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Abstract

In this thesis we study the topology of the Deligne-Mumford compacti�ed moduli space

M g,n of n pointed genus g stable Riemann surfaces. We decode the combinatorial infor-

mation of the space through dual graphs of decorated Riemann surfaces in it. Finally, we

extend the work of Harer and Zagier in [HZ86] to obtain the generating series of (and

hence calculate) the Euler characteristic of the space in terms of Euler characteristics of

Mg,n.
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1 Introduction

1.1 Why the Euler Characteristic?

Generally, following [MP91], Euler characteristic of a topological manifold Σ is calcu-
lated by first embeding on Σ a graph Γ whose vertices are distinct and edges are Riemann
surfaces on the surface of Σ. The surface is then dissected along edges and vertices of Γ

so that Σ\Γ is a disjoint union of k−dimensional cells (k-simplices) isormorphic to open
subsets of Rn. We then have that χ(Σ) is the Euler characteristic of the resulting cellular
chain complex

χ(Σ) := ∑
k∈N≥0

(−1)k#(k-simplices).

It is a famous old result due to Euler (1750) that Euler characteristic χ(Σ)∈Z of a convex
polyhedron Σ, calculated as χ(Σ) :=| Vertices of Γ | − | edges of Γ | + | Faces of Γ | is
equal to 2−2g if Γ can be embedded into a sphere with g handles Σ.

χ(X) =#(0-simplices)−#(1-simplices)+#(2-simplices)

=# of vertices −# of edges +# of faces

χ

( )
= − +

= 4 − 5 + 1 = 0.

The number χ(Σ) is independent of the choice of the graph Γ. These result was later
generalized by Poincaré who chose a ring, say A = Z or A =Q, and defined χ(Σ) over A
through the homology chain complex as the alternating sum of Be�i numbers

χ(Σ) := ∑
n∈N

(−1)nrank Hn(Σ,A),

where Hn(Σ,A) is the n−th homology group.

Euler characteristics is the oldest and one of the most important topological invariant.
χ(Σ) is useful in classifying topological spaces in the negative sense. If another topological
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space Σ′ is homeomorphic to Σ then χ(Σ) = χ(Σ′) but spaces with same Euler Character-
istics need not be topologically equivalent.

Further, in di�erential geometry, as reflected by the Gauss-Bonnet theorem

x

Σ

Kd(Σ) = 2πχ(Σ),

curvature K, a geometric property, of a topological manifold Σ is related to it’s Euler
characteristic χ(Σ), a topological property.

1.2 Dissertations outline

We endow our main object M g,n, the Deligne-Mumford compactified moduli space of
stable Riemann surfaces, with an orbifold structure. This structure will be related to the
combinatorial data obtained from its stratification through Strebel Theory as discussed in
[Kon92]. By highlighting the work of Harer and Zagier in [HZ86] and [MP91] on χ(Mg,n),
we extend these results to the computation of the Euler Characteristic χ(M g,n).

The outline is as follows:

Chapter 2: In this chapter, we introduce Riemann surfaces whose moduli is our object of
interest. Metric trees and their inflated versions (ribbons) are also introduced here. The
orbifold structure of the space of inflated graphs is mentioned owing to its usefulness in
understanding our object of study in subsequent chapters.

Chapter 3: Here, an introduction to the notion of moduli spaces is presented. We focus
on discussing the compactification and stratification of the moduli space of Riemann
surfaces M g,n and present natural maps between them.

Chapter 4: We start o� by a brief discussion of Stebel’s Theory before presenting a brief
proof of Harer and Zagier on χ(Mg,n). Finally, we discuss the generating function of
χ(M g,n) in terms of χ(Mg,n).
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2 Preliminaries

This chapter is intended to provide a basic background to the content of this project as
well as serve to fix notations. The content follows [Mir95] , [MP91],[Zvo11] and [Ong14].

2.1 Riemann Surfaces

De�nition 2.1.1. A 1−dimensional complex manifold Σ equipped with complex atlas of
charts A = {(Ui,φi) | i ∈ I,φi : Ui→Vi ⊂ C} is called a Riemann surface if

(i). Σ = ∪i∈IUi

(ii). φi : Ui→Vi is a homeomorphism.

(iii). The transition function φ j ◦φ
−1
i : φi(Ui∩U j)→ φ j(Ui∩U j) is biholomorphic for all

i, j ∈ I.

Under the definition above, we say A is a complex structure on the manifold Σ.

De�nition 2.1.2. Let Σ be a Riemann surface whose atlas is A = {(Ui,φi) | i ∈ I,φi : Ui→
Vi ⊂ C}. A function f : Σ→ C is called holomorphic if

f ◦φ
−1
i : Vi→ C

is holomorphic for every i ∈ I.We denote by

O(Σ) := { f : Σ→ C | f is holomorphic function}.

Example 2.1.3. Let R = C[x1, . . . ,xn] be the ring of polynomials in n variables over C.We
denote the a�ne space associated to subsets of Cn by An. For every polynomial f ∈ R there is
an evaluation map

f : An→ C

de�ned by (a1, . . . ,an)→ f (a1, . . . ,an). The evaluation map is an holomorphic function on
the a�ne space.Example 2.1.4 (Riemann Surfaces). (i). Denote by CP1 =C∪{∞} the complex projec-

tive line.

By taking the charts

U1 =CP1 \{∞}= C,
U2 =CP1 \{0}= C∗∪{∞}.
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De�ne the transition functions,

φ1(z) = z 6= ∞, φ2(z) =





1
z if z ∈U1

0 if z = ∞.

Then φ2 ◦φ
−1
1 : C∗→ C de�ned by z 7→ 1

z is biholomorphic. The Riemann surface CP1

is also called Riemann sphere.

Figure 1. Riemann Sphere

(ii). Pick τ1,τ2 ∈ C∗ which are linearly independent over R. We denote by L the la�ice
generated by τ1, τ2 and de�ned by

L := τ1Z+ τ2Z=
{

nτ1 +mτ2 | n,m ∈ Z
}
∼= Z×Z.

C

C

τ1
τ2

Figure 2. La�tices of a torus

The relation ∼ on C∗ de�ned by z1 ∼ z2 whenever z1− z2 ∈ L for z1,z2 ∈ C∗ is an
equivalence relation. The set of equivalence classes E =C/L endowed with the quotient
topology such that U ⊂ E is open exactly when p−1(U)⊂ C is open for the projection
C p−→ E de�ned by z 7→ [z] where [z] is the L−orbit of z or the equivalence class of z.
The quotient topology therefore makes p continuous open map. We then have that E
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v

U

T2

∼= U

φ−→
p←−

V

Figure 3. Torus as a Riemann Surface.

is homeomorphic to a torus T2 ∼= S1×S1. Let V ⊂ C be an open set such that for all
z1,z2 ∈V, z1− z2 /∈ L. Equivalently, V is in the interior of parallelograms spanned
by τ1 and τ2. We then have that p(V ) = U ⊂ E is open and φ : U → V the inverse
of p. (U,φ) is then a complex chart on E. Any two such charts are compatible; the
transition functions are translations (of lattices) which are holomorphic.

