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ABSTRACT 

A common problem plaguing the telecommunication industry is how to process the gigantic 

amounts of Call Detail Records (CDR) data it generates. Currently, telecommunication companies 

use batch processing systems to process CDR data at intervals ranging from 5 minutes to 24 

hours, and even then, not all data is processed. Present batch processing platforms are vendor 

based, requiring proprietary software, specialized hardware and licenses. Because of this, 

processing of CDR data is expensive and has prevented telecommunication companies from 

gaining all the benefits that could be acquired by the effective and total processing of CDR data. 

With the strides made in big data recently and especially in stream processing, total processing 

of CDR data is made possible, furthermore, stream processing facilitates the real-time processing 

of data. 

This research primarily focuses on stream processing of CDR data, this would be of benefit to 

telecommunication companies seeking to gain complex, intricate and speedy insights into their 

customers and networks. This research also involves a feature comparison of several stream 

processing platforms in use today for the purposes of selecting a single suitable platform for this 

project. The selected platform is then evaluated in terms of performance and resource usage, all 

in an effort to determine whether the selected stream processing platform is suitable for the 

real-time processing of CDR data. 
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CHAPTER ONE 

INTRODUCTION 

1.0.  Background Information 

A Call Detail Record (CDR) is a formatted collection of information about a chargeable event for 

use in billing and accounting. A chargeable event is any activity utilizing telecommunications 

network resources and related services for which a network operator wants to charge for, be it 

voice services, data services, messaging services or other custom services. Network resources 

also generate other kinds of detail records that contain data on all the transactions happening in 

the network. 

A major problem facing telecommunication companies today is the effective and reliable 

processing of CDR data to gain speedy and valuable insights into their customers and network.  

 

Figure 1: Sample CDR (StackExchange, 2014) 

Telecommunication companies on average generate terabytes of data every day from their 

network, a medium sized telecommunication company having twenty million subscribers is 

capable of generating 20 terabytes of CDR data per day (Kx, 2016). Processing such amounts of 

data is a challenge for a lot of telecommunication companies. This is credited mostly to the costly 

nature of processing voluminous data, at the very least, it requires the acquisition of powerful 

infrastructure, in terms of servers and storages as well as proprietary technologies that attract 

pricey license, support and maintenance costs. This has imposed the constraint of processing CDR 

data in batches. Data is gathered into batches of fifteen, hourly or even 24 hour intervals. 

Furthermore, not all the data is processed, mostly, only the data containing billing information is 

paid attention to. Batch processing jobs take a ‘batch of data’ as input and produce a ‘batch of 
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results’ as output. Depending on the size of the data, batch processing jobs can take hours to 

complete (Guller, 2015). 

Other than billing information, CSPs within their networks also collect other valuable data such 

as control plane and user plane data. Control plane data includes channel setup and control 

information and is instrumental in diagnosing and troubleshooting customer related problems 

such as dropped calls, call setup success rates. User plane data contains payload information that 

is transmitted after the necessary channels have been setup, for example, user plane traffic for 

data services shows how many bytes of data have been downloaded or uploaded and what 

internet sites have been visited. CSPs also gather a lot of data from the Operation Support 

Systems (OSS) domain. OSS includes data such as fault management data (alarms generated by 

the numerous network elements deployed in a network), performance management data 

(performance data of network elements generated periodically), configuration management 

data (how the network elements have been configured) and security management data (who has 

access to the networks and user activities performed on the network elements). 

Unfortunately, telecommunication companies also face an additional problem of the existence 

of data silos in their networks, instead of aggregating the data generated into a central place or 

collating data from the different data sources to create insightful reports that are global and 

useful to the entire company, data is kept at its source or point of generation and is overseen by 

the team owning the source network elements. Reports generated are thus disjointed and can 

only be meaningful to a select few, mostly the owners of the network elements who are only 

interested in problems within their domains. 

To provide superior service to their customers, telecommunication companies need to process 

data faster and not only billing data but all the data generated within their networks, they need 

to be able to respond to their customers’ queries quickly and effectively, they need to monitor 

their network’s performance throughout and identify issues before they become major 

problems, they need to be able to identify fraudulent activities within their network promptly; 

there are so many ways in which telecommunication companies can utilize CDRs to improve their 

service and network quality while increasing their profit margins, and these cannot withstand 
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processing jobs that take hours to complete, they require jobs that complete in milliseconds, they 

require real-time processing. 

With real-time processing, we expect processing times that take no longer than a second to 

process voluminous data. A major difference between real-time processing and batch processing 

is the fact that real-time processing does not require the storage of data into persistent storage 

before processing, data is handled on the fly and stored after processing is complete. 

1.0.1. SMSC CDR Processing 

A vital network element in a telecommunications company’s network is the SMSC (Short Message 

Service Center). An SMSC is responsible for handling SMS (Short Message Service) operations 

within a network, this includes routing, storing and forwarding SMSs to their destination. An SMS 

can be categorized as ‘MO (Message Originating)’ or ‘(MT) Message Terminating’ depending on 

its source. MO SMSs are sent by a sender from their mobile phone, MT SMSs are received by a 

recipient on their mobile phone. Each SMS, whether MO or MT generates a CDR on the SMSC 

and will contain significant details such as the status of the SMS and error code information which 

are crucial when handling customer complaints. 

Five years ago in 2012, we were part of a team that set out to process SMSC CDRs in a local 

telecommunication company.  The project required processing of SMSC CDRs stored in several 

files and storing the results in an oracle database. This would assist customer service agents at 

the call center query the status (delivered, expired, deleted, waiting or error) of an SMS, in case 

of a customer complaint, and assist accordingly. The data was also useful in troubleshooting SMS 

billing complaints.  

Each CDR file was 2.5 GB in size and each day an average of 250 GB of CDR data was generated. 

Processing was done on a nightly basis using PERL (Practical Extraction and Report Language) 

scripts and Oracle data loader and Oracle 9 database. First, CDR data would be transferred from 

several network elements and stored on the processing server via SFTP (Secure File transfer 

protocol), then a PERL script would locate the file on the filesystem, open and read it, formatting 

it and selecting the columns of interest, while at the same time loading the data into an oracle 

database using oracle data loader. The process would be repeated for all the other files until all 
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files had been processed. The entire procedure of reading, extracting and loading of all the data 

would take an average of six to eight hours every night. 

Processing was done on a single SUN V890 server, with 64 GB of memory, eight 1.2 GHz 

processors and 2 TB of external storage, a powerful machine by any standards then. 

The decision to process data nightly was arrived at due to the long durations and resource 

intensive nature of the data loading and database write transactions that would slow down the 

database. We therefore could not afford to process the data during the day as customer care 

agents would be affected. During the day, the oracle database exclusively handled database read 

requests only, allowing customer service agents to query the database without experiencing the 

performance degradation brought about by the write operations. Furthermore, a large 

percentage of customer issues are received during the day.  

The long processing durations were not the only limitations with this processing method, because 

of the nightly processing schedule, the latest data customer service agents could query was the 

previous day’s data. This affected resolution times for customers. A customer complaining of an 

issue that had taken place that day would have to wait longer, for second line engineers to 

provide the required info. In addition, customer service agents complained of queries that took 

too long to return results, with some queries taking more than five minutes. This is in spite of all 

the database tuning operations that had been done to improve performance. This resulted in 

dissatisfaction in the system and eventually it was retired to be replaced by a vendor sourced 

system capable of processing voluminous data. Vendor sourced systems as established earlier, 

require specialized hardware and proprietary software that are inflexible and costly. 

1.0.2. Batch Processing vs Big Data Processing 

The SMSC CDR processing described in the section above fits the batch processing model, where 

jobs can be scheduled to be done during off peak hours and take hours to complete (Guller, 

2015). Batch processing jobs also require that data is first congregated and stored in a persistent 

storage before processing, this also introduces a degree of latency in the processing.  

Since then, major advancements have been made in how voluminous data is handled, the term 

Big Data became common place and systems and technologies to handle Big Data developed, 

one of the first platforms being Apache Hadoop which comprised of the HDFS distributed file 
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system and Map reduce, the compute engine developed at Yahoo. This revolutionized the Big 

Data scene, with impressive benchmarks being published for Apache Hadoop, in 2013, Apache 

Hadoop was able to sort 102.5 TB in 4,328 seconds on 2100 nodes of 64 GB memory, two 2.3Ghz 

processors and 36 TB storage (Graves, 2013). This encouraged other platforms to be developed 

to improve on this performance, such as Apache Flink, Apache Samza, Apache Storm Core, 

Apache Storm Trident and Apache Spark, which are all open source and can be setup on 

commodity hardware. 

One of the technologies that came along as part of the Big Data evolution is Big Data stream 

processing. Unlike batch processing where data has to be persisted to storage prior to processing, 

stream processing processes data in streams, as it arrives into the platform and stores it after 

processing ensuring efficient utilization of server resources as well as better performance. A 

requirement of a stream processing platform is that it is able to process voluminous data at high 

throughputs while maintaining low latencies. Stream processing platforms are therefore suited 

for the real-time processing of Big Data. Examples of stream processing platforms in existence 

today are Apache Flink, Apache Storm trident, Apache Spark Streaming, Apache Kafka Streams 

and Apache Samza.  

Stream processing platforms can be further categorized into two; 

 Native stream processing platforms 

Native stream processing platforms process incoming data immediately it hits the 

platform, one record after the other, resulting in the lowest-possible latency (Zapletal, 

2016). Examples of native stream processing platforms are Apache Storm, Apache Samza 

and Apache Flink. 

 Micro-Batching stream processing platforms 

On the other hand, Micro-Batching stream processing platforms create short batches 

from the incoming data which are then processed. These batches are created according 

to a pre-defined time constant, typically seconds (Zapletal, 2016). Examples of such 

platforms are Apache Storm Trident and Apache Spark Streaming. 
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CDR data can be classified as Big Data as they exhibit the three properties of Big Data    

 Volume – A medium sized communication service provider (CSP) having twenty million 

subscribers is capable of generating terabytes of CDR (Call Detail Record) data per day 

(Kx, 2016)  

 Variety – CDRs are generated in different formats depending on the network element 

type and vendor of the network element. These can be CSV, xml, json, ascii or even 

unstructured data. 

 Velocity – CDRs are continuously and frequently generated throughout the day at varying 

intervals 

1.0.3. Implementing Big Data Projects 

One would be mistaken to think that telecommunication companies would be among the first 

industries to jump on the Big Data bandwagon, seeing as how they have perennially dealt with 

voluminous data long before the likes of Google and Facebook. According to a research project 

conducted in 2014 by McKinsey, only 30% of telecommunication companies had established Big 

Data projects in their companies (Bughin, 2016). The reasons for this low state of adoption ranged 

from lack of experience and talent pool, lack of quality processes to lack of permission to use 

data. The fact that only 5% of the telecommunication companies that had adopted Big Data, 

reported its positive impact on profit is not encouraging. However, the same report does indicate 

that 45% of telecommunication companies are considering implementing Big Data projects in the 

near future.  

How does one then go about starting and implementing a successful Big Data project? A question 

that every company should have when thinking about implementing and adopting Big Data 

solutions is how to do it effectively to realize a lasting impact on their critical success factors. A 

report done by IBM in 2013 (IBM, Analytics: Real-world use of big data in telecommunications, 

2013) states that the most successful Big Data solutions identify the business requirement first 

and then tailor the infrastructure, data sources and analytics to support the business 

requirement. Examples of business requirements for CSPs are improving customer experience, 

driving new products, increasing productivity and optimizing networks. They also implement in 
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phases, whereby integration – of both data and infrastructure – is carried out step by step rather 

than performing a big bang deployment.  Measurements and metrics are also very important as 

they aid in monitoring and tracking the success of the implementation, correcting any deviations 

instantly to stay on course. 

The IBM report also indicates that most telecommunication companies value real-time 

information processing more as some of their business requirements require real-time 

information for them to be valuable and effective. We identified the business requirement for 

this project as improving customer experience, the CDR data processed would be used by 

customer care agents to resolve customer complaints relating to messaging services using real-

time information.  

 

1.1. Problem Statement 

Batch processing of voluminous data such as CDRs is ineffective. Processing of large amounts of 

data takes hours to complete and due to the resource intensive nature of batch processing jobs, 

requires jobs to be scheduled during off peak hours. Batch processing does not also account for 

the other two characteristics of Big Data, velocity and variety. Since CDR data is categorized as 

Big Data, batch processing is ineffective in the processing of CDR data. In addition, 

telecommunication companies are interested in obtaining real-time information from CDR data, 

implementing a real-time batch processing system would be very expensive due to the costs that 

would be required to acquire specialized infrastructure, not to mention the licensing and 

maintenance expenses. 

The aim for this project was to evaluate whether real-time processing of CDRs is achievable using 

a suitable stream processing. This was done by implementing a CDR stream processing solution 

on virtual machines and utilizing open source stream processing platforms. We first had to 

perform a feature comparison of three stream processing platforms using eight well-chosen 

features in order to select a stream processing platform for this project. Using the selected 

stream processing platform, installed system infrastructure and a stream processing prototype, 

SMSC CDR data was processed while collecting the performance metrics of throughput and 

latency and the resource usage metrics of CPU utilization, disk utilization and memory utilization. 
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These metrics were chosen as they are the most commonly used while benchmarking stream 

processing systems. High throughputs while maintaining low latencies are desired for real-time 

systems (Kim & Blafford, 2016). The resource usage metrics were chosen as they facilitate the 

monitoring of how effectively the selected streaming platform uses resources allocated to it. 

They also aided in the tuning of resources for optimal system performance. From the experiment 

results obtained, we were then able to gauge whether the selected stream processing platform 

is a proper candidate for the real-time processing of CDR data.  

 

1.2. Significance of the Research 

The telecommunication industry will benefit from this research, as it demonstrates that real-time 

processing of CDR data is feasible and in a less costly way. This research also demonstrates how 

to design, setup, install and optimize a Big Data stream processing cluster for optimal 

performance. It also demonstrates the performance limits achievable for the size of our cluster 

and therefore would be useful in system dimensioning. 

With real-time processing of CDRs, telecommunication companies will be able to use CDR data 

in more innovative ways that bring much needed value and insights on the network and 

customers. 

1.3. Research Objectives 

The overall objective is “To evaluate real-time processing of CDRs using a suitable stream 

processing platform” 

Specific objectives are as follows 

 To select a suitable streaming platform for the real-time processing of CDRs 

 To design, setup and optimize the selected platform for the real-time processing of CDRs 

 To develop a streaming prototype that processes CDRs 

 To measure the performance metrics of latency and throughput and resource usage 

metrics of CPU utilization, disk utilization and memory utilization on the installed system 

 To determine that real-time processing of CDRs via the selected stream processing 

platform is feasible 
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1.4. Research Questions 

1. Is real-time processing of CDRs using stream processing feasible? 

2. What are the ideal parameters for carrying out a feature comparison in order to select a 

suitable stream processing platform? 

3. What is the correlation between the performance metrics of latency and throughput and 

the resource usage metrics of CPU utilization, disk utilization and memory utilization? 

1.5. Research Assumptions 

The chief assumption for this project was that CDR data would be used by call center agents to 

resolve customer complaints related to SMS by querying a database using the complainants 

MSISDN. This would allow a call center agent to retrieve all SMS history relating to that particular 

MSISDN for a specific period and analyze status and error codes. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0. Introduction 

According to the 3GPP specification 32.297, release 13 a CDR also known as a Call Detail Record 

is a formatted collection of information about one or more chargeable events for use in billing 

and accounting. More than one CDR may be generated for a single chargeable event if the event 

takes a long amount of time to complete or more than one party is to be charged for the event. 

