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ABSTRACT  

Background: Sex workers are amongst the key populations substantially burdened by 

HIV/AIDS. However, there is definitive proof that antiretroviral therapy (ART), if consistently 

used, has individual and public health benefits due to viral suppression and onward HIV sexual 

transmission reduction. The standard HIV/AIDS clinical care approaches mostly emphasize on 

biomedical and health interventions and may ignore synergistic epidemics (syndemics) which, 

when present, may be associated with the likelihood of elevated HIV viral loads.  

Objectives: To examine and model the association of syndemics with HIV viral load outcomes 

as well as antiretroviral therapy (ART) adherence among sex workers living with HIV in the Sex 

Worker Outreach Project (SWOP)–City cohort in Kenya using linear mixed-effects. 

Method: Data collected between 2013—15th October 2018 from SWOP–City were modeled 

using linear mixed-effects for progression of viral load marker.  

Results: None of HIV-syndemics considered was statistically significant on univariable random 

intercept model. On the multivariable model, only HIV-STI syndemic and condom use were 

statistically significant effect (p<0.01). A unit increase in the months since baseline was 

associated with 0.055110 Box-Cox transformed viral load in the random intercept model, 

however, this effect wasn’t statistically significant (p>0.005).  Poor ARV adherence variable was 

associated with 3.408471 increase in Box-Cox transformed viral load (p= 0.0225) and 1.237 

positive change in transformed viral load (p=0.0119) baseline effects. An interaction of poor last 

ARV adherence with month yielded 0.1528 negative change suggestive of programme 

intervention along the follow-up but not significant (p=0.0990). The effect of longitudinal ART 

adherence in lessening syndemics was associated with a reduction in Box-Cox and log10 

transformed viral loads, nonetheless, these effects were not statistically significant (p>0.05). An 

increase in linkage to psychosocial support was associated with 0.10077 reductions in log10 viral 

load but not significant (p=0.454). Linkage to psychosocial support played a key role in 

modifying the relationship between log HIV viral and poor adherence (p<0.01). 

Conclusions: The effect of syndemics was not directly associated with poor viral loads in the 

presence of adherence and psychosocial support. Linkage to psychosocial support modified the 

effect of syndemics on viral load evolutions. The study underscores the need of enhancement of 

linkage to psychosocial support. 
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CHAPTER ONE 

1. INTRODUCTION 

In the pre-analysis part of this thesis, the context and motivation of the study are presented. 

Statistical literature on longitudinal mixed-effects model for continuous data is reviewed. In the 

second part of this thesis, mixed-effects model was applied in the analysis of HIV-infection data 

to draw inferences and estimate the association/correlation parameters. 

In Chapter 1, background to the study is presented and Sex Worker Outreach Project–Kenya that 

motivated this study introduced (Section 1.0), together with the relevant theme specifically 

application of syndemics to understanding human immunodeficiency virus (HIV) in sex workers 

initiating ART in Kenya (Section 1.1), problem statement (Section 1.2), justification and 

significance (Section 1.3) and objectives (Section 1.4). Chapter 2 gives a literature review of the 

mixed-effects model and a systematic framework of building it. Chapter 3 presents the statistical 

methodology of the study, data exploration and analysis software implementations in R.  

Chapter 4 presents the results from the analysis of SWOP–Kenya data. Chapter 5 presents the 

discussion of the findings and close with conclusions, recommendations, and future research.   

1.0 Background 

In many longitudinal medical studies, laboratory and clinical measurements are usually measured 

at baseline, and patients are then followed over time consequent to this baseline time point to 

study associations of these outcomes with predictors. Similarly, in HIV prevention, care and 

treatment, the observational study interest is in monitoring the evolutions of patients’ clinical 

and/or laboratory measures over time, the predictors that may affect the evolutions, and 

potentially how such changes may result in variations in morbidity, mortality, among other 

outcomes – if need be.  

Since HIV is a chronic and life-threatening infection that requires regular and reliable medical 

care, insights into the predictors of disease progression are helpful in treatment initiation and 

therapeutic monitoring decisions. This is where HIV-RNA is useful for assessment of disease 

progression. And so, when patients’ longitudinal data with repeated measures over time are 

accessible, analytical approaches that describe the evolutions or changes in these measures, and 

exploring the associations of these changes with predictors are employable.  
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Inspired by public health and epidemiological thinking, Baer, Singer, and Susser (2013) and 

Singer (1996) introduced the term “syndemic”, a portmanteau of “synergy” and “epidemic”, 

“pandemic” and “endemic” (Douglas-Vail, 2016), and defined it as the “aggregation of two or 

more diseases or other health conditions in a population in which there is some level of 

deleterious biological or behaviour interface that exacerbates the negative health effects of any or 

all of the diseases involved” (Singer, Bulled, Ostrach, & Mendenhall, 2017).  

Moreover, syndemic or synergistic epidemic is beyond being just a portmanteau or a synonym 

for comorbidity (The Lancet, 2017) and can provide a framework applicable in the analysis of 

sex workers’ HIV-infection data. Epidemiologically, HIV is known to affect sex workers 

disproportionately (Djomand, Quaye, & Sullivan, 2014; Kerr et al., 2013; McKinnon et al., 2012; 

Okal et al., 2013), especially in Kenya. 

This study is motivated by data from SWOP–Kenya, a programme run by Partners for Health 

and Development in Africa (PHDA) under the University of Manitoba and University of Nairobi 

research collaboration. PHDA builds on a legacy of successful collaborative implementation of 

HIV/AIDS research, prevention, Care and Treatment since 1980. The SWOP–Kenya, under 

PHDA has been in existence since 2008 and equally provides clinical & preventative services to 

sex workers in Nairobi and environs and operates nine clinics/sites. Seven SWOP clinics are 

dedicated to serving most-at-risk populations (male and female) while two other sites are under 

the University of Nairobi–Centre for Excellence and University of Maryland programme. 

