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Abstract

Genetic strategies for large scale pest or vector control using modified insects are not yet operational in Africa,
and currently rely on import of the modified strains to begin preliminary, contained studies. Early involvement
of research teams from participating countries is crucial to evaluate candidate field interventions. Following the
recommended phased approach for novel strategies, evaluation should begin with studies in containment
facilities. Experiences to prepare facilities and build international teams for research on transgenic mosquitoes
revealed some important organizing themes underlying the concept of ‘‘facilities readiness,’’ or the point at
which studies in containment may proceed, in sub-Saharan African settings. First, ‘‘compliance’’ for research
with novel or non-native living organisms was defined as the fulfillment of all legislative and regulatory
requirements. This is not limited to regulations regarding use of transgenic organisms. Second, the concept of
‘‘colony utility’’ was related to the characteristics of laboratory colonies being produced so that results of
studies may be validated across time, sites, and strains or technologies; so that the appropriate candidate strains
are moved forward toward field studies. Third, the importance of achieving ‘‘defensible science’’ was recog-
nized, including that study conclusions can be traced back to evidence, covering the concerns of various
stakeholders over the long term. This, combined with good stewardship of resources and appropriate funding,
covers a diverse set of criteria for declaring when ‘‘facilities readiness’’ has been attained. It is proposed that,
despite the additional demands on time and resources, only with the balance of and rigorous achievement of
each of these organizing themes can collaborative research into novel strategies in vector or pest control reliably
progress past initial containment studies.
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Introduction

L ivestock and horticultural insect pests and some
disease vectors have been suppressed or eradicated using

irradiated, or in one case chemically induced, sterile insect
release in several African countries over recent decades
(Klassen and Curtis 2007).{ Genetic strategies employing
novel symbiosis, transgenesis, genome editing (e.g., with
TALENs or CRISPR-Cas9), or other modification{ for insect
control, however, are still in the research phase in Africa and
are not yet delivering the benefits of operational control
programs. For the present, use of these novel approaches in
field programs in sub-Saharan Africa would require import of
the technology to establish colonies of transgenic strains, if
not for producing them.

Several scientific expert groups have recommended a
stepwise approach to genetic strategies beginning with studies
in containment facilities, before field cages or confined field
studies are employed to answer further research questions that
may support open field release (NAPPO 2007, Benedict et al.
2008, AHTEG 2010, James et al. 2010, EFSA 2011, WHO/
TDR, and FNIH 2014, National Academies of Sciences, En-
gineering, and Medicine 2016).

A component of the work leading up to the Target Malaria
projectx was to develop the infrastructure and capacity for
containment studies in African settings. Containment studies
of modified insects take place within authorized facilities
designed to restrict exposure of people and the environment
to the study organism. Unlike biological containment for
materials known to be infectious (OECD 2007, CDC 2009,
Homer et al. 2013), containment for initial studies of trans-
genic organisms is due to lack of experience or knowledge at
the early phases of research or technology development. In the
case of novel mosquito strains, a phased approach also allows
progressively more realistic conditions in which hypothesis-
driven studies on safety, quality, and efficacy would be diffi-
cult to complete in field conditions (Ferguson et al. 2008), in
part due to higher recapture rates than in open field studies, and
thus more accessible data (Madakacherry et al. 2014).

Early involvement of research teams in countries with the
targeted insect population is a critical part of this phased
approach to evaluation of potential field interventions. This is
especially true for interventions in public health that require
some form of community consent, in this case targeting

malaria vector species (Chu et al. 2014, Kolopack et al.
2015). We describe broad principles that supported our re-
search consortium’s preparation for containment studies of
transgenic mosquitoes in four African settings.

Preparing for Containment Studies

Within this context, the collaboration described in this
study—a discovery laboratory team moving toward an inter-
national research consortium—began working toward what
we refer to as ‘‘facilities readiness’’ to prepare for containment
studies with transgenic mosquitoes in Burkina Faso, Mali,
Uganda, and Kenya. An important aspect of our preparation
was to discuss and agree on some fundamental concepts. As
with any good project management, early discussions about
containment studies included agreements on data collection,
analysis, and ownership; presentation and publication of re-
sults; and harmonized use of key terms. Early discussions with
regulatory authorities also ensured that plans would be made
within the national regulatory frameworks. (The process of
establishing two-way dialog with stakeholders to achieve co-
development of the technology is described in forthcoming
publications.)