De�nition 2.1.5. Let Σ1 and Σ2 be two Riemann surfaces. A continuous map f : Σ1→ Σ2 is
called holomorphic map if for every chart (U1,φ1) on Σ1 and (U2,φ2) on Σ2 with f (U1)⊂
U2, we have that

φ2 ◦ f ◦φ
−1
1 : V1→V2

is holomorphic. Further, if f is bijective and both f and f−1 are holomorphic then f is
biholomorphic. In such a case, we say Σ1 and Σ2 are isomorphic.

Example 2.1.6.

(i). f ∈
AutCP1) = PSL(2,C) is a holomorphic map de�ned by f (z) = az+b

cz+d .

(ii). A degree d ≥ 1 holomorphic map f : CP1→CP1 de�ned by f (z) = zd gives a covering
of CP1 with d sheets and which branch at 0 and ∞ with multiplicity d.

Proposition 2.1.7. The automorphism group PSL(2,C) acts 3− transitively on CP1. More-
over, any 3 di�erent points determine a unique Möbius map taking them to 0,1 and ∞.

Proof. Let f : CP1→CP1
be a biholomorphism. This implies that there exists u ∈CP1

such that f (u) = ∞. Let µ be a Möbius element such that µ(∞) = u. Then f ◦µ := h is also

a biholomorphism with property that h(∞) = ∞. Such h therefore has a pole at in�nity.

Hence,

h = a0 +a1z+a2z2 +a3z3 + . . .

has no essential singularity at in�nity which implies that

h = a0 +a1z+a2z2 + . . .+amzm.

If m = 0 then h is not surjective. If m > 1 then h is injective. If m = 1 we have that

f ◦ µ := h = a+ bz = bz+a
0z+1 . This is equivalent to h =


b a

0 1


 . Hence, for f =


α β

γ δ



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and the Möbius element µ =


a′ b′

c′ d′


, we have that


α β

γ δ


=


b a

0 1




a′ b′

c′ d′



−1

Herein, we shall concentrate on connected, compact orientable Riemann surfaces. From
the classification theorem, for every genus g≥ 0 there exists exactly one such surface. We
usually draw cartoons with g−handles to represent such surfaces.

g = 0 g = 1 g = 2

. . .

. . .

. . .

g >> 0

Figure 4. Cartoons to represent such smooth connected compact Riemann surfaces.

Consider a non-constant holomorphic map f : Σ1→ Σ2 between smooth Riemann surface.
We denote by vp( f ) the vanishing order of f at a point p ∈ Σ1. By taking local coordinates
at p ∈ Σ1 and q = f (p) ∈ Σ2, f can be wri�en in its normal form

w = zvp( f ).

If f has degree d then each q ∈ Σ2 determines an e�ective divisor on Σ1 through pullback

f ∗(q) = ∑
p∈ f−1(q)

vp( f ).q

Theorem 2.1.8 (Riemann-Hurwitz Formula). Let f : Σ1→ Σ2 be a degree d non-constant
holomorphic map between smooth Riemann surfaces Σ1 and Σ2 of genus g1 and g2 respectively.
Then

2g1−2 = d(2g2−2)+ ∑
p∈Σ

(vp( f )−1).

2.2 Metric Trees

In this section, we discuss some results on the space of metric trees which will be useful
in encoding the boundary strata of moduli spaces in the next chapter.

De�nition 2.2.1. A connected undirected graph with no cycles is called a tree.

De�nition 2.2.2. Let p,q ∈ Σ where (Σ,δ ) is a metric space. A metric segment joining p
to q denoted by [p,q] is the image of γ : [a,b]→ Σ which is an isometric embedding with
[a,b] a closed subset of R, p = γ(a) and q = γ(b).
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De�nition 2.2.3 ([AO00]). Ametric tree is a metric space (Σ,δ ) such that for all p,q,r ∈ Σ

the following are satis�ed.

1. The metric segment [p,q] joining p to q exists and is unique.

2. If [p,r]∩ [r,q] = {r} then [p,r]∪ [r,q] = [p,q].

Remark 2.2.4.

• A spanning tree Tn of a graph Γ is a subgraph Γ′ ⊆ Γ consisting of all the vertices
VΓ (but not necessarily all edges) and is not a circuit (i.e edges used should be followed
exactly once).

• An external point of a (metric) tree is one whose valence is 1. An edge whose terminal
or initial point is an external point is called leaf or leg of Tn otherwise the edge is called
internal edge.

Example 2.2.5. We shall consider, in this thesis, a tree Tn called spider with n legs consisting
of a centre O and points (k, t) ∈ {1, . . . ,n}× (0,ak] where n ∈ N is �xed and (ak)

n
k=1 ⊂ R+.

3

2
1 1 2

34

4

1

3

2 1 2

34

Figure 5. Spiders with 3 and 4 legs.

Spiders with n legs form a subtree of the metric tree (R2,δ ) where the metric

δ : R2×R2→ R≥0

is de�ned by setting δ (O,(k, t)) = t and

δ ((k, t),(l,s)) =




| t− s | k = l

t + s k 6= l.

Proposition 2.2.6.

1. Every connected graph Γ has a spanning tree T.

2. A spanning tree T of Γ has v−1 edges where v =|VΓ | is the number of vertices of Γ.

3. Whenever any of the e− (v−1) = e− v+1 unused edge of Γ is added to T , we get an
‘independent’ cycle.

4. A metric tree with n external points (hence n legs) has at most n−2 internal vertices.
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2.2.1 Space of Metric Trees

Theorem 2.2.7. The space of metric trees with n external points is a manifold whose points
each have an alkene structure with a real dimension 2n−3.

Proof. Let Tn be a tree with n points. We know from 4 of 2.2.6 that such T has n−2
internal vertices. Now by 2 of 2.2.6 , other than the n legs, T has (n−2)−1 internal edges.

It is then clear that Tn has n+(n−2)−1 = 2n−3 non-compact edges with boundaries

or corners. Therefore, the space of possible choices of lengths is R2n−3
+ . For instance, for

n = 4 and the lengths λ ,α,γ,β ∈ R5
+. we have:

1 2

34

λ γ

βα

Figure 6. An example of T4

Maps between Spaces of Metric Trees

The following two maps are natural between spaces of metric trees

1. The map f : R2n−3
+ → R2n−3

+ (n≥ 3) between metric trees defined by fusing vertices vi

and v j followed by moving them apart in a di�erent direction. This is equivalent to
permutation of leaves on Tn.

