
 
UNIVERSITY OF NAIROBI 

 

 

SCHOOL OF MATHEMATICS 
 
 
 
 
Curvature Tensors on Semi-Riemannian and Generalized Sasakian Space 
                   Forms admitting Semi-symmetric metric connection 
 
 
 
 
 
 

 

By 

 

Peter Wanjohi Njori 

 

Reg. No: I80/50655/2016 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A research Thesis submitted in partial fulfillment of the requirements for the award  

of the degree of Doctor of Philosophy in Applied Mathematics to the School of  
Mathematics, University of Nairobi. 

 
 
 
  

February, 2018 



 
 
 
 

 

Declaration 

 

This thesis is my original work and has never been submitted for 
registration in any other University. 

 

Mr. Peter Wanjohi Njori: Signature...................Date................ 

 

This thesis has been submitted for registration with our approval as the  
University supervisors: 

 

Dr. S.K. Moindi: Signature..........................Date......................... 

 

School of Mathematics, University Of Nairobi 
 

 

Prof. G.P. Pokhariyal: Signature.........................Date............. 

 

School of Mathematics, University Of Nairobi 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

i 



 
 
 
 
 

 

Abstract 

 

The study deals with curvature tensors on Semi-Riemannian and Gener-

alized Sasakian space forms admitting semi-symmetric metric connection. 

More specifically, the study shall be to investigate the geometry of Semi-

Riemannian and generalized Sasakian space forms, when they are 

8W flat, 8W symmetric, 8W semisymmetric and 8W Recurrent and 

compared to results of projectively semi- symmetric, Weyl semi- symmetric 

and concircularly semi-symmetric on these spaces. Further, the conditions 

that admit a second order parallel symmetric tensor on functions of such 

spaces, shall be studied. 
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Chapter 1 
 
 

1. Introduction   

1.1. Historical background 

 

Riemannian geometry is the branch of differential geometry that studies Riemannian 

manifolds, smooth manifolds with a Riemannian metric. Riemannian geometry was first 

put forward in generality by Bernhard Riemann in the nineteenth century and originated 

with the vision  expressed in his  1854 inaugurational lecture, “Ueber die Hypothesen, 

welche der Geometrie zu Grunde liegen (On the Hypotheses which lie at the Bases of 

Geometry).”  

Development of Riemannian geometry resulted in synthesis of diverse results concerning 

the geometry of surfaces and the behavior of geodesics on them, with techniques that can 

be applied to the study of differentiable manifolds of higher dimensions. It enabled 

Einstein's general relativity theory, made profound impact on group theory and 

representation theory, as well as analysis, and spurred the development of algebraic and 

differential topology. 

Any smooth manifold admits a Riemannian metric, which often helps to solve problems 

of differential topology. It also serves as an entry level for the study of the more 

complicated structures of pseudo-Riemannian; almost complex structures and complex 

structures on a Riemannian manifold, almost contact and contact structures, symplectic 

manifolds, K¨ahler manifolds and Calabi-Yau manifolds among many others. Many of 

these structures appear in the context of string theory and other areas in theoretical 

physics. 

While the notion of a metric tensor was known in some sense to mathematicians such as 

Carl Gauss from the early 19th century, it was not until the early 20th century that its 

properties as a tensor were understood by, in particular, Gregorio Ricci-Curbastro and 

Tullio Levi-Civita, who first codified the notion of a tensor. 
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In 1960, a Japanese, Shigeo Sasaki, began the study of almost contact structures in terms 

of certain tensor fields, but it was not until 1962 that what are now called Sasakian 

manifolds first appeared under the name of “normal contact metric structure.” By 1965 

the terms “Sasakian structure” and “Sasakian manifold” began to be used more frequently 

replacing the original expressions. After 1968 Sasaki himself was less active although he 

continued to publish until 1980. Yet he had already created a new subfield of Riemannian 

geometry which slowly started to attract attention worldwide, not just in Japan. In 1966 

Brieskorn wrote his famous paper describing a beautiful geometric model for all 

homotopy spheres which bound parallelizable manifolds.  In 1976 Sasaki realized that 

Brieskorn manifolds admit almost contact and contact structures. (This very important 

fact was independently observed by several other mathematicians: Abe–Erbacher, Lutz–

Meckert, and Thomas). 

There was not much activity in this field after the mid-1970s, until the advent of Super 

String theory in 1980s. Since then Sasakian manifolds have gained prominence in physics 

and algebraic geometry, mostly due to a string of papers by Boyer, Galicki and their co-

authors. 

Sasakian geometry is not a separate subfield of Riemannian geometry but rather it is  

interrelated to other geometries. This is perhaps the most important feature of the subject. 

The study of Sasakian manifolds brings together several different fields of mathematics 

from differential and algebraic topology through complex algebraic geometry to 

Riemannian manifolds with special holonomy. 

 

More closely related to Sasakian geometry is K¨ahlerian geometry. The relationship is 

clearly seen in the study of several topics, including the theory of Riemannian foliations, 

compact complex and Kähler orbifolds, and the existence and obstruction theory of 

Kähler-Einstein metrics on complex compact orbifolds. The study  of contact and almost 

contact structures in the Riemannian setting, in which compact quasi-regular Sasakian 

manifolds emerge as algebraic objects is a clear prove of this. The discussion of the 

symmetries of Sasakian manifolds, has lead to a study of Sasakian structures on links of 

isolated hypersurface singularities. This has led to an in-depth study of compact sasakian 
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manifolds in dimensions three and five, and properties of curvature tensors on the 

generalized Sasakian space forms among others. 

1.2. Notations, Terminologies and Definitions 

 Definition 1.2.1: Consider an n dimensional manifold M . Let p be a point of the 

manifold. Denote as pV  the set of all vector fields defined at p . pV  is an 

n dimensional vector space.                          

Definition 1.2.2: A 1-form q~  defined at p is a linear scalar operator acting on vector 

space  pV  , to real number R . That is  

1)           ;:~ RVq p   

2) For any pVuu ,  and   )(~)(~~, vqbuqavbuaqRba   

The set of all 1-forms defined at p is called covector or dual space to pV  and it is denoted 

by *

pV . This is an n dimensional vector space.                     

 Definition 1.2.3: Any vector pVu  can be associated with a linear scalar operator 

acting on 1-forms *

pV   to R . i.e.     RVuqqu p  *:~~   

Definition 1.2.4: An 








l

k
type tensor defined at point p  is a linear scalar operator with 

l  slots for 1-forms from *

pV  and k  slots from pV . Such tensor can also be called as l -

times contravariant and k -times covariant. The total number of slots, klr  , is called 

the rank of the tensor. 

Thus, 

1) Any vector is a 








0

1
type tensor 

2) Any 1-form is a 








1

0
type tensor 

Remarks 

Tensors therefore are a generalization of vectors and 1-forms (covectors).  

A tensor of type ),( lk at p is a multi-linear map which takes k vectors and l covectors  

(1-forms) and gives a real number. 
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A tensor ( or tensor field) T, of type ),( lk is denoted with k superscripts and l subscripts 

( k

lT ) and is said to be of rank lk  . 

Definition 1.2.5: Let M  be a smooth manifold. A tangent vector at a point Mp is a 

map  

RMCX p  )(:  which satisfies                                             

i) )()()( gXfXgfX ppp   

ii) 0)mapconstant ( pX  

iii) fXpgXgpffgX pp )()()(   

for all )(, MCgf  on their common domain. 

The set of all tangent vectors to an n-dimensional manifold M at a point Mp  forms an 

n-dimensional vector space called the tangent space and is denoted by MTp . 

Definition 1.2.6: The disjoint union of all the tangent spaces MTp for all points Mp  

is a 2n-dimensional manifold  known as the tangent bundle of M  and denoted TM , 

                       MTTM
Mp

p


    

The tangent spaces at different points are, by definition, different vector spaces, which 

cannot have common elements. Hence, the union is a disjoint union. 

This is an example of a fibre bundle and is itself a 2n-dimensional manifold. 

Definition 1.2.7: Let M be an n-dimensional smooth manifold.  A vector field v on M is a  

section of tangent bundle TM , i.e., TMMv :  such that for all Mp , MTpv p)( . 

In other words, a vector field on M is a map which assigns to each point Mp a tangent 

vector MTpv p)( .  

Vector fields are traditionally denoted by boldface letters such as v, u or w or by capital 

letters such as X, Y, or Z.  

Definition 1.2.8. Let M be a smooth manifold. For each ,Mp we define the cotangent 

space at ,p denoted by MTp

* , to be the dual space to :MTp  

  .
** MTMT pp   
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Elements of MTp

* are called tangent covectors at p. 

Definition 1.2.9: The disjoint union 

                    
Mp

p MTMT


 **  

is called the cotangent bundle of M.        

Definition 1.2.10: The number and position of indices of tensor components reveal all 

the general information about tensors as operators. For example, if a tensor T  has 

components i k

j lT  

This immediately tells us that 

1) T  is a 4th rank tensor, 

2) T is 








2

2
type tensor, 

3) Its 1st and 3rd slots are for 1-forms whereas its 2nd and 4th slots are fo vectors. 

Definition 1.2.11: Let M  be a smooth manifold, then by a Riemannian metric 

tensor g on M  we mean a smooth assignments of an inner product to each tangent space 

of  M. This means that, for each RMTMTgMp ppp  :,  is symmetric, positive 

definite and  bilinear map. For instance, for any smooth vector fields X and Y on 

 M , ),( ppp YXgp   is a smooth function. 

It is 








0

2
tensor )(2

0 MTg   

In a coordinate frame we may write ji

ij dxdxgg   

The pair  gM ,  then will be called Riemannian manifold. 

Definition 1.2.12: By RS  and  we denote respectively the Ricci tensor and Riemannian 

curvature tensors of an n dimensional Riemannian manifold ),( gM . Then S  is defined 

by 

              



n

i

ii eYXeRgYXS
1

,),(),(  

Where  neee ,,........., 21 are orthonormal basis vector fields in TMZYXTM ,,   and, . 
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Definition 1.2.13: Let M  be a smooth manifold. An affine connection (Levi-Civita) 

connection  on M is a differential operator, sending smooth vector fields YX  and to a 

smooth vector field YX , which satisfies the following conditions: 

                              
 

   YfYfXfYYfY

ZYZYZZZ

XXfX

XXYXYX



 

)(       ,

,   ,

X

X
 

 for all smooth vector fields ZYX  and ,  and real valued functions Mf on  . 

 A vector field YX  is known as the covariant derivative of the vector field Y along     

X ( with respect to the affine connection  ).                                       

Definition 1.2.14: Let X and Y be vector fields on a space M. We define the Lie bracket 

sometimes known as the Jacobi-Lie bracket , commutator or just bracket)  YX ,  to be 

operator 

                               .],[ YXXYYX                                         

As it turns out, the bracket of two vector fields is again a vector field, meaning it is a first 

order differential operator. In components, letting 
i

i

x
XX




  and

j

j

x
YY




 , we have        

                       

YXXY

x
XY

x
Y

xx

X
Y

xx

Y
XYX

j

j

j

j

ji

j
i

ji

j
i































         

)()(X          

],[

 

Thus, ],[ YX  is the vector field 

 

Definition 1.2.15: The torsion tensor T  and the Riemannian curvature tensor R  of the 

affine connection   are the operators sending smooth vector fields ZYX  and , on M  to 

a smooth vector fields ZYXRYXT ),( and ),( respectively given by 

                             

 

 ZZZZYXR

YXXYYXT

YXXYYX

YX

,),(

,,),(





 

An affine connection   on M is said to be torsion-free if its torsion tensor is zero 

everywhere (so that   XYYX YX ,  for all smooth vector fields MYX on   and ). 
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Definition 1.2.16: A curve )(s is a geodesic if its tangent vectors )(s at each point are 

parallel. 

Definition 1.2.17: Let X be a nonempty set. A collection   of subsets of X is called a 

topology on X.  We call the pair ),( X a topological space. Often, we denote the 

topological space by X instead of ),( X . 

 

Definition 1.2.18: A mapping YXf :  between two topological spaces is called 

continuous if for every YU  open in Y the inverse image )(1 Uf   is open in X . We 

also say that f is a map. 

Definition 1.2.19: A homeomorphism YXf :  is continuous bijection whose inverse 

XYf  :1 is also continuous. 

Definition 1.2.20: A topological space X is said to be Hausdorff if for any two distinct 

points )(, yxXyx  there exists two disjoint open subsets )(, VUVU such that 

Ux and Vy . This is an example of a separation axiom since one thinks of the open 

sets VU ,  as “separating” the two points x and y . 

Definition 1.2.21: Let M be a topological Hausdorff space with a countable basis. M is 

called a topological manifold if there exists an Nn (natural number) and for every 

point Mp  an open neighborhood pU  of  p which is Homeomorphic to some open 

subset n

p RV  . The integer n  is called the dimension of M and we write nM  to denote 

that M  has dimension n . 

 

 

Definition 1.2.22: Let M  be a topological manifold. An open cover of M  is a collection 

of open (subsets) MU   whose union is M , i.e.  I
UM




  . 

A chart of M is a pair ),( U such that MU   is an open set in M and   is a 

homeomorphism from U  onto an open set in nR , i.e. nRU : . 

 An atlas for M  means a collection of charts  IU  ),(  such that   IU   is an 

open cover of M .  
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Definition 1.2.23: A manifold M  is called a differential manifold of class kC if there is 

an atlas of  M   IU  ),(  such that, for any I , , the composites 

                           nRUU 

  :1  

 is differentiable of class kC . 

 The atlas  IU  ),(  is called a differential atlas of class kC  on M . If instead, the 

atlas is of class C , then M  is said to have a differentiable(smooth) structure and is 

called a smooth(differential) manifold.  

Definition 1.2.24: Let  M  and N  be two smooth manifolds. A smooth map 

NMf : is called a diffeomorphism if f  is one-to-one and onto, and if a smooth 

inverse MNf  :1 exists. 

 

Definition 1.2.25: Let M  be an n dimensional contact manifold with contact form  , 

i.e.   .0
n

d  It is well known that a contact manifold admits a vector field  , called 

characteristic vector field, such that   1  and   1  for every field ).(MX   

Moreover, if M admits a Riemannian metric g and a tensor field   of type (1,1) such 

that 

                             

),(),(

)(),(

)(2

YXdYXg

XXg

XXX













 

then we say that  ),,, g  is a contact metric structure. 

Definition 1.2.26: A contact manifold is said to be Sasakian if 

                                  XYYXgYX )(),(    

 

 

 

In which case 

                               
YXXYYXR

XX

)()(),(

,








 

for all vector fields YX , on .M  



 9 

 

Definition 1.2.27: Let ),( gM n  be a contact Riemannian manifold with a contact form ,  

the associated vector field  , (1,1)-tensor field  ,and associated Riemannian metric g . 

