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Abstract

Background: Under-�ve mortality rates is one of the health indicators of great impor-

tance for any country. Kenya is among those nations in the sub-saharan part of Africa

which has high under-�ve deaths, and thus it will be of importance to apply best statistical

approaches to establish which factors have in�uence on child mortality, this will assist to

plan for the interventions.

Approach: Our study employed use of Random Forest for Survival Regression and Classi-

�cation to analyze the Kenya Demographic Health Survey (KDHS) 2014 data to do selection

of the risks factors for the under-�ve mortality. Akaike Information Criterion (AIC) statis-

tics was employed to select most appropriate accelerator failure time (AFT)-shared frailty

model.

Results: The results gotten through �tting the AFT-shared frailty model was that there

was presence of unmeasured factors at community cluster while at household cluster there

was no evidence suggesting existence of the unmeasured factors. Log-logistic AFT-model

showed that the sons who have died, daughters who have died, duration of breastfeed-

ing, and months of breastfeeding were found to be having signi�cant in�uence on the

under-�ve mortality (p < 0.05). Log-logistic AFT model with Gaussian frailty was the

most appropriate model for under-�ve child mortality due it’s least Akaike Information

Criterion (AIC) statistic.

Conclusion: Our study found out that there was presence of unobserved heterogeneity

at community clusters, this means that there are other in�uences that do a�ect mortality

at community clusters which the variables alone in the model cannot explain. On the

other hand there was no presence of the unobserved heterogeneity at household clusters,

implying that factors in�uencing under-�ve deaths in the households can be clari�ed just

by using the covariates in the model without the inclusion of household cluster term.
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1 Introduction

1.1 Survival Analysis

This is a section of study which analyzes period since a definite time of origin up to end of
study or an event of interest occurs, this event could be, disease, death, divorce, marriage,
etc., in the medical field, the study is typically a cohort follow up study or a scientific
trial testing may be the e�ects of a new drug, but can also be extended to other areas like
engineering where it can be referred to as reliability/ failure time/ duration analysis,
which actually studies the period until a mechanical systems fail, and in the field of
sociology it is termed as event history analysis, this is simply analysis which involves rates
of how the events take place in a given period e.g period until an individual gets a divorce.
The data for survival analysis has two distinct features that other datasets don’t have;

• It has survival times (period until event occurs, which are usually positive skewed).

• It has censored observations. At times, the survival time of subjects involved in the
study is never observed during the whole duration of the study, due to; relocating,
dying from an unrelated cause, dropping from the study or the study ends before they
die/get to experience the event. This means it is impossible to observe their survival
times, these category of subjects are typically censored since we have no information
about their survival time.

Censoring occurs when an occurrence which is of interest occurs beforehand or a�erward
the actual observation time.
Censoring can be categorized into three categories, these have been mentioned and
explained briefly below :
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Right censoring;
There are two categories of right censoring namely:

• Type I right censoring

This category of censoring occurs when the occurrence is seen only when it has occurred
especially at the end of the study.

• Type II right censoring

This happens in a case where the study is continued only until r-individuals out of a total
of n-individuals have observed the event of interest.
r = actual event time
n− r = censored time (fixed)

Le� censoring
This is when the subject either dies or drops out during the study but the exact time they
dropped out is not known.

Interval censoring
Is where the event is observed between two observation periods but we are not certain of
the exact time the subject experienced the event.

Assumption made is survival time is independent o� censoring.
Major functions that help in summarizing survival data are three in number, and are
mentioned and explained below:
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Survival function (S(x))
This actually refers to the basic quantile employed for the purpose of defining period to
event data.
This would be defined as the chances of an individual living past time x.

S(x) = Pr[X ≥ x]

Let us take X which is a variable that is random of continuous form;

S(x) = 1−Pr[X ≤ x] = 1−F(x)

Thus

S(x) = 1−
∫ x

−∞

f (u)du

dS(x)
dx

=− d
dx

∫ x

−∞

f (u)du

−dS(x)
dx

= f (x)

Two relationships are confirmed

S(x) = 1−F(x)

f (x) =−dS(x)
dx
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Hazard function (h(x))
This would be defined as the chances of an incident taking place at a given time x given
that the subject has lived upto or beyond period x.

h(x) = lim
∆x→0

Pr[x≤ X ≤ x+∆x|T ≥ x]

With X being a variable that is random and continuous, ignore ∆x since its assumed to be
close to zero, then;

h(x)≈ Pr[X = x|X ≥ x]

Pr[X = x,X ≥ x]
Pr[X ≥ x]

Pr[X = x]
Pr[X ≥ x]

f (x)
S(x)

Since

f (x) =−dS(x)
dx

Then

h(x) =−dS(x)
dx

/S(x)

=− d
dx

ln(S(x))
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Cumulative hazard function
It is go�en via integrating the hazard function, and would be defined as the chances of an
incident taking place at time x given survival until time x. It’s expression can be wri�en
as per below;

H(x) =
∫ x

−∞

h(u)du

=
∫ x

0
− d

du
ln(S(u))du

=−ln(S(x))

→ S(x) = exp(−H(x))

exp(−
∫

∞

0
h(u)du)

Mean residual life time function(Median Life Time);
The pth percentile time tp, this is time until the p% of the population has developed the
event of interest is given by;

S(tp) = p

Therefore the median survival time is given by;

S(tmedian) = 0.5
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1.1.1 Estimation of S(t)

This is a non-parametric approach which was presented by Kaplan and Meier (1958). It
gives a quick and simple survival function estimate while censoring is present. It uses
exact failure, it is expressed as;

Ŝ(t) =
k

∏
j=1

n j−d j

n j

Ŝ(t) means Kaplan Meier estimate, where; n j implies number that is at risk at period j,
and d j number of incidents (say deaths) as at period j.

The standard error is therefore, expressed as;

s.e(Ŝ(t j)) = Ŝ(t j)

√√√√ k

∑
j=1

d j

n j(n j−d j)

Cumulative hazard function estimate will thereby be wri�en as per below;

Ĥ(t) =
k

∑
j=1

d j

n j

1.1.2 Survival regression

Cox-proportional hazard model

It is a popularly used model in survival analysis. With this model distribution for baseline
hazard function is not specified and this is the reason why it is called a semi-parametric
approach.Cox-ph model is a more general model in modelling the hazard and survival
function since it doesn’t place distributional assumptions on the baseline hazard. The
Cox-ph model was first introduced by Cox (1972). This model can be expressed as follows;

λi(t) = λ0(t)exp(β1Xi1 + ...+βpXip)

= λ0(t)exp(β T Xi)
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Whereby;
λ0(t) is an arbitrary baseline rate.
Xi is the vector of (fixed-e�ect) covariate.
β is the vector of coe�icients of regression.
Lets take that event(death) has been observed to have occurred with subject i at a given
time ti.The probability that this event occurred will be expressed as:

Li(β ) =
exp(β T Xi)

∑ j:t j≥ti exp(β T X j)

The summation is over the set of subjects j where the event has not occurred before
time ti(including subject i itself). 0 < Li(β ) ≤ 1, this is the partial likelihood. Treating
the subjects to be statistically independent of each other, joint probability of all events is
represented by below partial likelihood, where occurrence of the event (death) is indicated
with Ci = 1:

L(β ) = ∏
i:Ci=1

Li(β )

1.1.3 Variable selection

Schoenfeld Residuals

For one to be able to do fi�ing of standard Cox-proportional hazard model, it is important
to be aware of one of it’s main assumptions. Abeysekera and Sooriyarachchi (2009)Cox
(1972) The model takes that hazard of di�erent strata formed by levels of covariates are
proportional. One can apply Kaplan-Meier plots to perform test for this assumption
but the limitation is that these graphical approaches may not be adequate in situations
whereby violation of the proportional hazard assumption is negligible.

