atmospheric CO2 enhances plant growth, but this may be limited 

by dwindling soil water levels. The low soil water levels will limit plant growth by stomatal 

closure and starch accumulation leading to reduced photosynthesis processes (Gates, 

1990). 

These complex influences shows that climate change  may results to non-linear reactions, 

tipping points and longevity of trees, implying  that many individuals  present today will 

experience substantial changes of associated with climate (Hlásny et al., 2016)  before 

being replaced by the next generation. Interestingly the climate related effects on carbon 

sequestration  capacity in old-growth forest ecosystems remains uncertain (Zhou et al., 

2015). The climate changes and projected scenarios calls for paradigm shift in traditional 

forest management concepts practiced by forest managers which were based on historical 

niche ranges , natural range of variability, and ecological sustainability to determine the 

goals and objectives to be set  and informing  decision  making for  management (Millar et 
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al., 2007). The underlying principle in the traditional forest management approach involves 

maintenance of   forest conditions within the presettlement ranges. The evolving challenge 

in forest management is how to sustainably maintain forests into the future. (Millar et al., 

2007) noted that despite the significant lessons to be learned from historical forest 

conditions, it cannot determine the present and future ecological and management 

conditions. 

2.4 Modeling impacts of climate change on forests  

The cornerstone for climate change assessments can be derived from climate model 

simulations (Desktop et al., 2010;Field et al., 2014) , but understanding of the future 

dynamics of the carbon cycle in the land based biosphere is complicated by the fact that 

forests, which account for 80% of terrestrial carbon (Dixon et al., 1994) responds to climate 

change slowly. Despite the potential short coming, a lot of models have been developed 

with varying complexity and applications.  

The suite of models ranges from those that model species niches, to those that predict it 

distributions. A model which is niche determined is a representation of species ecological 

niche based on observed environmental conditions. While a fundamental niche of a 

species’ consists of all set of conditions that promote perpetual survival of species and  its 

realized niche is that subcategory of the fundamental niche which is occupied by the 

species (Sillero, 2008). In retrospect species’ realized niche could be minimal in 

comparison to  its fundamental niche, due to anthropogenic disturbances, biotic interactions 

(for example; inter-specific competition, predation), or geographic limitation hindering 

dispersal and colonization; such factors may limit the ability of the  species to inhabit (or 

even encounter) areas suitable for  its optimal ecological capabilities. 

While species distribution models (SDMs) examines the interaction between species 

occurrence and a biotic conditions and/or spatial extent of those sites (Schulp et al., 

2008;Vieilledent et al., 2016). These models are used within  natural resources disciples 

that includes; biogeography, conservation biology and ecology and as well as in climate 

change modeling (Elith et al., 2009). Use of predictive models in determining the spatial 
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scale of species based on the climatic conditions of sites plus their presence is critical in 

analytical biology (Dudı´K et al., 2005;Elith et al., 2009). 

Some methods have tended to use presence only data in species distribution modeling 

because of its ability to predict species with less datasets. A few of these methods include; 

BIOCLIM (Busby, 1986;Nix, 1986) which has the ability to  determine favorable variables 

in a “bioclimatic envelope”, that  consists of a rectilinear region in  a spatial range (or some 

percentage thereof) of noted occurrence values in every environmental dimension. 

Whereas , DOMAIN (Carpenter et al., 1993) utilizes a similarity matrices, where a 

projected suitability index is determined through computing the minimum distance in 

geographical locality to any presence record. 

Maximum entropy modeling (MaxEnt) is a general-purpose machine learning method that 

has simplified and accurate mathematical function that can model species distributions 

from presence-only species records (Dudı´K et al., 2005;Elith et al., 2009). But when 

combined with together with environmental information it makes it more robust. MaxEnt 

has a functionalities that enables it perform modeling of species distribution. According to 

(Dudı´K et al., 2005;Elith et al., 2009)  MaxEnt offers many advantages that includes; the 

model requires data that describe  only presence and climatic data of the area under study. 

It also uses both continuous and categorical data as well as incorporation of interactions 

between different variables.  

The model has robust and efficient deterministic algorithms developed to guarantee 

meeting at optimal probability distribution. Additionally the MaxEnt probability 

distribution has a concise mathematical definition, and therefore is amenable to analysis. 

To overcome errors associated with over-fitting, regularization capabilities have been 

develop. The other merit of the model is the continuous output, allowing fine distinctions 

to be made between the modeled suitability of sites and lastly the model can be applied to 

species presence/absence data by using a conditional model.  

The MaxEnt model has some demerits that includes; the MaxEnt model has not statistical 

matured like GLM or GAM, which has lesser user guidelines and fewer techniques for 

estimating the number of error in a prediction. It requires a study to determine the amount 
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of regularization and lastly it uses an exponential model for probabilities, which is not 

inherently bounded above and can provide more predicted values for climatic conditions 

beyond the range. 

2.5 Previous studies 

Arabuko Sokoke forest due to its important roles it plays within the coast of Kenya has 

seen a number of research works. (Oyugi et al., 2008) studied on tree species diversity, 

density, dispersion patterns and size class distributions in Brachystegia in relations with 

disturbance where the study findings point out the species dynamics varied with human 

disturbance. While (Glenday, 2008) concluded that little empirical data existed regarding 

carbon storage in the forest. The  livelihood context  of the forest was studied by 

(Fitzgibbon et al., 1995) in the study of mammal populations in Arabuko-Sokoke and 

concluded that the forest, provided an important source of protein and income for local 

communities. (Muriithi and Kenyon, 2002;Matiku et al., 2013;Hoscilo et al., 2014) studied 

the social and economic importance to the local community. It’s therefore clear based on 

the studies conducted within the forest that no evidence exists on how climate change will 

impact on tree biomass and species distribution 
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2.6 Conceptual framework 

 The conceptual framework for this study will utilize tree information that includes species, 

diameter at breast height (Dbh) in determining tree biomass and occurrence data when they 

are coupled with bioclimatic variables based on RCP 4.5 and 8.5 will provide prediction 

for species distribution based on climate change scenarios. This process will yield biomass 

accumulation curves, models and species suitability maps as its final products or output. 
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Model impacts of climate change on tree biomass and distribution in Arabuko Sokoke 

Figure 2: Conceptual framework for the study in Arabuko Sokoke forest reserve 
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CHAPTER THREE: RESEARCH METHODOLOGY 

3.1 Study Area  

The study was conducted in Arabuko-Sokoke forest located within Kenya’s Coast strip of 

Kilifi County. The forest reserves lies within a geographical bounds of 3°20′ South and  

39°50′East (Glenday, 2006). The Arabuko-Sokoke forest has an area of 41,600 ha with 

about 5,935 ha designated as nature reserve. The forest has three distinct and well described 

vegetation types (Mutangah, 1992;Muchiri and Kiriinya, 2001;Glenday, 2006;Musyoki et 

al., 2016) as influenced by soil types, rainfall regimes and altitudinal variations. The 

vegetation types are briefly described below; 

1. Mixed forest – This is a thick vegetation type that covers approximately 7,000 ha 

on the wetter coastal sands to eastern side of the forest. The section has high species 

diversity, which includes Afzelia quanzensis, Hymenea verrucosum, Combretum 

schumanii, Manilkara sansibarensis and Encephalartos hilderbrandtii  

2. Brachystegia forest – This type of the forest covers an area of about 7,700 ha 

consisting majorly of Brachystegia speciformis.  

3. Cynometra forest – It forms the  largest type of vegetation type in Arabuko Sokoke 

covering about 23,500 ha and it is majorly occupied by Cynometra webberi, Manilkara 

sulcata, and Euphorbia candelabrum and less of Brachylaena huillensis  

The forest is designated Important Bird Areas (IBA’s) with endemic bird species 

numbering about 270 species including six which are globally threatened and three near 

threatened species. 
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Figure 3: Map showing vegetation types in Arabuko Sokoke forest 
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3.1.1 Soils and topography 

The local topography is fairly flat (Figure 4); the sandy coastal strip has influenced the soil 

types. The drier western ridge parts of the forest consist of leached red soils. The others 

parts has deep, band of white, infertile sandy soils. The grey colored pleistocene lagoonal 

sands and clays are mainly found in eastern coastal plain. While silt soils are found on the 

dry northwestern edges  (Mutangah, 1992) (Figure 5). 

 

Figure 4: Map showing Elevation in Arabuko Sokoke forest 
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Figure 5: Map showing soil types in Arabuko Sokoke forest 

3.1.2 Climate 

The rainfall regime varies with altitudinal gradient with 1000–1100 mm/year being 

received in eastern side ridge and north western forest receives 600–900 mm/year. The 

mean annual temperature ranges from 21°C to 26°C with a mean daily temperature of 

25°C. The humidity is generally high with little fluctuation throughout the year (Glenday, 

2006). 
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3.1.3 Forest adjacent communities 

The forest adjacent communities majorly comprised of small scale farmers are close to 

104,000 inhabitants (Sinclair et al., 2011). According to (Fitzgibbon et al., 1995) 62.7% of 

forest adjacent of households and 33.3% of households living within 2 km of the forest 

depends on the forest for game meat. This indicates a community that has high forest 

dependency as a source of their nutritional and livelihood needs. While the eastern edges 

along the Gede-Malindi strip supports tourism industry. 