If  is a Killing vector field, then nM  is called a K contact Riemannian manifold. 

A K contact Riemannian manifold is called Sasakian manifold if 

                             XYYXgYX )(),(    

holds, where   denotes the operator of covariant differentiation with respect to .g  

Definition 1.2.28: A )12( n -dimensional Riemannian manifold ),( gM is called 

an almost contact metric manifold if the following results hold: 

                               

   YgY

  g(X,X)YXgYXg

Y)η(X)g(X,Y)YXg(

Xg(X,ξ

X)η(XXX

XX ,

0       ),,(),(

(),

      ),()

0   1,)(   0,     ,)(2





















 

 

 

 

Definition 1.2.29: An almost contact metric manifold (structure) is called 

• a contact metric manifold if   

                 ),(),(),( YXgYXYXd    

         where   is called the fundamental two form of the manifold. 

• K-contact manifold if it is contact metric manifold and  is killing 

vector field 

• Sasakian manifold if and only if it is a contact manifold satisfying 

                          XYYXgYX )(),(    

• a normal contact structure if and only if 

                             ),(2,, YXdYX   

where   ),(, YX  denotes the Nijenhuis tensor field of   given by 

          YXYXYXYXYX  ,,,,,, 2   
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Definition 1.2.30:  An almost contact metric manifold M is a trans-Sasakian 

manifold if there exists two smooth functions   and   on M  such that 

                           XYYXgXYYXgYX  )(),()(),(   

for all vector fields X  and Y on .M  We say that the trans-Sasakian structure is of type 

  , . 

If  in an n dimensional trans-Sasakian manifold of type   , , then we have 

                            gradngrad 2(   

Definition 1.2.31: Given an almost contact metric manifold ),,,( gM  we say 

that M  is a generalized Sasakian space –form if the curvature tensor R  is given 

by  

         

  

 

 XZYYZXXZYgYZXgf

ZYXgXZYgYZXgf

YZXgXZYgfZYXR

)()()()()(),()(),(                  

),(2),(),(                  

),(,),(

3

2

1











 

where 321 ,, fandff  are differentiable functions on M  and ZYX ,, are vector 

fields on M. 

Definition 1.2.32: An almost contact metric manifold is called Kenmotsu manifold if  

                             

 

 

  )()(),(

)(

)(),(

YXYXgY

XX

XYYXgY

X

X

X













 

where   is Levi-Civita connection of  g  for any vector fields YX , on .M  

Definition 1.2.33: An n dimensional differentiable manifold M  is said to admit an 

almost  para-contact Riemannian structure  g,,,   such that 

                            

   

)()(),(),(

)(),(

0X   ,1  0,   ,)(2

YXYXgYXg

XXg

XXX













 

for all vector fields YX , on .M  

If  g,,,   satisfy the equations  

                             
  ,)()(2)(),(

X  ,0 X





YXXYYXg Y

d

X 


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then M  is called Para-Sasakian manifold or briefly, P-Sasakian manifold. 

A P-Sasakian manifold is called a special para-Sasakian manifold or briefly  

SP-Sasakian manifold if M admits 1-form  such that 

                                )()(),( YXYXg YηX   

for any vector fields YX , on .M  

Definition 1.2.34: An n dimensional differentiable manifold nM  is Lorentzian 

para-Sasakian (LP-Sasakian) manifold, if it admits a (1,1)-tensor field , vector 

field  , 1-form   and a Loretzian metric g , which satisfies 

    

   

 

X

YXXYYXgY

YXYXgYXg

XXg

XXX

X

X





















)()(2)(),(

)()(),(),(

)(),(

0X   ,1  0   ,)(2

 

for arbitrary vector fields X  and Y ; where 
X  denotes covariant differentiation in 

the direction of  X  with respect to  g. 

Definition 1.2.35: Let ),( gM n  be an n dimensional Riemannian manifold of class 
C  

with metric tensor g and let be the Levi-Civita connection on nM . A linear connection 


~

 on ),( gM n is said to be a semi-symmetric if the torsion T of the connection
~

 

satisfies 

                                    YXXYYXT )()(),(   , 

where   is a 1-form on nM with   as associated vector field, i.e., ),()(  XgX   for 

any differentiable vector field X  on nM . 

A semi-symmetric connection 
~

is called semi-symmetric metric connection if it further 

satisfies                         

                                    0
~

g . 

In an almost contact manifold, semi-symmetric metric connection is defined by 

identifying the 1-form   with the contact form  , and by setting 

                                YXXYYXT )()(),(    

  with   as the associated vector field giving )(),( XXg   . 
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Definition 1.2.36: An almost contact metric manifold is said to be  Einstein manifold 

if the Ricci tensor S satisfies the condition 

                                 ),()(),(),( YXbYXagYXS   

where a  and b are certain scalars. If b=0, it is called Einstein manifold. 

1.3. Statement of the problem. 

The aim of this study is to investigate 8W - Curvature Tensors on Semi-Riemannian and 

Generalized Sasakian space forms endowed with semi-symmetric metric connection. The 

motivation is to generate some fresh ideas with emphasis on producing new geometric 

results having physical meaning. 

1.4.1  Overall Objective 

The overall objective of the study is to generate some fresh ideas with emphasis on 

producing new geometric results having physical meaning. 

1.4.2    Specific Objectives 

The study shall be guided by the following specific objectives; 

i). Investigate the basic properties of various Riemannian and 

Sasakian spaces, 

ii). Investigate the results obtained and develop new results, 

iii). Find possible applications of the new results. 

 

1.5 Significance of the study 

This study will add to the existing applicable knowledge in mathematics, physics and 

chemistry in the analysis of curvature tensors to generate equations which describe 

the nature of forces existing in  

1. Black holes, that is regions of spacetime from which gravity prevents 

anything, including light, from escaping. 

2. Spinning planets and their shapes as they traverse their orbits in the space. 

3. Electrons and protons in an atom and the shapes of atomic orbitals.  
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4. Bermuda triangle i.e. region in the western part of the North Atlantic Ocean 

where a number of aircrafts and ships are said to have disappeared under 

mysterious circumstances. 

 

 

 

 

Discussion  

                    The phenomena above are as consequences of gravitational force.  

• More understanding of gravitational force can be enhanced by treating 

gravity as a curvature tensor and perform the necessary transformations. 

• Gravity could be treated as a spacetime curvature tensor because gravity 

affects all the bodies in the same way irrespective of the coordinate 

system just like any curvature tensor. 

• In the presence of mass density   the Newtonian potential   obeys 

Poissons equation. 

                                        G42  . 

The left hand side is a covariant derivative acting on a tensor which 

describes a curvature tensor in the spacetime while the right hand side 

represent matter distribution and G being a constant known as universal 

gravitational force. 

This is clearly shows that gravitational force is in itself a consequence of 

curvature tensor and should be treated as an outcome of one of the curvature 

tensors we have used in our study. 

From this brief hypothesis, it is apparent that the above phenomena can also 

be explained using covariant derivatives on curvature tensors. 
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CHAPTER 2 

2 Literature Review 

The idea of semi-symmetric linear connection on a differentiable manifold was 

introduced by Friedman and Schouten (1924). Then later, Hayden (1932) introduced the 

idea of metric connection with a torsion on a Riemannian manifold. A systematic study 

of semi-symmetric metric connection on a Riemannian manifold has been given by Yano 

(1970) and later studied by Sharafuddin and Hussain (1976), Amur K.S.and Pujar S.S. 

(1978), Bagewadi C.S. (1982), De U.C.et al (1997) and others. In their papers, the 

authors,De U.C. (1997) and Bagewadi C.S.et al (2003, 2006) have obtained results on the 

conservativeness of Projective, Pseudo projective, Conformal, Concircular, Quasi 

conformal curvature tensors on K-contact, Kenmotsu and trans-sasakian manifolds.  

In their study on Kenmotsu manifolds C.S. Bagewadi C. S. , Prakasha D.G, and 

Venkatesha (2007) established that if the projective curvature tensor of a Kenmotsu 

manifold nM  (n>2) admitting semi-symmetric metric connection  vanishes, then 

nM reduces to an Einstein manifold with constant scalar curvature )1(  nn . 

 In their paper (2008), Bagewadi Channabasappa et al, extended the conservativeness of 

Pseudo projective curvature tensor to K-contact and trans-Sasakian manifolds admitting 

semi-symmetric metric connection  

Ingalahalli G. and Bagewadi C. S. (2012) dealt with the study on conservative 

C-Bochner curvature tensor in K-contact and Kenmotsu manifolds admitting semi-

symmetric metric connection, and has shown that these manifolds are η-Einstein with 

respect to Levi-Civita connection.  

On the other hand, Bochner S. introduced a Kahler analogue of the Weyl conformal 

curvature tensor by purely formal considerations, which is now well known as the 

Bochner curvature tensor (1949). A geometric meaning of the Bochner curvature tensor 

is given by Blair D. in (1975). By using the Boothby-Wang's fibration (1958), 

Matsumoto M. and Chuman G. constructed C-Bochner curvature tensor (1969) from the 

Bochner curvature tensor. In (1991), Endo H. defined E-Bochner curvature tensor as an 
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extended C-Bochner curvature tensor and showed that a K-contact manifold with 

vanishing E-Bochner curvature tensor is a Sasakian manifold. 

These two important classes of contact manifolds; K-contact manifolds and Sasakian 

manifolds have been studied by many authors and several results established.  

Motivated by the findings of earlier authors, De U. C. and De A. (2012) studied on the 

projective curvature tensor on K-contact and proved that a projectively flat  

K-contact manifold is isometric to a unit sphere. 

As a generalization of locally symmetric manifolds, the notion of semisymmetry of 

Riemannian manifolds was introduced and first studied by Cartan (1926).  

De U. C. (1976) studied projective curvature tensors on K-contact and proved that a 

projectively semisymmetric K-contact is a Sasakian manifold. In a later study (2011), De 

U. C. and De A. proved that a projectively pseudosymmetric K-contact manifold and 

pseudoprojectively flat K-contact manifolds are Sasakian manifoldsrespectively. 

A  K-contact manifold is always a contact metric manifold, but the converse is not true in 

general. Pradip M. and DE U. C. (2013) studied on concircular curvature tensor on K-

contact manifolds and established that a  )12( n dimensional  concircularly flat K-

contact manifold ( 1n ) is Einstein manifold of a scalar curvature equal to )12(2 nn . In 

the same study, they proved that, a concircularly semisymmetric K-contact manifold of 

dimension )12( n , 1n , is a Sasakian manifold.  

Dwivedi M. K. and Kim J. (2011) studied on conharmonic curvature tensor in  

K-contact and Sasakian manifolds. They showed that a quasi-conharmonically flat K-

contact manifold of dimension )12( n  has a vanishing scalar curvature. They 

established that )12( n -dimensional quasi-projectively flat K-contact is an Einstein 

manifold while a quasi-conharmonically flat K-contact is not.  A quasi-conharmonically 

flat Sasakian manifold was shown to be  -Einstein though. 

 

Tanno (1988) studied Ricci symmetric  0  .. Sei K-contacts manifolds. Also later 

Zhen G. (1992) studied conformally symmetric  0  .. Cei  K-contact manifolds and 

proved that, if a Riemannian manifold is conformally symmetric, then the manifold 

satisfies the harmonic Weyl conformal curvature tensor. But, the converse is not true.  



 16 

Ahmet Y. and Erhan A. (2011) in their paper generalized the results of Tanno and Zhen 

by establishing that, if a K-contact manifold is of harmonic conformal curvature tensor, 

that is, 0divC , then the manifold is an Einstein manifold. 

 

Gray A. (1978) introduced two classes of Riemannian manifolds determined by the 

covariant derivatives of the Ricci tensor, the class A consisting of all Riemannian 

manifolds whose Ricci tensor S is a Codazzi tensor, that is, 

              .,, ZXSZYS YX   

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel, 

that is,  

                   0,,,  YXSZXSZYS ZYX
 

Ahmet Y. and Erhan A. (2011) in their study on K-contacts deduced that an  -Einstein 

K-contact manifold satisfied the cyclic parallel Ricci tensor. 

 

On the other hand in Pokhariyal(1982) defined a tensor field *W  on a Riemannian 

manifold as 

 ),(),(),(),(
)1(2

1
),,,(`),,,(`

* UYgZXSUXgZYS
n

UZYXRUZYXW 


   

 Where  UZYXWgUZYXW ,),(`),,,(`
**   and  UZYXRgUZYXR ,),(`),,,(`  such a 

tensor field   
*W  is known as m-projective curvature tensor. Later, Ojha (1986) defined 

and studied the properties of m-projective curvature tensor in Sasakian and K¨ahler 

manifolds. He also showed that it bridges the gap between the conformal curvature 

tensor, conharmonic curvature tensor, and concircular curvature tensor on one side and 

H-projective curvature tensor on the other. Recently m-projective curvature tensor has 

been studied by Chaubey and Ojha (2010), Singh et al. (2012), and many others. 

Motivated by the above studies, Singh R. N. and Shravan K. Pandey (2013), studied 

flatness and symmetry property of N(k)-contact metric manifolds regarding m-projective 

curvature tensor.  

The notion of a Lorentzian Para Sasakian manifold was introduced by  
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Matsumoto K. (1989). Mihai I. and Rosca R. (1992) defined the same notion 

independently and they obtained several results on this manifold. Also LP-Sasakian 

manifolds have been studied by Matsumoto and Mihai I. (1988), De U.C. (1999) and 

shaikh A. A. (2004). 

Taleshian A. and Asghari N. (2011), investigated the properties of the LP-Sasakian 

manifold equipped with projective curvature tensor. 

Generalized Sasakian-space-forms was defined by Alegre et al. (2004) as the almost 

contact metric manifold ),,,(12 gM n   whose curvature tensor R is given by 

                                332211 RfRfRfR   

where 321 ,, fff  are some differential functions on  M . 

Kim U. K.(2006) studied generalized Sasakian-space-forms and proved that if a 

generalized Sasakian-space-form ),,( 321 fffM of dimension greater than three is 

conformally flat and ξ is Killing, then it is locally symmetric. De and Sarkar (2010) 

 have studied generalized Sasakian space-forms regarding projective curvature tensor.  

Moreover, they proved that if ),,( 321 fffM is locally symmetric, then 31 ff   is constant. 

In the same study they established that, 

i) In an  recurrent generalized Sasakian space form, the 1-form A is closed, that 

is,        0   WAYA YW  

ii) A  )12( n dimensional generalized Sasakian space form ),,( 321 fffM  has 

 parallel Ricci tensor if and only if 321 32 ffnf   is a constant. 

