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Abstract

The goal of this project, is to study the Inverse Galois Problem. The Inverse Galois Problem

is a major open problem in abstract algebra and has been extensive studied. This paper by

no means proves the Inverse Galois Problem to hold or not to hold for all �nite groups

but we will, in chapter 4, show generic polynomials over Q satisfying the Inverse Galois

Problem.
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1 Introduction

The Inverse Galois Problem is posed as such. Can any finite group G be realised as a
Galois group over Q? In more precise wording let G be a finite group. Does there exist a
Galois extension E/Q such that Gal(E/Q)∼= G?
The Inverse Galois problem was formulated in the early 19th century and remains open
to this day. Ideally a solution in the positive would give a family of polynomials over Q
whose Galois groups are isomorphic to finite groups. If the Inverse Galois problem were
to have a solution in the negative the structure of the obstructions of those groups would
be of exceptional interest.
This dissertation will be divided into the following chapters,

Chapter 2 - Galois Theory Basics: This will be an elementary introduction to Galois
theory. Galois Theory in itself is a rich field that would in its entirety be beyond the scope
of this paper. As such we will only introduce in this chapter the elements necessary to
understand what the inverse Galois theory is about.

Chapter 3 - Major Results: Since the 1800’s a lot of work has been done in Galois theory
and more precisely on the Inverse Galois problem and provided answers for some classes
of groups. In this chapter we will see some of the major results achieved in its solution.

Chapter 4 - Galois Groups as Permutation Groups: Since all finite groups can be
realised as a subgroup of the symmetric group we will in this chapter consider Galois
groups as subgroups of Sn at the end of the chapter we will explicitly show some subgroups
of low order Sn as Galois groups.
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2 Galois Theory Basics

To set up the Inverse Galois Problem we need a basic understanding of Galois theory and
so we must first discuss the basics of field theory that are the building blocks of Galois
theory. The concepts explained here are not restricted to the field Q but apply to all fields.

2.1 Field Extensions

Definition 2.1.1 For the fields E and F , if F ⊂ E we say that E is an extension of F and
write the extension as E/F . The extension E/F is therefore a base field F adjoined at
least one element not in F . E can then be considered a vector space over F and see E as
either finite or infinite field extension depending on its dimension.

Definition 2.1.2 For the fields E and F with E an extension of F , any x ∈ E is said to be
algebraic over the base field F if we can find a polynomial

a0 +a1x+ ...+akxk = 0

with the coe�icients ak(k ≥ 1) in F and not every ak equal to zero. If such a polynomial
cannot be found then x is called a transcendental element.
The extension E/F is called an algebraic extension if each element x ∈ E is algebraic over
F.

Consider a field extension E/F . Taking E as a vector space over F we denote its dimension
as [E : F ]. A finite dimension field extension is called a finite extension while one with an
infinite dimension is called an infinite extension. In the case of the Inverse Galois Problem
we will concentrate on finite field extensions.

Proposition 2.1.3 For any finite extension K of F , K is algebraic over F .

Proof: For any x ∈ K, x 6= 0, the powers of x,

1,x,x2, ...,xm

can’t have linear independence over F for every m ≥ 1 else the dimension of K over F
would not be finite. Then a relation, which is linear, between the powers of x gives that K
is algebraic over F
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Definition 2.1.4 Consider a field F and a polynomial k ∈ F [X ]. We call an extension S/F
the spli�ing field of f if f splits into factors that are linear in S, that is

k(X) = c(X−a1) . . .(X−an)

with a j ∈ F, j = 1...n so that S = F(a1, ...,an) is generated by all the roots of k. It is not
necessary that every root of k be distinct.
Every polynomial k(X) ∈ F [X ] will have a spli�ing field which is a field over F generated
by the polynomial’s roots.

Example 2.1.5 - The spli�ing field generated by the polynomial over the rational field
f (X) = X3− 3 is Q(w, 3

√
3) because we have the roots of f (X) as 3

√
3, w 3
√

3 and w2 3
√

3
where w = e2πi/3.

