
UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

MSc Computer Science

A rch itecture for C lo ud-B ased Rapid Application

D evelopm ent Fram ew ork

BY

Isaac Gachugu Gathia

P58/73002/2009

Mobile: 0721 709 390

Email: igachugu@gmail.com

Supervisor: Prof. Elijah Omwenga.

Submitted in partial fulfillment of the requirements of Master of Science in Computer

Science

i | P a g e 1 7 - J a n - 1 2

mailto:igachugu@gmail.com

DECLARATION

in this report is my original work and has not been presented for any
This project as presenter

, T . . A ll the work in this project is my own except where acknowledged in
other University award.

the text.

Isaac Gachugu Gathia

P58/73002/2009

lbmitted as partial fulfillment of the requirements for Master of Science
I his project has been s u f ^ ^ ^

. „ - - ien ce of the University of Nairobi with my approval as the University
degree in Computer Scie**"

supervisor.

Prof. Elijah Omwenga
• *

Project Supervisor

School of Computing lnforn“ 7

University of Nairobi

Date: ^ 7 / 1 L n ,
J

v
•• | P a g e 1 7 - J a n - 12

ACKNOWLEDGEMENTS

I wish to sincerely thank the almighty God for giving the wisdom, knowledge, courage and the

will to carry out this project. It has not been all smooth but through His blessings, I have

managed against all odds to come through.

I also wish to immensely thank my supervisor Prof. Elijah Omwenga whose invaluable support,

challenge and guidance made all the steps worth making. Along with my supervisor were the

panel members Daniel Orwa and Eric Ayienga whose contributions and encouragement made all

the difference. To Andrew Mwaura, who was always there whenever I needed him, I will always

be grateful. To all my colleagues at Safaricom and classmates, especially Charles Maina who

was always the shove I needed, 1 appreciate you!

Finally I thank my lovely wife Irene and son Dylan for their encouragement and understanding

during the strenuous fight to complete the project in time, sometimes at the expense of their

precious time. Without their support, it would all have been worthless. Same goes to my parents

John Gathia and Alice Wanjiku whose humble prayers worked miracles.

May God bless you all for your different contributions to this worthy course!

iii | P a g e 1 7 - J a n - 1 2

ABSTRACT

Application developers currently have a wide selection of rich application development tools to

use. These tools have a common limitation in that they require some hardware, which is mostly

high end, and base software to run. While these may not appear like major challenges to software

development companies, startup companies and individuals, students and trainers among others

may find this requirement prohibiting. In a world where most innovative ideas have come from

campus rooms, it is critical to have development environments that are easily accessible and

whose cost is minimal or at least dependent on the usage. Other than startup cost, developers are

also faced with the nightmare of managing development platform migration every time they

switch development computers or re-install the operating system. This goes hand in hand with

the fact that development is limited to the single development computer that has the development

tools installed. Developers are hence not able to make changes on the fly without having to

access their development computers.

In this report we look at a viable architecture of a cloud based rapid application development

framework. Cloud platform transforms the way computing resources are utilized avoiding the

need for upfront purchase of fundamental hardware and software. Having a development

environment that runs off the cloud and accessible through the browser helps address the

challenges faced under the current development environments. Accessibility of such platforms as

well as data security become the immediate problems that a developer is likely to be faced with.

These have however been mitigated by use of rich client and asynchronous server access that

reduces traffic requirements when developing on the platform. By using single sign-on for user

authentication based on known and reliable authentication services, the environment addresses

the security issue.

The results of the surveys conducted have clearly indicated willingness by developers to migrate

to a cloud based development environment if guaranteed to have features that match locally

installed development environments. This dissertation demonstrates the practicality of a cloud

based application development fraVnework through the proposed design, prototype development

and user surveys.

iv | P a g e 1 7 - J a n - 12

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION.................. 1

1.1 Background.. 1

1.2 Problem Statement... 2

1.3 Research Questions.. 3

1.4 Research Objectives... 3

1.5 Significance of the study..4

1.6 Project Scope..5

1.7 Research Assumptions and Limitations..5

CHAPTER 2: LITERATURE REVIEW.. 7

2.1 Towards cloud computing.. 7

2.2 Cloud computing stacks... 7

2.2.1 SaaS - Software as a Service... 7

2.2.2 PaaS - Platform as a Service..8

2.2.3 IaaS - Infrastructure as a Service... 8

2.3 Application development Trends...8

2.3.1 Rapid Application Development.. 8

2.3.2 Programming paradigms...9

2.3.3 Automating code generation and interface layouts...11

2.3.4 Integrated Development Environments...11

2.3.5 Interface based IDE programming... 12

2.3.6 Template based code generators...12

2.3.7 Typical Java Integrated Development Environment...13

2.3.8 Sample RAD IDE Architecture..15

2.4 Cloud Based Development... 16

2.4.1 Existing options... 16

2.4.2 PaaS Architecture...17

2.4.3 Common PaaS Architecture Components.. 21

CHAPTER 3: RESEARCH METHODOLOGY..23

3.1 Research Process.................................. \............. ... 23

v | P a g e 1 7 - J a n - 12

3.1.1 Literature Review...23

3.1.2 Design and development process... 23

3.1.3 Interviews and review meetings... 24

3.1.4 Architectural Design and Prototype Build Increment.. 24

3.1.5 User Acceptance Testing..25

3.1.6 Data collection and analysis... 26

3.1.7 Data collection methodology... 26

3.1.8 Data Analysis...27

3.1.9 Limitations of methodology... 28

3.2 Conceptual Framework.. 28

3.2.1 Base Cloud Platform as a Service (PaaS)... 29

3.2.2 Database Management System.. 29

3.2.3 Database Application Development..29

3.2.4 Authentication Model and Data Security.. 30

3.2.5 Multi-User Support and User Space Separation..30

3.2.6 Rich User Client and Asynchronous Server Communication.....................................31

3.2.7 Application Build and Deploy... 31

3.2.8 Plugin Architecture... 32

3.2.9 User Collaboration.. 32

3.2.10 Version Management.. 32

3.2.11 Conceptual design... 34

3.3 System Analysis.. 35

3.3.1 System Overview.. 35

3.3.2 System Objectives / Requirements.. 35

3.3.3 Scope and limitations.. 36

3.3.4 Google technologies selection... 36

3.4 Prototype Design and Development.. 36

3.4.1 Design Concepts...36
9

3.4.2 High level architecture..45

3.4.3 Architectural Design,..45

3.4.4 Functional Testing..................... .'.............. ... 59

vi | P a g e 1 7 - J a n - 1 2

CHAPTER 4: RESULTS AND DISCUSSIONS............... , ... 64

4.1 Functional Tests.. 64

4.2 Survey details.. 64

4.3 Summary of observations... 70

CHAPTER 5: CONCLUSIONS AND FUTURE WORK.. 71

5.1 Conclusion..71

5.2 Contribution to the Research..72

5.2.1 Cloud IDE Architecture...72

5.2.2 Creating awareness of PaaS cloud stack..72

5.2.3 Virtual file system..72

5.2.4 Non-Relational Databases for Cloud Computing.. 73

5.2.5 Use of JSON File Exchange Formats for Asynchronous User Interface................. 73

5.3 Future W ork.. 74

5.3.1 Hosted compilers...74

5.3.2 Cloud Data Access Components.. 74

5.3.3 Cloud based runtime environments...74

5.4 Research Questions Answered...75

CHAPTER 6: REFERENCES.. 77

6.1 Books and Journals..77

6.2 Internet references...78

CHAPTER 7: APPENDICES... 81

7.1 Key Servelet Functions.. 81

7.1.1 Common Java Code Library (iceUtils.java).............. ... 81

7.1.2 HTTP Get / Post Methods...82

7.1.3 Saving a File to Virtual File System..84

7.1.4 Loading Projects using JSON objects..84

7.1.5 Project Download to OS File System..85

7.2 Javascript C ode... 87

7.2.1 IDE Code Completion... 87

7.2.2 JavaScript File Management...89

7.2.3 Javascript Save Code (AJAX)....'............. 90

vii | P a g e 1 7 - J a n - 12

7.3 User Survey..91

7.3.1 Survey Summary..91

7.3.2 Survey Responses Summary.. 92

r
/

viii I P a g e 1 7 - J a n - 1 2

LIST OF FIGURES

Figure 3.1.1: Sample cloud representation from VMware (Adapted from Davis, 2008)................ 7

Figure 3.2.1: Cloud stacks (adapted from Sait, 2011)...8

Figure 3.3.1: Typical java development environment (Adapted from Sonu, 2009)....................... 14

Figure 3.3.2: Inside the Eclipse SDK (Adapted from Eclipsepluginsite.com, 2008)................... 15

Figure 3.4.1: Aurora SDK Architecture (Adapted from Ou, Najaran and Rouf, 2007).................17

Figure 3.4.2: PaaS Layers...18

Figure 3.4.3: OrangeScape runtime architecture (Adapted from OrangeScape, 2010)..................19

Figure 3.4.4: Wolf platform architecture (Adapted from Wolf, 2011)..20

Figure 3.4.5: Windows AppFabric services (Adapted from Raz, 2011)...20

Figure 3.4.6: Windows Azure services platform (Adapted from Iyogi, 2011)............................... 21

Figure 3.4.7: Comparison of two cloud architectures (Windows and Amazon) (Adapted from

Kaefer, 2009).. 22

Figure 4.3.1: Scrum Development methodology...24

Figure 5.10.1: Cloud IDE Conceptual Design..34

Figure 6.1.1: Simplified view of Eclipse IDE (Adapted from Eclipse, 2010)................................ 37

Figure 6.5.1: Apps Datastore Entity view.. 41

Figure 6.6.1: JSON object (JSON, 2010).. 42

Figure 6.6.2: JSON array (JSON, 2010)...42

Figure 6.6.3: JSON value (JSON, 2010)...43

Figure 6.6.4: JSON String (JSON, 2010).. 43

Figure 6.6.5: JSON Number (JSON, 2010)... 44

Figure 7.4.1: High level prototype structure... 45

Figure 7.5.1: Prototype architectural design...46

Figure 7.5.2: Prototype user interface..47

Figure 7.5.3: Development mode user authentication... 47

Figure 7.5.4: Project tree... 48

Figure 7.5.5: Dynamically generated JSON project tree object... 50

Figure 7.5.6: Prototype (Icecloud) Editor..53

Figure 7.5.7: Prototype database architecture... 54

Figure 7.5.8: File types JSON object...55

*x | P a g e 1 7 - .1 a n - 1 2

GLOSSARY

Acronyms

Acronym Meaning

T d e Integrated Development Environment

PaaS Platform as a service

SaaS Software as a service

IaaS Infrastructure as a service

RAD Rapid Application Development

REST Representational State Transfer

JSP Java Server Pages

JSTL JSP Standard Tag Library

AJAX Asynchronous Java and XML

SOAP Simple Object Access Protocol

XML Extensible Markup Language

RDBMS Relational Database Management System

JSON Java Script Object Notation

API Application Programming Interface

CRUD Create Retrieve Update Delete - These are basic database

tasks expected from a database management system

(DBMS)

x | P a g e 1 7 - J a n - 12

Proprietary Terms and Technologies

Any proprietary terms and technologies used in this report belong to the trademark owners even

where no bibliography reference has been made. Key terms used throughout this report include:

Term /

Technology

Description

Google Google is a cooperate company that offers a myriad of computer technologies,

some of which have been referenced in this report. These include Google

AppEngine, Google Accounts, Google Datastore and Google web toolkit.

Microsoft Microsoft is a cooperate company that offers a myriad of computer

technologies, some of which have been referenced in this report. These include

Windows Azure, SQL Azure, Appfabric and windows operating system

Amazon Started off as an online shopping solution, the company has grown to be a

major technology player offering various cloud solutions.

OrangeScape OrangeScape provides Platform as a Service (PaaS) to build domain rich

solutions. OrangeScape uses a modeling driven visual development

environment for creating business applications and can be deployed as SaaS or

on-premise applications.

Wolf WOLF is an Online Database Application Platform architected to help design,

deliver and use Software-as-a-Service (SaaS) database applications, using only

a web browser.

1 VMware A company providing virtualization software that’s at the heart of cloud

offerings

Eclipse Open source application development environment from Eclipse foundation

Java Programming language originally developed by Sun Microsystems

DOJO An open source Javascript library that delivers powerful performance, and

scales with development process. It’s the toolkit developers turn to for building

superior desktop and mobile web experiences
f

Code Mirror An open source code-editor component that can be embedded in Web pages. It

provides only*.'the editor component but with a rich API that allow for feature
4

extension to accomplish common IDE tasks.

x' | P a g e 1 7 - J a n - 1 2

CH APTER 1: IN TR O D U C TIO N

1.1 Background

Many software developers today are still using the old way of "write your own code" strategy.

Although it may seem right for a developer's perspective in terms of skill enhancement and

originality, when it comes to developing large-scale applications on a tight deadline, this may not

seem to be the best approach. Right now, many software development companies are adopting

"Framework-Driven Development". This is a strategy of using pre-coded "frameworks" to speed

up the development of a certain application (Nacion, 2009).

An object-oriented framework is a reusable design together with an implementation. The design

represents a model of an application domain or a pertinent aspect thereof, and the

implementation defines how this model can be executed, at least partially. A good framework’s

design and implementation is the result of a deep understanding of the application domain,

usually gained by developing several applications for that domain. The framework represents the

cumulated experience of how the software architecture and its implementation for most

applications in the domain should look like. It leaves enough room for customization to solve a

particular problem in the application domain.

Developers who apply a framework reuse its design and implementation. They do so to solve an

application problem that falls into the domain modeled by the framework. By reusing the design,

application developers customize (hopefully) well understood software architecture to their own

specific application problem. This helps them get the key aspects of the architecture right from

the beginning. By reusing the implementation, application developers get up to speed more

quickly. Through design and code reuse, frameworks help developers achieve higher

productivity and shorter time-to-market in application development (Riehle, 2000).

Software development frameworks play a pivotal role in the move to cloud computing.

These are presented in the platform as a service (PaaS) constituent of cloud computing spectrum

in which hosting providers allow users to bui(d custom applications out of component services

located in their data centers. The other two are software as a service (SaaS) whereby whole

1 I P a 8 e 03 - J a n - 12

applications are delivered over the Internet, and infrastructure as a service (IaaS) whereby raw

computing resources such as processing and storage are delivered online.

A recent Gartner survey found that 95% of organizations intend to maintain or grow their SaaS

usage in the coming year. But the same is not yet true for the other two constituents, IaaS and

PaaS (Swabey P. 2010).

One reason for the disparity in the adoption of the various flavors of cloud may be their different

switching costs. For end-users, SaaS offerings are easy to adopt, as they typically employ user

interfaces that are similar in style to consumer websites. But for software developers, the target

audience of IaaS and PaaS offerings, working with the cloud can require a different set of skills

and know-how, especially for those used to building traditional applications on client- server

platforms.

This explains why software development frameworks - toolkits that allow programmers to be

more productive by simplifying the development process - may well prove to be pivotal in the

cloud era.

1.2 Problem Statement

Rapid application development (RAD) has been defined as a methodology that enables

organizations to develop strategically important systems faster while reducing development costs

and maintaining quality. This is achieved by using a series of proven application development

techniques, within a well-defined methodology. (CaseMaker, 2000) This is becoming even more

real with the rise of cloud computing and specifically PaaS stack.

A true RAD environment should enable application development without having to worry about

non value adding pre-requisites into the actual product delivery. This is what PaaS is providing

to the industry where one just needs to invest in the development skills that support the

development and with minimum investment, they are ready to deliver the solution. Currently,

even developers for cloud services (SaaS) rely heavily on on-premise development tools. This is

changing fast to cloud development and this creates and urgent need to migrate to cloud based

application development frameworks.

2 | P a g e 03 - J a n - 12

Cloud development also invites more people into the development arena with the minimum

capital requirements to start off. This creates a need for well-defined application development

methodology that enables the developers to carry out their tasks seamlessly while complying

with the standards of cloud computing. This is where cloud based integrated developments

environments and software development frameworks come in handy.

Current cloud development environments offer very little to the traditional developer compared

to the desktop based environments. Web based IDEs lack the runtime environments while the

environments with runtime environments do not offer real development experience and are best

suited for super users and business oriented professionals. Examples of runtime development

environments are OrangeScape and Wolf.

1.3 Research Questions

1 What are the trends supporting rapid application development in cloud computing?

2 What are the major challenges facing the adoption of cloud application development and

PaaS in general and what are the solutions?

3 How can framework based development increase the uptake of cloud application

development?

4 Can cloud (web) environments support fully fledged IDEs and framework based

application development for programmers?

1.4 Research Objectives

The objectives of this study are as follows:

1. Review how cloud computing trends affect current application development

methodologies

2. Review how Framework Based Application Development methodology improves the

uptake of PaaS

3. Analyze the impact of framework based cloud development on organizations and

software developers

4. Implement an architecture to support framework based cloud development

3 | P a g e 0 3 - J a n - 12

1.5 Significance of the study

The study was aimed at coming up with an architecture for a rapid application development

framework on the cloud. This was achieved by taking a closer look at framework based

development in the traditional on premise development as well as the current trends in cloud

computing and cloud based development. The research targeted application developers who are

expected to use their inherent programming and software development skills to develop SaaS

applications on the cloud.

From this study, one is able to visualize the feasibility, requirements and methodology of

implementing a cloud based application development framework. The key benefits in cloud

based development environment proposed here are:

• Zero foot print development environment: Developers will no longer need to invest in

hardware and pre-requisite software to start application development. One can easily use

community infrastructure e.g. cyber cafes, school or college computer centers etc., to

start application development.

• Best in breed infrastructure at usage cost: Most cloud environments charge users based

on their usage of the cloud resources. With the cloud providers availing reliable security,

uptime, bandwidth and antivirus protection, developers get the best of all these and only

pay for what they use.

• Round the globe availability: Online applications are available independent of location as

long the internet is available. This means developers don’t have to keep travelling with

their development computers and will be able to access their work from anywhere as long

as they can access the internet. With advancement in mobile technology, this could as

well be their mobile phones or other data enabled mobile devices.

• Seamless migration: The proposed architecture supports code porting between cloud and

on premise development environments. Developers will therefore be able to download

their code from the cloud, make changes on local development environments and upload

the same when done back*to the cloud seamlessly.

• Cloud computing adoption: With PaaS being the least accepted stack of cloud computing,

this research has worked towards demystifying this particular stack. It is expected that

4 I P a g e 03 - J a n - 1 2

pioneers of PaaS cloud offering will leap huge profits and also boost the use and uptake

of cloud computing in general.