Early on we concluded that neither ‘‘Good Laboratory
Practice’’ at the level of certification, nor a single interna-
tional standard, such as ISO/IEC 17025 (ISO 2005), fits with
the studies planned. There is no ‘‘one standard’’ that covers
all aspects of the objectives of preparing containment facil-
ities to study modified insects. The Arthropod Containment
Guidelines developed over time by the American Committee
of Medical Entomology (ACME/ASTMH 2003), however,
proved invaluable guidance for preparations. These guidelines
describe that Arthropod Containment Levels (ACLs) related
more appropriately to containment of arthropods (including
mosquitoes) than is found in descriptions of Biosafety Levels
based on microbiological and pathogenic hazards (Scott 2005,
Tabachnick 2006, CDC 2009). The guidelines recommend
ACL-2 for uninfected transgenic mosquitoes. ACL-2 indicates
several design features and stringent procedures to physically
isolate the study organism from the open environment and
guard against release of any viable life stages from the facility.
The key components of ACL-2 and specific corresponding
measures are shown in Figure 1.

Although the guidelines were useful, there was no single
standard or even term that gave the sense of reaching the
point in preparations when an import permit could be sought.
Biosafety implies the management of risks associated with
the use of ‘‘any living organism that possesses a novel
combination of genetic material obtained through the use of
modern biotechnology’’ (UNEP 2000). However, biosafety is
a term used differently in various contexts, and translated
differently among languages (Waage and Mumford 2008,
WHO and CBD 2015, Quinlan et al. 2016a). We adopted a
new term, ‘‘facilities readiness,’’ to express three underpin-
ning concepts: ‘‘compliance,’’ ‘‘colony utility,’’ and ‘‘de-
fensible science.’’ Each concept supported our efforts toward
being confident and reliable researchers of a novel technol-
ogy, beginning with studies in containment.

Compliance

We approached the concept of ‘‘compliance’’ as the ful-
fillment of all legislative and regulatory requirements—and

{These pilot and field programs have taken place at various times in
Ethiopia, Kenya (Lounibos 2003, McDonald et al. 1977), Libya,
Mauritius (Seewooruthun et al. 2000), Morocco, Nigeria (Oladunmade
et al. 1990), Reunion, Senegal (Dicko et al. 2014), South Africa,
Sudan, Tanzania (Vreysen et al. 2000) and Tunisia (Chakroun et al.
2015) against various spp. of tsetse fly, New World screwworm
(Lindquist et al. 1992), Mediterranean fruit fly (Enkerlin 2005), date or
carob moth, codling moth, diamond back moth, and vector spp. of
mosquitoes (Anopheles arabiensis and Aedes aegypti).

{TALEN are transcription activator-like effector nucleases and
CRISPR are clustered regularly interspaced short palindromic re-
peats. While this article focuses on transgenic mosquitoes, most of
the commentary applies to other methods employed in genetic
strategies, although risks may vary.
xTarget Malaria (www.targetmalaria.org) is a nonprofit research

consortium committed to developing an innovative approach to
reduce the number of malaria vector mosquitoes and therefore the
transmission of the disease, complementary to other control meth-
ods. Some of those in the research consortium reported in this study
continue to work together in this project.
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the underlying intentions of the requirements—for studies on
novel or non-native living organisms; in this case, transgenic
malaria vector mosquitoes. For research on and use of
transgenic organisms, a separate biosafety framework was
established in the majority of the signatory countries to im-
plement the Cartagena Protocol on Biosafety to the Con-
vention on Biological Diversity (UNEP 2000).** This often
operates through the National Biosafety Authority (NBA)
responsible to make decisions under the national biosafety
framework, for example the Agence Nationale de Biosécurité
and the Comité National de Biosécurité in Burkina Faso and
Mali, respectively. We talked about intentions of regulations
because biosafety frameworks generally were developed in
the context of crop biotechnology and aspects of the regu-
lations may not apply to mosquitoes, whereas the underlying

principles remain relevant. Once a specific study or import
approval is granted, compliance includes the fulfillment of
any terms and conditions of approval by the NBA for facil-
ities or studies therein. This may be at the time of the import
or studies, or subsequently, as indicated by the regulatory
authorities.