Definition 2.1.6 Let S = K(a1, ...,an) be the spli�ing field of a polynomial k ∈ K[X ]. S is
called a normal extension of the polynomial k over K if every root of k is in S.
In other words if a root of the polynomial f is in S then it has all roots in S.

Definition 2.1.7 Consider a field F. If every f ∈ F[X] with degree greater than or equal
to 1 has one or more roots in F then the field is said to be an algebraic closure. For any
algebraic extension E/F that is algebraically closed we say that E is an algebraic closure
of F.

Definition 2.1.8 Consider a polynomial f over a base field F . We say that f is a separable
polynomial if every root of the polynomial is distinct in the algebraic closure o�he base
field.

Definition 2.1.9 An algebraic field extension E/F is said to be separable if ∀ e ∈ E its
minimal polynomial over the base field is separable.

Algebraic extensions of both finite and infinite fields are separable.
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2.2 Galois Groups and the Fundamental Theorem of Galois Theory

Definition 2.2.0.1 By the automorphism of a field F we shall mean in the usual sense a
map γ from E to itself such that

γ(x+ y) = γ(x)+ γ(y)

γ(xy) = γ(x)γ(y)

∀x,y ∈ E . All these automorphisms then form what we call an automorphism group of
the field. The automorphism group of E is denoted Aut(F).

Consider a finite field E/F so that E = F [a1, ...,an]. The automorphisms group of E/F
that we will denote as AutFE is the group of automorphisms of E fixing F, that is

AutFE = {φ ∈ Aut(E)|φ(a) = a,∀a ∈ F}

which map each ai to a root of its minimal polynomial therefore AutFE is finite.

Definition 2.2.0.2 We consider a field E and its group of automorphisms G. A fixed field
of this group denoted FG is the field {a ∈ E|φ(a) = a,∀φ ∈ G}

Definition 2.2.0.3 Consider E/F an algebraic extension, its called Galois if its both
normal and separable. AutFE is said to be the Galois group of E/F .

Proposition 2.2.0.4 The finite extension K/F and H =AutFE these are equivalent condi-
tions.

1. F = KH

2. K/F is a Galois extension

3. K/F is normal and separate.

4. K is the spli�ing field for a polynomial g ∈ F [X ].

Lemma 2.2.0.5 For a field F and G its group of automorphisms FG ⊂ F

Proof. Let m,n ∈ FG. Which means φ(m) = m and φ(n) = n then

φ(m±n) = φ(m)±φ(n)

φ(mn) = φ(m)φ(n)
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so m±n and mn are in FG. Furthermore if m 6= 0 we have α(m−1) = α(m)−1 = m−1 and
so m−1 is also in FG. This means that FG ⊂ F .

Before we proceed to the theorem central to galois theory we should mention some-
thing about intermediate fields. For an algebraic extension M/F we call the field K an
intermediate field if M ⊇ K ⊇ F

Lemma 2.2.0.6 Let M ⊃ K ⊃ N be fields with M/N galois. We have

1. M/K is galois.

2. K/N is galois i� α(K) = K, ∀α ∈ AutFE .

Proof: 1. M is the spli�ing field of a separable polynomial g ∈ N[X ]. Since N ⊆ K and K
⊆M we have the tower E = F(β1, ...,βm, ...,βn) ⊃ K = N(β1, ...,βm) ⊃ N with every βi

algebraic over N. βi for i = m+1,...,n is algebraic over K and so M/K is galois.
2. IF K/N is galois we have that for each α ∈ K, K has every root of a minimal polynomial
of α over N. As φ(α) must be such a root for any φ ∈ AutNM so φ(α) ∈ K. As a result
φK ⊂ K for all φ and since [φK : N] = [K : N] we have φK = K.
Suppose now that φN = N for all φ . Then AutNM→AutNK is surjective. Therefore the
fixed field of AutNM is the same as the one for AutNK and so K/N is galois.