3.2 Research and Sampling design  

Experimental research design was used in determining the biomass accumulation rates of 

vegetation types as well as how climate change will impacts its distribution. A total of 21 

Permanent Sample Plots (PSPs) distributed randomly within the three vegetation types 

namely; mixed forest (10 plots), brachystegia forest (6 plots) and cynometra forest (5 plots) 

were the source of tree data. These PSPs measuring 50 m x 50 m were established in 1988 

and 1990 when the first tree measurement were done. The second and third tree 

assessments were done in 2004 and 2015 respectively. The information that was captured 

at the plot is the species type, tree Diameter at Breast Height (DBH) and plot coordinates.  
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3.3 Data collection 

3.3.1 Tree Biomass Estimation  

The above ground biomass of individual trees were derived using allometric equation 

(Chave et al., 2005) developed for moist tropical forests. 

B= ρ x exp (–1.499 + 2.148 ln (dbh) +0.207 ln (dbh)2–0.0281 ln (dbh)3) ----- Equation 1 

Where B= Biomass,ρ =specific wood density (g cm–3) and dbh is the diameter at breast 

height (cm). 

While the below ground biomass of individual trees were derived using a root: shoot ratio 

approach (Cairns et al., 1997). The total tree biomasses were derived by summing the 

above and below ground biomasses of every tree. The plot mean total biomasses were 

tabulated and clustered into vegetation types. The plot mean total biomass per vegetation 

type was then regressed against the time to in biomass accumulation curves. 

3.3.2 Environmental Data 

The mean maximum temperature, mean minimum temperature and total rainfall data for 

the study site were collected from Malindi Airport weather station which is approximately 

20 km from Arabuko Sokoke. The data collected ranged from 1981 to 2014(35 years), the 

mean annual rainfall were tabulated and the trend and anomaly analysis done. 

The future environmental data were obtained from Worldclim-Global climate data 

(Hijmans et al., 2005;Climate, 2013;Climate, 2014) together with 19 derived bioclimatic 

variables (Table 1). The resolution of the data was 1 Km2 and was based CMIP5 scenarios 

which were used in the development of the fifth IPCC report. The data for RCP 4.5 and 

RCP 8.5 at 2050 and 2070 were downloaded from CNRM-CM which was developed 

jointly by CNRM-GAME (Centre National de Recherches Me´te´orologiques—Groupe 

d’e´tudes de l’Atmosphe`re Me´te´orologique) and Cerfacs (Centre Europe´en de 

Recherche et de Formation Avance´e) in order to contribute to phase 5 of the Coupled 

Model Intercomparison Project (CMIP5). The choice of CNRM-CM was because data are 

provided freely for non-commercial uses. The RCP 4.5 represents the current directions of 

climate policy and technological interventions towards managing climate change, whereas 

RCP 8.5 presents the scenario based on no climate policy and other interventions in place 

with high population levels 
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Table 1: Table of bioclimatic Variables (Hijmans et al.,2005) 

Code Description Code Description 

BIO1 Annual Mean Temperature BIO10 Mean Temperature of Warmest 

Quarter BIO2 Mean Diurnal Range 

(Mean of monthly (max – 

min)temps 

BIO11 Mean Temperature of Coldest 

Quarter 

BIO3 Isothermality(BIO2/BIO7)(* 

100) 

BIO12 Annual Precipitation 

BIO4 Temperature Seasonality 

(standard deviation *100) 

BIO13 Precipitation of Wettest Month 

BIO5 Max Temperature of Warmest 

Month 

BIO14 Precipitation of Driest Month 

BIO6 Min Temperature of Coldest 

Month 

BIO15 Precipitation Seasonality 

(Coefficient of Variation) 

BIO7 Temperature Annual Range 

(BIO5- BIO6) 

BIO16 Precipitation of Wettest Quarter 

BIO8 Mean Temperature of Wettest 

Quarter 

BIO17 Precipitation of Driest Quarter 

BIO9 Mean Temperature of Driest 

Quarter 

BIO18 Precipitation of Warmest Quarter 

  BIO19 Precipitation of Coldest Quarter 

3.3.3 Running MaxEnt Model to predict impact of climate change on tree species 

distribution 

Tree Species occurrence data were derived from plot UTM coordinates. They were 

entered using excel and saved in “CSV” format. The BioClim layers from Worldclim-

Global climate data were clipped into the spatial extent of Arabuko Sokoke Forest 

(Map).These layers represented the current and future environmental conditions based on 

climate model for 2050 and 2070. The first MaxEnt model run was trained using of 75 % 

of the data will the remaining 25% of data was used for model validation. Some output 

files (Figure 7) were manipulated using ArcGIS and displayed in form of maps to depict 

suitable and unsuitable sites for the three vegetation types in Arabuko Sokoke. 
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3.3.4 Data analysis methods 

 The collected data were subjected to data quality control through checking for entry 

mistakes, inaccurate data and outliers, then summarized and subjected to tests of normality 

and homogeneity of variance before being transformed to normal distribution where 

necessary. The quality controls showed that 95 % of data could be used in the study. 

3.3.4.1 Estimation of tree biomass accumulation in Arabuko Sokoke forest  

The allometric equation (equation 1) was used to derive the tree biomass, while regression 

analysis was used to develop biomass accumulation rates by regressing tree biomass with 

time as well as the vegetation types. The R coefficient value was used to assess the level 

of curve accuracy 

Clipped files converted to 

ASCII format 

Projected and Clipped to 

Arabuko Sokoke Forest 

extent 

Maximum Entropy (Maxent) Model 

 

Species occurrence 

data 

Bioclimatic data 

Brachystegia.csv file 
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Mixed forest. Csv file 

 

Results/Html output 

Figure 7: Schematic of MaxENT Model in modeling impacts of climate change  
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3.3.4.2 Assessment of the temporal climate pattern of Arabuko Sokoke forest  

The rainfall and temperature data was subjected to the Mann–Kendall (MK) test to detect 

trends in a time series. Mann-Kendall trend test is a nonparametric test used to identify 

a trend in a series and compares the relative magnitudes of sample data rather than the data 

values themselves. 

3.3.4.3 Comparison of biomass accumulation between vegetation types based on 

temporal climate pattern in Arabuko Sokoke forest 

The biomass content in the different vegetation types was compared using one way analysis 

of variance (ANOVA), Exponential Regression analysis was done to correlate biomass 

accumulation and temporal climate patterns because biological growth in nature follows 

exponential functions 

3.3.3.4 Projection of the impacts of climate change on tree species distribution in 

Arabuko Sokoke forest 

Performance of MaxEnt model was assessed by using Area under the Receiver Operating 

Characteristic (ROC). Where a value of 0 .5 indicates the results could be random and 

confidence increases the nearer to 1. Additionally visual comparison of the maps was 

done between actual and predicted species distribution. Analysis of variable of contribution 

was used to test of environmental variable contribution, while the Jackknife tests was used 

to identify the most important variables by running a test for each variable in isolation and 

comparing it to all of the variables (Joshi, 2015). Jackknife tests are used in statistical 

inference to estimate the bias and standard error (variance) of a statistic, when a random 

sample of observations is used to calculate it. The data analysis methods use in this study 

are summarized below in Table 2 
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Table 2: Summary of Data Analysis methods based on objectives 
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CHAPTER FOUR: RESULTS 

This chapter presents and explained the results based on the objectives of the study. The 

results are presented in form of graphs, tables, maps and equations. 

4.1 Tree biomass accumulation in Arabuko Sokoke forest 

The results shows that a strong significant relationship between time and mean total tree 

biomass in Arabuko Sokoke (F1 68. =43.5, p=0.00). In the observed relationship, 58.4 % of 

mean total tree biomass could be explained by time (Figure 8) 

 

Figure 8: Regression of mean total tree biomass and time 

The results showed that the forest had higher mean total tree biomass in 2015 followed by 

2004 and least in 1990.The result shows; brachystegia forest recorded higher total tree 

biomass, followed by mixed forest and cynometra forest in 2015 and 1990. While mixed 

forest had higher total tree biomass in 2004, followed by brachystegia forest and cynometra 

forest (Figure 9) 
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Figure 9: Mean total tree biomass of different vegetation in Arabuko Sokoke forest 

A strong significant relationship between total tree biomass in Brachystegia forest and time 

was observed (F1 17. =25.5, p=0.00) with a good model fit (R2=0.67) (Figure 10) 

 

Figure 10: The mean total tree biomass of Brachystegia forest in different years  
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Total tree biomass in Cynometra forest showed a strong relationship with time (F1 16. =14.4, 

p=0.00).Time could explain 69% of the observed mean total tree biomass in cynometra 

forest (Figure 11). 