 

Motivated by these findings Singh A. and Shyam K. (2017) studied on Semisymmetric 

metric connection on generalized Sasakian space forms  and proved that a )12( n -

dimensional generalized Sasakian space forms ),,( 321 fffM  with respect to 

semisymmetric metric connection is always a  conformally flat. On the same study, 

they established that a generalized Sasakian space form ),,( 321 fffM  whose curvature 

tensor of manifold is covariant constant with respect to the semi-symmetric metric 

connection and M, is recurrent with respect to the Levi-Civita. 
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Motivated by the studies of conformal curvature tensor in K-contact manifolds, and the 

studies of projective curvature tensor in K-contact,  Sasakian manifolds (2003)  and 

Lorentzian para-Sasakian manifolds, Ghosh S., DE. U. C., and Taleshian A. (2011), 

studied conharmonic curvature tensor in N(k)-contact metric manifolds. Later, DE. U. C.,  

Singh R. N., and Shravan K. Pandey (2012) studied flatness and symmetry property of 

generalized Sasakian-space-forms regarding conharmonic curvature tensor. They also 

studied and characterized generalized Sasakian-space-forms satisfying certain curvature 

conditions on conharmonic curvature tensor. Also studied were the conharmonically 

semisymmetric, conharmonically flat, ξ-conharmonically flat, and conharmonically 

recurrent generalized Sasakian-space-forms.  Also generalized Sasakian-space-forms 

satisfying C · S = 0 and C · R =0 have been studied. 

 

The notion of the quasi-conformal curvature tensor was given by Yano and Sawaki 

(1968). According to them a quasi-conformal curvature tensor C is defined by 

                          

 

 














YZXgXZYgb
n

a

n

r

QYZXgQXZYgYZXSXZYSbZYXaRZYXC

),(),(2
1

),(),(),(),(),(),(

 

where a and b are constants and R, S, Q and r are the Riemannian curvature tensor of type 

(1,3), the Ricci tensor of type (0,2), the Ricci operator defined by g(QX, Y ) = S(X, Y ) 

and the scalar curvature of the manifold respectively. 

It is known  that a conformally flat Sasakian manifold is of constant curvature and a Weyl 

semi-symmetric Sasakian manifold is locally isometric with the unit sphere S n (1). 

 

Gatti and Bagewadi (2003) have studied irrotational quasi-conformal curvature tensor in  

K-contact, Kenmotsu and trans-Sasakian manifolds and they have shown that these 

manifolds are Einsteinian. S. Bagewadi1, E. Girish Kumar ,and  Venkatesha (2005) in 

their paper extended these results to irrotational D-Conformal curvature tensor in K-

contact, Kenmotsu and trans-Sasakian manifolds.  
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 In their paper De U.C., Jae Bok Jun, and Abul Kalam Gazi (2008) have studied quasi-

conformally flat and quasi-conformally semi-symmetric Sasakian manifolds  and proved 

that a Sasakian manifold is quasi-conformally flat if and only if it is locally isometric 

with the unit sphere S n (1) .And that, a compact orientable quasi-conformally flat 

Sasakian manifold cannot admit a non-isometric conformal transformation. Finally,they  

have shown that a Sasakian manifold is quasi-conformally flat if and only if it is quasi-

conformally semi-symmetric. 

Blair, Koufogiorgos and Papantoniou (1995) introduced the class of contact metric 

manifolds 12 nM  with contact metric structures (φ,ξ,η,g),in which the curvature tensor 

 R satisfies the equation; 

        (M).YX, ,)()()()(),(   hYXhXYYXXYkYXR  

A contact Riemannian manifold belonging to this class is called a (k, μ)-contact manifold 

Here, ( ),k are real constants and 2h denotes the Lie derivative ( Lh 2 )in the 

direction of  . 

In this case we say that the characteristic vector field   belongs to the ( ),k -nullity 

distribution and the class of contact metric manifolds satisfying this condition are called 

( ),k -contact metric manifolds. The class of (k, μ)-contact metric manifolds encloses 

both Sasakian and non-Sasakian manifolds. 

In case the vector field  is Killing, this class of manifolds are called Sasakian manifolds. 

Before Boeckx (2000), two classes of non-Sasakian (k, μ)-contact metric manifolds were 

known. The first class consists of the unit tangent sphere bundles of spaces of constant 

curvature, equipped with their natural contact metric structure, and the second class 

contains all the three-dimensional unimodular Lie groups, except the commutative 

one, admitting the structure of a left invariant (k, μ)-contact metric manifold. A full 

classification of (k, μ)-contact metric manifolds was given by E. Boeckx (2000). 

Extending the result of Endo H. (1991) to a (k, μ))-manifold, Jeong-Sik Kim, Tripathi M. 

M., and Choi  J. (2005) proved that a (k, μ)-manifold with vanishing E-Bochner curvature 

tensor is a Sasakian manifold. They drew several interesting corollaries of this result. 

They classified non-Sasakian (k, μ)-manifolds with C-Bochner curvature tensor B 

satisfying B (ξ, X).S = 0, where S is the Ricci tensor. The N(k )-contact metric manifolds 
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M
12 n

, satisfying B (ξ ,X).R = 0 or  B (ξ, X).B = 0  were also  classified and studied by 

Tripathi M. M.Et al (2005). 

 

The (k, μ)-contact metric manifolds are invariant under D-homothetic transformations. 

Recently, the authors Ghosh A., Sharma R. and Cho J.T.,(2008) in their book, proved  

that a non-Sasakian contact metric manifold with η-parallel torsion tensor and sectional 

curvatures, of plane sections containing the Reeb vector field, different from 1 at some 

point, is a (k, μ)-contact manifold. In another recent paper (2008), Sharma R. showed  

that if a (k, μ)-contact metric manifold admits a nonzero holomorphically planer 

conformal vector field, then it is either Sasakian,or, locally isometric to E 3  or  

E 1n  S n  (4).  

Cho J.T. (2001) studied a conformally flat contact Riemannian (k, μ)-space and such a 

space with vanishing C-Bochner curvature tensor.   

 

In (2007), the authors studied extended pseudo projective curvature tensor on a contact 

metric manifold. Recently, quasi-conformal curvature tensor on a Sasakian manifold has 

been studied by De U.C., Jun J.B. and Gazi A.K. (2008).  

 DE U.C. and Sarkar A.  (2012) in their paper studied a quasi-conformally flat  

(k, μ)-contact metric manifold. Also studied is a (k, μ)-contact metric manifold with 

vanishing extended quasi-conformal curvature tensor (2010).  

 

The notion of Lorentzian para- contact manifold was introduced by Matsumoto K. 

(1989). The properties of Lorentzian para -contact manifolds and their different classes, 

viz LP-Sasakian and LSP-Sasakian manifolds, have been studied by several authors 

since then. In (2000), M. Tarafdar and A. Bhattacharya proved that a LP-Sasakian 

manifold with conformally flat and quasi-conformally flat curvature tensor is locally 

isometric with a unit sphere S n (1). Further, they obtained that a LP-Sasakian manifold 

with R(X, Y ).C = 0 is locally isometric with a unit sphere S n (1),where C is the 

conformal curvature tensor of type (1976, 1989) and R(X, Y ) denotes the derivation of 

the tensor algebra at each point of the tangent space. J. P. Singh (2008) proved that an  
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M-projectively flat Para-Sasakian manifold is an Einstein manifold. He has also shown 

that, if in an Einstein P-Sasakian manifold R(ξ,X).W∗ = 0 holds, then it is locally 

isometric with a unit sphere H n (1). Also, an n-dimensional η-Einstein P-Sasakian 

manifold satisfies  

W∗ (ξ,X).R = 0 if and only if either the manifold is locally isometric to the hyperbolic 

space H n (1) or the scalar curvature tensor r of the manifold is -n(n-1). LP-Sasakian 

manifolds have also studied by Matsumoto and Mihai (1988), Takahashi (1977), De, 

Matsumoto and Shaikh (1999), Prasad and Ojha (1994), Shaikh and De (2000), 

Venkatesha and Bagewadi (2008). 

In their paper, DE. U. C. and S. K. Chaubeys (2011) studied the properties of the m-

projective curvature tensor in LP-Sasakian, Einstein LP-Sasakian and η-Einstein LP-

Sasakian manifolds. 

Taleshian A.  and Asghari N. (2012) in their paper, investigated the properties of the P-

Sasakian manifold equipped with m-projective curvature tensor. An n -dimensional P-

Sasakian manifold is a said to be m-projectively flat if  P = 0, where P is the m-projective 

curvature tensor. 

 

A transformation of an n-dimensional Riemannian manifold M, which transforms every 

geodesic circle of M into a geodesic circle, is called a concircular transformation (1986), 

(1940). A concircular transformation is always a conformal transformation (1986). Blair 

D., Koufogiorgos T. and Papantoniou B. J. (1995) considered the (k, μ)-nullity condition 

on a contact metric manifold and  introduced the class of contact metric manifolds M 

with contact metric structures. Papantoniou B. J. (1993) and Perrone D. (1992) included 

the studies of contact metric manifolds satisfying R(X, ξ) . S = 0, where S is the Ricci 

tensor. Motivated by these studies, Tripathi M. M. and Kim (2004) continued this study  

and classified (k, μ)-manifolds with concircular curvature tensor Z and Ricci tensor S 

satisfying Z (ξ ,X) . S = 0.  

Tripathi M. M.and et al. (2011) introduced the τ -tensor which in particular cases reduces 

to known curvatures like conformal, concircular and projective curvature tensors and 

some recently introduced curvature tensors like M-projective curvature tensor,  
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Wi-curvature tensor (i = 0, ..., 9) and W *

j -curvature tensors(j = 0, 1). Tripathi M. M.and 

 et al., (2011), (2012) studied τ -curvature tensor in K-contact, Sasakian and Semi-

Riemannian manifolds. Blair D.E., Koufogiogors T. and Papantoniou B.J. (1995) studied 

the (k, μ)-nullity conditions on a contact metric manifold and gave several examples.  

The study of (k, μ)-contact manifolds is interesting as it contains both Sasakian and non-

Sasakian manifolds. 

 

Motivated by the above studies, Nagaraja H. G. and Somashekhara G. (2012) in their 

paper studied τ- curvature tensor in (k, μ) manifold. Also studied were τ -flat and a 

 ξ-τ - flat (k, μ)-contact metric manifolds and obtaining  conditions for τ -flat (k, μ)-

contact metric manifold to be  -symmetric. They considered in their study,  - τ -

symmetric and  - τ - Ricci recurrent (k, μ)-contact metric manifolds and (k, μ)-contact 

metric manifolds satisfying semi-symmetry condition τ .S = 0.  

Motivated by these studies, Tripathi M. M. and P. Gupta (2011) studied the  -curvature 

tensor in K-contact and Sasakian manifolds. In particular, some properties of quasi-τ- 

flat, ξ-τ- flat and φ-τ- flat K-contact and Sasakian manifolds were obtained. They gave 

the necessary and sufficient condition for the K-contact manifold to be ξ-τ- flat under 

some algebraic condition. Among others, they proved that a compact φ-τ- flat K-contact 

manifold with regular contact vector field, under an algebraic condition, is a principal  

S1-bundle over an almost Kaehler space of constant holomorphic sectional curvature.  

 

The notion of local symmetry of Riemannian manifolds have been weakened by many 

authors in several ways to the different extent. As a weaker version of local symmetry, 

Takahashi (1977), introduced the notion of locally  -symmetry on sasakian manifolds. 

In respect of contact Geometry, the notion of  -symmetry was introduced and studied  

by Boeckx, Buecken and Vanhecke (1999), with several examples. De (2009) studied  

the notion of  -symmetry with several examples for Kenmotsu manifolds. Adati and 

Matsumoto (1977), defined Para-sasakian manifold and special Para-Sasakian manifolds 

(2008), which are special classes of an almost para contact manifold introduced by sato 

(1976). 
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Taleshian A. and Asghari N. (2012) studied Ricci-semi symmetric,  -Ricci semi-

symmetric and   -symmetric Lorentzian α-Sasakian manifolds. They Also studied a 

Lorentzian α-Sasakian manifold satisfying S(X, ξ).R=0. 

Pokhariyal and Mishra (1970) have introduced new tensor fields, called W2 –curvature 

tensor as  

              QXZYgQYZXg
n

ZYXRZYXW ),(),(
1

1
),(),(2 


  

 

in a Riemannian manifold, and studied their properties. Further, Pokhariyal (1982) has 

studied some properties of these tensor fields in a Sasakian manifold. Matsumoto, Ianus 

and Mihai (1986) have studied P-Sasakian manifolds admitting W2 and E-tensor fields. 

On the other hand, Ahmet Yildiz and De U. C. (2010) and Venkate-sha, Bagewadi, 

 C. S. and Pradeep Kumar K. T. (2011), have studied these tensor fields in Kenmotsu  

and Lorentzian para-Sasakian manifolds respectively. Pokhariyal (2001) studied     

W2-curvature tensor, its associated symmetric and skew-symmetric tensors in an  

Einstein Sasakian manifold. Motivated by these studies, De U.C. and Sarkar A. 

studied and  generalized some results of Matsumoto, Ianus and Mihai (1986) to prove 

that a P-Sasakian manifold is Ricci-semi-symmetric if and only if it is an Einstein 

manifold. 

 

De. U. C.and Sarkar A. (2009) made a detailed study on P-Sasakian admitting 

 W 2 -curvature tenor and established that W 2 -symmetric P-Sasakian and a manifold is of 

constant curvature, hence it is an SP-Sasakian manifold same case with W
2

-recurrent P-

Sasakian.  

 Moindi S.K., Pokhariyal G.P. and Nzimbi B.M. (2010) studied W 2 -curvature tensor 

 and E- curvature tensor and proved the theorem for W 2 - recurrent P-Sasakian manifolds.  

Mohit Kumar (2010), carried out the study of W2 -curvature tensor in N(k) –quasi 

Einstein manifolds.  Pradeep Kumar (2012) in his paper made a detailed study on 

Lorentzian α-Sasakian manifolds satisfying certain conditions on the W 2 - curvature 

tensor.  
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Fu¨ sun O¨ Zen Zengin (2011), studied the properties of flat spacetimes under some 

conditions regarding the 2W curvature tensor. Several results were obtained on the 

geometrical symmetries of this curvature tensor. It has been shown that in a spacetime 

with 2W curvature tensor filled with a perfect fluid, the energy momentum tensor 

satisfying the Einstein’s equations with a cosmological constant is a quadratic conformal 

Killing tensor. It has also been proved that a necessary and sufficient condition for the 

energy momentum tensor to be a quadratic Killing tensor is that the scalar curvature of 

this space must be constant. In a radiactive perfect fluid, it has been proved that the 

sectional curvature is constant.  

Mallick S. and De C. (2014) studied spacetime adimmiting 
2W  -curvature tensor and 

established that a 
2W -flat spacetime is conformally flat and hence is of Petrov type O.. 