2.2.1 The Fundamental Theorem of Galois Theory

Theorem 2.2.1.1 Consider a Galois extension E/F with Galois group G=Aut(FE). Let
K be the set of all intermediate fields and H the set of all subgroups of G. The maps
α : K −→H and β : H −→ K defined as α(J) =Aut(E/J) and β (L) = KL for J ∈ K,L ∈H
give a well defined and bijective correspondence between K and H with the properties,

1. When K1 ∈K and K2 ∈K correspond to H1 ∈H and H2 ∈H respectively then K1 ⊂K2

i� H2 < H1.

2. If J ∈ K corresponds to L ∈ H then [E : J] = [L] and [J : F ] and [G : L].

3. ∀Ki ∈ K, E/Ki is Galois.

4. Let J ∈ K corresponds to L ∈ H . Then J/F is Galois i� L is normal in G and if so
Aut(J/F)∼= Aut(E/F)/Aut(E/J)

5. If K1 ∈ K and K2 ∈ K correspond to H1 ∈ H and H2 ∈ H respectively, then K1∩K2

corresponds to 〈H1,H2〉, and the compositum K1K2 corresponds to H1∩H2.
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We can illustrate the correspondence with an example

Example 2.2.1.2 Q(
√

2,
√

3)/Q is the spli�ing field for f = (x2− 2)(x2− 3) having an
automorphism group of order 4 which is isomorphic to the Klein four-group with the
automorphisms 1(identity) that fixes everything, α that fixes

√
2 while mapping

√
3 7→

−
√

3, β that fixes
√

3 and maps
√

2 7→ −
√

2, and the composition αβ fixing
√

6. We can
then see the correspondence between the subgroups and the intermediate fields in the
la�ice diagram below

Q(
√

2,
√

3) =∧ {1}

Q(
√

2) =∧ {1,α} Q(
√

6) =∧ {1,αβ} Q(
√

3) =∧ {1,β}

Q =∧ {1,α,β ,αβ}
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3 Major Historical Milestones

3.1 Noether Problem

Emmy Noether asked the following.

For a finite group G, if G acts faithfully on a finite set of indeterminates x1,x2, ...,xn is
F(x1,x2, ...,xn)

G a rational extension(purely transcendental) of F?

In our case the field F is Q though the problem can be asked over any field and not just Q.

As it turns out the answer is not always in the a�irmative which then raise a di�erent
question as to which groups G does the Noether Problem fail to have an a�irmative
solution and whether these groups can be easily parameterised. For the alternating groups
the problem remains open with a solution for An,n≥ 6. Maeda in 1989 showed the answer
for A5 in the a�irmative.

Gröbner in 1934 also gave an a�irmative answer for the quarternion group Q8. In 1925
Furtwangler showed a positive solution for every solvable transitive subgroup T of Sp for
p=3,5,7,11 over Q.

3.2 Hilbert Irreducibility Theorem

Definition 3.2.0.1 Let f (t,X) ∈ K(t)[X ] be an irreducible polynomial over two variables
in an algebraic number field K. K is called Hilbertian or is said to be endowed with the
hilbertian property if there exists infinitely many regular point of f (t,X) that is there
exists infinitely many t0 ∈ K such that f (t0,X) is irreducible in K[X ].

Theorem 3.2.0.2 (Hilbert) Q is Hilbertian.