At the SWOP facilities, the sex workers–in a friendly, acceptable and confidential manner– 

access “the minimum HIV prevention, Care and Treatment package” covering information on 

safer sex practices, condom use, HIV testing and counseling, STI screening and treatment, risk 

reduction counselling, ARV and HIV basic care, family planning, TB screening and referral, 

Pre–, Post Exposure Prophylaxis, and linkage to psychosocial support.  

And so, with such developments in HIV care, treatments, and prevention, mainly ART, the 

longstanding HIV/AIDS clinical management, that usually happen largely in outpatient setups –

as with SWOP–Kenya, presents opportunities to model the sex workers’ VL evolutions given the 

syndemics. Given this, this study aims at modeling the association of longitudinal HIV-RNA 

(viral load) trajectories with syndemics in sex workers initiating ART, while appropriately taking 
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into account the statistical complexity of the data arising from the repeated measures over time 

using linear mixed-effects model.  

1.1 Application of syndemic theory to HIV in sex workers on ART in Kenya 

According to the UNAIDS report, Kenya has the joint fourth-largest HIV epidemic in the world 

(alongside Mozambique and Uganda) with 1.6 million PLHIV in 2016 (UNAIDS, 2017). While 

the number of deaths from AIDS-related illnesses was 36,000 in the year 2016, it had gradually 

reduced from 64,000 in 2010. Newly infected adult women in 2016 were 34 000 while 22 000 

adult men. The UNAIDS data shows that women disproportionately affected by HIV accounted 

for about 57% of the 1.6 million PLHIV in Kenya. 

The most HIV affected groups in Kenya are the sex workers. Nationally, the urban FSW 

population has been previously estimated as 138,420 although, six years ago, mapped FSW 

population in all the Kenyan towns was reported as 103,298 (Odek et al., 2014). Okal et al. 

(2013)’s estimates of the size of HIV high-risk MSM was 11,042 (10,000–22,222), FSW 29,494 

(10,000–54,467) and about 6,107 (5,031–10,937) people who inject drugs/intravenous drug users 

(PWID/IDU) within Nairobi. In April 2009 in Nairobi central business district alone, 6,904 male 

and female sex workers working nightly have been previously enumerated (Kimani et al., 2013). 

These numbers may have plausibly increased. 

Estimates from 2016 show that 29.3% of FSWs are living with HIV (MoH/NACC, 2016). 

Musyoki et al. (2015)’s respondent-driven sampling study in Nairobi also reported an overall 

prevalence in FSWs of 29.5 % (95 % CI 24.7–34.9) agreeing with Kenyan Ministry of 

Health/National AIDS Control Council estimates. However, systematic review and meta-analysis 

in Kenya revealed a pooled prevalence of 45.1% in FSW in comparison with 7.7% in female 

general population (Baral et al., 2012). 

Previous prevalence among MSM in 2010 was 18.2% (IOM, 2011; MoH/NACC, 2016); in 2011, 

an estimated 18.3% among PWID (IBBS, 2012) majority of whom are concentrated in Nairobi 

and Mombasa (NACC, 2014). Data has also suggested that MSM, particularly those selling sex, 

contribute significantly to the Kenyan HIV epidemic (McKinnon et al., 2014; Muraguri et al., 

2015). 



4 

 

Syndemic risk has been touted as an ecological construct and thus a function of determinants 

(Batchelder, Gonzalez, Palma, Schoenbaum, & Lounsbury, 2015). In Kenya, the behaviours 

predisposing key populations to increased risk of acquisition and transmission of HIV are 

unlawful (Githuka et al., 2014). Consequently, local ecologies of security of FSWs – in Nairobi 

for instance (Lorway et al., 2018), underpin HIV infection vulnerabilities (Jana, Basu, Rotheram-

Borus, & Newman, 2004; Kerrigan et al., 2015; Moore et al., 2014; Reza-Paul et al., 2012) e.g 

sex workers and clients condom negotiations and the potential risk of HIV superinfection. 

The aforementioned local ecologies may have repercussions in disease management among the 

HIV-infected sex workers. Apparently, the stigma, criminalization, and violence (Global 

Network of Sex Work Projects, 2015) enable these key populations to be hard to reach in HIV 

routine surveillance, thus obstructing their access to HIV treatment, care, and prevention services 

(Githuka et al., 2014). Even if they are reached, barriers may exist which affect HIV care 

retention along the care continuum (Wawrzyniak et al., 2015) as reported elsewhere in 

individuals not necessarily sex workers. Nonetheless, in Kenya, sex workers’ access to services 

has since been prioritized in the National AIDS Strategic Plan III 2009–2013 (NACC, 2012). 

In terms of antiretroviral treatment (ART), Kenya adopted the WHO’s recommendations to treat 

immediately individuals diagnosed with HIV (UNAIDS, 2016) and although the country has had 

a long-standing HIV national prevention programme, ART coverage, is strikingly low in key 

populations, with values from 6% among MSM to 34% among FSW (PEPFAR [U.S. President’s 

Emergency Plan for AIDS Relief], 2017). This coverage concern is alluded to in a study by 

Prakash et al. (2018) in Nairobi exploring FSW programme exposure – intervention depth, and 

behavioural outcomes – that equally found that 35% of the FSWs were not exposed to any HIV 

prevention programme. 

 

In HIV treatment, care and prevention setups, standard treatment cascades are normally initiated 

with a diagnosis followed by referral to appropriate health care providers who then initiate a 

treatment plan with adherence by the HIV-infected persons (Blank & Eisenberg, 2014). So if 

access to health service providers and essential resources are existing, decreased infectiousness 

and better health outcomes follow when all components of the treatment cascade are fulfilled. 
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This is especially important in treatment as prevention (TasP). However, barriers may exist in 

every cascade step. 

 

Obviously, adherence to HIV medication is important in the realization of long-term 

maintenance of VL suppression throughout the HIV treatment course (Günthard et al., 2014). 