A chargeable event is any activity utilizing telecommunications network resources and related 

services for which a network operator wants to charge for. Examples of chargeable events include 

short messages, calls and data sessions. Events that are normally not charged to the subscribers 

such as signaling events, roaming events, interconnect events, call transfers etc. are also 

recorded in a CDR (3GPP, 2016). In summary, every event that takes place in a telecommunication 

network is documented in a file known as a CDR file which contains details of the parties involved 

(e.g. user details like MSISDN, IMSI, IMEI), event id, network elements involved, event time 

stamps, event durations, user locations, error codes generated if any, QoS details if any among 

others. These details will vary depending on the available fields or columns in a CDR file since 

they are configurable, however, there are fields that must be included in each CDR file in 

accordance well-known standards such as the 3GPP specification. Optional fields can vary 

between network element vendors, CSPs, network element types and release versions. The size 

of a CDR file depends on configurable parameters such as number of CDRs a file should contain, 

duration the CDR file should stay open and maximum size of CDR file.  

Even though CDRs are continuously being generated in a network, a significant amount of data is 

generated during the ‘busy hour’. The term ‘busy hour’ denotes a duration during the day when 

the network is at its busiest and usually lasting for an hour, during this time, CDRs are being 

generated faster than usual resulting into several CDR files or huge CDR files depending on the 

CDR file configuration. Busy hour differs from country to country or CSP to CSP depending on 

their service offerings and occasions. For example, ‘busy hour’ for voice services for a CSP could 

be from 1700hrs to 1800hrs, while ‘busy hour’ for data services for the same CSP could be from 

2000hrs to 2100hrs. If a CSP is running a popular service offering, then the amount of CDRs 
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generated will also increase. During school holidays, SMS traffic increases, attributed to school 

going children on holiday with access to mobile phones. More CDRs equals more money, in fact, 

it can be said that the currency of the telecommunication industry is the CDR (Middendorf, 1999) 

.It is common to see CSPs running marketing campaigns to increase network usage during off 

peak hours in an effort to increase revenue as well as increase network utilization. Network 

elements are quite expensive to acquire and therefore money is lost any time a network element 

is lying idle.  

Processing of CDR data for purposes other than for billing and rating takes a backseat in most 

telecommunication companies. One of the major reasons for this is the fact that the processing 

and storage of huge amounts of data is costly. Processing of large amounts of data necessitates 

the acquisition of powerful and expensive infrastructure in terms of software, servers and 

storages as well as proprietary technologies that attract pricey license and support fees. It is 

therefore not uncommon for network operators to process and analyze limited sets of CDR data, 

processed at fifteen or hourly or even daily intervals, using batch processing where data is 

aggregated, stored then processed in batches. It is also not uncommon to encounter a vast 

majority of data being discarded after the mandated storage period is over. Batch processing is 

suited for the processing of voluminous historical data and jobs can be scheduled to run after 

hours when the resource intensive batch processing would not interfere with other jobs or 

operations. Depending on the size of the data, batch processing jobs can take minutes or even 

hours to complete (Guller, 2015).  

CDRs contain valuable information that can be used by a telecommunication company to gain 

competitive advantage within the industry as well as outside the industry. A few 

telecommunication companies in America are using CDRs to create new revenue streams. For 

instance, Sprint sells some of its data to marketing agencies (IBM, 2013) and this is due to the 

fact that they have embraced Big Data and implemented Big Data solutions. They can be used 

effectively for real-time fraud detection, dynamic network optimization, customer experience 

monitoring and handling, dynamic radio network planning, personalized marketing campaigns 

and so much more. They can also be used to solve some of the societal challenges facing us today, 

during the ‘Data for Development Senegal’ challenge, researchers used anonymized CDR data for 
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societal development, with emphasis on agriculture, health, transportation and urban planning, 

energy and national statistics (d4D, 2014). 

There is a huge drive today for CSPs to be more customer centric, to be able to understand their 

customers better and resolve any issues they might have in a timely manner and also provide 

inventive service offerings that convert them into loyal customers. Using Big Data technologies 

to process CDR data makes this a reality. This is due to the fact that Big Data processing platforms 

have been proven to be much faster and better at handling voluminous, varietal and high velocity 

data than batch processing while running on commodity hardware and open source software. As 

part of the advancements in Big Data technology, real-time processing of Big Data became 

possible, where voluminous data is processed within seconds rather than hours. Platforms 

capable of real-time processing of data are classified under stream processing. According to (IBM, 

2013), 40% of CSPs want Big Data to enable them perform real-time processing, this would mean 

ingesting and analyzing contextual data in real-time.  

2.1. Stream Processing  

Stream processing as defined by (SQLSTREAM, 2017), is the real-time processing of data 

continuously, concurrently and in a record by record basis. Stream processing does not treat data 

as a file but rather as an infinite stream of data or stream of records. Stream processing also does 

not require that data is stored first before processing, streams of records are processed 

immediately upon entering the system. Stream processing is designed to process data on the fly 

i.e. data in motion by utilizing continuously running queries. 

But what do we mean by ‘real-time’? The word real-time has different meanings depending on 

the context in which it is used. According to (Rouse, 2011), real-time refers to a system 

responsiveness that is perceived by a user to be immediate or nearly immediate. The Oxford 

dictionary defines real-time in computing as the processing of data within milliseconds so that it 

is available immediately as feedback to the originating process. According to (Barlow, 2013), real-

time denotes the ability to process data as it arrives, rather than storing it for later retrieval for 

processing. It is the processing of data in the present, rather than in the future. Real time 

processing requires a continual input, constant processing, and steady output of data (Syncsort, 

2015). This research project measured two performance metrics – latency and throughput – with 

http://www.datasciencecentral.com/profiles/blogs/batch-vs-real-time-data-processing
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a latency target of processing data in less than 60 seconds. We set performance targets for 

throughput and latency that we anticipated would allow for effective processing of large volumes 

of CDRs without affecting a systems stability. The latency targets are thus based on (Rouse, 2011) 

definition of real-time. 

A stream processing solution running on a single machine is not capable of handling high volume, 

high velocity data (Guller, 2015). Stream processing platforms are therefore deployed as clusters 

of several similarly configured servers or machines. This enables them to handle large volumes 

of data arriving at high frequencies as the workload is distributed among the nodes in the cluster. 

The availability of multiple CPU units or CPU cores in a cluster also increases concurrency, where 

a job is split into tasks that are executed in parallel on the different CPU cores. In addition cluster 

deployment facilitates high availability, data processing does not halt due to the failure of a single 

machine, and the workload is redistributed amongst the active nodes. This ensures system fault 

tolerance. Of course if there is multiple server failure such that the cluster does not have the 

required quorum to continue operations, the whole system is affected. 

Stream processing is required when computations have to be initiated and done fast and 

continuously (Wahner, 2014), which is exactly what this project intended to achieve by applying 

stream processing to the real-time processing of CDR data.  

Stream processing platforms can be classified in to two classes; native streaming platforms and 

micro-batching platforms. In the native streaming platforms, events are processed one by one as 

they arrive in to the platform in a continuous manner. They are also referred as the true 

streaming platforms. In micro-batching, events are grouped into mini batches of data then 

processed as a stream i.e. stream of batches the result of which is a mini-batch of results. Such 

platforms combine batching and streaming in order to obtain the best of both stream processing 

and batch processing worlds, batch processing is known to handle large sets of data well 

(volume), while streaming is renowned for handling fast incoming data (velocity) (Wang Y. , 

2016). This is usually at the cost of latency as native streaming platforms have lower latencies (in 

milliseconds) than micro-batching systems (in seconds). 

Some of the popular streaming platforms in use today include Apache Storm, Apache Storm 

Trident, Apache Flink, Apache Spark Streaming, Apache Kafka Streams and Apache Samza which 
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are hosted by the Apache Software Foundation (Mayo, 2016). There are also commercial based 

platforms such as SQLstream Blaze, IBM Infosphere streams, TIBCO’s event analytics, Oracle 

stream analytics, Informatica among others. Nevertheless, we are not keen on evaluating 

proprietary platforms as they require use of specialized tools, licenses and cost. Moreover, based 

on previous benchmarks, there is no much difference in performance between the commercial 

and open source systems, with some open source platforms having better performance. 

To choose an appropriate streaming platform for this research project, eight feature 

characteristics were used to perform a platform comparison. There is currently no industry 

standard on the features one has to use, with different research papers using differing features. 

These eight features were chosen as they encompass the desirable features that a critical stream 

processing system should have for stability and performance. 

2.2. Selecting a Stream Processing Platform 

The first step after deciding on the streaming platforms to compare is to determine the 

distinguishing features to use to perform the comparison. Different researchers have used 

different features in their comparisons.  (Bockermann, 2014), used the metrics of scalability and 

distribution, usability and process modelling, execution semantics and high availability, message 

processing semantics(guarantees), state handling and fault tolerance to compare three 

platforms. These three platforms were selected based on message delivery guarantee and 

platform adoption. The three platforms all guarantee exactly-once message processing, this 

means that there is no loss or duplication of data records. This is important for processing CDRs 

as duplicate data can lead to incorrect reports, billing information, wrong aggregations among 

other problems. In addition, loss of any CDR data is non-negotiable. The three platforms also 

have high adoption rates by companies, Apache Storm boasts of more than 80 companies (Storm, 

2017) using Apache Storm (this value is for both Apache Storm and Apache Storm Trident), 

Apache Flink is being used by 32 companies (Flink, 2017) while Apache Spark has 

implementations in more than 90 companies (Spark, Project and Product names using "Spark", 

2017) (this figure is for all the libraries running on top of Apache Spark). 
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(Zapletal, 2016), used the metrics of streaming model, API, guarantees, fault tolerance, state 

management, latency, throughput and maturity to perform comparisons of Apache Storm 

trident, Apache Spark Streaming and Apache Flink.  

The list of features to use in the comparisons depends a lot on the use case at hand, for this 

research, we settled on eight metrics as discussed in the following sections. The metrics of latency 

and throughput were not included in this comparison as they are among the metrics that were 

being measuring for this research.  They are also classified as performance metrics, performance 

of a platform is expected to differ based on several factors which include the use case at hand, 

message size, infrastructure cluster size and infrastructure setup and optimization.  

i. Fault Tolerance and High Availability 

Fault tolerance describes the ability of a platform to withstand failure, to continue 

operating during failure and to recover to a previous stable state with minimal data loss 

or corruption. The recovery time should also be minimal. When it comes to CDR 

processing, this is a desirable feature as it ensures that minimal or no CDR data is lost or 

corrupted, lost CDR data will lead to misleading reports. Long system recovery times could 

lead to CDR data buffering at the data sources, and depending on their storage capacity, 

this could become problematic. It also means that when the system is finally operational, 

there will be a backlog of data to be processed which could destabilize the system, 

rendering real-time processing of CDRs ineffective. 

Of interest, is to understand what fault tolerance mechanisms are in place for each 

platform and the actions involved in recovering a failed system. How do the various 

components of a cluster recover from failure? 

Fault tolerance has a direct correlation to high availability. A system that encompasses 

high availability is capable of tolerating failures better. So, how do the three platforms 

being compared implement high availability? How is their architecture instrumental in 

providing high availability? Does this involve both software – tasks and processes and 

hardware? Are there any single points of failure within a cluster? What is the effect when 

a single point of failure element goes down and are there any practical mitigations? 
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ii. Scalability 

Scalability is the ability to handle increasing workload by adding system components such 

as RAM, disk, CPU (vertical scaling) and/or adding more nodes to the cluster (horizontal 

scaling). The interesting questions to ask under scalability include; 

Does scaling the cluster lead to better performance? Does the platform scale linearly? 

Does the addition of components and nodes require any downtime? How is data stored 

and accessed by the nodes comprising a cluster? What is the size of the largest cluster of 

each of the platforms? This is useful in denoting the infrastructure limits of each platform.  

Scalability is instrumental to telecommunication companies, as the trend currently is to 

diversify products and enter into new industries in an effort to increase profit margins. 

Technology is also growing very fast, everyone nowadays owns a computer or more in 

their hands, smartphone use is ubiquitous and these communicate with 

telecommunication companies networks all the time. This has led to a linear growth in 

CDR data. CDR data also increases during special occasions such as school holidays and 

calendar holidays, successful promotions will also lead to an increase in CDR data. With 

scalability therefore, it should be easy to add power with minimal downtime to an existing 

cluster to meet processing demands as well as be able to scale down when CDR data 

reduces thus conserving system resources. 

iii. Message Delivery Guarantees 

How many times does a message need to be delivered to the platform for it be 

successfully processed?  

 Exactly once whereby a message is delivered only once, the message can neither 

be lost or duplicated 

 At least once whereby multiple attempts are made to deliver a message 

 At most once whereby a message can be delivered zero or one times, so messages 

may be lost (Zapletal, 2016) 
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What are the inherent mechanisms in each platform that ensures exactly once message 

processing? Are they configured by default or do they have to be manually activated? 

Does the platform guarantee exactly once message processing even after failures? 

With respect to CDR processing, exactly once message processing is desired, this is 

because loss of CDR data or duplicated CDR data will lead to distorted reports and 

analysis. 

iv. Adoption Level and Project Maturity 

How many companies are actively using the platform to implement Big Data solutions? 

Platforms with more users are desirable as it shows trust in the platform and that the 

platform is stable and offers beneficial features for Big Data processing. How many active 

committers does the platform have? Committers are people chosen by each platform to 

perform tasks such as code development, maintain the code, bug reports, software 

patching for purposes of fixing bugs and documentations. A platform with a huge 

committer base is able to move faster, it is able to roll out required features and patches; 

it means it has a sufficient talent pool for maintaining the platform now and in the future. 

This is important as one would use a platform whose longevity is assured. How many 

updates are rolled out by the platform in a year? When was the last software release? We 

need to be convinced that the platform is actively being developed to add more features 

and maintained and that bugs are fixed promptly. Big Data is rapidly evolving and each 

platform has to ensure that it is keeping up. 

v. Streaming Model 

How does each platform achieve streaming? Is the platform a natively streaming platform 

or does it use micro-batching? What data structures are used to store and process data? 

What is the mechanism behind the streaming model employed? Does the platform 

support iterative processing? Iterative processing is useful in processing repetitive jobs 

that needs data to be stored in memory. With iterative processing, data does not need to 

be fetched and loaded into memory every time it is needed but can be cached to be used 

later. Fetching of data especially from persistent storage such as the filesystem is 
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expensive in terms of resources and slow. Iterative processing leads to faster processing 

times. 

This is useful in CDR processing, especially when we consider fetching large chunks of data 

from the filesystem to be loaded into memory, and CDR data is voluminous. Also of note 

is that if data does not fit in memory, then it will be spilled to disk. CDR processing can 

benefit from stream processing combined with other form of processing such as graph 

processing or machine learning and iterative processing would be advantageous in such 

scenarios. 

vi. Multiple Library Support 

Does the platform include other libraries or does it perform stream processing only? For 

this research, only streaming platforms are required, however, there is an abundance of 

use cases for CDRs, and we are already foreseeing use cases that require SQL, Machine 

learning and Graph processing. The ideal platform should include these capabilities 

vii. Programming Language Support 

It is important for a platform to support multiple programming languages, this is so as not 

to lock out users who are not well versed in the particular language supported by the 

platform. For this research project, our programming language proficiency dictated that 

we source for a platform that supports Java, with the limited research project timelines, 

it is not wise to start learning a new programming language. 

viii. State Management 

State management deals with how the platform maintains state as well as the internal 

mechanisms for state management. State is required to execute complex execution logic, 

by keeping track of operations that have completed, those in progress and those that are 

yet to start. Some platforms maintain and monitor state themselves, without allowing 

external access to operation state, while other platforms provide interfaces for managing 

state, which is an advantage. Stream processing can be divided into stateless and stateful 

stream processing. In stateless stream processing, applications receive streams of records 

and generate a result based on the information of the last record alone (Celebi, 2016), 

this is enough for simple stream applications involving simple transformations. Complex 
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event processing requires stateful stream processing which keeps the state of the 

variables and operations taking place in an application. State management is critical for 

exactly once message processing.  