They also proved that if the perfect fluid space time with vanishing 
2W -curvature tensor 

obeys Einsteins field equation without cosmological constant, then the spacetime has a 

vanishing acceleration vector and expansion scalar and hence the perfect fluid behaves 

like a cosmological constant. In the same they proved that, in a perfect fluid spacetime of 

constant scalar curvature with divergence-free 
2W -curvature tensor, the energy-

momentum tensor is of Codazzi type and the possible local cosmological structure of 

such a spacetime is of type I, D, or O. 

Pokhariyal G. P. in 1982 gave a new tensor curvature tensor known as 5W -Curvature 

tensor as 

                 YZXSQYZXg
n

ZYXRZYXW ),(),(
1

1
),(),(5 


  

Prakasha D. G., Vasant C. And Kakasab Mirji (2016) established that a 5W -flat 

generalized Sasakian -space-form is conformally flat and that it is 5W - semi-

symmetric if and only if it is flatW 5 . Several other authors have made intense study of 

Riemannian manifolds admitting 5W -curvature tensor.  
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CHAPTER 3 

3 A STUDY OF 
8

W CURVATURE TENSOR IN K-

CONTACT RIEMANNIAN MANIFOLD 

3.1   Introduction. 

The study is on 8W curvature tensor on K-contact manifold. The following 

geometrical properties of 8W curvature tensor are being investigated; flatness, 

semi-symmetric, symmetric and recurrence on the K-contact manifold.  

 In section 3.3, the flatness property is being investigated and observed that a  

 8W  -flat K-contact Riemannian manifold is a flat manifold. Section 3.4 

investigates the semisymmetric, section 3.5 the symmetric and section 3.6 the 

recurrence properties of the curvature tensor on K-contact manifold. The results 

in the respective sections show that a 8W semisymmetric, and symmetric are 

8W flat manifolds while 8W flat and recurrent manifold is a flat manifold. 

 

3.2  Preliminaries 

Let ),,,,( gM   be )12(  mn -dimensional almost contact Riemannian  

manifold consisting of a (1,1) tensor field  , a vector field  , a 1-form  and a 

Riemannian metric g .  

Then the following results hold 

       )(2 XXX  , 1)(  , 0 ,      0)( X  ,               (3.2.1)              

             

   

         )()(),(),( XYYXgYXg                                                       (3.2.2)          

  where YX  and ,  are arbitrary vector fields on M 

  If moreover, 

            
XYgXg

YXgYXg

XXY 







),(),(

),(),(
                                     (3.2.3)          

  then M is a K-contact Riemannian manifold. 

  Where denotes the Riemannian connection of g.  

  In a K-contact manifold the following relations hold: 

          XX                                                                                       (3.2.4)             

           )()1(),( XnXS                                                                      (3.2.5)          

          YXXYYXR )()(),(                                                             (3.2.6)          

The following statements are true about K-contact manifold. If in an almost contact 

manifold nM , 
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i)   XX                                                                                          (3.2.7)         

         then nM  is a K-contact manifold. 

ii)     ),(),( YgXg XY                                                                    (3.2.8) 

         then nM  is a K-contact manifold .             

iii)    ),(),( YXgYXg                                                                           (3.2.9)            

        then nM  is a K-contact manifold  .            

iv) is both contact manifold  and   is a Killing vector,  then nM  is a      

      K-contact   manifold. 

 

 

  

3.3  W8-curvature tensor in K-contact Riemannian manifold 

Pokhariyal (1982) gave definition of 8W curvature tensor as 

         XZYSZYXS
n

ZYXRZYXW ),(),(
1

1
),(),(8 


                             (3.3.1)       

Definition 3.3.1: A K-contact Riemannian manifold nM  is said to be flat if the 

Riemannian curvature tensor vanishes identically, i.e. 0),( ZYXR  

Definition 3.3 .2: A K-contact Riemannian manifold nM  is said to be 8W  -flat if the 

8W curvature tensor vanishes identically, i.e. 0),(8 ZYXW  

Theorem 3.3.3: A 8W  -flat K-contact Riemannian manifold is a flat manifold. 

Proof; If 8W  -flat 

If our hypothesis is true, then 08 W   in  

 XZYSZYXS
n

ZYXRZYXW ),(),(
1

1
),(),(8 


   

Expanding (3.3.1) with respect to variable U  

 ),(),(),(),(
1

1
),,,(),,,(8 UXgZYSUZgYXS

n
UZYXRUZYXW 


         (3.3.2)    

Therefore, if K-contact manifold M  is  8W flat then, we have, 

 ),(),(),(),(
1

1
),,,( UZgYXSUXgZYS

n
UZYXR 


                             (3.3.3)               

Where, ),()1(),(),( YXgnYXRicYXS    
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             Then, using ),()1(),( YXgnYXS   in (3.3.3) we get,     

 ),(),(),(),(
1

1
),,,( UZgYXgUXgZYg

n

n
UZYXR 




  

                                         ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR        (3.3.4)                            

             But, in K-contact manifold, we have  

             ),(),(),(),(),,,( UYgZXgUXgZYgUZYXR   

 Referring to (3.3.4) we get   

                ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR   
 Thus, for this to hold, we must have  

                   0),,,(  UZYXR  since,    

               ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR                                  (3.3.5)  

              by definition. 

             This completes the theorem. 

 

             Corollary 3.3.4: A 8W flat K-contact manifold is neither Einstein nor  

              Einstein Manifold 

         Proof:                                         

          From definition 1.2.36, a manifold is said to be Einstein manifold if 0a and    

          0b   in the given Ricci tensor relation  

                               ),()(),(),( YXbYXagYXS   

           and Einstein if both oe none zera and b ar . 

          From the results of (3.3.5) it is clear that Riemannian curvature tensor R is equal to 

           zero and consequently the Ricci tensor S is also equal to zero. 

          This therefore, means both e are zeroa and b ar hence, it’s neither Einstein nor   

            Einstein . 

 

3.4 W8-Semi-symmetric K-contact Riemannian manifold  

 De and Guha (1992) gave the definition of semisymmetric as  

                           0),(),( VUZRYXR                                                                    (3.4.1)                              

Definition 3.4.1:  A K-contact manifold is said to be 8W semisymmetric if   

             0),(),( 8 VUZWYXR                                                                      (3.4.2)                              

Theorem 3.4.2: A 8W semisymmetric K-contact manifold is a 8W flat 

manifold.  

 

 

Proof: 

If the K-Contact manifold is a 8W semisymmetric then 0),(),( 8 VUZWYXR  
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    0,),,,(,),,,(

0),,,(),,,(

0)),(,()),(,(

0)),(,()),(,(),(),(

88

88

88

888









 YVUZXWgXVUZYWg

YVUZXWXVUZYW

YVUZWXgXVUZWYg

YVUZWXgXVUZWYgVUZWYXR

 

 

           0)(),,,()(),,,( 88  YVUZXWXVUZYW                           (3.4.3) 

     Note, this is only possible if 0),,,(8  VUZYW  and 0),,,(8  VUZXW  since   

     0)( X  and 0)( Y  and thus follows the theorem.  

 

  Corollary 3.4.3: A 8W semisymmetric K-contact manifold is neither  

  Einstein nor  -Einstein manifold. 

 

          Proof:                                         

          From definition 1.2.36, a manifold is said to be Einstein manifold if 0a and    

          0b   in the given Ricci tensor relation  

                               ),()(),(),( YXbYXagYXS   

           and Einstein if both oe none zera and b ar . 

          From the results of (3.3.5) it is clear that Riemannian curvature tensor R is equal to 

           zero and consequently the Ricci tensor S is also equal to zero. 

          This therefore, means both e are zeroa and b ar hence, it’s neither Einstein nor   

            Einstein . 

 

 

 

3.5 W8-symmetric K-Contact Riemannian manifold   

 Chaki and Gupta (1963) gave the definition of a conformally symmetric manifold 

                      

  as 0 CU  which is said to be  conformally symmetric (where C is conformal 

  curvature tensor). 

Definition 3.5.1: A K-contact Riemannian manifold M is said to be  

 8W symmetric if  

                                0),(8  ZYXWU                                                         (3.5.1)                   

Theorem 3.5.2: A 8W symmetric and a 8W flat K-contact Riemannian 

manifold is a flat-manifold. 
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Proof: If the K-contact space is a 8W symmetric and 8W semisymmetric   then 

it follows                 

VYXRUZW

VUYXRZWVUZYXRWVUZWYXR

),(),(                          

)),(,(),),(()),(),(0

8

888




    (3.5.2) 

          Computing each of the above four terms separately yields 

                                                  

),,,(),,,(                                      

)),(,()),(,()),(),(       

88

888

YVUZXWXVUZYW

YVUZWXgXVUZWYgVUZWYXR





          (3.5.3)   

          which yields                                            

   

   

   )(),,,()(),,,(                                      

),,,(),,,(                                       

),),,,(),),,,(,),(,,(  

88

88

888

YVUZXWXVUZYW

YVUZXWXVUZYW

YVUZXWXVUZYWgVUZWYXRg













 

          Again,  

 ZYXRVUSVUZYXRS
n

VUZYXRRVUZYXRW ),(),(),),((
1

1
),),((),),((           8 




                             ZYXRVUgVUZYXRg
n

n
VUZYXRR ),(),(),),((

1

1
),),(( 




      (3.5.4)                                     

                                    ),(),(),),((),),((                             ZYXRVUgVUZYXRgVUZYXRR 

 

 

   

                                                       )(),,,()(),,,(                                   

,),,,(,),,,(),,,),((              

have     wehence,             

),,,(),,,(                                    

),),((),,,(                                    

),(),(),,,(),),((),(),(                                    

8

UVZYXRVUZYXR

UVZYXRgVUZYXRgVUZYXRW

UVZYXRVUZYXR

UVZYXRgVUZYXR

ZYXRVUgVUZYXRUVZYXRgZYXRVUg















 

      Also, 

 

 

     

                                                                                     ),,,(),()(),,,(                                    

,),(),(,),,,(,)),(,(g           

),,,(),(),(                                    

)),(,(),(),(                                    

),),(()),(,(),(),(),),((                                    

),),(()),(,(
1

1
)),(,(  )),(,(     

8

8





UYXRVZgVZUYXR

UYXRVZggVUYXZRgVUYXRZW

VZUYXRUYXRVZg

VUYXRZgUYXRVZg

ZVUYXRgVUYXRZgUYXRVZgZVUYXRg

ZVUYXRSVUYXRZS
n

VUYXRZRVUYXRZW
















                                                                                                                                   (3.5.5)                                                                                                                                         
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 

 

     

                                                )(),,,(),,,(),(                                      

,),,,(,),(),(,),(),(         

),,,(),(),(                            

)),(,(),(),(                            

)),(,(),(),()),(,()),(,(                            

)),(,(),(),(
1

1
),(),(),(),( 

       have  wehence, 

8

8

UZVYXRVYXRUZg

UVYXZRgVYXRUZggVYXRUZWg

UZVYXRVYXRUZg

UVYXRZgVYXRUZg

ZVYXRUgVYXRUZgUVYXRZgZVYXRUg

ZVYXRUSVYXRUZS
n

VYXRUZRVYXRUZW




















                                                                                                                                   (3.5.6) 

Next, we put together (3.5.3), (3.5.4), (3.5.5) and (3.5.6) to have 

               

0})(),,,(),,,(),(                       

),,,(),()(),,,(                    

 )(),,,()(),,,({                 

 )(),,,()(),,,( 88









UZVYXRVYXRUZg

UYXRVZgVZUYXR

UVZYXRVUZYXR

YVUZXWXVUZYW









              (3.5.7)              

Terms which are coefficients of )(V and )(U cancel out since R   is skew-

symmetric with respect to the last two variables. Hence, (4.5.7) reduces to 

0),,,(),(

),,,(),( )(),,,()(),,,( 88









VYXRUZg

UYXRVZgYVUZXWXVUZYW
             (3.5.8)                     

but it is a 8W flat manifold, hence 08 


W   

Therefore (3.5.8) reduces to  

0),,,(),(),,,(),(   VYXRUZgUYXRVZg                                       (3.5.9)                   

But in (3.5.9) since,  

     
0),(),(  VZgUZg

                                                           

The above equation (3.5.9) reduces to 

                         0R                                                                                 (3.5.10)                    

Thus, follows the theorem. 

 

3.6  A W8-Recurrent K-contact Riemannian manifold. 

Definition 3. 6.1: A K-contact Riemannian manifold is said to be recurrent if  

   ),()(),(  88 ZYXWUBZYXWU                                                            (3.6.1)             

                   where  is a non-zero 1-form.  

Theorem: 3.6.2: A 8W -recurrent and 8W -flat manifold is a flat manifold. 

Proof; 

We have 

       ),()(),(  88 ZYXWUBZYXWU   where 0)( UB                             (3.6.2)             

 but, if                 

                             0),(8 ZYXW  
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Then, (3.6.2) by definition becomes 

 ),(),(),(),(
1

1
),,,(0 UXgZYSUZgYXS

n
UZYXR 


                      (3.6.3)                      

 ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR                                     (3.6.4)                     

But, for a K-contact manifold  

 ),(),(),(),(),,,( UYgZXgUXgZYgUZYXR                                      (3.6.5)     

And this can only be true if and only if (3.6.4) is   

          0),,,(  UZYXR                                                                                (3.6.6) 

Hence, follows the theorem. 
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 CHAPTER 4 

4 A STUDY OF 
8

W -CURVATURE TENSOR IN SASAKIAN        

MANIFOLD 

4.1  Introduction. 

The study in this paper is on 8W curvature tensor on Sasakian manifold. The 

following geometrical properties of 8W curvature tensor are being investigated; 

flatness, semi-symmetric, symmetric and recurrence on the Sasakian manifold.  

 In section 4.3, the flatness property is being investigated and is being observed 

that, a 8W  -flat Sasakian manifold is a flat manifold. Section 4.4 investigates the 

semisymmetric, section 4.5 the symmetric and section 4.6 the recurrence 

properties of the curvature tensor on Sasakian manifold. The results in the 

respective sections show that a 8W semisymmetric, and symmetric are 

8W flat manifolds while 8W  recurrent manifold (under some set conditions) 

is a symmetric and semisymmetric manifold. 

 

4.2     Preliminaries 

Let ),,,,( gATFM  be )12( n -dimensional almost contact metric manifold 

consisting of a (1, 1) tensor field F , a vector field T , a 1-form A and a 

Riemannian metric g .  