This theorem was the first used to prove that Sn can be realised as a Galois group over Q

3.2.1 Sn as a Galois group over Q

Let G = Sn act on M =Q(t1, ..., tn). The field of Sn-invariants is K = MSn =Q(e1, ...,en)

where
ei = ∑

1≤l1<...<li≤n
X
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denotes the ith elementary symmetric polynomial for i = 1,2,...,n. K is a purely transcen-
dental extension of degree n, and M is a Galois extension of K with Galois group Sn.
Furthermore, M is the spli�ing field of the irreducible polynomial

f (e1, ...,en,X) = Xn− e1Xn−1 + e2Xn−2 + · · ·+(−1)nen ∈ K[X ]

We may assign to each ei a value ai ∈Q for i = 1,2,...,n. The Hilbert Irreducibility Theorem
then asserts that there exist infinitely many n-tuples (a1,a2, ...,an) ∈Qn such that the
polynomial

f (X) = Xn−a1Xn−1 +a2Xn−2 + · · ·+(−1)nan ∈Q[X ]

is irreducible over Q and the Galois group of the spli�ing field is isomorphic to Sn.

3.3 Kronecker-Weber Theorem

A mth root of unity for an integer m≥ 1 is the solution to the polynomial xm−1 of which
there are at most m di�erent solutions expressed as e2πik/m. The roots of unity make up a
cyclic group.
An extension E =F(ζm) of F where ζm is a primitive mth root of unity is called a cyclotomic
extension of F.
We now state the global Kronecker-Weber theorem.

Theorem 3.3.1 Each extension of the rational field that is both finite and abelian is
contained in some cyclotomic extension of the field.

The Kronecker-Weber theorem helps solve the Inverse Galois Problem for finite abelian
groups as below.

Theorem 3.3.2 Each group that is finite abelian is realizable as the Galois group of some
finite extension of the rational field.

Proof: Set G =C1× ...×Cm as a finite abelian group where (Ci)1≤i≤m are its cyclic factors.
To prove the theorem we need to realize all the Ci =Z/nZ for positive integers n as linearly
disjoint Galois groups of finite Galois extensions of Q and G will be the Galois group of
the compositum of these extensions.
To this end for each Ci = Z/nZ we find a distinct prime p≡ 1(mod n) and now consider
Q(ζp)/Q which is an Abelian extension with Galois group Z/(p−1)Z since n divides p-1
there is an extension Ei with Ci as the Galois group.
Since each Ei is contained in a cyclotomic extension for a distinct p their intersection is Q
and so are linearly disjoint. We now pick

E =
m

∏
i=1

Ei
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and so G = Gal(E/Q).

Example 3.3.3 Let
G = Z/7Z×Z/11Z×Z/11Z

be a finite group. We intend to find Galois extensions over Q of the factors of G in such a
way that they are linearly disjoint.
Starting with Z/7Z the first prime p≡ 1(mod 7) is 29. The extension Q(ζ29)/Q has Z/28Z
as a Galois group and since 7 is a divisor of 28 by Theorem 3.3.1 there exists a subfield A1

of Z/28Z whose Galois group is Z/7Z.
Doing the same for Z/11Z we find a prime p ≡ 1(mod 11) and the first such p is 23.
Gal(Q(ζ23)/Q)∼=Z/22Z. This means that by Kronecker-Weber we can also find a subfield
A2 of Q(ζ23)/Q whose Galois group is Z/11Z.
For the final cyclic factor we pick another prime p ≡ 1(mod 11) that is di�erent from
the one used to find A2. For p=67 we get Gal(Q(ζ67)/Q) ∼= Z/66Z and so we can find a
subfield A3 of Q(ζ67)/Q whose Galois group is Z/11Z.

Finally ge�ing E = A1A2A3 to be the compositum of these extensions over Q,

Gal(E/Q)∼= G

3.4 The Embedding Problem

Let F be a field, G a group and A E G. A necessary condition for the realization of G as a
Galois group over F is that the group G′′ = G/A is realizable as a Galois group over F .
This brings up the following generalization of the Inverse Galois Problem known as the
embedding problem.

Let Gal(E/F)∼= G′ and

1−→ A−→ G
φ−→ G′ −→ 1

(3.4.1)

be an exact sequence.
Solving the embedding problem for E/F and (3.4.1) involves determining whether there
exists a Galois extension K/F such that E is in K, Gal(K/F)∼= G and the homomorphism
of restriction to E of the automorphisms from G coincides with φ .