The results of this feature comparison are as presented in Appendix 2, from which Apache Spark 

Streaming was selected as the project’s platform of choice.  

While we had locked in the processing platform to use, the platform that would act as the data 

source and generate streams of record and a platform for storing the processed data had yet to 

be identified. 

Apache Kafka was selected to act as the data source, Apache Kafka is a fault tolerant, scalable 

publish-subscribe messaging system that enables the development of distributed applications. 

Apache Kafka has an impressive adoption rate, in America, it is in production in nine out of the 

top ten telecommunication companies (Asay, 2017). It is compatible with Apache Spark 

Streaming and is used to generate streams of records that can be ingested by Apache Spark 

Streaming reliably. 

Apache Cassandra is a scalable, column family, NoSQL database. In previous benchmarks against 

similar NoSQL databases such as Couchbase, HBase and Redis it outperformed them in terms of 

throughput. (Rabl, Sadoghi, & Jacobsen, 2012). Apache Cassandra was chosen as the database 

platform for storing data persistently. 

In the next sections, we shall go through the platforms that were used for this project. 

2.3. Apache Spark Streaming 

Apache Spark Streaming is a library on top of Apache Spark that deals with stream processing. It 

is a micro-batch stream processing platform that divides incoming stream of records into batches 

of records according to a configurable parameter known as the batch interval. The batch interval 

denotes the frequency at which batches are generated and is specified in terms of milliseconds 

or seconds, supporting durations as low as 500 milliseconds. 

The core abstraction in Apache Spark Streaming is the discretized stream also known as a 

dstream. A dstream is a continuous sequence of RDDs representing a continuous sequence of 

data (Spark, Spark Streaming Programming Guide, 2017). A Resilient distributed dataset (RDD) is 

an immutable collection of elements that can be operated on in parallel and is the core 
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abstraction in Apache Spark (Spark, 2017). Since RDDs are immutable, it then follows that 

dstreams are also immutable. Apache Spark provides operations that transform dstreams from 

one format to another, these are known as transformations. Transformations provide a way of 

applying computing logic, mostly in functions, to data in dstream form to generate a required 

result in dstream form. There is an array of transformations available that include map, flatmap, 

filter, reduceByKey etc. (Spark, Spark Streaming Programming Guide, 2017). There are two types 

of transformations 

1. Narrow transformations 

These transformations only act on data that resides on a single partition on the source 

RDD. These include map and filter. 

2. Wide transformations 

These transformation act on data that may reside on multiple partitions of the source 

RDD. During execution, Apache Spark Streaming may have to fetch data from several 

partitions spread across the cluster, this is known as RDD shuffling. Examples of wide 

transformations are reduceByKey, groupByKey, repartition and join 

This project primarily used the map transformation which returns a new dstream by passing each 

element in the source dstream through a function (Spark, Spark Streaming Programming Guide, 

2017). Other than transformations, there exists actions, actions trigger the actual execution of 

the dstream operations; examples are print and foreachRDD. Execution of the code in a 

streaming application will not start until an action has being called. This is known as lazy 

evaluation, transformations in Apache Spark are lazy by nature. When a transformation is applied 

on a dstream, it is not executed immediately, instead Apache Spark Streaming keeps a record of 

all the transformation that have been applied to a dstream in a direct acyclic graph (dataflair, 

2017). 

A direct acyclic graph (DAG), consists of a dstream and the transformations to be applied to that 

dstream. On execution of an action such as print, the DAG is submitted to the DAG scheduler for 

computation. During stream processing, one is able to visualize the DAG from Apache Spark 

Streaming User Interface, detailing the transformations that have been applied. 
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Apache Spark Streaming provides the Apache Spark Streaming User Interface for purposes of 

monitoring job execution and job performance. The user interface provides other details such as 

batch processing time, number of records processed, scheduling delay, job information, task 

information and other information. 

2.3.1. Apache Spark Streaming Architecture 

Apache Spark Streaming follows the master/slave architecture consisting of two major node 

types, two major daemons and a cluster manager (Dezyre, Apache Spark Architecture Explained 

in Detail, 2017).  

2.3.1.1. Master and Worker Nodes 

The two major node types in an Apache Spark Streaming cluster are 

1. The master node(s) 

The master node is responsible for coordinating the various workers and their executor 

processes in standalone mode. In the presence of a cluster manager, the master node 

requests for resources from the cluster manager and assign them to the executor 

processes running in the worker nodes. This project’s cluster implementation consisted 

of a master node and a secondary master node, only one was active at any moment. The 

driver program was also run in the master node. 

2. The worker nodes 

The worker nodes are responsible for the actual execution. They contain the executor 

processes, which perform a series of tasks concurrently and return results to the master 

or driver program. One worker node can contain several executor processes, this depends 

on the resources available, it is however advisable to have one executor process per 

worker node. Executors are launched once at the beginning of a spark application and run 

for the entire lifetime of that application. Executors also provide in-memory storage for 

RDDs that are cached by the application (dataflair, 2017).  

2.3.1.2. Driver and Executor Processes 

The driver process is launched when the main method of the application is called. The main 

method of the application is called when an application is submitted to Apache Spark Streaming 

using the spark-submit command. In local mode, the driver process executes on the same node 
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that submitted the application. In cluster mode, where Apache Spark Streaming is executed on a 

cluster sharing the workload, the driver process will run on any node in the cluster. The driver is 

responsible for running the SparkStreamingContext, similar to an application session. The driver 

is responsible for several activities including 

 Converting the application into a direct acyclic graph to be executed by the executors as a 

series of tasks 

 Storing the metadata of RDDs and their partitions 

 Exposing the information about the running Apache Spark Streaming application on the 

Apache Spark Streaming UI. 

 In the presence of a cluster manager, requesting  for resources required to launch the 

executors 

There is only one driver per application program.  

A running Apache Spark Streaming cluster consists of multiple executor processes, running on 

the worker nodes. The executors are launched by the master node or a cluster manager and run 

throughout the lifetime of an Apache Spark Streaming application. The executors receive tasks 

to be performed from the driver program, execute these tasks concurrently and send back the 

results to the driver program.  

2.3.1.3. Cluster Manager 

The use of a cluster manager is not mandatory, Apache Spark Streaming can be executed in local 

mode, on a single machine. This setup is not advisable for production deployments as it does not 

account for fault tolerance. 

Apache Spark Streaming is compatible with three cluster managers, namely, Apache Hadoop 

Yarn, Apache Mesos and Spark Standalone. Apache Hadoop Yarn was employed for cluster 

implementation as it came bundled with the Hadoop distribution– Hortonworks Data Platform 

(HDP) -installed in this project’s cluster. Hadoop distributions provide tested, multiple 

components that work well together, in an easy to install format. In addition, Apache Mesos is 

not provided with this HDP and would require extra configurations to make it work. 

Figure 2 shows the components of an Apache Spark Streaming cluster which is using Apache 

Hadoop Yarn as a cluster manager and Apache Hadoop HDFS as a distributed filesystem. 
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Figure 2: Yarn Based architecture for Apache Spark (Stackoverflow, 2016) 

2.4. Apache Hadoop Yarn 

Apache Hadoop Yarn is a cluster management tool that provides the functionalities of cluster 

management and job scheduling. In an Apache Spark Streaming cluster, Apache Hadoop Yarn 

centrally manages a pool of cluster resources and dynamically shares them between all 

frameworks running on it. 

Apache Hadoop Yarn also follows a master/slave architecture and consists of two main 

components 

1. Node Manager 

The Node Manager is a daemon that runs on each slave node. Each slave node in an 

Apache Hadoop Yarn cluster provides computational resources such as CPU and memory 

to the cluster forming a pool of resources that a resource manager can use to allocate 

resources according to application needs. Each node manager tracks the available 

resources on its slave nodes and sends periodic updates to the resource manager. The 

node manager is also responsible for starting the executor processes on the Apache Spark 

Streaming cluster worker nodes, the executor processes run within the Apache Hadoop 

Yarn containers. 
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A node manager further contains two components; containers and application master. A 

container is a collection of all the resources required to run an application and is 

responsible for the actual task execution. An application can have several containers. The 

node manager manages the lifecycle of containers, it launches containers as instructed 

by the resource manager and continually monitors the containers and their resource 

usage and reports back to the resource manager. The application master is a per-

application process and is responsible for negotiating for resources with the resource 

manager and working with the node managers to execute and monitor tasks 

2. Resource Manager 

The resource manager is a daemon that runs on the master node, only one resource 

manager is active in an Apache Hadoop Yarn cluster at any time. The resource manager is 

responsible for managing resources in the cluster and allocation them to the applications 

as per their requirements. The resource manager consists of a scheduler and applications 

manager. The scheduler is a pure scheduler, only allocates resources to applications but 

does not involve itself in the management or monitoring of applications. The applications 

manager receives job submissions and maintains a cache of completed applications for a 

developers use. 

These components are shown on Figure 2. 

2.5. Apache Hadoop HDFS 

An Apache Spark Streaming cluster requires a distributed file system, this facilitates data storage 

and access by the nodes in the cluster and also helps achieve fault tolerance and scalability. 

Apache Hadoop HDFS commonly known as HDFS is an open source Java based, distributed file 

system for storing large volumes of data on commodity hardware. Files are split onto large blocks 

sized at either 64 Megabytes or 128 Megabytes. HDFS is fault tolerant, it achieves this by 

replicating blocks of data among the nodes in a cluster, the default block replication level is 3; 

this means that a block is available on at least three nodes in a cluster. A 

HDFS is recommended over other distributed file systems such as SAN (Storage Attached 

Networks) due to the extra network communication overhead that can cause performance 

bottlenecks (IBM, HDFS - Apache Hadoop Distributed File System, 2017). 
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Apache Hadoop HDFS has a master/salve architecture and primarily has two type of nodes 

1. The name node 

Each cluster can only have one active name node at a time, which runs on the master 

node. The name node is responsible for managing the filesystem namespace and 

controlling access to files by cluster nodes (Hadoop, 2013). 

2. The data nodes 

The data nodes run on the slave nodes, a cluster can have several data nodes, usually one 

per machine. Data nodes manage the storage attached to the nodes they are running on 

and are responsible for service read and write requests to the cluster nodes (Hadoop, 

2013). The data nodes also perform block creation, deletion and replication upon 

instructed by the name node. 

These components are shown on Figure 2. 

2.6. Apache Cassandra 

Apache Cassandra is a distributed, NoSQL, column family database designed to store large 

amounts of data and deliver high availability without a single point of failure (Datastax, 2017). In 

an Apache Cassandra cluster, all nodes play an identical role, there is no concept of master node 

and therefore unlike other platforms, no single point of failure. It is highly scalable and fault 

tolerant and provides very high write throughput and good read throughputs (Perera, 2012). It is 

known to handle petabytes of data spread across 75,000 nodes (Datastax, 2017) and usually 

outperforms other similar NoSQL databases in performance benchmarks. 

The key components of Apache Cassandra are 

1. Token 

Apache Cassandra uses a token system to work out which nodes in the cluster will store 

what partition of data. A token is a range of hashes defined by a partitioner. Tokens are 

calculated and assigned when a new node joins a cluster. 

2. Data center 

A datacenter is a collection of nodes. A node is any machine connected to an Apache 

Cassandra cluster. Each datacenter has a unique name to identify it, nodes use this unique 

name to know which datacenter they belong to. When a new node is added to the cluster, 
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one has to assign it to a datacenter, otherwise it will form part of the default datacenter. 

Nodes in a datacenter are all equal, and according to the token configuration and 

replication strategy, share workload and data. A collection of datacenters is known as a 

cluster. 

3. Seed node 

A seed node is a node within a datacenter from which a new node learns about the cluster 

and internode communication. Each datacenter must at least have one seed node. 

4. Commit log and memtable 

When writes occur in an Apache Cassandra database, data is stored in memory in a 

memtable as well as on disk, on commit logs. Commit logs are durable structures that are 

designed to hold data even during power failures and are used for recovery in case of 

failures. Use of commit logs is configurable through a parameter known as 

durable_writes. The memtable stores data written to it in order until a configurable limit 

is reached, after which data is flushed to the SSTables. During read operations, if data is 

still on a memtable, read operations are fast. 

5. SSTables 

SSTables are immutable data structures located on disk, and are populated with sorted 

data after the memtables are flushed. Each memtable flush results in a new SSTable file, 

write heavy database operations could lead to multiple SSTables. During read operations, 

if data is located in the SSTables,the read operation has to query all the SSTable files, this 

makes the read operations in Apache Cassandra slower than the writes (Datastax, 2017). 

Periodically, new SSTables are created and old SSTables are consolidated through a 

process known as compaction 
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Figure 3 shows the write process in Apache Cassandra 

 

Figure 3: Apache Cassandra Write Process (Ma, 2014) 

Compared to common relational databases, Apache Cassandra uses similar concepts of 

databases and tables. A database in Apache Cassandra is known as a keyspace. When defining a 

keyspace, one also defines the replication strategy to use, which determines how data in that 

keyspace will be replicated amongst the available cluster nodes. One also defines whether write 

operations will write data to the commit logs on the file system. 

A table on the other hand is known as a column family which must contain a partition key 

(primary key) and may contain several columns, each with a unique name and data type and 

clustering keys. A partition key is responsible for distribution of data across the cluster nodes. 

Clustering keys serve the purpose of sorting data within a partition. Just like relational databases, 

Apache Cassandra also has its own language for issuing commands to a database, known as CQL 

– Cassandra query language. 

 

2.7. Apache Kafka 

Apache Kafka is a distributed publish-subscribe messaging systems that facilitates the 

development of distributed applications by building real-time data pipelines. It is compatible with 

Apache Spark Streaming and is often used as a data source, generating streams of data for 

ingestion by Apache Spark Streaming. It is scalable and fault tolerant and capable of handling a 

trillion messages per day (Confluent, 2017) 
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The key components of an Apache Kafka cluster include 

1. Topics and partitions 

Data in an Apache Kafka cluster is stored in a topic. A topic is a stream of messages 

belonging to a particular user-defined category. Each topic has a unique name and one or 

more partitions. Each partition is stored in files on the filesystem, distributed and 

replicated among the cluster node according to the configured partitions. Each topic 

consists of one or more partitions. Partitions are crucial as they define parallelism in 

Apache Kafka, more partitions translate to more throughput, as partitions can be written 

to and read from in parallel. 

2. Brokers 

Each node in an Apache Kafka cluster is known as a broker. Brokers are responsible for 

storing and replicating the received data in topics. Brokers are stateless in that they do 

not track messages read by consumers, consumers have to keep track of messages they 

have consumed themselves. 

3. Producers 

Producers send data to one or more brokers which then append this data to a partition. 

A producer is an application running on a node, the application can be developed using 

python or Java and is therefore portable to different platforms. 

4. Consumers 

Consumers read data from one or more topic partitions. Consumers subscribe to a topic 

or a series of topics and then reads data from them by pulling streams of records. An 

example of a consumer is Apache Spark Streaming. 