 
Figure 11: The mean total tree biomass of cynometra forest in different years 

There were 61.6% explanation of mean total tree biomass by time in mixed forest; this 

relationship had a significant statistical difference (F1 30. =39.14, p=0.00) (Figure 12) 

 

Figure 12: The mean total tree biomass of mixed forest at different years 
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4.2 Temporal climate pattern of Arabuko Sokoke forest 

The section shows the results of how climate patterns have been within Arabuko Sokoke 

over the last 35 years. It documents trend and variability assessment for rainfall, maximum 

temperature and minimum temperature. 

4.2.1 Mean annual rainfall trend in Arabuko Sokoke forest 

The plotted mean annual rainfall for Arabuko Sokoke shows a trends (Figure 13) however 

according to the Mann-Kendall test the trend is not significant (S = -106, p = 0.10) and has 

a weak Kendall’s tau ( -0.21).The study shows a statistically significant decreasing trend 

of mean annual rainfall in Arabuko Sokoke forests (Sen’s Slope= -0.50) and confidence 

intervals (-0.67 ,-0.37 ). 

 

Figure 13: Annual rainfall (1987-2014) anomaly in Arabuko Sokoke  

4.2.2 Trend of mean minimum temperature in the forest 

 The mean minimum temperature data in Arabuko Sokoke show a significant positive trend 

(S = 338, p = 0.00) according to the Mann-Kendall test and has a strong Kendall’s tau 

(0.64). There is a statistically significant increasing trend of mean annual minimum 

temperature in Arabuko Sokoke forests (Sen’s Slope= 0.03) and confidence intervals (0.03, 
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Figure 14: Minimum temperature (1987-2014) anomaly in Arabuko Sokoke 

4.2.3 The mean maximum temperature trend in Arabuko Sokoke forest 

The results show that the maximum temperature in Arabuko Sokoke has no significant 

trend (S=77, p=0.24) based on Mann-Kendall trend test and has a weak Kendall's tau 

(0.15). The plotted data (Figure 15) indicates a significant increasing trend of mean annual 

maximum temperature in Arabuko Sokoke forests as further confirmed by Sen’s Slope ( 

0.01) and confidence intervals (0.01 ,0.00). 

 

Figure 15: Maximum temperature (1987-2014) anomaly in Arabuko Sokoke 
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4.3 Comparison of total tree biomass based on temporal climate pattern in Arabuko 

Sokoke  

A strong significant relationship between tree biomass, time and minimum temperature 

anomaly was observed (F2 68. =40.27, p=0.00) with a fair good (R2=0.54). The regression 

equation for the relationship is as indicated below: 

𝑴𝒆𝒂𝒏 𝒕𝒐𝒕𝒂𝒍 𝒕𝒓𝒆𝒆 𝒃𝒊𝒐𝒎𝒂𝒔𝒔(𝑴𝒈
𝑪

𝒉𝒂
) = − 𝟑𝟐𝟐𝟎 +  𝟏. 𝟖𝟗 ∗ 𝒕𝒊𝒎𝒆(𝒚𝒆𝒂𝒓𝒔) −  𝟐𝟒. 𝟏 ∗

𝑴𝒊𝒏 𝒕𝒆𝒎𝒑…………………………………………………………………..Equation 2 

Additionally annual rainfall anomaly has a significant relationship with mean total tree 

biomass (F1 67. =9.78, p=0.003).This relationship has a good regression equation 

((R2=0.55) as shown in figure 16 

 

Figure 16: Relationship of mean total biomass and annual rainfalls anomaly  

The result shows a strong significant relationship between mean maximum temperature 
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between mean maximum temperature anomaly and mean total tree biomass shows a fair 

fit (R2=0.55) (Figure 17) 

 

Figure 17: Relationship of mean total tree biomass and annual maximum 

temperature anomaly  

The mean total tree biomass in Arabuko Sokoke forest showed a significant relationship 

with mean minimum temperatures anomaly (F1 67. =16.47, p=0.00).The study indicates that 

55% of total tree biomass could be explained by minimum temperatures (Figure 18). 

 

Figure 18: Relationship of mean total tree biomass and annual minimum temperature 

anomaly  
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4.3.1 Mixed forest tree biomass in relation to temporal climate pattern 

Accumulation of tree biomass in mixed forest has a significant relationship with annual 

rainfall anomaly (F1 30. =6.46, p=0.01).The regression of the accumulation relationship has 

strong model fit (R2=0.83) (Figure 19) 

 

 

Figure 19: Relationship of mean total tree biomass and annual rainfall anomaly in 

mixed forest 

Similarly the mean maximum temperature and mean minimum temperature anomalies had 

significant relationships with total tree biomass in mixed forest in Arabuko Sokoke (F1 30. 

=24.14, p=0.00) and (F1 30. =9.87, p=0.00). The regression relationship between the 

parameters had a poor model fit (R2=0.45 and R2=0.26) respectively (Figures 20 and 

Figures 21) 
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Figure 20: Relationship of mean total tree biomass and maximum temperature in 

mixed forest 

 

Figure 21: Relationship of mean total tree biomass and maximum temperature 

anomaly in mixed forest 
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4.3.2 Tree biomass in Cynometra forest in relation to temporal climate pattern 

Tree biomass in Cynometra forest had no significant relationship with annual rainfall 

anomaly (F1 16. =3.99, p=0.06) (Figure 22), however the mean maximum temperature 

anomaly had a strong significant relationship while mean minimum temperature had weak 

significant relationships (F1 16. =10.09, p=0.00) and (F1 16. =4.73, p=0.05). The relationship 

between mean total tree biomass and mean maximum and mean minimum temperature 

anomalies had a poor model fit (R2=0.24 and R2=0.40) respectively (Figures 23 and Figures 

24) 

 

Figure 22: Relationship of mean total tree biomass and annual rainfall anomaly in 

cynometra forest 
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Figure 23: Relationship of mean total tree biomass and maximum temperature 

anomaly in cynometra forest 

 

Figure 24: Relationship of mean total tree biomass and minimum temperature 

anomaly in cynometra forest 
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4.3.3 Tree biomass in Brachystegia forest in relation to temporal climate pattern 

There was a significant relationship between tree biomass in brachystegia forest and annual 

maximum temperature anomaly (F1 17. =18.01, p=0.00), the regression model had a 

significant fit (R2=0.52) (Figure 25) similarly minimum temperature anomaly had a 

significant relationships (F1 17. =9.19, p=0.01) and a poor model fit (R2=0.37) (Figure 26) 

 

Figure 25: Relationship of mean total tree biomass and maximum temperature 

anomaly in brachystegia forest 
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Figure 26: Relationship of mean total tree biomass and minimum temperature 

anomaly in brachystegia forest 

However there was no significant relationship between mean total tree biomass and annual 

rainfall  anomaly for brachystegia forest (F1 17. =3.57, p=0.08) (Figure 27) 

 

Figure 27: Relationship of mean total tree biomass and annual rainfall anomaly in 

brachystegia forest 
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4.4 Projection on impacts of climate change on tree species distribution  

This section covers analysis of the impacts of future climate on tree biomass as modeled 

using MaxEnt model based on bioclimatic variables associated with RCP 4.5 and 8.5, 

which represent a state of deployment of policies and strategies to address the greenhouse 

gases emissions and business as usual scenarios respectively 

4.4.1 Impacts of climate change based on RCP of 4.5 at 2050 

This section covers results of MaxEnt model based on forest occurrence data and 

bioclimatic variables based on RCP 4.5 at 2050. RCP 4.5 postulates a future where a raft 

of proactive policies and strategies will be deployed to address the greenhouse gases by 

2100. 