2. The continuous map f : R2n−3
+ → R2n−3−k

+ (n ≥ 4) defined by contracting k (1 ≤ k ≤
n−3) internal edge(s) of Tn to zero.

2.2.2 Ribbon Graphs

De�nition 2.2.8. [MP91] A connected ribbon graph Γ is a graph drawn on a compact con-
nected oriented surface Σ without a degree one vertex and which induces a cell-decomposition
of Σ. We shall denote by RGg,n the space of all ribbon graphs.

Now, for {
n≥ 3 if g = 0

n≥ 1 if g 6= 0
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1 3

2 4
2

1 3

4

1

2 3

4

v

v1

v2

v1 v2E
E

ContractionContraction

Fuse, Move vi−−−−−−−⇀↽−−−−−−−

Figure 7. An illustration of natural maps between spaces of metric trees

(i.e 2−2g−n< 0) with g ∈ Z≥0 and n≥ 1.We define the space of metric ribbon graphs
by

RGmet
g,n =

⊔

Γ∈RGg,n

Re(Γ)
+

Aut(Γ)
. (1)

Observe that RGmet
g,n has a di�erentiable orbifold structure and

Aut(Γ) is the automorphism group of the set of vertices VΓ.

2.2.3 Orbifold Structure of the Space of Metric Ribbon Graphs

De�nition 2.2.9. Let Σ be a Hausdor� topological space. An orbifold chart

U/G
ϕ−→V ⊂ Σ

where U ⊂ Cn is a contractable open set equipped with a biholomorphic action of a �nite
group G. V ⊂ Σ is an open set and ϕ is an homeomorphism.

If Σ is covered by compatible orbifold charts it is called smooth complex orbifold.

De�nition 2.2.10. Let Γ be a ribbon graph whose set of edges is EΓ. Γ is said to be excep-
tional if the natural homomorphism φΓ :
Aut(Γ)→ S|EΓ| of the automorphism group of Γ to the permutation group of edges is not
injective.

For a ribbon graph Γ,

Aut(Γ) acts on Re(Γ)
+ through a natural homomorphism

φ : Aut(Γ)→ Se(Γ), where e(Γ) =| EΓ |

provided Γ is not exceptional. We then conclude from Equation (1) that the space of ribbon
graphs has an orbifold structure.
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The following diagram shows the result of finite group action on metric graphs corre-
sponding to an open set B(r,x)

c

a
b ←→ B(r,x)

c

a a
←→ B(r,x)/S2

a

a a ←→ B(r,x)/S3

Figure 8. T3 as an orbifold
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3 Moduli Space of Pointed Riemann Surfaces

This chapter will introduce moduli spaces of Riemann surfaces and we also discuss the
compactification of the moduli of marked Riemann surfaces.

A moduli space of a given geometric object is one which parametrises such object. Namely,
a point in a moduli space is a particular geometric object. A subset of a moduli space
is a set of those geometric objects satisfying a property(ies) P ′ ⊂P. Moving from one
point in a moduli space to another is a continuous deformation of the geometric object to
another geometric object. We refer to this as modulation provided P is preserved.

We now discuss some important examples of moduli spaces.

3.0.1 Grassmannian

De�nition 3.0.1. The Grassmannian denoted by G(k,n) is the space parametrizing all k
dimensional linear subspaces (0≤ k ≤ n−1) of Cn. That is to say

G(k,n) := {W ⊂ Cn : W is a k dimensional subspace of Cn with 0≤ k ≤ n−1}.

To understand the modulation of W ⊂G(k,n) we present the following facts from [Has07]
and [Ran10]

Theorem 3.0.2. The structure of the Grassmannian G(k,n) is that of an irreducible, algebraic
variety of dimension k(n− k). Furthermore, G(k,n)∼= G(n− k,n).

Let v1, . . . ,vS ∈Cn. The wedge product v1∧ . . .∧vS is defined by antisymmetric blade ∧
given by

v1∧ . . .∧ vi∧ v j . . .∧ vS =−v1∧ . . .∧ v j∧ vi . . .∧ vS ∈
S∧
Cn

where
S∧
Cn = span{v1∧ . . .∧ vS | vi ∈ Cn} and dim(

S∧
Cn) =

(n
S

)
.

Lemma3.0.3. LetB1 = {v1, . . . ,vk} andB2 = {w1, . . . ,wk} be any two bases of a k−dimensional
subspace W of a Cn. Then for some λ ∈ C∗ we have that

v1∧ . . .∧ vk = λw1∧ . . .∧wk.

Proposition 3.0.4. By Plücker embedding G(k,n) ↪→CP(
∧kCn)∼=CP(

n
k)−1, we then have

that G(k,n) is a closed subset of a projective space.
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3.0.2 Decorated Riemann surfaces

De�nition 3.0.5. Let n ≥ 0 be an integer. We shall call the n+ 1−tuple (Σ, p1, . . . , pn) a
n−pointed Riemann surface where the elements of {p1, . . . , pn} ⊂ Σ are calledmarked
points of the smooth Riemann surface Σ.

The genus g(Σ, p1, . . . , pn) := g(Σ). We define Mg,n the moduli space of n− pointed
genus g Riemann surfaces by

Mg,n :=



(Σ, p1, . . . , pn)

∣∣∣∣
Σ is a genus g compact Riemann surface

with n distinct marked points





/
∼

with (Σ, p1, . . . , pn)∼ (Σ′, p′1, . . . , p′n) exactly when there exists an isomorphism ϕ : Σ→ Σ′

defined by ϕ(pi) = p′i, with 1≤ i≤ n. For (g,n) ∈ Z≥0×Z>0.

For instance when g = 0 and n≥ 3 we take (Σ, p1, . . . , pn) ∈M0,n and use cross-ratio λ to
send (p1, p2, p3, p4, . . . , pn) to (0,1,∞,λ (p4), . . . ,λ (pn)) where each of the n−3 distinct
points ti−3 := λ (pi) ∈ CP1 \{0,1,∞} ∀i = 4, . . . ,n. In this way we can uniquely identify
(Σ, p1, p2, p3, p4, . . . , pn) by (CP1,0,1,∞, t1, . . . , tn−3). Hence

M0,n = (CP1 \{0,1,∞})n−3 \∪ All Diagonals.

3.1 Compactification of the Moduli space Mg,n

The following example illustrates why the moduli space Mg,n is not compact

Example 3.1.1. Comparing the cross-ratio of two Riemann surfaces

(Σt ,0,1,∞, t),(Σ′t ,0, t
−1,∞,1) ∈M0,4.

