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Abstract

The amount spent on option contract is the main problem in option pricing. The problem
further gets complicated when there is need to project the future possible price of the
option. This is achievable if one can be able to correctly determine the probability of the
price increasing, decreasing or remaining constant. Any investor wishing to invest in the
stock exchange would wish to make a profit thus the need for good formulas that give
very close solutions to the market prices.

This project aims at using finite difference method to price options using partial differential
equations.
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1.1

Introduction

Background of the Study

In the world of finance, pricing option’s is a major problem that’s encountered in financial
mathematics. The idea of option contract draws back prior to 1973. These contracts were
seen as Over-the-Counter (OTC). (Wilmott, 1995) .Thus an intermediary often referred to
as option broker was necessary for option trading. The role of an option broker was to
negotiate the price of an option between a seller and a buyer. Since contracts were not
standardized in expressions of conditions, this kind of option contracts were not handled
properly. However, since only few companies were involved, the OTC could manage.

In 1973, with the celebration of Merton, Black and Scholes and their Nobel consecration
later an official exchange began when the current modern financial market came into
place and replaced OTC. While some use derivatives to hedge against risks, others use
options as a strategy to maximize their investments income. In a typical financial market,
options traded vary significantly according to the type and each has its unique features.
An investor will typically choose the type of option that favours their portfolio and is
inclined more to their investment objectives.

In financial mathematics, pricing options has been a major field of research with the main
method of pricing being the Black and Scholes. However, various other methods have
come about which include FDM, FEM, Monte Carlo, Binomial and Trinomial.

FDM has been used in pricing of American and European Options and also in exotic
options which include, basket, barrier, Asian and Bermudian options. Among these exotic
options is the Russian option which is rare in the market.

Numerical methods can be classified into three classes in the math’s of finance: Monte
Carlo simulation, decision tree methods (binomial and trinomial), deterministic(non-
random) method which includes pricing options through use of PDE. In this paper we
focus on the latter.

Our objective of this paper is to discuss the application of partial differential equations in
finance and their numerical methods. For instance, one may opt to choose from FDM,
FDM, FVM and spectral methods .In this report, focus is on FDM since its very flexible
and have a strong theoretical support. In financial mathematics, PDEs are of parabolic
nature.
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1.3

STATEMENT OF THE PROBLEM

Any investment made by an individual or an organization in any business is done with the
aim of making a profit. The same applies to an investor who invests in the stock exchange
with the aim of reaping profits at the end of the investment period. An example would be
purchase of an option at current time with the aim of selling it at a higher price at a future
date. However in business, there is a probability of either making a profit or a loss. Good de-
cision making is therefore of paramount importance to achieve expected investment result.

Important knowledge an investor needs to put into account before purchase of an option
in the stock exchange is being able the purchase price at current time. The investor will
ask himself “How much should | pay for an option?” This factor is vital when selecting
the shares to purchase by the factor of optimal prices. An ideal stock would be very

marketable and with less risk of price dropping from the current price. This will lead to
profit making and thus the need for the right judgment of the current price.

Objective

The general objective of this study if to find the optimal price of an option contract at the
beginning of the contract by use of PDEs and their numerical solutions.

1.3.1 Specific objectives
1. Comprehend the working of the finite difference method.

2. To compare pricing of options using various numerical methods.
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Chapter 2

Literature Review

For many years, option pricing has remained a main area of study in financial studies.
The most famous model used is the Black and Scholes model (1973).The model however is
purely mathematical thus someone without basic mathematical background would have
a hard time understanding it. Later in (1973) Merton came up with article “Theory of
rational option pricing” which gave a breakthrough to the pricing of the value of options
by use of the “Black-Scholes-Merton” formula. Thereafter there was introduction of Cox,
Ross and Rubenstain (1979) who introduced the binomial option pricing model which is
much easier to understand since it has simple mathematics and has implicit economic
importance thus used in a vast way in financial markets. However, this model could lead
to large errors since it has only allows for two states. le. The stock price of the underlying
asset move up or down from one step to another. The binomial option pricing model is
a discrete time model and it contains the continuous Black Scholes model as a special
limiting case.

2.1.1 PRICING CURRENCY OPTIONS

Garman and Kohlhagen (1983) expounded of the reknown Black scholes model to include
foreign exchange model by suggesting that currency options could be treated as non-
dividend paying stock. They allowed the fact that currency pricing involved two rates of
interest (domestic interest rate and the rate of interest of foreign currency) and trading
currency can be at forward discount or premium dependent on the rate of interest differ-
ential. However, the formula by Garman and Kohlhagen is only applicable to European
options. The model suggest that it’s easy to convert domestic currency to foreign currency
and that one can put money with the hope of getting some profit in foreign bonds without
any limitation.

Biger and Hull (1983) provided the variation formulas for the direct derivation of a Eu-
ropean put and call options of currency using the Black, Scholes and Merton formula.
Their idea was to show that the formulas could be derived by assuming the Capital Asset
Pricing Model and the Expectation Theory.

Bodurtha and Courtadon (1987) use the assumption of lognormal probability to pre-



dict the prices of options by use of implied volatilities and the distribution of foreign
exchange rates. The implied probabilities were chosen in such a way that the maximized
the correspondence between predictions from the model and the observed prices from
the previous day. The findings of this procedure are rather small biases on the price at the
average which we predict in almost all categories of the options. Normally, there was a
consistent overestimation of put and call option prices. The model also produces pricing
errors with enormous dispersion with the ratio of absolute forecast error to that of the
authentic price being about 113 per centum of both calls and put. Melino and Turnbull
(1987) cross examine the lognormal assumption.