WHO Adherence meeting participants in June, 2001, defined adherence as “the extent to which a 

person’s behaviour – taking medication, following a diet, and/or executing lifestyle changes, 

corresponds with agreed recommendations from a health care provider” (WHO, 2003) and 

emphasized the idea of the patient being an active collaborator in the treatment process instead of 

being “passive, acquiescent recipient of expert advice”. It has operational sub-units such as 

dosage, schedule and dietary adherence (Nilsson Schönnesson, Diamond, Ross, Williams, & 

Bratt, 2006). 

 

Substance usage has been established to influence adherence to ART. Addressing ART 

adherence and substance use collectively is appropriate given their complex link (Parsons, Rosof, 

Punzalan, & Maria, 2005). High prevalence of violence syndemic, substance abuse, and 

HIV/AIDS among poor urban women is associated with poor outcomes of HIV (Hatcher, Smout, 

Turan, Christofides, & Stoeckl, 2015; Meyer, Springer, & Altice, 2011). Meyer et al. note that 

among HIV-infected, sexual risk-taking – including the use of substance during sex–and drug 

risk-taking (injection, drugs or alcohol or needle sharing) have profound effects on outcomes 

while Hatcher et al. reported significant violence association with lower ART use and VL 

suppression. 

 

Symptoms of trauma, drinking, illegal drug use, including limited social support are connected 

with suboptimal utilization of HIV treatment (Meade, Hansen, Kochman, & Sikkema, 2009). 

The multifaceted poverty interaction may result in a syndemic of HIV-infection and mental 

illness. For instance, individuals reporting depression are likely to report nonadherence to HIV 

regimes and less likely to have low HIV VL levels (Tedaldi et al., 2012). Psychosocial factors 

such as distress and low self-efficacy are predictors of adherence (Naar-King et al., 2006). 

Among MSM at coastal Kenya, depressive symptoms and associated psychosocial factors that 

exacerbate the HIV burden and prognosis have been established (Secor et al., 2015). 
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Application of syndemic theory has been underscored in understanding the treatment side effect 

acting as a syndemic factor exposing PLHIV to a higher risk of developing negative health 

outcomes and creating circumstances where psychosocial factors are likely to arise (Gagnon, 

2018). 

Broadly, the Quality of healthcare outcomes is dependent upon patients' adherence to the 

treatment regimens recommended (Institute of Medicine (US) Committee on Health and 

Behavior: Research, Practice, 2001; Martin, Williams, Haskard, & Dimatteo, 2005).  Given this, 

accurate assessment of adherence behaviour is essential for efficient and effective planning of 

treatment, and to ensure that health outcome changes are attributable to the regimen 

recommended, the scientific evaluation of treatment protocols, and even public health. Therefore 

to achieve the ideal clinical benefit, HIV-infected individuals receive medication continuously 

(Kim, Lee, Park, Bang, & Lee, 2018). 

The syndemic interaction between the HIV and microbial and chronic diseases is also feasible. 

For instance, HIV tuberculosis (TB) syndemic increases the likelihood of death with HIV and 

also increases viral loads (HIV replication) and viral heterogeneity, more so at TB infection sites 

(Kwan & Ernst, 2011). The TB-HIV syndemicity is directly associated with VL and inversely 

with CD4 cell count (Sathekge, Maes, Van de Wiele, & Wiele, 2013). Chronic conditions may 

include diabetes (Byg, Bazzi, Funk, James, & Potter, 2016). At SWOP, longitudinal assessment 

of other sexually transmitted infections and chronic diseases is also done. 

Within the Kenyan context, the concept of syndemic theory is very essential in sex workers as it 

allows for an assessment of (bio)social structures and risk environments that unite to yield 

disproportionate disease burden to specific members of society and challenges the reductionist 

discourse of disease (Douglas-Vail, 2016). The concept reaches beyond simple diseases and 

populations associations to grasp the health and society connections, exploring routes of 

transmission and interconnected health problems, that end in the excessive burden of disease 

(Singer, 2010).  

This study looked at six syndemics: alcohol/substance use, chronic illness/TB-infected, microbial 

infections (STI/HCV/HBV/HPV), condomless sex and (intimate partner) violence/physical abuse 

and their interaction with psychosocial support. 
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1.2 Problem Statement  

There are few peer reviewed studies on effects/associations of syndemics with HIV viral load 

trajectories in sex workers on ART that could influence policy. For instance, broadly using a 

specific search term on PubMed: (syndemic*[title/abstract] OR "synergistic 

pandemics"[title/abstract] OR "synergistic epidemics"[title/abstract]) AND "viral 

load"[title/abstract] AND (hiv[title/abstract] OR hiv/aids[title/abstract]) AND 

("0001/01/01"[PDAT] : "2018/09/06"[PDAT]), gives only 12 studies. Few that exist have 

reported generalizability concerns. 

However, there could be more studies on related risks and/or methodological factors or on 

segments of syndemics theory – for example, single PubMed database search: ("structural 

factors"[title/abstract] OR "social factors"[title/abstract] OR "psychosocial factors"[title/abstract] 

OR "psycho-social factors"[title/abstract] OR "behavioral factors"[title/abstract] OR 

"behavioural factors"[title/abstract] OR "biobehavioral factors"[title/abstract] OR "bio-

behavioral factors"[title/abstract] OR "biobehavioural factors"[title/abstract] OR "bio-

behavioural factors"[title/abstract] OR "individual factors" OR "biological 

factors"[title/abstract]) AND hiv[title/abstract] AND "viral load"[title/abstract] AND 

("0001/01/01"[PDAT] : "2018/09/06"[PDAT]), yields only 95 PubMed studies globally. 

Characteristically, it is easy to also notice that most analyses arising from the studies have 

inadequate social epidemiology insights on dynamic drivers of diseases (Noppert, Kubale, & 

Wilson, 2017) such as HIV. However, the contemporary setting of HIV epidemiology in Kenya 

may perhaps gain from approaches to understanding how syndemic problems sustain HIV spread 

or exacerbates HIV progression disproportionately in key populations. 

Noticeably, two studies in MSM or minority men in the United States, have robustly reported on 

associations between selected syndemics and (non)adherence and (detectable) viral load 

(Friedman et al., 2015; Harkness et al., 2018). However, the Friedman et al.’s study has 

confessed reliability and validity concerns as well as over-representation by older participants. 