3.5 Finite Simple Groups

The projective groups PSL(2,p) for some primes p were among the first simple groups to
be realised as Galois groups over Q. The existence of these Galois groups was established
by Shih in 1974 but the polynomials were only later constructed by Malle and Matzat.
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Of the 26 sporadic simple groups all but the Mathieu group M23 have been realised as
Galois groups over Q by Matzat et al.

Thompson in 1984 managed to show that the Fischer-Griess group M, the simple sporadic
group with the biggest cardinality, also called the monster group is a Galois group over
the rational field.

[Zyw] gives a list of simple groups with cardinality of at most 108 that can be realised as
a Galois group for an extension of Q.
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4 Galois Groups as Permutation Groups

We will primarily follow the work of [Kcon] in this chapter.

Cayley’s Theorem Any group of order n is isomorphic to a subgroup of Sn.

Because of Cayley’s Theorem it is natural to expect that a comprehensive proof of the
Inverse Galois Problem would be found in the structure of symmetric groups . For this
reason we will consider Galois Groups as subgroups of Sn. We start by showing that the
Galois groups of some extensions define di�erent subgroups of Sn up to conjugation. We
can use an example to illustrate this

Example 4.0.1 The polynomial X4−3 over Q has the spli�ing field E =Q( 4
√

3, i) with
Gal(E/Q) ∼= D4. Let α and β be the generators of Gal(E/Q) with α( 4

√
3) = i 4

√
3 and

β (i) =−i and so the Galois group is generated as below

Table 1. D4 automorphisms

Automorphism 1 α α2 α3 β αβ α2β α3β

α
4
√

3 i 4
√

3 − 4
√

3 −i 4
√

3 4
√

3 i 4
√

3 − 4
√

3 −i 4
√

3

β i i i i −i −i −i −i

Which is then isomorphic to the following two di�erent subgroups of S4

Table 2. Subgroup generated by (1234) and (24)

Automorphism 1 α α2 α3 β αβ α2β α3β

Permutation (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23)

Table 3. Subgroup generated by (1243) and (14)

Automorphism 1 α α2 α3 β αβ α2β α3β

Permutation (1) (1243) (14)(23) (1342) (14) (13)(24) (23) (12)(34)

Definition 4.0.2 A Galois group G⊂ Sn is called transitive if for each i 6= j in the roots
{1,...,n} of its minimal polynomial there is an automorphism in G mapping i to j.

Example 4.0.3 The subgroups of S4 in both Table 2 and Table 3 are transitive.
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Example 4.0.4 The Galois Group G = Gal(Q(
√

2,
√

3)/Q) which is the Klein 4 group is
not a transitive subgroup of S4 as there is no automorphism in G mapping

√
2 to
√

3.

Theorem 4.0.5 Consider a field F and f ∈ F separable with degree n with E its spli�ing
field. f (X) is irreducible in F [X ] i� G = Gal(E/F) ⊂ Sn and is transitive.

Proof: Suppose f (X) is irreducible. For any two roots x1 and x2 of f (X) and some
automorphism α ∈ G we can write α(x1) = x2. Therefore G as a subgroup of Sn maps
each root xi to x j for i 6= j and so it is a transitive subgroup of Sn. Now suppose f (X) is
reducible. Since it is a separable polynomial it is a product of distinct irreducible factors.
Let x1 and x2 be roots of di�erent factors of f (X) and so those factors are the minimal
polynomial over K for their respective root. Since for any α ∈ G α(x1) has the same
minimal polynomial over K as x1 we can’t have α(x1) = x2. So as a subgroup of Sn G does
not map all xi to x j for i 6= j and is therefore not a transitive subgroup on Sn.

Theorem 4.0.6Consider a field K and f ∈ F separable of degree n with E as the spli�ing
field. G = Gal(E/F) has an order divisible by n.