Fabbozzi, Hauser and Yaari (1990) carried out a research to point out the differences
between the Garman Kohlhagen model and the BaroneAdesi Whaley (BA-W) model for
currency options in calculating the price of American currency options. The results indi-
cated that the BaroneAdesi Whaley (BA-W) model was inferior to Garman Kohlhagen
model in pricing the worth of the primary asset is greater than the worth of the price of
the strike in short term put options and superior in pricing the value of the underlying
asset is less than the value of the price of the strike in long term put options. Both models
preformed relatively well when the calculation of the price call options was done. The
research further revealed the differential rate of interest in various countries had a large
influence on the probability of lucrative initial exercise in foreign exchange put to call. On
the American model, there was identification of superior chances in the trial for lucrative
early exercise amid the pricing of the worth of the primary asset being greater than the
worth of the price of the strike options that mature in less than 45 days. The (BA-W)
model showed the need to research more on the impact of exercising early decisions. This
investigation was useful while checking for the efficiency of the market and also coming
up with strategies of trade in development.

Jabbour, Petrescu and Onayov (2006) incorporated higher order moments in valuing cur-
rency options through Edgeworth series expansion functions. The value of options was
calculated and a comparison done with the Black Scholes Method. There was an indication
of significant differences and mostly for put options where the price of the current share
price and price of the strike are the same and a call option that has greater strike price as
compared to the underlying asset.

2.1.2 PRICING ASIAN OPTIONS

There is difficulty in pricing of Asian options as not much is known about the distribution
of the underlying assets average price and we can view this as a sum of lognormal random
variables and the density function of a sum of lognormal random variables is unavailable
currently. It is for this cause that there are no closed form results to price Asian options.
However, there exist various approximation methods which can be grouped into three



categories, that is, Monte Carlo Simulation, analytical methods and the lattice methods
which are closely related to PDE approach.

2.1.3 ANALYTICAL METHODS

The value of an option can be approximated using semi-closed and closed form formulae in
the analytical approach. Bouaziz, Briys and Crouchy (1994) assessed Asian options by use
of a derived closed form solution where the strike price was the mean. Both the forward
start average options and the average rate options were considered. The results were
compared to the Monte Carlo simulation and they discovered that the results were fairly
accurate even when the volatility level was high. Pudet and Barraquand (1996) solved
degenerate diffusion PDE under the pricing problem for a contingent claim that follow
a dependent path on a space occupied by variables that follow a dependent path. They
did this through a numerical method referred to as forward shooting grid method for a
derivative whose payoff depends on the realization of a future event that is uncertain. The
method was faster in execution to the Monte Carlo and accurate. American options were
also put into account in the forward shooting grid method. Rogers Shi (1995) lessened
the dimension of the PDE through the change of numeraire for the fixed and floating
option whose payoff be determined by the average of the risky asset. This minimized
the problem of solving options whose payoff be determined by the average of the risky
asset to a problem of solving PDEs with two variables. Vecer (2002) priced Asian options
in a simpler unifying approach for discrete and continuous arithmetic mean options. He
introduced a PDE of one dimension which when executed gave speedy and accurate results
and provided stability under all volatilities. Forsyth et al (2002) in his research showed
the convergent nature of various used to price path dependent options. A conclusion
was arrived at showing that Pudet and Barraquand (1996) and Hull and White (1996)
provided results that are an approximate of the exact solution if interpolation is carried
out backward in time. This method of pricing options using partial differential equations
converges in the continuous limit of time for options whose payoff be determined by the
average of the risky asset. Fujiwara (2006) combined three different methods developed
in computational fluid dynamics to come up with a fast, accurate and simple numerical
method to price American Asian options. The results were consistent with the rest of the
analytical methods.



3.1

3.2

3.3

3.4

Chapter 3

METHODOLOGY

PARTIAL DIFFERENTIAL EQUATION IN FDM

The order of the highest derivative is usually the order of the partial differential equation.
In a linear PDE with U as the value of the dependent variable, the partial derivatives arise
to the power of one only and there exists no result that involves more than one of these
terms. The number of spatial variables that are independent in a PDE are representative
of the dimension of the partial differential equation. That is, the equation is 2D if and
only if x and y are spatial variables.

a(t7x7y)Ut +b(t7xay)Ux+C(tax7J’)Uyy = f(trxay)

Where t,x,y are independent variables of time and space. a,b,c, f are independent vari-

able functions and U is the value of dependent variable function. Partial derivatives are
U U 9°U

denoted as U; = ——, Uy = ——,U,y = —— and the equation is second order and linear.

ot’ ox’ dy?
SOLUTION TO A PDE

In order to solve a PDE, we ought to solve the unknown function U.We refer to functions
that satisfy a partial differential equations and also that satisfy the boundary conditions,
right had side and initial conditions as the exact solution of the PDE. It’s usually very
challenging to get the exact solution to a PDE; we use numerical procedures to come up
with approximate solutions. We approximate using computer systems and these
approximations are done at discontinuous values of the variables that are independent.
The working of the finite difference method involves approximations taking the place of
all partial derivatives and other terms in the partial differential equation. A finite
difference scheme is then generated that approximates the solution through the use of

Taylor’s theorem.

INITIAL AND BOUNDARY CONDITIONS

For Partial differential equations to be well posed, they require initial and boundary condi-
tions in order to define well-posed problem. Too many conditions lead to no solutions while
too few conditions lead to a solution that’s not unique. Specifying boundary conditions
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3.6

(either initial or boundary) in wrong places and time lead to non-smooth dependence on
initial and boundary conditions and thus small errors in initial and boundary conditions
lead to the solution changing in enormous ways which we refer to as ill-posed problem.

Associated values and ghost points in a computational region might occur at or next
to the boundaries of the area. How we treat the boundary conditions is of vital importance
for precise problem simulation. For example, if we have points on grid with indexes
i=1,2,...N for the x-axis and j = 1,2...M for the y-axis then the indices 0,N 41 and
M + 1 are ghost points.

DIRICHLET (FIRST-TYPE) BOUNDARY CONDITIONS

The value of the dependent variable symbolized as Uy in first type boundary condition at
a ghost point is defined in some way.eg.

Uj=Constant, U} =0
Uy = f(n) time dependent boundary condition

Uy = Uy, Periodic boundary condition.ie. What passes out on the right passes out on the
left as though the two boundaries are joined.