ForΣt , the cross-ratio λ (p4)= t . ForΣ′t we �rst note that λ (x)= txmaps (0, t−1,∞) to (0,1,∞)

so that the cross-ratio of Σ′ is λ (1) = t.1 = t . Hence the Riemann surfaces are essentially the
same i.e. Σt = Σ′t ∈M0,4. But

lim
t→0

Σt = (Σ,0,1,∞,0) i.e. p4→ p1 and lim
t→0

Σ
′
t = (Σ′,0,∞,∞,1) i.e p2→ p3

We observe that neither of the limits is in M0,4. This shows that M0,4 is not compact.

De�nition 3.1.2. A node on a Riemann surface Σ is a point whose neighbourhood looks
like that of the origin in the equation xy = ε as ε tends to zero. Σ is called nodal Riemann
surface if its points are either nodes or smooth points.
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An n pointed nodal Riemann surface is a nodal Riemann surface with n distinct marked
points. A marked point or a node on a nodal Riemann surface shall be refered to as a
special point.

De�nition 3.1.3. A stable n pointed nodal Riemann surface (Σ, p1, . . . , pn) is one whose
each connected component satis�es:

1. The number of special points n on a genus g connected component satis�es the stability
condition n≥ 3−2g. Such pair (g,n) is called stable pair.

2. |
AutΣ, p1, . . . , pn) |< ∞.

3. The number of automorphism �xing the special points in (Σ, p1, . . . , pn) are not in�netes-
imal.

We compactify Mg,n by adding nodal Riemann surfaces to get the Deligne-Mumford
compactified moduli space of n−pointed genus g stable Riemann surfaces M g,n.

Example 3.1.4. Consider M0,4 = CP1 \ {0,1,∞}. Take an element with the following
representation.

p1 p2 p3 p4

0 1 ∞ λ (p4)

Figure 9. (Σλ ,0,1,∞,λ (p4)) ∈M0,4

There are 3 limits (0,1 and ∞) of Σλ corresponding to λ (p4)→ 0,λ (p4)→ 1 and λ →
∞ respectively. Hence M 0,4 = CP1.

p4

p1 p2
p3

λ (p4)→ 0

0

p4

p2 p1
p3

λ (p4)→ 1

1

p4

p3 p1
p2

λ (p4)→ ∞

∞

Figure 10. The 3 limits (0,1 and ∞) of Σλ

Generally, M g,n = Mg,n∪∂M g,n with Σg ∈ ∂M g,n being stable Riemann surface with a
single node. We call ∂M g,n ⊂M g,n boundary of M g,n.

M g,n :=



(Σg, p1, . . . , pn)

∣∣∣∣
Σg is an n pointed genus g stable Riemann surface

with pi 6= p j for all i 6= j





/
∼
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Example 3.1.5. We then have that M 0,n is the collection of such Σ which is a connected
projective Riemann surface with (at the extreme) nodal singularity ; and whose twigs (compo-
nents) each is isomorphic CP1. The points of Σ are either smooth or nodal or marked so that
| AutΣ |< ∞.

Σ =
p1

p6p2

Figure 11. An element in ∂M 0,6

Theorem3.1.6. For stable pair (g,n), the orbifoldM g,n of dimension n−3+3g parametrizes
n− pointed genus g Riemann surfaces while Mg,n is its open Zariski dense subvariety.

M 0,n has a boundary stratification as will we shall discuss in the following section.

3.2 M g,n is a Stratified Space

Every n pointed Riemann surface Σ of genus g has a corresponding dual graph Γ which
satisfies:

• VΓ := Set of vertices of Γ is in one-to-one correspondence to Smooth components of Σ.

• EΓ := Set of edges of is in one-to-one correspondence to Nodes of Σ.

• LΓ := Set of external legs of Γ is in one-to-one correspondence to Marked points of Σ.

8

6

4

35
1

7
2 ←→ 7

2

1

8

6
3

5

4

Figure 12. Dual graph of an element in ∂M 0,8.

Example 3.2.1.

The dual graph Γ encodes the stratification of Σ∈ ∂M g,n with g = g(Σ) := g(Γ) computed
as

g(Γ) = 1− v(Γ)+ e(Γ)+ ∑
v∈VΓ

gv = h1(Γ)+ ∑
v∈VΓ

gv. (2)
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Here gv is the genus of the component represented by vertex v while v(Γ),e(Γ) and h1(Γ)

are the number of vertices, edges and the first Be�i number (rankH1(Γ) of the first
homology group of Γ) of Γ respectively. In Figure 13 above, for instance, the dimension
of the cell corresponding to Γ, MΓ ⊂M 0,n, is given by

dimCMΓ := n−3− e(Γ).

3

1
2

4
5

6

1 11
←→

3

0

0

0

1

0

0

1
1 1

1 2

3

4

5

6

Figure 13. Dual graph of an element in ∂M 7,6.

Example 3.2.2. We can compute the genus of the graph,

g= g(Γ)= (3+1+0+0+0+0+0)+(#of holes in graph(genus of graph))= 4+(1+1+1)= 7.

Alternatively, we can employ equation (2) for the dual graph Γ of Σ in Figure 16 above we
�nd the same result

g = g(Γ) = 1−7+9+(3+1+0+0+0+0+0) = 7.

Note that the genus of the dual graph Γ on a compact Riemann surface Σ is the same as
the genus of the Riemann surface Σ.

We note that, M g,n is connected, irreducible and equipped with a universal stable Riemann
surface

Cg,n = {(X , p) | X ∈M g,n+1, p ∈ ΣX}
f (X ,p)→X−−−−−−→M g,n.

This is called a forgetful map and it is a projection map. We have that dimC(Cg,n) =

n−2+3g. Whereas
f−1MΓ := f |MΓ

= MΓ
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We can look at MΓ as :
MΓ = (∏

v∈VΓ

Mv)/Aut(Γ). (3)

Now for g≥ 2, the space immediately above is an orbifold. Consider the moduli space
M0,4 = CP1 \{0,1,∞} and its Deligne-mumford compactification M 0,4 = CP1. Stratifi-
cation above can be extended to other classes of Riemann surfaces as shown below:

For g = 1,n = 1we have the following con�gurations

1
2 ←→ 1

11 ←→ 1

and the con�gurations for g = 1 and n = 2 are illustrated below

1
2

1
←→ 1

2

0
2

1
1 ←→ 2

1

1
2

1
←→

1

2

Figure 14. Dual graph corresponding to some elements in ∂M g,n where n = 1,2.

Hence for genus g = 1 there are exactly two configurations: The first one from the graph
type with one vertex of genus one and all other vertices of genus zero with at least zero
leg from each vertex; the second one having a loop. One could draw dual graphs for genus
g = 2 to realise that there are exactly 7 configurations.
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There are 3 di�erent automorphisms of elements of M 0,4 when the marked points aproach
the neighbouring points. These corresponds to the metric trees in Figure 16.

4

1
2

3

Figure 15. Σ ∈M 0,4

These are the boundary strata of M 0,4.

