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Abstract 
 
Usually, a problem arises given that one is at a point – call it A, and needs to reach a destination, 
let’s say point G through several other intermediate points in a large space. In the absence of a 
viable tool to use in getting to the destination, it becomes very hard to get to it especially if the 
search space is large. Sometimes one may resort to trial and error and this method is normally very 
inefficient in a large space.  The exhaustive search is also inefficient in a large space, especially 
where the resources are limited. Reinforcement learning can play the role that provides the 
necessary guide for the search process to successfully discover the destination. We demonstrate, 
using a concrete example of a map representation, that by only indicating that the action taken is 
'right' (1) or 'wrong'(-1) the search process proceeds successfully to the destination. The 'right' and 
'wrong' indications come from the environment. This is naïve reinforcement learning since it 
neither takes into account the cumulative reinforcement values nor insists on discovering a policy.  
The contribution of this technique is that there are little overheads and resource inputs, while the 
search problem is successfully solved. The challenge with this method is the need to model the 
environment. 
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Introduction 
 
In this paper we consider the problem that arises when a path from a given point A to a goal point 
G is to be found. Limited knowledge is assumed in which the environment can only supply a 
limited guide. The environment can only tell whether the direction taken is right or wrong. Such a 
problem can be solved using search techniques in which the search space is examined, Russel & 
Novig (2003). The difficulty is that when the search space is large it is hard to apply the usual 
search methods such as systematic exhaustive search.  The required time may, also, be too long 
and impractical to get. It is, further, more challenging when there is limited knowledge of the 
space such that it is not easy to enumerate the search space elements. In case of the path finding 
the search space would consist of a set of all possible paths. The issue is that the path finder has no 
idea about the future intermediate points, nor where to proceed. The path seeker knows the 
destination, G but not how to get to it.  
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The reinforcement learning approach is adopted in solving the problem of finding a path when the 
available information is limited. Reinforcement learning is a machine learning technique in which 
the learner has a goal with no knowledge of how to attain it but takes some actions and gets some 
reward from the environment. The learner interprets this reward and seeks the actions that will 
maximize the cumulative reward, as observed by Sutton & Barto (1998); Kaelbling & Littman 
(1996).   

The naïve reinforcement learning is a process in which the learner has a goal without any 
knowledge of how to get to it but gets the reward from the environment. The learner interprets the 
reward and avoids some actions and prefers others. The learner remembers the incremental 
progress made and actions taken at local points or states. The naïve reinforcement learning is 
demonstrated using a learner that is situated at a geographical point A, and seeks to reach another 
geographical point G. The learner, at some local point, chooses a direction and gets to a 
destination. The environment indicates to the learner that she is 'right' (1) or 'wrong'(-1). The 
search process then proceeds successfully to the destination provided the learner is given enough 
chances to choose directions. This naïve reinforcement learning does not take into account the 
cumulative reinforcement values nor insist on discovering a policy.  A policy is guide at every 
state that tells the learner how to act.  The advantage of this technique is that there are fewer 
overheads and the required resource inputs, while at the same time the search problem is 
successfully solved.  

The rest of this paper considers the reinforcement learning model, the naïve reinforcement 
learning model, the experiments, results, the discussion and the conclusion. 

The Reinforcement Learning Model and the Related Work 

Learning in human beings is the process that results in the changes of attitudes and behaviors. 
These changes occur due to the acquisition of knowledge, skills and values. Learning in machines, 
is handled under machine learning that is a subfield of artificial intelligence, Mitchel (2005).  In 
machine learning the algorithms are developed to model the learning processes. The learning 
processes in machines are categorized in some of the groups that include the supervised, 
unsupervised, semi-supervised and reinforcement learning processes. In supervised learning the 
learner is required to learn input-output pairs that are used as examples to enable the learner to 
subsequently perform the matching. In unsupervised learning the learner has only a set of inputs; 
the learner must discover how to match the inputs to the outputs. In semi-supervised learning, the 
learner has some examples with complete input-output pairs and some examples without the pairs. 
In reinforcement learning the learner has a goal with no knowledge of how to attain it but takes 
some actions and gets some reward from the environment. The learner needs to discover a policy 
that guides actions in given states of the environment. Reinforcement learning is a machine 
learning technique in which the learner has a goal with no knowledge of how to attain it but takes 
some actions and gets some reward from the environment. The learner interprets this reward and 
seeks the actions that will maximize the cumulative reward, Sutton & Barto (1998).  