DERIVATIVE (NEUMANN) BOUNDARY CONDITIONS

It describes the rate of change of the variable that is dependent on derivative boundary
condition at a grid point next to the ghost point. ie. i = 1 We can show this in two ways:

U, = f(U) the derivative of U in the course of x is identified at the boundary grid point
i = 1.That is,U] can be calculated and we estimate U, at i = 1 by central difference

(U3 ~Up)

Uy :f(U) I

rearranges to U} = U} —2xf(U)...... (a)

U, = f(U) the derivative of U in the course of n the outward aiming normal to the bound-
ary is given at the grid point adjacent to the ghost point. We note that this bearing is
opposite to the x bearing at the left hand boundary (i = 1) . U] can be calculated by



central difference.

Us —U3)

Ux:f(U) Iy

rearranges to Uj = U} —2xf(U)...... (b)

Note; Because of the opposite directions of the derivatives, the two equations are different
(a) and (b). Central difference is mostly used in Neumann Boundary condition but we
could easily use other estimates such as first order backward difference.

3.6.1 FUNDAMENTAL WORKING OF FINITE DIFFERENCE METHOD

A finite grid mesh of points replaces the region over which the independent variables
of the PDE are located, and then the dependent variables are approximated. Taylor
approximation is then used to approximate the partial derivatives in the partial differential
equation at each point from the adjacent values.

3.6.2 TAYLORS THEOREM

If U(x) have n continuous adjectives over the interval (a,b).Then for a < Xo,Xo+h < b

X 1 (X
U(Xo+h) = U(Xo) + hUx(Xo) + hz(Uu+o)) i w +O(h") 2.1
! n—1)!
2 n—1
Where U, = Cfi—lj?Uxx = %, LU = %—_[{).UX(XO) is a derivative of U with ref-

erence to X evaluated at X = Xj and O(h") is an unknown error term.

Knowledge of the value of U and that of the derivatives at Xy can lead us to writing
the above equation with reference to a nearby point Xg.If we discard the term O(h"),
we truncate the right hand side to get an approximation to U (Xy ;). The error term is O(h").

3.6.3 APPLICATION OF TAYLORS THEOREMTO FINITE DIFFERENCE METHOD

In finite difference method the values of U grid points are known and the objective is to
solve approximations at the grid points in the Taylors formula by replacing the partial
differential equations. In finite difference method both Xy and Xy, are known. We thus
rearrange the equality to get the finite difference approximations to the derivatives which
have O(h") errors.



3.6.4 GRID CONVERGENCE

It’s important to note the precision an accuracy of different numerical methods used in
FDM.This process is highly dependent on the size of the computational grid.

An ideal solution will have a grid that converges le. The solution does not converge
significantly if we use more grid points.

3.6.5 PSOR METHOD

This is an iterative method and the principle formula behind it is that any new iteration is
dependent on the old point value plus an error or residual at that point.

Ui"}H = U/, +R"; where R["; symbolizes the difference between iterations that are suc-
cessful of Uj j and the error. An appropriate weight for R"; can greatly speed up the rate
of convergence of the iterative scheme.

Ui"}“ = U/"; +wR]"; where we refer to w as the relaxation parameter where 0 <w <1 is
referred to as under-relaxation and 1 < w < 2 is referred to as over-relaxation.

3.6.6 EXPLICIT SCHEMES

In explicit schemes, data on the preceding level is got from data form the prior level through
use of forward difference with an explicit formula. This hints to a stability (restraint) on
the maximum acceptable time step Ar.

3.6.7 IMPLICIT SCHEMES

Data on subsequent time level arises on both sides of the difference scheme thus the need
to solve a scheme of linear equations. In this case there is no stability constraint on the
maximum time step which may be greater than an explicit scheme for identical problem.
The time step is selected on the basis of correctness.

3.6.8 FINITE ELEMENT METHOD

In solving a PDE using the finite element method, there’s a sequence of steps that one
takes which include;

Discretize the continuum-here we divide the solution into smaller regions referred to as
elements. Inside this elements are a number of points we refer to as nodes. Elements
can take various shapes from segments of lines, triangles, squares etc. The type of the
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3.7

problem dictates the shape of the element. However, linear segments are the simplest for
a 1D problem and triangular segments for 2D problems.

Select the kind of test function to use and the shape functions-we then select the type of

functions we will take to define the variation of the function ¢ inside each trial function.

That is we select basis set functions to describe the solution.

The formulation-To solve the PDE in mind, you find a system of algebraic equations for
each element ‘e’ such that by solving it you get the values of ¢ at the position of nodes of
the element ‘e’ such that ([®,P,,...,Py]|[P,]).That is, you find for each element ‘e’ the
matrix [k].and a vector [f].such that [k],.[®], = [f].-

We assemble the equations into different elements.We then assemble the equations for
all elements.It’s important to note that contiguous elements usually have more nodes in
common.For example, you may have a total of five elements with two nodes each but the
number of effective nodes is say six and not ten.

Solving the system of equations—In this stage, it’s important to note that any method is
applicable and the higher the number of nodes, the better the quality of the solution.

Compute secondary quantities.Once you calculate the value of ® you can compute the

value of the other magnitudes using ®.

PRICING OF OPTIONS USING PARTIAL DIFFERENTIAL
EQUATIONS

Deriving the Black Scholes Merton PDE for European options.
We begin this segment by recalling the basics of the derivation of a PDE in European

option pricing without providing the detailed mathematical presentation of the derivation.

For a detailed and accurate mathematical presentation, we refer to an example in [7].