4.4.1.1 Analysis of sensitivity and specificity based on RCP 4.5 at 2050  

The significance of the (ROC) curve is determined by the area under curve (AUC) which 

has values that ranges from 0.5-1.0 and with levels of predictive accuracy (Swets, 1988): 

0.50-0.60 (fail), 0.60-0.70 (poor), 0.70-0.80 (fair), 0.80-0.90 (good), and 0.90-1.0 

(excellent).The AUC for brachystegia forest model based on RCP 4.5 at 2050 was 0.96 and 

0.86, for training and test data, respectively. This AUC value indicated that the constructed 

model is applicable and had ‘good’ predictive level and thus can be used in site suitability 

projection for of brachystegia forest in Arabuko Sokoke forest reserve (Figure 28) 
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Figure 28: ROC curve of sensitivity versus specificity for brachystegia forest based 

on RCP 4.5 at 2050 

The figure 29 indicates the area under curve (AUC) for cynometra forest model as 

determined by climatic factors associated with RCP 4.5 at 2050 was 0.87 and 0.50, for 

training and test data, respectively. This AUC value indicated that the constructed model 

is poor and had ‘failed’ predictive level and therefore it not suitable for predicting the 

geographic distribution of cynometra forest in Arabuko Sokoke forest reserve. 
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Figure 29: ROC curve of sensitivity versus specificity for cynometra forest based on 

RCP 4.5 at 2050 

The study (Figure 30) indicates the area under curve (AUC) for mixed forest model as per 

climatic factors associated with RCP 4.5 at 2050 was 0.93 and 0.86, for training and test 

data, respectively. This AUC value indicated that the constructed model is applicable and 

had ‘good’ level of predictive accuracy and therefore it be used in projecting suitable spatial 

coverage for cynometra forest in Arabuko Sokoke. 

 

Figure 30: ROC curve of sensitivity versus specificity for mixed forest based on RCP 

4.5 at 2050 
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4.4.1.2 Climate suitability maps generated from MaxEnt and Arc Gis based on RCP 

4.5 at 2050 

The future suitability zones were derived for RCP 4.5 at 2050, were determined through 

MaxEnt model. Geographical ranges of the certainly (0.6-1.0), likely (0.45-0.60), possibly 

(0.30.-0.45), unlikely (0.2-0.3) and rarely (0.00-0.17) are shown in the species suitability 

map using different colours (Figures 31, 32 and 33). The red colour indicates highly 

suitable areas while green colour depicts zones of unsuitability for brachystegia forest 

based on RCP 4.5 at 2050 and 2070. In the cynometra forest, the dark green colour shows 

areas of higher suitability while black colour indicates zones of unsuitability based on RCP 

4.5 at 2050 and 2070.Similarly colour scheme for mixed forest based on RCP 4.5 at 2050 

and 2070 are shades of green for suitable area and purple for unsuitable areas respectively 
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Figure 31: Climate suitability map for brachystegia forest based on current 

conditions and RCP 4.5 at 2050 and 2070 in Arabuko Sokoke forest reserve 
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Figure 32: Climate suitability map for cynometra forest based on current conditions 

and RCP 4.5 at 2050 and 2070 in Arabuko Sokoke forest reserve 
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Figure 33: Climate suitability map for mixed forest based on current conditions and 

RCP 4.5 at 2050 and 2070 in Arabuko Sokoke forest reserve 
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4.4.1.3 Analysis of variable contributions based on RCP 4.5 at 2050 

The future distribution of brachystegia forest based on RCP 4.5 at 2050 modeling will be 

influenced by temperature and precipitation variables. A total of six (6) variables 

contributed to the brachystegia forest model based on RCP 4.5 at 2050. The bioclimatic 

variables BIO8 and BIO2 were the top two contributors to the prediction model with 61.2% 

and 19 % respectively (Table 3), while BIO 17 had 13.3%. 

Table 3: Selected environmental variables with percent contribution to the model for 

brachystegia forest based on RCP 4.5 at 2050 

Environmental Variable 
Percent 

contribution 

Mean Temperature of Wettest Quarter (Bio8) 61.2 

Mean Diurnal Range (Mean of monthly (max temp - min 

temp))(Bio 2) 
19 

Precipitation of Driest Quarter(Bio 17) 13.3 

Annual Mean Temperature(Bio 1) 3.8 

Precipitation of Driest Month(Bio 14) 2.2 

Annual Precipitation(Bio 12) 0.5 

 

The predicted distribution of cynometra forests based on RCP 4.5 as at 2050 will be 

determined by precipitation and temperature variables. A total of eight (8) bioclimatic 

variables contributed to the prediction model. The bioclimatic variable BIO 19 and BIO 1 

were the biggest contributors with 35.9% and 16.1% respectively (Table 4) 

Table 4: Selected environmental variables with percent contribution to the model for 

cynometra forest based on RCP 4.5 at 2050 

Environmental Variable Percent contribution 

Precipitation of Coldest Quarter(Bio19) 35.9 

Annual Mean Temperature(Bio 1) 16.1 

Mean Temperature of Driest Quarter(Bio9) 15.4 

Temperature Annual Range (BIO5- BIO6)(Bio7) 14.1 

Max Temperature of Warmest Month(Bio 5) 13.1 

Precipitation of Driest Quarter(Bio 17) 4.3 

Isothermality (BIO2/BIO7) (* 100)(Bio 3) 1 

Temperature Seasonality (standard deviation *100)(Bio 4) 0.1 
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Nine (9) bioclimatic variables contributed to the mixed forest prediction model based on 

RCP 4.5 at 2050.The highest contribution was from bioclimatic variable BIO8 ,followed 

by BIO5 with least being from BIO14 and BIO7(Table 5) 

Table 5: Selected environmental variables with percent contribution to the model for 

mixed forest based on RCP 4.5 at 2050 

Environmental Variables Percent Contribution 

Mean Temperature of Wettest Quarter (Bio8) 65.5 

Max Temperature of Warmest Month(Bio 5) 19.3 

Mean Temperature of Coldest Quarter(Bio11) 5.4 

Mean Temperature of Warmest Quarter(Bio10) 4.6 

Precipitation of Driest Quarter(Bio 17) 4.3 

Mean Temperature of Driest Quarter(Bio9 0.4 

Annual Precipitation(Bio 12) 0.3 

Precipitation of Driest Month(Bio 14) 0.1 

Temperature Annual Range (BIO5- BIO6)(Bio7) 0.1 

 

4.4.1.4 Jackknife test for variables based on RCP 4.5 at 2050 

The jackknife test estimates how the model will perform if new data or observation is input 

into it. The stepwise approach of removing bioclimatic variables indicates the Mean 

Temperature of Wettest Quarter (Bio8) had the highest gain when used alone, while Mean 

Diurnal Range (Mean of monthly (max temp - min temp) (Bio 2), decreases in gain the 

most when it is omitted for brachystegia forest (Figure 34).  The jackknife test shows that 

in the cynometra forest Annual Mean Temperature (Bio 1) records highest gain when 

applied alone. Precipitation of Coldest Quarter (Bio19) decreased the gain the most when 

it is omitted (Figure 35). 

The jackknife results for mixed forest shows that the highest gain in variable when used 

alone is that  of Mean Temperature of Wettest Quarter (Bio8) while at the same time shows 

a drastic  decreases when it is omitted in the model (Figure 36). 
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Figure 34: Predictive power of different bioclimatic variables based on the jackknife 

test for brachystegia forest based on RCP 4.5 at 2050 

 

Figure 35: Relative predictive power of different bioclimatic variables based on the 

jackknife test for cynometra forest based on RCP 4.5 at 2050 
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Figure 36: Relative predictive power of different bioclimatic variables based on the 

jackknife test for mixed forest based on RCP 4.5 at 2050 

4.4.2 Impacts of climate change based on RCP 4.5 at 2070 

The results below documents MaxEnt model outputs analyzed from forest occurrence data 

and bioclimatic variables based on RCP 4.5 at 2070. RCP 4.5 postulates a future where a 

raft of proactive policies and strategies will be deployed to address the greenhouse gases 

by 2100. 

4.4.2.1 Analysis of sensitivity and specificity based on RCP 4.5 at 2070 

The AUC for brachystegia forest model as determined by climatic factors associated with 

RCP 4.5 at 2070 was 0.95 and 0.89, for training and test data, respectively. This AUC value 

indicated that the constructed model is applicable and had ‘good’ predictive accuracy and 
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it can be used for predicting the geographic distribution of brachystegia forest in Arabuko 

Sokoke forest reserve (Figure 37) 

 
Figure 37: ROC curve of sensitivity versus specificity for brachystegia forest based 

on RCP 4.5 at 2070 

The cynometra forest model as per climatic factors associated with RCP 4.5 at 2070 had 

an AUC of 0.92 and 0.58, for training and test data, respectively. This AUC value indicated 

that the constructed model cannot be used predicting the suitable areas for brachystegia 

forest in Arabuko Sokoke forest reserve (Figure 38) because it has failed the predictive 

accuracy 



49 
 

 
Figure 38: ROC curve of sensitivity versus specificity for cynometra forest based on 

RCP 4.5 at 2070 

The AUC for mixed forest model based on the climatic variables associated with RCP 4.5 

at 2070 was 0.96 and 0.87, for training and test data, respectively. This AUC value 

indicated that the constructed model is applicable and had ‘good’ predictive accuracy and 

it useful in predicting the geographic distribution of mixed forest in Arabuko Sokoke forest 

reserve (Figure 39) 
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Figure 39: ROC curve of sensitivity versus specificity for mixed forest based on RCP 