Kleinbaum and Klein (2002) presented the Goodness of Fit (GOF) testing technique. This
method gives a test statistic and p-value for assessing the proportional hazard assumption.
This test enables one to make a more reliable decision as opposed to applying graphical
approach. Schoenfeld residuals are further discussed by Grambsch and Therneau (1994).
Something to note about this particular test is that if proportional hazard assumption
do hold for given covariate, then it will simply mean that Schoenfield residuals for that
respective covariate does not relate to study time.
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1.1.4 Frailty

Standard approaches in Survival analysis do require independent event times, given the
covariate information. In practice, many studies involve clusters. Examples of clusters
can include communities, geographical areas, families e.t.c. Within a cluster, data are
typically dependent. This dissertation has focused on the frailty model, introduced in
section 3.7, to account for the dependence in clustered data. With frailty model context,
the within-cluster association is taken into account by means of a cluster-specific factor,
the frailty term. Typical for this model is that the frailty term is treated as a random e�ect.

Random e�ects for survival data were first considered in Vaupel et al. (1979) for purpose
of improving fit of mortality models at advanced ages. With these early publications, the
frailty term acts at the individual level as an unobservable factor in the mortality model
and it indicates that frail individuals have an increased risk of death. The distribution
of the individual-specific frailty term provides a way to model unexplained/unobserved
variation in susceptibility to death in a population.

Applications of frailty model in clustered data were firstly discussed in [Clayton et al.,
1978] for studies of familial aggregation of disease. Due to e.g environmental and genetic
factors, susceptibility to disease do vary from family to family. Therefore, variation in
the outcome among relatives tends to be lower than variation in the outcome between
non-relatives. In statistical terms, this translates to:

• unobserved heterogeneity between families, and

• association among observations from the same family.

Frailty models with a cluster-specific frailty term, also called shared frailty models, have
been developed over the last thirty years to deal with this type of data.
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Cox-Shared frailty model development

Cases in same cluster here are assumed to be sharing same unseen e�ects, and this is the
reason why it is called shared frailty model. The hazard rate for jth subject in ith cluster is:

λi j(t) = λ0(t)e(β
T Xi j+qi)

Whereby

• λ0(t) is an arbitrary baseline rate

• Xi is fixed-e�ect covariate vector

• β is coe�icient of regression vector

• qi is random e�ect for given cluster i, i = 1, ...,G

In terms of the frailties W1, ...,WG, given by, Wi = exp(qi) the frailty model would be
expressed as per below:

λi j(t) = λ0(t)Wiexp(β T Xi j)

Wi is the frailty term that is unobservable, and it varies through the sample, and it increases
risks for subjects in cluster i if Wi > 1 and decreases if Wi < 1.
This model is represented by the conditional survival function:

Si j(t|Wi,X) = exp(−Wi

∫ t

0
λ (u|X)du) = exp(−WiΛ(t|X))

Whereby Λ(t|X) =
∫ t

0 λ (u|X)du. Si j(t|Wi,X) represents the probability of subject j in
cluster i surviving upto or beyond time t given Wi and given vector of observable covariates
X .
Most of the calculations are performed using Laplace transformation. The Laplace trans-
form of the random variable W is given clearly as:

L(s) =
∫

exp(−sw)g(w)dw = E(exp(−sW ))

Whereby g(w) represents density of W. The range of the integral depends with the distri-
bution in use. The marginal survival function is computed as per below:

S(t|X) =
∫

S(t|W,X)g(w)dw = E(S(t|W,X)) = L(Λ(t|X))

The Wi are independent and identically distributed following a chosen distribution.
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Frailty distribution

There are many distributions that can be selected for frailty but the mostly used frailty
distribution is the gamma distribution. The reason behind this is that it’s laplace transform
is simple and it’s easily obtained.

Many calculations are done by applying Laplace transform. The Laplace transform of the
frailty term, say w is described as:

L(s) =
∫

exp(−sw)g(w)dw = E(exp(−sW ))

Whereby g(w) represents density of W . The range of the integral depends with the frailty
distribution in use. Distributions that can also be selected for frailty are:

• Positive stable frailty model

• Power variance function frailty

• Normal frailty model

• Inverse Gaussian frailty model.

Gamma frailty model

Lets take that W follows a gamma distribution; the pdf of a two parameter gamma
distribution is expressed as;

g(w) =
β αwα−1exp(−βw)

Γ(α)
,α > 0,β > 0,andw > 0

Whereby α and β are shape and scale parameters correspondingly.
Laplace transformation is given by;

L(s) =
∫

∞

0
exp(−sw)g(w)dw

=
∫

∞

0
exp(−sw)

β αwα−1exp(−βw)
Γ(α)

dw

=
β α

Γ(α)

∫
∞

0
exp(−w(s+β ))wα−1dw
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let
y = w(s+β )

therefore
w =

y
(s+β )

applying change of variable technique we get

dw =
dy

(s+β )

substituting w and dw we get

=
β α

Γ(α)

∫
∞

0
exp(−y)(

y
s+β

)α−1 dy
(s+β )

=
β α

Γ(α)(s+β )α

∫
∞

0
exp(−y)(y)α−1dy

since
Γ(α) =

∫
∞

0
exp(−y)(y)α−1dy

Therefore,

L(s) =
β α

Γ(α)(s+β )α
×Γ(α)

=
β α

(s+β )α

= β
α(s+β )−α

Mean and variance will therefore be go�en from 1st and 2nd derivatives w.r.t s of transfor-
mation.

L1(s) =−αβ
α(s+β )−α−1

L2(s) = α(α +1)β α(s+β )−α−2

equating s to 0, therefore the mean and variance from laplace becomes;

E(W ) = (−1)L1(0) =
α

β

Var(W ) = L2(0)− (−L1(0))2

=
α(α +1)

β 2 − (
α

β
)2

=
α2 +α−α2

β 2

=
α

β 2
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In shared gamma frailty, for sake of simplicity we take a one parameter gamma distribution,
for the case of one parameter gamma, α = β , the pdf is expressed as;

g(w) =
ααwα−1exp(−αw)

Γ(α)

The mean of W is 1, and the variance is 1
α

. Using the fact that Var(W ) = θ = 1
α

;

g(w) =
w1/θ−1exp(−w/θ)

Γ(1/θ)θ 1/θ

For one parameter gamma, the laplace transformation will be expressed as per below

L(s) =
∫

∞

0
exp(−sw)g(w)dw

=
∫

∞

0

exp(−sw)w1/θ−1exp(−w/θ)

Γ(1/θ)θ 1/θ
dw

=
1

Γ(1/θ)θ 1/θ

∫
∞

0
exp(−sw)w1/θ−1exp(−w/θ)dw

=
1

Γ(1/θ)θ 1/θ

∫
∞

0
w1/θ−1exp(−sw−w/θ)dw

=
1

Γ(1/θ)θ 1/θ

∫
∞

0
exp(−w(s+1/θ))w1/θ−1dw

let
y = w(s+1/θ)

w =
y

(s+1/θ)

applying change of variable technique we get;

dw =
dy

(s+1/θ)

=
1

Γ(1/θ)θ 1/θ

∫
∞

0
exp(−y)(

y
s+1/θ

)1/θ−1 dy
(s+1/θ)

=
1

Γ(1/θ)θ 1/θ

∫
∞

0
exp(−y)

y1/θ−1

(s+1/θ)1/θ
dy

=
1

(s+1/θ)1/θ Γ(1/θ)θ 1/θ

∫
∞

0
exp(−y)y1/θ−1dy

using properties of a gamma function;

Γ(1/θ) =
∫

∞

0
exp(−y)y1/θ−1dy
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=
1

(s+1/θ)1/θ Γ(1/θ)θ 1/θ
×Γ(1/θ)

=
1

(s+1/θ)1/θ θ 1/θ

θ 1/θ

(sθ +1)1/θ
× 1

θ 1/θ

= (1+ sθ)−1/θ

Mean and variance will therefore be go�en from 1st and 2nd derivatives w.r.t s of laplace
transformation

L1(s) =−1(1+ sθ)−1/θ−1

L2(s) = (1+θ)(1+ sθ)−1/θ−2

le�ing s = 0, the mean together with variance of W , which is the frailty term we will have
them as;

E(W ) = (−1)L1(0) = 1

Var(W ) = L2(0)− (−L1(0))2

= (1+θ)−1

= θ

Hence the mean and variance of a one parameter gamma distribution is 1, and θ respec-
tively.