• Seamless development collaboration: The proposed architecture supports development

teams’ collaboration which is critical in managing large development projects where

more than developer is involved.

• Cost savings: All these benefits are consolidated in cost savings where companies are

able to realize huge gains by not investing in expensive development hardware and

software, along with ease of product development and deployment to the cloud.

1.6 Project Scope

Due to the limited time and resources, the research scope was limited to the following:

1. Analysis of various components of a development framework for cloud application

development environment

2. Standard architectural design for a cloud based rapid application development framework

on the PaaS layer

3. Technical design documentation for the various modules required to implement a

development framework on a cloud operating system

4. A prototype of a cloud based rapid application development framework

1.7 Research Assumptions and Limitations

The research was conducted under the following assumptions and limitations:

1. The research focused on n-tier development environment but the prototype is based on a

standard 2-tier web application development on the cloud.

2. Billing and resource monitoring are assumed to be provided by the core cloud hosting

environment and the development environment is not required to implement a separate

model for the same.

3. The study was limited to the available core cloud features at the time. All possible effort

has been made to bring out similar and standard features across related development
, * f

environments and platforms.

5 | P a g e 0 3 - J a n - 12

r

4. Google Appengine was selected for prototype development as it offered seamless

integration to Eclipse development environment for Java as well as rich cloud libraries,

free resources and reliable test environment which largely influenced the overall design.

6 | P a g e 03 - J a n - 12

CH APTER 2: LITER A TU R E REVIEW

2.1 Towards cloud computing

Cloud computing refers to the hardware, systems software, and applications delivered as services

over the Internet. When a cloud is made available in a pay-as-you-go manner to the general

public, we call it a Public Cloud. The term Private Cloud is used when the cloud infrastructure is

operated solely for a business or an organization. A composition of the two types (private and

public) is called a Hybrid (Antonopoulos and Gillam, 2010)

Application
Management

vCenter

Infrastructure
Management

On-Pr«fnise Cloud ... Off-Premise Cloud

Figure 2.1.1: Sample cloud representation from VMware (Adapted from Davis, 2008)

2.2 Cloud computing stacks

2.2.1 SaaS - Software as a Service

This is essentially based on the concept of renting application functionality from a service

provider rather than buying, installing and running software yourself. Offerings within this range

horn services include Salesforce.com at one end, delivering the equivalent of a complete

application suite to players like MessageLabs at the other, whose services are designed to

complement operational infrastructure, Google apps and others.

7 | P a g e 0 3 - J a n - 12

2.2.2 PaaS - Platform as a Service

This is about providing, a platform in the cloud, upon which applications can be developed and

executed. Players like Google, again Salesforce.com (this time with Force.com), and Microsoft

(with Azure) exist in this space. Facilities provided include things like database management,

security, workflow management, application serving, and so on.

2.2.3 IaaS - Infrastructure as a Service

The proposition here is the offering of compute power and storage space on demand.

The difference between this and the other two categories of cloud is that the software that

executes is essentially yours. In practical terms, the model is based on the same principles of

virtualization that we are all familiar with in the context of server partitioning or flexible storage.

Rather than running a virtual image on a partition existing on a physical server in your data

center, you spin it up on a virtual machine that you have created in the cloud. Virtual disks can

be created in a similar manner, to deal with the storage side of things. (Schulz, 2009)

Figure 2.2.1: Cloud stacks (adapted from Sait, 2011)

2.3 Application development Trends

2.3.1 Rapid Application Development
f

Traditional lifecycles devised in the 1970s, and still widely used today, are based upon a

structured step-by-step approach te developing systems. This rigid sequence of steps forces a

user to sign-off after the completion of each specification before development can proceed to

8 | P a g e 0 3 - J a n - 12

the next step. The requirements and design are then frozen and the system is coded, tested, and

implemented. With such conventional methods, there is a long delay before the customer gets to

see any results and the development process can take so long that the customer’s business could

fundamentally change before the system is even ready for use.

Rapid application development has been made possible by adaptive and reusable programming

techniques. These are best brought out by analyzing the growth of programming paradigms

behind the various application developments.

2.3.2 Programming paradigms

A programming paradigm is way of conceptualizing what it means to perform computation and

how tasks to be carried out on a computer should be structured and organized. The paradigms are

not exclusive, but reflect the different emphasis of language designers. Most practical languages

embody features of more than one paradigm. There have been four common paradigms and a

new one (Aspect Oriented) as detailed below

2.3.2.1 Imperative paradigm

This is based on commands that update variables in storage. The Latin word imperare means “to

command”. The language provides statements, such as assignment statements, which explicitly

change the state of the memory of the computer. This model closely matches the actual

executions of computer and usually has high execution efficiency. Many people also find the

imperative paradigm to be a more natural way of expressing themselves

2.3.2.2 Functional programming paradigm

In this paradigm we express computations as the evaluation of mathematical functions.

Functional programming paradigms treat values as single entities. Unlike variables, values are

never modified. Instead, values are transformed into new values. Computations of functional

languages are performed largely through applying functions to values eg (+ 4 5).

2.3.2.3 Logic programming paradigm
* f

In this paradigm we express computation in exclusively in terms of mathematical logic.

While the functional paradigm emphasizes the idea of a mathematical function, the logic

paradigm focuses on predicate logic, in which the basic concept is a relation.

9 | P a ge 0 3 - J a n - 12

jL0gic languages are useful for expressing problems where it is not obvious what the functions

should be. For example consider the uncle relationship: a given person can have many uncles,

and another person can be uncle to many nieces and nephews.

2 J.2.4 The Object-Oriented Paradigm

Object oriented programming paradigm is not just a few new features added to a programming

language, but it a new way of thinking about the process of decomposing problems and

developing programming solutions. Alan Kay characterized the fundamental of OOP as follows:

• Everything is modeled as object

• Computation is performed by message passing: objects communicate with one another

via message passing.

• Every object is an instance of a class where a class represents a grouping of similar

objects.

• Inheritance: defines the relationships between classes.

The Object Oriented paradigm focuses on the objects that a program is representing, and on

allowing them to exhibit "behavior". Unlike imperative paradigm, where data are passive and

procedures are active, in the 0 -0 paradigm data is combined with procedures to give objects,

which are thereby rendered active. (Bellaachia, 2010)

2.3.2.5 The Aspect-Oriented Paradigm

Although the object-oriented paradigm provides a rich set of tools for abstraction and

modularization, it cannot address the problem with so called cross-cutting concerns. One can

think the cross-cutting concerns as functionality that when implemented, will scatter around the

final product in different components. Since this kind of functionality will cut through the basic

tunctionality of the system, it is hard to model even with the object oriented programming. Good

examples of the cross-cutting concerns are authorization, synchronization, error handling and

transaction management. Aspect-oriented programming tries to address the problem by

modularizing the crosscutting functionality into more manageable modules - aspects. Unlike the

object-oriented programming, 'aspect-oriented programming does not replace previous

Programming paradigms. Therefore it can be seen as a complementary to the object-oriented

Paradigm rather than a replacement.

10 I P a g e 0 3 - J a n - 12

In aspect-oriented programming the system is divided into a two halves: the base program and

the aspect program. The base program will contain the main functionality of the system and can

be implemented using object-oriented programming. The aspect program will consist of the

cross-cutting functionality that has been modularized away from the base program. This leads to

a more concise structure since the functionality of the cross-cutting concerns is contained within

well defined modules (Laukkanen, 2008).

2.3.3 Automating code generation and interface layouts

Object oriented development and introduction of code components have made a developers work

a lot much easier and organized. Components enable very well structured object encapsulation

with most of the components integrating to the development environments for visual

manipulation of properties and event based code framework generation.

Automated code generation and interface layouts call for use of predefined templates that enable

dynamic content replacement within the templates to create dynamic objects and code. Most

modem IDEs with visual interface design have this feature as a key strength in speeding up

application development.

In this section we look at the developments towards automated code generation and interface

layouts as the key principle towards rapid business application development.

2.3.4 Integrated Development Environments

An integrated development environment (IDE) is a programming environment that has been

packaged as an application program, typically consisting of a code editor, a compiler, a

debugger, and a graphical user interface (GUI) builder. The IDE may be a standalone application

or may be included as part of one or more existing and compatible applications. The BASIC

programming language, for example, can be used within Microsoft Office applications, which

makes it possible to write a WordBasic program within the Microsoft Word application. IDEs

provide a user-friendly framework for many modem programming languages, such as Visual

Basic, Java, and PowerBuilder. IDEs for developing HTML applications are among the most

commonly used. For example, many people designing Web sites today use an IDE (such as

11 I P a g e 0 3 - J a n - 12

HomeSite, DreamWeaver, or FrontPage) for Web site development that automates many of the

tasks involved (Furey A. and Pottjewijd A. 2001).

Most of the current IDEs support multiple programming paradigms to give the developers

flexibility while others enforce use of one paradigm, e.g. Java IDEs enforce use of Object

Oriented Programming. Delphi and Visual Studio allow use of several programming paradigms.

Most IDEs ship with basic wizards for interface and code generation. What has been missing is

the information necessary to enable developers to automate the development tasks they do by

creating their own wizards, underlying code templates and functional objects.

2.3.5 Interface based IDE programming

In both component and service oriented development, the design of the interfaces is done such

that a software entity implements and exposes a key part of its definition. Therefore, the notion

and concept of “interface” is key to successful design in both component-based and service-

oriented systems. An interface defines a set of public method signatures, logically grouped but

providing no implementation. It defines a contract between the requestor and provider of a

I service. Any implementation of an interface must provide all methods. (Brown, Johnston and

Kelly, 2004)

Researchers in the area of automated design of user interfaces have shown that layout of an

interface can, in many cases be generated from the applications data model using an intelligent

program that applies design rules. The specification of interface behavior however has not been

automated in the same manner and is mostly a programmatic task. Mecano is a model based

user-interface development environment that extends the notion of automating interface design

from data models (Puerta, et al, 1994)

2.3.6 Template based code generators

Template code generators rely on predefined templates that allow for dynamic string

replacements to generate code ba'sed on some configurations. The aim of templates is to set the

coding standard for all repetitive code snippets and leave out variables that will be automatically

filled in based on the wizard actions. Just like-the object oriented programming paradigm where

12 I P a g e 0 3 - J a n - 1 2

developers use objects to organize and reuse their code, wizard based code generators help create

coding standards and save developers from repeating similar tasks. More advanced code

generators provide wrappers to database objects allowing for a seamless integration to databases

for full-fledged applications. Good examples of code generators in the market are Codebreeze,

CodeSmith and T-sharp all of which are commercial packages for .Net languages. Just like

object components, developers can choose to get the packages or develop their own tools and

integrate into the IDEs for a seamless development experience.

In this study, we focus on developing code generators and wizards as a programming

methodology. Just like aspect oriented programming tries to separate code duplication for code

that cuts across objects, wizard based programming separates the code that gels the objects and

makes them functional and packages it on to a template. This ensures full code reuse and

flexibility in programming tasks. We use Delphi IDE and language to explore what has been

done to enable this kind of development.

2.3.7 Typical Java Integrated Development Environment

13 | p a g e 03 - J a n - 12

P h i* i

2 Compk

P h i* 3 H id

P h i* 4 Vcify

Editor
Oik

Propim is anted in in
editor jrvj stcred on disk in
i (de erktnjwnh .java

Compiler

Pnmiry
Memory

Compiler antes bytecodes
md stores them cn disk in i
He ending vnth .c la s s

Ctiss tender
O iss loider reids
.c la s s fdes
conuming bytecodes
from Ask irtd puts
tho* bytecodes in
memory

Pnmiry '
Memory

Bytecode Ven her -------►

Bytecode venhee
centra s that ill
bytecodes ire vilid ind
do notvKdtte Jhn's
secutyrestn rations

P h i* 5 Execute Jwi Vetuil Mi thine (JVM)

Pnmiiy
Memory

To execute the piopim . the
JVM reids bytecodes ind
binshtes them into i
Im guigethit the com puts
cm undostind As the
prognm executes, t m iy store
d iu vilues in pnmiry
memory

Figure 2.3.1: Typical java development environment (Adapted from Sonu, 2009)

A typical integrated development environment enables developers to create a program, compile

the program, load into memory and execute. An application development framework sits on the

top layer of program creation making it easier for developers to create code and interfaces in a

simpler and more structured manner.

H | P a g e 0 3 - .1 a n - 1 2

2 3.8 S am p le RAD IDE Architecture

1) Eclipse is an open platform. It is designed to be easily and infinitely extensible by third

parties. At the core is the eclipse SDK, we can build various products/tools around this

SDK. These products or tools can further be extended by other products/tools and so on.

For example, we can extend simple text editor to create xml editor. Eclipse architecture is

truly amazing when it comes to extensibility. This extensibility is achieved by creating

these products/tools in form of plug-ins (Eclipsepluginsite.com, 2008)

Figure 2.3.2: Inside the Eclipse SDK (Adapted from Eclipsepluginsite.com, 2008)

RCP: On the bottom is RCP which provides the architecture and framework to build any rich

client application.

IhE: It is a tools platform and a rich client application itself. We can build various form of

tooling by using * IDE for example Database tooling.

jrjT «'It is a complete java , IDE and a platform in itself.

15 I p a g e 0 3 - .1 a n - 1 2

PDE: It provides all tools necessary to develop plug-ins and RCP applications. This is what we

will concentrate on the course of this tutorial.

2.4 Cloud Based Development

2.4.1 Existing options

The startling growing software sizes and hardware consumption (e.g. memory and CPU) of IDEs

as well as their plug-ins have gradually become a headache. Moreover, programmers have to

ensure that their favorite IDEs and development toolkits (e.g. JDK) are installed and properly

I configured in their computers before they are able to start working, which takes a substantial

amount of time. Even running a properly configured IDE takes a long time to load. It seems like

that IDEs will add troubles to programmers these days instead of aiding them. Therefore, some

interesting solutions are emerging and can keep the hundreds of megabytes away from disk. (Ou,

j Najaran and Rouf, 2007). These solutions are coming in the form of cloud based IDEs, with the

| true cloud IDEs (not IDEs that connect to the cloud from traditional development environments)

being web based. Web based IDEs are still in the growth phase and slowly gaining acceptance

| for commercial production. Examples include PhpAnywhere, CodeRun, Aptana and Bespin.

Aurora Web based IDE was a research project by a team of students from the University of

British Columbia in 2007. The high level architecture diagram was as shown below (Ou, Najaran

and Rouf, 2007).

<'

16 I P a g e 0 3 - J a n - 1 2

Figure 2.4.1: Aurora SDK Architecture (Adapted from Ou, Najaran and Rouf, 2007)

Other framework based IDEs have been optimized for cloud development and deployment

through well-defined software frameworks. Spring Framework for Java is making cloud

development an easier process for Java developers. Cloud Foundry is the open platform as a

Iservice project initiated by VMware. It can support multiple frameworks, multiple cloud

providers, and multiple application services all on a cloud scale platform. (VMware, 2011).

Spring framework is still available as a legacy software package installed on desktops.

2.4.2 PaaS Architecture

2.4.2.1 PaaS Stack Overview

PaaS contains 2 layers: Cloud OS and Cloud Middleware. Google App Engine and Azure are

examples of Cloud OS. OrangeScape and Wolf are examples of cloud middleware or in Gartner's

terms aPaaS i.e. Application Platform as a Service. In essence, aPaaS is a stack that runs on top

°f cloud OS.

17 I P a g e 03 - J a n - 12

OrangeScape and Wolf PaaS are on-demand browser based platforms for rapidly designing and

delivering multi-tenant Cloud SaaS applications. They can be used as a 5 GL platform which

automates many standard software development tasks to simplify application development. The

unique selling proposition of these platforms is that they can be used by business analysts (non

developers) as well. You don't need to write one piece of code!

Figure 2.4.2: PaaS Layers

2.4.2.2Sample aPaaS Architecure

OrangeScape run-time platform has pre-integrated four-tier architecture on SOA foundation.

Key components of the runtime environment are:

Component Service: The core the application around which the other services operate and

exposes application models as business components.

Workflow service: Takes care of activity assignment and automatically provides queue

configuration for each activity in the process design.

Persistence service: Automatically persists the data into either RDBMS (MySQL, SQL Server,

Oracle, Ingres or DB2) or even NoSQL database like Google’s Big Table.

Web service: Each data model entity is exposed as a REST sytle web service with 5 default

invocation methods; one each of CRUD - Create, Read, Update & Delete and Submit for

Workflow State transition.

Presentation: The front-end application used by end-users is an AJAX application running on

the browser interacting with the run-time using'the REST style web services.

18 | p a g e 03 - J a n - 12

The following diagram depicts a simplified high level architecture of the runtime platform

(OrangeScape, 2010).

Browser * -.a 0Ax
HTM L

0

OrangeScape
Runtime l

Container

Silverlight
—l____ l____ L-._

SOA Interfaces - ReST or SOAP Based— T -------- T ---------T

P luggab le A uthen tic Jtlon

Presentation
Layer

REST S aru lt*

A u th o riza tio n
■0 Service Layer

Business Tier

Persistence Tier

NoSQL

Figure 2.4.3: OrangeScape runtime architecture (Adapted from OrangeScape, 2010)

WOLF is a code-free Cloud Computing Platform which serves as a complete business and

technology framework to manage the design and delivery of your SaaS applications.

SaaS applications developed on the platform are endowed with a single instance multi-tenant

architecture. They are instantly integrated into an automated provisioning system which handles

the allocation of network resources, database creation and account information. The robust User-

Role management system makes it easy to create users & roles and assign rights to various

modules of your application (WOLF 2011)

19 |p age 0 3 - J a n - 1 2

WOLF Designer

Pomt-and-Click
Application Designer

WOLF Runtime

Custom ui

Ready Made WOLF UI

Figure 2.4.4: Wolf platform architecture (Adapted front Wolf, 2011)

Windows Azure AppFabric provides pre-built, higher level middleware services that raise the

level of abstraction and reduce complexity of cloud development. These services are open and

interoperable across languages (.NET, Java, Ruby, PHP...) and give developers a powerful pre­

built “class library" for next-gen cloud applications. Developers can use each of the services

stand-alone, or combine services to provide a composite solution (Microsoft 2011).

I A p p Fa b ric S e r v ic e s

S e rv ic e B u s A c c e s s C o n t r o l
-

Figure 2.4.5: Windows AppFabric services (Adapted from Raz, 2011)

f bYour
Software

Application

Visual Studio
Coming Soon

0 python Mf

Developers

a&a
End Users

Figure 2.4.6: Windows Azure services platform (Adapted from Iyogi, 2011)

2.4.3 Common PaaS Architecture Components

Based on the dominant players in the current cloud PaaS, it becomes clear that some components

are common among the PaaS implementations.