4.5 at 207 

4.4.2.2 Analysis of variable contributions based on RCP 4.5 at 2070 

Table 6 below indicates that the predicted distribution of brachystegia forests based on 

RCP 4.5 at 2070 will be determined by temperature and precipitation variables. Nine (9) 

bioclimatic variables contributed to the prediction model. The bioclimatic variable BIO 8 

and BIO 1 were the biggest contributors with 53% and 24.7% respectively  
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Table 6: Selected environmental variables with percent contribution in the model for 

brachystegia forest based on RCP 4.5 at 2070 

 Environmental Variable 
Percent 

contribution 

Mean Temperature of Wettest Quarter(Bio 8) 53 

Annual Mean Temperature(Bio 1) 24.7 

Mean Temperature of Coldest Quarter(Bio 11) 9.8 

Mean Diurnal Range (Mean of monthly (max temp - min 

temp))(Bio2) 
4 

Precipitation of Warmest Quarter(Bio 18) 3.7 

Precipitation of Driest Month(Bio14) 3.1 

Isothermality (BIO2/BIO7) (* 100)(Bio 3) 1.3 

Mean Temperature of Warmest Quarter(Bio 10) 0.2 

Annual Precipitation(Bio12) 0.2 

 

The selected environmental variables (Table 7) shows that the predicted distribution of 

cynometra forests based on RCP 4.5 at 2070 will be determined by temperature and 

precipitation variables. Seven (7) bioclimatic variables contributed to the prediction model. 

With bioclimatic variable BIO 9 and BIO 2 being the biggest contributors with 48.1% and 

21.2% respectively  

 

Table 7: Selected environmental variables and their percent contribution in MaxEnt 

model for cynometra forest based on RCP 4.5 at 2070 

Environmental Variable 
Percent 

contribution 

Mean Temperature of Driest Quarter(Bio9) 48.1 

Mean Diurnal Range (Mean of monthly (max temp - min 

temp))(Bio2) 
21.2 

Temperature Annual Range (BIO5- BIO6)(Bio7) 15.8 

Precipitation of Warmest Quarter(Bio 18) 7.7 

Temperature Seasonality (standard deviation *100)(Bio4) 4.4 

Min Temperature of Coldest Month(Bio6) 1.5 

Precipitation Seasonality (Coefficient of Variation)(Bio 15) 1.3 
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Nine bioclimatic variables contributed to the prediction model for mixed forest based on 

RCP 4.5 at 2070.The mean Temperature of Wettest Quarter (Bio 8) and Annual Mean 

Temperature (Bio 1) were the largest contributors with 37.8% and 37.2 % respectively 

(Table 8) 

Table 8: Selected environmental variables and their percent contribution in MaxEnt 

model for mixed forest based on RCP 4.5 at 2070 

Environmental Variable Percent contribution 

Mean Temperature of Wettest Quarter(Bio 8) 37.8 

Annual Mean Temperature(Bio 1) 37.2 

Precipitation of Driest Month(Bio14) 10.1 

Mean Temperature of Driest Quarter(Bio9) 4.8 

Isothermality (BIO2/BIO7) (* 100)(Bio 3) 4.4 

Precipitation of Warmest Quarter(Bio 18) 3.5 

Min Temperature of Coldest Month(Bio 6) 1.2 

Mean Temperature of Coldest Quarter(Bio 11) 0.8 

Mean Diurnal Range (Mean of monthly (max temp - min 

temp))(Bio2) 
0.3 

 

4.4.2.3 Jackknife test for variables based on RCP 4.5 at 2070 

Jackknife test estimate the performance of models when subjected to new data, and in this 

study the jackknife results for brachystegia shows that mean Temperature of Wettest 

Quarter (Bio8) had with highest gain when used alone, while Mean Temperature of Coldest 

Quarter (Bio 11), had decreases in  gain the most when it is omitted (Figure 40) 

In the cynometra forest, the Mean Temperature of Driest Quarter (Bio9) had higher gain 

when applied in isolation and it decreased drastically in the gain omitted in the prediction 

model. (Figure 41) 

The jackknife test analysis for mixed forest indicates that higher gain is expected where 

Mean Temperature of Wettest Quarter (Bio8) is used alone while Precipitation of Driest 

Month (Bio14) led to decreased gain the most when left out in the prediction model (Figure 

42) 
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Figure 40: Relative predictive power of different bioclimatic variables based on the 

jackknife test for brachystegia forest based on RCP 4.5 at 2070 

 

 

Figure 41: Relative predictive power of different bioclimatic variables based on the 

jackknife test for cynometra forest based on RCP 4.5 at 2070 
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Figure 42: Relative predictive power of different bioclimatic variables based on the 

jackknife test for mixed forest based on RCP 4.5 at 2070 

4.4.3 Impacts of climate change based on RCP 8.5 at 2050 

The MaxEnt model outputs analyzed from forest occurrence data and bioclimatic variables 

based on RCP 8.5 at 2050 are presented in the below sections. 

4.4.3.1 Analysis of sensitivity and specificity based on RCP 4.5 at 2050 

The AUC for brachystegia forest model based on RCP 8.5 at 2050 was 0.96 and 0.86, for 

training and test data, respectively. This AUC value indicated that the constructed model 

is applicable and had ‘good’ predictive accuracy and useful in site suitability determination 

for brachystegia forest in Arabuko Sokoke forest reserve (Figure 43) 
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Figure 43: ROC curve of sensitivity versus specificity for brachystegia forest based 

on RCP 8.5 at 2050 

The AUC for cynometra forest model based climatic factors associated with RCP 8.5 at 

2050 was 0.93 and 0.55, for training and test data, respectively. This AUC value indicated 

that the constructed model is not better then random data and has ‘fail’ predictive accuracy 

and it is not suitable for predicting the geographic distribution of cynometra forest in 

Arabuko Sokoke forest reserve (Figure 44) 
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Figure 44: ROC curve of sensitivity versus specificity for cynometra forest based on 

RCP 8.5 at 2050 

The AUC for mixed forest c model based RCP 8.5 at 2050 was 0.95 and 0.90, for training 

and test data, respectively. This AUC value indicated that the constructed model is 

applicable and had ‘good’ predictive accuracy and therefore it was robust in predicting 

suitable forest areas for mixed forest type in Arabuko Sokoke forest reserve (Figure 45) 
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Figure 45: ROC curve of sensitivity versus specificity for mixed forest based on RCP 

8.5 at 2050 

4.4.3.2 Climate suitability maps generated from MaxEnt and Arc Gis based on RCP 

8.5 at 2050 

The future suitability zones were derived for RCP 8.5 in 2050, based on the existence 

probability of, determined through MaxEnt. The geographical ranges of the certainly (0.6-

1.0), likely (0.45-0.60), possibly (0.30.-0.45), unlikely (0.2-0.3) and rarely (0.00-0.17) are 

shown in the climate suitability map with different colours (Figures 44, 45 and 46). The 

red colour indicates zones of unsuitability while green colour depicts highly suitable areas 

for brachystegia forest based on RCP 8.5 in2050 and 2070.In the cynometra forest, the blue 

colour shows areas of higher suitability while orange colour indicates zones of unsuitability 

based on RCP 8.5in 2050 and 2070.while for mixed forest based on RCP 8.5 in 2050 and 

2070 red colour depicts suitable area and shades of grey for unsuitable areas respectively 



58 
 

 

Figure 46: Climate suitability map for brachystegia forest based on current 

conditions and RCP 4.5 in 2050 and 2070 in Arabuko Sokoke forest reserve 
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Figure 47: Climate suitability map for cynometra forest based on current conditions 

and RCP 4.5 in2050 and 2070 in Arabuko Sokoke forest reserve 
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Figure 48: Climate suitability map for mixed forest based on current conditions and 

RCP 4.5 in 2050 and 2070 in Arabuko Sokoke forest reserve 
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4.4.3.3 Analysis of variable contributions based on RCP 8.5 at 2050 

The predicted distribution of brachystegia forests based on RCP 8.5 at 2050 will be 

determined by temperature and precipitation variables. Nine (9) bioclimatic variables 

contributed to the prediction model. The bioclimatic variable BIO 8 and BIO 14 were the 

biggest contributors with 53.1% and 19% respectively (Table 9)  

Table 9: Selected environmental variables with percent contribution to the model for 

brachystegia forest based on RCP 8.5 at 2050 

Environmental Variable Percent Contribution 

Mean Temperature of Wettest Quarter (Bio8) 53.1 

Precipitation of Driest Month(Bio 14) 19 

Mean Diurnal Range (Mean of monthly (max temp - min 

temp))(Bio 2) 
8.4 

Max Temperature of Warmest Month(Bio 5) 7.5 

Annual Precipitation(Bio 12) 7.1 

Mean Temperature of Warmest Quarter(Bio 10) 2.7 

Precipitation of Coldest Quarter(Bio 19) 1.8 

Temperature Seasonality (standard deviation *100)(Bio 4) 0.3 

Precipitation of Driest Quarter(Bio 17) 0.2 

 

Table 10 below documents predicted distribution of cynometra forests based on RCP 8.5 

in 2050. Seven (7) bioclimatic variables contributed to the prediction model with 

bioclimatic variable BIO 7 and BIO 5 being biggest contributors with 46.6% and 29.5% 

respectively. 