We assume a standard Black and Scholes model by way of a risky asset priced at time ¢
and its price is S; and a risk free asset priced at a time ¢ and its price is S?, that is

ds; = S,(dt +dB,),dS? = rSVdt
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The process B; is a one dimensional Weiner process well-defined on the sample space
(W,F,F;,Q) where U is the average rate of return while r is the rate of interest and 6 > 0 is
the gradation of variation where all are constants. We can generalize this to the case where
r,i and o > 0 are functions of S and ¢ where appropriate assumptions of smoothness

(u—r)

apply. Furtherthere is an introduction of a random process W; = B; + t in the

Risk-neutral probability P in the determination of a fair price and we define it under the
Radon Nikodym derivative w.r.t Q, that is

dp . t(r—p), 1t r—p
ol = () s [ (R ray ™

W; is a Brownian motion and S_(l) is a martingale. This is a basic principle of the above

t
stochastic process. The stochastic differential equation below falls under P and satisfies
the process S;

dSt = S[(rdt + GdBt) (2)

Supposing we now examine a portfolio with risky assets H; and risk free assets H’, at
time ¢ the value would be

P, = H,S, + H'S? (3)

If we further assume that in the portfolio above is considered to be self-financing this
equation will now be

dP, = H,dS; + HdS" (a)

it’s important to note if the worth of the risky asset changes so will the worth of the
self-financing portfolio.
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We can use (4) above to convey that S% is a martingale.

t
Suppose we contemplate a certain problem such that: having ¢ as the payoff func-
tion at maturity time 7 > 0 we can build a portfolio that is self-financing of the form
Pr = ¢(St). An ideal example of ¢ payoff function would be a vanilla call of the form
0(S) = (S—K)+ or avanilla put of the form ¢(S) = (S — K)_.In this case, the define any
real x as x,x; = max(x,0) and/or x_ = max(—x,0).Basing the solution on a martingale

representation theorem, we can observe that it’s positive and that (S—(t))

t
Is a martingale while the payoff ¢ (S7)is F; measurable. The worth of the group of assets
at time is:

Pr = (exp(— [ rds)¢(ST)|F) (5)

The investor is able to seize a payoff of ¢(S7) at time T since by application of the ‘no-
arbitrage’ principle, we can show that F; is a fair price of the option at time ¢.If r and o are
known to be constants, then the value of vanilla options is well known under the renown
Black and Scholes formula. In the event that » and o are functions of ¢ or S;, we estimate
the value of the vanilla options through use of a numerical method. This section will only
cover numerical methods that are deterministic and based on equation(5) above

Markov property is the second fundamental property essential to get a PDE formulation
from the stochastic property S;.This can be stated basically as, an expectation to a function
of (S¢)o<:<t conditional to F; is a function of the price of S; at time t of the risky asset.
Under our circumstance, we can write F; as

P, = p(t,S:) (6)

We introduce p as a function of t£[0,T] and S€[0, | referred to as the option pricing
function. The values of S€[0,0] and § > 0 define the deterministic function of the pricing
function p which comprises the price of p at point(z,S;).The markov property that defines
S is used to get

p(t,x)=(exp(—ftT rds)q)StT’x)) 7)

Where (ng)ISQST is the equality to (1) beginning from x at time ¢.
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3.8

{dS’é":Sg"(rde +dWp), 0 >1, ©

X
S =x,

P
The fact that —6 is a martingale and by use of the Itos calculus, p satisfies the following

1
partial differential equation

ap dp ©2829%p B
o s T2 g P ©)
p(T,8) = ¢(8),

By use of the martingale representation theorem, we can show that the worth of a self-
financing portfolio p(z,S;) is equivalent to ¢(St) at time T if p satisfies (8). To obtain
one and only one solution to problem (8), we apply boundary conditions to the system at
S =0or S — oo, that is, make precise the functional space for p.

REMARK (MAXIMUM PRINCIPLE) This principle states that the result to the partial
differential equation of the European option is positive if the data given for the initial
condition, boundary condition and the right hand side of the PDE is positive. This property
is vital in pricing of options.

OTHER OPTIONS

From (7) above, the derivation of a PDE above is prototypical. The martingale principle
and the Markov property are the two important properties in pricing function of an option
using PDE. We now provide the PDE for various other exotic options without getting into
detailed derivation.

3.8.1 BASKET OPTIONS

A basket option is a financial derivative where the payoff of the asset is dependent on
the value of more than one asset.An ideal case would be two dependent assets evolving
following a stochastic differential equation on a risk neutral probability.

{dS} = SN (rdt + 61dW,)) .

dS? = S?(rdt 4 62dW?),
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Where W' and W? could be correlated one dimensional Weiner processes. Where p is
the correlation between W,!and W? : d(Wi,Wy), = pdt. T > 0 is the maturity time and
¢ (S, 52) is the payoff and ¢ is a given function. If the option price is p(t,S},S?) at time
t,we can reveal that the option price at time ¢ is p(t, S}, 5?) where p satisfies

op dp dp | (o}$%)d*p  (03S3) d*p 9%p 3
o s TS5, T 227 2 982 TP1o251S25¢ 55 — =0
p(T7S17S2) = ¢(SI,SZ)7

@m)

where r,01,0, are funtions of ¢t and (S},S5,) and this PDE can be solved by standard
numerical methods. .

3.8.2 BARRIER OPTIONS

The payoff is depends on the value of the asset reaching some worth that’s determined
by the boundary conditions set.That is, if we consider a single option asset, the payoff of
some options becomes 0 if for time t€[0,T|S; is less than a or greater than b which we
can write as 0 < a < b. When a = 0 or b = oo are treated in a similar way.

We can show mathematically that the payoff is 1V8[0.,T]7S,8[a,b]¢<ST) under any occurrence
A C Q, 14 indicative of a characteristic function of S; and A satisfy (1).To derive the PDE,
an admissible random process of the form S;x¢ is required where T = infte[0,T],S, > b
orS; < a and is the time to stop the process.