Positive stable frailty distribution

Lets take that W follows a stable distribution. Stable distribution do posses this property
that with W1, ...,Wn independently and identically distributed random variables, for every
n there is a normalizing constant c(n) so that F(∑n

i=1Wi) = F(c(n)Wi) whereby F(W )

refers to the distribution law of W . This constant c(n) takes the form n1/α such that
αε(0,2], α is called the stability parameter Goethals et al. (2008). When α = 2, it means
that the distribution has a finite variance and it corresponds to Normal distribution. Incase
of α = 2 we therefore have; F(∑n

i=1Wi) = F(n1/2Wi).For α < 2 the distributions will give
undefined variance,and undefined mean when α ≤ 1. Stable distributions on positive half
have αε(0,1],(α = 1) corresponds to a degenerate distribution. The pdf is expressed as;

g(w) =− 1
πw

∞

∑
k=1

Γ(kα +1)
k!

(−w−α)ksin(αkπ),0 < α < 1

This pdf has undefined mean and variance. We have its Laplace transform wri�en as
below;

L(s) = exp(−sα)
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One of the key reasons why this distribution was proposed is that it has infinite mean,
though it is di�icult to work with infinite mean Goethals et al. (2008).

Power variance function frailty

Lets take that W follows a power variance function distribution. According to Hougaard
(1986) power variance function do act as an extended positive stable distribution. It’s p.d.f
would be expressed as;

g(w) = exp(− v
α
(
w
µ
+

1
v−1

))
1

πw ∑
(v/α)kv(w/v)k(v−1)Γ(1− k(v−1))sin(πk(v−1))

k!(v−1)k

where µ > 0, α > 0 and 0 < v≤ 1. It’s laplace transform is expressed as Aalen (1992):

L(s) = exp[
v

α(1− v)
(1− (1+

αµs
v

)1−v)]

The 1st and 2nd derivatives of laplace transform would be wri�en as;

L1(s) =−µ(1+
αµs

v
)−vexp[

v
α(1− v)

(1− (1+
αµs

v
)1−v)]

L2(s) =−µ(1+
αµs

v
)−v×−µ(1+

αµs
v

)−vexp[
v

α(1− v)
(1− (1+

αµs
v

)1−v)]

+exp[
v

α(1− v)
(1− (1+

αµs
v

)1−v)]µv(1+
αµs

v
)−v−1 αµ

v

E(W ) = (−1)L1(0) = µ

Var(W ) = L2(0)− (−L1(0))2

= µ
2 +µ

2
α−µ

2

= µ
2
α

Let’s take µ2α = θ .
W is referred to as the frailty term, when the variance of the frailty term W , θ = 0
statistically, it implies independence within groups hence no presence of unobserved
heterogeneity, but when θ > 0 statistically, it implies there is association within groups
hence there is presence of unobserved heterogeneity.
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Normal (Gaussian) frailty model

The Gaussian frailty p.d.f is wri�en as;

g(w) =
1√

2Πσ2
e−

1
2σ2 (w−µ)2

dw

whereby µ is the distribution’s mean, σ is the standard deviation,wε(−∞,∞) and σ2 is
the variance. More details are given in sub-section 3.7.2

Inverse Gaussian frailty

The Inverse Gaussian frailty probability density function is expressed as;

g(w) =
1√

2Πθ
w−

3
2 exp(−(w−1)2

2θw
)

whereby θ > 0, w > 0. Laplace transformation is given by;

L(s) = exp(
1
θ
(1−
√

1+2θs))

Whereby s≥ 0. To get the mean and variance we need to find 1st and 2nd derivatives of
Laplace transform;

L1(s) =−(1+2θs)−
1
2 e(

1
θ
(1−
√

1+2θs))

L2(s) = (1+2θs)−1e(
1
θ
(1−
√

1+2θs))+ e(
1
θ
(1−
√

1+2θs))
θ(1+2θs)−

3
2

E(w) = (−1)L1(0) = 1

Var(w) = L2(0)− (−L1(0))2

Var(w) = 1+θ −1 = θ

Hence the mean and variance of inverse gaussian distribution is 1, and θ respectively.
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1.2 Background

Based on World Health Organization (WHO), worldwide, the rate of mortality as far as
under-five is concerned has declined with a margin 56%, this is from an approximated
rate of 93 deaths for every 1000 live births in 1990 to 41 deaths for every 1000 live births
in the year 2016. Approximately 20,000 lesser children succumbed to death each day in
2016 compared to 1990 WHO (2017). In Africa back in the year 1970, rate of mortality for
children was at 229 for every 1000 live births. By the year 2010, this given rate had gone
down by more than half to 111 deaths for every 1000 live births Statista (2017). The under-
five child mortality has reduced by 39% in Sub-Saharan Africa between 1990 and 2011. If
at all, this kind of trend continues, then 1 in 3 children in the entire world will be born
in sub-Saharan Africa, and hence its under-five population will grow quickly USAID (2017).

In the developing nations, the study of under-five child mortality has always been a
vital issue in civic health programs. A nation’s level of wealth index growth and quality
of life are imitated by its under-five child mortality rates. To monitor and assess pop-
ulation and healthiness programs and guidelines, the under-five child mortality rates
are used. The rates are likewise valuable in finding promising directions for health and
diet programs in a nation. Rate of mortality for infants is at 39 deaths for every 1000
live births, while for the under-five is at 52 deaths for every 1000 live births. With this
scenario, almost 1 in every 26 Kenyan children do die before the age of 1, while almost 1
in every 19 do die before the age of 5. Rates of mortality in the early childhood as a whole
have gone down between 2003 and 2014 as far as KDHS surveys are concernedKDHS (2014).

To fast-track the a�ainment of Sustainable Development Goals (SDG’s), the Kenyan
Government started a Child Survival and Development Strategy which was included in
the 2009 budget so as to increase survivorbility of children and also to o�er an outline to
boost measures for children. This plan is steered by the National Health Sector Strategic
Plan II (NHSSP II) and the Vision 2030 Medium Term Plan that purpose to lower the level
of imbalance in healthcare services and advance on the child health measures UNDP (2009).

Understanding under-five mortality in Uganda, the determinants/ risk factors were found
to be; Mother’s educational level, mother’s age group, type of residence, education level of
mother, education level partner, birth status, gender of child, wealth index, children ever
born, birth order, religion, type of toilet facility, mother’s occupation, births in the past
one year, children below 5 years in household, gender of head of the household, source of
drinking water, and age of mother at 1st birth. Nasejje et al. (2015).

The primary objective of this research is to use survival analysis techniques on Kenya
Demographic Health Survey data for the year 2014 to identify the factors responsible
for the under-five child mortality in Kenya, and to examine the e�ects of unobserved
covariates (frailty) on under-five mortality both at household and community levels.
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1.3 Statement of Problem

In the demographic health surveys studies as far as under-five mortality is concerned,
selection of risks factors based on literature can possibly lead to erroneous choice of
determinants. Therefore, use of predictive modelling and machine learning technique
(Random Survival Forest) can assist in selection of these risks factors in a reliable manner.