Few studies (e.g., Secor et al. 2015) in Kenya have considered syndemic theory to understand 

HIV in both seronegative and seropositive individuals but not within the context of viral load 

evolutions and ART adherence paradigm. 

https://www.ncbi.nlm.nih.gov/pubmed
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In the SWOP–Kenya, HIV-infected sex workers are observed over time. Modeling longitudinal 

data arising from such observations has many challenges in terms of both statistical and 

computational aspects. Statistical challenges occur due to complex dependence structures or the 

correlated nature (Cho, 2016). Regrettably, continuous collection, although occasionally nearly 

possible for certain outcomes is infeasible for virtually all variables. Realistically, the time-

varying data are usually collected just when participants are observed (Hernán, McAdams, 

McGrath, Lanoy, & Costagliola, 2009).  

The longitudinally collected progression markers on individuals may be missing attributable to 

some other reasons. Improper handling of missing data may decrease statistical power and result 

in biased parameter estimates (Matta, Flournoy, & Byrne, 2017), information loss, increased 

standard errors and leads to weakened generalizability (Dong & Peng, 2013) and therefore affect 

the validity of findings. This is where Linear Mixed-Effects Models (LMM) comes in handy. 

1.3 Study Justification and Significance 

There is a need of approaches to understanding HIV among Sex workers. Among sex workers, 

many syndemics such as alcohol/substance use, chronic illness/TB-infection, microbial 

infections (STI/HCV/HBV/HPV), condomless sex, (intimate partner) violence/physical abuse 

and nutritional insecurity – sex work among FSW is somewhat largely driven by poverty, and 

these have not been given adequate attention by research. Understanding these syndemic factors’ 

relation with viral load evolutions and ART interruption can enlighten strategies/programmatic 

decisions for enhancing health outcomes or medication adherence and sex workers’ retention in 

care in resource-poor settings – e.g in Kenya with evolving legal framework that broadly creates 

sex work criminalization conditions (KELIN, 2016). 

There are public health implications for non-adherence. TasP is anchored on adherence because 

of viral suppression or an 'undetectable' viral load and reduced HIV transmissibility (WHO, 

2012) and associated usefulness of early treatment (M. S. Cohen et al., 2011). The 

aforementioned reduced infectiousness and improved health outcomes take place when all basics 

of the treatment cascade are satisfied but syndemics may exist (Blank & Eisenberg, 2014). The 

magnitude of syndemics among sex workers’ may vary considerably and all these underscores 

the rationale for this study. 
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This study, therefore, additionally fills any knowledge and/or research gaps in empirical HIV 

prevention literature on syndemics at the interface of biomedical, behavioural and systems 

research – especially in Kenya.  

Observational studies may be suitable to show effectiveness/association (Yang et al., 2010) but 

are frequently critiqued for inferring uncorroborated causal inferences. In terms of statistical 

analysis, generating evidence to back up causal inference is generally the major aim. The 

SWOP–Kenya cohort has the strength of combining the classic observational, longitudinal cohort 

design with population-based cohort facility-level study of HIV/AIDS and HIV-related health 

problems. 

Statistical methods for longitudinal studies are widely applicable to cohort studies. In 

observational health research where there is no interference with the care of patients, especially 

in longitudinal HIV/AIDS cohort observational and behavioral research, which is the focus of 

this study, data are often incomplete since some participants drop out (Wen, Terrera, & Seaman, 

2018). The inherent features of the data collected are therefore crucial in deciding the finest 

statistical method to employ because of these methodological challenges. 

A standard method used to model repeated measurements is the "repeated measures analysis of 

variance" (RM-ANOVA). RM-ANOVA is suitable for discrete predictors, a complete dataset –

listwise/case deletion is used in case of missing data, and when measurements are taken at 

similar occasions (balanced) for all the participants (Fitzmaurice, Laird, & Ware, 2011) and an 

assumption of homogeneity of variances/equal covariance between all the observed outcomes 

(McCulloch, 2005) which is untenable in longitudinal studies. 

In classical regression, more so multiple linear regression, the assumption of independence of 

measurements (outcome variable) and the independent identical distribution of error terms is 

maintained. However, in longitudinal measurements from the same patient tend to be alike 

(intra-patient (intra-cluster) correlation) but vary between patients (inter-patient (inter-cluster) 

variability), hence the need to be accounted for in the data analysis hence wrong to utilize 

standard methods. 

Due to the longitudinal nature of the repeated measurements, special analysis procedures are 

needed to account for dependence. LMM are employable to systematically allow incorporation 
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of fixed-effects and random-effects when there is non-independence in the data. Since 

longitudinal follow-up studies are also affected by missing data (Karahalios et al., 2013) 

frequently causing complications in the analysis, LMM can be efficiently used to analyze it with 

the missing at random assumption. There are limited studies on modeling prognosis of HIV 

markers in sex workers in-care.  

This study appreciates the utility of LMM for longitudinal VL data analysis. The outcomes 

provide useful evidence in the identification of potential hotspots for TasP within SWOP–Kenya 

and potential scale to Kenya HIV programmes. 

1.4 Objectives 

1.4.1 General Objective 

To examine and model the association of syndemics with HIV viral load outcomes as well as 

ART adherence among sex workers living with HIV in the SWOP–City cohort using linear 

mixed-effects. 

1.4.2 Specific Objectives 

i) To examine the influence of syndemics on HIV viral load and medication adherence  

ii) To determine whether the effect of syndemics on viral load is modified by linkage to 

psychosocial support. 

iii) To determine if a random intercept model is sufficient or the longitudinal model 

needs to have random slope effects.  

1.5 Assumptions of the Study 

It was assumed that data are “missing at random” (MAR). Data missing mechanisms are often of 

three types: MAR, “missing completely at random” (MCAR), and “missing not at random” 

(MNAR) (Little & Rubin, 2002). MAR implies that there could be systematic differences 

between the observed and the missing values, however, these can be entirely described by other 

observed variables (i.e., the data missingness could be entirely described by variables on which 

full information is available). In the SWOP–Kenya data, missing observations are expected to 

occur for these different reasons. 