Then  

  TXAXX )( , 1)( TA , 0T ,      0)( XA  ,  )(),( TFTXFX
defdef

        (4.2.1)  

                (Pokhariyal (1988)) 

             )()(),(),( YAXAYXgYXg                                                                (4.2.2)     

 From (4.2.1) and (4.2.2) we have     

             ),(),( YXgYXg    and )(),( XATXg                                               (4.2.3)    

            Where YX  and ,  are arbitrary vector fields on M  

 An almost contact metric manifold is a contact metric manifold if  

),(),( YXgYXdA   and an almost contact metric manifold is a K-Contact 

manifold if XTX    , where   is Levi-Civita connection. An almost contact 

metric manifold is a Sasakian manifold    if    XYATYXgYFX )(),(   

A  K-contact manifold is always contact metric manifold, but the converse is true 

if 0FL   that is, if the Lie derivative of F  in the characteristic direction   

vanishes. 

A Sasakian manifold is a K-contact but the converse is only true if dimension is 3.  

A contact metric manifold is Sasakian if and only if 
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                        YXAXYATYXR )()(),(                                             (4.2.4)  

             

  In Sasakian manifold ),,,,( gATFM , we easily get 

 

                          XYATYXgYXTR )(),(),(                                      (4.2.5)     

   

   In generally, in  12 n -dimensional Sasakian manifold with the structure   

                gATF ,,, , we have  

                  
                                   ),(),(),(),(                       

),),(),((                       

),),((),,,(

UYgZXgUXgZYg

UYZXgXZYgg

UZYXRgUZYXR







(4.2.6) 

            

                 where R is the Riemannian curvature tensor and rank(F)= 1n .  

 

 

 

4.3    W8-Curvature tensor in Sasakian manifold  

Pokhariyal (1982) gave the definition of 8W Curvature tensor as      

  ,),(),(
1

1
),(),(8 XZYSZYXS

n
ZYXRZYXW 


                    (4.3.1) 

            Where ),(),()1(),(),( YXRicYXgnYQXgYXS  , and Q is the Ricci-

operator, that is, the linear endomorphism of a tangent space at each of its points  

              Or equivalently,  

               ),(),(),(),(
1

1
),,,(),,,(8 UXgZYSUZgYXS

n
UZYXRUZYXW 


  

   

Definition 4.3.1: A Sasakian manifold M  is said to be flat if the Riemannian 

curvature tensor vanishes identically i.e.   0),( ZYXR  

Definition 4.3.2: A Sasakian manifold M  is said to be 8W flat if 

8W curvature tensor vanishes identically i.e.  0),(8 ZYXW  

Theorem 4.3.3.  A 8W flat Sasakian manifold is a flat manifold.  

 

Proof:  

If our hypothesis is true, then 08 W   in  

 XZYSZYXS
n

ZYXRZYXW ),(),(
1

1
),(),(8 


   

Or equivalently, 

 ),(),(),(),(
1

1
),,,(),,,(8 UXgZYSUZgYXS

n
UZYXRUZYXW 


  
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Therefore, if Sasakian manifold M  is  8W flat then, we have, 

 ),(),(),(),(
1

1
),,,(0 UXgZYSUZgYXS

n
UZYXR 


                   (4.3.2)    

or, 

            ),(),(),(),(
1

1
),,,( UZgYXSUXgZYS

n
UZYXR 


  

Where, ),()1(),(),( YXgnYXRicYXS    

             Then, using  

                         ),()1(),( YXgnYXS   

          In equation (4.3.2), we get 

       

 

or 

                  ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR                          (4.3.3)           

             But, in Sasakian manifold, we have  

             ),(),(),(),(),,,( UYgZXgUXgZYgUZYXR   

 From the computations, we get   

                ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR   
 Thus, for this to hold, we must have  

                   0),,,(  UZYXR  since,    

 ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR   

             Thus, follows the theorem.   

4.4      W8-Semi-symmetric Sasakian manifold  

 De and Guha (1992) gave the definition of semisymmetric as 
0),(),( VUZRYXR  

Definition 4.4.1:  A Sasakian manifold is said to be 8W semisymmetric if    

                     0),(),( 8 VUZWYXR                                                      (4.4.1)                   

Theorem 4.4.2: A 8W semisymmetric   Sasakian manifold is a 8W flat 

manifold.  

Proof:  

If the Sasakian space is a 8W semisymmetric then 0),(),( 8 VUZWYXR  

0)),(,()),(,(

0)),(,()),(,(),(),(

88

888





YVUZWXgXVUZWYg

YVUZWXgXVUZWYgVUZWYXR
 

                      
    0,),,,(,),,,(

0),,,(),,,(

88

88





TYVUZXWgTXVUZYWg

YVUZXWXVUZYW
   

                      0)(),,,()(),,,( 88  YAVUZXWXAVUZYW                                  (4.4.2)    

        But since 0)( XA  and 0)( YA , then it follows that 0),,,(8  VUZYW  and      

                         0),,,(8  VUZXW  

 ),(),(),(),(
1

1
),,,( UZgYXgUXgZYg

n

n
UZYXR 





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Hence, the theorem. 

 

4.5       W8-symmetric Sasakian manifold   

          Chaki and Gupta (1963) gave the definition of a conformally symmetric manifold 

           as,  

                 0 CU   

          (where C is conformal curvature tensor). 

Definition 4.5.1: A Sasakian manifold M is said to be 8W symmetric if  

                                .0),,(),( 88  ZYXUWZYXWU                                      (4.5.1)   

 Theorem 4.5.2: A 8W symmetric and 8W semisymmetric Sasakian manifold  

                           is a flat manifold. 

Proof:  

If the Sasakian space is a 8W symmetric then it follows                

.0),(),(                          

)),(,(),),(()),(),(),(

8

8888





VYXRUZW

VUYXRZWVUZYXRWVUZWYXRZYXWU
 

                                                                                                                        (4.5.2) 

          Computing each of the above four terms and subjecting them to the same  

         conditions equivalently  yields, 

            

                                                  

),,,(),,,(                                      

)),(,()),(,()),(),(       

88

888

YVUZXWXVUZYW

YVUZWXgXVUZWYgVUZWYXR





             (4.5.3)                                            

   

   

  . )(),,,()(),,,(                                      

),,,(),,,(                                       

),),,,(),),,,(,),(,,(  

88

88

888

YAVUZXWXAVUZYW

YVUZXWAXVUZYWA

TYVUZXWTXVUZYWgTVUZWYXRg







 

          where ),),((),,,( UZYXRgUZYXR   and   

              ).(),()(),()),((,),( YAZXgXAZYgZYXRATZYXRg    

                 

 

Again,  

 ZYXRVUSVUZYXRS
n

VUZYXRRVUZYXRW ),(),(),),((
1

1
),),((),),((           8 




 

                        ZYXRVUgVUZYXRg
n

n
VUZYXRR ),(),(),),((

1

1
),),(( 




           (4.5.4)                                          

                                    .),(),(),),((),),((                             ZYXRVUgVUZYXRgVUZYXRR 
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 

   

                                                       ).(),,,()(),,,(                                   

,),,,(,),,,(),,,),((              

),,,(),,,(                                    

),),((),,,(                                    

),(),(),,,(),),((),(),(                                    

8

UAVZYXRVAUZYXR

TUVZYXRgTVUZYXRgTVUZYXRW

UVZYXRVUZYXR

UVZYXRgVUZYXR

ZYXRVUgVUZYXRUVZYXRgZYXRVUg











 

      Also, 

 

 

     

                                                                                     ).,,,(),()(),,,(                                    

,),(),(,),,,(,)),(,(g     

.),,,(),(),(                                    

)),(,(),(),(                                    

),),(()),(,(),(),(),),((                                    

),),(()),(,(
1

1
)),(,(  )),(,(     

8

8

TUYXRVZgVAZUYXR

TUYXRVZggTVUYXZRgTVUYXRZW

VZUYXRUYXRVZg

VUYXRZgUYXRVZg

ZVUYXRgVUYXRZgUYXRVZgZVUYXRg

ZVUYXRSVUYXRZS
n

VUYXRZRVUYXRZW
















                                                                                                                                   (4.5.5)                                                                                                                                         

 

 

     

                                               .)(),,,(),,,(),(                                      

,),,,(,),(),(,),(),(         

.),,,(),(),(                            

)),(,(),(),(                            

)),(,(),(),()),(,()),(,(                            

)),(,(),(),(
1

1
),(),(),(),(         

8

8

UAZVYXRTVYXRUZg

TUVYXZRgTVYXRUZggTVYXRUZWg

UZVYXRVYXRUZg

UVYXRZgVYXRUZg

ZVYXRUgVYXRUZgUVYXRZgZVYXRUg

ZVYXRUSVYXRUZS
n

VYXRUZRVYXRUZW
















                                                                                                                                   (4.5.6) 

Next, we put together (4.5.3), 4.5.4), (4.5.5) and (4.5.6) to have 

0.})(),,,(),,,(),(                       

),,,(),()(),,,(                    

 )(),,,()(),,,({                 

 )(),,,()(),,,( 88









UAZVYXRTVYXRUZg

TUYXRVZgVAZUYXR

UAVZYXRVAUZYXR

YAVUZXWXAVUZYW

                        (4.5.7)              

Terms which are coefficients of )(VA and )(UA cancel out since R   is skew-

symmetric with respect to the last two variables. Hence, (4.5.7) reduces to 

.0),,,(),(

),,,(),( )(),,,()(),,,( 88





TVYXRUZg

TUYXRVZgYAVUZXWXAVUZYW
          (4.5.8)          

But since 0),,,(8  VUZYWX  and   

0),,,(0),(),(  TUYXRVZgUZg . 

Thus, follows the theorem. 

 

Corollary 4.5.3:  A 8W symmetric Sasakian manifold is always 

8W semisymmetric Sasakian manifold. 
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That is, for 0),,,(8  VUZYWX   0),(),( 8 VUZWYXR  

 

4.6      W8-Recurrent Sasakian Manifold. 

            We study some of the geometrical properties of 8W -curvature tensor on a 8W -

recurrent Sasakian manifold M . From (Adati and Miyazawa (1967), DC and 

Guha (1992), we have 

                                ),()(),(  88 ZYXWUBZYXWU                                 (4.6.1)                   

             where  is a non-zero 1-form.  

             If we consider a Sasakian manifold M which is 8W -recurrent, then we have   

Pokhariyal (1988) 

                  ),()(),(                            88 ZYXWUBZYXWU                    (4.6.2) 

                                                

              where  is a non-zero 1-form and 8W -curvature tensor is given by 

             

 

 
 

YZXgZYXg

XZYgZYXgYZXgXZYg

XZYgZYXgZYXR

XZYSZYXS
n

ZYXRZYXW

),(),(                  

),(),(),(),(                  

),(),(),(                  

),(),(
1

1
),(),(8












  

                  and hence, 

                         TYZXggTZYXggTZYXWg ,),(,),(,),(8           (4.6.3)           

     or 

                  ),()(),()(),,,(8 ZXgYAYXgZATZYXW   

                 Note, 0),,,(8  TZYXW  if and only if  0),()(),()(  ZXgYAYXgZA  

 

 

 

 

Theorem 4.6.1:  A 8W -Recurrent Sasakian Manifold with VUZWYXR ),(),( 8 =0 and 

 0),()(),()(  ZXgYAYXgZA  is a 8W -Symmetric and a semisymmetric space 

Proof:  From (4.6.1), we have  

 ),()(),( 88 ZYXWUBZYXWU   

 
VYXRUZWVUYXRZW

VUZYXRWVUZWYXRVUZWX

),(),()),(,(                             

),),((),(),(),(

88

888




                   (4.6.4)                 

But, we are given 0),(),( 8 VUZWYXR  (semisymmetric space). 

This implies that, we are left to show that the relation is symmetric under the 

given conditions. 

Therefore, (4.6.4) becomes  
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VYXRUZW

VUYXRZWVUZYXRW

ZYXWUBZYXWU

),(),(                           

)),(,(),),((                         

),()(),(

8

88

88







                (4.6.5) 

Recall from (4.6.3) 

YZXgZYXgZYXW ),(),(),(8   

Hence, expanding each term of (4.6.5) we get 

UVZYXRVUZYXR

UVZYXRgVUZYXRgVUZYXRW

),,,(),,,(                                 

),),((),),((),),((    8



                    (4.6.6) 

Also, 

UYXRVZgVZUYXR

UYXRVZgVUYXRZgVUYXRZW

),(),(),,,(                                   

),(),()),(,()),(,(    8




                   (4.6.7)        

Again,  

  

UZVYXRVYXRUZg

UVYXRZgVYXRUZgVYXRUZW

),,,(),(),(                                   

)),(,(),(),(),(),(    8



              (4.6.8)     

Combining (4.6.6), (4.6.7) and (4.6.8) we get 

             
VYXRUZW

VUYXRZWVUZYXRW

ZYXWUBZYXWU

),(),(                          

)),(,(),),((                         

),()(),(

8

88

88







 

   
}),,,(),(),(),(),(   

),,,( ),,,(),,,({

UZVYXRVYXRUZgUYXRVZg

VZUYXRUVZYXRVUZYXR




                   (4.6.9)           

Terms which are coefficients of V and U cancel out since R   is skew-symmetric 

with respect to the last two variables hence, (5.6.9) reduces to 

             
VYXRUZgUYXRVZg

VUZWXBVUZWX

),(),(),(),(                      

),()(),( 88




                 (4.6.10)             

Expanding (4.6.10) gives 

 
 YVXgXVYgUZg

YUXgXUYgVZg

VUZWXBVUZWX

),(),(),(                      

),(),(),(                     

),()(),( 88







                                       (4.6.11)              

Taking inner product of (4.6.11) with respect to T both sides yields 

          

   

 
 ),(),(),(),(),(                      

),(),(),(),(),(                     

,),()(,),( 88

TYgVXgTXgVYgUZg

TYgUXgTXgUYgVZg

TVUZWXBgTVUZWg X







             (4.6.12)             

Relation (4.6.12) reduces to 
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   

 
 )(),()(),(),(                      

)(),()(),(),(                     

,),()(,),( 88

YAVXgXAVYgUZg

YAUXgXAUYgVZg

TVUZWXBgTVUZWg X







 

The coefficients for ),( VZg and ),( UZg  from the initial given conditions given,    

 are both equal to zero.  

Hence, 

           
                     

0),()(),( 88  VUZWXBVUZWX                                      (4.6.13)    

This completes the theorem. 
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CHAPTER 5 

5 A STUDY OF 
8

W CURVATURE TENSOR IN LP-SASAKIAN 

MANIFOLD 

5.1  Introduction. 

The Paper studies on 8W curvature tensor on LP-Sasakian manifold. The 

following geometrical properties of 8W curvature tensor are being investigated; 

flatness, semi-symmetric, symmetric and recurrence on the LP-Sasakian 

manifold. 