In studying the under-five mortality, the use of the Accelerated Failure Time (AFT) model
is to assume that e�ects of the covariates are either to accelerate or decelerate the survival
life time of the under-five children by some constant. But these determinants do not at
all times take into consideration the actual di�erences in the risk particularly in clustered
survival data. So, inclusion of the unobserved random factor (frailty term) on the model
improves correct measure of the determinants e�ect, thereby evading the problem of
overestimation or underestimation of the model parameters.

1.4 OBJECTIVES

1.4.1 Overall Objective

The broad objective of this research is to use survival analysis techniques on Kenya
Demographic Health Survey data for the year 2014 to identify the factors responsible
for the under-five child mortality in Kenya, and to examine the e�ects of unobserved
covariates (frailty) on under-five mortality both at household and community levels.

1.4.2 Specific Objectives

• Selection of risks factors of the under-five mortality using Random Survival Forest.

• Doing a comparison between the Accelerator Failure Time (AFT) model and AFT-
shared frailty model both at household and community levels to examine the e�ects
of unobserved heterogeneity on under-five mortality.

• Modeling and assessing the covariates that accelerate or decelerate the time until the
event death.

1.5 Significance of Study

Identifying and estimating the risks factors of the under-five child mortality in a reliable
manner will assist the government in reducing the under-five deaths in our communities
more e�ectively in the future, and thereby leading to a healthy nation.
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2 Literature Review

This chapter include current knowledge, findings in addition to theories and the methods
that have been applied before.

2.0.1 Frailty models

Ge�ing to understand the risks factors of the under-five mortality in Uganda by employing
shared frailty model, it was found out that there was presence of unobserved random
factors in household cluster while there was no proof to conclude existence of unobserved
random factors at community cluster, gender of head of household , gender of child,
and births over the past one year were established to be having significant influence on
mortality Nasejje et al. (2015).

Studying childhood mortality in India using shared frailty models, there was presence of
unobserved heterogeneity both at individual and community levels, it was established
that infant mortality among women married before 18 years of age was thrice compared
to female married a�er 17 years of age. Yadav and Yadav (2016).

Study carried out on under-five mortality using frailty models in Ehiopia, it was found
out that there was presence of unmeasured household e�ects present in the model. It was
also established that children who were residing in rural parts of Ethiopia were at higher
risk of mortality as opposed to their counterparts residing in urban parts. Also, mothers
who were older in age the likelihood of child’s death before a�aining 5 years was lesser
Ayele et al. (2017).

SWAIN and GROVER (2016) used AFT-shared frailty approach for studying HIV/AIDS
persons who were on Anti-retroviral therapy. It was found out that there was proof of
the existence of heterogeneity among HIV/AIDS persons. It was also established that
risks factors weight, gender, manner of transmission and reference haemoglobin were
statistically significant for HIV/AIDS persons on ART.

Njagi (2011) used AFT-shared frailty to study the urban rural di�erentials of infant mor-
tality in Kenya, it was found out that there was presence of unobserved factors, although
there was no much di�erence in results in both models with and without frailty.Pan (2001)
did propose accelerated failure time model on presuming frailty on error term which is
referred to as accelerated failure time gamma frailty .
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2.0.2 Random survival forests

Random survival forest refers to combination of tree predictors whereby every individual
tree relies on values of random vector that has been sampled in an independent manner
and with same distribution for all the trees contained in the forest Breiman (2001) .
From a study carried out on under-5 mortality using UDHS data. Random survival forests,
ranking according to variable importance (variables selected based on literature) indicated
that; number of children under the age of 5 in household, births over the past 5 years, birth
order, wealth index, and the number of children that have ever been born in household
had strong influence on mortality rate for children Nasejje and Mwambi (2017)
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3 Methodology

3.1 Data

This 2014 KDHS sample data set was taken from a master sampling frame, Fi�h National
Sample Survey, and Evaluation Programme (NASSEPV). This is a kind of structure that
Kenya National Bureau of Statistics (KNBS) at the moment uses to carry out surveys
in households in the country. Kenya as a country is divided into a total of forty-seven
counties. In the process concerning this development of NASSEPV, each of these forty-
seven counties was stratified in two categories; urban and rural strata. Because both
Mombasa and Nairobi counties have just urban zones, the total outcome came to 92 strata.
This sample had a total of 40,300 households from 1612 community clusters that were
rolled out in entire nation, with 995 clusters from the countryside and 617 from non-rural
zones. The samples were chosen in an indepedent manner in every sampling stratum by
applying two-stage sample approach. In the 1st stage, the 1612 community clusters were
chosen with equal likelihood from NASSEPV frame. Households from operations that
were listed were taken to act as sampling frame for 2nd stage of selection, where a total
of 25 households were chosen from every cluster KDHS (2014).
This KDHS-2014 dataset includes women of ages between 15 to 49 years. This study
includes only children of between 1-59months old, accounting for a total observation of
20354.

3.2 Variable Selection

The original data has 1099 variables excluding survival time and event variables, out of
these 313 variables had 100% missing data which were deleted. Therefore, random forest
for survival regression and classification was applied to the remaining 786 covariates to
select those variables that had influence on under-five mortality, ranking the variables
according to their importance, spli�ing rule used was log rank.
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3.3 Steps to develop algorithm for random survival forests

• B bootstrap samples are taken from original data. Every bootstrap sample does not
include on average 37% of the data, this data that is not included is referred to as test
data or Out-Of Bag data (OOB data).

• A survival tree is grown for every bootstrap sample. At every node of the tree, p
candidate variables are randomly chosen. The node is split by using that candidate
variable which maximizes the di�erence in survival between daughter nodes.

• Tree is grown to fullest size on condition that a terminal node should have minimum
of d0 > 0 deaths.

• Compute cumulative hazard function (CHF) for every tree, then average to get ensem-
ble cumulative hazard function (CHF).

• Use the test data to compute prediction error for ensemble cumulative hazard function
(CHF).

3.3.1 Log-rank split rule

Given that node u can be split into two daughter nodes say α and β .Best split at node u,
on variable x at c∗ which is spli�ing point is one which would give the largest log-rank
statistic between the two daughter nodes. Log-rank statistic for split on variable x at a
given covariate value c∗ can be defined as;

i(x,c∗) =
∑

tN
j=t1(dα, j−E(Dα, j))√

∑
tN
j=t1 var(Dα, j)

whereby dα, j refers to number of events in daughter node α at time point j. The expected
number of events in daughter node α , E(Dα, j) and its variance are given by;

E(Dα, j) = d j(
Rα, j

R j
)

var(Dα, j) =
Rα, j

R j
(1−

Rα, j

R j
)(

R j−d j

R j−1
)d j

Whereby d j is the combined number of events in daughter nodes α and β at time point j.
Rα, j represents number of subjects at risk in node α at time point j and R j the combined
number at risk in daughter nodes α and β .
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3.3.2 Computation of ensemble CHF

Finally, the survival tree will reach a saturation point, at this point it’s impossible to form
new daughters because of the condition that every node should have minimum of d0 > 0
deaths. The nodes which are most extreme in a tree that is saturated are referred to
as terminal nodes. We can denote them by V . Let us take (T1,a,δ1,a), ..,(Tn(a),a,δn(a),a)

to represent study times and event indicator for individuals in terminal node aεV . The
event indicator shows if observation corresponds to an event (δ j,a = 1) at time Tj,a or has
been censored (δ j,a = 0) at time Tj,a . Let t1,a < t2,a <,...,< tN(a),a represent N(a) distinct
event times. Let dl,a and Yl,a be number of dead subjects and subjects at risk at time tl,a.
Estimate of CHF for a would be expressed as

Λ̂a(t) = ∑
tl,a≤t

dl,a

Yl,a

All individuals in node a have same CHF. Every individual j has a d-dimensional covariate
x j. Let Λ(t|x j) be the CHF for j.