Operating system: This forms the base of other software components. It acts as the link between

the hardware compute components and other software components required to offer cloud

services. Examples are Windows Azure and Amazon EC2.

Data Storage: Cloud environments just like their on-premise counterparts require persisting data

for computational requirements. Cloud environments implement both file-system based and

database structures for data persistence. Data storage based on databases is implemented as

standard relational databases, binary data storage (BLOB) as well as unstructured storage which

1S currently being preferred for quick access and horizontal scaling among the cloud providers.

Examples under this section include SQL Azure, Blob storage, Table service from Microsoft and

Relational Database service, S3 and Simple DB from Amazon for implementation of relational,

blob and unstructured storage respectively.

Messaging: Messaging services are used for inter-process communication among the various

exponents of the PaaS layer. Main messaging methods used are message queues and message

unification services.

2 l ' P a ge 03 - J a n - 1 2

identity Management: Identity management is used for user authentication and authorization.

Different cloud providers have adopted different identity management methods, with common

[identity becoming the preferred method among the dominant players. Google has adopted

[Google Accounts; Microsoft has adopted Live ID while Amazon has AWS identity.

Content Delivery: Content delivery layer is the top layer that hosts the end user applications as

well as client frontend. Microsoft uses Content Delivery Network while Amazon uses

CloudFront for content serving.

2.4.3.lComparison of two cloud architectures

A comparison of two cloud architectures is shown below to bring out the common components

and how each of the architecture compares for the various components.

e.g. Microsoft Windows Azure Platform e.g. Amazon Cloud Platform

Client
Silverlight

Application Your App,
Office Online and Live, CRM

iMAppFabric' Service Bus,

Queues,
.net (Roles)

Cloud Runtime

Search, Maps,
Billing, CDN,...

Service

BLOB & Table Store,
SQL Azure, NTFS,...
Storage

W in d o w s

Azure
(Server
2 0 0 8 a n d Fabric Controller)

Infrastructure!

Client

Application Your App,
Mechanical Turk, Your Database

Cloud Service
Runtime Billing, Cloud
Queues, Front,
Notification

EC2:
Windows
Linux

Infrastructure

S3, SimpleDB,
RDS (MySQL)

Storage

f i
S 5"O •/>
* s
§ s < <

Figure 2

Copyright © Siemens AG 2010, Corporate Technology, GTF SA&P

■4.7: Comparison of two cloud architectures (Windows and Amazon) (Adapted from Kaefer, 2009)

22 | P a g e 0 3 - J a n - 12

r
CHAPTER 3: RESEA R CH M ETH O D O LO G Y

This section outlines the activities that were carried out throughout the duration of the research.

3.1 Research Process

During the duration of the research, various existing IDEs architectures were explored to review

their feature sets. More emphasis was put on features supporting basic file manipulation,

program editing, program compiling, rapid application development and framework based

development. The feature sets were mapped to a cloud environment to enable design of a cloud

based RAD framework

The prototype development followed standard software development lifecycle by iterating

analysis, design, development, testing until the final product was realized.

3.1.1 Literature Review

This involved further study in the work done with regard to achieving rapid software

development and code reuse, with specific focus on framework based development. This was

reviewed with the cloud computing and development in mind to bring out the power of

framework based development for the cloud environment. The review also looked into the

architectures imposed by cloud developments and the basics that support cloud development as

well as obstacles against it that need to be overcome.

3.1.2 Design and development process

This research process entailed frequent changes within the architectural design of the system,

thus an agile method of software development was used. This allowed for necessary changes

ansing during the development process to be incorporated in the next iteration or development

phase. SCRUM method of project management was used to ensure shorter intervals, called

sPnnts, during which objective^ for the next design and development phase were set and

reviewed before the next iteration. Due to the time constraints, each sprint lasted for a week for

the entire duration of the project.

23 | p a g e 03 - J a n - 12

Figure 3.1.1: Scrum Development methodology

3.1.3 Interviews and review meetings

To ensure the critical feature sets of a RAD environment were captured in the design, a series of

I interviews were held involving development teams. This primarily focused on known

development teams from selected companies, who were involved in enterprise and customer

I systems development. The interviews were based on the stage of design and prototype

development and lasted at most one hour. The process was documented and views used to guide

the feature sets to incorporate in the design stage.

3.1.4 Architectural Design and Prototype Build Increment

This research includes prototype development. By definition, the implementation aspect of the

prototype covers the range of prototyping the complete product (or system) to prototyping part

°f, or a sub-assembly or a component of the product. The complete prototype, as its name

suggests, models most, if not all, the characteristics of the product. It is usually implemented

full-scale as well as being fully functional. One example of such prototype is one that is given to

a group of carefully selected people with special interest, often called a focus group, to examine

ar>d identify outstanding problems before the product is committed to its final design. On the

0,her hand, there are prototypes that are needed to study or investigate special problems

associated with one component, sub-assemblies or simply a particular concept of the product that

reciuires close attention (Chua, 2003).

0 3 - J a n - 1 2

■ n of an architecture that can be used in development of a framework for cloud RAD. The

end result of this phase was a technical design specification which is presented in the design

section.
The prototype development commenced parallel to the architectural design stage to ensure

proper communication and understanding of the proposed architecture. The prototype was built

incrementally with each build undergoing testing for validation against the design.

3.1.5 User Acceptance Testing

User acceptance testing (UAT) is a critical phase in any system development and

implementation. This research used UATs mapped out of the system requirements to ensure

critical items of an IDE are delivered in the prototype. Key functions subjected to the UAT are:

• User management

o User registration

o User login

o Multi user projects management

• Project management:

o Create project

o Manage files in a project

o Inline syntax check (code parsing)

o Deploy to the cloud - static files only binary compilation not supported

o Download to local computer

• File management

o Create source code files

o Assign files to project

o Manage different file types based on selected programming languages

o Delete files

o Move files across projects

o Download to local computer

• Code management

° Template based code generatiori

2S I P a g e 0 3 - J a n - 1 2

O Syntax highlighting

o Code completion

o Inline syntax parsing (compilation)

• User interface

o Natural look and feel (desktop based interface)

o Asynchronous file management

• Accessibility

o Cloud based interface

o Local client side functions

3.1.6 Data collection and analysis

This involved collection of data on software development using the traditional development

methods and cloud based application development. The analysis was based on a parameterized

model and user survey covering the following basic inputs:

1 Willingness of developers to use cloud based development environments as the preferred

method of application development.

2 Feature requirements in a cloud based application development environment

3 Challenges to the adoption of cloud based application development environments

4 Cost of development environment setup for traditional as well as cloud based

development environments.

5 Development effort - This took into consideration the man-hours required in the two

setups both in the long run and short run with regard to the application development team

6 Ease of product deployment and supportability with focus on SaaS as the end product.

3-1.7 Data collection methodology

Qualitative methods: grounded in the assumption that individuals construct social reality in the

form of meanings and interpretations, and that these constructions tend to be transitory and

s'tuational. Qualitative research typically involves qualitative data, i.e., data obtained through

methods such interviews, on-site observations, and focus groups that is in narrative rather than

numerical form.

0 3 - J a n - 1 2

to answerQuantitative methods: Quantitative inquiries use numerical and statistical processes

specific questions. Statistics are used in a variety of ways to support inquiry or program

assessment/evaluation. Descriptive statistics are numbers used to describe a group of items.

Inferential statistics are computed from a sample drawn from a larger population with the

intention of making generalizations from the sample about the whole population. The accuracy

of inferences drawn from a sample is critically affected by the sampling procedures used.

(Wholey, Hatry and Newcomer 2004, Cited in InSites 2007)

During the duration of this research process, both methods were used to analyze the results of

interviews with the various development teams. This was done inform of a web survey with

specific questions as detailed below:

1. Do you use any Integrated Development Environment (IDE) for Rapid Application

Development (RAD)?

2. Do you use any software frameworks for enterprise development?

3. Are there any situations that call for traditional application development methodologies

(non RAD)?

4. Would you consider using a cloud based development environment?

5. What would be your concerns in using cloud based development environment?

6. What features of an IDE would you want to see in a cloud based IDE?

7. What software frameworks would you want implemented in the cloud based IDE?

8. Do you have any plans to develop a cloud based application (SaaS)?

9. What current tools would you consider for cloud application development?

10. Given similar features on the cloud development platform as your computer based

development environment, would you switch fully to a cloud based development

environment?

3-1.8 Data Analysis

The survey was based on a targeted audience group, based on application development

exPerience. Social media, email messaging as well as phone calls will be used to reach out to
i'

Potential participants for the survey. This was to ensure a wide coverage of the responses. All the

27|P a g e 03 - J a n - 12

s who participated in this research have been in software development for at least three years

ith diverse skills in development platforms and programming languages. Notable companies

here developers were involved include Safaricom, Telkom Kenya (Orange), Kenya Tea

Development Agency (KTDA) among others.

Survey monkey was used for this as it offers a trial survey with usable limitations. The actual

survey was hosted on http://www.survevmonkev.eom/s/57H5NP3 and remained open for the

duration of this research. Detailed research questions, responses and analysis are provided in

chapter 4 of this report.

The prototype was subjected to a cycle of tests in a user acceptance testing phase to judge the

success of the prototype in bringing out the cloud IDE architecture. This focused on functional

requirements and how they are met in the resulting prototype.

3.1.9 Limitations of methodology

The selected methodology focused on current development trends, with specific interest on

known development teams from various local companies in Kenya as well as developers on

social media, www.facebook.com. The teams were used to review and give suggestions but were

not involved in the development process, hence may have exposed a different opinion before and

after the prototype development process, depending on their expectations.

The views of the development teams were also largely limited to the work done in this study and

not in comparison to any similar more mature and commercial initiatives which could be

happening in parallel. This may have the results of data analysis not indicating the reality if it

was presented from a commercial software development house.

3-2 Conceptual Framework
Th’

ls section discusses relevant concepts used in the course of designing the architecture of a

C*°ud based IDE, and which directly dictates the core functionality offered.

28 I P a g e 0 3 - J a n - 12

http://www.survevmonkev.eom/s/57H5NP3
http://www.facebook.com

I . j Base Cloud Platform as a Service (PaaS)

platform as a service (Paas) layer of the cloud architecture is divided into two main areas, cloud

. cvutem and cloud middleware. Cloud Operating System offers the core interface to the[operating *y*1'*1
deriying infrastructure and compute resources in a transparent manner. These include memory

management, disk operations and process management. Examples of base PaaS include Google

App Engine, Windows Azure and Amazon Elastic Compute Cloud (EC2).

In addition to provision of basic operating system functions, the base PaaS need to have low

lev el middleware components available to make it feasible to run an IDE on top of the operating

system. These include a database management system, user authentication model, file

management and required application servers, eg. Java Virtual Machine and servlet containers.

These need to have been already provisioned and accessible to the developers of the IDE as well

as the end users of the IDE depending on the features exposed by the Cloud IDE.

3.2.2 Database Management System

A cloud based database management system (DBMS) is critical in the design of a cloud IDE.

This allows for storage of user settings, project details and file contents. The DBMS need to be

structured such that it supports fast CRUD (Create, Retrieve, Update and Delete) operations for

transparent file management operations. This can be help implement a virtual file management

system as an option to use of physical files on disk and converted as required to assure users of

portability across various cloud hosting providers for the final deployment. Examples are Google

App Engine Datastore, Windows SQL Azure and Mysql for Amazon EC2.

j 3.2.3 Database Application Development

I development environment also needs to support database development and integration

j êatures. This will enable two and three tiered application development with database integration.

. The requirement assumes availability o f the database management system will be provided on

| the cloud environment by the cloud provider and the application will only be required to use

I avai*able APIs to perform comrqpn CRUD database tasks. From a cloud perspective, the

I aPplication development environment is expected to factor in database API wrappers to enable

29 I P a g e 03 - J a n - 12

. „ tn different database systems and architectures. These include support for standardintegration wintegration to

then be able to configure the application to connect to the target database depending on database

management system availability and perform CRUD operations comparable to traditional

development environments.

t, 2.4 Authentication Model and Data Security

Cloud users expect high level of data and operational security. This is critical in the uptake of the

cloud offerings at all levels and is a key design consideration in the Cloud IDE. Currently,

various cloud PaaS providers have pre-integrated single sign on model, which requires users to

use one account across multiple sites and applications. The user authentication service is

maintained in a central authentication service that’s readily integrated into applications

developed on top of the base cloud PaaS. Examples are Google Accounts, Windows Live ID.

The base cloud PaaS then must expose the relevant Application Programming Interfaces (APIs)

to enable the cloud IDE call authentication services on demand. This takes off the burden of user

management from the core IDE and uses best practice approach to user account management.

Private data stored in the database must be encrypted to guarantee confidentiality and data

integrity.

3.2.5 Multi-User Support and User Space Separation

Multi-user access allows for common usage of the same application instance in a way that

creates a feeling of private ownership on the solution. Several users or entities sharing the same

application and data storage are completely separated from each other and one user has a view of

any other user's data. This allows the users if IDE to manage their projects and files

■ndependently of any other user, while maintaining confidentiality and data integrity. The key to

achieving this is maintaining unique user accounts and mapping user projects and files under

workspaces defined per user.

03 - J a n - 12

. , Rich User Client and Asynchronous Server Communication
3.**°
A Moud IDE runs on the web and is likely to be affected by server communication especially on

low connections. It is therefore critical to have a wide range features running on the client

machines, through use of rich client applications and asynchronous server communication for

server side processing. This calls for wide use of advanced JavaScript and related technologies

that enable creating application logic on the client side. Core features that can be incorporated on

the client side include:

• Code completion

• Syntax highlighting

• Basic edit features

• Inline syntax compilation.

Communication to the server side cannot be avoided but should be reduced to critical file and

project management operations. Asynchronous JavaScript and XML (AJAX) technologies make

asynchronous communication to the server side feasible. This technology enables part of the web

page to communicate with the server without refreshing the entire web page, which gives the

user same feeling as when using a desktop platform.

Standard features that will be handled at server side include:

• Project management

• File management

• Template file management and code generation

• Team collaboration

3.2.7 Application Build and Deploy

Any IDE is expected to provide features that allow for application verification and deployment.

This may include code compilation, application build or code parsing depending on the platform

and runtime architecture.

• f

A cloud based IDE should also support deploying of the application to the cloud to run as a
Soft*

"are as a Service (SaaS). Another key feature is project download for the complete project,

3| | P a Be 0 3 - .1 a n - 1 2

which should happen transparently to the developer (cloud user). This would allow the developer

to use a cloud IDE and migrate to a locally hosted development environment as required.

3 2.8 Plugin Architecture

plugin architecture has become widely expected among most developers as a way of enriching

the IDE with additional features. These range from basic editor support features to core

development components and classes developed by third party community. A cloud based IDE

design should incorporate plugin architecture for multiple development options and language

support.

3.2.9 User Collaboration

User collaboration is a growing requirement among developers. Traditional IDEs supported this

through team development, where each team member was able to check out and work on a

project file and later check it in. Other members would be notified of the file status and would

not be able to work on it at the same time. Modem collaboration features allow collaborating

users to work on the same document at the same time. Google Docs has implemented this in real

time, where each edit is tagged with the user editing and this is visible on the document. The

implementation handles conflicts in editing. This advanced collaboration feature would be a

good value add to any cloud based IDE but comes with additional load on connectivity and

bandwidth utilization.

3.2.10 Version Management

A version control system (or revision control system) is a system that tracks incremental versions

(or revisions) of files and, in some cases, directories over time. Of course, merely tracking the

various versions of a user's (or group of users') files and directories isn't very interesting in itself.

What makes a version control system useful is the fact that it allows you to explore the changes

which resulted in each of those versions and facilitates the arbitrary recall of the same (Sussman,

Fitzpatrick and Pilato, 2011). A cloud IDE should implement a version control system to offer

developers the benefits of version control and enable more explorative development and safe

collaborative editing where users do not accidentally overwrite other members’ changes. Version
<y

control happens in two ways: '

32 | P a g e 0 3 - J a n - 12

3 2 10 lThe lock-modify-unlock solution

version control systems use a lock-modify-unlock model to address the problem of many

, clobbering each other's work. In this model, the repository allows only one person toauthors eiu
file at a time. This exclusivity policy is managed using locks. Harry must “lock” a file

Many

change a
before he can begin making changes to it. If Harry has locked a file, Sally cannot also lock it, and

therefore cannot make any changes to that file. All she can do is read the file and wait for Harry

to finish his changes and release his lock. After Harry unlocks the file, Sally can take her turn by

locking and editing the file.

3 2.l0.2The copy-modify-merge solution

In this model, each user's client contacts the project repository and creates a personal working

copy. Users then work simultaneously and independently, modifying their private copies.

Finally, the private copies are merged together into a new, final version. The version control

system often assists with the merging, but ultimately, a human being is responsible for making it

happen correctly through conflict resolution for any conflicting changes (Sussman, Fitzpatrick

and Pilato, 2011).

i'

Pa g e33 03 - J a n - 1 2

r
3 2.11 Conceptual design

gased on the research work and prototyping experience, the below design was arrived at as a

tandard design that can be adopted to implement a fully-fledged cloud based integrated

dev elopment environment. This is a consolidation of the components described in this section.

Syntax Highlighting
Code Completion

Inline syntax check
Basic validations

Client logic

Fie Processing

Client Requests

server Responses

Appbcation Server

'N
User Authentication

Cofrrrcn
n tic a Don

Session validation

Session Management

k. j

Session management

Request Broker

* p lo y cloud

e r z
Cloud deployment

V ____ y

Requests

Responses

Server Modules

Authentication
Services Database APIs ^ ^

CRUD Co ^ y ~

D Cloud
Datastore

Template
Management

CRUD Operations

Cloud Runtime

Code 7f\
Template Request

Code Generation
D

v_________________ 4

----------------- ^

Code Compilation

v____ ------------------J
Binary Code Raw

code
Compiled

code

Virtual Filesystem

----------- 7F
F ie Management

Change
Management

Project Management

Version Contioi
T - \

Version
Management

L -J

F ie recognition
Conflict

Management

Plugin Management

r 1
Collaboration
Management

J

Figure 3.2.1: Cloud IDE Conceptual Design

The design is broken down into three key components representing the three logical layers

implemented. These are:

1 Web frontend: This represents the user interface and rich client features that users have

direct access to. These are implemented using client side technologies and most do not

require calls to the server.