For example, in the SWOP –Kenya, if HIV viral load values (or adherence values) is missing 

conditional of age and gender only, having complete data of gender and age variables would 



11 

 

amount to a MAR mechanism. Similarly, a situation in which the missing values are greatly 

prevalent in a subgroup taking a particular regimen relative to another was considered MAR 

since the distributions of missing and observed values are similar within the age/gender strata 

(Bhaskaran & Smeeth, 2014). 

Data missingness is a common issue in epidemiologic/medical studies and arises from a lack of 

response, because of nonresponse (refusal), loss to follow-up or due to clinical-care related 

decisions (Abraham et al., 2011). The missing observations could also be because of 

measurement thresholds outside the testable range.  
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CHAPTER TWO 

2. LITERATURE REVIEW 

2.0 Introduction 

This chapter is a statistical literature review mostly based on Molenberghs and Verbeke (2000)’s 

longitudinal linear mixed models. Fitting of the LMMs is reviewed leading to the final model 

fitted in Chapter 3. Estimation and inferences for fixed effects are reviewed. The literature on the 

need for random intercept and random slope models for estimation and inference for variance 

components is also reviewed.  

2.1 Methods for Longitudinal Clustered Data Analysis  

Multiple indicators have been increasingly used to assess the outcomes of interest in human and 

biomedical sciences and many other scientific applications. Many of the kinds of data collected, 

including observational data, have a hierarchical or clustered structure (Costa, Colosimo, Vaz, 

Silva, & Amorim, 2017) due to repeated or sequential measures from a set of investigational 

units over time, a defining feature of longitudinal studies. The type of data that therefore arise is 

typically dependent, attributable to these repeated observations resulting in within-subject 

dependence from subject-specific characteristics (Galbraith, Daniel, & Vissel, 2010). Within a 

cluster, observations are “more alike” than those observations from other different clusters. 

In longitudinal studies, analysis of the data may encompass modeling the marginal probability 

response (marginal analysis) i.e interest is only on the average response (Pavlou, Ambler, 

Seaman, & Omar, 2015). It may also involve, transition modeling that focuses on how the 

outcome (Yit) is dependent on previous values of Y and other variables (i.e., a conditional model) 

or linear mixed models (random effects models) based on assumption of normality focusing on 

how coefficients of regression vary over individuals (Long, Loeber, & Farrington, 2009). 

Longitudinal data is therefore essential in the study of trends of change and the factors affecting 

it, between and within individuals.  

In random-effects models, the assumption is that there is a correlation between observations in 

the same cluster (individual), whereas no correlation exists between observations from different 

ones (Costa et al., 2017). The nature of the data collected is influential in the best statistical 

approach to be taken (Galbraith et al., 2010). 
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2.2 Mixed-Effects Models for Longitudinal Data 

Mixed-effects model use fixed and random effects together in the same data analysis. According 

to Molenberghs & Verbeke (2000), these models assume that observations from a individual 

subject share “a set of latent, unobserved, random effects” useful in generating “an association 

structure between the repeated measurements” and hence longitudinal analysis should recognize 

the serial correlation between observations from the similar unit (Laird & Ware, 1982). With 

repeated normally distributed data, a very general and flexible, class of parametric models is got 

from a random-effects approach, hence the linear mixed models. Other models for discrete data 

are the Generalized Linear Mixed Models and Liang and Zeger (1986)’s generalized estimating 

equations. The focus of this study is LMM. 

2.3 Linear Mixed Models 

Linear mixed models are also called Random effects models, Variance components models, 

Mixed-effects models. Linear mixed models, as an extension of simple linear models, are 

regression models that take into account both variation that is explained by the explanatory 

variables of interest i.e fixed effects, and variation that is not explained by these explanatory 

variables i.e random effects. The random effects, in essence, give structure to the error term ε. 

One clear advantage with this longitudinal method is the normality assumption (linear) that 

individual-level and group-level information is incorporated in the same model (Long et al., 

2009). 

 

They are predominantly useful in situations where there is dependence on the data, for instance, 

is arising from a hierarchical structure. A practical example is: within Kenyatta National 

Hospital, patients may well be sampled from within doctors, and equally, doctors sampled from 

practices hence variability treated as within group or between groups. The observations are then 

from clusters. Linear Mixed models are useful in the longitudinal analysis of data since they are 

both flexible and extensively applicable, and given that software implementation are available 

for fitting them (Van Montfort, Oud, & Satorra, 2010).  

 

LMM is an extension of a linear regression model with random intercept and slope. The general 

LMM form is similar for longitudinal and clustered observations. 
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2.3.1 Random Slope and Random Intercept Model 

2.3.1.1 Classical linear regression 

Given a set of data {yi, xi1, …… xip}i
n with n units, a classical linear regression, tries to model the 

relationship between the dependent variable y and the p-vector of independent variables x by 

fitting a linear equation to the data observed.  

 

(1)   yi = β0𝟏 + β1xi1 + β2xi2+. .+βpxip + εi = 𝐗i
′𝛃 + εi, where i = 1, . . n, and εi~N(0, σ

2)  

𝐗′𝛃 is the inner product between 𝛃 and 𝐱i: denoted: 𝐲 = 𝐗′𝛃 + 𝛆 in matrix form, 

𝐘 = (

y1
y2
⋮
yn

),  𝐗 = (

𝐗1
′

𝐗2
′

⋮
𝐗n
′

) =    (

1
1
⋮
1

    

x11
x21
⋮
xn1

    

⋯
⋯
⋱
⋯

    

x1p
x2p
⋮
xnp

), 𝛃 =

(

 
 

β0
β2
β2
⋮
βp)

 
 

, 𝛆 =  (

ε1
ε2
⋮
εn

) 

 Y is a vector of observed values yi values response variable. 