Table 10: Selected environmental variables and their percent contribution in MaxEnt 

model for cynometra forest based on RCP 8.5 at 2050 

Environmental Variable 
Percent 

Contribution 

Temperature Annual Range (BIO5- BIO6)(Bio7) 46.6 

Max Temperature of Warmest Month(Bio 5) 29.5 

Mean Temperature of Driest Quarter(Bio 9) 11.9 

Temperature Seasonality (standard deviation *100)(Bio 4) 10.8 

Precipitation of Coldest Quarter(Bio 19) 0.7 

Precipitation of Driest Quarter(Bio 17) 0.5 

Precipitation of Wettest Month(Bio 13) 0.1 
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The predicted distribution of mixed forests based on RCP 8.5 in2050 shows that 

temperature and precipitation are the largest variables. Six (6) bioclimatic variables 

contributed to the prediction model with bioclimatic variable BIO 5 and BIO 9 being 

biggest contributors with 75.9% and 8.4% respectively. 

Table 11: Selected environmental variables with percent contribution to the model 

for mixed forest based on RCP 8.5 at 2050 

Environmental Variable Percent Contribution 

Max Temperature of Warmest Month(Bio 5) 75.9 

Mean Temperature of Driest Quarter(Bio9) 8.4 

Precipitation of Driest Quarter(Bio 17) 7.8 

Precipitation of Driest Month(Bio 14) 4.6 

Precipitation of Coldest Quarter(Bio 19) 2.9 

Mean Temperature of Wettest Quarter (Bio8) 0.4 

4.4.3.4 Jackknife test for variables based on RCP 8.5 in 2050 

The results of the jackknife test for brachystegia shows that mean Temperature of Wettest 

Quarter (Bio8) had higher gain when singly used in the model, while Precipitation of Driest 

Month (Bio 14),  mostly decreased when omitted in the model (Figure 49) 
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Figure 49: Relative predictive power of different bioclimatic variables based on the 

jackknife test for brachystegia forest based on RCP 8.5 at 2050 

In the cynometra forest the jackknife test indicates that the Temperature Annual Range 

(BIO5- BIO6) variable had highest gain when used alone and whiles at the same time it 

decreased the gain the most when it is omitted in the prediction model (Figure 50) 
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Figure 50: Relative predictive power of different bioclimatic variables based on the 

jackknife test for cynometra forest based on RCP 8.5 at 2050 

 

The jackknife results for mixed forest shows that the highest gain for a bioclimatic variable 

when used in isolation is that of  Mean Temperature of Driest Quarter (Bio9) while Max 

Temperature of Warmest Month (Bio5) decreased the most  in the gain when omitted in 

the prediction model 
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Figure 51: Relative predictive power of different bioclimatic variables based on the 

jackknife test for mixed forest based on RCP 8.5 at 2050 

 

4.4.4 Impacts of climate change based on RCP 8.5 in 2070 

The section below details the results of MaxEnt model analysis of forest occurrence data 

and bioclimatic variables from RCP 8.5 at 2070. 

4.4.4.1 Analysis of sensitivity and specificity based on RCP 8.5 at 2070 

The AUC for brachystegia forest model based on RCP 8.5 at 2070 was 0.95 and 0.93, for 

training and test data, respectively. This AUC value indicated that the constructed model 

is applicable and had ‘excellent’ predictive accuracy and therefore it was suitable in 
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showing future geographic distribution of brachystegia forest in Arabuko Sokoke forest 

reserve (Figure 52) 

 

Figure 52: ROC curve of sensitivity versus specificity for brachystegia forest based 

on RCP 8.5 at 2070 

The AUC for cynometra forest model based on RCP 8.5 at 2070 was 0.91 and 0.65, for 

training and test data, respectively. This AUC value indicated that the constructed model 

is applicable and had ‘excellent’ predictive accuracy and therefore it was suitable in 

identification of predicted sites of brachystegia forest in Arabuko Sokoke forest reserve 

(Figure 53) 
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Figure 53: ROC curve of sensitivity versus specificity for cynometra forest based on 

RCP 8.5 in 2070 

The AUC for mixed forest model based on factors associated with RCP 8.5 at 2050 was 

0.97 and 0.95, for training and test data, respectively. This AUC value indicated that the 

constructed model is applicable and had ‘excellent’ predictive accuracy and therefore it 

was suitable for predicting the geographic distribution of brachystegia forest in Arabuko 

Sokoke forest reserve (Figure 54) 

 
Figure 54: ROC curve of sensitivity versus specificity for mixed forest based on RCP 

8.5 in 2070 
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4.4.4.2 Analysis of variable contributions based on RCP 8.5 at 2070 

Table 12 below indicates that the predicted distribution of brachystegia forests based on 

RCP 8.5 in 2070. Six (6) bioclimatic variables contributed to the prediction model. The 

bioclimatic variable BIO 8 and BIO 2 were the biggest contributors with 86.3% and 11.4% 

respectively  

Table 12: Selected environmental variables and their percent contribution in MaxEnt 

model for brachystegia forest based on RCP 8.5 in 2070 

Environmental Variable Percent contribution 

Mean Temperature of Wettest Quarter (Bio8) 86.3 

Mean Diurnal Range (Mean of monthly (max temp - 

min temp))(Bio 2) 
11.4 

Annual Mean Temperature(Bio 1) 1.2 

Temperature Seasonality (standard deviation 

*100)(Bio4) 
0.5 

Precipitation of Driest Quarter(Bio 17) 0.5 

Isothermality (BIO2/BIO7) (* 100)(Bio 3) 0.1 

 

The predicted distribution of cynometra forests based on RCP 8.5 in 2070 will be 

determined by temperature and precipitation variables. Six (6) bioclimatic variables 

contributed to the prediction model. The bioclimatic variable BIO 7 and BIO 9 were the 

biggest contributors with 42.2% and 40.7% respectively (Table 13) 

Table 13: Selected environmental variables with percent contribution to the model 

for cynometra forest based on RCP 8.5 in 2070 

Environmental Variable Percent Contribution 

Temperature Annual Range (BIO5- BIO6)(Bio7) 42.2 

Mean Temperature of Driest Quarter(Bio9) 40.7 

Annual Mean Temperature(Bio 1) 6.5 

Precipitation of Warmest Quarter(Bio 18) 6.1 

Min Temperature of Coldest Month(Bio 6) 4.1 

Temperature Seasonality (standard deviation *100)(Bio 4) 0.3 

 

Table 14 below indicates that the predicted distribution of mixed forests based on RCP 8.5 

in 2070 will be determined by temperature and precipitation variables. Seven (7) 
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bioclimatic variables contributed to the prediction model. The bioclimatic variable BIO 8 

and BIO 3 were the biggest contributors with 69.2% and 10.8% respectively  

Table 14: Selected environmental variables with percent contribution to the model 

for brachystegia forest based on RCP 8.5 in2070 

Environmental Variable Percent contribution 

Mean Temperature of Wettest Quarter (Bio8) 69.2 

Isothermality (BIO2/BIO7) (* 100)(Bio 3) 10.8 

Mean Temperature of Driest Quarter(Bio9) 8.9 

Mean Temperature of Coldest Quarter(Bio11) 4.9 

Precipitation of Driest Month(Bio 14) 2.8 

Annual Precipitation(Bio 12) 2.6 

Mean Temperature of Warmest Quarter(Bio10) 0.7 

 

4.4.4.3 Jackknife test for variables based on RCP 8.5 in2070 

The jackknife results shows how the model behaves when variables are independently 

assessed to show new dataset will respond. In the brachystegia forest the Mean 

Temperature of Driest Quarter (Bio9) had highest gain when used alone and while it 

decreased the most in gain when it is omitted within the prediction model. (Figure 55) 

 

Figure 55: Relative predictive power of different bioclimatic variables based on the 

jackknife test for brachystegia forest based on RCP 8.5 in 2070 
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In the cynometra forest the jackknife results indicates the highest gain existed when Mean 

Temperature of Driest Quarter (Bio9) is used alone while the Min Temperature of Coldest 

Month (Bio6) decreased the gain a lot when omitted in the prediction model (Figure 56) 

 
Figure 56: Relative predictive power of different bioclimatic variables based on the 

jackknife test for brachystegia forest based on RCP 8.5in 2070 

In the mixed forest the Mean Temperature of Wettest Quarter (Bio8)) had higher gain when 

it was singly used and it decreased the gain the most when it was omitted (Figure 57) 

 
Figure 57: Relative predictive power of different bioclimatic variables based on the 

jackknife test for brachystegia forest based on RCP 8.5 in 2070 
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CHAPTER FIVE: DISCUSSION 

 

5.1 Tree biomass accumulation in Arabuko Sokoke forest 

The study finding indicates tree biomass in Arabuko Sokoke forest accumulated time. The 

different vegetation had different levels of biomass, with brachystegia forest recording 

higher total tree biomass, followed by mixed forest and cynometra forest in 2015 and 1990. 