2 Application server: This layer processes client requests and channels the same to backend

layer for fulfillment. The layer also handles overarching requirements including session

management and user authentication by integrating to common authentication protocols.

a g e 0 3 - J a n - 1 2

3 The backend layer handles most intricate details of the IDE. These include virtual file

management, code template management and code generation, version management,

collaboration features, database integration, modules plugin and core cloud platform API

integration.

3.3 System Analysis

This section will outline the system requirements that the complete product will be required to

fulfill as well as a logical view of how the features will be implemented. The system (prototype)

has been codenamed Icecloud IDE for ease of communication with the focus group.

3.3.1 System Overview

The system (Icecloud IDE) is a platform that provides developers with a web-based multi-user

integrated development environment for applications, specifically web applications. The

environment is multi-user in the sense that many users can access and use the IDE at the same

time with strict space separation based on user-based workspace management module.

The platform also allows users to manage the file system that their projects use with the use of

explorer like tools in the user interface. Managing the file system means being able to perform

basic 10 operations on the file system within a project under a user’s workspace. This includes

creating, renaming, deleting, copying and moving files across projects.

Once a project has been completed, users of the platform can immediately deploy their projects

onto Google AppEngine to run as SaaS.

3.3.2 System Objectives / Requirements

The specific system objectives are

1 • Provide a multiuser cloud based integrated development environment.

2- Provide syntax highlighting for a limited number of preconfigured programming

languages

3- Provide plugin architecture for additional features and language support

4- Provide a virtual file systdm for projects and source code file management

5- Provide a facility for users to deploy their applications to a cloud server (Google Appspot

cloud)

35IP a g e 0 3 - J a n - 12

6 Provide user aid tools, specifically intelligent code generation

333 Scope and limitations

Icecloud IDE will primarily focus on Google App engine cloud environment with the aim of

shaping the general architecture of a cloud based IDE. The concepts exposed by this research can

very well t>e applied to other cloud environments with some modifications on the backend

system. User interface components are client based and can ship with any cloud provider as long

as the data and communication mechanisms are maintained.

3.3.4 Google technologies selection

Google technologies have been selected for this project due to:

1. Free resources available for testing on the cloud infrastructure. These include bandwidth,

compute (CPU) and storage

2. Mature integration to legacy development tools and Java language support in Eclipse

3. No known cloud based IDE that runs on Google cloud services

4. Wide support for Google and related development tools under open source technologies

5. Reliable cloud infrastructure and a wealth of services to support this kind of project

3.4 Prototype Design and Development

This section provides the details of prototype design and development. The prototype is code

named Icecloud IDE for identification purposes. Key details covered in this section include

relevant concepts on core components used, application specifications, architectural design and

development and application testing.

3-4.1 Design Concepts

The system design has used several existing technologies to create a wealth of features as

dictated by the system requirements. These are explored in detail in this section.

3-4.l.l Eclipse development environment

Eclipse is a universal, Multilanguage software development environment an open, extensible,

ntegrated development environnYent (IDE). Eclipse represents one of the most exciting

lnitiatives to come from the world of application development, and it has the support of leading

36 | P a g e 0 3 - J a n - 12

mpanies and organizations in the technology sector. Eclipse is gaining widespread acceptance

n both commercial and academic arenas. (McAffer, Gamma and Wiegand, 2010)

The Eclipse platform itself is structured as subsystems which are implemented in one or more

plug-ins- The subsystems are built on top o f a small runtime engine. The figure below depicts a

simplified view.

Figure 3.4.1: Simplified view of Eclipse IDE (Adapted from Eclipse, 2010)

The term Workbench refers to the desktop development environment. The Workbench aims to

achieve seamless tool integration and controlled openness by providing a common paradigm for

the creation, management, and navigation of workspace resources.

Each Workbench window contains one or more perspectives. Perspectives contain views and

editors and control what appears in certain menus and tool bars. More than one Workbench

window can exist on the desktop at any given time (Eclipse, 2010).

Eclipse has been selected to be the IDE for prototype and development, with Google AppEngine

ar>d Google Web Toolkit plug-ins for integration to the cloud environments.

03 - J a n - 12

4 I 2 Google A ppEngine

Google APP Engine is a system that exposes various pieces of Google’s scalable infrastructure so

;nu can write server-side applications on top of them. Simply this is a platform which allows that yuu
ers to run and host their web applications on Google’s infrastructure. These applications are

easy to build, easy to maintain and easy to scale whenever traffic and data storage is needed. By

using Google’s App Engine, there are no servers to maintain and no administrators needed. The

idea is user just to upload his application and it is ready to serve its own customers.

3.4.1.3 Google Web Toolkit (GWT)

Google Web Toolkit (GWT) is a development toolkit for building and optimizing complex

browser-based applications. Its goal is to enable productive development of high-performance

web applications without the developer having to be an expert in browser quirks,

XMLHttpRequest, and JavaScript. GWT is used by many products at Google, including Google

Wave and the new version of AdWords. It's open source, completely free, and used by thousands

of developers around the world. Application development features include:

Write

The GWT SDK provides a set of core Java APIs and Widgets. These allow you to write AJAX

applications in Java and then compile the source to highly optimized JavaScript that runs across

all browsers, including mobile browsers for Android and the iPhone. Constructing AJAX

applications in this manner is more productive thanks to a higher level of abstraction on top of

common concepts like DOM manipulation and XHR communication. You aren't limited to pre­

canned widgets either. Anything you can do with the browser's DOM and JavaScript can be done

in GWT, including interacting with hand-written JavaScript.

Debug

Y°u can debug AJAX applications in your favorite IDE just like you would a desktop

aPPhcation, and in your favorite browser just like you would if you were coding JavaScript. The

GWT developer plugin spans the gap between Java bytecode in the debugger and the browser's

JavaScript. Thanks to the GWT developer plugin, there’s no compiling of code to JavaScript to

Vlew in the browser. You can use the sa'me edit-refresh-view cycle you're used to with

38 | P a ge 0 3 - J a n - 12

debugger
browser uitself, you can use tools like Firebug and Inspector as you code in Java. GWT enables

Optimize
Google Web Toolkit contains two powerful tools for creating optimized web applications. The

GWT compiler performs comprehensive optimizations across your codebase — in-lining

methods, removing dead code, optimizing strings, and more. By setting split-points in the code,

it can also segment your download into multiple JavaScript fragments, splitting up large

applications for faster startup time. Performance bottlenecks aren't limited to JavaScript. Browser

layout and CSS often behave in strange ways that are hard to diagnose. Speed Tracer is a new

Chrome Extension in Google Web Toolkit that enables you to diagnose performance problems in

the browser (Google 2011 a).

3.4.1.4 Google Accounts

Google Accounts is a centralized user authentication management solution. It allows access to

various Google services through a common authentication model.

Third-party applications often require limited access to a user's Google Account for certain types

of activity. To ensure that user data is not abused, all requests for access must be approved by the

account holder. Access control has two components, authentication and authorization.

Authentication services allow users to sign in to your application using a Google Account. Some

services also allow users to sign in using another account, such as an OpenID login.

Authorization services let users provide your application with access to the data they have stored

in Google applications. Google takes privacy seriously, and any application that requires access

t0 a user's data must be authorized by the user.Authentication and authorization services are

often referred to collectively as auth (Google, 201 lb).

•*•4.1.5 Google AppEngine Datastore
TV»

e App Engine datastore is a schema less object data store, with a query engine and atomic

transactions. The Java SDK includes implementations of the Java Data Objects (JDO) and Java

Insistence API (JPA) interfaces, as well as a low-level datastore API.

391 P a g e 0 3 - J a n - 1 2

e jjjgh Replication datastore provides an even more reliable storage solution with no planned

0vvntime’ higher availability of reads and writes, eventual consistency for all queries except

ceStor queries, and strong consistency for reads and ancestor queries (Google, 201 lc).

App Engine provides two different data storage options differentiated by their availability and

consistency guarantees:

Master/Slave datastore: Uses a master-slave replication system, which asynchronously

replicates data as you write it to a physical data center. Since only one data center is the master

for writing at any given time, this option offers strong consistency for all reads and queries, at

the cost of periods of temporary unavailability during data center issues or planned downtime.

This option also offers the lowest storage and CPU costs for storing data.

High Replication datastore: Data is replicated across data centers using a system based on the

Paxos algorithm. High Replication provides very high availability for reads and writes (at the

cost of higher-latency writes). Most queries are eventually consistent. Storage quota and CPU

costs are approximately three times those in Master/Slave option.

The App Engine datastore saves data objects, known as entities. An entity has one or more

properties, named values of one of several supported data types. For instance, a property can be a

string, an integer, or even a reference to another entity.

The datastore can execute multiple operations in a single transaction. By definition, a transaction

cannot succeed unless every operation in the transaction succeeds. If any of the operations fail,

the transaction is automatically rolled back. This is especially useful for distributed web

applications, where multiple users may be accessing or manipulating the same data at the same

time. Unlike traditional databases, the datastore uses a distributed architecture to automatically

manage scaling to very large data sets. It is very different from a traditional relational database in

how it describes relationships between data objects. Two entities of the same kind can have

ditterent properties. Different entities can have properties with the same name, but different

'alue types. While the datastore interface has many of the same features o f traditional databases,

datastore's unique characteristics imply a different way of designing and managing data to

take advantage of the ability to scale automatically (Google, 201 lc).

40 |p a g e 0 3 - J a n - 12

r

^ pengine Datastore primarily uses keys to manage relationships in the data, which is

repres:ented by entities. This can be best represented in a tree form:

Figure 3.4.2: Apps Datastore Entity view

3.4.1.6 JavaScript Object Notation (JSON)

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for

humans to read and write, and for machines to parse and generate. It is based on a subset of the

JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON is

a text format that is completely language independent but uses conventions that are familiar to

programmers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python,

and many others. These properties make JSON an ideal data-interchange language.

JSON is built on two structures:

• A collection of name/value pairs. In various languages, this is realized as an object,

record, struct, dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or

sequence.

These are universal data structures. Virtually all modem programming languages support them in

one form or another. It makes serise that a data format that is interchangeable with programming

languages also be based on these structures,

h* JSON, they take on these forms:

4 1 | P a ge 03 - J a n - 1 2

r

object is an unordered set of name/value pairs. An object begins with { (left brace) and ends

with } (ng*11 brace)‘ Each name is followed by ; (colon) and the name/value pairs are separated by

((comma).

An array is an ordered collection of values. An array begins with [(left bracket) and ends with

] (right bracket). Values are separated by , (comma).

Figure 3.4.4: JSON array (JSON, 2010)

A value can be a string in double quotes, or a number, or true or false or null, or an object or an

array. These structures can be nested.

value

U I string 1____________ 1 ̂ 1
1

1 1
1

' 1
1
1

if

42| P a ge 0 3 - J a n - 1 2

3.4.5: JSON value (JSON, 2010)

r

figure

\ string is a sequence of zero or more Unicode characters, wrapped in double quotes, using

backslash escapes. A character is represented as a single character string. A string is very much

like a C or Java string.

Figure 3.4.6: JSON String (JSON, 2010)

A number is very much like a C or Java number, except that the octal and hexadecimal formats

are not used.

^31 p a g e 0 3 - J a n - 12

number

ij digit J

Figure 3.4.7: JSON Number (JSON, 2010)

Whitespace can be inserted between any pair of tokens. Excepting a few encoding details, that

completely describe the language (JSON, 2010)

3.4.1.7 DOJO Toolkit

Doio is an open-source JavaScript toolkit that is used for developing web applications.

Components in the Dojo Toolkit are written in JavaScript, HTML, and CSS. These components

are aimed to be encapsulated and reusable components for widgets.

The Dojo Toolkit is divided into three main components: the Dojo core, Dijit, and Dojox. Its

responsibilities include manipulating the Cascading Style Sheets (CSS), supporting animation

features and drag-and-drop functionality, among others.

Dijit is Dojo's widget library. Some widgets that it offers include menus, trees, tabs, closable

labs, sliding tab containers, and other different kinds of containers which are useful for

developing the user interface of an IDE.

• f

3-4.1.8 CodeMirror Editor Library

CodeMirror is a JavaScript library'that can be used to create a relatively pleasant editor interface

f°r code-like content. These include computer programs, HTML markup, and similar. The

44 I P a g e 0 3 - J a n - 12

ry supports plugin architecture by use of modes, which provide a standard architecture for

upport incorporating new languages. This is key to the implementation of a plugin architecture

(or cloud based IDE.

The library allows for customizations and extensions to fit the situation at hand.

}4.2 High level architecture

The system is fundamentally structured in a 3 tier setup, with end user interface (project and file

manipulation), application server (http servlet, code compiler, version control and file

management) and Google services backend (database, user authentication service, deployment)

as shown below

Icecloud
Application
Developers

File
managemenIcecloud

http Servlet
Plugin

architecture

Icecloud
Application

ilopersGoogle User
Authenticati

on

Icecloud
http

Servlet

Icecloud
http

Servlet

Code
compiler

Google App
Datastore

Version
control

Icecloud
Claud Architecture

Icecloud
Application
Developej

figure 3.4.8: High level prototype structure

3-4.3 Architectural Design

This section provides the complete architecture of the cloud based IDE prototype. The

architecture assumes implementation on Google App engine and draws the design from the

conceptual design covered in section 3.2.
4'

451 p a g e 03 - J a n - 12

Icecloud IDE Core Architecture

Figure 3.4.9: Prototype architectural design

3.4.3.1 User interface

The user interface is strives to support the natural feel of desktop IDE. This is realized using the

DOJO toolkit and Code Mirror libraries to realize a powerful set of JavaScript based

asynchronous source code file processing. This allows for loading of file content and saving

changes without having to refresh the page. Syntax highlighting and code completion are also

handled from the client side using an extensible plugin model. This is best represented by the

diagram below:

^ I P a g e 0 3 - J a n - 1 2

f a l © |ocalhost8888/icecode.j sp tl

Figure 3.4.10: Prototype user interface

The main components of the user interface are explained below:

3.43.2 User Login

User login is fully managed by Google’s common user management auth service. This

eliminates the security concerns most cloud based users would have about the security of their

work. In development mode, this is simulated by a basic user authentication module that mimics

how the system works with real integration to Google user authentication service. On the hosted

environment, Google user management service is responsible for session and all user related

details taking the burden off the core system. This creates a feeling of security and familiarity

among millions of existing Google service customers.

S ig n in Ooogle
E m a il

■ I T - I
P a s s w o r d

Sign in

Cant access your account? 4y

figure 3.4.11: Development mode user authentication

47 I P a g e 0 3 - J a n - 12

34 3-3 Projects management tree

fljjs user interface widget comprises of a dynamically generated tree which is implemented

using a Dojo Tree component. Data is populated in real time from the Appengine Datastore

representing user’s project structure and file system. The tree adapts the famous Explorer look to

give the user a feel of easy navigation and a high interactive web client model.

My projects
. (g, Projects

- & Main
g] test.js
0 test2.css

- & testUserFolder
0 gachugu java
0 madfile.java

- S subMain
0 test.css
0 test js

0 test2.js
0 testfile js

0 testing.java
0 testingmain.java
0 testingreal.js

♦ D test
figure 3.4.12: Project tree

The tree allows for a visual representation of the virtual file system in the familiar explorer style.

Users can easily switch between projects without losing time and crowding the working area.

The interface also allows access to the file being edited which remains highlighted to aid in

active file recognition.

Tree data is generated from the backend servlet once a user is authenticated. All the projects

Under that user are loaded on to the project tree using a JSON object, which is generated

^ I P a g e 03 - J a n - 12

r

dynamically from the java http servlet handling the client requests. Sample code is as shown

below:
\1ain function handling http get options to determine the request being serviced. For projects,

command option L and C are used.

else if ((option.equals("L"))|| (option.equals(" C ")))//load projects tree L or Cdmbo C
(List<Entity> projects - getProjects(user);

respdata = loadProjects(projects,option);
)//send the response data back - Either code value or projects JSON object
log.info("JSON class returned for processing:\n"+respdata);
resp.getWriter().println(respdata);

A method getProjects(User user) that takes in a Google User object and returns all the projects

under that user in an array list of Entity objects. Each entity contains project meta data.

private List<Entity> getProjects(User user){
// view of the projects belonging the user
Query query = new Query("Projects", getWorkspaceKey(user));
query.addSort("Owner",SortDirection.ASCENDING) ;
query.addSort("projectName",SortDirection.ASCENDING);
query.addFilter("Owner", Query.FilterOperator.EQUAL, user);

DatastoreService datastore = DatastoreServiceFactory.getDatastoreService();
return datastore.prepare(query).asList(FetchOptions.Builder.vithLimit(5));

}

And finally a method loadProjects takes in the entity and loads the files under that project. Load

option parameter is used to separate projects loaded for a lookup combo used in file creation and

the project tree.

49 I P a g e 0 3 - J a n - 2

r

Pr
ivate String loadProjects(List<Entity> projects. String loadOption)

S t r i n g respdata - //this will contain our JSON data
int se<J “ 0;
//return the list of files in JSON format for DOJO tree loading
//initialize the JSON structure
respdata = "(\nidentifier:'id',\nlabel:'fname1,\nitems:[\n";
//get all projects
for (Entity project : projects) <

String projectName = (String) project.getProperty("projectName");
String projectType - (String) project.getProperty("projectType");
if (seq>0) respdata +=
respdata += String.format("{id:1%s *,fname:1%s1,ftype:1%s1, type:1project',\nchildren:(",

projectName, projectName, projectType);
//load the files under the project
if (loadOption.equals("C"))

respdata += "]\n}“; // ignore child references
else

respdata +” loadProjectFiles(project);
seq++;

}
return respdata + "\n)\n}";

>

The resulting JSON objects is shown below:

identifier:'id',
label: ' fname ',
items: [
(id: 'Icepad',fname:'Icepad',ftype:'Web based notepad',type:'project',
children:[preference:'Icepad.datamodel.sql'},preference:'Icepad.uMain.java'}]},
(id:'Icepad.datamodel.sql',fname:'datamodel.sql',filetype:'sql',type:'file'},
{id:'Icepad.uMain.java',fname:'uMain.java',filetype:'java',type:'file'},
{id:'Main',fname:'Main',ftype:'Testing main proj ect',type:'project',
children:[{_reference:'Main.testmain.j s'}]},
{id:'Main.testmain.js',fname:'testmain.js',filetype:'js',type:'file'}
1
H
Figure 3.4.13: Dynamically generated JSON project tree object

On the client side, this structure is processed and loaded into a DOJO widget using a JavaScript

function. The code is shown below:

<

I P a g e 03 - J a n - 12

//load projects and contained file in a tree
sanction loadProjects()
{ //build the projects data model

var treeModel = new dijit.tree.ForestStoreModel({
store: store,
query: (

"type": "project"
>,
rootld: "root",
rootLabel: "Projects",
childrenAttrs: ["children"]

)>;
//create the tree in place of user project
var projtree = new dijit.Tree({

model: treeModel,
onClick:function(item){

var ufile = store.getValue(item, "id");
var ftype = store.getValue(item, "filetype");
umode = loadFileMode(ftype);
//umode = "application/x-httpd-php";

loadFile(ufile, umode); }
},"prtree");

//use projtee as required
)

3.4.3.4 Main Menu and Toolbar

The system maintains a menu that mimics desktop based IDEs, with an accompanying toolbar.