In addition to regulations under the biosafety framework,
there are multiple laws, decrees, and guidelines relating to
research, public health interventions, biotechnology busi-
nesses, and so forth, before importing or studying a novel
mosquito strain, including: research permits for originating
and/or recipient institutes; shipping requirements for bio-
logical material; material transfer agreement specifications of
the country or exporting/importing institute; intellectual
property control; regulations on collecting, rearing, and re-
leasing mosquitoes that are a potential vector of human dis-
ease; and non-native species restrictions.

Because the NBA often works through a committee
comprised of representatives from the various ministries and
authorities, such additional requirements will probably be
highlighted in the course of reviewing an application for
import or studies of a transgenic organism. These other reg-
ulations may not be rationalized with a biosafety framework,

FIG. 1. Key components of arthropod containment level 2 containment and example measures relevant to transgenic
mosquitoes.

**A separate framework is not a requirement of the Protocol, but
advocacy groups and considerable funding encouraged this ap-
proach. Some countries are considering a more comprehensive risk-
based framework that could address other sources of biological
risks, particularly in light of emerging techniques and technologies
that are not strictly covered by the Protocol and generally have
encountered a gap or uncertainty in the regulatory pathway.
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however, because the Cartagena Protocol came into force
much later than many other national regulatory requirements.
Therefore, we chose to obtain advice from legal and regu-
latory experts in the region before submitting an application,
to identify any gaps in compliance with national regulations
during our preparations. Local or subregional requirements
might also be imposed (Beech and Miller 2014), although
most of these will be related to construction of a facility.

The requirements for hosting a containment facility (avail-
ability of land for the construction, connection to water and
electricity services, and existing emergency and security ser-
vices) are generally linked to an institution and a prerequisite
to applying for a research or import permit; permits for field
studies also require a local hosting institution. Under the bio-
safety framework in many countries, there would need to be an
Institutional Biosafety Committee (IBC), with its membership
notified to the country’s NBA. In Kenya, for example, the
IBC serves as a communication liaison to consult with the
NBA in preparation of applications for containment studies.
Once authorization is granted, the IBC may be further involved
to perform internal audits and document overall compliance
with the terms and conditions of authorization. This may be
scheduled to target certain critical activities, or be conducted
without notice as ‘‘spot audits’’ to monitor ongoing activities.
If the principal investigator (PI) of the study is a member of the
IBC, it may facilitate answering questions, but the PI should
avoid conflict of interests in that role. Additional members of
an IBC may be needed to add expertise on mosquito biology,
vectored disease control, and public health research.

While some countries may certify a facility to a specific
containment level and allow annual reporting of studies, other
countries require that an application detailing each study to be
conducted in the facility be submitted to the NBA for review
and approval. Whatever the framework, our experience is that,
to a large degree, ongoing monitoring of compliance with terms
and conditions of approvals relies heavily on the researchers
themselves, or the IBC. This is an approach followed in parts of
Europe as well. This responsibility further indicates the use-
fulness of proper documentation of monitoring and compliance,
or ‘‘defensible science,’’ hereunder discussed, to justify the
trust placed in the research institution for this role. Some aspects
of compliance are also relevant to ‘‘colony utility,’’ including
maintaining the integrity of study organisms in terms of genetic
identity as well as not losing any material under study.

Compliance may include formal notification of activities
and public engagement, under the terms of regulations. While
public engagement on a regulatory decision is less often re-
quired for work inside containment (versus field trials), good
practice may include providing opportunities for public ed-
ucation to support more informed participation as the tech-
nology moves into the next stages (Quinlan et al. 2016b), as
well as stakeholder engagement aimed at genuine two-way
dialog, and not only compliance.

A final aspect of compliance is good stewardship of the
project resources, financial transparency, and progress re-
porting. Detailed requirements for this aspect generally ap-
pear in the funding or collaboration agreement.