Mixed forest had higher total tree biomass in 2004, followed by brachystegia forest and 

cynometra forest. This noted variance is supported by (Gray et al., 2016) observations, that 

different species have varying growth, longevity and decomposition rates. Similarly 

(Krankina et al., 2005) noted that specific tree species could be instrumental in determining 

how biomass changes in varied ways .For example coniferous species which are higher 

longevity (pine, Siberian pine, and larch)  tends to accumulate more biomass in comparison 

to  hardwood species such as aspen and birch which are short lived. 

There is an increasing interest in understanding how forest biomass accumulate because of 

its role in regulating cycling of carbon and nutrients (Cairns et al., 1997). Forest can 

achieve higher level of carbon sequestration but can also rapidly lose the stored carbon 

(Mckinley et al., 2011). In the absence of anthropogenic drivers, the level of carbon storage 

and lose is determined by available resources and environmental resources, this two factors 

influences the net primary productivity and heterotrophic respiration of a forest (Gray et 

al., 2016). However due to diverse forest species composition variance in maximum 

attainable stocks is expected even is similar sites due to difference in species growth, 

longevity and decomposition rates(Gray et al., 2016). forest ecosystems show variation  in 

tree biomass and carbon stocks  due to distinction in  forest type, species diversity, age, 

growth stage of the species, biotic and a biotic conditions of the site, precipitation pattern 

and topographical conditions (Gairola et al., 2011;Zhao et al., 2014). 

The varying biomass levels in brachystegia, cynometra and mixed forests as documented 

by this study could be due to difference site conditions (Glenday, 2008). Forest managers 

have historically used empirical relationships of site conditions or index and community 

classifications, localized variations, to project forest productivity and evaluate a suite of 

management actions (Gray et al., 2016). 
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The study documents higher biomass levels in 2015 than 1990, a possible indicator of net 

increase in biomass.  The rate of biomass accumulation rate tends to  changes with forest 

age and successional stage, as determined by plant process specifically the net primary 

productivity and respiration (Gray et al., 2016)  

Furthermore the results show a slight drop in biomass levels for brachystegia and 

cynometra between 1990 and 2004. The noted change coincides with (Glenday, 2008) 

study that had  observed  the forest was facing disturbance during that study period, in fact 

the study noted then  that the disturbance was likely to cause an associated loss of  stored 

carbon stock in  disturbed parts of the forest. 

 The higher biomass levels in 2015 in the three vegetation types shows  a forest that 

regenerated rapidly;  as new forest vegetation regenerate in disturbed  forest site, biomass 

accumulation tends to climax early in the forest as net primary productivity approaches a 

plateau soon after canopy closure by trees (Ryan et al., 2004;Mckinley et al., 2011). The 

above observation is enhanced by assertion that improved management of harvesting and 

rehabilitation (Glenday, 2008) in Arabuko Sokoke forest could lead to higher biomass. 

 A number of challenges to associate with accuracy of tree biomass and its change exist. 

But more definitive estimates can be achieved through longer remeasurement time spans 

(Krankina et al., 2005); therefore the need for long term monitoring plots in our diverse 

forests that differ in accumulation rates due to variance in site productivity, species mix 

and ages. 

5.2 Temporal climate pattern of Arabuko Sokoke forest 

Intergovernmental Panel on Climate Change (IPCC), have documented unique trend of 

warming in 20th century (Desktop et al., 2010;Field et al., 2014). Estimating the spatial 

distribution of climatic pattern has become a cornerstone of studies helping in 

understanding climate change and its effects throughout the world (Price et al., 2000). 

The study findings indicates that mean annual rainfall trend for Arabuko Sokoke was not 

significant (S = -11, p = 0.10 and had a weak Kendall’s tau (-0.21). The analysis points at 

a statistically significant decreasing trend (Sen’s Slope= -0.50) and confidence intervals (-
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0.67,-0.37). There were variation in the amount of rainfall received  in 1990 to 2014 period, 

a total of 18 different years recorded a below mean annual rainfall. These results indicates 

interannual variability which was noted by another study (Hulme et al., 2001) in their 

review study of observed  conditions (1900–2000) and projected  future (2000–2100) in 

changes temperature and rainfall within the whole of Africa where they noted that 

interannual rainfall variability is large over most of Africa and for some regions. 

The findings indicates that minimum temperature anomaly in Arabuko Sokoke had a 

significant positive trend (S = 34, p = 0.00) and a strong Kendall’s tau (0.64) based on the 

Mann-Kendall test. There was a statistically significant increasing trend of mean annual 

minimum temperature in Arabuko Sokoke forests (Sen’s Slope= 0.03) and confidence 

intervals (0.03, 0.04). The analysis shows a continuous 13 year above mean annual 

temperature in Arabuko Sokoke forest (Figure 16) similar to other studies (Ongoma and 

Onyango, 2014)The maximum temperature in Arabuko Sokoke had no significant trend 

(S=77, p=0.24) based on Mann-Kendall trend test and had a weak Kendall's tau (0.15). 

Figure 13 indicates a significant increasing trend of mean annual maximum temperature in 

Arabuko Sokoke forests and it was confirmed by Sen’s Slope (0.01) and confidence 

intervals (0.00, 0.01).  

The anomaly analysis for temperature indicates variability around the mean, this scenario 

is within the observation of other studies (Desktop et al., 2010;Field et al., 2014). For 

example (Mccarthy, 2001) study in Africa using predictive models indicated that the  

warming  of within 0.2°C per decade (low scenario) to more than 0.5°C per decade (high 

scenario) is possible. These climate models  shows  a possible increase in future mean 

annual temperature to within ranges of  1° to 3.5°C by the 2050s (Kebede et al., 2010) 

5.3 Comparison of total tree biomass based on temporal climate pattern in Arabuko 

Sokoke  

The distribution of  plants forms, species types, and plant productivity  within and across 

continents and vast geographic regions can be broadly determined  by climate (Krankina 

et al., 2005) through influencing plant photosynthesis and respiration. The climatic 

parameters associated with temperature and precipitation determines plant growth and 
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respiration processes to a major degree. (Jarvis and Linder, 2000) observed that when 

temperature increases the available nutrient in the soil is likely to be affect through the 

enhancement of organic matter decomposition and mineralization process. Temperature is 

an important factor in all plant metabolic processes that includes uptake, respiration, and 

carbon storage.  When higher temperatures complement with adequate precipitation 

without limitation then increased tree metabolic processes are expected. This higher tree 

metabolic activity will results in higher tree growth (Luo et al., 2000;Mcmahon et al., 

2010) an indicating that global temperature is an important determinant of spatial 

distribution of biomass. 

The study findings indicates a significant relationship between biomass (Mixed, 

Cynometra and Brachystegia) with temperature existed, which conforms to (Delpierre et 

al., 2009) observational studies correlating temperature and three deciduous in France. 

However, temperature may reduce productivity in warmer areas through increased rates of 

evaporation and stomatal closure due to higher vapor pressure deficits. 

Water availability influences carbon stocks principally by determining structural area of 

forests. This expectation is reinforced by the global pattern of covariation of ecosystem 

carbon turnover times with both precipitation and climate (Carvalhais et al., 2014;Álvarez-

Dávila et al., 2017). In contrast water deficits due to occasional or regular droughts are 

well-known to drive mortality, particularly of larger trees  and these mortality impacts may 

be limiting AGB in our forests too (Phillips et al., 2002) 

In this study a significant relationship between rainfalls with mean total tree biomass in the 

forest was established. These results pinpoint observation that were noted by (Malhi et al., 

2008); where their showed precipitation in the drier quarter in Amazonian forest were 

positively correlated with above ground biomass. While consensus exist on the role 

precipitation play in determining biomass accumulation through influencing seed 

germination, seedling growth and survival, phenology and species richness which all 

contribute forest productivity (Rivas-Arancibia et al., 2006;Padilla and Pugnaire, 

2007;Quevedo-Robledo et al., 2010). 
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 In contrast, it’s been noted that rainfall may not provide an explanation to the interannual 

variation in primary productivity at local scales (Knapp and Smith, 2001;Swemmer et al., 

2007;Yan et al., 2015) and this observation may explain the absence of significant 

relationship between cynometra forests and mean annual rainfall. (Duncan and 

Woodmansee, 1975;Yan et al., 2015) observed that the yield of annual grasses correlated 

poorly with rainfall in any particular month of the growing season.  