This is implemented using a Dojo Menu and Dojo Toolbar respectively, both of which are fully

maintained from client side JavaScript. A sample of each is shown below:

Main menu (menu.js), Tool Bar (toolbar.js)

51 | P a g e 0 3 - J a n - 12

y/Create the menu bar here

var pMenuBar;
dojo.addOnLoad(function() {

pMenuBar = new di j it.MenuBar({});

var pSubMenu = new dijit.Menu(O) ;
pSubMenu.addChild(new dijit.Menultem({

label: "New Project",
onClick: function(){showProjectDialogO ;
}

>)) ;
pSubMenu.addChild(new dijit.Menultem({

label: "New File",
onClick: function(){

editor.setValue("");
showFileDialog();

}
>>>;

//Icecloud toolbar
• » /VW vW W AW A

var toolbar;
dojo.addOnLoad(function() {

toolbar = new dijit.Toolbar ({},
"toolbar");
//Add toolbar actions - New projectM V vW lV A W A

toolbar.addChild(new dijit.form.Button({
label: "New Project",
showLabel: false,
iconClass: "dijitlcon dijitlconNewTask",
onClick: function(){showProjectDialog();}

>>);
//New file
toolbar.addChild(new dij it.form.Button({

label: "New File",
showLabel: false,
iconClass: "dijitlcon dijitlconFile",
onClick: function(){

editor.setValue("");
showFileDialog();}

>>>;

3.43.5 Code Editor

The code editor forms the core'of the IDE. This enables users to edit their source code and

benefit from other IDE features, notably code completion and syntax highlighting. The editor is

implemented using Code Mirror library, which has default editor with syntax highlighting and

line numbering. The editor is purely coded in JavaScript and can be extended as required to

52 | P a g e 03 - J a n - 12

accommodate any function that can be implemented on JavaScript. Cascading style sheets are

also used to ensure the editor properties meet user expectations and support for multiple editing

^emes. These include search highlighting, active line marker, bracket matching, code identing

and dynamic change of syntax highlighting mode depending on the file loaded.

Pile Edit Themes

(J i | X [a | y i | i | < ^ ^ > | print
1 package dojopack;
2 import java.io.BufferedReader;
4 import java.io.File;
5 import java.io.FileReader;
6 import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;

9
1C public class FileDao {
11
12
13
14
15
16
17
18
19
2 ‘
21
22
23
24
25
26
27
28

public int getCount() {
int count = 0;
// L o a d the file with the counter
FileReader fileReader - null;
BufferedReader bufferedReader = null;
PrintWriter writer = null ;
try {

File f = new File("FileCounter.initial");
if (it.exists()) {f.createNewFile();

writer = new PrintWriter(new FileWriter(f));
writer.println(0);

}if (writer !“null){
writer.close();

>1

Figure 3.4.14: Prototype (Icecloud) Editor

3.4.3.6 Database structure

Icecloud IDE runs on Appengine Datastore, which is structured to handle fast CRUD (Create,

Retrieve, Update and Delete) operations. The entities are maintained in a tree view, with all the

entities falling under the user parent, represented by the workspace key. The actual user entity is

managed by Google under the common user authentication model.

S3 | P a g e 03 - J a n - 12

Icecloud Database Structure

User W orkspace

U s e rK e y
Usernam e
Email
Password

1 *

1 : *

« W o rk s p a c e K e y : K e y
f k :U s e r

g e tN ic k n a m e (U s e r) : String
g e tE m a il(U s e r) : String
g e tU s e r id (U s e r) : String

g e tP ro je c ts (w o rk sp a c e k e y) :
b st< En tlty>
get

Projects

P ro je c tK e y
fk: W o rk s p a c e K e y
Project N am e:Strm g
Pro jectType :S tr|ng
Last Modified: Date

c re a te P ro je c t fn a m e , typ e)
d e le te P ro je c t (u s e r , nam e)
g e tF ile s (K e y) : Li$t<Entity>

1 :* ProjectFiles

F i le K e y
f k : P r o je c tK e y
FileN am e: String
fk :F i le T y p e :S t r in g
LastM odified: Date
Content :T e x t

1:1

c re a te F ile (n a m e , pro ject)
u p d a te F ile (n a m e , pro ject)
d e le te F ile fn a m e , p ro ject)
g e tF i le (K e y) : L ist< En tity>

FileTypes

T y p e K e y
L a b e h S t r in g
M ode:String

g e tM o d e (f ty p e)

Figure 3.4.15: Prototype database architecture

File types are maintained as a JSON object on the client side for ease of plugin management.

This contains three elements with different purposes for each.

1. Name: Used for file creation as the user visible label

2. ID: Internally used for file and mode management

3. Mode: Used for syntax highlighting and plugin management in the editor

The structure is as shown below:

54 | p a g e 0 3 - J a n - 12

identifier:"id",
label: "name",
items: [

{name:"Javascript",id:"js",mode:"javascript">,
{name:"CSS",id:"css",mode:"text/css"},
{name:"PL/SQL",id:"sql",mode:"text/x-plsql"),
{name:"XML",id:"xml",mode:"application/xml"},
{name:"HTML",id:"html",mode:"text/html"),
{name:"PHP",id:"php",mode:"application/x-httpd-php">,
{name:"Java",id:"java",mode:"text/x-java">,
{name:"C++",id:"cpp",mode:"text/x-c++src"},
{name:"Python",id:"py",mode:"text/x-python">

]
>1

Figure 3.4.16: File types JSON object

3.4.3.7 Servlet Functions

The system uses the services of a java servlet that handles standard http get and post. These are

implemented to handle Asynchronous request issued using XMLHttpRequest (XHR) functions,

XHRGet and XHRPost. These enable a part of the web page to handle a standard http Post or a

Get without refreshing the page. The respective commands are handled by the servlet as standard

commands, with parameters differentiating the requests. The key user functions handled by the

servlet are:

1. Retrieving user projects based on the logged in user (User object)

2. Retrieving a project files for each user project using project key

3. Retrieving file content for the selected source code file based on file key

4. Saving a new project for a specific user

5. Saving a new source code file under a specific project

6. Version control for the source code files

7. Template code generation for new files with predefined templates based on development

language

8. Deleting a project based on a project key

9. Deleting a file based on a file key.

10. Loading user settings for the workspace for the given user

11. Virtual file management and conversion to standard file system for download

SS | p a g e 0 3 - J a n - 12

Sarnple code for the method handling http Post and an xhrGet JavaScript functions are shown

below:

313
3H
315
•SI*"
317
318
319
320
321
322
323
321
325
326
327
328
329
330
331
332
333
331
335
336
337
338

/** Servlet methods for handling standard/isjax post and get form commands**/
//Save the code or project to ajaBSBSjae gatj>s^
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws IOException {
//We implement one entity group user using AppsDatastore
String postOption * req.getParameter("postOption");
///Post option P: Project, F: File U: Dser Settings
if (postOption.equals{"P")) {

String projectName « req.getParameter("diname");
String projectlype - req.getParameter("ditype"):

Key key - saveProject(projectName, projectType);
resp.setContentType("text");
String keystring - KeyFactory.keyroString(key);

resp.getWriter().println(keystring);
)
else if (postOption.equals("F")){

String fileKey “ req.getParameter("fileKey");
String fileContent m req.getParameter("code");
if (fileKey !- null)

updateFile(fileKey, fileContent);
else {

String fileName *= req.getParemeter ("filename") ;
String fileType = req.getParameter("filetype");

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

String projectName - req.getParameter("projectName");
String parentFolder “ req.getParameter("folderKey");
//if content is null load the template file and save
if ((fileContent.trim)).length() ~ 0)){

//ts (fileType.equals!gnoreCase("java") | | fileType.equalsIgnoreCase ("jgĵ ")
FileTemplate flTemplate = new FileTemplate(fileName);
fileContent = flTemplate.loadTemplate();

>
saveFile(projectName, fileName, fileType, parentFolder, fileContent);
//load file template as defined
if (fileContent.length() > 0){

resp.setContentType("text");
resp.getWriter().println(fileContent);

}
)

}
else if (postOption.equals("FL"))(

String folderName " req.getParameter("folderName");
String projectName *= req.getParameter ("projectName");
String parentFolder ■* req.getParameter ("folderKey");

saveFolder(projectName, folderName, parentFolder);
}

}

56 | P a g e 0 3 - J a n - 1 2

496
497''
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

//load specific files
function
<

IcadFile (fname, fileKey, umode)

//AJAX file retrieval on demand to reduce the load on the browser
var xhrArgs = {

url: "/save?p=F",
//timeout:2000,
handleAs: "text",
content:{fkey:fileKey},
preventCache: true

>
//Call the asynchronous xhrPost
var deferred = dojo.xhrGet(xhrArgs);
//Now add the callbacks
deferred.addCallback(function(data) {

//load the file elements appropriately
editor.setValue(data);
//load the name in the filename box
fileAttr.filename = fname.substring(fname.indexOf(1)+l);
fileAttr.fileproject = fname.substring(0,fname.indexOf('.'));
fileAttr.filetype - fname.substring(fname.lastlndexOf('.1)+1);
//if (!fileAttr.filetype “ 1 js')

editor.setOption("mode", umode);
fileAttr.modified = false;
fileAttr.existing = true;

>>;
deferred.addErrback(function(error) {

targetNode.innerHTML = "Error loading file: " + error;
>);

)

The above JavaScript function calls a servlet method that responds with the source code file

contents from Appengine Datastore.

42 //Load the file contents given the file key
43- public static String loadFileKey(String fileKeyStr){
44 DatastoreService datastore = DatastoreServiceFactory.getDatastoreService();
45 Key fileKey m KeyFactory.stringroKey(fileKeyStr) ;
46 //load the file contents
47 try {
48 Entity pFile = datastore.get(fileKey);
49 return ((Text) pFile.getProperty("fileContent")).getValue();
50)
51 catch(EntityNotFoundException e){
52 log.info("Entity not found: " + e.getMessage());
53 return "";
54 ,
55 } - ,
56 }

<

$7 | P a g e 0 3 - J a n - 1 2

goth xhrGet and xhrPost work under the same premise, and we explore xhrGet for simplicity.

The Dojo xhrGet() function is the cornerstone function of AJAX development. Its purpose is to

provide an easy to use and consistent interface to making asynchronous calls to retrieve data.

This API is an abstraction atop the browser’s XMLHttpRequest object and makes usage the same

regardless of which browser your application is running on. This makes it much simpler to write

cross-browser compatible AJAX style applications. This function, in essence, implements

making an HTTP ‘GET’ call.

dojo.xhrGet (and other functions in the same line: dojo.xhrPost, dojo.xhrDelete, dojo.xhrPut), are

bound by the ‘same domain’ security policy of the browser. This means that they can only

establish a connection back to the same server that served the HTML page. If you wish to use

this API to talk to servers other than the one that originated your page, then you will have to use

a proxy on your originating server and have it forward the requests.

The xhrGet() function takes an object as its parameter. This object defines how the xhrGet

should operate. Minimally, this object must contain a ‘url’ attribute so that the function knows

where to send the request. Having just a ‘url’ attribute isn’t the most useful approach to calling

the function, though. You can also embed information such as how to handle the return data (As

XML, JSON, or text), and what to do when it completes. It also accepts other useful parameters

such as ‘preventCache’, and ‘sync’, which alter its behavior slightly (dojo, 2011).

58 | P a g e 0 3 - J a n - 1 2

3.4.4 Functional Testing

Functional tests are carried out to ensure that results from system usage meet the set objectives and requirements. The same tests are

used in refining the design which in turn creates another loop of testing. This aims at having the final product conforming to the

system specifications and requirements.

Specific test cases are used for functionality testing, mapping each of the requirements to a test case. Below is a summary of the actual

data used in functional testing, which can be mapped to a quality assurance system. Mercury Quality Center by HP. This allows

multiple users to execute the tests and fill in their results as well as track any defects raised.Test cases used are as shown below:

Subject Test Case Objective
•

Step
Name

Description Expected Results Actual Results Status

Accessibility TC-001 IDE
Accessibility

Test cloud
system access
across multiple
browsers

Step 1 Open Icecloud
IDE from location
http://icecloudde
v.appspot.com/

IDE opens and requests the
user to login to use. If user is
logged into any Google
account, user is automatically
granted access to IDE

IDE opens and requests the
user to login to use. If user is
logged into any Google
account, user is automatically
granted access to IDE

Pass

Accessibility TC-001 IDE
Accessibility

Test cloud
system access
across multiple
browsers

Step 2 Click on the Sign
In link to sign in
to Icecloud IDE.
The system uses
Google account
management
services.

IDE redirects to Googles user
accounts manager for
authentication. User is
requested to allow Icecloud
access to account
information. Once logged in,
user accesses the IDE
interface

IDE redirects to Googles user
accounts manager for
authentication. User is
requested to allow Icecloud
access to account
information. Once logged in,
user accesses the IDE
interface

Pass

Accessibility TC-001 IDE
Accessibility

Test cloud
system access
across multiple
browsers

Step 3 Run steps 1 and
two on Mozilla,
Google chrome
and Internet
explorer

The IDE has a similar
interface across the different
browsers mentioned.

The IDE has a similar
interface across the different
browsers mentioned.

Pass

59 | P a g e 0 3 - .1 a n - 1 2

http://icecloudde

j Subject | Test Case j Objective Step
Name

Description Expected Results ^Actual Results \ Status

Accessibility TC-001 IDE
Accessibility

Test cloud
system access
across multiple
browsers

Step 4 Click on signout The browser redirects to
google accounts URL and
shortly redirects back to the
home screen for Icecloud IDE

The browser redirects to
google accounts URL and
shortly redirects back to the
home screen for Icecloud IDE

Pass

IDE
Functionality

TC-001
Project
Management

Test how the
IDE handles
different project
functions

Step 1 From the toolbar
or main menu,
click on New
project.

New project dialogue is
displayed

New project dialogue is
displayed

Pass

IDE
Functionality -A

TC-001
Project
Management

Test how the
IDE handles
different project
functions

Step 2 Without click on
OK button
without entering
the project name

Project dialogue highlights
the required fields - Project
name

Project dialogue highlights
the required fields - Project
name

Pass

IDE
Functionality

TC-001
Project
Management

Test how the
IDE handles
different project
functions

Step 3 Enter the project
name and
description and
click on the OK
button

New project is created
successfully and information
shown on the status bar at
the bottom of the editor
window. The new project is
added to the project tree.

New project is created
successfully and information
shown on the status bar at
the bottom of the editor
window. The new project is
added to the project tree.

Pass

IDE
Functionality

TC-001
Project
Management

Test how the
IDE handles
different project
functions

Step 4 Using a different
user account,
create a new
project with a
different name

The new project is reflected
under the current user.
Previous projects under
different user are not shown.

The new project is reflected
under the current user.
Previous projects under
different user are not shown.

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 1 On the main
menu or the
toolbar, click on
the New File.

A new file dialogue is
displayed

A new file dialogue is
displayed

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 2 Click on the OK
button to save
the file

Dialog marks the required
fields with a red ! Mark
indicating a required field.

Dialog marks the required
fields with a red ! Mark
indicating a required field.

Pass

60 | P a g e 0 3 - J a n - 1 2

Subject Test Case Objective Step
Name

Description Expected Results | Actual Results ^Status

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 3 Add the file
details and
specify file type
JavaScript
(default), then
click OK

The file is created, loaded
with default code if defined
and saved. The status bar
displays file save message the
file is added under the right
project.

The file is created, loaded
with default code if defined
and saved. The status bar
displays file save message the
file is added under the right
project.

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 4 Start typing on
the editor, or
copy paste some
JavaScript code
on to the editor

The editor performs syntax
highlighting on the code with
key words recognition

The editor performs syntax
highlighting on the code with
key words recognition

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 5 Add a new line
on the editor and
press CTRL+
Space

The editor pops an auto
complete box for code
completion

The editor pops an auto
complete box for code
completion

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 6 Make several
changes to the
editor and click
save on the
toolbar.

File is saved without affecting
the editor and a message
displayed on the toolbar.

File is saved without affecting
the editor and a message
displayed on the toolbar.

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 7 Create a file of
any other of the
supported
formats (PHP,
Java, html,
PL/SQL etc)

The editor changes syntax
highliting to reflect the new
language.

The editor changes syntax
highliting to reflect the new
language.

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 8 Add different
files to the
different projects

Each file is mapped correctly
on the project tree.

Each file is mapped correctly
on the project tree.

Pass

61 | P a g e 0 3 - J a n - 1 2

Subject Test Case Objective Step
Name

Description Expected Results \ Actual Results ^Status

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step 9 Click on the
various files
under different
projects

The selected file is loaded in
the editor with the
appropriate syntax
highlighting

The selected file is loaded in
the editor with the
appropriate syntax
highlighting

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step
10

On the main
menu or the
toolbar, click on
the Save As icon.

File dialog is displayed with
the current file details
populated

File dialog is displayed with
the current file details
populated

Pass

IDE
Functionality "

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step
11

Type a different
file name and
click on OK

The new file is saved
appropriately

The new file is saved
appropriately

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step
12

Make some
changes on the
file and test undo
and redo
buttons.

Undo and redo operations
are reflected on the editor

Undo and redo operations
are reflected on the editor

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step
13

Type some text
to search in the
search box on
the toolbox

The found text is highlighted
in yellow for all instances of
the text.

The found text is highlighted
in yellow for all instances of
the text.

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step
14

On the Themes
menu, click on
the various
themes.

The editor changes syntax
mode and background color
differently for the various
modes on the options.

The editor changes syntax
mode and background color
differently for the various
modes on the options.

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step
15

Click on delete
file on the
toolbar or main
menu

A confirmation to delete the
file appears with the
[project.filename] format.

A confirmation to delete the
file appears with the
[project.filename] format.