1

4

2
3

,

1

4

3
2

and

1

3

4
2

Figure 16. Three Boundary strata of Σ ∈M0,4

De�nition 3.2.3. For an algebraic variety B, a flat morphism π : C → B is a morphism
for which there is an embedding

↪→C CPN×B

π

B

p

for some N ∈ N such that Cb := π−1(b).⊂ CPN×{b}.
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B

CPN×B

pn

pi

p1

p

pn(b)

pi(b)

p1(b)

↪→

↓π

b

π−1(b)

Figure 17. An illustration of flat morphism over an algebraic variety B

De�nition 3.2.4. A family over an algebraic variety B of genus g Riemann surfaces on which
there are n distinct marked points is a �at morphism π : C → B with n sections corresponding
to marked points pi such that every �bre Cb := (π−1(b), p1(b), . . . , pn(b)) ∈M g,n.

We end this discussion on stratification of M g,n above by the following definition from
[BH08].

De�nition 3.2.5. A type (g,n) stable graph Γ with g≥ 0,n≥ 1 satisfying 2−2g−n < 0
is given by the following data:

SΓ1. two �nite sets VΓ and LΓ;

SΓ2. a partition P of LΓ into singletons (called legs or leaves of Γ) or subsets of pairs of
elements(called edges of Γ);

SΓ3. a map γ : VΓ→{0,1, . . . ,g} satisfying

g(Γ) = h1(Γ)+ ∑
v∈VΓ

γ(v);



19

SΓ4. for v ∈VΓ, a subset L(v)⊂ LΓ is such that 2γ(v)−2+ | L(v) |> 0;

SΓ5. a map η : {v : v ∈VΓ}→ {1,2, . . . ,n}.

By choosing an ordering of L(v) for each of the l(v) =| L(v) | vertices v ∈ L(v),we obtain
a morphism

εΓ : ∏
v∈VΓ

M l(v),γ(v)→M g,n

which maps a genus γ(v) Riemann surface Σγ(v) with l(v) distinct marked points into an
n−pointed genus g Riemann surface Σg. The morphism εΓ does not depend on the choice
of ordering of L(v).

3.3 Morphisms Between Moduli Spaces M g,n

The following are natural morphisms between moduli spaces.

1. Consider the action γ : Sn×M g,n→M g,n defined by

γ((τ,(Σg, p1, . . . , pn))) = (Σg, pτ(1), . . . , pτ(n)).

This morphism is called permutation morphism. This is simply renaming the marked
points.

Example 3.3.1. The isomorphism of the corresponding trees with n external leaves is
through cyclic permutation τ ∈ Sn. In particular if n = 3, τ ∈R3

+/S3 we have for instance
(a,b,c)∼ (b,a,c) and the corresponding morphism;

b

a
c0 τ7−→

c
b

a
0

Figure 18. An illustration of a permutation morphism

2. We could also decide to forget the (n+1)th point, this gives a morphism

f : M g,n+1→M g,n ,

referred to as forgetful morphism.
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1

3
23 f7−→

1
23

Figure 19. An example of forgetful morphism for g = 3 and n = 2.

However, if in rubbing out a marked point the stability of a component of the Riemann
surface is compromised, we view f as the ‘inverse of bubbling.’ The points on CP1

come together as the CP1 copy shrinks into a scar (a point) or the scar acts as a node
between 2 components.

Example 3.3.2. With g = 3 and n = 2, we have that

1 2

3

03 f7−→
3

1

2

1

3

2

2 0 1 f7−→
2 1

1 2

Figure 20. An illustration of ”inverse of bubbling” to restore stability.

3. Consider the gluing morphisms

i) g : M g1,n1+1×M g2,n2+1→M g1+g2,n1+n2 is defined in such a way that the (n1 +

1)th marked point on Σg1 ∈M g1,n1+1 is glued to the (n2 + 1)th point on Σg2 ∈
M g2,n2+1. The resulting Riemann surface now has genus g1 + g2, a node and
at least two components. The two clumped marked points and ’killed’ so that
the new Riemann surface has (n1 +1)+(n2 +1)−2 = n1 +n2 marked points i.e
(Σg1+g+2, p1, . . . , pn1+n2) ∈M g1+g2,n1+n2 .

( )
1

3
23

,
1

21

g7−→
1

2 3

13

Figure 21. An illustration of gluing morphism for g1 = 3,n1 = 2 and g2 = 1,n2 = 1.
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Example 3.3.3.

ii) h : M g,n+2→M g+1,n is defined by gluing the the marked points pn+1, pn+2 ∈
Σg,n+2 ∈M g,n+2 to form one more handle. The resulting stable Riemann surface
has 2 points less and of genus 1 more than the original stable Riemann surface.

1

3
22

h7−→ 1
3

Figure 22. An example to illustrate a gluing morphism for g = 2 and n = 3.
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4 Euler Characteristic of Moduli Space

4.1 Strebel Theory and the Topology of Metric Graphs

This section is dedicated to demonstrate how the combinatorial information of ribbon
graphs Γ can be used to cypher the holomorphic structure of a Riemann surface through
Strebel di�erential theory. We will be mostly referring to [MP91].

De�nition 4.1.1. A tiling on a compact surface Σ is an arrangement of �nitely many
polygons (called faces of the tilling) which cover Σ and which meet (if they meet at all) at
vertices (called vertices of the tilling ) or along complete edges (called edges of the tilling).

Figure 23. Two tillings on a sphere

Remark 4.1.2. A cell-decomposition of the surface Σ induced by the ribbon graph Γ are
the separate pieces of Σ obtained by cutting Σ along the edges and vertices of Γ. Each of
these pieces look like a point, line segment or an open disc in an n−space. The Euler
characteristics of Σ,

χ(Σ) := v(Γ)− e(Γ)+ f (Γ) = 2−2g(Γ), (4)

where g(Γ),v(Γ),e(Γ) and f (Γ) are the genus of Σ, number of dimension 0 (vertices), number
of dimension 1 (edges) and number of dimension 2 (faces) respectively.

Given a Riemann surface Σ, to calculate the Euler characteristic we fix a tiling on Σ and
write:

χ(Σ) :=
2

∑
i=0

(−1)k#(cells of dimension k).

De�nition 4.1.3. Let Σ be a Riemann surface. By a ribbon graph Γ ∈ Σ, we mean that Γ

is an embedded in Σ so that each component of Σ\Γ is a disc.
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Theorem 4.1.4 (Strebel). Consider a genus g Riemann Surface (Σ, p1, . . . , pn) with n distinct
points on it such that {

n≥ 3 if g = 0

n≥ 1 if g 6= 0

with (g,n) ∈ Z≥0×Z>0. For any choice (a1,a2, . . . ,an) ∈ Rn
+ of ordered positive real n

tuple, there exists unique meromorphic quadratic di�erential ϕ whose poles zi at pi for all
i = 1, . . . ,n are of order 2 and the residue of ϕ at zi is ( ai

2π
)2 = A. Also, near zi, ϕ can be

expressed as

ϕ(z) =
A

z− zi
dz2

i +
B

z− zi
dz2 +Cdz2 +D(z− zi)dz2 + . . .