Λ(t|x j) = Λ̂a(t),

if x jεa, describes the CHF for all subjects and describes the CHF for the tree.
To calculate ensemble CHF, we will add all the CHFs and then divide by B survival trees.
Let Λ∗b(t|x) denote CHF (Λ(t|x j)) for a tree that is grown from the bth bootstrap sample.
Therefore, the bootstrap ensemble CHF for j is given by

Λ
∗
e(t|x j) =

1
B

B

∑
b=1

Λ
∗
b(t|x j)

3.3.3 Calculation of prediction error

To approximate prediction error, we apply Harrell’s Concordance index. It is referred to
as C-index, it gives probability estimate that, in a randomly chosen pair of subjects, that
subject which fails 1st is said it had worst predicted outcome.
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Steps in calculating C-index

• All possible pairs of subjects are formed throughout data.

• We leave out the pairs where shorter survival times has been censored. Leave out pairs
i and j provided that Ti = Tj except if at least one of them is an event (death). Let
permissible denote the total number of permissible pairs.

• For every pair that’s permissible whereby Ti 6= Tj, it is counted 1 if the survival time
that is shorter has worse predicted outcome; it is counted 0.5 provided that predicted
outcomes are tied. For every pair that’s permissible whereby Ti = Tj and both are
incidents, it is counted 1 on condition that predicted outcomes are tied; or else it is
counted 0.5. For every pair that’s permissible whereby Ti = Tj, but not that both are
incidents, it is counted 1 if the incident has worse predicted outcome; or else it is
counted 0.5. We let concordance indicate the sum over all permissible pairs.

• C-index, C, is explained by C =Concordance/Permissible.

OOB prediction error

To compute C we require a predicted outcome. We have to use OOB ensemble CHF to
describe predicted outcome.
To get OOB ensemble CHF we proceed as follows;
It is worth noting every tree in the forest is grown using a sample that’s independent.
Interpret l j,b = 1 on condition that j is an OOB case for b; otherwise, interpret l j,b = 0.
Let Λ∗b(t|x) indicate CHF (Λ(t|x j)) for a tree grown from the bth bootstrap sample. The
OOB ensemble CHF for j is

Λ
∗∗
e (t|x j) =

∑
B
b=1 l j,bΛ∗b(t|x j)

∑
B
b=1 l j,b

Since this figure is resulting from test data, it can be used to get an OOB estimate for C,
and, so, an OOB error rate.
Let t0

1 , ..., t
0
m denote pre-chosen unique time points. Ranking two subjects i and j, we say j

has a worse predicted outcome than i if

m

∑
l=1

Λ
∗∗
e (t0

l |x j)>
m

∑
l=1

Λ
∗∗
e (t0

l |xi)

Using this law, calculate C as shown from the above steps. Indicate OOB estimate with C∗∗.
OOB prediction error, PE∗∗, is described as 1−C∗∗. It is worth noting that 0≤ PE∗∗ ≤ 1
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3.3.4 Importance of a variable (VIMP)

To compute importance of a covariate x, test data cases are dropped into their training
survival tree. Whenever split on x occurs, daughter node is assigned in a random manner.
The cumulative hazard function from every such tree is computed and mean is found.
Therefore, VIMP for variable x is the error of prediction for the new ensemble go�en
by means of randomizing x assignments then subtracting the error of prediction for the
original ensemble from it.

3.4 Estimation of S(t)

We have used Kaplan-Meier estimate to explain how risk of dying for the under-five
children is distributed across groups of the chosen determinants based on Random Forest
for Survival, Regression, and Classification (RF-SRC) on KDHS 2014 data.

Ŝ(t) =
k

∏
j=1

n j−d j

n j

Ŝ(t) is the Kaplan Meier estimate, where; n j represents the number of children who are at
risk of dying at beginning of period j, and d j is deaths at the beginning of period j.

3.4.1 How to derive estimation of S(t)

We can derive estimator of the Kaplan-Meier from maximum likelihood estimation of the
hazard function. Given that d j is deaths at beginning of period j, n j be children who are
at risk of dying at beginning of period j, discrete hazard rate λ j can be described as the
probability of a child with an event (death) at the beginning of period j. Then the survival
rate can be described as:

S(t) =
k

∏
j=1

(1−λ j)

and therefore, likelihood function for the hazard function upto period j is;

L(λ j : j ≤ k|d j : j ≤ k,n j : j ≤ k) =
k

∏
j=1

λ
d j
j (1−λ j)

n j−d j

Thus the loglikelihood will be;

log(L) =
k

∑
j=1

(d jlog(λ j)+(n j−d j)log(1−λ j))

To obtain the maximum of log likelihood with respect to λ j we get:

∂ log(L)
∂λ j

=
d j

λ̂ j
−

n j−d j

1− λ̂ j
= 0⇒ λ̂ j =

d j

n j
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whereby hat denotes the maximum likelihood estimation. Given this result we can
therefore, write:

Ŝ(t) =
k

∏
j=1

(1− λ̂ j)

Ŝ(t) =
k

∏
j=1

(1−
d j

n j
)

3.5 Survival regression

3.5.1 Accelerated failure time (AFT) model

Is an approach which needs distributional assumptions. It assumes that the e�ects of
predictors are either to accelerate or decelerate survival life time by some constant. Given
the values of the covariates X . The pdf is given as ;

f (t) = (σt)−1 fo(
logt− logψ(X)

σ
) (1)

whereby σ is referred to as scale parameter, and ψ(X) is some function of covariates.

ψ(X) = exp(µ +X ′β ) (2)

Therefore, corresponding Accelerator Failure Time (AFT) model expression in regression
form is;

logT = µ +X ′β +σε (3)

whereby µ is an intercept, ε is a variable which is random and has a density function fo(ε)

and the corresponding baseline survival function So(ε). AFT models do allow a wide range
of parametric forms for the density function. The survival function of the AFT models is
given as;

S(t) = S∗o[(
t

ψ(X)
)

1
σ ] = So(

logt− logψ(X)

σ
) (4)

whereby S∗o is the baseline survival function. Since ψ(X) = exp(µ +X ′β ), the survival
function can therefore, be rewri�en in the form;

S(t) = So(
logt−µ−X ′β

σ
) (5)
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3.5.2 Inference for AFT models

For random lifetime Ti of the subjects i = 1, ..,n, the likelihood function under model (5)
is expressed as;

L(β ,σ) =
n

∏
i=1

(
1
σ

fo(
logti−µ−X ′β

σ
))δiSo(

logti−µ−X ′β
σ

)1−δi (6)

Using εi =
logti−µ−X ′β

σ
, the log-likelihood function would take the form;

l(β ,σ) =−rlogσ +
n

∑
i=1

[δilog fo(εi)+(1−δi)logSo(εi)] (7)

where r = ∑δi refers to the number of events. Let X ′i = (Xi1, ...,Xi j, ...,Xip) denote the set
of covariates under which the ith subject responds. The first partial derivatives of l(β ,σ)

are given by;
∂ l

∂β j
=− 1

σ

n

∑
i=1

[δi
∂ log fo(εi)

∂εi
+(1−δi)

∂So(εi)

∂εi
]Xi j (8)

∂ l
∂σ

=− r
σ
− 1

σ

n

∑
i=1

[δiεi
∂ log fo(εi)

∂εi
+(1−δi)εi

∂ logSo(εi)

∂εi
] (9)