Pass

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source

Step
16

Click on Cancel
button

The dialog closes without
affecting the file

The dialog closes without
affecting the file

Pass

62 | P a g e 0 3 - J a n - 1 2

code files

IDE
Functionality

TC-002 File
Management

Test how the
IDE handles
different source
code files

Step
17

Click on OK
button

The file is deleted and text on
the editor cleared.

The file is deleted and text on
the editor cleared.

Pass

63 | P a g e 03 - J a n - 1 2

CHAPTER 4: R ESULTS AND DISCU SSIO NS

4.1 Functional Tests

Functional tests were carried out by members of the focus group who also participated in the

analysis and design interviews. The detailed listing of test results is covered in section 3.44 under

functional testing. Tests conducted only related to the functional requirements covered by the

prototype and are not meant to reflect features expected from commercial products implementing

the proposed design.

4.2 Survey details

Survey monkey is a commercial web based survey tool that allows for design and sharing of

online survey. This tool came in handy as it offers free limited survey design and data collection.

The survey used for this research was code named Icecloud IDE Survey for identification

purposes only and was availed on http://www.survevmonkev.eom/s/57H5NP3. The survey was

open for the entire duration of the project.

.L

As at 13 September 2011, the results were as detailed below:

Icecloud IDE Survey
Education e<m Design Survey Collect Responses

Below is a list of the collectors you are currently using to collect responses To view the details or change the properties of an existing collector, just dick the
name To collect more responses for this suivey from a different group of people, dick 'Add New Collector

Collector Name (Method) Status Responses Last Response

Web Link (Web Link) • OPEN 16 responses September 12,2011 1:05 AM

64 | P a g e 0 3 - J a n - 1 2

http://www.survevmonkev.eom/s/57H5NP3

Response Summary
PAGE: ICECLOUD IDE USER REVIEW

Total Started Survey: 16
Total Completed Survey: 16 (100%)

1 . Do you use a Integrated Development Environment(IDE)for Rapid
Application Development(RAD)?

Create Chart f Download

Response Response
Percent Count

14

H i 12.5% 2

answered question 16

skipped question 0

2. Do you use any software frameworks for enterprise development? £ Create Chart ^ Download

Response Response
Percent Count

15

No ■ 6.3% 1

answered question 16

skipped question 0

65 | P a g e 03 - J a n - 12

r

3 . Are there any situations that call for traditional application Create Chart t Download
development methodologies (non RAD)?

Response
Percent

Response
Count

Yds 15

No ■ 6.3% 1

answered question 16

skipped question 0

4. Would you consider using a cloud based development environment? t o Create Chart t Download

Response
Percent

Response
Count

Yes 12

No ■ ■ ■ 25.0% 4

answered question 16

skipped question 0

5 . What would be your concerns in using cloud based development to Create Chart + Download
environment?

Response Response
Percent Count

None

Data Security

Connectivity issu es

Lo ss of control

System Availability

Limited features

■ 67% 1

■■■■■■■■■■■■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

i h b h h

■ ■ ■ ■ 26.7% 4

Other (please specify) 4
Show Responses

answered question 15

skipped question 1

66 | P a g e 0 3 - J a n - l 2

6. W h a t f e a tu r e s o f a n IDE w o u ld you w a n t to s e e in a c lo u d b a s e d IDE? Create Chart ♦ Download

Response Response
Percent Count

File management ■ ■ ■ ■ ■ ■ ■ ! ■ ■ ■ ■ 73 .3 *

Project management 66.7% 10

Task management 60 0% 9

Multiuser environment 73.3% 11

Plugin management 60.0% 9

Visual design 66.7% 10

Codegeneration 66.7% 10

Code completion 66.7% 10

Other (please specify) 5
Show Responses

answered question 15

skipped question 1

f

67 | P a g e 03 - J a n - l 2

7. W h a t s o f tw a re f ra m e w o rk s w o u ld yo u w a n t im p le m e n te d in t h e c lo u d b a s e d IDE? ♦ Download

Response
Count

Hide Responses 16

Responses (16) Text Analysis My Categories

GOLD FEATURE: Text Analysis allows you to view frequently used w ords and ph rases,
categorize resp onses and turn open-ended text into data you can realty use . To use Text
Analysis, upgrade to a GOLD or PLATINUM plan.

Learn More Upgrade »

Showing 16 text responses No responses selected

restful/soap web services integration
9/12/2011 11:05 AM View Responses

*

Android development enviroment £

9/12/2011 8:57 AM View Responses

eclipse
9/12/2011 8:17 Aid View Responses

Rapid Application development
8/24/2011 10:12 AM View Responses

JAVA
8/23/2011 9:32 AM View Responses

AJAX
8/19/2011 9 59 AM View Responses

answ ered question

skipped question

16

0

8. Do you have any plans to develop a cloud based application -
Software as a service!SaaS)?

Create Chart ♦ Download

Response Response
Percent Count

13

H U 188% 3

answered question 16

skipped question 0

68 | P a g e 03 - J a n - 1 2

9. What current tools would you consider for cloud application development? f Download

Hide Responses

Response
Count

16

Responses (16) Text Analysis My Categories f 0

GOLD FEATURE: Text Analysis allows you to view frequently used words and ph rases,
categorize resp onses and turn open-ended text into data you can really use . To use Text
Analysis, upgrade to a GOLD or PLATINUM plan.

Showing 16 text responses

Mysql java ssh ftp tomcat Webserver hard disk space
9/12/2011 11:05 AM View Responses

Learn More Upgrade »

No responses selected

Mobile applications
9/12/2011 8:57 AM View Responses

sim ple apps
9/12/2011 8:17 AM View Responses

GWT
8/24/2011 10:12 AM View Responses

n/a
8/23/2011 9:32 AM View Responses

IBM Application Development Services for Cloud
8/19/2011 9:59 AM View Responses

answered question 16

skipped question 0

10. Given similar features on the cloud development platform as your C l Create Chart ♦ Download
computer based development environment, would you switch fully to a cloud based development
environment?

Response
Percent

Response
Count

Yes ■ ■ m m 11

No | 31.3% 5

answered question 16

skipped question 0
f

69 | P a g e 0 3 - J a n - 12

4.3 Summary of observations

prom the survey and oral discussions with interested reviewers drawn from the focus group, it

was evident that there is high need to have commercial production version of a cloud based IDE.

Users interviewed expressed the desire to carry out their development with the same flexibility as

they access their favorite internet mail.

Key concern for using a cloud based development environments (IDE) was connectivity which

may limit access to their work when internet services are not accessible. However, with the

increasing internet providers and reliability of cloud vendors like Google, potential users

expressed some level of comfort in migrating to cloud based development environments. A

comfort level also lies in the fact that the users can download their projects and continue using

any editor that supports the same features as an on premise development environment.

The key functionalities expected from the cloud based IDEs match the common on premise

development environments, with speed to deliver being the key driver. Key differentiator from

the on-premise versions is the ability to have multiple users work on the same project seamlessly

with fluent collaboration features. A close comparison to Google Docs, in which users can edit

the same document with teams from remote machines as if they were doing it on the same

machine but with access to specific sections of the document, kept coming up.

With the need to develop Software as a service (SaaS) applications growing every day, Cloud

IDEs are key drivers to the shift from on premise application developments as well as on premise

applications to cloud based offerings. Current developments in the cloud world are more aligned

to using a cloud based IDE as opposed to on premise development environment as this makes it

seamless to develop, deploy and apply patches without being tied to a static development

platform. The solution offers a zero footprint installation which is ideal for on-the move

application development.

70 | P a g e 0 3 - J a n - 12

CH APTER 5: C O N C LU SIO N S AND FUTURE W O R K

5.1 Conclusion

Cloud computing as a concept has matured with SaaS and IaaS layers being the most widely

used. Platform as a Service is gaining footing based on the stability of the lower stack

(Infrastructure as a Service) and the demand for the higher stack (Software as a Service).

Application development on the cloud based frameworks is the next item on developers mind

and it is highly expected that cloud vendors will put a lot of investments on this development.

The architecture highlighted here is expected to apply for commercial developments with some

level of commercial and high usage considerations. Current application developers are very

ready to start developing on the cloud as long as they feel it will make application development

faster and seamless to migrate to on premise platforms to mitigate against known risks of

connectivity and access.

It will also be expected that with commercial implementation of cloud based application

development environments, operating systems dependency will be less for web based

applications as the key consideration will shift to the runtime environment, which will be the

browser.

In conclusion, I confidently state that the next five years will see an explosion in the growth of

commercial cloud based IDEs, which will be zero foot print. Developers will hence be more

concerned about application development and not the underlying infrastructure which limits

starters and students from exploring and innovating with thin budgets. This will also see the rise

in the SaaS applications as more developers will be able to easily develop and deploy to the

cloud.

71 | P a g e 03 - J a n - 12

5.2 Contribution to the Research

This study has achieved the objectives set out at inception by bringing out the practical design

and implementation of the cloud based development environment. It has also helped unearth

some limitations that exist in the current cloud environments. Some of the key achievements and

my own contributions into the research area include:

5.2.1 Cloud IDE Architecture

As envisioned in the objectives, this research has come up with a standard architectural design

that will enable any interested parties to develop a standard cloud based IDE. This is based on

extensive study in the existing development environments as well as current developments in

cloud computing. A major shift from traditional application development platforms is expected

to happen with the growing demand for cloud based applications, which are being offered as

Software as a Service (SaaS) as well as stability and reliability of the cloud infrastructure. A key

differentiator from the current on premise development environments is the collaborative

development and seamless application deployment to the cloud as SaaS.

5.2.2 Creating awareness of PaaS cloud stack

As brought out in the research and literature review, various stacks of the cloud have gained

acceptance in varying proportions with the PaaS stack being the worst performer. While most

developers have plans to develop SaaS applications, very few had considered developing the

same application from the cloud in the same manner that they expect their end users to access the

final product! This was largely due to the awareness created by the industry players who are

mainly cloud providers, who have focused more on deploying applications developed from on­

premise environments with no much emphasis on the ability to develop and deploy from the

cloud. This research helped developers to realize they can as easily develop and deploy from the

cloud without much concern for static development environments.

5.2.3 Virtual file system ,

Based on the selected cloud platform for prototype development, Google AppEngine, it was not

possible to store source code files in the traditional file system format. This required an

72 | P a g e 0 3 - J a n - 1 2

innovative way of managing the user files in a manner that hides the actual implementation of

the file system to the user. While the user files are stored in the database as BLOBs, the user will

not notice this limitation as they are able to download their source files in ordinary file system

formats. The prototype uses in memory file streams to convert stored BLOB data to conventional

file system for user download and is able to map the project structure to a file system folder

format.

5.2.4 Non-Relational Databases for Cloud Computing

The research brought to focus a major shift that is happening in the cloud computing arena with

regard to database management systems. Most of the cloud platform providers have moved away

from the famous Ralational Database Management Systems (RDBMS) to non-relational

databases. This has come with ease of object management for light weight databases as well as

performance and speed enhancements.

The implementation of Google Datastore is done through Google’s Big Table, which hosts many

internal and external Google services. The DataStore is a non-relational database. This means

unlike traditional databases, developers don’t build normalized tables then JOIN them for results.

Instead, the DataStore is optimized for Read speed. The JOIN command is not supported so

developers need to architect the database as they would for a high volume reporting database,

meaning more columns and fewer tables. The prototype was developed on this database, which

made it easy to develop the virtual file system explained above.

5.2.5 Use of JSON File Exchange Formats for Asynchronous User Interface

The research also brought to focus the use of Java Script Object Notation (JSON) as a preferred

method of data interchange for asynchronous user interfaces. Its counterpart, XML has been

heavily used and popularized, but from this research, it was evident that JSON offers more ease

of use as it’s easy to parse and form. Most of the AJAX (Asynchronous JavaScript and XML)

interfaces exposed by the prototype rely on use of JSON objects for data interchange. Full details

have been analyzed under theoretical framework.

73 | P a g e 0 3 - J a n - 12

5.3 Future Work

Based on the prototype development experience, the below items fit perfectly for further work in

this area to enable full use of cloud based application development:

5.3.1 Hosted compilers

This will involve developing a hosted language specific compilers and parsers accessible from

the web where developers will submit the source code and get the compiled versions, including

compilation messages. This should then be integrated to the cloud based IDE for transparent

compilation. The envisioned versions will work similarly to current web services with AJAX and

related technologies playing a major role.

5.3.2 Cloud Data Access Components

Cloud data access objects and components will be a very rich addition to any cloud development

environment. Application developers using the cloud environment will be able to specify the

database their end application will use, and the development platform will provide configurable

components that will enable users to connect to the database from the development environment

and access the database. The same components will be used in runtime mode to enable the end

application perform CRUD operations at database level. One way of achieving this is to have

libraries that support several hosting environments and databases or to have dedicated

components for specific database providers on the cloud. One will need to cater for the two

existing models of relational and No-SQL databases.

5.3.3 Cloud based runtime environments

Users of cloud based application development should be able to test their source code by

executing the programs and getting a feel of the production environment. An end to end solution

need to include runtime environment with the necessary security and sand box features to ensure

developers do not execute malicious code on the target environments. This could be developed

as part of the IDE or with third party providers to enable variant targets to be tested. While this

may appear a basic feature in any IDE, the nature of current cloud providers requires more

innovative approaches. *

74 | P a g e 0 3 - J a n - 12

Google AppEngine currently does not offer any file based services which are key in developing

file based applications (10 Libraries in Java and related languages). This means that for one to

handle files in the traditional manner, virtual file management features exposed under this

research will be very important. One such application is compilation of code stored in the

database as opposed to physical files.

5.4 Research Questions Answered

Below is a confirmation on how this study answered the set research questions:

1 What are the trends supporting rapid application development in cloud computing?

a. The sections on literature review, system analysis and system design brought out

technological developments that have made it possible to utilize cloud

environments for rapid application development.

2 What are the major challenges facing the adoption of cloud application development and

PaaS in general and what are the solutions?

a. From the design view as well as user survey, it was clear internet connectivity

was the key to using cloud services. This also presents a single point of failure

which is a major challenge in the adoption of cloud application development. Use

of asynchronous communication can help reduce the challenge but not eliminate

it. This being an infrastructural challenge, the solution relies on having many

options around internet access. Another key challenge is data security which can

be mitigated by using mature single sign-on features provided by the cloud

hosting environments. This has been clearly brought out in the design.

3 How can framework based development increase the uptake of cloud application

development?

a. Provision of an IDE is only the first step in building cloud application

development uptake. Users will be more drawn towards the environment if it

provides value addition and faster application development and deployment

compared to the traditional environments. Use of rich software frameworks and

code templates will be critical in moving the users to the cloud environments.

This was a key requirement in the requirements gathering and user surveys.

75 | P a g e 03 - J a n - 12

4 Can cloud (web) environments support fully fledged IDEs and framework based

application development for programmers?

a. The answer is a clear YES. This has been clearly demonstrated using the

prototype that was developed in a limited time frame and using limited resources.

All possible features on the local installation of development environments are

possible on cloud environments. All the key requirements highlighted in the

system analysis section were implemented in the prototype development.

76 | P a g e 03 - J a n - 12

CHAPTER 6: REFERENCES

6.1 Books and Journals

1) Abdelghani Bellaachia (1999). Advanced Software Paradigms. CSCI 210 Programming

paradigms, pp.6-10 [pdf], George Washington University. Available at

http://www.seas.gwu.edu/~bell/csci210 /lectures/programminu paradigms.pdf. accessed

on 26th Feb 2011.

2) Alan Brown, Simon Johnston, Kevin Kelly (2003). Rational software whitepaper from

IBM. Using Service-Oriented Architecture and Component-Based Development to Build

Web Service Applications, p.5 [pdf]. Available at http://www.sysedv.tu-

berlin.de/intranet/kc-

kb.nsf/eab33685727bd57fcl256979005d9f28/D40B52D747C3A224C1256DB30072AB6

F/$File/TP032.pdf?QpenElement, accessed on 25th Mar 2011.

3) Angel R Puerta, Henkik Eriksson, John H Gennari and Mark A Musen (1994). Beyond

Data Models for Automated User Interface generation, p.l [pdf]. Stanford: Stanford

University. Available at http://bmir.stanford.edu/fde asset/index.php/441/SMl-94-

0539.pdf, accessed on 25th Mar 2011.

4) Antonopoulos N. and Gillam L. (Eds.) (2010). Cloud Computing: Principles, Systems

and applications, p.3. London Dordrecht New York Heidelberg. Springer.

5) C. K. Chua (2003). RAPID PROTOTYPING - Principles and Applications (2nd Edition),

p.3. World Scientific Publishing Co. Pte. Ltd.

6) CASEMaker Inc (2000). Rapid Application development: What is Rapid Application

Development (RAD)?, p.l [pdf]. Available at:

www.casemaker.com/download/products/totem/rad w p.pdf, accessed on 20th Mar 2011.

7) Dirk Riehle (2000). Framework Design: A Role Modeling Approach. Ph.D. Thesis, No.

13509, p.2. Zurich,Switzerland, ETH Zurich.

8) Gerald Kaefer (2009). Cloud Computing Architecture, pp.4-5 [pdf]. Siemens AG, CT T

DE IT1 • 'Corporate Technology. Available at

http://www.sei.cmu.edu/librarv/assets/presentations/Cloud%20Computing%20Architectu

re%20-%20Gerald%20Kaefer.pdf, accessed on 14,h May 2011.

77 | P a g e 0 3 - J a n - 12

http://www.seas.gwu.edu/~bell/csci210/lectures/programminu_paradigms.pdf
http://www.sysedv.tu-
http://bmir.stanford.edu/fde_asset/index.php/441/SMl-94-0539.pdf
http://bmir.stanford.edu/fde_asset/index.php/441/SMl-94-0539.pdf
http://www.casemaker.com/download/products/totem/rad_wp.pdf
http://www.sei.cmu.edu/librarv/assets/presentations/Cloud%20Computing%20Architectu

9) Jingwen Ou, Mahdi Tayarani Najaran, Mushfiqur Rouf (2007). Communication Protocols

Project. Aurora SDK: A Web Based Integrated Development Environment pp.1-4. [pdf].

University of British Columbia. Available at

http://www.cs.ubc.ca/~nasarouf/proiects/cDsc527/AuroraSDK.pdf, accessed on 24th Mar

2011.

10) Jyri Laukkanen (2008). Aspect Oriented Programming p2. Seminar Paper, University of

Helsinki [pdf]. Available at: www.cs.helsinki.fi/u/paakki/laukkanen.pdf , accessed on

26th Feb 2011.