For all real x and y variables,x\y = inf(x,y). Through mathematical calculations, we can

show that S;,; is a markov process while BM is a martingale. At time ¢, the option price

AT
is p(t A T,S:a7) and we can define p for t€[0,T] and S¢[a, b] to satisfy the following PDE

S) 9(S), 12
t,a) = p(t,b) =0

Where r and o are funtions of ¢ and S.We can consider general barrier options where
the payoff is of the form 1V8[O.T},(S,1,Slz7. o _.75;1)8D¢(ST) and d is indicative of the quantity
of underlying assets while D is a simple domain denoted by R? The best method to dis-
cretize this PDE with the domain D is through the finite element method.The appropriate
discretization for general domain D is the finite element method.
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3.8.3 OPTIONS OF THE MAXIMUM (LOOKBACK OPTIONS)

Lookback Options are options whose payoff of the option involves the maximum of risky
asset. Such a case would be, if ¢(S;,M;) where M; = maxo<,<,S, and S; satisfies (1).We
can verify that (S;,M;) is a Markov process. The price of the option can be revealed to
p(t,S;,M;) at time t and we can define p for t£]0,T] and (S,M)&(S,M)eR?,0 < S < M for
the following PDE

dp ap 6282p > B
o s T ag® TP =0
p(T,S;M)=¢(S,M), (13)

92.(1,5,8) =0

S
The form of this payoff can be written as ¢ (S,M) = M¢(1\_4) giving us a chance to reduce

from a two dimensional equation to a one dimensional equation inclusive of the time

S
variable. p(t,S,M) = Mo(t, M> can be shown to satisfy this PDE

ot Pos T2 982
o(T,e) = ¢ (), a4

2 (t,1) = w(t,1)

where @ is defined as a function of &[0, T] and £€]0, 1]. For (¢,S,M) rate of interest and
volatility are dependent, such a reduction is impossible.

3.8.4 ASIAN OPTIONS (OPTIONS ON THE AVERAGE)

An Asian option is an option whose payout is depends on the average of the risky asset.

1
That is, ¢(S7,Ar) is the payoff where Ay = A o Srdr and S; satisfy (1).The option price at

time ¢ is p(t,S;,A;) and p is defined on &[0, T] and (S,A)&[0,%0)? and we can verify that
(S¢,A;) is a Markov process to satisfy

ap dp 02829 1 dp B
o Ts T am TS AGg Y =0 (15)

p(T,S,A) = (])(S,A),

Just as in the case above,we can reduce the problem to a one dimensional PDE That is, f
satisfies
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3.9

of o©2829%f 1 of
T2 e T F e =0 (16)
f(T,e) = ¢(e),

tA
K—=

on p(t,S,A) = (1, 5 A ) for a fixed strike put ¢(S,A) = (K —A)+ and a fixed strike
call fixed strike call ¢(S,A) = (A —K); and ¢(€) = €_ (resp. (&) = €.

NOTE If we set p(t,S,A) = Sf(z, _T—l?) and (¢p(e) = (1+¢€)(resp. () =(1+¢€)_) we
can reduce the above equation (13) to (14).However, except in cases where the dependen-
cies are peculiar it’s impossible to carry out the reduction for (,5,A).That is, where the
rates of interest and volatility are dependent.

EXCHANGE OPTIONS

The Hull-White pricing model efficiently prices exchange options through partial differ-
ential equations. Ways used to price foreign exchange hybrids that are long dated are
at the center of this research and these hybrids are usually referred to as Power Reverse
Dual Currency and are categorized under the Bermudian exotic options. Three correlated
procedures formulate the problem and incorporate FX skew through the function of local
volatility. Grid mesh of uniform interval is used for the finite difference method while for
the time discretization we use Crank Nicolson method.

Mathematical results reveal that the numerical methods in use are convergent in second
order. Monte Carlo simulation is the most popular choice of pricing PDRC but it has its
disadvantages as which include decelerate level of convergence and hedging parameters
being unfavorable. The current standard modeling of term structures is composed of two
factor Gaussian models with two factors and the spot FX rate has one factor log normal
model with one factor. This choice has several advantages which include;

[.A minimum number of factors which is three.
[I.The spot FX rate uses closed form calibration that’s very efficient.

Nonetheless, challenges are also experienced which include;
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[.FX option exhibit skew thus cannot be captured in log normal distribution.
[I.Sensitive to FX volatility skew.

The model incorporates smiles to counter the problem through the function of local
volatility which in turn prevents the model from acquiring more stochastic factors.

le. Under a model with three factors, the derivatives of interest rate depend on the vari-
ables of three stochastic states thus the value function of the partial differential equation
must fulfill variables of three states and variables of time.

3.9.1 PDE FOR CROSS CURRENCY OPTION (FX OPTION)

Suppose we examine an economy with domestic and foreign currency. The spot rate
of the number of units that equate to a unit of foreign currency and can be written as
S(t).The domestic and foreign short rates can be written as r;(¢) ,i = d, f The description
of S(),r4(t),rs(t) on the risk neutral measure can be described as

= () = 0+ 150w 1) a
drg(t) = (64(t) —ka(t)ra(t))dt + c4(t)dW,(t) (18)
dry(t) = (05(t) = kp(1)rs(t)) = prs(t)op(1)y(t,5(1))) + o (1)dWy (1), (19)

Wi(t), Wy(t), We(t), are correlated Brownian motions with dW; (t)dWs(t) = pasdt,dW(t)dWi(t) =

prsdt and dWy(t)dWe(t) = pyfdt.

The volatility o;(¢) and mean reversion rate k;(¢) for i = d, f are representative of the mean
reverting Hull White model while the term structure is represented by 6;(¢),i = d, f.The
alteration of the amount from foreign to domestic represents the drift adjustment which
can be denoted as —pys(t)o(t)y(t,s(t)) for dry(t) where o;(t),ki(t), and 6;(¢) are all
deterministic. The form for the function of local volatility (¢,s(¢)) in the spot rate FX can
(S(l) c(t)—1

(L()

In this equation, the function of relative volatility is €(¢), the constant of elasticity of

be denoted as y(t,s(t)) = €(t)

variance(CEV) dependent on time is c(¢) and the scaling constant dependent on time can
be set to forward foreign exchange rate expiring at time ¢ written as F(0,¢) for the purpose
of calibration.