 X is the design matrix of row-vectors xi or of n-dimensional column-vectors xj, which are 

explanatory variables,  

 β is a (p+1)-dimensional parameter vector, where β0 is the intercept term  

 ε is a vector of values εi, error term. 

In LMM, if 𝐲𝐢 = (yi…… . y1ni)
T is a vector of  repeated measurements and T the transpose, then 

the general model is 𝐲𝐢 = 𝐗𝐢𝛃 + 𝐙𝐢𝐛𝐢 + 𝛆𝐢, where β is a population average regression 

coefficients vector of fixed effects and bi is a subject-specific regression coefficients vector  that 

describes the deviation of evolution of the ith individual from the average population evolution. 

𝐗𝐢 is an ni x p and 𝐙𝐢 ni x q matrices of known covariates. The residual components 𝛆𝐢 are 

assumed to be independent 𝐍(𝟎, σε
2Ini), where σε

2Ini is dependent on i only through its size ni 

(Molenberghs & Verbeke, 2001). bi  and 𝛆𝐢 are independent. 

2.3.1.2 Random intercept model 

Random intercept model is the simplest mixed model for longitudinal data. 

Notation: Considering n patients in a cohort study, where follow up is over time t  

(2)       Yi = β0 + β1ti1 + εij, where i = 1,…… . . , n,                                                    
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where yij = 1, …… . . , ni, Where Yij are measurements of the individual taken at time j,  

and Yijt = measurement for subject i taken at time t (tij)  

Model (2) assumes independence as in model (1) above. That is, they have the same intercept for 

all subjects and the same slope for all subjects. In random intercept model, patients/individuals 

have their own starting points – own intercepts b0: i = 1,…… . . , n but the slope β1remains the 

same. 

(3)                   Yij = β0 + β1tij + b0i + εij,  

b0i~N(0, σb
2) 

εij~N(0, σε
2) 

εij, b0i, are independent 

Each cluster/subject has its own intercept β0 and b0i and reflects the inter-subject variability at 

baseline. Apart from time, fixed effects, such as treatment group, demographic information, 

interactions among others, can be added into the model (3). 

 

2.3.1.3 Random slope model 

In Random slope model, each patient/cluster also has his/her own slope b1i 

(4)          Yij = β0 + β1tij + b0i + b1i + εij,                                   

εij~N(0, σε
2) 

𝐃 = [
σ0
2 σ01

σ10 σ1
2 ], εij, independent of b0i, b1i.  

In this model, each individual has his/her own β1 + b1i in addition to individual interceptβ0 +

b0i. It allows the profiles to cross each other when plotted. Fixed effects too can be included in 

(4). 

The random effects covariance: There are now two random effects: b0i, b1i and their 

covariance σ01=σ10. Positive covariance shows that the subject higher at baseline also higher 
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evolution while negative covariance shows that the subject higher at baseline, slower evolution. 

The covariance unrestricted (unstructured). 

 

2.3.2 Conditional and Marginal distributions: Random intercept model 

Take E(Y|b) and Var(Y|b) 

(5)          Yij = β0 + β1tij + b0i + b1i + εij,                                    

(6)           E(Yij|b0i) = β0 + β1tij + b0i                                         

(7)            Var(Yij|b0i) =  σε
2                                                              

Yij|b0i~N(β0 + β1tij + b0i, σε
2)                                     

Marginal distribution (marginal over the random intercepts): 

Take E(Y) and Var(Y) 

(8)        Yij = β0 + β1tij + b0i + b1i + εij,                                   

(9)        E(Yij) = β0 + β1tij                                                             

(10) Var(Yij) =  σb
2  + σε

2                                                             

Yij~N(β0 + β1tij, σb
2  + σε

2)                                                  

The implied intra-subject correlation: Measurements from the same subject share a random 

effect and this means that, there is a correlation structure. Considering two measurements from 

the same subject:  Yij and   Yik, k ≠  j 

(11)                       Cov(Yij, Yik) = σb
2 

 Correlation between the two measurements from the same subject is given by: 

 

(12)                        Corr(Yij, Yik) =
σb
2

σb
2+σε

2 

 

Exchangeable correlation/compound symmetry: also known as intra-cluster (intra-class) 

correlation. That is, any two measurements taken have the same correlation. This correlation 
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structure is called compound symmetry. It has a constant correlation between any two 

measurements regardless of the time interval, for instance, Corr(Yi1, Yi5) = Corr(Y1j, Yi9). 

However, it may be too restrictive. 

2.3.3 Conditional and Marginal distributions: Random slope model 

The conditional distribution is given by 

(13)      E(Yij|b0i, b1i) = β0 + β1tij + b0i + b1itij and  Var(Yij|b0i, b1i) = σε
2; while the marginal 

distribution is  

(14)    E(Yij) = β0 + β1tij and Var(Yij) = σ1
2tij
2 + 2σ01tij + σ0

2 + σε
2 and is a function of time.  

 

 

The intra-cluster correlation:  

Yij and   Yik, k ≠  j, 

(15)     Cov(Yij, Yik) = σ1
2tijtik + σ01(tij + tik)+ σ0

2 and the ICC a function of time  

(16)          Corr(Yij, Yik) =
σ1
2tijtik+σ01(tij+tik)+ σ0

2

√σ1
2tij
2+2σ01tij+σ0

2+σε
2 √σ1

2tik
2 +2σ01tij+σ0

2+σε
2 

 

 

In general, LMM conditional distributions is given by  

(17)            E(𝐘𝐢|𝐛𝐢) = 𝐗𝐢𝛃 + 𝐙𝐢𝐛𝐢 ; Var(𝐘𝐢|𝐛𝐢) =  σε
2𝐈ni and the marginal:  

(18)            E(𝐘𝐢) = 𝐗𝐢𝛃 and Var(𝐘𝐢) = 𝐙𝐢𝐃𝐙𝐢
′ + σε

2𝐈ni. 
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CHAPTER THREE 

3. METHODOLOGY  

3.0 Introduction  

In the SWOP–Kenya data, viral load measurements are from each sex worker (cluster) hence age 

effects (within cluster temporal changes) and cohort effects (differences between clusters at 

baseline) and predictors can be studied. In this chapter, the study design, sample size and 

variables/measures is described. Detailed graphical methods for the viral load data exploration 

were undertaken for its underlying structure. LMM study methods described in chapter 2 were 

applied to the SWOP data to describe the log viral load evolutions with and model the syndemics 

while attempting to model intra-cluster correlation.  