An Apache Kafka cluster may consist of one or more brokers that are neither of equal status nor 

in a master/slave architecture. The brokers however, need a mechanism for communicating and 

coordinating operations within a cluster. This is where Apache Zookeeper comes in. Figure 4 

shows the various components of Apache Kafka including the interrelationship with Apache 

Zookeeper 
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Figure 4: Kafka Ecosystem 

2.8. Apache Zookeeper 

Apache Zookeeper is a distributed, scalable, fault tolerant co-ordination platform that provides 

services such as group membership, leader election, coordinated workflow and configuration 

services as well as distributed data structures such as queues and locks. 

Apache Kafka uses Apache Zookeeper for coordinating its brokers, each broker in a cluster 

coordinates with other brokers in a cluster through Apache Zookeeper. Apache Zookeeper keeps 

a list of all the brokers in the Apache Kafka cluster it is managing, as well as lists of topics and 

partitions. Apache Zookeeper also notifies consumers and producers of any new brokers or failed 

brokers ensuring that data is not sent to a failed broker and consumers do not try to connect to 

a dead broker. 

Apache Zookeeper is also used in other platforms, it works well with Apache Hadoop HDFS, 

Apache Hadoop Yarn and Apache Spark Streaming. All these three platforms have master/slave 

architectures. While a cluster can have multiple slave nodes ensuring high availability and fault 

tolerance, only one master node can be active at any one time. However, having a single master 

node in a cluster makes it a single point of failure. Therefore, the Apache Hadoop HDFS, Apache 
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Hadoop Yarn and Apache Spark Streaming clusters have the provisions for running a standby 

master nodes but have no way of coordinating or monitoring the master nodes. Apache 

Zookeeper performs this role in these three clusters, as well as other additional roles, chief 

among them being leader election. If a master node fails, Apache Zookeeper should notice this, 

and initiate the activities required for making the standby master node, an active master node.  

2.9. Graphite and Grafana 

Once a cluster has been installed using the platforms discussed in the preceding sections, there 

needs to be an approach for monitoring them in terms of performance. Both Graphite and 

Grafana are monitoring and visualization tools that store numeric time series data and produce 

graphs on demand. Grafana has the advantage of being more flexible when it comes to the 

creation of reports, having an array of report formats that can be used to render graphs. It 

however cannot collect raw data from cluster nodes. 

On the other hand, graphite has one reporting format, the linear graph, but is capable of 

periodically collecting raw data from cluster nodes, through a daemon known as collectd. 

Collectd is installed on each cluster node and runs in the background, collecting data at intervals 

based on a configuration file with details on server metrics to monitor and how to monitor them. 

This data is then forwarded to a centrally located graphite server which stores this data in Round 

Robin Database (RRD) format. 

Grafana then pulls performance data from Graphite and displays them in graphs manually 

created by users 

 

2.10.  Related Work and Research Gap 

A research conducted by (Bouillet, et al., 2012) aimed at the processing of CDRs using stream 

processing and managed to process 6 billion CDRs per day. Their solution employed IBM 

Infosphere streams platform, a commercial product and a native stream processing platform. 

Their research project is an experience report detailing their experience in setting up a stream 

processing solution for processing CDRs, it does not provide information on the performance 

metrics of latency and the resource usage metrics of disk, memory and CPU. Furthermore, it 

provides information on the performance metric of throughput, not in seconds, but per day – 6 
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billion CDRs per day. Without the latency and throughput results in seconds, it is difficult to 

conclude whether their solution was a real-time CDR data processing solution. The platform of 

choice used in their research project, IBM Infosphere streams is a commercial product that 

requires paying for licenses, they do provide a developer edition that can be executed on none 

production systems. IBM Infosphere streams inherently guarantees at least once semantics by 

using re-playable data sources. Exactly once processing semantics are dependent on using 

external systems that can detect duplicates or restore state after a failure. (Bouillet, et al., 2012), 

made use of bloom filters for deduplication 

(Rebaca, 2017), used the Apache Kafka, Apache Spark MLib, Apache Spark Streaming and Apache 

Cassandra platforms to create advanced analytics from streaming CDR data. Rather than evaluate 

the performance of the streaming platform, they dominantly used Apache Spark MLib, 

particularly, KMeans to perform cluster analysis. The versions of the platforms used are also 

outdated, this research project makes use of newer platforms that are assured to have better 

performance and features.  Their white paper did not provide details on the infrastructure used 

in terms of hardware. 

In their paper, (Agung & Kistijantoro, 2016) discuss the design and implementation of a new 

parallel processing system for CDR processing using Hadoop MapReduce. Their solution was able 

to achieve throughputs of 67,000 records per second with latencies as high as 300 seconds. Their 

platform choice is interesting as they selected to use Hadoop MapReduce in a time where faster 

and better platforms exist. They provide results for the resource usage metric of CPU utilization 

but not for memory or disk utilization. 

From these, we saw an opportunity to implement a real-time CDR processing platform using 

Apache Kafka, Apache Spark Streaming and Apache Cassandra platforms, all of which are open 

source platforms. Apache Spark Streaming is highly scalable and fault tolerant, and most 

importantly, guarantees exactly once message processing. This research project also measured 

the performance metrics of latency and throughput in seconds, the results of which aided in the 

determination of whether the installed solution is capable of real-time CDR processing. The 

resource usage metrics of CPU utilization, disk utilization and memory utilization were also being 

measured. This was useful in understanding how resources are utilized in a real-time processing 
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solution, as well as aid in detecting any resource constraints that would affect the performance 

of this solution. 
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CHAPTER THREE 

METHODOLOGY 

3.0. Introduction 

This chapter revolves around the methodology used in the design, implementation and 

evaluation of real-time processing of CDR data. It includes details on the research design used, 

system analysis, design and integration, software design and development and how data 

collection was achieved. 

The research project required two major components to be set up for the experiment 

1. The system infrastructure 

This is the underlying environment installed for the project encompassing the virtual 

machines provisioned for the project plus the stream processing clusters and tools installed. 

2. Software 

This is the Java stream processing prototype developed for the real-time processing of CDR 

data. The prototype was a command line application and was executed on the Apache Spark 

Streaming cluster as an application. 

The keyword ‘system’ is used to denote the complete implementation, i.e. the system 

infrastructure and software required to process CDR data in real-time, end to end. 

The research design used for this project is based on the experimental research design which 

involved conducting an experiment to determine whether real-time processing of CDRs is feasible 

and in particular using Apache Spark Streaming. To answer this question, data on the 

performance metrics of throughput and latency and resource usage metrics of CPU utilization, 

disk utilization and memory utilization were collected and analyzed. Our targets were to achieve 

average throughput rates of 100,000 records per second and latencies of less than 60 seconds. 

These targets were based on values obtained from the ‘Quarter 3 sector statistics report of 2016-

2017’ by the communication authority of Kenya (CAK, 2017), the top telecommunication 

company in Kenya recorded a total of 12,696,109,430 SMS messages in a period of 92 days, this 

translates to 95,834 SMS messages per second assuming even distribution of traffic throughout 

the day. 
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The experimental research design enables us to examine how the variables related to the system 

and software affect the targets set. 

This chapter has been further divided into the following three sections, which were performed 

in order 

1. System infrastructure installation 

Three clusters for Apache Kafka, Apache Spark Streaming and Apache Cassandra were 

installed on nine virtual machines. Apache Kafka acted as the input source for streams of 

records for Apache Spark Streaming to process, the results of which were stored in a 

database in Apache Cassandra. This section provides details on how these three clusters 

were installed and configured. 

2. Software development 

This involved the development of a Java stream processing prototype for Apache Spark 

Streaming whose purpose was to receive streams of data, process the data while at the 

same time filtering out surplus data and storing the processed data into Apache 

Cassandra. This section provides details on the software design and implementation. 

3. Experimentation 

This section provides a discussion on how the experiment was performed, the fixed and 

variable parameters used, the evaluation metrics used and how result data collection of 

performance metrics of latency and throughput and the resource usage metrics of CPU 

utilization, disk utilization and memory utilization performed. 

3.1. System Infrastructure Setup 

Three clusters were installed for this research project, one each for Apache Kafka, Apache Spark 

Streaming and Apache Cassandra. The clusters were installed on a virtualized environment which 

had enough resources to accommodate this research project’s needs. Nine virtual machines were 

used for this project, 2 virtual machines for Apache Kafka, 2 virtual machines for Apache 

Cassandra, 4 virtual machines for Apache Spark Streaming and 1 virtual machine for Apache 

Ambari. 

Due to the extensive amount of work required in the installation and configuration of three Big 

Data clusters, Apache Ambari, an open-source tool that facilitates the rapid provisioning of 
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Hadoop clusters was deployed. Apache Ambari eased the administration of the clusters as well, 

instead of performing configurations per host, Apache Ambari was used to distribute 

configurations to the necessary nodes in the cluster, in parallel. Apache Ambari also provides 

cluster monitoring services, generating and displaying alarms as well as sending out e-mail alerts. 

It is also worth mentioning that the Hadoop distribution from Hortonworks Data Platform (HDP) 

software bundle was utilized. Hadoop distributions pull together all the enhancement projects 

present in the Apache repository and present them as a unified product so that organizations 

don’t have to spend time on assembling these elements into a single functional component 

(Dezyre, 2016). HDP was selected as it is completely open source, unlike similar distributions such 

as Cloudera and MapR which include premium models. 

The infrastructure setup is as shown on Table 1 

Table 1: Infrastructure setup 

 Apache 

Kafka/Apache 

Zookeeper 

Cluster 

Apache Spark 

Streaming Cluster 

Apache 

Cassandra 

Cluster 

Apache Ambari 

Nodes 2 4 2  1 

Node role Reads from file, 

generates 

streams of data 

Performs 

processing of 

input data 

Column-

oriented 

Database 

Cluster 

provisioning and 

monitoring tool 

Operating 

system 

RHEL 6.5 RHEL 6.5 RHEL 6.5 RHEL 6.5 

CPU 8 vCPU 16 vCPU 16 vCPU 4 vCPU 

Memory 16 GB 24 GB 48 GB 8 GB 

Disk Size 100GB X 6 200 GB X 9 200 GB X 8 350 GB X 1 

Network 

bandwidth 

1 Gbps 1 Gbps 1 Gbps 1 Gbps 

Filesystem EXT4 HDFS EXT4 EXT4 
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 Apache 

Kafka/Apache 

Zookeeper 

Cluster 

Apache Spark 

Streaming Cluster 

Apache 

Cassandra 

Cluster 

Apache Ambari 

Software List JDK 1.8.0_112 JDK 1.8.0_112 JDK 1.8.0_45 JDK 1.8.0_112 

Python 2.6 Python 2.6 Python 2.7 Python 2.7 

HDP 2.6.1.0 

(bundled 

software) 

HDP 2.6.1.0 Datastax 

Cassandra 

3.0.14 

HDP 2.6.1.0 

Apache Kafka 

0.10.1 

Apache Spark 

2.1.1 

Datastax 

Cassandra 

3.0.14 

Apache Ambari 

2.5.1.0 

Apache Zookeper 

3.4.6 

Hadoop Yarn 2.7.3 Grafana 2.6.0 Graphite 0.9.6 

  Apache HDFS 

2.7.3 

  

 

The cluster sizing of nine nodes was selected based on the performance requirements of 100,000 

records per second with latencies of less than 60 seconds. A single node in an Apache Kafka 

cluster is capable of generating more than 100,000 records per second, indeed in this project’s 

setup, the installed Apache Kafka cluster was able to achieve throughputs of 150,000 records per 

second on a single node. It is however advisable to build in fault tolerance in all the three clusters, 

thus the second node. In addition, the two Apache Kafka nodes were also running the additional 

services of Apache Zookeeper as well as playing the role of producer. In production deployments, 

these would be on separate, dedicated nodes. 

We settled on an Apache Streaming cluster of 4 nodes, one master node and three worker nodes. 

This was primarily due to fault tolerance, one of the three worker nodes was also configured as 

a standby master node, and in case of failure, would take the role of master node. Therefore the 

number of worker nodes would reduce to two and still be fault tolerant. 
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The Apache Cassandra cluster had two nodes, also for fault tolerance purposes. In addition, since 

Apache Cassandra scales linearly (Kuhlenkamp, Klems, & Ross, 2014), the additional second node 

provided a performance enhancement. 

3.2. Prototype Development 

In this section, a discussion on the software development model used to develop a stream 

processing prototype for receiving streams of data, processing them and storing the results into 

a database, and the steps implemented for the development model is presented 

3.2.1. Software Development Model 

This research project employed the classic waterfall software development model since the 

requirements for this project were already known and clearly defined. Moreover, certain tasks 

had to be accomplished before other dependent tasks could begin. 

The specific stages carried out in the development of the stream processing prototype include 

3.2.1.1. Requirements Definition and Analysis 

Requirements that the prototype should possess were identified and further divided into 

functional and non-functional requirements 

 Functional requirements 

These are requirements that a software application should have and are related to the 

functionalities and behavior of that application. Three functional requirements 

appropriate for this project were recognized 

 The application should be capable of ingesting streams of records generated 

from Apache Kafka 

 The application should be capable of filtering out unwanted data from each 

stream record 

 The application should be able to store processed data into an Apache 

Cassandra database. 

 Non-functional requirements 

These are requirements that specify the criteria that was used to assess the operation of 

an application in terms of quality. We selected to assess the prototype that was 
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developed based on the performance requirement of throughput and latency. Even 

though these are system wide targets, the developed prototype played a huge role in 

ensuring that they were achieved. 

 The application is required to process records at an average minimum rate 

of 100,000 records per second. 

 The application is required to process records at an average latency of less 

than sixty seconds 

 

3.2.1.2. Prototype Design and Development 

A stream processing prototype was developed in Java, the function of the prototype being to 

receive streams of data from Apache Kafka, process this data, filtering out fifteen fields of interest 

and finally storing the processed data in a database on Apache Cassandra. 

Java was selected as the programming language of choice, as we had previous experience with 

the language. The other programming language options were Scala and Python of which we had 

limited experience. The Java version used was JDK 1.8.0_45 as it was compatible with Apache 

Spark Streaming version 2.1.1. The Integrated Development Environment (IDE) used was 

Netbeans 8.2. 

To interface the developed prototype with Apache Kafka, the direct stream approach in 

combination with Apache Kafka consumer APIs was applied. We used an Apache Cassandra 

database and to interface to this database we used the Apache Spark Cassandra connector by 

Datastax.  

The stream processing prototype developed contained two classes, the first class was for the 

receiving, processing and storing streams of data while the second class acted as a mapper class 

for storing rows of records into Apache Cassandra. Apache Cassandra used this mapper class to 

determine which fields to map to the columns in the Apache Cassandra table. The mapper class 

contained a series of getter and setter methods that had to be identical to the column definitions 

in the table created on Apache Cassandra. 

Unified modelling language (UML) was elected for system modelling, UML is considered to be the 

de-facto modeling language in use today, it as well supports object oriented development which 
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is a plus as the prototype we were about to develop was object-oriented. A class diagram was 

created in order to show the relationship between the two classes. The class diagram is as 

depicted in Appendix 1 which shows two classes, the streaming class and the mapper class. We 

used the anchor arrow to depict the relationship between this two classes as the mapper class is 

an inner class in the streaming class. 

Additionally, pseudocode was used to map out a high level representation of the prototype as 

shown in Figure 5. 

Figure 5: Pseudocode for Apache Spark Streaming prototype 

The stream processing prototype source code is as shown in Appendix 3. 
 