 In section 5.3, the flatness property is being investigated and is being observed 

that, a 8W  -flat LP-Sasakian manifold is a flat manifold. Section 5.4 investigates 

the semisymmetric, section 5.5 the symmetric and section 5.6 the recurrence 

properties of the curvature tensor on LP-Sasakian manifold. The results in the 

respective sections show that a 8W semisymmetric, and symmetric are 

8W flat manifolds while 8W  recurrent manifold (under some set conditions) 

is a symmetric and semisymmetric manifold. 

 

5.2    Preliminaries 

 

An n dimensional real differentiable manifold nM  is said to be Lorentzian para (LP)-

LP-Sasakian manifold if it admits a 1) ,1(  tensor field F , a 
C vector field ,T a 

C        

1-form A  and a Lorentzian metric g which satisfy (1972): 

 

    A(X)T)g(X,,    1)( TA                                                                (5.2.1)                                                                                     

 ,)( TXAXX     )(),( TFTXFX
def

                                            (5.2.2)           

   ),()(),(),( YAXAYXgYXg                                                             (5.2.3)              

     ,       ),(),( XTDXAYXg X                                                            (5.2.4)             

      TYAXAXYATYXgYFDX )()(2)(),(                                      (5.2.5)        

                         

 

Where XD  denotes the covariant differentiation with respect to g  and X, and Y are any 

arbitrary vector fields on M. 

 

In an LP-Sasakian manifold nM , with structure  gATF ,,, , it can be seen that 

(Pokhariyal (1996)) 

0)(,0  XAT                                                                              (5.2.6)                                                                 
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1)(  nFrank                                                                                        (5.2.7)                                                                              

  If we put 

),(),( YXgYXF                                                                                    (5.2.8)                                                                         

    then, the tensor field ),( YXF  is symmetric in X and Y, thus, we have 

),(),( XYFYXF   

 

In an n -dimensional LP-Sasakian manifold with the structure  gATF ,,, , we have  

    

                                  ),(),(),(),(                       

),),(),((                       

),),((),,,(

UYgZXgUXgZYg

UYZXgXZYgg

UZYXRgUZYXR







(5.2.9)      

Again, putting TU  , relation (5.2.9) becomes 

                                  ),(),(),(),(),,,( TYgZXgTXgZYgTZYXR     (5.2.10)       

Using (5.2.1), relation (6.2.10) yields 

 

                      Y)ZR(X,A  TY)Z,R(X,g  ),(),,,(

)(),()(),(),,,(





ZYXRATZYXR

YAZXgXAZYgTZYXR
(5.2.11)       

where ZYXg ),(  is the metric tensor representing potential , 

                 ),(),( YXRicYXS   

                               ),( YQXg  

                               = ),()1( YXgn                                                               (5.2.12)                                                                               

         is the Ricci tensor representing the matter tensor, 

                               ),(1),( TTgnTTS   

                                            )(1 TAn  

                                            1 n                                                          (5.2.13)                                                                  

                R  is the (0, 4) curvature tensor, and ),(),( YXRicYXS  is the Ricci tensor. 

          

5.3    W8-Curvature Tensor in LP-Sasakian Manifold 

Pokhariyal (1982) gave the definition of 8W -curvature tensor as 

 XZYSZYXS
n

ZYXRZYXW ),(),(
1

1
),(),(8 


                                     (5.3.1)                                   

or 

 

 ),(),(),(),(
1

1
),,,(),,,(8 UXgZYSUZgYXS

n
UZYXRUZYXW 


  

Definition 5.3.1: An LP-Sasakian manifold nM is said to be flat if Riemannian-curvature 

tensor vanishes identically, i.e. .0),( ZYXR  

Definition 5.3.2: An LP-Sasakian manifold M is said to be 8W -flat if 8W -curvature 

tensor vanishes identically, i.e. .0),(8 ZYXW  

Theorem 5.3.3: A 8W -flat LP-Sasakian manifold is a flat manifold. 
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Proof. 

      If LP-Sasakian manifold is 8W -flat then  08 W  in (5.3.1) and we have 

 XZYSZYXS
n

ZYXR ),(),(
1

1
),(0 


   

     Similarly, in equation 

 ),(),(),(),(
1

1
),,,(),,,(8 UXgZYSUZgYXS

n
UZYXRUZYXW 


  

      If LP-Sasakian  manifold M  is  8W flat then, we have, 

  ),(),(),(),(
1

1
),,,(0 UXgZYSUZgYXS

n
UZYXR 


   

      Which implies 

        ),(),(),(),(
1

1
),,,( UZgYXSUXgZYS

n
UZYXR 


  

         Where, ),()1(),(),( YXgnYQXgYXS    

         Then, using ),()1(),( YXgnYXS   in the above equation, we have,  

 

 

which implies 

 ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR   

          But, in LP-Sasakian manifold, we have  

            
 

 ),(),(),(),(),,,(

),(),(),(),(),,,(

UZgYXgUXgZYgUZYXR

UYgZXgUXgZYgUZYXR




 

 

           But from the computations, we get   

                ),(),(),(),(),,,( UZgYXgUXgZYgUZYXR   

           This can only be true if and only if 0),(0),,,(  YXSUZYXR         (5.3.2) 

           Hence, follows the theorem, a 8W -flat LP-Sasakian manifold is a flat manifold. 

         Corollary 5.3.4:   A 8W -flat LP-Sasakian manifold is neither Einstein nor 

n Einstein manifold. 

 

           Proof:                                         

          From definition 5.3.5, a manifold is said to be Einstein manifold if 0a and    

          0b   in the given Ricci tensor (S) relation  

                               ),()(),(),( YXbYXagYXS   

           and Einstein if both oe none zera and b ar . 

          From the results of (5.3.2) it is clear that S is also equal to zero. This therefore,  

          means both e are zeroa and b ar hence, it’s neither Einstein nor  Einstein . 

 ),(),(),(),(
1

1
),,,( UZgYXgUXgZYg

n

n
UZYXR 





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5.4     8W Semi-symmetric LP-Sasakian manifold  

 De and Guha (1992) gave the definition of semisymmetric as  

                                                     0),(),( VUZRYXR  

Definition 5.4.1:  A LP-Sasakian manifold is said to be 8W semisymmetric if   

                                         0),(),( 8 VUZWYXR  

Theorem 5.4.2: 8W semisymmetric LP-Sasakian manifold is a 8W flat 

manifold.  

 

Proof: 

If the LP-Sasakian space is a 8W semisymmetric then  

0),(),( 8 VUZWYXR                                                                             (5.4.3) 

 

 

Note, this is only possible if 0),,,(8  VUZYW  and 0),,,(8  VUZXW  since 

0)( XA  and 0)( YA  and thus follows the theorem 5.4.2.  

 

 

 

 

5.5     W8-symmetric LP- Sasakian manifold   

 

Definition 5.5.1: An LP-Sasakian manifold is said to be 8W symmetric if  

 0),,(),( 88  ZYXUWZYXWU                                              (5.5.1)      

 Theorem 5.5.2: A 8W symmetric and 8W semisymmetric LP-Sasakian  

  manifold is a flat  manifold. 

 

Proof:  

From the theorem 5.4.2, we found out that a 8W semisymmetric LP- Sasakian 

manifold is a 8W flat manifold and if LP-Sasakian space is a 8W symmetric 

this implies, 

 

   

0)(),,,()(),,,(

0,),,,(,),,,(

0),,,(),,,(

0)),(,()),(,(

0)),(,()),(,(),(),(

88

88

88

88

888











YAVUZXWXAVUZYW

TYVUZXWgTXVUZYWg

YVUZXWXVUZYW

YVUZWXgXVUZWYg

YVUZWXgXVUZWYgVUZWYXR
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0),(),()),(,(                         

),),(()),(),(),(

88

888





VYXRUZWVUYXRZW

VUZYXRWVUZWYXRZYXWU
     (5.5.2)           

Computing each of the above four terms separately and subjecting them to 

equivalent conditions gives, 

 

                                                  

),,,(),,,(                                      

)),(,()),(,()),(),(       

88

888

YVUZXWXVUZYW

YVUZWXgXVUZWYgVUZWYXR





        (5.5.3)                                          

   

   

   )(),,,()(),,,(                                      

),,,(),,,(                                       

),),,,(),),,,(,),(,,(  

88

88

888

YAVUZXWXAVUZYW

YVUZXWAXVUZYWA

TYVUZXWTXVUZYWgTVUZWYXRg







 

          where ),),((),,,( UZYXRgUZYXR   and   

              )(),()(),()),((,),( YAZXgXAZYgZYXRATZYXRg    

                 

 

Again,  

 ZYXRVUSVUZYXRS
n

VUZYXRRVUZYXRW ),(),(),),((
1

1
),),((),),((           8 




         (5.5.4)                                 

 ZYXRVUgVUZYXRg
n

n
VUZYXRR ),(),(),),((

1

1
),),(( 




                                  

                                    ),(),(),),((),),((                             ZYXRVUgVUZYXRgVUZYXRR 

 

 

   

                                                       )(),,,()(),,,(                                   

,),,,(,),,,(),,,),((              

),,,(),,,(                                    

),),((),,,(                                    

),(),(),,,(),),((),(),(                                    

8

UAVZYXRVAUZYXR

TUVZYXRgTVUZYXRgTVUZYXRW

UVZYXRVUZYXR

UVZYXRgVUZYXR

ZYXRVUgVUZYXRUVZYXRgZYXRVUg











 

   Also, 

 

 
                                                                                               

),),(()),(,(                                      

),(),(),),((                                    

),),(()),(,(
1

1
)),(,(  )),(,(     8

ZVUYXRgVUYXRZg

UYXRVZgZVUYXRg

ZVUYXRSVUYXRZS
n

VUYXRZRVUYXRZW










               

     

                                                         

,),(),(,),,,(,)),(,(g     

),,,(),(),(                                    

)),(,(),(),(                                     

8 TUYXRVZggTVUYXZRgTVUYXRZW

VZUYXRUYXRVZg

VUYXRZgUYXRVZg







   

                                         ),,,(),()(),,,( TUYXRVZgVAZUYXR               (5.5.5)     
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We also observe that,                                   

                                                                                                           

 

 

                                          

),,,(),(),(                            

)),(,(),(),(                            

)),(,(),(),(                              

)),(,()),(,(                            

)),(,(),(),(
1

1
),(),(),(),(         8

UZVYXRVYXRUZg

UVYXRZgVYXRUZg

ZVYXRUgVYXRUZg

UVYXRZgZVYXRUg

ZVYXRUSVYXRUZS
n

VYXRUZRVYXRUZW














          

         
     

              )(),,,(),,,(),(                                      

,),,,(,),(),(,),(),( 8

UAZVYXRTVYXRUZg

TUVYXZRgTVYXRUZggTVYXRUZWg




(5.5.6) 

 

Next, we put together (5.5.3), (5.5.4), (5.5.5) and (5.5.6) to have 

               

0})(),,,(),,,(),(                       

),,,(),()(),,,(                    

 )(),,,()(),,,({                 

 )(),,,()(),,,( 88









UAZVYXRTVYXRUZg

TUYXRVZgVAZUYXR

UAVZYXRVAUZYXR

YAVUZXWXAVUZYW

            (5.5.7)              

Terms which are coefficients of )(VA and )(UA cancel out since R   is skew-

symmetric with respect to the last two variables. Hence, (5.5.7) reduces to 

              
0),,,(),(

),,,(),( )(),,,()(),,,( 88





TVYXRUZg

TUYXRVZgYAVUZXWXAVUZYW
(5.5.8)          

But since 0),,,(8  VUZYWX  and   

0),,,(0),(),(  TUYXRVZgUZg  

Thus, follows the theorem. 

5.6    W8-Recurrent LP-Sasakian Manifold. 

             In this section, we study some of the geometrical properties of 8W -curvature 

tensor    which is recurrent on LP-Sasakian manifold M . 

            Definition 5.6.1: If we consider an LP-Sasakian manifold M which is 8W -

recurrent, then we have ( Pokhariyal (1996)), 

 

                  ),()(),(                            88 ZYXWUBZYXWU                 (5.6.1)                                                           

where  is a non-zero 1-form and 8W -curvature tensor is given by 

                
 

YZXgZYXg

XZYSZYXS
n

ZYXRZYXW

),(),(                    

),(),(
1

1
),(),(8







              (5.6.2)           

                     
     

),()(),()(),,,(

,),(,),(,),(

8

8

ZXgYAYXgZATZYXW

TYZXggTZYXggTZYXWg




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Theorem 5.6.2:  A 8W -Recurrent Sasakian Manifold with VUZWYXR ),(),( 8 =0 and 

 0),()(),()(  ZXgYAYXgZA  is a 8W -Symmetric space 

Proof:  From definition 5.6.1, we have  

 ),()(),( 88 ZYXWUBZYXWU   

VYXRUZWVUYXRZW

VUZYXRWVUZWYXRVUZWX

),(),()),(,(                             

),),((),(),(),(

88

888




    (5.6.3)                 

But, we are given 0),(),( 8 VUZWYXR  (semisymmetric space). 

This implies that, we are left to show that the relation is symmetric under the 

stated conditions. 

 

Therefore, (5.6.3) becomes  

VYXRUZW

VUYXRZWVUZYXRW

ZYXWUBZYXWU

),(),(                           

)),(,(),),((                         

),()(),(

8

88

88







       (5.6.4)           

Recall from (5.6.2) 

YZXgZYXgZYXW ),(),(),(8   

Hence, expanding each term of (5.6.4) we get 

.),,,(),,,(                                 

),),((),),((),),((    8

UVZYXRVUZYXR

UVZYXRgVUZYXRgVUZYXRW



     (5.6.5) 

Also, 

.),(),(),,,(                                   

),(),()),(,()),(,(    8

UYXRVZgVZUYXR

UYXRVZgVUYXRZgVUYXRZW




   (5.6.6)        

Again we have,  

.),,,(),(),(                                   

)),(,(),(),(),(),(    8

UZVYXRVYXRUZg

UVYXRZgVYXRUZgVYXRUZW



      (5.6.7)     

Combining (5.6.5), (5.6.6) and (5.6.7) we get 

             ZYXWUBZYXWU ),()(),( 88   

   
}.),,,(),(),(),(),(   

),,,( ),,,(),,,({

UZVYXRVYXRUZgUYXRVZg

VZUYXRUVZYXRVUZYXR




    (5.6.8)           

Terms which are coefficients of V and U cancel out since R   is skew-symmetric 

with respect to the last two variables hence, (5.6.8) becomes 

 

.),(),(),(),(                      

),()(),( 88

VYXRUZgUYXRVZg

VUZWXBVUZWX




                  (5.6.9)             

Expanding (5.6.9) gives 
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 
 .),(),(),(                      

),(),(),(                     

),()(),( 88

YVXgXVYgUZg

YUXgXUYgVZg

VUZWXBVUZWX







                          (5.6.10)              

Taking inner product of (5.6.10) with respect to T both sides yields 

   

 
 .),(),(),(),(),(                      

),(),(),(),(),(                     

,),()(,),( 88

TYgVXgTXgVYgUZg

TYgUXgTXgUYgVZg

TVUZWXBgTVUZWg X







        (5.6.11)             

Relation (5.6.11) reduces to 

 

   

 
 .)(),()(),(),(                      

)(),()(),(),(                     

,),()(,),( 88

YAVXgXAVYgUZg

YAUXgXAUYgVZg

TVUZWXBgTVUZWg X







 

The coefficients for ),( VZg and ),( UZg  from the initial given conditions given,    

 are both equal to zero. Hence, 

 

           
                     

0),()(),( 88  VUZWXBVUZWX                            (5.6.12)    

and thus follows the theorem. 
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CHAPTER 6 

6 A STUDY OF 
8

W CURVATURE TENSOR ON GENERALIZED  

SASAKIAN SPACE FORMS 

 

6.1  Introduction. 

The Paper is on 8W curvature tensor on generalized Sasakian space-forms. The 

following geometrical properties of 8W curvature tensor are being investigated; 

flatness, and geometrical properties of the three choice functions 

),,( 321 fff making up the structure of the space. 