3.1 Study Design 

This was a retrospective study from a well-established cohort using data collected routinely from 

sex workers’ clinical database for HIV prevention, Care and Treatment maintained by University 

of Manitoba and University of Nairobi. Only HIV-infected sex workers were eligible for this 

study, aged ≥18 and on ART between August 2013 and August 2018. Systematic Random 

Sampling method was used and simple random sampling used to determine the starting point for 

the systematic random sampling. 

3.2 Sample size 

The sample size was calculated by taking the median month on ART (24 months). Since 

statistical power is used in retrospective studies, sample size estimation was done following the 

work of Diggle and Diggle (2002) and Liu and Liang (1997) on sample size calculation for 

longitudinal studies. This was implemented using the R software longpower statistical package 

in R version 3.5.1. The percentage effect of treatment done with 80% power with the level of 

significance, α = 0.05. The calculation carried out for a random intercept model. The treatment 

effect was obtained by calculating the mean change in treatment using initial viral and the follow 

up viral loads and found to be 74%. 

> require(longpower) 

> require(lme4) 

> i.swop<-read.csv(file.choose()) 
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> sample <- lmer(VL ~ months, random=~1|id, i.swop) 

> lmmpower(sample, pct.change = -.74, t = seq(0,24), power = 0.80) # n=291*2 

N=582 and adjusted for 5% data management and missingness to 615. 

This sample size calculation agreed with the simulations of Wang and Xue (2016) in the 

presence of the effect of medication adherence and modifying role of linkage to psychosocial 

support and the effect of the syndemic covariates. 

3.3 Ethical Consideration and Data Management  

3.3.1 Ethical considerations 

Administrative permission to use the SWOP data was obtained from the University of 

Manitoba/University of Nairobi – PHDA. It was carried out in compliance with the principles 

encompassed in the Helsinki Declaration. As a requirement, it was presented to the Ethics 

Review Committee of the Kenyatta National Hospital/the University of Nairobi –KNH/UoN 

ERC for ethical review and approval and as part of clinical database use and as a subset of 

research studies carried out by the University of Manitoba and the University of Nairobi 

(Appendix A).  

To ensure the patients remain anonymous and guarantee confidentiality, all unique personal 

identifiers in the analysis data were removed, and instead replaced with pseudonyms and were 

suitably coded to render it unidentifiable, during file conversion from the programme database to 

Excel spreadsheet.  

3.3.2 Data Management 

Meticulous data cleaning was carried. Often with data obtained from programmes, several files 

were found that were subsets of each other and with information that was required for this study. 

R software was used to merge and append as necessary, by making use of merge() or append() 

functions. The dplyr package’s left, right, inner, anti, outer and semi join functions were used for 

inclusion of columns of data. 

The datasets and their file subsets had unique alphanumeric identifiers and systematic numeric 

codes. Other subsets had purely long numeric code identifiers. Separation of the recurring codes 

was done in order to have the digits only comparable to the other data subsets’ numeric part of 

the alphanumeric identifiers.  
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Effective data merge devoid of information loss was done after separation alphanumeric into 

digits and characters by use of R software’s colsplit function ‘within the reshape2 package 

implemented as s<-colsplit(df$id, "(?<=\\p{L})(?=[\\d+$])", c("char", "digit")). The numeric part 

was then used for joining/merging the files of data. This was enhanced with Microsoft Excel’s 

RIGHT and LEN split functions. 

3.4 Variables and Measures  

3.4.1 Sociodemographic covariates  

These included age, categorical education (completed primary, did not complete primary, 

completed secondary, did not complete secondary, completed tertiary, did not complete tertiary, 

never attended school). Categorical marital status (i.e, single, married and separated/divorced, 

widowed), binary key population type (FSW and MSMW). 

3.4.2 Other baseline variables 

Baseline log10 transformed viral load and recent Nutritional status.  

3.4.3 Outcome variable 

Continuous HIV-RNA (viral load) and Box-Cox transformed HIV viral load measured at the 

SWOP–City clinic. During modelling, the viral load was log10 transformed to correct right 

skewness. 

3.4.4 Medication adherence 

Adherence to ART and CTX measured on an ordinal scale self-reported since the previous visit. 

An ordinal variable with options comprised of: Good; Fair; Poor and in some cases, informative 

“not applicable” due to clinical assessments. Self-report adherence measures have been found to 

have reliable concurrent and predictive validity with measures of disease progression including 

viral load (Lazo et al., 2007; Nieuwkerk & Oort, 2005; Wilson et al., 2002). 

3.4.5 Syndemic variables/factors 

Binary intimate partner violence/physical abuse, binary alcohol and substance use, binary 

chronic illness/TB-infected, binary microbial infections (STI/HCV/HBV/HPV) and binary 

condomless sex. 
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3.4.6 Effect modification variable 

Binary linkage to psychosocial support – including information on safer sex practices, medically 

assisted therapy/naloxone, condom information. 

3.4.7 Data Analysis  

The data was analyzed using R Core Team (2018). The lme4 package (Bates, Mächler, Bolker, 

& Walker, 2014) and the nlme package (Pinheiro, Bates, DebRoy, Sarkar, & Team, 2018), later 

implementations of lme4 (lmerTest) and potentially lme4cens if some of the viral loads are left 

censored (Kuhn & Roeder, 2018) was used. However, lme4cens wasn’t used since log to base 10 

transformations were considered. 

3.4.7.1 Graphical methods for exploring longitudinal data 

Graphical methods enable exploration of mean structure and provision of an idea as to 

reasonable functional form for time for log viral load evolutions (i.e linear relationship with time 

or quadratic) (Molenberghs et al., 2000). These methods also give an idea of what kind of 

random effects structure/should be included in the model (random intercepts or random slopes) 

and explore the covariance structure (Appendix B). 