3.9.2 THEOREM

Suppose the value of the domestic function is u = u(s,r4,7r,t) representative of a security
whose measurable terminal payoff with respect to c-algebra at the time to maturity
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is T,nq and there are no immediate payments. We can assume further that ueC?! on
Ri (Tstarts Tona), then u satisfied the PDE

Ju du du Ju o
a__}_LuzE*‘(rd—rf)sa—s—i-wd(t)—kd(t)rd)8_+(9f(t>_kf(t)rf_pfscf(t)’}/(t’S(I)))8_rf+
a 1 32, 1 22u 02u J%u
A 3 3070 PO S0)55 5+ prsor (150 5 5+
82u
pafoa(t)oy ()ardarf_rduzo

3.9.3 DISCRETIZE THE PDE

Suppose the sub intervals are represented by n+1,p+1,g+ 1,/ + 1 for the s—,rg—,ry—
and T— bearings respectively. The respective step sizes that have a uniform grid are writ-

S Rd f T .
tenasAs=—— Ary= ——,Ary = ———,, AT = ———_The values at the grid
)T A ) T T (g D) (I+1) &
point for approximating the finite difference are written as ui, j, k)™ ~ u(si, 74, 7 i, Tn) =
u(ids, jArg,kArp,mAt)andi=1...,n,j=1...,p,k=1...,q,m=1...,14+1.We use cen-
tral differences to approximate the values of the first and second partial derivatives. The

value of the cross derivatives is approximated using the four point FD stencil.ie.we ap-
u 82
proximate — by

ds 82

du Wiy jug = Uiy juy) 9P (Wi g = 2U( 0 F UG i)

ds 2As 952 (As)?
Whil imate th derivative (2"
e we approximate € Cross derivative
PP (95974)
(0%) (Wi jng T8y ~ Yl ~ Y- 1)

(dsdry) (4AsAry)

We omit the derivations for brevity but we can show through Taylor expansion that
these formulas have a second error truncation error as long as u is sufficiently smooth.



3.9.4 APPLICATION OF THE CRANK NICOLSON SCHEME

The crank Nicolson scheme is applied to move from 7, to 1,

levk) _l m l m—1
At 2PMGn TRl

Wherei=1,...,n,k=1,...,q,j=1,..., pand the mesh points are assumed to be ordered
in the following directions s—,r;_ and ry_ .Assume that the vector of values be U™ at
time 7,, on a mesh that approximates the analytical solution to u” = u(s,r4,7¢,Tn) .By
Crank Nicolson method, we approximate U™ successively form=1,2,...,[41 by

1 1 1
(I— E’L’A’")um =(I— EATAm_l)Mm_l + EA”L'(g’”—I—gm_l)

The identity matrix npg x npg can be written as I while A™ is representative of a matrix

of the same size. g" and g"~!

can be obtained from the boundary conditions. To solve
the equation via direct methods such as lower upper factorization have high costs compu-

tationally since;

|.The matrix I — %ATA’" holds a bandwidth proportionate to min(np,nq, pq) subject to
the organization of the grid points.

[I. Scant solvers undergo substantial fill in when unraveling systems resultant from PDEs
of the method.

[11.These matrix necessities to be factored at every time step since its reliance on the time
step index m of the function of local volatility.
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3.10 USING PDEs TO PRICE EUROPEAN OPTIONS

In the previous sections we focused on presentation of PDEs of various exotic options. We
will now show a process to solve these PDEs in finance and their applications. The method
is the finite difference method (FDM) which is solely founded on Taylor’s expansion.

3.10.1 The finite difference method

We shall carry out the application of the finite difference method(FDM) on the European
option PDE (8).The main step is to discretize the PDE w.r.t the variable S.The interval is
then divided into [0, S,,4x/I] where we choose S,y to be large enough and carry out an
approximation through the finite differences. A workable semi-discretization of (8) would
be ic0,1,......1,

JP, Py1—P_y 0°S?Py1—2P+P,

LS, i _P=0

or T 25s 2 552 " (20)
B(T) = ¢(S:),

The i-th discretization point can be written as S; = i8S and we approximate p(t,S;) by
P;(t) The time and spot dependent r and o are direct for this system of coupled ODEs.
We can solve Py independently for S = 0, since (Sp = 0) : Py(t) = (])(O)exp(—ftT rds. To
solve this ODE we define the boundary condition S = S,,4x. P;+1 is a priori and undefined
and at i = I can be solved in two ways.

We use prior information on the value of p(z,S) if S is large to solve in the first method then
use approximations of p(t,S;ax). The value of Py in this case is given as a data ie. Often
referred to as Dirichlet boundary condition and the unknowns are (P;)o<;<;—1.For exam-
ple, a put ¢(S) = (S—K)_ooracall §(S) = (S—K), we know that limy_,. p(¢,5) =0
and lim; . p(t,8) ~ Kexp(— [T rds)respectively, we can set P(t) =0 and Py(t) = Syax —
Kexp(— ftT rds) We can estimate the error introduced by this boundary conditions.

The asymptotic behavior of p sets the basis of the second method we can use to solve the
PDE.The use of homogeneous Neumann boundary condition can be used to solve the put

Jdp . Pra(t) o
(G5.Sma)) =0 or discrete 0 0S5 =0 We

can define the unknowns as (P;)o<;<;.It’s important to note that S,,,, would be selected

above and this can either be continuous

adequately large for both methods. The time discretization can be considered by dividing
the time interval [0,7] into N intervals of length 8t = T /N . The time derivatives can
further be replaced by finite differences.The following classical numerical techniques are
used:
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(P —B) |G P P | (0°8]) BV 2R+ R

; o Litl i i+1 —rprtl =9
HITss 2 552 i (21)
PN = ¢(Sy),
(P —pp S,Pi’il — Py (0287 Pl —2P+ P! P —(
sy T 55 e (22)
PN =¢(Sy),
(Rt =Py 1 PR —PLy (0P} P, 2P 4P
R A 4 —(rS; i 1+ i 1 —rpn S
n+1t n+1+ (r212 %§§ n-+1 2 n+1 552 i o
Py —PRoy | (o°8)) By —2h + P Py =0 (23)
288 2 552 P

PN =¢(Si),

1

Where Pi)" ought to be the approximation of p(ty,S;) with t, = nét. The prices of (P;)o<i<r
in equation (21) are explicitly attained from the prices of(I)l”H)ogiS[ in the explicit Euler
scheme. The prices of (P;)o<i<s in equation (22) (implicit Euler scheme) and (23) (Crank-
Nicolson scheme) are gotten from the prices of(Pl”H)ogig over resolve of a linear system.
To solve the linear system, various methods can be used such as the iterative method
which consists of computation of the solution at the bound of order of estimates where
matrix vector approximations are used and direct methods based on Gaussian elimination.