Inputs/Outputs 

Thirteen GiB of CDR data was successfully obtained from a local telecommunication company via 

Secure File Transfer Protocol after obtaining the go ahead from the SMSC team to implement a 

proof of concept for the real-time processing of CDR for the telecommunication company. After 

a file sanitization exercise of removing erroneous and duplicate records, the size of the CDR file 

Read and load Apache Spark Streaming, Apache Kafka and Apache Cassandra properties from a 

configuration file 

Start a new Java streaming context with a set batch interval 

Connect to Apache Kafka brokers and start reading streams of records 

For each record stream 

Map a single record stream into a single line of values 

For each line of values 

Trim and split line on “|” character to obtain individual values 

Store each value in a string array 

If length of string array is more than 42 

 Read array contents 

Filter out unrequired values 

If there is an existing Apache Cassandra connection 

Insert required values into a table on Apache Cassandra using the 

mapper class 

Else 

Open a new connection to Apache Cassandra 

Insert required values into a table on Apache Cassandra using the 

mapper class 

              End if 

        End if 

End for 
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reduced to 11 GiB of CDR data containing 19,650,000 records. We found that this size to be 

sufficient for generating the required input rate of 100,000 records per second for the 

experiment. 

Each line of record in the CDR file has an average size of 600 bytes. This information is significant 

to Apache Kafka whose throughput performance is affected by large message sizes (Cloudera, 

2017). Each line has a maximum of 63 fields, each separated by the special character ‘|’. 

From the 63 fields available, 15 fields of interest were chosen as detailed in the following section. 

These fields are filtered out during processing by Apache Spark streaming, and therefore, this is 

the data stored on Apache Cassandra’s tables. 

i. col41 - Unique message identifier 

ii. col10 - Destination address 

iii. col16 - Server center timestamp 

iv. col17 - Date when message reached a final status 

v. col18 - Validity period of the message 

vi. col19 - Scheduled delivery time of the message 

vii. col25 - error cause of message delivery failure 

viii. col26 - service type used for charging 

ix. col3 - final status of the short message 

x. col30 - Message Terminator IMSI 

xi. col34 - Message Originator serving MSC 

xii. col35 - Message Terminator serving MSC 

xiii. col37 - Message Originator IMSI 

xiv. col4 – Server center timestamp in YYYY-MM-DD format 

xv. col7 – Originating address 

The default producer application provided by Apache Kafka was employed. The use of the default 

producer application eliminated the need for us to develop a new producer from scratch which 

saved us time. The producer reads data from a CDR file and converts the data into streams of 

records and forwards them to Apache Kafka brokers which in turn forward streams of records to 

Apache Spark Streaming. 
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The stream processing prototype developed to run on Apache Spark Streaming, received streams 

of records from Apache Kafka at a set interval. During start up, the developed stream processing 

prototype read two configuration files, one configuration file was located on the local filesystem, 

while the second configuration file was located in HDFS. The local configuration file contained 

details such as 

- Cluster manager to use (Yarn) 

- Application deployment mode (cluster) 

- Executor memory (20G) 

- Number of executors (3) 

- Number of executor cores (8) 

- Apache Cassandra host 

- Apache Cassandra concurrent writes (100) 

- Apache Cassandra keep alive milliseconds (60000) 

The HDFS configuration file contained details such as 

- Apache Kafka broker internet protocol (IP) address and port number 

- Name of topic which contains streams of records to be read 

- The batch interval 

- Application name 

- Apache Cassandra keyspace name and column family name 

The command line parameters for the Apache Kafka Producer included 

- Max partition memory bytes (1290) 

- Request timeout in milliseconds (40000) 

The rest of the parameters for Apache Kafka, Apache Spark Streaming and Apache Cassandra 

were left at their default values. 

The batch interval, also known as a batch duration dictates the interval of processing. Therefore, 

during this batch interval, the executing prototype received streams of data which were grouped 

into batches for processing. The larger the batch interval, the bigger the batches. 

After each batch of streams of records has been processed, the results were forwarded to Apache 

Cassandra for storage in batches. Much like the ODBC connector used for interconnecting to 
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relational databases, Apache Spark Streaming uses the Spark Cassandra connector to interface 

to Apache Cassandra databases. The results were stored in a table in accordance to the mapper 

class running as part of the developed prototype. 

While the stream processing prototype was executing, metrics were continually being generated 

in the background. The performance metrics of throughput and latency were displayed on 

Apache Spark streaming user interface (UI), while the resource usage metrics of disk space 

utilization, memory utilization and CPU utilization were generated at 10 seconds intervals locally 

on each machine and forwarded to Graphite which then forwarded the metrics to Grafana. 

Logs were also generated in form of output logs and error logs on the individual cluster nodes, 

these helped confirm the settings under which the program is running and if there were error 

conditions that should be of concern to us. 

The diagram in Figure 6 shows this flow between the various components 

 

Figure 6: Flow of data between the various installed components 

Data Modelling 

Data modelling for Apache Cassandra is different from relational databases data modelling. In 

Apache Cassandra, data modelling is driven by the queries to be executed, while in relational 

databases, data modelling is based on the data to be stored on tables.  

Data modelling in Apache Cassandra is designed to serve two high level goals (Datastax, Basic 

Rules of Cassandra Data Modeling, 2015) 
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1. Spread data evenly among the cluster node 

The first part of a primary key is known as the partition key, using a hash of the partition 

key, data is spread amongst the cluster nodes and this is made possible by the use of 

tokens.  

2. Minimize the number of partitions read during query operations 

The idea is to have a few partitions for the existing data so that during query operations 

only a few partitions are scanned. When choosing a partition key, care is made to ensure 

creation of few partitions that have almost balanced data. If a partition key involves data 

that is inserted more, then there will be partitions with more data than others. Fewer 

partitions have an impact on the write performance. Selecting a partition key therefore 

also depends on the type of transactions a database will handle, is it a write heavy 

database? Is it a read heavy database? Is it a mixed workload database? A CDR data 

database is bound to be a mixed workload database, good read performance as well as 

good write performance is desired, especially considering that we are building a real-time 

stream processing prototype. 

Data modelling around the queries to be executed enabled us to achieve these two goals. The 

data modelling process therefore involved the following two steps 

1. Determining the CQL queries to be executed 

2. Creating tables that will satisfy this CQL query by querying as few partitions as possible 

A composite primary key was created, with the first part of the composite primary key being the 

partition key, while the second part formed the clustering key. While the partition key enforces 

data distribution among the cluster node in form of partitions, the clustering key is used to group 

and order items in each partition. 

Our solution required a single table named CDRLOGS5 that housed all the result data from 

Apache Spark Streaming. The CDRLOGS5 table had 15 columns, each column of type varchar. One 

composite primary key was set to (col10, col4), col4 stores the date (YYYY-MM-DD) when the 

SMS transaction took place and is derived from col16. The col10 holds the originating addresses, 

i.e. the sender of an SMS. The col10 was chosen to be the partition key based on the assumption 
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that more complaints are received from the senders of SMS, it is therefore practical to query the 

tables, filtering using col10.  

This would allow us to write this query, select * from CDRLOGS5 where col10=’254712345678’ 

order by col4; 

The logical model for the CDRLOGS5 table is as shown on Figure 7 

 

Figure 7: Logical model for the CDRLOGS5 table 

The columns named col10 and col4 represent the composite primary key, the rest of the columns 

represent the following data 

i. col41 - Unique message identifier 

ii. col10 - Destination address 

iii. col16 - Server center timestamp 

iv. col17 - Date when message reached a final status 

v. col18 - Validity period of the message 

vi. col19 - Scheduled delivery time of the message 
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vii. col25 - error cause of message delivery failure 

viii. col26 - service type used for charging 

ix. col3 - final status of the short message 

x. col30 - Message Terminator IMSI 

xi. col34 - Message Originator serving MSC 

xii. col35 - Message Terminator serving MSC 

xiii. col37 - Message Originator IMSI 

xiv. col4 – Server center timestamp in YYYY-MM-DD format 

xv. col7 – Originating address 

 

3.2.1.3. System Testing 

Functional tests were carried out throughout the development process of the Java stream 

processing prototype to confirm that the code was working as expected and to debug 

problematic code folds. Other than functional tests, unit testing and integration testing was 

also carried out 

 Unit tests 

Unit tests are done to assess an individual unit or group of unites. Unit tests were 

especially performed during the installation of the 3 clusters of Apache Kafka, Apache 

Spark Streaming and Apache Cassandra. The 3 clusters were designed and implemented 

one after the other and therefore when a cluster was up and running, unit tests 

accompanied by stress tests were done. Ultimately, we were checking whether all the 

nodes in a particular cluster were communicating, accessing data in a proper manner 

and load sharing the workload. Logs generated on each node were employed for unit 

tests, Java’s JConsole and JMX (Java management extensions) were also used to view 

performance metrics per node. Wireshark was utilized to observe communication 

between nodes. 

With stress tests, we were checking whether a clusters performance in terms of 

throughput and latency was satisfactory in comparison to published benchmarks. The 

performance metrics generated by JMX and viewed on JConsole aided in this. 
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 Integration testing 

Once installation and configuration of the three clusters was complete and software 

development was finished, integration tests were performed with a smaller data set of 

2 GiB, this time checking that data generated at the input source (Apache Kafka) was 

processed successfully by Apache Spark Streaming and stored at the end destination 

(Apache Cassandra). We were also interested to see whether communication between 

the three clusters was happening as expected in particular whether responses were 

being sent back for requests. Integration tests were mainly carried on one worker node, 

using yarn on local mode and 4 cores with configurations passed through the command 

line. Running on local mode allowed us to view logs on the console in real-time, following 

the actions carried out while confirming that the output displayed was as expected 

The tools used for integration testing include Wireshark for observing inter-cluster 

communication including the requests and responses sent, logs from each node and 

Graphite and Grafana to check on the performance metrics of latency and throughput. 

3.2.1.4. Software Implementation 

After the testing stage was complete, the developed stream processing prototype was 

launched on all the 3 worker nodes using yarn on cluster mode and configurations read from 

configuration files on the local filesystem and HDFS. The command used to execute the 

stream processing prototype is as shown on Figure 8 

 

 

Figure 8: Executing the Stream processing prototype 

The prototype picks configuration parameters from the local configuration file 

‘mySpark.properties’, the contents of which are described in section 3.2.1.2 under 
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‘Inputs/Outputs’, next the Java class that contains the main method is specified together with 

the packages required to run the prototype. 

Streams of data were generated from an 11 GiB input CDR file. Resource usage metrics of 

CPU, disk and memory utilization were collected from Grafana while the performance metrics 

of throughput and latency were collected from Apache Spark Streaming UI. 

3.3. Experimentation 

This section provides details on how the experiment was carried out including the tools utilized 

and the steps undertaken in the experiment. It also deals with the parameters configured for the 

experiment and the evaluation metrics used in the collection of result data. 

The experiment’s aim was to aid us in answering the research question ‘Is real-time processing 

of CDRs using stream processing feasible?’ with the objective of processing 100,000 records per 

second and with latencies of less than 60 seconds on the system. 

3.3.1. Fixed Parameters 

The following parameters remained unchanged during the experiment 

1. Number of nodes: 9 nodes (4 Apache Spark Streaming nodes, 2 Apache Kafka nodes, 2 

Apache Cassandra nodes, 1 Apache Ambari node) 

2. Apache Kafka batch size: 1500 

3. 1 Topic with 24 partitions 

4. Input data size: 11 Gib containing 19650000 lines of CDRs 

5. Number of spark workers (executors): 3 

6. Executor memory: 20 Gib per executor 

7. Executor CPU cores: 8 per executor 

3.3.2. Variable Parameters 

The following parameter was altered during the experiment 

1. Batch interval 

The reasoning behind this was two-fold, firstly to observe the effect batch interval had on the 

performance metrics of throughput and latency and resource usage metrics of CPU utilization, 
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memory utilization and disk utilization. Secondly, to determine the optimal batch interval that 

would offer the highest throughput and the lowest latencies. 

We started off with the minimum supported batch interval of 500 milliseconds, with the goal of 

determining whether the installed platform was capable of millisecond latencies i.e. latencies 

that are less than one second. After that a batch interval of 1 second was configured, increasing 

it in increments of two seconds till a maximum of 11 seconds. For each batch interval, the 

experiment was conducted in three iterations in order to level out any extremes or outside the 

norm values. Each iteration resulted in result data related to the performance metrics of latency 

and throughput and the resource usage metrics of CPU utilization, memory utilization and disk 

utilization. During result analysis, values obtained from the three iterations were averaged out 

to obtain the final figures.  

3.3.3. Evaluation Metrics 

The evaluation metrics were sourced from the performance metrics of throughput and latency 

and the resource usage metrics of CPU utilization, memory utilization and disk utilization, as 

these were primarily the metrics that needed to be measured in order to determine whether 

real-time processing of CDRs was feasible. 

The evaluation metrics on Table 2 guided us during result data collection as they describe each 

metric, dictating what result data is expected from each metric and the tools to use to collect this 

data 
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Table 2: Evaluation metrics 

Metric Category Description Recording method 

Throughput 

(records per 

second) 

Performance 

metric 

Count of processed records per 

second 

Spark Streaming statistics 

UI after each iteration 

under the label ‘Input 

Size’ 

Latency 

(Seconds) 

Performance 

metric 

Time in milliseconds taken to 

process a batch of records from 

the time it arrives in Apache 

Spark Streaming to the time it is 

stored in Apache Cassandra 

tables 

Spark Streaming statistics 

UI after each iteration 

under the label ‘Total 

Delay’ 

CPU Utilization 

(%) 

Resource usage 

metric 

Maximum amount of CPU used 

by the 6 Apache Spark Streaming 

nodes in percentage 

Collectd, Graphite and 

Grafana 

Memory 

Utilization (GiB) 

Resource usage 

metric 

Maximum amount of Memory 

used by the 6 Apache Spark 

Streaming nodes in Gb 

Collectd, Graphite and 

Grafana 

Disk Utilization 

(GiB) 

Resource usage 

metric 

Average amount of disk used by 

the 4 Apache Spark Streaming 

nodes in Gb 

Collectd, Graphite and 

Grafana 

 

3.3.4. Experiment Execution 

For each batch interval, the experiment was done in three iterations. The steps performed for 

each batch interval are 

1. Truncate table ‘CDRLOGS5’ on keyspace ‘streamingcdrs1’ on Apache Cassandra 

2. Change batch interval on Apache Spark Streaming configuration file located in HDFS 

3. Start a new Apache Spark Streaming context by executing the developed stream 

processing prototype in cluster mode 
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4. On one of the Apache Kafka nodes, run the console producer script to read data from the 

11 Gib input CDR file. This is the first iteration 

5. When entire file has been read and execution on Apache Spark streaming complete, 

record throughput and latency values from the Apache Spark Streaming statistics UI. 

Record CPU, disk and memory utilization values from Grafana 

6. Truncate table ‘CDRLOGS5’ on keyspace ‘streamingcdrs1’ on Apache Cassandra 

7. On one of the Apache Kafka nodes, run the console producer script to read data from the 

11 Gib input CDR file. This is the second iteration 

8. When entire file has been read and execution on Apache Spark streaming complete, 

record throughput and latency values from the Apache Spark Streaming statistics UI. 

Record CPU, disk and memory utilization values from Grafana 

9. Truncate table ‘CDRLOGS5’ on keyspace ‘streamingcdrs1’ on Apache Cassandra 

10. On one of the Apache Kafka nodes, run the console producer script to read data from the 

11 Gib input CDR file. This is the third and final iteration for set batch interval 

11. When entire file has been read and execution on Apache Spark streaming complete, 

record throughput and latency values from the Apache Spark Streaming statistics UI. 