Maximum likelihood estimators β̂ and σ̂ are go�en through solving the equations ∂ l
∂β

= 0

and ∂ l
∂σ

= 0

The distributions mostly used in AFT models have been mentioned and explained in details
below:
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3.5.3 Exponential distribution

It has only one parameter, it’s pdf is expressed by;

f (t) = λe−λ t , t > 0,λ > 0

The survival function, S(t) which refers to as the chances of an individual living upto or
past time t can be obtained from;

S(t) =−
∫ t

0
λe−λudu

= e−λ t

Cumulative distribution function, F(t) is expressed as;

F(t) = 1−S(t) = 1− e−λ t

Hazard function,h(t) is given by;

h(t) =
f (t)
S(t)

=
λe−λ t

e−λ t
= λ

Cumulative hazard function, H(t) is given by;

H(t) =
∫ t

0
λdu = λ t

3.5.4 Weibull distribution

This distribution has two parameters, it’s pdf can be given by;

f (t) = λktk−1e−λ tk
,λ > 0,k > 0

It’s survival function, S(t) would be expressed b;

S(t) = e−λ tk

The cumulative distribution function, F(t) can be go�en from;

F(t) = 1−S(t) = 1− e−λ tk

The hazard function,h(t) would be given by;

h(t) =
f (t)
S(t)

=
λktk−1e−λ tk

e−λ tk = λktk−1

Cumulative hazard function, H(t) would be given by;

H(t) =
∫ t

0
λkuk−1du =

λkuk

k
|t0 = λ tk
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3.5.5 Lognormal distribution

A variable which is random, say T , is said to be distributed lognormally on condition that
Y = ln(T ) is distributed normally with natural logarithm. General formular for pdf of the
lognormal distribution is;

f (t) =
e−((ln((t−θ)/m))2/(2σ2))

(t−θ)σ
√

2π

where t > θ ;m,σ > 0, σ refers to shape parameter , θ represents parameter for location
and m refers to parameter for scale (and is also median for the distribution)
When t = θ , therefore, f (t) = 0. In a scenario whereby θ = 0, and m = 1 we will have
distribution which is standard. In a scenario whereby θ = 0 we will have a two-parameter
distribution.
Therefore, pdf for standard form of this distribution is;

f (t) =
e−((lnt)2/2σ2)

tσ
√

2π

where t > 0, σ > 0, because the general form of the pdf can be wri�en with regard to
standard form, all succeeding formulas here are wri�en specifically for standard form.
Cumulative distribution function, F(t) is expressed as

F(t) = Φ(
ln(t)

σ
)

where t ≥ 0; σ > 0. Φ refers to the cumulative distribution function of normal distribution.
Survival function would be wri�en as;

S(t) = 1−F(t) = 1−Φ(
ln(t)

σ
)

Hazard function is expressed as;

h(t) =
( 1

tσ )φ(
lnt
σ
)

Φ(−lnt
σ

)

where t > 0, σ > 0. φ refers to pdf of normal distribution.
The cumulative hazard function would be wri�en as;

H(t) =−ln(1−Φ(
ln(t)

σ
))

where t ≥ 0, σ > 0
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3.5.6 Log-logistic distribution

It is also a parametric model which is applied in survival analysis for those events whose
rates do increase initially and decrease later, eg mortality rate from a disease say cancer
following treatment or diagnosis.
This distribution is a probability distribution of a random variable whose logarithm has a
logistic distribution. It’s probability density function is expressed as;

f (t) =
(β/α)(t/α)β−1

(1+(t/α)β )2

where t > 0, α > 0, β > 0. α and β represent scale and shape parameters respectively.
Cumulative distribution function (CDF), F(t), would be wri�en as;

F(t) =
1

1+(t/α)−β

It’s survival function, S(t) is;

S(t) = 1−F(t) = [1+(t/α)β ]−1

It’s hazard function, h(t) is expressed as;

h(t) =
f (t)
S(t)

=
(β/α)(t/α)β−1

1+(t/α)β

3.6 Best fi�ing model selection

According to Akaike (1987), the factual truth of meanness regarding building a statistical
model do dictate that increase in number of the parameters must be stopped the moment
it has been realized any more increase doesn’t give a significant upgrade of the fit of
the model to the data. He suggested employment of Akaike Information Criterion (AIC)
which can be expressed as follows;

AIC =−2Loglikelihoog+2numbero f parameters

As a quantification of Goodness of Fit (GOF) of the model described by parameters
approximated by the maximum likelihood approach. It is worth noting that the Akaike
Information Criterion (AIC) value will always increase if an unnecessary variable has
been included in the model. Therefore, this means that the smaller the AIC the be�er the
model.
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3.7 Fraily model

Shared frailty models have been applied , this has been done both at household and
community levels of clustering separately.Here we have analyzed factors that do a�ect the
under-five mortality in Kenya while taking into consideration unobserved heterogeneity in
the data using Accelerator Failure Time (AFT) shared frailty models. The frailty term has
taken into account the scenario where some of the children might be exposed to the risk
of death before the age of five than the others. Because of the unmeasured or unobserved
factors some children are more likely to die than others. The frailty term captures total
e�ects of all factors that influence the child’s risk of death that are not included in the
AFT model. The model that has been presented here takes into consideration both the
observed and unobserved e�ects. This model has been based on the AFT model. Frailty
term gets into the AFT model as random e�ects. Estimated variance of the frailty e�ects
is used to test if frailty term is significant. When the variance of the frailty term is zero it
means that there is no presence of unobserved heterogeneity among groups hence there
is independence within groups, while a large variance implies presence of unobserved
heterogeneity among groups hence there is association within groups.

3.7.1 AFT models with shared frailty

Shared frailty models are suitable when subjects within a cluster share a common un-
observed heterogeneity. O�-late AFT models with shared frailty have received some
a�ention. Given q-dimensional vector of random e�ects wi event times within cluster are
assumed to be independent. AFT models with shared frailty is expressed in the following
form

logTi j = µ +X ′i jβ +wi +σεi j (10)

whereby µ is an intercept, β is a vector of regression coe�icients, Xi j is the vector of fixed-
e�ect covariate, σ is a scale parameter, ε ′i js are independent and identically distributed
random errors, and w′is are the frailty terms which are assumed to be independent and
identically distributed with density function f (wi). Here, frailty could be an unobserved
covariate which is additive on the log failure time scale describing some reduced or
increased event times for di�erent clusters. All subjects in a given cluster share a common
frailty.
AFT models with shared frailty do specify a direct linear relationship between the log
of failure time and the covariates. The survival function for an AFT model at time t is
expressed as;

S(t) = S∗o[(
t

ψi j
)

1
σ ] = So(

logt− logψi j

σ
) (11)

whereby σ refers to the scale parameter, S∗o is a survival function defined on (0,∞), and
So is the baseline survival function that satisfies the relationship S∗o(ω) = So(logω), ψi j is
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some function of the covariates. Where ψi j = exp(µ +X ′i jβ +wi). Conditional survival
function is given by;

Si j(t|wi) = So(
logt−µ−X ′i jβ −wi

σ
|wi) (12)

where So(.) is the survival function of εi j and µ is an intercept, β is vector of regression
coe�icients, Xi j is a vector of fixed-e�ect covariate of the jth subject in the ith cluster. Here
we have assumed that the frailty term, wi follows Gaussian distribution with mean and

variance of µ and θ respectively. With εi j =
logTi j−µ−X ′i jβ−wi

σ
, the conditional survival and

hazard functions are expressed as;

Si j(t|wi) = So(εi j|wi) (13)

hi j(t|wi) =
1

σt
ho(εi j|wi) (14)

respectively, whereby ho(.) is the hazard function of εi j.
Let G be the number of clusters, i = 1, ...,G, and ni be the number of subjects within the
ith cluster. The conditional likelihood for the observed data is;

Lc =
G

∏
i=1

ni

∏
j=1

[
1

σti j
ho(εi j|wi)]

δi jSo(εi j|wi) (15)

Integrating unobserved frailties (wi) out, all the clusters will have marginal likelihood
function which is given by;

Lm =
G

∏
i=1

∫ ni

∏
j=1

[
1

σti j
ho(εi j|wi)]

δi jSo(εi j|wi) f (wi)dwi (16)

Estimates of the parameters (σ ,β ,θ) can be found by maximizing the likelihood function
(16).