Proof: For some root x of f ∈ F , [F(x) : F] = n is a factor of the degree of E/F which is
the size of G.

4.1 Sp as a Galois group for p a prime.

We show that a Galois group of prime degree p is as large as possible, that is Sp

Lemma 4.1.1 A permutation φ ∈ Sp of order p is a p-cycle.

Proof: Let φ ∈ Sp have order p and decompose into disjoint nontrivial cycles as φ = φ1 · · ·φm

with the order of each cycle φi being ni. Since the order of a product of disjoint cycles is
the least common multiple of the order of the cycles we have p = lcm(n1, ...,nm). Being
that p is prime and each φ non trivial so ni > 1 we have ni = p,∀i. Thus φ is a product
of disjoint p-cycles. Since φ is in Sp it can’t have even two disjoint p-cycles and so φ is a
single p-cycle.

Theorem 4.1.2 Let f (X) ∈Q(X) be an irreducible polynomial of prime degree p with all
but two real roots and with the spli�ing field E = Q(x1, ...,xp). Then Gal(E/Q) ∼= Sp

Proof: The permutation of the xi’s by Gal(E/Q) provide an embedding Gal(E/Q) ↪→ Sp

and the order of Gal(E/Q) is divisible by p by the last theorem which means that Gal(E/Q)
has an element of order p thus the image of Gal(E/Q) in Sp contains a p-cycle.
Since the complex field is algebraically closed we may take E ⊂ C. Complex conjugation
restricted to E is a member of Gal(E/Q). Since f contains only 2 complex roots the complex
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conjugation of 2 of the roots of f fixing the rest so Gal(E/Q) contains transpositions of
the roots of f.
It remains to show the only subgroup of Sp with a p-cycle and a transposition is Sp. By
labeling the numbers from 1 to p we may let 1 be a number moved by the transposition
and so our subgroup contains the transpositon (1a). Let α be a p-cycle in the subgroup.
As a p-cycle, α acts on 1,2,...,p by a single orbit, so some α i with 1 ≤ i ≤ p-1 sends 1 to a:
α i = (1a...). This is also a p-cycle, because α i has order p in Sp and all elements of order p
in Sp are p-cycles, so writing α i as α and suitably reordering the numbers 2,...,p (which
replaces our subgroup by a conjugate subgroup), we may suppose our subgroup of Sp

contains the particular transposition (12) and the particular p-cycle (12...p). For n ≥ 2,
it is a theorem in group theory that the particular transposition (12) and n-cycle (12...n)
generate Sn, so our subgroup is Sp.

4.2 Alternating Groups

In (3.2.1) we saw that all Sn can be realised as the Galois group for the spli�ing field of
some minimal polynomial over Q. We aim in this section to show when the Galois group
G⊂ Sn is in fact An. For this we use the discriminant.

Definition 4.2.1 For a f (X) ∈Q[X ] with roots {x1, ...xn} that factors as

f (X) = a(T − xi) · · ·(T − xn)

its discriminant denoted ∆ as
∆ = ∏

i< j
(xi− x j)

2

The discriminant is important in telling us the nature of the roots of a polynomial. Since we
use polynomials to determine field extensions this makes the discriminant an important
value in determining the nature of a Galois group.
The discriminant of a polynomial over Q is zero if and only if the polynomial is not
separable. This is easy to see since for ∆ = ∏i< j(xi−x j)

2 to be zero there must be at least
one factor (xi− x j)

2 that should be zero and in that case xi = x j and so all the roots are
not distinct and hence the polynomial is not separable.
For low degree monic polynomials over Q we have the following formulas for their
discriminant and what the implication is for the case of a non zero discriminant.