Record CPU, disk and memory utilization values from Grafana 

12. Stop currently running Apache Spark Streaming context 

13. After execution of the last batch interval has been completed, merge all the result data in 

one Microsoft Excel file 

14. Analyze the result data recorded from all the iterations of each batch interval and 

generate graphical representations of the data 

3.3.5. Result Data Collection and Analysis 

The performance metrics of throughput and latency were obtained from Apache Spark 

Streaming, Streaming statistics UI which contains data for 

i. Batch time – this shows the time a batch was submitted in the format ‘YYYY-MM-DD 

HH24:MI:SS’ 

ii. Input Size – Number of records submitted for the batch corresponding to the batch 

time 
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iii. Scheduling delay – time taken by the streaming scheduler to submit jobs of a batch 

iv. Processing time – time taken to process all jobs of a batch 

v. Total delay – total time taken to handle a batch and is a summation of scheduling 

delay and processing time.  

For each batch interval, throughput values were obtained from the ‘input size’ column and 

recorded after each iteration. This throughput was then divided by the batch interval to obtain 

the final average throughput in records per second 

Throughput (records per second) = throughput/batch interval 

A summation of all the values for throughput per second resulted in total throughput per second, 

the figure obtained was then divided by 3, as the experiment was done in iterations of three. The 

end result being an average throughput in records per second for that batch interval. 

Average throughput (records per second) = Total throughput (records per second) /3 

For each batch interval, latency values were obtained from the ‘total delay’ column and recorded 

in milliseconds. To obtain latency in seconds, this latency was divided by 1000 

Latency in seconds = latency in milliseconds/1000 

A summation of all the values resulted in total latency which was later divided by 3, this is because 

the experiment was done in iterations of three. The end result being an average latency in 

seconds for that batch interval. 

The resource usage metrics of CPU utilization, disk utilization and memory utilization were 

obtained from the Grafana. CPU utilization was in percentage form, while disk utilization and 

memory utilization were obtained in Gigabytes. A visualization was created in form of a table 

containing all the three resource usage metrics for easy recording. These values had the lowest 

granularity of one minute. To obtain average CPU utilization in percentage, we summed CPU 

utilization across all the nodes in the Apache Spark Streaming cluster to obtain Total CPU 

Utilization and then divided the Total CPU utilization by three, as the experiment was conducted 

in three iterations, to obtain Average CPU Utilization.  

Total CPU Utilization = CPU Utilization for node1+ CPU Utilization for node2+ CPU 

Utilization for node3+ CPU Utilization for node4 

Average CPU Utilization = Total CPU Utilization/3 
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To obtain average memory utilization in Gigabytes, memory utilization was summed across all 

the nodes in the Apache Spark Streaming cluster to obtain Total Memory Utilization and then 

divided the Total Memory utilization by three, as the experiment was conducted in three 

iterations, to obtain Average Memory Utilization. 

Total Memory Utilization = Memory Utilization for node1+ Memory Utilization for node2+ 

Memory Utilization for node3+ Memory Utilization for node4 

Average Memory Utilization = Total Memory Utilization/3 

To obtain average disk utilization in Gigabytes, disk utilization was summed across all the nodes 

in the Apache Spark Streaming cluster to obtain Total Disk Utilization and then divided the Total 

Disk utilization by three, as the experiment was conducted in three iterations, to obtain Average 

Disk Utilization. 

Total Disk Utilization = Disk Utilization for node1+ Disk Utilization for node2+ Disk 

Utilization for node3+ Disk Utilization for node4 

Average Disk Utilization = Total Disk Utilization/3 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

This chapter has been split into two sections, the first section deals with the results obtained 

from the research project while the second section offers discussions on the results. The result 

section has further been split into 

a. Streaming platforms feature comparison results 

b. System infrastructure installation results 

c. Prototype development results 

d. Experiment results 

4.0. Results 

4.0.1. Streaming Platforms Feature Comparison Results 

A feature comparison was performed on three streaming platforms in use today, with the goal 

of selecting an appropriate streaming platform for use in this research project. The three were 

selected based on their adoption rate or customer base as evidenced on their ‘powered by’ 

webpages, as well as the number of committers involved in the platforms’ projects. The three 

platforms demonstrated that they have the largest customer and committers’ base. 

The three streaming platforms chosen for comparison were Apache Spark Streaming, Apache 

Flink and Apache Storm Trident. Eight features were selected for the comparison and they 

included scalability, fault tolerance and high availability, message delivery guarantees, adoption 

level and maturity, streaming model, multiple library support, programming language support 

and state management, the results of which can be found in appendix 2.  

The results show that the three platforms have almost similar mechanisms for achieving a high 

fault tolerant, high availability and highly scalable platform. Three distinguishing features were 

immediately established 

1. Exactly once message processing 

All three platforms, Apache Spark Streaming, Apache Storm Trident and Apache 

Flink provided strong guarantees for exactly once message processing 
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2. Iterative processing 

Apache Storm Trident does not support iterative processing while Apache Flink 

and Apache Spark Streaming both support iterative processing. 

3. Multiple library support 

While both Apache Flink and Apache Spark Streaming contain multiple libraries on 

the same platform, several Apache Flink libraries are still in development. 

Eventually Apache Spark Streaming was chosen as the suitable stream processing platform for 

this research project. 

4.0.2. System Infrastructure Installation Results 

This research project was installed on a virtual machine environment consisting of nine virtual 

machines, configured differently depending on the cluster requirements. Three clusters were 

installed, each for Apache Kafka consisting of two virtual machines, Apache Spark Streaming 

consisting of 4 virtual machines and Apache Cassandra consisting of two virtual machines. A 

cluster management and provisioning tool known as Apache Ambari was installed, Apache 

Ambari allowed us to monitor and rapidly provision the three clusters. The complete installed 

system was capable of processing CDR data end to end sufficiently. 

4.0.3. Prototype Development Results 

This research project required the development of a stream processing prototype that would 

receive streams of records from an input source, process the streams of records while filtering 

out surplus information and storing the processed results in a database. A stream processing 

prototype in Java and Apache Maven was developed using the Netbeans IDE 8.2, the result of 

which was a command line application that fit the stated requirements. 

4.0.4. Experiment Results 

In this section, we present the results obtained from the experiment conducted. These results 

align with the evaluation metrics as shown on Table 2. From the results, we expect to determine 

whether our goal of processing 100,000 records per second with latencies of less than 60 seconds 

was achieved. We were also interested in observing resource utilization in the installed platform 

through the resource usage metrics of CPU utilization, disk utilization and memory utilization. 
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This section has further been divided into two sections. The first section deals with the 

performance metrics of throughput per second and latency in seconds while the second section 

deals with the resource usage metrics of CPU utilization, disk utilization and memory utilization. 

4.0.4.1. Performance Metrics Results 

The graph on Figure 9, shows the performance metrics of latency and throughput, particularly in 

relation to Apache Spark Streaming batch interval. One of the objectives of having a variable 

batch interval was to observe its effect on throughput and latency, as well as select a batch 

interval that offers maximum throughput while maintaining low latencies. 

 
 

Figure 9: Performance metrics per batch interval 

This graph shows that we were able to achieve throughput rates above 100,000 records per 

second across all the batch intervals, with the highest throughput of 114,244 records per second 

being obtained for the batch interval of 3 seconds. There is no clear pattern for throughput per 

second, with throughput rates increasing and decreasing indiscriminately between batch 

intervals. 

Latency on the other hand grows linearly with increasing batch interval. This is expected as a 

larger batch interval, allows Apache Spark Streaming a longer time to gather input records and 

form a batch for processing. Of importance though, is to check that latency stays below the set 

batch interval and this is accomplished for all batch intervals except on the batch interval of 0.5 
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milliseconds. A latency larger than the batch interval is an indication of a struggling system, a 

system that cannot cope with the rate of input data and therefore falls behind. The first batch 

interval of 500 milliseconds demonstrated that we are capable of achieving sub-second latencies, 

the average latency in seconds recorded is 0.8 seconds which translates to 800 milliseconds. 

The best performance for this experiment is achieved with a batch interval setting of 3 seconds, 

at this batch interval, we obtained the highest throughput. Average latency of 2.1 seconds is well 

below the batch interval of 3 seconds. It would therefore make sense to select the batch interval 

setting of 3 seconds as the preferred batch interval. 

Figure 10 shows the performance metrics of throughput and latency specifically for batch interval 

setting of 3 seconds only 

 

 

Figure 10: Performance metrics for batch interval setting of 3 seconds 

We are able to observe consistent throughputs of more than 150,000 records per second and a 

maximum latency of 12 seconds. We are also able to observe that the latency spikes are usually 

followed by a drastic dip in throughput, with throughputs reaching a low of below 100 records 

per second.  

As Apache Spark Streaming is a micro-batch stream processing platforms, we were curious to 

observe the correlation between batching and record processing, this is shown in Figure 11. 
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Figure 11: Correlation between batching and record processing 

4.0.4.2. Resource Usage Metrics 

The graph on Figure 12 displays the resource usage metrics of average disk utilization in 

Gigabytes, average memory utilization in Gigabytes and average CPU utilization in percentage, in 

relation to batch interval settings.  

 

 

Figure 12: Resource usage metrics vs Batch interval 

From this graph, we are able to tell that memory utilization and disk utilization remain almost 

constant, with very little variation between batch interval settings. However, CPU utilization 
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varies across batch intervals, with a maximum value of 30 % recorded at batch interval of 3 

seconds. 

Since memory utilization and disk utilization remain almost constant across batch intervals, we 

were interested in finding out whether there was any correlation between CPU utilization and 

throughput. This is because one would expect higher CPU utilization when processing more 

records at a higher throughput. This resulted in the graph on Figure 13. 

 

Figure 13: CPU utilization vs Throughput per Second 

4.1. Discussions  

We start off the discussions section with the performance metrics of latency and throughput 

followed by the resource usage metrics of CPU utilization, disk utilization and memory utilization. 

Thereafter a discussion on the outcomes of the prototype development and system 

infrastructure installation is presented. 

We were able to achieve our goal of processing 100,000 records in less than 60 seconds across 

all our batch interval settings. Moreover, we were able to obtain sub-second latencies for the 

batch interval setting of 0.5 seconds, achieving an average latency of 0.8 seconds. Since the batch 

interval setting of 3 seconds had the highest throughput, it was selected as the preferred batch 

interval for processing. This batch interval recorded the highest throughput of 114,244 records 

per second with an average latency of 2.1 seconds. 

In Figure 10, we have a graph displaying throughput and latency values specifically for batch 

interval setting of 3 seconds, the graph shows that our system did not maintain a throughput of 

100,000 records per second throughout, we are able to register throughputs as high as 200,000 
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records per seconds and as low as 100 records per second. We also notice latency spikes as high 

as 12 seconds. These momentary latency spikes are immediately followed by a dip in throughput 

per second. This is due to Apache Spark Streaming controlling the data ingestion rate by 

requesting Apache Kafka to slow down the rate of sending data. This enables Apache Spark 

Streaming to control the input rate thus achieving stable processing times. 

If latencies continually increase without any abatement, drastic measures need to be taken. This 

can be done by optimizing the platform using the available configuration parameters in Apache 

Spark Streaming or by scaling the system either vertically (by adding processing components) or 

horizontally (by adding more cluster nodes). Apache Spark Streaming provides several 

parameters for controlling the ingestion rate, chief among these are 

spark.streaming.backpressure.enabled and spark.streaming.kafka.maxRatePerPartition. 

The spark.streaming.backpressure.enabled parameter facilitates the controlling of ingestion 

rate based on the current processing time so that the system receives only as fast as it can process  

(Spark, 2017). It is advisable to set this parameter in production systems to avoid the system 

being overburdened due to an influx of record streams. The 

spark.streaming.kafka.maxRatePerPartition parameter dictates the maximum rate per 

partition at which data can be read from Apache Kafka, again this ensures that Apache Spark 

Streaming can process the data it receives efficiently, while maintaining good throughputs and 

delays. These parameters were not configured in our system as we sought to establish the 

maximum load our system could handle.  

Figure 9 demonstrates that our system is capable of sub-second latencies. For the batch interval 

setting of 0.5 seconds, we had an average latency of 0.8 seconds. This does seem to answer the 

research question ‘Is real-time processing of CDRs using stream processing feasible?’ Taking the 

definition of real-time as the ability to process data in less than a second, it seems that our system 

is indeed capable of real-time processing of CDR data. However, we have since learnt that a stable 

Apache Spark stream processing system should have latencies below the set batch interval and 

the batch interval setting of 0.5 seconds with an average latency of 0.8 seconds does not signify 

a stable platform. Selecting such a batch interval for a production system could lead to significant 

stability and performance problems. 
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Figure 11 shows the ‘micro-batch’ stream processing nature of Apache Spark Streaming. We are 

able to tell that records are grouped into batches at regular intervals, depending on the batch 

interval. Low batch interval results in more batches than high batch intervals. This can be 

explained by the fact that high batch intervals are allowed more time to gather streams of records 

into a batch, therefore their batches will have more streams of records. Low batch intervals have 

less time to gather streams of records into a batch, thus, their batches will contain fewer streams 

of records, meaning that more batches have to be generated to complete processing of an entire 

data set. 

Figure 12 displays the resource usage metrics of CPU utilization, memory utilization and disk 

utilization. Memory and disk utilization remain almost constant while CPU utilization fluctuates 

across batch intervals. 

CPU as a resource is very important in distributed applications as it is majorly a source of 

concurrency. Use of multiple CPU cores increases concurrency. In Apache Spark Streaming, 

multiple CPU cores enhance parallelism, allowing multiple tasks, each assigned to a different core 

to run at the same time. The additional unit for parallelism in Apache Spark is the number of 

partitions each RDD has, and as we are using the direct stream approach to connect to Apache 

Kafka, there is a one to one mapping between the number of partitions in an Apache Kafka topic 

and Apache Spark Streaming. Each executor has been allocated 8 cores, our system has 3 

executors bringing the total CPU core count to 24 cores. This means that a maximum of 24 tasks 

can be run in parallel. Increasing tasks leads to better performance. CPU utilization is highly 

dependent on the transformations included in an Apache Spark Streaming application. Shuffle 

operations that require data to be shuffled across partitions in various executors lead to higher 

CPU utilization. The maximum CPU utilization noted in our system was 31%, this is reasonable as 

this project’s prototype makes use of one transformation as shown in Figure 14, the map 

transformation, which is not known to be CPU intensive. 
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Figure 14: DAG Visualization 

From the graph in Figure 13, we are able to decipher a correlation between CPU utilization and 

throughput per second. CPU utilization increases with increase in throughput per second and 

decreases with decrease in throughput per second. This is reasonable as we expect CPU 

utilization to be affected by throughput rates. The question then is, resource usage for our system 

seems reasonable, why aren’t we processing data faster? We found that performance of the 

system is impacted by the target downstream systems, in our case, this was Apache Cassandra. 

Apache Cassandra’s performance has a direct impact on Apache Spark Streaming. If Apache 

Cassandra cannot write to its tables as fast as Apache Spark Streaming processes, then 

performance is affected. Apache Cassandra’s performance is affected by various factors including 

message size, replication factor and data modelling.  Performance metrics displayed on Grafana 

demonstrated that the installed Apache Cassandra cluster was capable of writing 30,000 rows 

per second which is well below the 100,000 records per second target. 
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Apache Spark Streaming is an in-memory processing platform. When it receives streams of 

records from Apache Kafka, they are written into a dstream which is a continuous sequence of 

RDDs. RDDs are stored in memory and distributed across the executor nodes.  During task 

execution, Apache Spark Streaming makes use of the BlockManager which provides an interface 

for fetching blocks both locally and remotely using stores such as disk and memory (Laskowski, 

BlockManager — Key-Value Store for Blocks, 2017). For each of the stores, the BlockManager 

creates its own instances known as MemoryStore and DiskStore. The MemoryStore is responsible 

for storing data into memory and it does this in form of deserialized Java Objects or ArrayBuffers. 