Remark 4.1.5. Res(zi,ϕ)=A. Let z0 ∈Σ\{p1, p2, . . . , pn} such that
√

ϕ is a neighbourhood
of z0 ∈U. So that ±

√
f (z)dz2 =

√
f (z)dz =

√
ϕ .

F : U → C with F(z0) = 0,

F(z) =
∫

γ

√
ϕ =

∫

γ

√
f (z)dz.

The choice of ± above is to make F(z)> 0 with respect to traversing the loop γ in counter
clockwise sense provided by complex structure on Σ.

Around each marked point zi there is a foliated disk of compact horizontal leaves γi1 , . . . ,γim
whose lengths are pi1, . . . , pim respectively. As the loop γ enlarges outwards from zi, it hits
zeros of ϕ and the shape becomes an m-gon whose circumference is pi = pi1 + . . .+ pim
given by

∫

γ

√
ϕ = pi.

All such m−gon cover the whole surface Σ. Below, pi = pi1 + pi2 + pi3 + pi4, giving the
following 4−gon,

Consider the following 4 properties of a graph Γ

1. Γ is a metric graph.

2. Each vertex is of degree at least 3 i.e ∂ (V )≥ 3 for all vertices V.

3. Faces are isomorphic to discs and each face contains exactly one marking.

4. The perimeter of the face Di containing zi is pi for finitely many i, say n.
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ϕzi

pi1

pi4 pi2

pi3

Figure 24. Horizontal lines near marked points zi surround and converge to zi.

Now, for any choice (a1, . . . ,an) ∈ Rn
+, Mg,n

∼=−→MComb
g,n (a1, . . . ,an). With MComb

g,n being the
moduli of graphs on a topological surface of genus g with n faces satisfying properties
1−4 in 4.1 above. This implies that there exists that the discs have a topological structure.

Rn
+×Mg,n ∼= MComb

g,n (5)

Remark 4.1.6. The isomorphism in equation (5) above is constructed as follows:

1. First, we construct a mapping

∏

Γ∈RGBg,n

Re(Γ)
+

α−→Mg,n×Rn
+

and show that the mapping

RGBmet
g,n

β−→Mg,n×Rn
+

is its descent. This is done by considering the boundary-preserving action of AutΓ.

2. Next, show that β is a right-inverse of the mapping

Mg,n×Rn
+

σ−→ ∏

Γ∈RGBg,n

Re(Γ)
+ .

3. The task ends by showing that σ is a left-inverse of β by demonstrating that

σ ◦β = id ∈Mg,n×Rn
+.

4.2 Calculating the Euler Characteristics of χ(Mg,n).

In computing the Euler characteristic χ(Mg,n) we will need the following properties of
Euler characteristics.
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1. χ(X ∏Y ) = χ(X)+χ(Y ) where X is open and Y is closed.

2. χ(X×Y ) = χ(X)×χ(Y ). χ(X×A) = χ(X) where A is a contractable face.

3. χ(X \Y ) = χ(X)−χ(Y ).

4. If p : E→ B is a continuous map then for b ∈ B, p−1(b) is a fibre and

χ(E) = χ(B)×χ(F).

We now start enumeration of χ(M0,n). First, we show that

(CP1 \{p1, . . . , pn}) = 2−n.

We proceed inductively. Since M0,3 = {pt}, thus we have χ(M0,3) = 1.

Now from property 3 in 4.2 we have that

χ(CP1) = χ(CP−1 \{p1, . . . , pn})+{χ(p1)+ . . .+χ(pn)}.

We then have that,

2 = χ(CP1 \{p1, . . . , pn})+n =⇒ χ(CP1 \{p1, . . . , pn}) = 2−n.

By property 2 in 4.2 we get, χ(M0,n)= χ(M0,n−1)×χ(CP1 \{p1, . . . , pn−1}) which implies

χ(M 0,n) = χ(M0,n−1)× (3−n).

Recursively we get,

χ(M0,n) = (3−n)(4−n)(5−n) . . . .(−1) = (−1)n−1(n−3)!. (6)

Further, we define χg,n := χ(Σg \{p1, . . . , pn}) = 2−2g−n to be the Euler Characteristic
of open Riemann surfaces of corresponding type. So that,

χOrb(Mg,n+1) = χg,n×χ(Mg,n) = (2−2g−n)χ(Mg,n). (7)

Let X be an orbifold. Denote by XG⊂X the set of points of X which are invariant to a
finite group G but not to any larger group. It is a well known consequence that whenever
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p ∈ X has a neighbourhood ∼= U
G then p ∈ XG. The orbifold Euler characteristics of X

is given by

χOrb(X) = ∑
G

χ(XG)

| G | . (8)

Lemma 4.2.1. [Mir95] Let G < Sn be a permutation group acting on Rn
+ naturally by

permuting coordinate axes. Then Rn
+/G has a di�erentiable orbifold structure with orbifold

Euler Characteristic
χOrb(Rn

+/G) =
(−1)n

| G | . (9)

Example 4.2.2. Let X = {pt}/G and G < Sn. Then the orbifold Euler characteristic of X is
given by

χOrb(X) =
1
| G | .

Theorem 4.2.3 (Harer-Zagier [HZ86]).

χOrb(Mg,n) := χ(Mg,n×R+
n) = (−)n−1 (2g+n−3)!(2g)(2g−1)

(2g)!
ζ (1−2g) (10)

with integers g≥ 0,n≥ 1 satisfying 2−2g−n < 0 and (g,n) 6= (1,1).Where

ζ (s) = ∑
n≥1

1
ns

is the Riemann zeta function.

Proof. De�ne the following generating function of
χOrb(Mg,n) by

X(t) := ∑
g,n≥1:χn,g=2−2g−n<0

χOrb(Mg,n)

n!
t
χ

g,n. (11)

Remark 4.2.4. The generating function X(t) is obtained from Hermitian matrix integral
whose asymptotic expansion is possible to calculate through the Penner model.

Now, from the above identity given in (11), we have that

χOrb(Mg,n+1)

(n+1)!
t
χ

g,n+1 =
d
dt

(
1

n+1

χOrb(Mg,n)

n!
t
χ

g,n

)
. (12)

As in [Kon92] let us write,

A1(t) := ∑
g,n≥1

χ(Mg,1)t
χ

g,n, A0(t) := t log t− t and A(t) := A1(t)−A0(t).
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We then have that,

∑
g,n≥1

χOrb
(Mg,n)
n! t

χ
g,n = A1(t)+

A′1(t)
2! +

A′′1(t)
3! + . . .+

A′′0(t)
3! +

A′′′0 (t)
4! + . . .