3.10.2 DENOTING STABILITY AND CONSISTENCY

Having come up with the discretization schemes for the explicit Euler(EE), Implicit Euler(IE)
and the Crank Nicolson(CN), we then evaluate the convergence of the three schemes
then comprehend their dissimilarities. In order to do that, we have to introduce two very
important notations.

Consistency-In a consistent numerical method, once the precise solution is plowed in the
numerical scheme, as the discretization parameters incline to zero the error term tends to
zero. This means that in (21), (22) and (23) you replace P/* with p(t,,S;) where p satisfies
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equation (8).You then need to verify that the other expressions incline to zero if 8t and 6§
incline to zero.

The discretization schemes are then checked using Taylor expansion that they are bound
by C(8¢ + 85?) where C is a constant dependent on some derivatives of p.Thus from the
bound, C(8t 4 85?) we can see that the discretization schemes are are consistent with
spot variable of command 2 and command 1 in time.

The second notation is stability. In a steady arithmetic method, the norm of the result to
the scheme is bound by a constant that is free of the constraints multiplied by the norm

of the data, that is, the boundary conditions, initial conditions or the right hand side.

Thus we can say that a numerical approximation is converging to a solution of a partial
differential equation if the discretization parameters approaches zero. We can estimate
convergence by estimating the convergence error. We shall look at the following example
to show this, the error for explicit Euler scheme (EE) is bound from above by C(8¢ + 85?)
where the constant C is dependent on the solution p: There needs to be more regularity
on p for higher order schemes. To show this we shall refer to some parameters under the
Crank-Nicolson scheme at t = T are better obtained in the CN scheme rather than the (IE

or EE) with command 1 as the solution isn’t adequately regular around t =T'.

Conclusion of the properties of the schemes

The three discretization schemes described above have been observed to be consistent.

We can also show that the Explicit Euler scheme described is said to be stable if there’s
an additional CFL condition described in of this nature (8t < C§S?) and C is described
to be a positive constant. The other conditions are unconditionally stable. The prices of

(P o<i< can be acquired from the prices of (P""')g<;<; in the Explicit Euler scheme but

we need small time steps in relation to spot step for us to achieve stability and convergence.

However for the implicit Euler(IE) and the Crank Nicolson(IE), we require a determination
of linear scheme at each time step but meet without restrictions at the time steps.In
parabolic PDE in finance, this is very common. Thus it’s preferable to compute implicit
schemes in relation to costs as CFL condition is usually very stringent.

3.10.3 APPLICATIONS TO ASIAN OPTIONS

In this segment we present the use of the finite difference method relative to valuing of
Asian options.We calculate the numerical results to for a call with a fixed strike.

O(€) =¢€_ (24)

In the discretization above, we used finite difference method to solve the solution to a
renowned black Scholes equation of European PDE. If we used the same method to solve
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for the American PDE we would get unwanted results especially with a small volatility.
This is because with & closer to zero, the diffusion term (c2£2)/2 is smaller than the
(1/T +re) term. This causes a deterioration to the numerical scheme stability w.r.t L™-
norm. There exist some oscillations as the principle of discrete maximum is unsatisfied in
the numerical solution. Further, there is an introduction of arithmetical diffusion which
points to outcomes that aren’t satisfactory for purely advective equations.

In practice, the numerical solution does not fulfill the discrete maximum principle as
it reveals some oscillations. Besides, the finite difference method presents numerical
diffusion which points to inadequate outcomes for purely advective equivalences.

This can be solved through the characteristic method centering on the solution (de/dt =
—1/T) with the aim eliminate 1/T. We introduce the following change in variable.

t
t,x)=f(t,x- —
B(tX)~f(tx- ) @)
g is the solution to the PDE below
2 2
dg O 7) X
8 T 8 X § _ 0

T S A (26)
g(Tx) = p(x—1) = (1-x),

t
If g satisfies (26), when the advective term r(x — T) is insignificant, then the diffusion term

t
Gz(x— 7)2
is insignificant as well. This result is satisfactory. Another core characteristic

of the result to PDE (26) for ¢ (&) = €_ is when V <0

1
— (1 _r(T=1)\ _ o,—r(T—1)
f(t,€) rT(l e )—¢€e (27)
Thus ¥ < -
us Vv < T
then,

gtx)= —(1—e T ) — (x— —)e ") 28

5=
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The f given by PDE (27) if the solution to the American PDE with ¢(€) = —&.Thus,
for us to prove (28), we notice that the advective term is negative and diffusion term is
null for € = 0, the solution to the American PDE for ¢ (€) = €_ where € < 0 is the same
as the solution to Asian PDE for ¢(¢) = —g on € <0.
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4.1

4.2

Chapter 4

STATISTICS AND RESULTS

INTRODUCTION

This section presents outcomes obtained from calculation of American Put Option and
Currency Options using both the finite difference methods. We also segment the time
period for the American put option into intervals then carry out European put pricing of
every interval independently while assuming that every interval is the expiry date of a
European Put Option. We draw line graphs from the prices obtained at different points
which give us the best prices for an American put option. The results we obtain are then
compared to Black-Scholes, and Monte Carlo simulation. We implement the numerical

solution using R program.
4.2.1 IMPLEMENTATION AND RESULTS

The figures below shows the errors of European Put option under different parameters
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The graphs above show the comparison of errors relative to the logical result of the Euro-
pean put option obtained through the three FDM methods. The first conclusion we make
is that the error is large when the stock price of the option is at the money. The error is
dependent on r and and it impacts the stability of the explicit method.The stability of
the explicit method is also affected by the relationship between dS and dt.We can finally
conclude that Crank Nicolson method is more precise in outcome with increase in M
while N constant. In our following graph we compare the speed of the three FDM methods.
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time
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The results in the explicit method are consistent with the principle. The explicit method
gives modest solutions to every portion in explicit form. However, for the implicit Euler(IE)
and the Crank Nicolson(CN) method, we obtain the solution of one element system of
linear equations through solving. Further, Crank Nicolson method necessitates one matrix
multiplication extra in every time step resulting in the method being slower than the

implicit method. However, Matlab and R solve this problem since they multiply matrices
very fast. This results in Crank Nicolson method being better method and with better
precision.
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The benefits of explicit method consist of;

« Programming is easy and it’s difficult to make errors.