11) McAffer E., Gamma E. and Wiegand J. (eds) (2010). Eclipse Rich Client Platform, 2nd

edition p.ii. Boston: Pearson Education, Inc.

12) Sussman B.C., Fitzpatrick B.W and Pilato C.M (2011). Version Control with Subversion

For Subversion 1.6, p.22. Stanford, California: Creative Commons Attribution License.

13) Wholey, J., Hatry, H., & Newcomer, K. (eds). (2004 cited in InSites, 2007, Tips on

Qualitative and Quantitative Data Collection Methods p.2). Handbook of practical

program evaluation. San Francisco, CA. Jossey-Bass.

6.2 Internet references

1) David Davis (2008). In a move to Cloud computing - VMware accounces Virtual Data

Center OS (VDC-OS). Available at http://www.vmwarevideos.com/in-a-move-to-cloud-

computing-vmware-accounces-virtual-data-center-os-vdc-os. accessed on 24th April

2011.

2) Dojo (2011). Dojo Toolkit Documentation: dojo.xhrGet. Available at

http://doiotoolkit.Org/reference-guide/doio/xhrGet.html#doio-xhrget, accessed on 12th

July 2011.

3) Eclipse contributors (2010). Eclipse documentation: Eclipse platform overview.

Available at http://help.eclipse.org/helios/index.isp, accessed on 4th April 2011.

4) Eclipsepluginsite.com (2008). Eclipse Plugin Development TUTORIAL. Available at

http://www.eclipsepluginsite.com/index.html, accessed on 24th Mar 2011.

5) Furey Anne, and Pottjewyd Arjan (2001). Integrated Development Environment (IDE)

definition: Available at http://searchsoftwarequality.techtarget.com/definition/integrated-

development-environment, accessed on' 15th Mar 2011.

78 | P a g e 0 3 - J a n - 1 2

http://www.cs.ubc.ca/~nasarouf/proiects/cDsc527/AuroraSDK.pdf
http://www.cs.helsinki.fi/u/paakki/laukkanen.pdf
http://www.vmwarevideos.com/in-a-move-to-cloud-computing-vmware-accounces-virtual-data-center-os-vdc-os
http://www.vmwarevideos.com/in-a-move-to-cloud-computing-vmware-accounces-virtual-data-center-os-vdc-os
http://doiotoolkit.Org/reference-guide/doio/xhrGet.html%23doio-xhrget
http://help.eclipse.org/helios/index.isp
http://www.eclipsepluginsite.com/index.html
http://searchsoftwarequality.techtarget.com/definition/integrated-development-environment
http://searchsoftwarequality.techtarget.com/definition/integrated-development-environment

6) Google (201 la). Google Web Toolkit: Developing with Google Web Toolkit. Accessed

at http://code.google.com/webtoolkit/overview.htmk accessed on 4th April 2011.

7) Google (2011b). Google code: Authentication and Authorization for Google APIs.

Available at http://code.google.com/apis/accounts/, accessed on 4th April 2011.

8) Google (2011c). Google code: Datastore Overview. Available at

http://code.google.com/appengine/docs/iava/datastore/, accessed on 4th April 2011.

9) Itai Raz (2011). Introduction to Windows Azure AppFabric blog posts series - Part 3:

The Middleware Services Continued. Available at

http://blogs.msdn.eom/b/windowsazureappfabric/archive/2011/02/23/introduction-to-

windows-azure-appfabric-blog-posts-series-part-3-the-middleware-services-

continued.aspx, accessed on 28th June 2011.

10) Iyogi Technical Services (2011). Windows® Azure: A Cloud Computing Medium.

Available at http://windows7.ivogi.com/news/windows-azure-cloud-computing/,

accessed on 2nd July 2011.

11) JS0N (2010). Introducing JSON. Available at http://www.ison.org/, accessed on 24th

June 2011.

12) Microsoft (2011). Windows Azure AppFabric: Next-Generation Cloud Middleware

Platform. Available at:

http://www.microsoft.com/windowsazure/AppFabric/Overview/default.aspx, accessed on

27th Mar 2011.

13) Nacion Arjay (2009). Speed-Up Software Development: Framework-Driven

Development. Available at: http://www.sourcecodester.com/blog/speed-software-

development-framework-driven-development.html, accessed on 26th Feb 2011.

14) OrangeScape (2010). OrangeScape runtime architecture. Available at

http://www.orangescape.com/platform/architecture/, accessed on 25th Mar 2011.

15) Yousuf Sait (2011). Cloud Computing Concepts and Migration Strategies of an

Application to Cloud. Available at http://vsfl991.wordpress.com/2011/07/11/cloud-

computing-concepts-and-migration-strategies-of-an-application-to-cloud/, accessed on 24

Mar 2011.

79 | P a g e 0 3 - J a n - 12

http://code.google.com/webtoolkit/overview.htmk
http://code.google.com/apis/accounts/
http://code.google.com/appengine/docs/iava/datastore/
http://blogs.msdn.eom/b/windowsazureappfabric/archive/2011/02/23/introduction-to-windows-azure-appfabric-blog-posts-series-part-3-the-middleware-services-continued.aspx
http://blogs.msdn.eom/b/windowsazureappfabric/archive/2011/02/23/introduction-to-windows-azure-appfabric-blog-posts-series-part-3-the-middleware-services-continued.aspx
http://blogs.msdn.eom/b/windowsazureappfabric/archive/2011/02/23/introduction-to-windows-azure-appfabric-blog-posts-series-part-3-the-middleware-services-continued.aspx
http://windows7.ivogi.com/news/windows-azure-cloud-computing/
http://www.ison.org/
http://www.microsoft.com/windowsazure/AppFabric/Overview/default.aspx
http://www.sourcecodester.com/blog/speed-software-
http://www.orangescape.com/platform/architecture/
http://vsfl991.wordpress.com/2011/07/11/cloud-computing-concepts-and-migration-strategies-of-an-application-to-cloud/
http://vsfl991.wordpress.com/2011/07/11/cloud-computing-concepts-and-migration-strategies-of-an-application-to-cloud/

16) Sonu (2011). Typical Java Development Environment. Available at

http://churmura.com/technology/computer-science/tvpical-iava-development-

environment/19503/. accessed on 18th April 2011.

17) Swabey Pete (2010). Features in Development & Integration: In The Frame. Available at

http://www.information-age.com/channels/development-and-

integration/features/1260983/in-the-frame.thtml. accessed on 26th Feb 2011.

18) VMware (201 l).Cloud Foundry. No Obstacles: Introducing Cloud Foundry. Available at

http://www.cloudfoundrv.com/. accessed on 25th Mar 2011.

19) Wayne Schulz (2009). What is SaaS, Cloud Computing, PaaS and IaaS? Available at:

http://www.s-consult.com/2009/08/Q4/what-is-saas-cloud-computing-paas-and-iaas/.

accessed on 19th Mar 2011.

20) WOLF Frameworks (2011). WOLF Application Platform Technology. Available at

http://www.wolfframeworks.com/platform.asp. accessed on 25th Mar 2011.

/

80 | P a g e 0 3 - J a n - 1 2

http://churmura.com/technology/computer-science/tvpical-iava-development-
http://www.information-age.com/channels/development-and-integration/features/1260983/in-the-frame.thtml
http://www.information-age.com/channels/development-and-integration/features/1260983/in-the-frame.thtml
http://www.cloudfoundrv.com/
http://www.s-consult.com/2009/08/Q4/what-is-saas-cloud-computing-paas-and-iaas/
http://www.wolfframeworks.com/platform.asp

CHAPTER 7: APPENDICES

7.1 Key Servelet Functions

7.1.1 Common Java Code Library (iceUtils.java)

package icepad;

import java.util.List;
import j a v a .u t i l .l o g g i n g .Logger;
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m .g o o g l e .a p p e n g i n e .a p i .
import c o m . g o o g l e .a p p e n g i n e .a p i .
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m . g o o g l e .a p p e n g i n e .a p i .
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m . g o o g l e . a p p e n g i n e . a p i .
import c o m . g o o g l e .a p p e n g i n e . a p i .

d a t a s t o r e .D a t a s t o r e S e r v i c e ;
datastore.DatastoreServiceFactory;
d a t a s t o r e .Entity;
d a t a s t o r e .EntityNotFoundException;
d a t a s t o r e .F e t c h O p t i o n s ;
d a t a s t o r e .K e y ;
d a t a s t o r e .KeyFactory;
d a t a s t o r e .Query;
d a t a s t o r e .T e x t ;
datastore.Query.SortDirection;
users.User;
u s e r s .U s e r S e r v i c e ;
users.UserServiceFactory;

l o g

u s e r S e r v i c e

public class iceUtils {
final static Logger

L o g g e r .g e t L o g g e r (FileTemplate.c l a s s .g e t N a m e ());
final static UserService

U s e r S e r v i c e F a c t o r y .g e t U s e r S e r v i c e ();

public static User getUser(){
return u s e r S e r v i c e .g e t C u r r e n t U s e r ();

}

//get a list of the files in a project
public static List<Entity> listChildFiles(Key p a r e n t K e y) {

DatastoreService datastore
D a t a s t o r e S e r v i c e F a c t o r y .g e t D a t a s t o r e S e r v i c e () ;

Q uery query = n e w Q u e r y (" p r o j e ctFile", parentKey);
q u e r y .a d d S o r t ("f i l e N a m e ",S o r t D i r e c t i o n . A S C E N D I N G) ;

return
d a t a s t o r e . p r e p a r e (q u e r y) .a s L i s t (F e t c h O p t i o n s .B u i l d e r . w i t h L i m i t (20))

}

public static Key g e t W o r k s p a c e K e y ()
{

User user = g e t U s e r O ;
return K e y F a c t a r y .c r e a t e K e y i "Wo r k s p a c e " , u s e r .g e t N i c k n a m e ());

}

//Load the file contents given the file key
public static String loadFileKey(String f i l e K e y S t r) {

81 | P a g e 0 3 - J a n - 12

datastoreDatastoreService
D a t a s t o r e S e r v i c e F a c t o r y .g e t D a t a s t o r e S e r v i c e 0 ;

Key fileKey = K e y F a c t o r y .s t r i n g T o K e y i f i l e K e y S t r) ;
//load the file contents
try {

Entity pFile = d a t a s t o r e . g e t (f i l e K e y) ;
return

p F i l e .g e t P r o p e r t y ("f i l e Content")) . g e tValue();
}
catch(EntityNotFoundException e) {

l o g . i n f o ("Entity not found: " + e .g e t M e s s a g e ());
return "" :

}
}

}

((Text)

7.1.2 HTTP Get / Post Methods

/** Servlet methods for handling standard/ajax post and get form commands**/
//Save the code or project to appengine datastore
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws IOException {
//We implement one entity group user using AppsDatastore
String postOption = r e q .g e t P a r a m e t e r ("postOption");
///Post option P: Project, F: File U: User Settings
if (postOption.e q u a l s (" P ")) {

String projectName = r e q .g e t P a r a m e t e r ("diname");
String projectType = req.get P a r a m e t e r (" d l t y p e ") ;

Key key = saveProject(projectName, projectType);
r e s p .s e t C o n t e n t T y p e ("te x t ");
String keyString = KeyFactory. k e y T o S t r i n g (k e y) ;

r e s p . g e t W r i t e r ().println(keyString);
}
else if (postOption.e q u a l s ("F")){

String fileKey = req.g e t P a r a m e t e r (" f i l e K e y ") ;
String fileContent = r e q .g e t P a r a m e t e r ("code");
if (fileKey != null)

u p d a t e F i l e (fileKey, f i l e C o n t e n t) ;
else {

String fileName = r e q . g e t P a r a m e t e r ("f i l ename");
String fileType = r e q . g e t P a r a m e t e r ("filetype");
String projectName = r e q . g e t P a r a m e t e r ("projectName");
String parentFolder = r e q . g e t P a r a m e t e r ("f olderKey");
//if content is null load the template file and save
if ((fileContent.trim() . l e n g t h O == 0)) {
FileTemplate flTemplate = new F i l e T e m p l a t e (f i l e N a m e) ;

f fileContent = f l T e m p l a t e .l o a d T e m p l a t e ();

saveFile(projectName, fileName, fileType,
parentFolder, f i l e C o n t e n t) ;

//load file template as defined

82 | P a g e 0 3 - J a n - 12

}

if (fileContent.l e n g t h () > 0){
r e s p .s e t C o n t e n t T y p e ("t e x t ");
r e s p .g e t W r i t e r ().println(fileContent);

}
}

}
else if (postOption.e q u a l s ("FL")){

String folderName = r e q . g e t P a r a m e t e r ("folderName");
String projectName = r e q . g e t P a r a m e t e r ("projectName");
String parentFolder = r e q .g e t P a r a m e t e r ("f olderKey");

saveFolder(projectName, folderName, parentFolder);

//Handle get requests for file load and project listing
public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws IOException {
//get the user logged in
UserService userService = U s e r S e r v i c e F a c t o r y .g e t U s e r S e r v i c e ();
User user = u s e r S e r v i c e .g e t C u r r e n t U s e r ();

//check if there is a projectfile
String option = r e q . g e t P a r a m e t e r ("p");
String respdata = //this will contain our JSON data

if
{

}

(option.e q u a l s ("F"))//load specific file
//load the file using file key
String fkey = r e q .g e t P a r a m e t e r ("f k e y ");
respdata = iceUtils . loadFileJCey(fkey) ;

else if (option.equals("D"))//Delete the file
{

String fname = req.getParameter("fname")
deleteFile(user, fname);
return;

}else if (option.equals("DFL"))//delete folder
{

String fkey = r e q .g e t P a r a m e t e r ("f key");
d e l e t e F o l d e r (f k e y) ;
return;

}else if (option.e q u a l s ("DP"))//Delete project
{

String projectName = r e q .g e t P a r a m e t e r ("pname")
deleteProject(user, p r o j e c t N a m e) ;
return;

}else if (option.e q u a l s ("DL"))//Download project
{

String projectName = r e q . g e t P a r a m e t e r ("pname")

ProjectDownload pDownload
Proj ectDownl o a d (p r o j e c t N a m e)?

pDownload.downloadPi/oject (resp) ;
return;

new

83 | P a g e 03 - J a n - 1 2

}else if ((option.equals("L")) | | (option.e q u a l s ("C")))//load
projects tree L or Combo C

{
List<Entity> projects = g e t P r o j e c t s (u s e r) ;
respdata = loadProjects(pr o j e c t s , o p t i o n) ;

}
//send the response data back - Either code value or projects

JSON object
/ / l o g .i n f o ("JSON class returned for p r o c e s s i n g :\n"+r e s p d a t a) ;
r e s p .g e t W r i t e r ().println(respdata);

}

7.1.3 Saving a File to Virtual File System

private void saveFile(String projectName, String fileName, String fileType,
String p a r e n t F o l d e r , String f i l e C o n t e n t) {

DatastoreService datastore
D a t a s t o r e S e r v i c e F a c t o r y .g e t D a t a s t o r e S e r v i c e ();

Text txContent = new T e x t (f i l e C o n t e n t) ;
Entity projectFile = null;
Date date = new D a t e O ;
//create a new entity

Key projectKey;
User user = g e t U s e r O ;
if (parentFolder.t r i m ().l e n g t h () == 0){

projectKey
K e y F a c t o r y .c r e a t e K e y (iceUtils.g e t W o r k s p a c e K e y (), "Projects", p r o j e c t N a m e) ;}

else {
projectKey = K e y F a c t o r y .s t r i n g T o K e y (parentFolder);}

projectFile = new E n t i t y (" p r o j e ctFile", fileName, projectKey);
//We implement one entity group per file and reference the

project as the parent
p r o j e c t F i l e .s e t P r o p e r t y ("Owner", u s e r) ;
p r o j e c t F i l e .s e t P r o p e r t y (" l a s tModified", d a t e) ;
p r o j e c t F i l e .s e t P r o p e r t y ("file T y p e " , f i l e T y p e) ;
p r o j e c t F i l e .s e t P r o p e r t y ("f i l e N a m e " , f i l e N a m e) ;
p r o j e c t F i l e .s e t P r o p e r t y (" f i l e Content", t x C o n t e n t) ;
datast o r e . p u t (p r o j e c t F i l e) ;

}

7.1.4 Loading Projects using JSON objects

private String loadProjects(List<Entity> projects, String loadOption)
{

String respdata = ""; //this will contain our JSON data
int seq = 0;
//return the list of files in JSON format for DOJO tree loading
//initialize the JSON structure
respdata = "{\ilidentifier:'id1,\nlabel:'fname',\nitems: [\n";
//get all projects
for (Entity project : projects) {

String * projectName = (String)
p r o j e c t .g e t P r o p e r t y ("projectName"); -

84 | P a g e 0 3 - J a n - 1 2

String projectType = (String)
proj e c t .g e t P r o p e r t y ("proj e c t T y p e ") ;

if (seq>0) respdata += ",\n";
respdata +=

S t r i n g .f o r m a t ("{i d : '% s ',f n a m e :'% s ',f t y p e :'% s ',t y p e : 'project' , \ n c h i l d r e n : ,
projectName, projectName, projectType)

//load the files under the project
if (loadOption.e q u a l s ("C"))

respdata += "]\n}"; // ignore child references
else

respdata += loadProjectFi l e s (p r o j e c t) ;
s e q + + ;

}
return respdata + "]\n}";

}

7.1.5 Project Download to OS File System

package icepad;

import j a v a .i o .B y t e A r r a y l n p u t S t r e a m ;
import java.io.File;
import j a v a .i o .IOException;
import j a v a .io.InputStream;
import java.util.ArrayList;
import j a v a . u t i l .L i s t ;
import j a v a . u t i l .lo g g i n g . L o g g e r ;
import j a v a . u t i l .z i p .ZipEntry;
import j a v a .u t i l .z i p .ZipOutputStream;

import j a v a x .s e r v l e t .S e r v l e t O u t p u t S t r e a m ;
import j a v a x .s e r v l e t .h t t p .H t t p S e r v l e t R e s p o n s e ;

import c o m . g o o g l e .a p p e n g i n e . a p i .d a t a s t o r e .Entity;
import c o m . g o o g l e . a p p e n g i n e . a p i .d a t a s t o r e .Key;
import c o m . g o o g l e . a p p e n g i n e . a p i .d a t a s t o r e .KeyFactory;

//Class to download project files - Maps virtual file system to real OS file
system

public class ProjectDownload {
final Logger log = Logger.g e t L o g g e r (F i l e T e m p l a t e . c l a s s .g e t N a m e ());
private String project =

public ProjectDownload(String projectName) {
project = projectName;