Degree 2 - The polynomial x2+bx+c has the discriminant b2−4c. Over Q it has a positive
discriminant when it has two real roots since (a−b)2 is positive if and only if a and b are
real roots and negative if and only if both roots are complex conjugates.
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Degree 3 - The polynomial x3 + bx+ c has the discriminant −4b3− 27c2. Over Q the
discriminant is positive when each root is real because ∆ = (b− a)(c− a)(c− b) to be
positive the three roots a,b,c must be real. This polynomial with rational coe�icients would
then have a negative discriminant when it has one real root (with the other two being
complex conjugate of each other).

Degree 4 - The polynomial x4 +bx+ c has the discriminant −27b4 +256c3. Over Q the
discriminant is positive when either every root is real or every root is complex. Is is
negative if 2 roots are real numbers and the other two roots complex conjugates.

Degree 5 - The polynomial x5 +bx+ c has the discriminant 256b5 +3125c4.

Having discussed the discriminant we use the next theorem to prove for a separable f ∈Q
with ∆ a square, its the Galois group is An.

Theorem 4.2.2 Consider a separable polynomial f ∈ Q with roots (x1, ...,xn). Then
Gal(Q(x1, ...,xn)/Q) ∼= An if and only if its discriminant is a rational square.

Proof: Set
δ = ∏

i< j
(x j− xi)

Since f is separable, δ 6= 0 and so δ ∈Q(x1, ...,xn) and δ 2 = ∆ ∈Q.
For any α ∈ Gal(Q(x1, ...,xn)/Q) we let εα =±1 be the sign as a permutation of the roots
which by definition

α(δ ) = ∏
i< j

(α(x j)−α(xi)) = εα ∏
i< j

(x j− xi) = εαδ

so α(δ ) =±δ . Since δ is non zero and f(x) is over Q, δ 6=−δ . We have αinAn i� εα = 1
which means α ∈ An i� δ (d) = δ and so Gal(Q(x1, ...,xn)/Q)∼= An i� δ if fixed by all the
automorphism of Gal(Q(x1, ...,xn)/Q) which is similar to δ being in the fixed field Q.

Example 4.2.3 Let f (x) = x3−3x−1 and g(x) = x3−4x−1 be polynomials over Q. They
both have three real roots but their Galois groups are not the same subgroup of Sn. f (x)
has a discriminant of 81 and g(x) has a discriminant of 229. Since the discriminant of f (x)
is a rational square its Galois group ov Q is A3 and the discriminant of g(x) is a prime
which by Theorem 4.1.2 makes its Galois group over Q S3

4.3 Subgroups of low degree Sn

We in this section aim to show all subgroups, up to conjugation, of Sn for n < 6 as Galois
groups over Q using methods discussed in this chapter. The reason we won’t give explicit
polynomials for the subgroups of Sn for n≥ 6 is entirely for brevity’s sake because for S6
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there are 56 conjugacy classes of 1455 subgroups that quickly rise to even higher counts
for subsequent n > 6

4.3.1 S3

S3 is the group of permutations of (123) which is of order 6.
A polynomial of the form x3−a provided that the third root of a is not a rational number
has the spli�ing field Q(w, 3

√
a) over Q with w being the non trivial cube root of unity.

Example x3−3 has three roots namely 3
√

3,w 3
√

3 and w2 3
√

3 therefore its spli�ing field over
the rational field is Q(w, 3

√
3)/Q which has 6 automorphisms and so Gal(Q(w, 3

√
3)/Q)∼=

S3.

S3 has 6 total subgroups with 4 non trivial proper subgroups. The four are isomorphic to
Z2 (3 of them) and Z3. As we have seen from the Kronecker Weber theorem in chapter 2
all abelian groups of order n can be realised as the Galois group of an extension of Q with
f (x) being a n degree cyclotomic polynomial. S3 subgroups as Galois group are broken
down as in the table below.

Table 4. S3 subgroup breakdown.