              In section 6.4.2, the flatness property has been investigated and observed that, a 

8W -flat generalized Sasakian space-form satisfying 

                                                                        
n

f
ff

21

3 2
13


  

              is a 8W -flat space. 

              In section 6.4.4, it has been established that a 8W -flat generalized Sasakian space 

form is a flat space. 

              Section 6.4.6 investigates the choice of the functions satisfying the condition 

0),(8 YXW  and the following has been observed;  

                     A generalized Sasakian space-form ),,( 321 fffM satisfying the condition  

                                                                          0),(8 YXW .  

                     Results shows that, this can only be so only if 

                                                          213 32 fnff  . 

  

 

6.2       Preliminaries  

A Sasakian manifold ),,,,( gM  is said to be a Sasakian-space form if all   

                    the  sectional curvatures )( XXK  are equal to a constant c, where 

 )( XXK  denotes the sectional curvature of the section spanned by the  

unit vector field ,X  orthogonal to   and .X  In such a case, the  

Riemannian curvature tensor of M  is given by 
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  

 

 XZYYZXXZYgYZXg
c

ZYXgXZYgYZXg
c

YZXgXZYg
c

ZYXR

)()()()()(),()(),(
4

1
                  

),(2),(),(
4

1
                  

),(,
4

3
),(




















   

                                                                                                                                  (6.2.1) 

These spaces can be modeled depending on .3,3,3  ccc  

 

As a natural generalization of these manifolds, Alegre, Blair and Carriazo (2004) 

introduced and studied the notion of generalized Sasakian space forms. They replaced 

constant quantities 
4

3c
 and 

4

1c
 of relation (6.2.1) by differentiable functions,     

321 ,, fandff . 

 

An almost contact metric manifold ),,,( gM  is said to be a generalized Sasakian 

space –form if the curvature tensor R  is given by (2004) 

 

  

 

 XZYYZXXZYgYZXgf

ZYXgXZYgYZXgf

YZXgXZYgfZYXR

)()()()()(),()(),(                  

),(2),(),(                  

),(,),(

3

2

1











(6.2.2)          

where 321 ,, fandff  are differentiable functions on M  and ZYX ,, are vector fields on 

M . In such a case the manifold is denoted by ).,,( 32 fffM  

 

6.3 Generalized Sasakian space forms. 

 

In an almost contact metric manifold ),,,,(12 gM n  where   is a (1, 1) tensor field,     

is a contravariant vector field,   is a 1-form and g is the compatible Riemannian metric, 

we have by D. E. Blair (1976); 

 

 

                      ,0)(,0,1)(,)(2  XXXX            (6.3.1) 

 

),(),( XXg                                                                   (6.3.2) 

 

                      ),()(),(),( YXYXgYXg                                         (6.3.3)      

                     0),( XXg                                                                          (6.3.4)      

 

                     ),,(),( YXgYXg                                                           (6.3.5)       
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                        ),( YgY XX                                                            (6.3.6)      

 

In a  )12( n dimensional generalized Sasakian space-form  

the following relations hold 

 

                )(),()(),()()),(( 31 YZXgXZYgffZYXR                (6.3.7)       

 

              0)),((  YXR                                                                           (6.3.8)        

 

                 )()(),(),( 31 YXYXgffYXR                                   (6.3.9)        

 

              YXXYffYXR )()(),( 31                                                (6.3.10)        

 

              YZZYgffZYR )(),(),( 31                                              (6.3.11)        

 

                 ),(,),( 31 YXgffYXRg                                                (6.3.12)      

 

              XffXR 2

31),(                                                                       (6.3.13)      

 

              XXffXR   )(),( 31                                                       (6.3.14)       

 

               )()()12(3),(32),( 32321 YXfnfYXgffnfYXS        (6.3.15)        

 

           )()(2),( 31 XffnXS                                                                    (6.3.16)         

 

           )()()(2),(),( 31 YXffnYXSYXS                                          (6.3.17)         

 

           321 46)12(2 nfnffnnr                                                                (6.3.18)        

 

            )())12(3()32( 32321 XfnfXffnfQX                             (6.3.19)        

           )(2 31 ffnQ                                                                                     (6.3.20)        

 

Where Q  is the Ricci operator, that is, ),(),( YXSYQXg   

 

Here, S is the Ricci tensor and r is the scalar curvature of the space form. 

 

It is well known from definition 1.2.36. that, a generalized Sasakian space form of 

dimension )12( n  with condition )1( n  is Einstein space -form if its Ricci tensor S 

satisfies the condition; 

 
)()(),(),( YXbYXagYXS  .                                                                   (6.3.21)        
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For arbitrary vector fields X and Y, where a and b are smooth functions on M. 

                                                       

From (6.3.15) and   (6.3.13) we have 

 

   32321 )12(3 and  32 fnfbffnfa  .                                         (6.3.22)                                     

 

Also from (7.2.1) we get 

 

  YXXYffYXR )()(),( 31   .                                                          (6.3.23)        

                                                    

Where   ),()()( YXTYXXY  from definition 1.2.35. is known as the torsion tensor 

which is non-zero for spaces admitting semisymmetric metric connections. This 

therefore, follows that for a flat manifold,  

                                       031  ff .                                                              (6.3.24) 

 

6.4  W8-Curvature Tensor in a Generalized-Sasakian space- form 

Pokhariyal (1982) gave the definition of 8W -curvature tensor as 

                            XZYSZYXS
n

ZYXRZYXW ),(),(
1

1
),(),(8 


 .                            

 

 

Definition 6.4.1: A generalized Sasakian space form M  of dimension )12( n is said to 

be 8W -flat if 8W -curvature tensor vanishes identically, that is, 

                                .0),(8 ZYXW  

 

Definition 6.4.2: A generalized Sasakian space form M  of dimension )12( n is said to 

be flat if the Riemannian-curvature tensor vanishes identically, that is, 

                              .0),( ZYXR  

 

Theorem 6.4.3: If a  )12( n dimensional generalized Sasakian space-form 

),,( 32 fffM  is 8W flat, then 

                            
n

f
ff

21

3 2
13


  . 

 

Proof. 

If generalized Sasakian space form is 8W flat, then  0),(8 ZYXW   

                           

Therefore, 
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 

    .)()()()(),(),(
1

1
),(                 

),(),(
1

1
),(),(8

XZYZYXbXZYgZYXga
n

ZYXR

XZYSZYXS
n

ZYXRZYXW

 









 

                                                                                                                                     (6.4.1) 

Taking inner product of (6.4.1) with  V  we get, 

        

      .),(),(),(),(
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









(6.4.2) 

Putting V  and with a vanishing 8W curvature tensor vanishing we get 

      

                         

)(),()(),(
1

1
),(0  XZYSZYXS

n
ZYXR  




.                                    (6.4.3)     
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
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



       

 

         which implies,                                                                                                            

       .)(),()(),(
1

1
)(),()(,0 31 XZYgZYXga

n
YZXgXZYgff  


  (6.4.4) 

 

Putting Y  in (6.4.4) gives 

 

   ),()()(0 31 ZXgXZff  .                                                          (6.4.5)            

 

Since   0),()()(   ZXgXZ  for a general Sasakian space-form, it implies that, 

 

               31 ff  .                                                                                       (6.4.6)                       

 

Again, if instead we put Z  in (7.4.4) for a 8W flat generalized Sasakian space form, 

we shall have 

 

               )()(),(
1

1
)()()()(0 31 XYYXga

n
YXXYff  


 . 
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  )()(),(0 XYYXga   . 

 

              )()(),(320 321 XYYXgffnf    .                 (6.4.7) 

 

Since   0)()(),(  XYYXg   for a generalized Sasakian space- form, it implies that, 

                                  321 320 ffnf   

which yields, 

                                213 32 fnff   .                                                    (6.4.8)                                 

Putting (6.4.6) into (6.4.8) gives 

 

                                                              

                                                                                                                  (6.4.9) 

 

This completes the proof of the theorem. 

  

 

Theorem 6.4.4: A 8W -flat generalized Sasakian space-form is a flat manifold. 

Proof 

From (6.3.10), that is 

 

             YXXYffYXR )()(),( 31   . 

it is clear that when the generalized Sasakian space form is 8W flat as from (6.4.6) the 

relation (6.4.8) reduces to 

 

                        
  

.0),(0),(

)()(0),(





ZYXRYXR

YXXYYXR




                                    (6.4.10)             

Thus, the theorem. 

 

Definition 6.4.5: A manifold is said to be flatT  (2011) if  

                                                     0),( YXT .  

Where  tensor.curvature a isT  

 

Definition 6.4.6: A generalized Sasakian space-form ),,( 321 fffM  of dimension 

)12( n is said to be  8W flat if 

 

                      0),(8 YXW .                                                                (6.4.11)                           

 

Theorem 6.4.7:.If a )12( n –dimensional generalized Sasakian space-form 

),,( 321 fffM satisfies the condition 0),(8 YXW , then, 

 
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                            213 32 fnff  . 

 

Proof. Suppose the condition  0),(8 YXW  holds in a )12( n –dimensional 

generalized Sasakian space-form. Then using (6.3.1) and (6.3.2) in (6.4.1) we get 

 

 
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                                                                                                                                (6.4.12) 

Putting Z   in (6.4.12) we get, 

 

    XYYXbXYYXga
n

YXRYXW )()()()(),(
1

1
),(),(8  


   (6.4.13)   
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And hence, 

                              0)()(),(
1

1
0),(8 


 XYYXga

n
YXW  . 

 

But, if the space is a  8W flat, then 0),(8 YXW . 

Therefore, 

              )()(),(0 XYYXga  .                                                       (6.4.14)                            

 

For a generalized Sasakian space -form  0)()(),(  XYYXg  , therefore 0a  

From (6.3.20), relation (6.4.14) becomes,  

                 
. 32

032

213

321

fnff

ffnfa




                                                       (6.4.15)                               

Hence, the proof of the theorem. 

 

 

Corollary 6.4.8: A 8W -flat )12( n –dimensional generalized Sasakian space-

form ),,( 321 fffM  has a vanishing scalar curvature tensor ( 0r  ). 

 

Proof. 

From (6.4.9) it is clear that for 8W flat )12( n –dimensional generalized Sasakian 

space-form ),,( 321 fffM ,  
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
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Given the scalar curvature tensor (6.3.18) as              

                          321 46)12(2 nfnffnnr   

Using (6.4.9) in (6.3.18) yields 
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                           (6.4.16)                                

 

Which proves the statement. 
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CHAPTER 7 

7 A Study On W6-Curvature Tensors and W8-Curvature Tensors in  

Kenmotsu manifolds admitting semi-symmetric metric connection. 

 

7.1. Introduction. 

The study is on 8W curvature tensor 6W flat Kenmotsu manifold with 

 respect to semi-symmetric metric and 8W curvature tensor with respect to 

 Levi-Civita connection. The geometrical relationship between the two is  

being investigated. In section 7.3, started by investigating the 6W flatness with  

respect to semi-symmetric connection on Kenmotsu manifold and established that  

a 6W flat Kenmotsu manifold is not a flat manifold. In section 7.4, a geometrical 

relationship between 68  and WW curvature tensors along the geodesic and semi- 

symmetric metric connections respectively. In deed an a relationship in  

geometrical equivalence between the two cases was observed in this manifold.   

 

7.2.              Preliminaries  

In 1924, Friendmann and Schouten introduced the idea of semi-symmetric linear 

connection on differentiable manifold. Hayden (1932) introduced the idea of metric 

connection with torsion on a Riemannian manifold. A systematic study of the semi-

symmetric metric connection on a Riemannian manifold was published by Yano (1970). 

After that the properties of semi-symmetric metric connection have been studied by many 

authors like Amur and Pujar (1978), Bagewadi (1982), Shardfuddin and Hussain (1976), 

De and Pathak (2002) and others. 

 

In 1971, Kenmotsu studied a class of contact Riemannian manifolds satisfying some 

special conditions. We call it Kenmotsu manifold. Kenmotsu manifolds have been 

studied by many authors such as J. B. Jun. U. C. De and G. Pathak (2005) and others. 

7.3.  Kenmotsu manifolds 

A smooth n dimensional manifold  gM n ,  is said to be almost contact metric manifold 

if it admits a (1, 1)-tensor field  , a vector field  , a 1-form   and a Riemannian metric 

g which satisfy 

            )(2 XXX  ,                                                                    (7.3.1)                     

 

        0        0,         ,1)(        ),(),(  XXXg               (7.3.2)                   

 

         )()(),(),( YXYXgYXg                                                     (7.3.3)                      

where YX  and , are arbitrary vector fields on M . 
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 An almost contact manifold ),,,( gM n  is said to be a Kenmotsu manifold if the 

following conditions hold: 

 

           XYYXgYX  )(),(                                                     (7.3.4)                               

 

         )(XXX                                                                           (7.3.5)                                 

where   is the Levi-Civita connection . 

 

          In Kenmotsu manifold the following relations are true; 

 

       )()(),( YXYXgYX                                                         (7.3.6)                          

 

     XYYXYXR )()(),(                                                             (7.3.7)                        

 

       ),()(),(),( YXgXYYXRYXR                                  (7.3.8)                         

 

       )(),()(),()),(( XZYgYZXgZYXR                                  (7.3.9)                        

 

      ),()1(),( XnXS           1 nQ                                  (7.3.10)                           

 

 

for arbitrary vector fields ZYX  and , on RM  and is Riemannian curvature tensor and S  

the Ricci tensor of type (0,2) and Q  the Ricci operator such that 

 

                 ),()1(),(),( YXgnYQXgYXS                                     (7.3.11)                       

 

A linear connection 
~

 in a Riemannian manifold M  is said be a semisymmetric metric 

connection, (C. Ozgur (2010)), if its tensor T  of the connection 
~

 

 

                    ],[
~~

),( YXXYYXT YX                                             (7.3.12)                                     

 

 satisfies  

 

                   YXXYYXT )()(),(                                                       (7.3.13)                                    

 

where   is 1-form and   is the vector field given by  

                      )(),( XXg                                                                     (7.3.14)                               

for all vector fields  ., MYX   Here  M  is the set of all differentiable vector fields 

on M . 