Consider the learner as an agent that is in some environment. The agent interacts with her 
environment so that a goal is achieved. According to Russel & Novig (2003), agents are objects in 
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the environment that perceive and react to states in the environment. Examples of agents include 
anything for which an environment can be specified, and that acts and reacts such as humans, 
animals, ants, some Internet software or computational processes in operating systems context.  

A model for reinforcement learning consists of the agent that is taken to be the learner. The agent 
interacts with the environment. The agent selects an action and the environment responds to the 
action by moving to a different state and gives a reward to the agent. The interactions of the agent 
and the environment occur in a sequence of discrete time steps, Sutton & Barto (1998); Kaelbling 
& Littman (1996).  In the model there is a set of environment states, a set of actions that the agent 
can take, a set of rules of changing between the states, a set of rules that determine the reward of 
the transitions, and a set of rules that describe what the agent perceives.  

Reinforcement learning has many applications. It has been used to solve problems in many areas 
including robot control, elevator scheduling, telecommunications, backgammon, chess, jobshop 
scheduling, project scheduling, robotic soccer, resource allocation, Sutton & Barto (1998); Wei 
and Dietterich (1995); Arai et al. (2000); Wauters  et al. (2010); Kaelbling & Littman (1996); 
Maes et al. (2007); Maes (2003), Galstyan, et al. (2005). 

The Naïve Reinforcement Learning Model 

In the naïve reinforcement model, the agent is the learner. The agent has a locality, or her current 
state, in the environment. The agent has a set of allowed actions within her locality that is in her 
current state. The agent chooses one of the actions within the state at random. If there is only one 
allowed action, then it is the one that is taken. After the action, a new state occurs and the reward 
for the action is obtained. The agent remembers her actions and previous states and avoids the 
actions that resulted in poor reinforcement. The agent also remembers her progress towards the 
goal.  

For the path finding example, an agent acts by moving in some directions that are possible at the 
given points or states. The agent can move to the left, the right, straight or reverse. Every state has 
one or more allowed moves. A terminus, for example, has only one allowed move that is ‘reverse’. 
In every state and for every allowed move the environment has some reinforcement. The 
reinforcement takes only two forms, ‘right’ or ‘wrong’. The right move is awarded 1 and the 
wrong move awarded -1. The agent knows what these rewarded mean. The agent drops all the 
immediate destinations that are rewarded -1 and maintains the immediate destinations that are 
rewarded 1. The agent keeps on trying the various actions at the local states.  See figure 1 for the 
map that is used in the example. The agent needs to find a path from A to G. 
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Figure 1. The Map showing the nodes (states) 

The Naïve Reinforcement Learner’s Contextual Architecture 

The naïve reinforcement learner is implemented using the agent-based approach. The learner is the 
agent. The agent is an object that can perceive and react in the various environmental states, 
Russel & Novig (2003).  The agent acts by choosing a direction and moving in the direction 
chosen. In this way the agent can turn left and proceed, turn right and proceed, move straight and 
proceed or reverse and return to earlier place.  The initial place the agent is in is A and the agent 
wants to be in place G since it is the agent’s goal. When the agent acts, the place where the agent 
is situated changes. The place changes from the current one to the next logical place according to 
the links of the places. These are depicted on Figure 1. For example, if the agent is situated at A, 
the agent can move straight or turn right. Suppose the agent chooses to move straight. The agent 
acts ‘move straight’. Then the next logical place is B. Since B is a terminus, the only option 
available is to reverse; this means that at B this action takes the agent back to A.  

The agent can do several things; she has a basic knowledge that enables her to recognize the 
various directions, the place where she is and the allowed actions at the place where she is. She 
remembers the minimal path that leads to the right direction. She recognizes when the goal 
destination, G, is reached. She can show the right minimal path at any time. She can show the state 
of affairs at any time such as action taken and reward obtained. She recognizes the allowed actions 
at any place. She can take action. She can get and interpret the reinforcement value. 

The environment is modeled using the basic elements that are related to each local place or 
decision point. For each local place such as K, see figure 1 for the places labeled A .. O, one or 
more tuples, is maintained. A basic tuple is:-  <place, direction, destination, reinforcement score>. 
In this case the place is any one of A .. O, the direction is any one of left, right, straight, or reverse. 
Destination is any one of A .. O, and reinforcement score is right (-1) and wrong (1). Enough 
tuples are kept for each place according to the possible allowed actions at that place. At any one 
point when the agent takes an action at one place, the reinforcement score can be given using the 
appropriate tuple. The contextual architecture is as shown in Figure 2.  
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The overall agent control loop consists only of the agent taking an action each time. This activity 
of the agent is only constrained by the allowed number of chances or the discovery of the path.  