= (A(t)+
A′(t)

2!
+

A′′(t)
3!

+ . . .)−A0(t)−
A′0(t)

2
,

where

A(k)
k (t)
k! = ∑

g≥1

χOrb
(Mg,k)
k! t

χ
g,k .

As the we have from (6), with g = 0,

∑
g=0,n≥3

χOrb(M0,n)

n!
t
χ

0,n = ∑
n≥3

(−1)n−1(n−3)!
n!

t2−n

=
A′′0(t)

3!
+

A′′′0 (t)
4!

+ . . . ,

we have that

X(t) = ∑
k≥0

A(k)
1 (t)
k!

+ ∑
k≥2

A(k)
0 (t)
k!

= ∑
k≥0

A(k)(t)
k!
−A(t)− A′0(t)

2
(13)

=
∫ t+1

t
A(s)ds− (t log t− t)− 1

2
log t. (14)

The integral in the equation above is given by

∫ t+1

t
A(s)ds =

∫ t+1

t

(
A(t)+(s− t)A′(t)+

(s− t)2

2
A′′+ . . .

)
ds

=A(t)+A′(t)
∫ t+1

t
(s− t)ds+A′′(t)

∫ t+1

t
(s− t)2ds

=A+
A′

2
+

A′′

6
+ . . .= log

(
Γ(t +1)√

2π

)
.

Hence,

X(t) =
∫ t+1

t
A(s)ds = t log t + t− 1

2
log t. (15)

We then have that for Γ satisfying properties 1−4 in 4.1 ,

χ(Mg,n) =χ(Mg,n×R+
n)

=χ(M Comb

g,n ) = ∑(−1)CodimΓχ(MComb

Γ ).
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Here,

(R+)
e(Γ)

Aut(Γ)
:= M Comb

g,n .

But

χ

(
(R+)

e(Γ)

Aut(Γ)

)
=

1
| Aut(Γ) | .

As a result of the above fact, we get

χ(Mg,n) =χ(M Comb

g,n )

=∑
Γ

(−1)6g−6+3n−E(Γ) 1
| Aut(Γ) | .

Therefore, X(t) = ∑
Γ as before

(−1)V (Γ) t
χg,n

|Aut(Γ)| with

χg,n =
2−2g

V (Γ)−E(Γ)+E(Γ)−E(Γ)

=
2−2g

V (Γ)−E(Γ)

=⇒ X(t) = ∑
Γ

(−1)V (Γ) tV (Γ)−E(Γ)

| Aut(Γ) | . (16)

Asymptotic Expansion of X(t)

Following [Eti02], we say f (s)∼ ∑
i≥0

ais−i
almost everywhere in a neighborhood of zero

if for every δ > 0, we can �nd ε > 0 such that | f (s)−∑ais−i |<< δ whenever s∈ (−ε,ε).

Theorem 4.2.5 (Gauss).

∫
∞

−∞

xnetx2
dx =

√
2π

t
t
−n
2

=

{
0 if n = 2k+1

(n−1) if n = 2k,k ∈ Z.

Further,

exp

(
−t

∞

∑
k≥2

xk

k

)
= e−t x2

2 e−t
∞

∑
k≥3

e−t x2
2


 ∑

m3,m4,...

∏
∞
m=3

(
xk

k

)mk

(mk)!


 .
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Example 4.2.6. With almost all mk = 0,

∫
e−t x2

2


∏

∞
m=3

(
xk

k

)mk

(mk)!


dx.

Here division means that we have distinguished edges.

Now, using

−t ∑
k≥2

(
xk

k

)
= t(x+ log(1− x))

and considering t→ ∞, we integrate the exponential function whose power is the above

expression near zero to get

∫

Near 0
exp

(
−t ∑

k≥2

(
xk

k

))
dx =

∫
exp(t(x+ log(1− x))dx

=
∫

Near 0
etx(1− x)tdx

=et
∫

Near 1
yte−tydy =

et

tt+1

∫
∞

0
zte−zdz =

et

tt+1 Γ(t−1)

X(t) = log

(
et

tt+1

√
et

2π
Γ(t +1)

)

= ∑
k≥1

ζ (−k)
−k

t−k,

where ζ (s) = ∑
n≥1

1
ns . By analytic continuation,

∫ t+1

t

(
A(t)− t log t + t− 1

2
log t

)
dt = ∑

k≥1

ζ (−k)
−k

t−k. (17)

Now, by uniqueness of asymptotic expansion we get the following closed formulae

χ
Orb(Mg,n) := χ(Mg,n×R+

n) =n! ∑
Γ∈RGg,n

(−1)e(Γ)

| Aut(Γ) | .

=(−)n−1 (2g+n−3)!(2g)(2g−1)
(2g)!

ζ (1−2g).

=(−1)n (2g+n−3)!(2g−1)
(2g)!

b2g.
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We then infer the result in [HZ86] that, A(t) = 1
2 − t + t logΓ(t) and hence χ(Mg,1) =

ζ (1− 2g) = −b2g
2g . Here, the numbers b2g are the (2g)th Bernoulli coe�icients given by

the polynomial f (x) = x
ex−1 = ∑

∞
m=0

bm
m! xm. The Bernoulli numbers are generated by the

formulae

bm =
m

∑
k=0

1
k+1

k

∑
i=0

(−1)i
(

k
i

)
.

The first few being b0 = 1,b1 =−1
2 ,b2(1) =

1
6 ,b2(2) =− 1

30 ,b2(3) =
1
42 ,b2(4) =− 1

30 ,

b2(5) =
5
66 ,b2(6) =− 691

2730 , . . .

For instance, when (g,n) = (1,1), we get

χ(M1,1×R1
+) = ζ (−1) =− 1

12
.

More examples are given below in table 1 .

n\g 3 4 5 6

2 5/252 -7/240 9/132 -7601/32760

3 -5/42 7/30 -15/22 7601/2730

4 5/6 -21/10 15/2 -7601/210

5 -20/3 21 -90 7601/15

Table 1. Euler characteristic χ(Mg,n) for (3,2)≤ (g,n)≤ (6,5)

4.3 Enumerating the Euler Characteristics of M g,n

We now extend the result in equation 4.2 to χ(M g,n). To avoid notational clu�er, the
notation χ(M g,n) shall be used for an orbifold Euler characteristic χOrb(M g,n). From
definition 3.2.5 and 3 we have that

M g,n =
⋃

Γ

MΓ

Aut(Γ)

so that

χ(M g,n) = ∑
Γ

∏
v∈VΓ

Ml(v),γ(v)

| AutΓ | .

We arrange χ(M g,n) in a generating series and use asymptotic expansion techniques to
obtain a formula computing it from its genus g and number of distinct points n using
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basic operation.