Colony Utility

A perhaps obvious, but not often articulated, concept is
that of ‘‘colony utility.’’ We defined this as maintaining and

monitoring the identity and quality of mosquitoes being
produced so that results of studies may be compared across
time (through generations, and over months or years), sites
(various laboratories), and strains or products. Comparable
results are not always harmonized. A collaborative effort has
to contend with differences between facilities and work styles
of already-existing research teams that may not have previ-
ously worked together. Natural variation within the same
species of Anopheles influenced by the wild-type stock being
used could cause variation in study results. Such variations
may affect subsequent field outcomes as well as early phase
study results (Yeap et al. 2013).

We decided to systematize the culturing methods to the
degree possible while allowing for local procurement of diet,
despite diet being a significant factor (Gilles et al. 2011).
Although the vector species under study require a set range in
temperature (Bayoh and Lindsay 2003, 2004) and humidity
in the insectary, attempting to replicate with precision a
narrow range of all of the environmental conditions in each
containment facility was rejected as unnecessarily onerous
and costly; studies requiring this could be done in more ex-
pensive facilities with environmental chambers. Instead, each
site aims for similar output quality indicators (Mumford
et al., 2018). The most manageable yet informative indicators
were selected over the course of 2 years’ discussion and trials
and are now incorporated into a bespoke insectary database
covering every generation produced.

Even when aligning quality assurance, diverse facilities
may be working with field-caught populations that naturally
vary in some phenotypic if not always genetic characteristics
(Paton et al. 2013). To establish the relationship among
these indicators for each population colonized for studies, a
benchmarking procedure was established (Valerio et al.
2016a). Each laboratory population may be compared on
different diet regimes by measuring wing length and devel-
opment rate. This initial benchmarking will tell the research
team whether significant differences are inherent to the var-
ious populations, whether they are related to something other
than diet and larval density, and whether study results may be
analyzed without adjustment across sites. Consistent differ-
ences could be expressed in calibrations to adjust findings
across sites. Once benchmarking is completed, it is important
for routinely used laboratory consumables such as diet to be
procurable locally, and from a consistent source, for ease of
laboratory management and standardization.

A further factor in colony utility, which was noted for
compliance as well, is whether one actually knows with cer-
tainty the identity of the mosquitoes used in any given study, at
any given location, for any given time. To address this, our
consortium adhered to a two-step colony establishment pro-
cedure following field collection. Field-caught gravid females
are kept separate past egg laying, and sample progeny from the
same family are submitted for species confirmation using PCR
to eliminate the small possibility of hybrids in the colony.
Routine sampling every few generations continues to con-
firm identity of the colonies, although in most cases facilities
are single use and possibility of strain contamination is low.
Monitoring for free-flying mosquitoes, with identification at
genus level to determine if entering from outside or from the
research colony, is recorded in the same database for quality
indicators. This could be increased to species identification
of all free fliers if the distinction is not clear. Another way to
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ensure cross-site harmonization is to agree a single method of
polymerase chain reaction (PCR), or alternative validated
method for genetic identification, such as loop mediated iso-
thermal amplification (LAMP), for species and strain identity,
and to compare interpretation of results. To maintain ‘‘de-
fensible science,’’ all of these steps toward colony utility
should be documented for clear understanding into the future.

The utility factor is, of course, closely linked to enabling
researchers to adequately answer questions, or verify predic-
tions and assumptions (Valerio et al. 2016b), to then properly
select the best transgenic strain to take forward into a multi-
laboratory study or confined field trial, with introgressions into
each local wild-type strain. The expense of later-stage studies
would prohibit progressing numerous candidates.

Defensible Science

We understand ‘‘defensible science’’ as providing evidence
of maintaining identity of the biological materials; agreeing and
managing the documentation of compliance, study designs,
methods, and results; and maintaining training and staffing re-
cords. All of these should be accomplished in a manner that can
be traced back to each transgenic insertion event, but also each
step in product development, such as shipping strains. The
objective is to provide clear, repeatable, reliable, and accessible
evidence appropriate to the interests and concerns of various
stakeholders, over the long term. This concept also is not en-
tirely new (Guindo et al. 2012 describe documentation for
preparation for clinical trials), although not always articulated
sufficiently in research consortia. This requires staff who are
well trained and committed to achieving a standard beyond
what is generally practiced. However, given the anticipated use
of the transgenic or otherwise-modified mosquito itself as the
intervention technology, the necessity of documentation of the
colonies in use increases dramatically from the level of data
compilation undertaken for research alone.