According to studies (Agnew et al., 2000;Lin et al., 2010;Yan et al., 2015) there was no 

relationship between above ground biomass of annuals plants and precipitation in the 

Chihuahuan desert. Other unique observations include (Salve et al., 2011;Yan et al., 2015) 

concluded that higher total rainfall reduces the aboveground biomass of annuals. Therefore 

its apparent that biomass is influenced by the amount of rainfall and temporal patterns in a 

geographical location (Yan et al., 2015).  

Water supply and temperature have multiple impacts on both growth and mortality 

processes, and so are likely to exert major control on above ground biomass. This 

expectation is reinforced by the global pattern of covariation of ecosystem carbon turnover 

times with both precipitation and climate (Carvalhais et al., 2014). The study results points 

out the role precipitation and temperature play in determining biomass accumulation, this 

is through the significant relationship forest biomass and climatic parameter had at 

landscape levels. Though at species level the relationship was significant for brachystegia 

and mixed forests, the cynometra forest had a weak relationship, however the poor 

correlation between biomass accumulation and climate could be an indicator of how hard 

it is to project the function of plants on land and their interaction with global carbon cycle 

using various climate change scenarios.  

In essence the most challenging issues is the ability to pinpoint changes that are caused by 

climate change from those associated with process of recovery from disturbance, variation 

in edaphic  conditions, diversity of species and historical climate (Mcmahon et al., 2010). 

 

5.4 Projection on impacts of climate change on tree species distribution  

Biomass in trees are as a result of elaborate biological and resource portioning processes 

and therefore it can easily be affected by tree distribution in a forest (Pan et al., 2013). 
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However scientific consensus shows that; climate is the primary determinant of forest 

distribution at global and continental scales, but it changes at the scales of landscapes and 

stands, to topography, soil, species interactions, and disturbance that define additional 

complexity in forest assemblages and structures (Pan et al., 2013).  Results show that the 

future distribution of tree species in Arabuko Sokoke will be determined by climatic 

variables majorly those associated with temperature and rainfall. (Lin et al., 2010) indicates 

that experimental warming increased biomass in certain species and lead to suppression 

biomass accumulation is some species for instance climate warming stimulated seed plant 

biomass but suppressed the growth of spore plants. The study results shows that the 

predictive model for brachystegia and mixed forests was good, while cynometra forest had 

a poor model, this disparity could be due to (Lin et al., 2010) observation, where climate 

change will enhance the development of biomass in brachystegia and mixed forest, while 

suppressing in cynometra a suggestion that seems to agree with a the higher tree biomass 

for both brachystegia and mixed forest in 2015.  

The ROC curve is generally utilized in evaluation of the simulation accuracy of the model 

while the area below the ROC curve, the value of area under curve (AUC) indicates the 

predictive accuracy of the model (He and Zhou, 2012). The results indicates the constructed 

model for brachystegia and mixed forest for RCP 4.5  and RCP 8.5 at 2050 and 2070 were 

good, while cynometra forest at RCP 4.5 and RCP 8.5 at 2050 and 2070 had a poor model 

fit. This observation is explained by the how climatic parameters correlate with tree 

biomass, where the biomass for brachystegia and mixed forests are impacted by climatic 

parameters, while poor relationship was noted for the cynometra forest.  

However, (Norby and Luo, 2004) study concludes that ecosystem responses to future 

climate change involve multiple environmental factors, rather than just climate warming 

or increases in atmospheric CO2 concentration and this may be the reason why cynometra 

forest was not modeled to a good level. Another possibility of poor model performance 

revolves around absence of critical variables in model analysis or use of either inaccurate 

or unreliable field data. Additionally trees adaptation mechanism to complex matrix of 

climate, forest processes and perturbations,  could end up producing a distribution of plant 

assemblage and structure with a locality (Pan et al., 2013). (Glenday, 2008) noted a section 

of Arabuko Sokoke faced disturbances in the past and the cynometra forest was part of the 
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forest affected and therefore it’s postulated that its recovery process may have created a 

complex geographical pattern and therefore closer observation is recommended.  

The predictive MaxEnt models based on brachystegia, cynometra, and mixed forests 

recorded higher AUC values in 2070 for RCP 4.5 and 8.5 than in 2050 for RCP 4.5 and 

RCP 8.5; this generally indicates that key variables that are related to suitable habitat and 

the characteristics of the tree species were identified successfully by the analyses (Boyce 

et al., 2002;Mckenney and Pedlar, 2003;Gibson et al., 2004) 

The species suitability maps based on RCP 4.5 at 2050 and 2070 indicates variation in 

species predicted occurances.The cynometra forest suitability map shows that the area of 

occurrence will reduce, leaving the species to occur at the central part of the forest by 2070, 

similarly the mixed forest will record reduction in area of coverage and shifting of species 

to the eastern side of the forest and brachystegia will shift upwards and see reduction of 

areas. These results show that the climatic conditions will be unfavorable to Arabuko 

Sokoke forest species range, pointing to observation of other studies. (Thompson et al., 

2009;Remya et al., 2015) observed that some of the major considerations when looking at 

how climate change will impact on floral biodiversity include how species are changing 

phonologically and spatially, increased rate of species extinction and longevity of  the  plant 

growing season.. 

In contrast the species occurrence and area under coverage will increase and shift for mixed 

and cynometra forests  under RCP 8.5 at 2050 and 2070, while brachystegia forest will 

experience shifting and reduction in area of occurrence. These results postulates that 

climate scenario based on RCP 8.5 will be favorable to cynometra and mixed forest though 

possibly causing extinction of some species or reduction in suitable ecological conditions 

for some current species in Arabuko Sokoke. 

The prediction model utilized bioclimatic variables in determining suitable habitat and the 

potential distribution of vegetation types in Arabuko Sokoke. MaxEnt is  among the  

common species distribution modeling (SDM) tools utilized by natural resource managers 

in predicting species suitable areas by utilizing a set of records and environmental 

predictors (Fourcade et al., 2014). The predictive model for the three vegetation types in 
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Arabuko Sokoke forest had various bioclimatic variables. These variables contributed 

differently to the model and they represent annual trends, seasonality and extremities of 

temperature and rainfall parameters. These climatic parameters are supported by (Jarvis 

and Linder, 2000) study that noted the role climatic parameters associated with temperature 

and precipitation plays in determining plant growth and respiration processes.  

Due to the fact that  MaxEnt use only presence data, the estimation of  the species 

fundamental niche (different from occupied niche) rather than realized niche (Kumar and 

Stohlgren, 2009;Yang et al., 2013). To understand the fundamental niche normally a set of 

deterministic parameters are analyzed through statistical inference to understand associated  

bias and standard error in a statistic, when  using a random sample of observed or measured 

data compute (Phillips et al., 2006). The jackknife tests for the vegetation types confirms 

previous findings showing that variables associated with  annual trends, variability and 

anomalies of temperature and rainfall parameters contributed to the predictive model and 

determines forest biomass growth (Jarvis and Linder, 2000), 
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

Based on the study findings tree biomass in Arabuko Sokoke has significantly accumulated 

over time for brachystegia and mixed vegetation types. Though the cynometra forest has 

insignificant relationship with time, it had higher biomass in 2015. 

The evidence provided by this study indicates significant anomalies and trends existed in 

climatic variable namely; temperature and rainfall between 1990 and 2014 for Arabuko 

Sokoke forest. The temporal variation in rainfall and temperature points at effects of 

climate. There was significant relationship between tree biomass and climatic parameters, 

the findings indicates rainfall and temperature significantly related with biomass across the 

forest landscape. Based on the results MaxEnt model can be used to predict geographical 

distribution of mixed and brachystegia vegetation based on general climate model 

scenarios of RCP 4.5 and RCP 8.5.The species distribution predictive model for Arabuko 

Sokoke was strongly influenced by annual trends, seasonality and extremities of 

temperature and rainfall parameters. 

6.2 Recommendations of the study 

The role and contribution of the forests in the climate change mitigation and adaptation 

cannot be over emphasized. The impacts of climate on forest ecosystem have been well 

documented, but the scale and magnitude is still an ongoing debate. Based on the study 

findings postulated species shift and niche reduction in Arabuko Sokoke based on 

representative pathway concentration scenarios of 4.5 and 8.5. The study recommends; 

 That the forest managers consider development of strategies to deal with possible 

shift species and fundamental niche reduction for key species in Arabuko Sokoke forest  

 Communities are advised to diversify their sources of livelihoods and reduce their 

dependency on forest in the event the predicted shift of species range sets in 

 Carbon accounting systems and GHG systems should take into consideration 

carbon accumulation  and possible impacts of climate change on tree biomass in Arabuko 

Sokoke 
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