3.7.2 Gaussian frailty

The Gaussian frailty probability density function is given by;

f (w) =
1√

2Πσ2
e−

1
2σ2 (w−µ)2

dw

whereby µ is the mean of the distribution, σ is the standard deviation,wε(−∞,∞) and σ2

is the variance. Laplace transformation is given by;

L(s) =
∫

∞

−∞

e−sw f (w)dw
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=
∫

∞

−∞

e−sw 1√
2Πσ2

e−
1

2σ2 (w−µ)2
dw

let;
w−µ = u

w = u+µ

using change of variable technique;

dw = du

=
∫

∞

−∞

1√
2Πσ2

e−s(u+µ)e−
u2

2σ2 du

=
∫

∞

−∞

1√
2Πσ2

e−su−sµe−
u2

2σ2 du

=
∫

∞

−∞

1√
2Πσ2

e−sue−sµe−
u2

2σ2 du

= e−sµ

∫
∞

−∞

1√
2Πσ2

e−sue−
u2

2σ2 du

multiplying and dividing by e
s2σ2

2 we have;

= e−sµe
s2σ2

2

∫
∞

−∞

1√
2Πσ2

e−sue−
s2σ2

2 e−
u2

2σ2 du

−s2σ2

2
− u2

2σ2 =
−σ2s2σ2−u2

2σ2

−σ4s2−u2

2σ2

= e−sµe
s2σ2

2

∫
∞

−∞

1√
2Πσ2

e−sue
−σ4s2−u2

2σ2 du

−su
1
+
−σ4s2−u2

2σ2 =
−2σ2su−σ4s2−u2

2σ2

− 1
2σ2 (u

2 +2σ
2su+σ

4s2)

− 1
2σ2 (u+σ

2s)2

= e−sµ+ s2σ2
2

∫
∞

−∞

1√
2Πσ2

e−
1

2σ2 (u+σ2s)2
du∫

∞

−∞

1√
2Πσ2

e−
1

2σ2 (u+σ2s)2
du = 1,N (σ2s,σ2)

Therefore, the Laplace transform is given by:

L(s) = e−sµ+ s2σ2
2
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Mean and variance can therefore be obtained from the first and second derivatives of the
laplace transformation.

L1(s) = (−µ + sσ
2)e−sµ+ s2σ2

2

L2(s) = (−µ + sσ
2)(−µ + sσ

2)e−sµ+ s2σ2
2 +σ

2e−sµ+ s2σ2
2

equating s to 0, therefore the mean and variance from laplace becomes;

E(W ) = (−1)L1(0) = µ (17)

Var(W ) = L2(0)− (−L1(0))2 = µ
2 +σ

2−µ
2 = σ

2 (18)

3.7.3 Chi-square test

This is a test which is performed when one wants to do an assessment of the goodness of
fit between a set of observed and expected values in a theoretical manner.
This test has been applied in this study to establish whether or not there is an association
within clusters. Presence of association within groups implies that there’s existence of
the unseen random factors, while no association implies that there’s no existence of the
unseen random factors.
The null and alternative hypothesis are stated as;

H0 : No association within clusters
H1 : There is association within clusters

The chi-square statistic is given by

χ = ∑
(Oi−Ei)

2

Ei

Whereby, Oi: refers to data which is observed, and Ei refers to expected values.
Degree of freedom (n− 1) is used to read corresponding critical value at 5% level of
significance on a chi-square table. The critical and statistic values are therefore compared,
If the statistic value is greater than the critical value then it means the p− value < 0.05
hence the H0 is rejected and conclude that there is association within clusters, therefore,
there is presence of the unobserved heterogeneity. On the other hand if the statistic figure
is less than the critical figure then it means p− value > 0.05 hence the H0 is not rejected
and conclude that there is no association within clusters, therefore, there is no presence
of the unobserved heterogeneity.
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4 Results

4.0.1 Variable selection using Random Survival Forest

Table 1. Characteristics of the fi�ed Random Forest for Survival Regression and Classification

Sample size 20354

Number of deaths 428

Was data imputed Yes

Number of trees 1000

Forest terminal node size 3

Average number of terminal nodes 290.723

Number of variables tried at each split 29

Total number of variables 786

Analysis Random Survival Forest

Family Survival

Splitting rule Log-rank *random*

Number of random split points 10

Error rate 0.31%

From table 1 we have fi�ed random forest for survival regression and classification model
on data set using log-rank split rule. It is worth noting that this model is built using the 786
covariates. To identify the most important covariates that influence under-five mortality in
Kenya, permutation importance was applied to measure importance of variable Ishwaran
et al. (2008)Strobl et al. (2008). Results for ranking variables according to their level of
influence on under-five mortality are summarized in table 2 .
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Table 2. Variable importance (VIMP) for 786 covariates basing on an overall of 1000 trees using
log-rank split criteria

Variable Importance

Sons who have died 0.0167

Daughters who have died 0.0112

Living children+current pregnancy 0.0036

Sex of child 0.0034

Duration of breastfeeding 0.0028

Number of living children 0.0021

Months of breastfeeding 0.002

4.0.2 Variable importance;

Variable importance is applied since we need to threshold covariates, since a covariate
whose level of importance is less than 0.002 is likely regarded as a noise Ishwaran et al.
(2008). Using this rule the variables found to be having high influence on under-five
mortality based on their level of importance are displayed in table 2, and these are the
variables that we have chosen to use as our explanatory variables .
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Table 3. Demographic and socioeconomic characteristics by child survival

Variable Mortality,N(%) Variable Mortality,N(%)

Sons who have died Living children+

None 18237(0.8) None 26(100)

1son 1775(13.1) 1child 3051(2.6)

2sons 275(12.4) 2children 4618(2.2)

3sons 58(12.1) 3children 3876(1.8)

4sons 7(14.3) 4children 2983(1.8)

5sons 1(0) 5children 2075(2.2)

6sons 1(0) 6children and above 3725(1.4)

Sex of child Daughters who’ve died

Male 10302(2.3) None 18503(1.1)

Female 10052(1.9) 1daughter 1580(11.6)

Births in last �ve years 2daughters 212(17)

One 9531(1.2) 3daughters 44(20.5)

Two 8707(2.4) 4daughters 14(21.4)

Three 1999(4.6) 5daughters 1(0)

Four 107(7.5) Region

Five 10(10) Coast 2565(2.2)

Contraceptives use North eastern 1556(1.7)

Currently using 9760(1.6) Eastern 2930(1.6)

Used since last birth 6233(2.7) Central 1371(1.7)

Used before last birth 1091(2.8) Rift valley 6651(1.5)

Never used 3270(2.1) Western 1926(2.8)

Currently breastfeeding Nyanza 2845(3.7)

No 14841(2.4) Nairobi 510(3.1)

Yes 5513(1.2)

Table 3 displays how deaths have been distributed for children under-5 years of age at
every level that has been included during analysis. It shows that among mothers who
had male children, out of 10302 children born,2.3% died before their fi�h birthday then
tread by mothers who had female children having 1.9% of deaths. This table has done
a summary on how births and deaths of children have been distributed for rest of the
variables that were considered during the study.
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4.0.3 Non-parametric exploratory analysis methods:

Given that t j represents the time to death of the under-five child (child’s age) in the
Kenya Demographic Health Survey data set 2014, the non-parametric method which is
mostly graphical was used to give a description of how the risk of death for the children
under-five years of age is distributed across the strata of one of the chosen covariates. It
is worth noting that what we meant by time to death is actually years of life until death
for the child under five years of age. This time has been recorded in months for analysis.
Figure 1 below is a Kaplan-Meier plot for the chosen factor based on Random Survival
Forest, a�ecting under-five child survival in Kenya from the KDHS-2014 data set.