At the beginning of the collaboration, agreement was
sought on what type, timing (in relation to other events and in
frequency), and level of documentation would be needed to

achieve defensible science. A simple template was elaborated
in Excel�, the wild-type colony record, to record and or-
ganize details about the establishment of colonies from
the target populations of mosquito vector species (Quinlan
et al. 2016c). Similarly, a certificate of analysis was devel-
oped that covers all aspects considered important for material
transfer, confirmation, and maintenance of research strains.
These certificates are in addition to the conventional mate-
rial transfer documentation required for shipping mosquito
eggs in secure, tracked, and environmentally maintained
conditions. Data on samples from the field population, the
field-caught colony established in the laboratory, and the trans-
genic strain were included in the insectary database. The key
quality indicators to show the maintenance of colony utility
were also incorporated into the database (Mumford et al., in
this issue), to be recorded with the setup of each cage. A stan-
dard operating procedure (SOP) was prepared to harmonize
use of laboratory notebooks, while SOPs on other methods and
study protocols instruct the teams on data management, tem-
plates, and electronic backup.

The choice of parameters reflected not only the need for
answering study questions that would allow researchers to
move on to the next phase, but also covered data useful for
regulatory purposes and to populate or validate models used
for internal risk assessments and management. Our aim is that
all decisions during development of the ultimate goal tech-
nologies or product(s) are documented and the reasoning for
the decisions are clear; methodologies are always described;
and all data can be traced back to laboratory notebooks, field
notes, or original data templates for at least 5 years into the
future. Finally, when hands-on training is complete or the
actual studies begin, use of data templates and timely data
review and analysis further support work standards and ex-
pectations on a daily basis. Shared access to data and timely
analysis can provide further insurance against misunder-
standings or disjointed work plans more efficiently than further
meetings or discussions after the foundation for collaboration
has been laid. The defensible science aspect of the preparation
of the facilities and the research teams is illustrated in Figure 2.

FIG. 2. Components of facilities readiness preparations leading to reliable study results and defensible science.
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The documentation of these components does not leave
them static, but rather each adjustment made during opera-
tions should be documented and explained. Choices made in
terms of procedures, equipment, and even facility design
should be reviewed over time to ensure their effectiveness to
reach the targeted objectives in terms of containment and
colony utility. This also means that such objectives should be
clearly described at the very beginning, based on a detailed
risk analysis, thereby tying defensible science back to com-
pliance and colony utility.

Discussion

We describe in this study, and in another article focusing
on operational details (Quinlan et al., 2018), a process of
preparing for studies in containment and achieving ‘‘facilities
readiness,’’ before import of transgenic mosquitoes to a sub-
Saharan Africa site. The process described is an example of
moving from a discovery laboratory team to an international
partnership with African research teams and facilities. There
are a number of design features and procedures in an au-
thorized facility to ensure achieving a suitable level, such as
ACL-2 (Fig. 1). However, it is through shared learning and
recognition that, as highlighted in Figure 2, people are the
foundation of such a preparation that real progress was made.
Reaching agreement on appropriate indicators for colony
utility and the necessary documentation for defensible sci-
ence takes time, yet can build trust and prevent later misun-
derstandings. Planning for and monitoring compliance also
requires rigorous attention, resources, and time. If the prac-
tices learned from this experience are followed, however, the
preparation process in other locations or for other genetic
strategies may be facilitated.

Careful and considered preparations for the broad concepts
of compliance, colony utility, and defensible science have laid
a foundation for future progression of promising technologies
from laboratory to field. It is proposed that, despite the addi-
tional demands on time and resources, only with the balance of
and rigorous achievement of each of these organizing themes
can collaborative research into novel strategies for vector
control reliably progress past initial containment studies.
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