At the start of each job, the MemoryStore stores blocks as values and as bytes into memory. This 

is on the driver node. The BlockManager then distributes these blocks to all the executors, one 

block per executor. Each block is an RDD. 

The following log excerpt shows the MemoryStore storing blocks of data in memory, as values 

and as bytes, it also shows the estimated size of these blocks of data with blocks of value having 

a larger size than blocks of bytes 

MemoryStore: Block broadcast_3 stored as values in memory (estimated size 15.1 

KB, free 366.2 MB) 

MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 

6.8 KB, free 366.2 MB) 

When the job is finished, the BlockManager removes the RDDs from memory on each executor. 

This goes to show that we do not expect heavy memory utilization from such processing, as data 

is stored in form of de-serialized Java object, there is very little memory consumption. 

Memory utilization on Apache Spark Streaming is also dependent on caching. For computations 

that require iterative processing, one may opt to persist RDDs in memory so that data is not 

fetched from disk every time it needs to be used, if data cannot fit into memory, then the excess 

data is spilled onto disk. Apache Spark Streaming provides the STORAGE_LEVEL parameter to 

control this, with options such as MEMORY_ONLY, DISK_ONLY and MEMORY_AND_DISK. These 

dictate where RDDs should be stored. The STORAGE_LEVEL configured will also have an effect on 

CPU utilization, data fetching from disk is more CPU intensive than data fetching from memory. 

As we obtained memory utilization values from graphite which monitors the node, memory 

utilization also includes Java heap usage. Apache Spark Streaming is written in Scala and Scala 

code also runs on a Java virtual machine, which requires its own memory. Our prototype did not 
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persist RDDs into memory, firstly, because we did not have any computations requiring iterative 

processing and secondly, persisting data into memory would have affected our experiment 

results on the second and third iterations. 

Our Apache Spark Streaming prototype was developed using the Java programming language, as 

such, it executes in a Java Virtual machine which requires its own memory in form of Java Heap. 

We can attribute a lot of the memory utilization to this heap usage. Each executor has been 

allocated 18 GiB of Java heap. 

Disk utilization remains almost constant in this experiment. From Apache Spark Streaming UI, no 

data was written onto the disks. Disk utilization also depends on the STORAGE_LEVEL used, if 

DISK_ONLY, data is stored on disk, if MEMORY_ONLY, data is stored in memory, if it cannot fit in 

memory, then excess data is spilled onto the underlying disks. 

Figure 15 is used to corroborate the fact that no disk was utilized by Apache Spark Streaming in 

the processing of CDRs 

 

Figure 15: Apache Spark Streaming Storage 

However, we do expect disk space to be used in storing logs from the platform – Apache Spark 

logs, HDFS logs and Hadoop Yarn logs. Considering that the disk utilization in our graphs 

represents the total disk space used by all our 4 nodes in the Apache Spark Streaming cluster, the 

disk utilization is very minor. Each node has a total of 1.6TiB of disk space while the maximum 

total utilization is at 130 GiB. 
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Performance of the entire system is heavily dependent on the system infrastructure installed and 

the prototype developed. With proper dimensioning on the system infrastructure, performance 

is not affected. The environment used also has an impact on performance. There has been a big 

debate on whether performance on virtual environments is at par with performance on bare 

metal environments, this is due to the nature of virtualized environments where resources are 

shared amongst co-located virtual machines plus the performance overhead brought about by 

the hypervisor. However, there have been several Big Data benchmarks that have been done on 

virtual environments, in fact, Apache Spark’s sorting of a petabyte of data benchmark was 

conducted on a virtual environment (Xin, 2014) 

No severe performance degradations were noticed on our system. The prototype developed will 

also have an impact on performance based on the logic implemented and the Apache Spark 

Streaming transformations used. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.0. Conclusion 

This project set out to determine whether real-time processing of CDRs is feasible. We had to 

accomplish five objectives in order to answer this question, select a suitable streaming platform 

for the real-time processing of CDRs, develop a stream processing prototype that processes CDRs 

,design, install and optimize the selected platform for the real-time processing of CDRs, measure 

the performance metrics of latency and throughput and resource usage metrics of CPU, disk and 

memory usage on the installed platform and finally determine that real-time processing of CDRs 

via the selected stream processing platform is feasible. 

We were able to achieve all the five objectives as detailed in this report. For the first objective, 

we made a feature comparison of five stream processing platforms in use today and ended up 

settling on Apache Spark Streaming for our project. The second objective was met by installing 

three clusters of Apache Kafka, Apache Spark Streaming and Apache Cassandra. Apache Kafka 

was responsible for generating streams of data from an input file, these streams of data were 

then forwarded to Apache Spark Streaming for processing using a prototype developed in Java 

and finally, the results were stored in an Apache Cassandra database. We managed to collect the 

resource usage metrics and performance metrics from the installed system, with performance 

metrics being collected from Apache Spark Streaming statistics UI, while the resource usage 

metrics were collected using Graphite and Grafana. The metrics data allowed us to analyze the 

performance of the system and determine whether real-time processing of CDRs is feasible.  

Our experiment results demonstrate that we were able to achieve the targeted throughput of 

100,000 records per second with latencies of less than 60 seconds comfortably. We however 

were not able to obtain reliable sub-second latencies, we managed to attain an average latency 

of 0.8 seconds for the batch interval setting of 0.5 seconds, and this indicates that our system 

was struggling to keep up with the input rate. With this result and based on the Oxford dictionary 

definition of real-time, we are able to state that Apache Spark Streaming is not a suitable 

candidate for the real-time processing of CDR data, however, with maximum latency of 6.2 

seconds across all our batch interval settings, it is a perfect candidate for near-real time 
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processing of CDR data. Based on (Rouse, 2011)  definition of real-time, where real-time refers 

to a system responsiveness that is perceived by a user to be immediate or nearly immediate, a 

maximum latency of 6.2 seconds can be construed to be real-time, and this will be contingent on 

a project’s latency requirements. For this research project, the target latency requirements were 

60 seconds and the installed system managed to surpass this, this leads us to conclude that 

Apache Spark Streaming is a suitable candidate for the real-time processing of CDR data. With 

further optimizations to the clusters of Apache Kafka, Apache Spark Streaming and Apache 

Cassandra, it is possible to achieve improved throughputs and latencies. 

This research project demonstrates that performance depends on several varied factors, this 

include; the batch interval, the system infrastructure setup and configuration, the data sources 

and processed data storage or destination platforms, volume of data, record size and the 

transformations and processing logic of the stream processing application. All these factors need 

to be put into consideration when implementing an Apache Spark Streaming solution. 

In this project, we are able to demonstrate that Apache Spark Streaming can run reliably on 

virtual machines. It also shows that monitoring and processing of CDR data can be done entirely 

on open source technologies which are economical. We also expound on how to set up a platform 

for CDR processing from dimensioning server resources, to installing and integrating the required 

clusters, developing a stream processing prototype and monitoring the entire platform for 

performance and resource bottlenecks 

5.1. Challenges 

One of the challenges we encountered was in the use of the java programming language as the 

preferred programming language. Apache Spark Streaming is developed using the Scala 

programming language and therefore there is a lot of in depth documentation and material 

geared towards Scala. For a person with no Scala programming experience, this can be a bit 

daunting. 

An additional challenge arose due to the fact of the amount of work required to complete the 

research project. This project required a lot of technologies which are distinct in their 

implementation mechanism and operation. Integrating all these to perform took a lot of time 

and required a lot of research. 



67 | P a g e  
 

 

5.2. Recommendations for Future Work 

CDR data contains a lot of valuable information that can be used to provide rich insights into a 

telecom’s subscribers and networks, our project only focuses on resolving customer complaints. 

However, the combination of Apache Spark Streaming and CDR data provides opportunities for 

complex processing, especially considering that Apache Spark Streaming is a library within 

Apache Spark and Apache Spark contains other libraries for graph processing, machine learning 

and Spark SQL. It would be interesting to see CDR data applied to graph processing and machine 

learning and the insights that could be derived from such applications. 

Also of interest would be to perform a similar experiment using a pure streaming platform such 

as Apache Flink and comparing the performance.  

Due to time constraints, we were not able to develop the user interface for querying CDR data 

by customer care agents, nevertheless, we managed to query the Apache Cassandra tables for 

CDR data using an MSISDN information successfully. Other than the user interface, implementing 

a visualization tool on top of the data contained in Apache Cassandra would be a plus, the 

visualization tool would be used to monitor the SMS status and error codes, possibly generating 

an alert when a threshold has been crossed. 

As demonstrated in this research project, setting the correct batch interval is crucial to Apache 

Spark Streaming’s stability, however, this is bound to be affected by the ingestion rate. To ensure 

a stable platform, dynamic batch intervals can be configured such that the batch interval changes 

dynamically with respect to the ingestion rate, ensuring that processing times are well below the 

set batch interval. 
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APPENDIX 2: FEATURE COMPARISON  

Comparison 
Feature Apache Flink Apache Storm (Trident) Spark Streaming 
Fault tolerance 
and High 
availability 

Apache Flink's fault tolerance mechanism 
depends on continuously creating distributed 
snapshots of the distributed streaming data 
flow and operator state on persistent storage 
such as HDFS or a database. When a failure 
occurs, the affected distributed streaming 
data flow is stopped (a parallel data flow is 
started to ensure availability), the system 
restarts the operators and resets them to the 
last successful checkpoint. Input streams are 
reset to the current point in the state 
snapshot. Each snapshot will contain the 
offset in the stream when the snapshot was 
started for each stream data source and a 
pointer of the state that was stored for each 
operator. (Flink, Data Streaming Fault 
Tolerance, 2017) 
This can be problematic for large complex 
jobs where state can grow over time and 
become very huge since checkpointing 
requires to go over all the state data. 
To ensure high availability, Apache Flink 
recommends deploying multiple task 
managers and a standby job manager. The 
Job manager's responsibility is to assign tasks 
to the task manager, in case of a task 
manager failure, the affected work is 
redistributed to the remaining active task 
managers (Zuffer, 2017). In case of a 
Jobmanager failure the standby job manager 
becomes active. For HA Jobmanager, Apache 
Zookeeper has to installed, Apache 
Zookeeper will continually monitor the active 

Apache storm architecture consists of two 
types of nodes, the master node (Nimbus) 
and the worker nodes (supervisors). Nimbus 
is responsible for running the stop topology 
and tracking and assigning tasks to 
supervisors which execute and keep track of 
worker processes. If a worker process fails, 
the supervisor restarts it, if the supervisor 
fails and nimbus is unable to reach it, tasks 
assigned to the failed machine are reassigned 
to active supervisors. Nimbus is stateless, it 
does not keep topology state internally but 
requires Apache Zookeeper to maintain state. 
If Nimbus fails, no new topologies are 
assigned to supervisors and existing 
topologies cannot be deactivated or 
activated. It is restarted by a monitoring 
service, Nimbus then gathers the meta 
information from Apache Zookeeper and start 
keeping track of the supervisors. It is 
advisable to run Nimbus on high availability, a 
feature that was introduced in version 1.0.0, 
this will still depend on Apache Zookeeper for 
state maintenance and leader election 
(Storm, Fault Tolerance, 2015). Without a 
standby Nimbus node, the solitary Nimbus 
node becomes a single point of failure.  
Apache Storm Trident checkpoints the state 
of bolt (processing units) operations 
periodically in memory and backs it up to 
Redis (database). A checkpoint has to be 
committed by the checkpoint spout for the 
topology checkpoint to be successful, each 

The most important concept of fault -tolerance 
in Apache Spark streaming is the RDD. The 
main abstraction in Apache Spark Streaming is 
called a dstream which is a sequence of RDDs. 
RDDs are immutable data structures that are 
modified by applying transformations that 
result in a new RDD. A sequence of 
transformations create a direct acyclic graphs 
that stores the transformations and 
intermediate results during processing. In case 
of failure, the DAG is reran to recompute the 
associated RDD. Apache Spark Streaming also 
supports checkpointing, data that is 
checkpointed includes metadata information 
such as configuration, dstream operations and 
incomplete batches and generated RDDs. 
Checkpointing is a configurable parameter and 
not automatically enabled. In case of failure, 
recovery is initiated using the checkpointed 
data, driver recovery will utilize the metadata 
information stored. 
Apache Spark Streaming also uses Write Ahead 
Logs (WAL), which save received data to 
persistent storage, WAL are written to before 
data is processed by Apache Spark Streaming. 
Recovery involves replaying the contents of 
this log. If using a reliable data source such as 
Apache Kafka or Apache Flume, which send 
ACKs after data has been successfully 
replicated, then there is no data loss. 
Unreliable receivers do not implement the ACK 
mechanism and therefor are bound to lose or 
duplicate data. The ACK mechanism is not 
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job keeper as well as store checkpoint and job 
state information. Without a standby 
jobmanager, the single jobmanager becomes 
a single point of failure (Flink, Jobmanager 
High Availability, 2017) 

bolt has to send an ACK back to the 
checkpoint spout, once all bolts have sent 
their ACKS, the checkpoint is complete 
(Storm, Storm State Management, 2015) 
.Each tuple (data) fetched from a spout 
(source) is assigned a unique identifier and 
passed to a bolt or series of bolts for 
processing. Once processing is complete, the 
executing task sends an ACK back to the spout 
(Storm, Guaranteeing Message Processing, 
2015). 
In case of a supervisor failure and recovery, a 
bolt is reinitialized to its last known state and 
affected tuples (data) are replayed. Each 
tuple is assigned a unique transaction 
identifier so on tuple replay, no duplicate data 
is processed (Storm, Guaranteeing Message 
Processing, 2015) 

enabled by default and therefore has to be 
implemented. 
The fault recovery mechanism on Apache Spark 
Streaming therefore depends on 
checkpointing, Write Ahead Logs and sending 
ACKs back to the data sources. 
An Apache Spark Streaming cluster will involve 
a combination of master nodes and worker 
nodes. It is advisable to run multiple master 
nodes for high availability, otherwise the 
solitary master node becomes a single point of 
failure, only one node can be leader at any one 
time. This will require Apache Zookeeper for 
cluster co-ordination and leader election. 
Multiple worker nodes are advisable for 
workload sharing and high availability. The 
worker nodes host executor processes that 
actually handle processing tasks, if one 
executor fails, the other active executors 
continue operating (Spark, Spark Streaming 
Programming Guide, 2014). An Apache Spark 
Streaming cluster also contains a driver process 
which initiates the SparkStreamingContext, the 
driver process runs on one single node at a 
time, it is therefore a single point of failure. 
This can be mitigated by running the Apache 
Spark Streaming Cluster in cluster mode using 
resource managers such as Hadoop Yarn and 
Apache Mesos, the resource managers will try 
and restart the driver automatically if it fails. 
However, driver failures are recovered using 
the metadata that is checkpointed to the 
filesystem 
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Scalability 
Apache Flink allows the addition of task 
managers and job managers to handle 
increasing workload and/or provide high 
availability. Addition of task managers can be 
done seamlessly without the need of 
restarting the cluster. Addition of a job 
manager will require the installation and 
configuration of Apache Zookeeper will 
ensure the distributed co-ordination via 
leader election of the running job managers. 
Only one job manager can be a leader at any 
one time (Flink, Jobmanager High Availability, 
2017). 
Apache Flink supports several distributed file 
systems for data storage such as HDFS and 
S3, the filesystem provides an 
acknowledgment that data has been stored 
once it has been replicated to a configurable 
quorum of nodes. All nodes should have 
visibility of the stored data and this is 
achievable by use of the absolute file path 
(Flink, File Systems, 2017) 
We are yet to know how many nodes the 
largest cluster of Apache Flink can handle, 
though Alibaba uses Apache Flink for real-
time data processing and have a cluster 
containing "thousands" of nodes (Jiang, 
2017).Scalability is linear 

Different parts of the Apache Storm trident 
cluster can be scaled independently by 
tweaking their parallelism i.e. the addition of 
more tasks, worker processes and executors 
(Storm, Project Information, 2015), this 
however depends on the application being 
executed. For instance Apache Storm 
recommends one worker process per node, 
one executor per CPU core for CPU bound 
tasks or 1-10 executors per CPU core for I/O 
bound tasks (Mishra, 2015). 
Concerning the Apache Storm Trident 
infrastructure, a cluster can have two Nimbus 
nodes, but only one can be the leader at any 
time. The cluster can have several supervisors 
for workload sharing. Addition of supervisors 
does not necessarily affect the running 
cluster, an exception would be where the 
cluster's resources are over-utilized or 
constricted, in this case on adding the new 
nodes, Apache Storm will kill the current 
workers and start them on all the nodes, 
redistributed the workload. 
Apache Storm depends on distributed file 
systems for data storage, it is known to work 
with HDFS and S3. 
Apache storm is linearly scalable with the 
largest cluster having 2300 nodes (Evans, 
2015). 