Let

F(x,λ ) := ∑
g≥0

Fg(x)λ g−1

where

Fg(x) := ∑
n≥0, n≥3−2g

χ(M g,n)
xn

n!
(18)

so that the generating function of M g,n becomes:

F(x,λ ) := ∑
n≥0

∑
n≥3−2g

χ(M g,n)
xn

n!
λ

g−1. (19)

The theorem below will give the power series expansion of F(x,λ ) involving the generating
series given by:

Ω(x,λ ) := ∑
g≥0

∑
n≥3−2g

χ(Mg,n)
xn

n!
.

We then seek to find a closed formula for Fg(x) using the usual asymptotic theory tech-
niques.

Theorem 4.3.1.

exp(F(x,λ )) =
1√
2πλ

∫

R
exp(−(y− x)2

2λ
+Ω(y,λ ))dy. (20)

Proof. We put y− x = z
√

λ on the right side of equation 4.3 which reduces to

exp(F(y,λ )) =
1√
2π

∫

R
exp( ∑

g≥0
∑

n≥3−2g

χ(Mg,n)
(x+ z

√
λ )n

n!
)exp(−z2

2
)dz,

a one-dimensional Gaussian integral. Expanding the integrand as a power series yields

1+ ∑
k≥1

∑
g1,...,gk≥0

∑
r1,...,rk

ri≥3−2gi

k

∏
i=1

χ(Mgi,ri).
r1,...,rk

∑
t1,...,tk=0
∑ ti even

(t1 + . . .+ tk−1)!!
k!t1! . . . tk!

x∑
k
i=1(ri−ti)

∏i(ri− ti)!
λ ∑

k
i=1(gi−1)+ 1

2 ∑
k
i=1 ti.

(21)
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In terms of the stable graphs, the equation (21) has a meaning. For k ≥ 1, consider stable

graphs Γ1, . . . ,Γk with the pair (gi,ri) encoding the genus of a vertex and legs in the graph

Γi respectively. For every choice ti of legs of Γi such that 0 ≤ ti ≤ ri, there are double

factorial (t1 + . . .+ tk−1)!! possible interconnections between them provided ∑ ti is even.

For every pairing we get a stable graph (disconnected) of type (gk,nk) with

gk =
k

∑
i=1

gi +1− k+
1
2

k

∑
i=1

ti, nk =
k

∑
i=1

(ri− ti).

On the other hand, if we �x a disconnected stable graph of type (g,n) then we can �nd

integers k, t1, . . . , tk,r1, . . . ,rk as used in equation (21) which could be written as

1+ ∑
k≥1

∑
g1,...,gk≥0

∑
Γ∈Γg,n

χ(MΓ)

| Aut(Γ) |λ
g−1, (22)

where Γg,n is the set of disconnected stable graphs of type (g,n).

4.4 Asymptotic Formula for Fg(x)

Expansion of the right hand side of equation (20) helps us deduce a formula for Fg(x).
This is done by substituting

U(x,y,λ ) :=−(y− x)2

2λ
+Ω(y,λ )

whose formal power series is centred at the solution of

y′ := x+ ∑
g≥0

∂Ω(y)
∂y

λ
g. (23)

A solution to equation (23) which takes the form

y := y(x,λ ) = ∑
g≥0

yg(x)λ g

gives rise to a recursive formula

y0(x) = x+ ∑
n≥2

χ(M0,n+1)
yn

0(x)
n!
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yg(x) = x+
g

∑
k=0

∑
n≥2−2k

n≥0

χ(Mk,n+1) ∑
m1+2m2+...+gmg=g−k

m0+m1+...+mg=n

ym0
0 + . . .+ ymg

g

m0! . . .mg!
.

The function y0(x) can be computed via the di�erential equation

dy0(x)
dx

(1+ log(1+ y0(x))) = 1.

This gives rise to the power series

y0(x) = x+
x2

2
+

x3

3
+

7
24

x4 +
17
60

x5 +
71

240
x6 +

163
504

x7 +O(x8)

from which the boundary condition y′0(0) = 0 is realised. We then have that all yg(x)
values are uniquely determined by the recursion below

yg(x)
y′0(x)

=
g

∑
k=0

∑
n≥2−2k

n6=0

χ(Mk,n+1). ∑
m1+2m2+...+gmg=g−k

m0+m1+...+mg=n

ym0
0 + . . .+ ymg

g

m0! . . .mg!
.

Now, the expansion of U(x,y,λ ) at the point y(x,λ ) and put w = y− y yields

−(x− y)2

2λ
+Ω(y,λ )− 1

2λ
w2(1−∑

g≥0
Ω

(2)(y)λ g)+ ∑
k≥3

1
k!

wk(∑
g≥0

Ω
(k)(y)λ g−1),

where all k−derivatives are with respect to y.

Finally writing
G := G(x,y(x,λ )) = ∑

g≥0
Ω

2
g(y(x,λ ))λ

g,

Sk := Sk(x,y(x,λ )) = ∑
g≥0

Ω
k
g(y(x,λ ))λ

g−1

and

A := A(x,y(x,λ )) = ∑
r≥1

∑
t1,...,tk=0
∑ ti even

(t1 + . . .+ tk−1)!!
k1! . . .kr!

Sk1 . . .Skr√
1−G1+k1+...+kr

λ
1
2 (k1+...+kr),

we have the following theorem.

Theorem 4.4.1. An asymptotic expansion of F(x,λ ) is given by

−(x− y)2

2λ
+ ∑

g≥0
Ωg(y)λ g−1− 1

2
log(1−G)+ log(1+A).
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The generating series are obtained by adding up all contributions from each configurations
of the dual graphs associated to a fixed stable pair (g,n).

Example 4.4.2. For g = 2 and any �xed n, we add up the contributions from all 7 dual
graph con�gurations of (Σ2, p1, . . . , pn) ∈M 2,n to obtain

F2 =
1

1440(1+D)2(E−1)3 [−2D8(E−1)2(7+3E)−24D7(E−1)2(−7+17E)

+30D5(E−1)2(61E−221)−3D6(E−1)2(259+201E)

+360D(45E3−167E2 +206E−84)+60(73E3−270E2 +336E−144)

+180D2(138E3−519E2 +635E−254)+60D3(341E3−1322E2 +1633E−652)

+15D4(631E3−2640E2 +3395E−1386]+
D5

4
.

Whose power series expansion is

F2(x) = 6+13x+21x2 +
181
6

x3 +
251
6

t4 +
6883
120

x5 +
28196

360
x6 +O(x7)

from where we read o� χ(M 2,n) for 0≤ n≤ 6 by multiplying the coe�cient of xn by n!.

n 0 1 2 3 4 5 6

χ(M 2,n) 6 13 42 181 1004 6883 56392

Table 2. Euler characteristic χ(M 2,n) for 0≤ n≤ 6.
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