     A semi-symmetric connection 
~

 is called a semi-symmetric metric connection, 

if it further satisfies 
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                      0
~

g                                                                                   (7.3.15)                               

 

A relation between the semi-symmetric metric connection 
~

 and the Levi-Civita 

connection has been given by K. Yano (1970) which is given by  

 

                    ,),()(
~

 YXgXYYY XX                                       (7.3.16)                      

where ),()(  YgY  . 

7.4      A 6W Curvature Tensor of a Kenmotsu manifold with respect to 

semisymmetric metric connection.  

Pokhariyal (1982) have introduced  new tensor  fields W and studied their properties . 

Pokhariyal (1982) defined the 6W -curvature tensor field  in Riemannian manifolds as  

 

          XZYSQZYXg
n

ZYXRZYXW ),(,
1

1
),(),(6 


 .             (7.4.1)                  

Definition 7.4.1: The 6W - curvature tensor in Kenmotsu manifold with respect to Levi-

Civita connection   is given by 

 

  XZYSQZYXg
n

ZYXRZYXW ),(,
1

1
),(),(6 


 . 

 

 

 Definition 7.4.2: The  6W -curvature tensor in Kenmotsu manifold with respect to the 

semi-symmetric metric connection 
~

 is defined by 

 

        XZYSZQYXg
n

ZYXRZYXW ),(
~~

,
1

1
),(

~
),(

~
6 


 .                           (7.4.2)            

 

Definition 7.4.3: In Kenmotsu manifolds, a relation between the curvature tensor R  and 

R
~

 of type (1, 3) of the connections   and 
~

 respectively is given by I. Gurupadavva 

(2012)  

 

 

       

])(),()([                   

]),(),([2                     

]),(),([),(),(
~





YZXgXg(Y,Z)

XZYgYZXg

XZYgYZXgZYXRZYXR







                                       (7.4.3) 

 

From (7.4.3) it follows that  

 

       ),()2(2),()1(),(),(
~

YYgnYXgnYXSYXS  .                             (7.4.4)     



 59 

 

 

where S
~

denotes the Ricci tensor with respect to semi-symmetric metric connection and 

S  the Ricci tensor with respect to Levi-Civita connection. 

  

Definition 7.4.4: A semi-symmetric metric connection in a manifold is said to be flat if 

the Riemannian curvature tensor with respect to the connection vanishes that is,   

                          0),(
~

ZYXR .  

Definition 7.4.5: A semi-symmetric metric connection in a manifold is said to be 6W  

flat if the 6W -curvature tensor with respect to the connection vanishes that is, 

                    0),(
~

6 ZYXW .  

Theorem 7.4.6:  A 6W flat Kenmotsu manifold with respect to semi-symmetric metric 

connection is not flat connection. 

 

Proof: From (7.4.2) we have, 

 

  XZYSZQYXg
n

ZYXRZYXW ),(
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,
1

1
),(

~
),(

~
6 


 . 

Expanding (7.4.2) with respect to U yields  
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UZYXRUZYXW 


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
.    (7.4.5)      

Suppose (7.4.5) is 6W flat, then (7.4.5) reduces to 

                              ),(),(
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),(
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1
),,,(

~
0 UXgZYSUZSYXg

n
UZYXR 
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 ),(
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),(),(),(
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1

1
),,,(

~
UZSYXgUXgZYS

n
UZYXR 


 .                           (7.4.6)                       

Putting Z  in (7.4.6) gives 

 

 ),(
~

),(),(),(
~

1

1
),,,(

~
USYXgUXgYS

n
UYXR  


 .                            (7.4.7)                  

 

From (7.4.4), we have 

 

),()1(),()1(),(
~

 YgnYgnYS                                                       (7.4.8)                      

 

                                        )()1(2 Yn  . 

              

    ),()1(),()1(),(
~

UgnUgnUS                                                  (7.4.9)                       

                                              )()1(2 Un  . 

Therefore (7.4.7) becomes 
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                    0)(),(2)(),(2),,,(
~

 YUXgUYXgUYXR  .         (7.4.10) 

Hence, 0),( ZYXR . 

And thus, the proof of the theorem. 

 

 

 

 

7.5      Geometrical relationship between W6-curvature tensors and W8-curvature 

tensors in Kenmotsu manifold admitting semi-symmetric metric connection. 

 

The following  theorem is a statement of the findings of the study investigating some of 

the geometrical relationships between curvature tensors. 

Definition 7.5.1:  Pokhariyal (1982) defined the  8W -curvature tensor field  in 

Riemannian manifolds as  

                    XZYSZYXS
n

ZYXRZYXW ),(,
1

1
),(),(8 


 .               (7.5.1) 

Definition 7.5.2: Two geometrical objects are said to be geometrically equivalent if they 

are linearly dependent. 

 

Theorem 7.5.3: A 6W -curvature tensor on a semi-symmetric metric connection is 

geometrically equivalent to 8W -curvature tensor along the Levi-Civita connection in a  

Kenmotsu manifold. 

 

Proof:  

The 6W -curvature tensor in Kenmotsu manifold with respect to semi-symmetric metric 

connection is given by (7.4.2) and expands with respect to U as 

 

   ),(),(
~

),(
~

,
1

1
),,,(

~
),,,(

~
6 UXgZYSUZSYXg

n
UZYXRUZYXW 





.     (7.5.2)    

 

Putting Z  in (7.5.2) gives 

 

    ),(),(
~

),(
~

,
1

1
),,,(

~
),,,(

~
6 UXgYSUSYXg

n
UYXRUYXW  





.      (7.5.3)     

But from (7.4.3) we have 

 

     
)].()(),()()([

)],(),(),(),([),,,(),,,(
~

UYXgUX)g(Y,

UXgYgUYgXgUYXRUYXR








           (7.5.4)  

 

 

Equation (7.5.4) reduces to 



 61 

 

)],()(),()([),,,(),,,(
~

UXgYUYgXUYXRUYXR   .                           (7.5.5)           

 

Again, using (7.4.4) and (7.5.3) expression for S
~

 can be easily made as  

)()1(2),(
~

UnUS                                                                                        (7.5.6)                

 and 

  

)()1(2),(
~

YnYS   .                                                                                    (7.5.7)                 

Hence, substituting S
~

 and R
~

 through (7.5.5), (7.5.6) and (7.5.7) into (7.5.2) gives 

 

 
)].(),()(),([2                        

)],()(),()([),,,(),,,(
~

6

UYXgYUXg

UXgYUYgXUYXRUYXW










                      (7.5.8)         

 

InterchangingU  and   makes the tensors skew symmetric.  Therefore, dividing by 

minus one yields; 

 

    
)].(),()(),([2                        

)],()(),()([),,,(),,,(
~

6

UYXgYUXg

UXgYUYgXUYXRUYXW










                     (7.5.9)     

Contracting (7.5.9) with respect to   gives 

 

].),(),([2                        

]),(),([),(),(
~

6

UYXgYUXg

YUXgXUYgUYXRUYXW




                                             (7.5.10)         

Putting UZ   in (7.5.10) gives 

 

].),(),([2                        

]),(),([),(),(
~

6

ZYXgYZXg

YZXgXZYgZYXRZYXW




                                              (7.5.11)         

Simplifying (7.5.11) becomes 

 

   ]),(),([2-),(),(2),(
~

6 ZYXgYZXgXZYgYZXgZYXW  .                   (7.5.12)         

 

 Therefore, (7.5.12) reduces to 

 

 XZYgZYXgZYXW ),(),(2),(
~

6  .                                                              (7.5.13)         

 

This Curvature tensor in a Kenmotsu manifold with respect to Levi-Civita connection 

has the given geometrical properties expressed  in the expansion of (7.5.1) below. 

 

                      XZYgZYXgZYXRZYXW ),(,),(),(8  .                             (7.5.14)       

 

Expanding (7.5.14) with respect to U   becomes 
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    ),(),(),(,),,,(),,,(8 UXgZYgUZgYXgUZYXRUZYXW  .               (7.5.15)       

Putting Z  in (7.5.15) gives 

     ),(),(),(,),,,(),,,(8 UXgYgUgYXgUYXRUYXW   . 

 

      )(),()(,),,,(),,,(8 YUXgUYXgUYXRUYXW   .                          (7.5.16)      

InterchangingU  and   in (7.5.16) makes the tensors skew symmetric. Therefore, 

dividing by minus one yields; 

 

  )(),()(,),,,(),,,(8 YUXgUYXgUYXRUYXW   .                           (7.5.17)       

 

Contracting (7.5.17) with respect to   gives  

  YUXgUYXgUYXRUYXW ),(,),(),(8  .                                                (7.5.18)       

 

Replacing U  with Z  in equation (7.5.18) to get 

 

                 YZXgZYXgZYXRZYXW ),(,),(),(8  . 

 

    YZXgZYXgXZYgYZXgZYXW ),(,),(),(),(8  .                         (7.5.19)       

 

Equation (7.5.19) simplifies to  

 

 XZYgZYXgZYXW ),(),(),(8  .                                                               (7.5.20)      

 

Comparing (7.5.20) and (7.5.13) 

 

  ZYXWZYXW ),(2),(
~

86  .                                                                              (7.5.21)         

 

This completes the proof of the theorem. 
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                 CHAPTER 8 
 

8. APPLICATIONS OF THIS STUDY AND POSSIBLE FUTURE 

RESEARCH AREAS. 

Given the 8W  –curvature tensor  

 ),(),(),(),(
1

1
),,,(),,,(8 UXgZYSUZgYXS

n
UZYXRUZYXW 


 ,        (8.1.1) 

 

using ),()1(),( YXgnYXS   in (8.1.1), we have, 

 

 ),(),(),(),(),,,(),,,(8 UXgZYgUZgYXgUZYXRUZYXW          (8.1.2) 

putting  

           YUXZ     and     , . 

Equation (8.1.2) reduces to 

 

 ),(),(),(),(),,,(),,,(8 YXgXYgYXgYXgYXYXRYXYXW   

 

0),,,(),,,(8  YXYXRYXYXW                                                                        (8.1.3) 

Richard Hamilton has successfully classified the Ricci solitons on 3-dimension by considering 

Weyl’s tensor together with one of the three tensors, that is Bach )(  jiB , Cotton tensor )( k  jiC  and 

three index tensor k j iD . 

All of them when contracted with respect to a pair of indices vanish. 

That is,  

 

              0 i ik i ii i k BCW  

Note:  

i). Ricci solitons are solutions of the evolution equations of Hamilton’s. 

ii). The Riemannian manifold ),( gM n is said to be of gradient Ricci soliton if there exist a 

smooth function f  such that 
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                                            ffRic  . 

These Ricci solitons can be classified into three categories namely; 

                                                    

0.

0

 ,0













 

Note, when ,0  solitons are said to be shrinking, when 0  they are said to be steady and 

when 0  they are expanding. All these have been considered on spaces of dimensions 

4for and 3 ,2  n . 

Since the contracted part of 8W  –curvature tensor vanishes, then this curvature tensor can be used 

to replace Weyl’s projective curvature tensor in classifying the gradient Ricci solitons on 3-

dimension Riemannian manifold and also dimensions 4n . 

 

Again, since projective curvature tensor W  was used to classify the nature of gravitational waves 

and it was found out that whenever its divergence was vanishing )0( divW then the 

electromagnetic field was classified to be purely electrical. And since the 08 divW , then it 

follows that Pirani formalism of gravitational waves can be extended using 8W -Curvature tensor. 

 
From the study on 8W  –curvature tensors on the stated manifolds, it can be seen that  the 

curvature tensor allows us to tell mathematically whether the space is flat or if curved, how much 

curvature takes place in any given surface of the manifold. This has been done by use of covariant 

derivative. Therefore, the established theorems in the 8W -flatness could be of great input in the 

field of general relativity. 

From the generated theorems on 8W -symmetric and semi-symmetric properties on the said 

manifolds, it comes out clearly that this curvature tensor could be used in general relativity to 

analyze spacetime symmetries which are infinitesimally generated by vector fields that preserve 

some features of spacetime. The most common and evident is its symmetrical properties on LP-

Sasakian, K-contact and Sasakain where the symmetry vector fields included the Killing vector 

field    which preserve the metric structure of the manifold. 

Similarly, the results and further study on this tensor field on LP-Sasakian manifolds could make 

good contribution in the field of Regge calculus. Regge calculus is a formalism which chops up 
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Lorentzian manifold into discrete “chunk” (four dimensional simplical blocks) and the block edge 

lengths are taken as the basic variables. 

A discrete version of the Einstein-Hilbert action is obtained by considering the so-called deficit 

angles of these blocks, a zero deficit angle corresponding to no curvature. This is equivalent to the 

already generated property of 8W - flatness on the manifolds studied. This could be a novel field 

for future research with a view to establishing to what extent the two different versions of 

approach are equivalent. 

In general relativity, it has been noted that under fairly generic conditions, gravitation collapse 

will inevitably result in a so-called singularity. A singularity is a point which the solution to the 

equations become infinite indicating that the theorem has been probed at an inappropriate ranges. 

Hence, future research should embark on finding out if such ranges exist in the 8W -flatness, 

symmetry, semi-symmetry and recurrence properties on the various manifolds. This could open 

room to investigate singularities arising in black holes space time, Bamunda triangle mystery, and 

in the neutron stars. 

Finally, intriguing results were realized in the last chapter on studying the geometrical 

relationship between 8W  –curvature tensor acting along a geodesic and that of 6W  –curvature 

tensor along a semi-symmetric metric connection of a Kenmotsu manifold. The results indicated 

that they produced equivalent geometrical appearance when subjected to the respective 

connections on this manifold. 

The results suggest strongly that these two curvature tensors have principle features in general 

relativity and could be an alternative method to solutions of geodesic equations. This would make 

a great contribution in determining paths of particles and radiations in gravitational fields. This 

too relates very well to the study on total matter (energy) distribution to the curvature of the space 

time. 

This leaves a broad area of research where these two curvature tensor fields on manifolds such as 

the Kenmotsu could be alternative tool to solutions in the field equations and geodesic equations. 

This might open a new way of describing Einstein field equations which describe how mass and 

energy are related to the curvature of space time. 
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