Figure 1. Survival probability across gender of the child

From figure 1, it is clear from the Kaplan-Meier plot that female children have a be�er
survival probability than the male children. The reason behind this could be due to the
fact that girls have a strong biological advantage in early childhood, another reason why
it is this way is that most tribes in Kenya have custom of seeing a female child as the
origin of wealth via bride price.
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4.0.4 Modeling for determinants using AFT model variants:

Test for checking for the parametric model assumptions was performed for the four AFT-
models; Exponential, Weibull, Lognormal, and Log-logistic distributions. Checking to see
if a model satisfies the parametric model assumptions, plots are done for each model to
see whether most of the data points lie within the straight line or 95% confidence limits,
if they do then it implies that the assumptions have been met Mulera.B (2017). We found
out that all these models met the assumptions. We have therefore, reported results from
Log-logistic AFT model since it had the least Akaike Information Criterion (AIC) statistic.

Figure 2. Checking for parametric model assumptions for Exponential, Weibull, Lognormal and
Log-logistic AFT-models
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Table 4. AIC figures of AFT-shared frailty models (Community and household)

No frailty Community Household

Baseline distributions AIC Frailty distribution AIC AIC

Exponential 2630.088 Gaussian 2487.14 2471.722

Weibull 2566.057 Gaussian 2568.274 2696.672

Log-logistic 2462.352 Gaussian 2485.497 2461.255

Lognormal 2499.53 Gaussian 2508.123 2501.959

Table 4 shows results from the AIC figures of AFT-shared frailty models. We have as-
sumed Exponential, Weibull, Log-logistic and lognormal distributions for baseline; and
the Gaussian is treated as frailty distribution. The AIC values of the di�erent AFT,and
AFT models with Gaussian shared frailty model are displayed in table 4 for community
and household clusters respectively. The AIC values of Log-logistic AFT, and Log-logistic
AFT with Gaussian frailty model have been seen as the least compared to the rest of the
models in all cases, denoting that it is the best model in terms of e�iciency.

Table results of Log-logistic AFT and Gaussian shared frailty model with Log-logistic
baseline distribution has been displayed in table 5, which was seen as the most e�icient
model for the data. Approximated coe�icients, p-value, parameter estimates of base-
line distributions and frailty variance have been displayed in table 5. The Log-logistic
AFT-model shows that the sons who have died, daughters who have died, duration of
breastfeeding and months of breastfeeding were found to be having significant influence
on the under-five mortality (p < 0.05). Increase in the number of sons and daughters
who have died in the households reduced the risk of death. Sex of child, number of living
children, and living children plus current pregnancy were found not to be significant
factors for mortality.

On applying chi-square test whose null hypothesis states that variance of community
frailty term is 0 (θ = 0), chi-square test statistics gave p− value of 0.028. Using 5% sig-
nificance level, it means there’s proof of existence of unseen random factors at community
cluster. This means that there are other influences that do a�ect mortality at community
cluster that cannot be interpreted by observed covariates which are presented in the
model. The origin of the unobserved random factors at community cluster can be due to
limit access to food and other elements that may not be easily measured at community
cluster. More focus should be given in this area as far as further research is concerned for
the purposes of explaining reasons for unobserved random factors at community cluster .
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In the scenario involving household frailty term, the p− value is 0.28. At 5% significance
level it means there’s no proof of existence of unobserved random factors at household
cluster. Therefore, implying that factors influencing under-five deaths in the households
can be clarified just by using the covariates in the model without the inclusion of household
cluster term. In this scenario one can apply Log-logistic AFT-model without frailty since
the outcome proposes that there will be no di�erence when it comes to making conclusions
which will be drawn about the data.

Table 5. AFT model with shared frailty for the under-five mortality

Loglogistic(no frailty) Loglogistic(G)(community) Loglogistic(G)(household)

Parameters Coef P-value Coef P-value Coef P-value

Intercept 4.6843 0.000 4.0527 0.000 4.3908 0.000

Sons who have died -1.9436 0.000 -1.4136 0.000 -1.6941 0.000

Daughters who’ve died -1.6536 0.000 -1.2341 0.000 -1.4572 0.000

Gender of child

Male Ref Ref Ref

Female 0.3298 0.132 0.2739 0.067 0.3015 0.110

Number of living children 0.4986 0.125 0.3587 0.110 0.4347 0.120

Living children+ 0.0516 0.873 0.0388 0.860 0.0439 0.870

Duration of breastfeeding 0.2275 0.000 0.1713 0.000 0.2011 0.000

Months of breastfeeding -0.0402 0.002 -0.0317 0.001 -0.0364 0.001

Frailty 0.028 0.2800

Variance 0.717 0.337
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5 Discussion

The study of under-five child mortality has always been one of the most crucial researches
in the middle income countries including Kenya because of its high rate. Good news is
that Kenya has witnessed a significant decline in under-five child mortality recently KDHS
(2014). In this paper, an e�ort has been made to determine the possible determinants of
mortality for children under-5 years of age in Kenya by using random survival forests, and
Accelerated Failure Time (AFT)-shared frailty models.

Random survival forests has progressively become well liked other way for analyzing
time to incident data Segal and Bloch (1989). This approach has been recognized as
satisfactory for analyzing survival data. Covariates such as number of living children,
living children plus current pregnancy, and sex of child showed up as determinants which
were crucial in describing mortality for children in Kenya. Though, these determinants
were not significant for rate of mortality for the under-5 children when we used AFT
model. Is more fascinating to take note that random survival forests gives extra particulars
regarding importance of variables.

Our study considered two clusters, community and household levels. Gaussian shared
frailty with baseline distribution as Log-logistic was used to approximate e�ect of risk
factors on child survivorbility. The output from this model was compared to the model
without frailty, and the results were that there was no presence of the unobserved hetero-
geneity at household clusters, meaning the model with no frailty can be used to explain
the risk factors of the under-five mortality without the household frailty term. On the
other hand our study found out that there was presence of unobserved heterogeneity at
community clusters, this means that there are other influences that do a�ect mortality
at community clusters which the variables alone in the model cannot interpret . Our
study disagreed with Nasejje et al. (2015) which found out that there was presence of the
unobserved random factors at household level. Sons who have died and daughters who
have died are the determinants which are related with decreased risks of death in Kenya.
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5.1 Conclusion

Our study found out that there was presence of unobserved heterogeneity at community
clusters, this means that there are other influences that do a�ect mortality at community
clusters which the variables alone in the model cannot interpret or explain. On the
other hand there was no presence of the unobserved heterogeneity at household clusters,
implying that factors influencing under-five deaths in the households can be clarified just
by using the covariates in the model without the inclusion of household cluster term.

5.2 Future Research

Future research should be done to identify appropriate approaches of how to handle
missing data without reducing the number of observations.

5.3 Study limitations

Data from demographic health survey are always cross-sectional, thus, vulnerable to issues
to do with high degree of missingness due to respondents not being able to remember
events in the past, and also some of the variables which can assist during analysis process
may not get captured in the surveyNasejje et al. (2015). The high degree of missingness
was noticeable in 2014 KDHS data set.
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