 

Figure 2. Basic Contextual Architecture 

The Experiment, Results and Discussion 

The naïve reinforcement learner was implemented using an agent approach. The learner was 
implemented as an agent through an object oriented development environment. A base agent with 
the functionalities was implemented and then instantiated. The functionalities are the capabilities 
of the agent such as the ability to recognize where she is, the available options and take action. Out 
of possible actions at any place, the agent selects options at random and relies on the 
reinforcement for subsequent actions. The main objective of the experiment is to find out the 
empirical efficiency of the naïve reinforcement learning process. The learner is given a number of 
chances to try to find a path from A to G. The learner or the agent may find the path or not. Out of 
the number of chances that are given it was noted at which trial stage the learner discovered the 
path. The learner operated in a context with 16 places or nodes as shown on figure 1. Every time 
the learner starts at node or place A and gets a number of chances to find a path to G. The chances 
given were 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 and 100. For every number of chances, say for 
example 15 chances, the experiment was repeated five (5) times and in each replication the 
following were noted: time taken in seconds, if the path was found and the number of trials before 
the path was found. In every case the mean value was computed and rounded. Efficiency of the 
search effort was computed to give an indication of the chances that were given and the number of 
chances used before the correct path is found.  

The results that ware obtained are shown on Figures 3, 4 and 5. 



6 

 

 

   Figure 3. Getting the right path versus the chances given 

 

   Figure 4. The search effort 

 

    Figure 5. The time it takes for the run 

We now discuss the results. In Figure 3, the results for getting the right path versus the chances 
that are given are shown. For all the replications when the chances were 5 and 10, no correct path 
was found. This can be explained by the fact that there were 16 places or nodes and the learner 
guesses most of the time. The chance of getting directions correctly and successively is low. For 
chances 15 to 30 the correct path is found most of the time with a probability ranging from 0.6 to 
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0.8. For the chances ranging from 35 and above, the correct path was found, every time.  From 
figure 3 it is strongly indicated that beyond some number of chances, the correct path is certainly 
found. In this example the number is 35 changes. This works out to approximately 2 trials for 
every node or place. It may also be noted that under the same example, the possibility space is 
20736 for exhaustive search. At 35 trials for a guaranteed correct path, the saving on the search 
effort seems significant. Figure 4 shows the search effort. This is a measure of the number of trials 
taken against the total number of changes that are given. In all cases the after 15 chances and 
beyond, the learner did not exhaust the number of chances given. The learner took fewer numbers 
of trials to find the correct path compared to the total number of chances given. The implication of 
this is that the naïve reinforcement learning process can also be effective.  Figure 5 shows the time 
it takes to end the run. A run is the time it takes to exhaust the chances or find the correct path.  
Either way the search process stops, when the chances are exhausted or the correct path is found. 
The run time is generally the same, varying from 0.03 seconds to 0.28 seconds. The most notable 
observation is that the number of chances does not affect the length of the run. This is explained 
by the fact that the run stops when the correct path is found. These results, though very limited in 
variation, indicate that the naïve reinforcement learning process can be useful. A typical use may 
be in the embedded control for robots, where a robot may have a range of actions and some 
environmental indicators that show him that the actions are right or wrong. There are some notable 
limitations of the naïve reinforcement learner. First, like reinforcement learning, it needs the 
environmental feedback without which it cannot work. Secondly, the local environmental 
elements or tuples may be too many if the learner has to cope with varying start places and goal 
places. The naïve reinforcement learner however, both explores and exploits in the sense of Sutton 
& Barto (1998). She explores since the actions are selected at random and exploits since the 
reinforcement is useful information that forms the basis for avoiding some places.  

The Conclusion 

This paper has considered the problem of finding a path from one place to another using the naïve 
reinforcement learning method. The naïve reinforcement model, unlike the usual reinforcement 
model, only considers providing the learner with a right and wrong indicators on their actions 
from the environment. This alone has been found to be sufficient to guide the learner in 
discovering the correct path. The empirical results with a single context show that out of a total of 
20736 possible trials needed for the exhaustive search only 35 trials are needed to guarantee 
finding the correct path. Whereas this is not indicative of the actual savings ratio in other contexts 
that may be different, substantial savings on the search effort is expected where the naïve 
reinforcement method is used to guide in path finding where local knowledge and information is 
very limited. The most important strength of the method is the little overhead that it has, and the 
ease of implementation. The usual reinforcement model has been extensively relaxed yet the 
learner still manages to find a correct path. Its drawback is the need for environment and the many 
knowledge elements that may be needed for a generalized application.  
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