Apache Spark Streaming scales linearly. 
Scalability can be achieved by adding more 
executor processes, workers and system 
resources such as CPU, disk and memory on a 
running cluster. Apache Spark Streaming has a 
feature that enables elastic scaling of 
executors, that is executors are dynamically 
added to the cluster in response to workload 
(Laskowski, 2014). Apache Spark Streaming 
however, recommends running one executor 
per node. 
Apache Spark Streaming supports several 
distributed filesystems such as HDFS and S3. 
HDFS contains a feature for block replication 
which replicates data across the nodes with 
HDFS 
The largest known cluster for Apache Spark has 
8000 nodes (Xin, 2014). 
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Message 
delivery 
guarantees 

Apache Flink guarantees exactly once 
message processing, however, this is 
dependent on both the data source and data 
sinks used, for instance, using Apache Kafka 
as a data source guarantees exactly once 
semantics while twitter streaming API as a 
data source can only guarantee at most once 
semantics. Apache Flink's checkpointing 
mechanism makes it possible to have exactly 
once message processing even in the 
presence of failures (Flink, Fault Tolerance 
Guarantees of Data Sources and Sinks, 2017). 

Apache Storm Trident provides exactly once 
processing guarantees. It achieves this in 
three ways  
1) Each batch is given a unique identifier, in 
case of tuple replays, the batch will maintain 
this exact identifier 
2) State updates are ordered among batches, 
and processing of batches is sequential 
3) Checkpointing mechanism where state is 
stored in memory and backed up to persistent 
storage and the use of record 
acknowledgement (ACKS) to source spouts 
ACK mode is configurable though, one can 
choose not to use ACKs as they are known to 
affect throughput 

Apache Spark Streaming guarantees exactly 
once message processing with reliable data 
sources such as Apache Kafka and Apache 
Flume. This is achieved by  
1) Sending record acknowledgements back to 
the source that a record has been received and 
replicated successfully.  
2) Use of write ahead logs to store received 
data that can be used for recovery in case of 
failure. 
The ACK mechanism is not enabled by default 
and has to be explicitly implemented 

Adoption level & 
project maturity 

>32 companies using, including Alibaba, 
Researchgate, Ericsson and Telecom Portugal 
34 committers on Apache 
Graduated to an Apache top level project in 
January 2015 
4 libraries still in beta 
Made 8 software releases in 2016 and 6 (so 
far) in 2017, last software release was in 
August, 2017 

>80 companies using including Yahoo!, 
Spotify, The weather, Baidu, Alibaba, Yelp, 
WebMD 
35 committers (both Storm core and trident) 
on Apache 
Graduated to an Apache top level project in 
September 2014 
Flagship release on September, 2011.  
Made 6 software releases in 2016 and 5 in 
2017 (so far), last software release was in 
September, 2017 

>90 companies using including AsiaInfo, Yahoo, 
Nokia Solutions and Networks, Amazon and big 
industries 
54 committers on Apache for the entire Spark 
framework 
Spark graduated to an Apache top level project 
in February 2014, Spark streaming (alpha) 
released on February 2013 
Made 9 software releases in 2016 and 3 in 2017 
(so far), last software release was in October, 
2017 

Streaming 
model 

Apache Flink provides both Stream 
processing and batch processing on the same 
platform. In batch processing, data is treated 
as a stream of data and is operated on for a 
bounded period of time i.e. until the whole 
data file has been processed, the output is 
one batch of results (Flink, Streaming, 2017). 

Apache Flink supports iterative processing   

Micro-batching using tuples. The inbuilt 
mechanism for generating batches uses 'tick 
tuples', a configuration that allows the setting 
of a frequency at which to receive tick tuples 
and normal tuples (Storm, Storm 0.8.0 and 
Trident released, 2012). 

Apache Storm Trident does not support 
iterative processing 

Micro-batching using dstreams. The inbuilt 
mechanism for generating batches is the use of 
the batch interval which can be set as low as 
500ms. The batch interval represents the 
frequency at which batches are produced, with 
each batch containing zero or more records. 
Each batch is an RDD, after processing, a batch 
of results is obtained (Spark, Spark Streaming 
Programming Guide, 2014).  
Apache Spark Streaming supports iterative 
processing 
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Multiple library 
support 

Apache Flink contains libraries for batch 
processing and stream processing as 
mentioned before. Other libraries currently 
in development are for complex event 
processing, machine learning and graph 
processing (Flink, Streaming, 2017). 

Apache Storm Trident is a layer on top of 
Apache Storm that enables stateful, micro-
batched stream processing 

Apache Spark Streaming is a library on top of 
Apache Spark which also contains  libraries for 
SQL, machine learning, graph processing and 
stream processing, all of them in production 

Programming 
language 
support 

Supports both Java and Scala 

Apache Storm Trident is designed to be used 
by any programming languages e.g. Java, 
Python, Ruby, Perl, Scala (Storm, Project 
Information, 2015). Supports Scala, Java, Python 

State 
management 

Apache Flink periodically checkpoints the 
state of operations and data structures 
holding data, this is stored in memory and 
backed up to persistent storage. Apache Flink 
mostly manages the state of the application 
and also provides an interface through which 
state can be managed, one can query, 
update, list or clear the state of an element. 
Managing state allows Apache Flink to be 
fault tolerant as it periodically checkpoints 
the state of the application, keeping track of 
operations, so that in case of failures, it can 
reset back to the last successful checkpoint, 
this also ensures that exactly once processing 
is maintained (Celebi, How Apache Flink™ 
Enables New Streaming Applications, 2016). 

Apache storm stores operator state internally 
in memory and backs it up to persistent 
storage or stores state externally in a 
database. Apache Storm Trident also provides 
an interface for querying and updating state. 
State is important to Apache Storm Trident as 
it internalizes fault-tolerance logic within a 
state. It also ensures exactly-once processing 
semantics (Storm, Trident State, 2015).  

Apache Spark Streaming achieves stateful 
stream processing through checkpointing on 
persistent storage, this involves configuring a 
checkpoint directory in an application to store 
state between batches. Apache Spark 
Streaming also provides an interface for 
querying and updating state. Stateful stream 
processing enables exactly once processing 
semantics (Itzchakov, 2016). 
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APPENDIX 3: SOURCE CODE 
package com.uonbi.dct.streamingcdrs; 

 

 

import org.apache.kafka.clients.consumer.ConsumerRecord; 

import org.apache.spark.SparkConf; 

import org.apache.spark.api.java.function.*; 

import org.apache.spark.streaming.Durations; 

import org.apache.spark.streaming.api.java.JavaDStream; 

import org.apache.spark.streaming.api.java.JavaInputDStream; 

import org.apache.spark.streaming.api.java.JavaStreamingContext; 

import org.apache.spark.streaming.kafka010.ConsumerStrategies; 

import org.apache.spark.streaming.kafka010.KafkaUtils; 

import org.apache.spark.streaming.kafka010.LocationStrategies; 

import org.apache.hadoop.fs.FSDataInputStream; 

import org.apache.hadoop.fs.FileSystem; 

import org.apache.hadoop.fs.Path; 

import com.datastax.spark.connector.japi.CassandraJavaUtil; 

import com.datastax.spark.connector.japi.CassandraStreamingJavaUtil; 

import java.io.Serializable; 

 

import java.util.*; 

import org.apache.hadoop.conf.Configuration; 

 

 

public class DirectKafkaStreamingCDRs{ 

 

    private static Enumeration<?> allPropertyNames; 

 

    private static String propertyKey; 

    private static String propertyValue; 

    private static String appName; 

    private static Long batchDuration; 

    private static String topics; 

    private static String cassandraKeyspace; 

    private static String cassandraTablename; 

     

    public static class CDRRows2 implements Serializable 

    { 

        

        private String col3; 

        private String col4; 

        private String col7; 

        private String col10; 

        private String col16; 
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        private String col17; 

        private String col18; 

        private String col19; 

        private String col25; 

        private String col26; 

        private String col30; 

        private String col34; 

        private String col35; 

        private String col37; 

        private String col41; 

   

 CDRRows2() {} 

   

 public CDRRows2(String col3,String col4,String col7,String col10,String col16,String col17,String col18,String 

col19,String col25,String col26,String col30,String col34,String col35,String col37,String col41)  

        { 

            this.col3 = col3; 

            this.col4 = col4; 

            this.col7 = col7; 

            this.col10 = col10; 

            this.col16 = col16; 

            this.col17 = col17; 

            this.col18 = col18; 

            this.col19 = col19; 

            this.col25 = col25; 

            this.col26 = col26; 

            this.col30 = col30; 

            this.col34 = col34; 

            this.col35 = col35; 

            this.col37 = col37; 

            this.col41 = col41; 

             

 } 

        public void setcol3(String value){col3 = value;}; 

        public void setcol4(String value){col4 = value;}; 

 

        public void setcol7(String value){col7 = value;}; 

        public void setcol10(String value){col10 = value;}; 

        public void setcol16(String value){col16 = value;}; 

        public void setcol17(String value){col17 = value;}; 

        public void setcol18(String value){col18 = value;}; 

        public void setcol19(String value){col19 = value;}; 

        public void setcol25(String value){col25 = value;}; 

        public void setcol26(String value){col26 = value;}; 

        public void setcol30(String value){col30 = value;}; 

        public void setcol34(String value){col34 = value;}; 
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        public void setcol35(String value){col35 = value;}; 

        public void setcol37(String value){col37 = value;}; 

        public void setcol41(String value){col41 = value;}; 

         

 

 

        public String getcol3(){return col3;}; 

        public String getcol4(){return col4;}; 

        public String getcol7(){return col7;}; 

        public String getcol10(){return col10;}; 

        public String getcol16(){return col16;}; 

        public String getcol17(){return col17;}; 

        public String getcol18(){return col18;}; 

        public String getcol19(){return col19;}; 

        public String getcol25(){return col25;}; 

        public String getcol26(){return col26;}; 

        public String getcol30(){return col30;}; 

        public String getcol34(){return col34;}; 

        public String getcol35(){return col35;}; 

        public String getcol37(){return col37;}; 

        public String getcol41(){return col41;}; 

        

    } 

 

     

    public static void main(String[] args) throws Exception 

    { 

        Map<String, Object> kafkaParams = new HashMap<>(); 

        SparkConf sparkConf = new SparkConf(); 

        Configuration hdfsConf = new Configuration(); 

        FileSystem fs = FileSystem.get(hdfsConf); 

        Path consumerPropertiesFilePath = new Path("hdfs:///project/conf/myConsumer.properties"); 

        FSDataInputStream is = fs.open(consumerPropertiesFilePath); 

        Properties myConsumerProperties = new Properties(); 

         

        //load properties from inputstream to properties obj 

        myConsumerProperties.load(is); 

         

        //retrieve properties 

        allPropertyNames = myConsumerProperties.propertyNames(); 

         

        while (allPropertyNames.hasMoreElements()) 

        { 

            propertyKey = (String) allPropertyNames.nextElement(); 

             

            if(propertyKey.startsWith("app")) 
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            { 

                 

                topics = myConsumerProperties.getProperty("app.topics"); 

                appName = myConsumerProperties.getProperty("app.appname"); 

                batchDuration = Long.parseLong(myConsumerProperties.getProperty("app.batchduration")); 

                cassandraKeyspace = myConsumerProperties.getProperty("app.cassandra.keyspace"); 

                cassandraTablename = myConsumerProperties.getProperty("app.cassandra.tablename"); 

            } 

            else 

            { 

                propertyValue = myConsumerProperties.getProperty(propertyKey); 

                kafkaParams.put(propertyKey, propertyValue); 

            } 

             

        } 

        Set<String> topicsSet = new HashSet<>(Arrays.asList(topics.split(","))); 

        sparkConf.setAppName(appName); 

         

        //Read messages in batch of batchDuration seconds 

        JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(batchDuration)); 

 

        // Start reading messages from Kafka and get DStream 

        final JavaInputDStream<ConsumerRecord<String, String>> stream = 

                KafkaUtils.createDirectStream(jssc, LocationStrategies.PreferConsistent(),  

                                              ConsumerStrategies.<String,String>Subscribe(topicsSet,kafkaParams)); 

 

        // Read each line from javainputdstream and return javadstream 

        JavaDStream<String> lines = stream.map(new Function<ConsumerRecord<String,String>, String>() { 

            @Override 

            public String call(ConsumerRecord<String, String> kafkaRecord) throws Exception { 

                return kafkaRecord.value(); 

            } 

        }); 

 

           

          JavaDStream<CDRRows2> resultToCassandra = lines.map(new Function<String, CDRRows2>()  

          { 

                private CDRRows2 cdrsContent; 

                @Override 

                public CDRRows2 call(String arg0) throws Exception  

                { 

                    String[] cols = arg0.trim().split("\\|"); //or arg0.split(Pattern.quote("|")); | special char in regex 

                    if(cols.length >= 42) 

                    { 

                        //retrieve date part from scts 

                        cols[4]=cols[16].substring(0, 10); 
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                       cdrsContent = new 

CDRRows2(cols[3],cols[4],cols[7],cols[10],cols[16],cols[17],cols[18],cols[19],cols[25],cols[26],cols[30], 

                               cols[34],cols[35],cols[37],cols[41]);  

                    } 

                   return cdrsContent; 

                } 

          } ); 

 

      //store records into cassandra using CDRRows case class- mapper class       

       CassandraStreamingJavaUtil.javaFunctions(resultToCassandra) 

                .writerBuilder(cassandraKeyspace, 

cassandraTablename,CassandraJavaUtil.mapToRow(CDRRows2.class)).withBatchGroupingKey(CassandraJavaUtil.B

ATCH_GROUPING_KEY_PARTITION).saveToCassandra(); 

        

        //resultToCassandra.print(100); 

        jssc.start(); 

        jssc.awaitTermination(); 

    } 

} 

 