Isomorphism Group Count Order Polynomial over Q

Trivial 1 1

Z2 3 2 x2 +1

Z3 1 3 x3 +1

S3 1 6 x3−4x−1

4.3.2 S4

S4 is the group of permutations of (1,2,3,4) of order 24. Though S4 has 30 subgroups they
are only 7 distinct non trivial subgroups upto isomorphism which we will now find the
Galois group associated with them.

Z2 - Just as with Z2 ⊂ S3, Z2 ⊂ S4 is the Galois group for some polynomial of degree 2
over Q that has its roots as the second root of unity.

Z4 - Just as with Z2 ⊂ S3, Z4 ⊂ S4 is the Galois group for some polynomial of degree 4
has its roots as the fourth root of unity.

Z2×Z2 - The Klein 4 group is the Galois group for Q(
√

a,
√

b)
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D4 - D4 is the Galois group of the spli�ing field of the polynomial X4−3 over Q as seen
in Table 1.

A4 - The polynomial f (X) = X4 +8X +12 has a discriminant of 331776 = 5762 and the
spli�ing field of f over Q is A4

S4 - The Galois group of f=X4−X−1 over the rational field is S4

Table 5. S4 subgroup breakdown.

Isomorphism Group Count Order Polynomial over Q

Trivial 1 1

Z2 9 2 x2 +1

Z3 4 3 x3 +1

Z4 3 4 x4 +1

Z2×Z2 4 4 (x2−2)(x2−3)

D4 3 8 x4−3

A4 1 12 x4 +8x+12

S3 4 6 x3− x−1

S4 1 24 x4− x−1

4.3.3 S5

S5 is the group of permutations of (1,2,3,4,5) of order 120. There are 19 subgroups up to
conjugation of a total of 156 subgroups. The subgroups not in S4 or S3 are the following
ones.

Z5 - The cyclic group of order 5 is the Galois group of the spli�ing field of the polynomial
x5 +1 over Q.

Z6 - The cyclic group of order 6 is the Galois group of the spli�ing field of the polynomial
x6 +1 over Q.

D5 - The dihedral group of order 10 has is the Galois group of Q( 5
√

a, i)/Q provided 5
√

a is
not rational. Therefore it is the Galois group of x5−2 over Q

A5 - The polynomial x5 +20x+16 over Q is separable and has a discriminant of 1.024×
109 = 320002 by theorem 4.2.2 its Galois group over Q is A5
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S5 - The polynomial x5−4x−1 over Q is separable and of prime degree with all but two
real roots. By theorem 4.1.2 its Galois group over Q is S5

Table 6. S5 subgroup breakdown.

Isomorphism Group Count Order Polynomial over Q

Trivial 1 1

Z2 25 2 x2 +1

Z3 10 3 x3 +1

Z4 15 4 x4 +1

Z5 6 4 x5 +1

Z6 10 4 x6 +1

Z2×Z2 19 4 (x2−2)(x2−3)

D4 15 8 x4−3

D5 5 10 x5−2

A4 5 12 x4 +8x+12

D6 10 12 x6−2

A5 1 60 x5 +20x+16

S3 20 6 x3− x−1

S4 5 24 x4− x−1

S5 1 120 x4− x−1
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5 Conclusion

A lot of e�ort has been put to the classification of finite groups and though it has been
achieved for simple groups a lot more would be required to achieve it for all groups. Had
that classification existed it would go a long way towards finding generic polynomials
for which the Inverse Galois Problem would have a solution. Should a solution not exists
though this classification would very likely help enlighten us on the structure of groups
that can not be realised as a Galois groups over Q

5.1 Future Research

The closest we have to a coherent structure of all finite groups is their realisation as
subgroups of the symmetric groups. Since symmetric groups and their subgroups are
finitely generated it may be of interest to see if the generating sets have a relationship with
any form of separable polynomial. Furthermore if a class of subgroups can be generated
by transposition and one can find polynomials over Q to describe any such transposition
then all subgroups up to conjugation of Sn will have a positive Inverse Galois Problem
solution.
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