« Relatively fast

« Easily applicable to American options

« It manages fine with coefficients that depends on time and asset.
« If its unstable its easily noticeable

The main drawback is the restraint on time step because of matters with stability which
at times affects the stability of the algorithm.

Implicit Euler finite difference method however outdos the stability issue. The need
for small time steps is not necessary anymore but the solution is not as straightforward
as there is necessity to solve a set of linear equations. Crank Nicolson method is a further
improvement of the implicit finite difference method. It also requires one to solve a set of
linear equations. For this reason,LU and PSOR methods are satisfactory.LU decomposition
is very proficient. Limited time steps are adequate for implicit method going together
with by LU decomposition and are generally more effective than explicit method.LU
nonetheless can only be used European Options and not American Option. The purpose
for the introduction of PSOR algorithm is applicable to every exercise possibility but is
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sluggish than LU in concept.

The main disadvantage of FDM is that when confronted by a problem that’s 3-4 di-
mensions, they tend to be slow. In this case Monte Carlo is more preferable.

4.2.2 American Put Options results

The table below gives the prices of an American Put Option by subsequent bounds:
k=50,vol =0.3,r =0.1,T = 1,5(0) = 25:5: 75 Tree based binomial with 5000 steps
Monte Carlo (MC) with 80 time steps and 200000 paths

Finite difference: Project Successive Over Relaxation-price of stock M = 200, N = 200
time steps, Explicit M =300 and N = 15000

Stock price | binomial tree | LSM AT LSM PSOR | EXPLICIT
25.0 25.0101 2493849 | 24.97687 25 25
30.0 20.0101 19.98753 | 19.94946 20 20
35.0 15.07011 14.97748 | 14.93551 15 15
40.0 10.16439 10.16537 | 10.12188 | 10.14345 10.234
45.0 6.55042 6.54333 | 6.51467 | 6.54925 6.76
50.0 4.17877 4.14574 | 4.19085 | 4.14781 4.16549
55.0 2.684434 2.58549 2.69043 | 2.63345 2.64407
60.0 1.66399 1.5892 1.67317 1.63305 1.64356
65.0 0.93647 0.96871 0.96182 | 0.97374 0.94617
70.0 0.52955 0.59526 | 0.57642 | 0.58346 0.54885
75.0 0.39371 0.35585 0.35266 | 0.35692 0.35234

Average(time) 1.51s 12.3-5.4s | 12.3-5.4s 14.7s 4.14s

Although the speed of the algorithms is dependent on the parameters in use, we can see
that the obtained time is per expectation in theory. The binomial method is the fastest
followed by the explicit method which is the fastest FDM method and it provides the value
of options for each stock value and time in a specified array. Monte Carlo simulations are
considerably slow but PSOR proved to be the slowest method. The reason PSOR is the
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slowest is due to the fact that it’s an iterative method and is dependent on limitations of
tolerance, relaxation limitations and maximum number of reiterations that can be castoff.

The use of different parameters can provide better precision.

The graph below is a describes the pricing of basket options using various asset values.

Dual Asset Option Value

Time= 0
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5.1

Chapter 5

Conclusion

We can conclude that option pricing is a main achievement in modern investment which
has incited the expansion of conversant financial options such as puts and calls as well as
exotic options. As much as the major advantage of option pricing is to offer us with the
“optimal price”, market price is the greatest pricing option since a well-organized market
offers the superlative price for options. Thus the major benefit of option pricing is the fact
that it offers an accurate “snapshot” of the present market prices.eg. volatility that’s has
been implied. This hypothesis only scratches the surface of a wide area of arithmetical
option pricing. A starter into the area can be done by comparing the fundamental methods
of valuation of prevalent derivatives. We present the finite difference method and discuss

three methods; the explicit euler (EE), implicit euler (IE) and crank Nicolson(CN) method.
Explicit method is a very easy method to apply for both European and American options.

In the evaluation table above, it comes right behind binomial pricing model. Further, finite
difference methods give provision for option values for specified stock price and time
array as similar to binomial model. This allows for interpolation in cases where prices
have not been directly calculated. Finite difference method is however easily adapted
to many problems thus better than binomial model in the Explicit. For us to overcome
the stability issues, we use the implicit method and even further the Crank Nicolson
method. Figure 2.3.5.7 clearly explains the precision. Crank Nicolson method improved
the accuracy much faster while the price step decreased (M increased) which confirms
our theory. When comparing the speeds of the three FDM methods, Crank Nicolson
method was the fastest and most precise while Implicit method was the slowest. To value
the American Put Option, we introduced PSOR algorithm. The outcome was as follows;
Finite difference method was the most sluggish but had enhanced correctness to the
Monte Carlo. We ought to choose a relaxation parameter carefully in order to achieve
convergence at the right price. It’s important to say that FDM is used in almost seventy
percent of all valuation processes currently in place.

We can conclude by saying that different options require different kinds of solutions
thus there is no universal recommended method. Exotic options however have analytical
solutions and we use them depending on their availability. Monte Carlo is used if the
problem has more than three underlying variables or for strong path dependent options.
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5.2

Future Research

The major step would be designing arithmetic ways of calculating of exotic options, greeks
and prizing options in non constant volatility or interest rates.

Finite difference methods can be enhanced in various ways. The first technique is on
working on the error which can be solved by creation of a denser grid when the asset
price is close to the money.Next, since the Explicit Euler method is not usually stable,
we can solve this by using the alternating method explicit method[10].Finally FDM can
be executed in HPC environment for both GPU and multi CPU[9].The apparent trend
currently is use of GPUs in most large financial institutions but it’s still a large research
area.
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