}

private A r r a y L i s t < S t r i n g []> l o a d P r o j e c t P a t h (
A r r a y L i s t < S t r i n g []> xFilePath, String path,

{
Key projectKey)

A r r a y L i s t < S t r i n g []> result = xFilePath;
List<Entity> projectFiles = i c e U t i l s .listChi l d F i l e s (p r o j e c t K e y) ;
if (projectFiles Z i s E m p t y O)
{

return result; }

85 | P a g e 0 3 - J a n - 1 2

http://http.HttpServletResponse

//get children name and keys
for (Entity proj e c t F i l e i p r o j e c t F i l e s) {

//skip grandchildren and same entity
if (!p r o j e c t F i l e .g e t P a r e n t ().equals(projectKey) ||

p r o j e c t F i l e .g e t K e y ().e quals(p r o j e c t K e y))
c o n t i n u e ;

String [] fileArray = new S t r i n g [3] ;
fileArray[0] = (String)projectFile.g e t P r o p e r t y ("f i l e N a m e ");
fileArraytl] = p a t h + F i l e .separator+ f i l e A r r a y [0];
if (projectFile.getProperty("fileType").e q u a l s ("f o l d e r "))
{

result = loadProjectPath(result, fileArraytl],
p r o j e c t F i l e . g e t K e y ());

continue ,-
}
f i l e A r r a y [2]

K e y F a c t o r y . keyToString (proj ectFile . getKey ()),-
re s u l t . a d d (f i l e A r r a y) ;

}
return result;

//download project - convert files from strings to code files
public voi d downloadProject(HttpServletResponse response)
{

Key p r ojectKey = K e y F a c t o r y .c r e a t e K e y (i c e U t i l s .g e t W o r k s p a c e K e y (),
"Proj e c t s ", proj e c t);

A r r a y L i s t < S t r i n g []> p r oPath = n e w A r r a y L i s t < S t r i n g []>();
proPath = loadProjectPath(proPath, project, projectKey);
if (proPath.isEmpty()){

return;
}
//Set the content header
r e s p o n s e .s e t C o n t e n t T y p e ("application/zip");

r e s p o n s e .s e t H e a d e r ("C o n t e n t -
D i s p o s i t i o n " ,"at t a c h m e n t ;filename="+proj e c t + ".z i p ");

//Initialize main streams
ServletOutputStream out = null;
InputStream in = null;
ZipOutputStream zOut = null;
StringBuffer sb = null;
//loop the files in a project -- for each file in the project
try{

//project level streams
out = r e s p o n s e . g e t O u t p u t S t r e a m ();
zOut = new ZipO u t p u t S t r e a m (o u t) ;
for (String[] fPath: p r o P a t h) {

/ / l o g .i n f o (f P a t h [0]+":" + f P a t h [1]);
//Write a Zip stream with project files
String stFile = i c e U t i l s .l o a d F i l e K e y (f P a t h [2]);
sb = n e w Strin g B u f f e r (s t F i l e) ;
'//2ip process
in = new

B y t e A r r a y l n p u t S t r e a m (s b .t o S t r i n g ().g e t B y t e s ("UTF - 8 "));
byt^'H data = new byte [4096];
//create a neW zip e ntry per file

86 | P a g e 0 3 - J a n - 1 2

zOut.putNextEntry(new ZipEntry(fPath[1]));
int byteRead;
w h i l e ((byteRead = i n .read(data, 0, 4096)) != -1) {

z O u t .w r i t e (d a t a , 0, byteRead);
}
z O u t .c l o s e E n t r y ();
i n .close ();

z O u t .f l u s h ();
z O u t . c l o s e ();

}
catch(IOException e) {

l o g . i n f o ("10 Exception: " + e .g e t M e s s a g e ());
}
catch(UnsupportedOperationException e 2) {

l o g .i n f o ("Unsupported Operation exception:
e 2 .g e t M e s s a g e ())

}

II +

}

7.2 Javascript Code

7.2.1 IDE Code Completion

function s t a r t C o m p l e t e () {
// We want a single cursor position,
if (editor.s o m e t h i n g S e l e c t e d ()) return;
// Find the token at the cursor
var cur = e d i t o r . g e t C u r s o r(false), token = e d i t o r .g e t T o k e n A t (c u r) , tprop

= t o k e n ;
// If it's not a 'word-style' token, ignore the token,
if (!/ A [\w$_]*$/.t e s t (t oken.string)) {

token = tprop = {start: cur.ch, end: cur.ch, string: state:
t o k e n .s t a t e ,

className: token.string == "." ? "js-property" :
null};

}
// If it is a property, find out what it is a prop e r t y of.
while (tprop.className == "js-property") {

tprop = e d i t o r . g e t T o k e n A t ({line: cur.line, ch: t p r o p . s t a r t }) ;
if (tprop.string != ".") return;
tprop = e d i t o r . g e t T o k e n A t ({line: cur.line, ch: t p r o p .s t a r t });
if (Icontext) var context = [];
c o n t e x t . p u s h (t p r o p) ;

}var completions = getCdmpletions(token, context);
if (!c o m p l e t i o n s .length) return;
function insert(str) {

e d i t o r .replaceRange(st*, {line: cur.line, ch: t o k e n . s t a r t } , {line:
cur.line, ch: token.end}); '

}

87 | P a g e 03 - J a n - 12

// When there is only one completion, use it directly,
if (completions.length == l) {inser t (c o m p l e t i o n s [0]); return true;}

// Build the select widget
var complete = d o c u m e n t .c r e a t e E l e m e n t ("div");
c o m p l e t e .className = "completions";
var sel = c o m p l e t e .a p p e n d C h i l d (d o c u m e n t .c r e a t e E l e m e n t (" s elect"));
sel.multiple = true;
for (var i = 0; i < c o m p l e t i o n s .length; ++i) {

var opt = s e l .a p p e n d C h i l d (d o c u m e n t .c r e a t e E l e m e n t ("option"));
o p t . a p p e n d C h i l d (d o c u m e n t .c r e a t e T e x t Node(completions[i]));

}
s e l .f i r s t C h i l d .selected = true;
sel.size = Math.min(10, c o m p l e t i o n s .l e n g t h) ;
var pos = e d i t o r . c u r s o r C o o r d s ();
c o m p l e t e .s t y l e .left = pos.x + " p x " ;
c o m p l e t e .style.top = pos.yBot + " p x " ;
document. b o d y . a p p e n d C h i l d (c o m p l e t e) ;
// Hack to hide the s c r o l l b a r .
if (completions.length <= 10)

c o m p l e t e .style.width = (sel.clientwidth - 1) + " p x " ;

var done = false;
function c l o s e () {

if (done) return;
done = true;
c o m p l e t e . p a r e n t N o d e .removeC h i l d (c o m p l e t e) ;

}function pick() {
i n s e r t (s e l .o p t i o n s [s e l .s e l e c t e d l n dex].value);
c l o s e ();
s e t T i m e o u t (f u n c t i o n (){edi t o r . f o c u s ();}, 50) ;

}
connect(sel, "blur", close);
connect(sel, "keydown", function(event) {

var code = e v e n t .k e y C o d e ;
// Enter and space
if (code ==13 || code == 32) {event.stop(); pick();}
// Escape
else if (code == 27) { e v e n t .s t o p (); close(); e d i t o r .f o c u s ();}
else if (code != 38 & & code != 40) {close (); editor, focus () ;

setTi m e o u t (s t a r t C o m p l e t e , 50);}
});
connecttsel, "dblclick", p i c k) ;

s e l .f o c u s ();
// Opera sometimes ignores focusing a freshly created node
if (window.opera) s e t T i m e o u t(function(){if (!done) s e l .f o c u s ();}, 100);
return true;

}

var stringProps = (" d i a A t charCodeAt indexOf lastlndexOf substring substr
slice trim trimLeft trimRight " +

"toUpperCase toLowerCase split concat match replace
s e a r c h ").split (" "); *'

var arrayProps = ("length concat jbin splice push pop shift unshift slice
reverse sort indexOf " +

88 | P a g e 03 - J a n - 12

"lastlndexOf every some filter forEach map reduce
reduceRight ") .split (" ");

var funcProps = "prototype a pply call b i n d " .s p l i t (" ") ;
var keywords = ("break case catch continue debugger default delete do else

false finally for function " +
"if in instanceof new null return switch throw true try

typeof var voi d while w i t h ").s p l i t (" ");

function getCompletions(token, context) {
var found = [], start = token.string;
function maybeAdd(str) {

if (str.indexOf(start) == 0) found . p u s h (s t r) ;
}function ga t h e r C o m p l e t i o n s (o b j) {

if (typeof obj == "string") f o r E a c h (s tringProps, m a y b e A d d) ;
else if (obj instanceof Array) forEach(a r r a y P r o p s , m a y b e A d d) ;
else if (obj instanceof Function) f o r E a c h (f u n c P r o p s , maybeAdd);
for (var name in obj) m a y b e A d d (n a m e) ;

}

if (context) {
// If this is a property, see if it belongs to some object we can
// find in the current environment,
var obj = c o n t e x t . p o p (), base;
if (obj\className == " j s-variable")

base = w i n d o w [o b j .s t r i n g] ;
else if (obj.className == "js-string")

base = "";
else if (obj.className == "js-atom")

base = 1;
while (base != null && c o n t e x t .length)

base = b a s e [c o n t e x t . p o p ().s t r i n g] ;
if (base != null) gat h e r C o m p l e t i o n s (b a s e) ;

}else {
// If not, just look in the window object and any local scope
// (reading into JS mode internals to get at the local variables)
for (var v = t o k e n .s t a t e .l o c a l V a r s ; v; v = v.next) m a y b e A d d (v . n a m e) ;
g a t h e r C o m p l e t i o n s (w i n d o w) ;
forEach(keywords, maybeAdd);

}return found;
}

7.2.2 JavaScript File Management

//Simple editor management
function s e t F i l e A t t r ()
{ fileAttr.filename = dojo.byId("xfilename").value;

fileAttr.filetype ='dij it.byld("filetype").get('value1);
fileAttr.fileproject = dojo.byldC'fileproject").value;
fileAttr.existing = false;
//confirm the file i^' in the required format
var strlen = f i l e A t t r .filename;length;
var typelen = f i l e A t t r .filetype.length;

89 | P a g e 0 3 - J a n - 12

//Ensure the file has the right extension, if not append it
if ((fileAttr.filename.lastlndexOf("." + f i l e A t t r .filetype) != (strlen

-| (typelen+1)))) {
f i l e A t t r .filename += "."+ f i l e A t t r .f i l e t y p e ;

}
/ / c r e a t e F i l e T m p l t ();
s a v e C o d e ();
e d i t o r .s e t O p t i o n (" m o d e " , loadFil e M o d e (f i l e A t t r .f i l etype));

//Select the theme to display in the editor
function s e l e c t T h e m e (node) {

var theme = n o d e .o p t i o n s [n o d e .selectedlndex].innerHTML;
e d i t o r .s e t O p t i o n (" t heme", t h e m e) ;

}
//status update
function u p d a t e S t a t u s (c o n t) {

d o j o . b y l d (" a j a xstatus").innerHTML = cont;

7.2.3 Javascript Save Code (AJAX)

//Save the editor content to the server
function s a v e C o d e O
{

if ((fileAttr.filename.length == 0) | | (f i l e A t t r .f i l e t y p e .length = =
0) ||(fileAttr.f i l e p r o j e c t .length == 0)){

showFileDialog ();
r e t u r n ;

}
//AJAX Save the file
if (fileAttr.fileKey.length > 0) {

fContent
{ p ostOption:"F",f i l e K e y ;f i l e A t t r .f i l e K e y , c o d e :e d i t o r .g e t V a l u e ()};

}
else {

fContent =
{postOption:"F",proj e c t N a m e :f i l e A t t r .fil e p r o j e c t ,f o l d e r K e y : f i l e A t t r .folderKey

f i l e n a m e :f i l e A t t r .f i l e n a m e ,f i l e t y p e :fileA t t r . f i l e t y p e , c o d e :e d i t o r .g e t V a l u e ()}
t

}

var xhrArgs = {
u r l : "/save",
t i m e o u t :20000,
h a n d l e A s : "t e x t ",
//form: "fmedit",
c o n t e n t :f C o n t e n t ,
load: function(data) {

if (data.length > 0)
e d i t o r .se t V a l u e (d a t a) ;

updateStattis("File saved successfully");
w i n d o w . setTimeout ("tfpdateStatus ('') " , 10000);
//update the editors filename to match the current name

90 | P a g e 0 3 - J a n - 1 2

/ / f i l e A t t r .filename = fname.value;
fileAttr.modified = false;
if (!fileAttr.existing) {

r e f r e s h T r e e ();
}

},
error: function(error) {

u p d a t e S t a t u s ("An unexpected error occurred: " + error);}
}

updateStatus ("Saving f i l e ");
//Call the asynchronous xhrPost
var deferred = d o j o . x h r P o s t (x h r A r g s) ;

}

7.3 User Survey

7.3.1 Survey Summary

1. Do you use a Integrated Development Environment(IDE)for Rapid Application Development(RAD)?

Yes
2. Do you use any software frameworks for enterprise development?

Yes
3. Are there any situations that call for traditional application development methodologies (non RAD)?

Yes
4. Would you consider using a cloud based development environment?

Yes
5. What would be your concerns in using cloud based development environment?

Data Security

Connectivity issues

Loss of control

System Availability
6. What features of an IDE would you want to see in a cloud based IDE?

File management

Project management

Task management

Multiuser environment

Plugin management

Visual design ’

Code generation
<'

Code completion

91 | P a g e 0 3 - J a n - 1 2

Team Management Version Control Code folding Love the themes esp night
7. What software frameworks would you want implemented in the cloud based IDE?

restful/soap web services integration
8. Do you have any plans to develop a cloud based application - Software as a service(SaaS)?

Yes
9. What current tools would you consider for cloud application development?

Mysql java ssh ftp tomcat Webserver hard disk space
10. Given similar features on the cloud development platform as your computer based development
environment, would you switch fully to a cloud based development environment?

Yes

7.3.2 Survey Responses Summary

Response Summary Total Started Survey: 16
Total Completed Survey: 16 (100%)

PAGE: ICECLOUD IDE USER REVIEW

1. Do you use a Integrated Development Environment(IDE)for Rapid (£ Create Chart f Download
Application Development(RAD)?

Response Response
Percent Count

Yes 87.5% 14

No ■ ■ 12.5% 2

answered question 16

skipped question 0

2 . Do you use any software frameworks for enterprise development? Create Chart | Download

Response
Percent

Response
Count

Yes 15

No ■ 6.3% 1

answered question 16

skipped question 0

92 | P a g e 03 - J a n - 12

3. Are th e r e any s i tu a tio n s th a t call fo r trad itio n a l ap p lic a tio n 4$ Create Chart Download
d e v e lo p m e n t m e th o d o lo g ie s (n o n RAD)?

Response
Percent

Response
Count

Yes 15

No ■ 6.3% 1

answered question 16

skipped question 0

4. Would you consider using a cloud based development environment? 4 £ Create Chart 4 Download

Response Response
Percent Count

Yes 12

No ■ ■ ■ ■ 25.0% 4

answered question 16

skipped question 0

5. What would be your concerns in using cloud based development Create Chart 4 Download
environment?

Response Response
Percent Count

None

Data Security

Connectivity issues

Loss of control

System Availability

Limited features

6.7% 1

667% 10

73.3% 11

66.7% 10

667% 10

26.7% 4

Other (please specify)
Show Responses 4

answered question 15

skipped question 1

93 | P a g e 03 - J a n - 12

6. W hat f e a tu r e s o f an IDE w o u ld you w a n t to s e e in a c lo u d b a s e d IDE? (£ Create Chart Download

File management

Project management

Task management

Multiuser environment

Plugin management

Visual design

Code generation

Response Response
Percent Count

73.3% 11

667% 10

60.0% 9

73.3% 11

60.0% 9

667%

667%

10

10

Code completion 1 10

Other (please specify)
Show Responses

5

answered question 15

skipped question 1

94 I P a g e 0 3 - J a n - l 2

Response
Count

Hide Responses 16

7. W h a t s o f tw a re f ra m e w o rk s w o u ld y o u w a n t Im p le m e n te d in t h e c lo u d b a s e d IDE? t Download

Responses (16) j j e x t Analysis My Categories 10

GOLD FEATURE: Text Analysis allows you to view frequently used words and phrases,
categorize responses and turn open-ended text into data you can really use . To use Text
Analysis, upgrade to a GOLD or PLATINUM plan

Showing 16 text responses

Learn More Upgrade »

No responses selected

Web application framework Process framework such as ITIL Conceptual framework
8/15/2011 8:27 AM View Responses

None
8/10/2011 11:41 AM View Responses

Development software framework and Service software framework
8/9/2011 8:21 PM View Responses

Agile ,REST
8/9/2011 7:55 PM - View Responses

Android
8/9/2011 7:36 PM View Responses

PHP JAVA
8/9/2011 7:34 PM View Responses

8. Do you have any plans to develop a cloud based application - C? Create Chart + Download
Software as a service(SaaS)?

Response Response
Percent Count

Yes 13

No 18.8% 3

answered question 16

skipped question 0

95 | P a g e 0 3 - J a n - 1 2

9. W hat c u r r e n t to o ls w o u ld yo u c o n s id e r fo r c lo u d a p p lic a tio n d e v e lo p m e n t? t Download

Response
Count

Hide Responses 16

R esp o n se s(16) Text Analysis My Categories (0

GOLD FEATURE: Text Analysis allows you to view frequently used words and phrases,
categorize responses and turn open-ended text into data you can really use. To use Text
Analysis, upgrade to a GOLD or PLATINUM plan

Showing 16 text responses

Learn More Upgrade »

No responses selected

web based tools
8/18/2011 9:29 PM View Responses

Google App Engine Amazon - EC 2
8/15/2011 10:15 AM View Responses

Dot Net: Crystal reporting Data Dynamics
8/15/2011 8:27 AM View Responses

Php, Java
8/10/2011 11:41 AM View Responses

Tools for Agile Application Development
8/9/2011 8:21 PM View Responses

Simple tools
8/9/2011 7:55 PM View Responses

10 . Given sim ilar features on the cloud development platform as your Create Chart | Download
computer based development environment, would you switch fully to a cloud based development
environment?

Response Response
Percent Count

Yes 11

No ■ ■ ■ ■ 1 313% 5

answered question 16

skipped question 0

<

96 | P a g e 0 3 - J a n - 12