3.4.7.2 Estimation of longitudinal medication adherence effect  

In the SWOP–Kenya, HIV viral loads measurements, denoted here as Yij, were taken repeatedly 

in an individual i (i=1…...n). Overall, Yij for the retrospective period under this study were 

measured 5 times (j=1…...5). The levels of self-reported medication adherence (Mi) were also 

assessed in each individual in every visit time-point. For individual i, let Xi connote a syndemic 

(or a vector of syndemics) and Zi indicate individual i’s set of covariates e.g level of education, 

gender etc. while tij, the visit time-point, importantly, tij = 0, at baseline. Yi = (Yi1………. Yij)
T 

represents the transposed (T) matrix of the viral load outcomes.  

 

Conversely, if HIV viral loads measures were taken one-off (cross-sectional), a classical linear 

regression with a single-level of medication adherence mediation (M) would be presented as:  

 

(19)     Y = β01 + βcX + ε1 ;  Y = β02 + βc’ X + βbM+ ε2 ; and M = β03 + βaX + ε3,  

 

where: βc = the relationship between the predictor (syndemics) variable and outcome variable 

(viral load). βc’ = the relationship between predictor (syndemic(s)) variable and the outcome 
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variable after adjusting for the mediation effect, βb = the relationship between the mediator 

variable and the outcome variable after adjusting for effects of the predictor variable; βa = the 

relationship between the predictor variable and the mediator; β01, β02 and β03 = the intercepts; 

ε1, ε2, and ε3 = the corresponding error terms;  and σ1
2, σ2

2 and σ3
2 = the corresponding variances. 

 

And the medication adherence’s mediating effect could be described by: βc − βc’ and βaβb  

(Judd & Kenny, 1981a, 1981b; D. MacKinnon, 2008) which are all equivalent (D. P. 

MacKinnon, Warsi, & Dwyer, 1995). 

But then this is generally different in the longitudinal mediation models since assumption of 

independence is violated (P. Cohen, West, Aiken, West, & Aiken, 1984; Steenbergen & Jones, 

2002) and leads to biased standard errors. This makes longitudinal mediation models to be 

complex due to multilevel nature (Pan, Liu, Miao, & Yuan, 2018). Using Wang and Xue 

(2016)’s format, longitudinal effect of X on M maybe be modeled as:  

(20)       𝐌𝐢 = 𝛃𝟎 + 𝛃𝐚𝐗𝐢 + ζ
𝐓𝐙𝐢 + 𝛆𝐢, where ζ is a coefficients’ vector for the covariates’ vector 

Z; εi is normally distributed random error with mean=0.  

According to Laird and Ware (1982), the linear mixed-effects model for the evolutions of 

outcome Y given X (or vector of X), M and Z is: 

(21)          Yij = β0 + βx
cXi + βm

c Mi + βttij + βx
l Xitij + bMitij + ∅

T𝐙it + εij, where b quantifies 

M’s longitudinal effect on Y controlling for X (or X) and Z and βx
l  computes the longitudinal 

effect of X on Y adjusted for M and Z (the Z here is different from that in equation (17) and (18) 

in chapter 2). βx
c and βm

c  are baseline effects for X and M correspondingly. Details of this, 

including hypothesis testing for both effects, can be got in Wang and Xue (2016)’s papers where 

the expectation of E(Yij|Xi, Mi, 𝐙𝐢) and E(Yij|Xi, 𝐙𝐢) are given and the difference in the 

coefficient’s of Xitij method for the longitudinal effects (a*b for fixed effects model) is 

presented. 

3.4.7.3 Estimation of effect of linkage to psychosocial support (effect 

modification)  

The effect of linkage to psychosocial support was modelled as interaction effects/effect 

modifiers. This helped in understanding the effect of the interventions in the SWOP –Kenya 



23 

 

project. Psychosocial support may have a relationship as previously seen by Friedman et al. 

(2017) on HIV viral load. This was assessed/verified with SWOP data by inclusion of an 

interaction term followed by the test its significance. 

3.4.7.4 Estimation of the need of, or the effect of random effects  

This was conducted by computation of the evolutions in log10 viral load over time by adherence 

and model fitting under maximum likelihood (ML) (Appendix C). Test for the need of the 

random slopes and the random intercepts was conducted and the model for population average 

fitted values and subject-specific predictions obtained (Appendix F and D). Within cluster 

resampling method/multiple outputation was applied to the data as described by Follmann and 

Fay (2010) and Follmann, Proschan, and Leifer (2003) due to large of proportion of non-

clustered part of the SWOP data (Appendix G). 
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CHAPTER FOUR 

4. RESULTS 

4.0 Introduction 

In Chapter 4, results from the application of the mixed-effects linear approach to the study of the 

association of syndemics with viral loads in HIV-infected sex workers are presented. The 

sociodemographic data of FSW and MSM are compared. 

4.2 Sociodemographic and epidemiologic profiles of the sex worker cohort 

Table 1 below shows the results from a Chi-square test of differences between FSW and 

MSMW. Age, marital status and highest education level with the exception of GBV in the past 

three months, were statistically significant all with p-value<0.0001. 

Table 1: Sociodemographic and epidemiological profiles of sex workers 

N = 621 

FSW MSMW 

p-value 502 [80.8%] 119 [19.2%] 

Frequency [%] 

Age     

 18–25     26 [5.2] 42 [35.3] <0.0001 

     26–30 74 [14.7] 34 [28.6]  

     31–35 109 [21.7] 22 [18.5]  

     36–40 110 [21.9] 11 [9.2]  

     41–45 83 [16.5] 7 [5.9]  

     45+ 100 [19.9] 3 [2.5]  

Marital status    

     Divorced/Separated/Widowed 36 [45.6] 6 [15.9] <0.0001 

     Married 0 [0.0] 2 [5.2]  

     Single 43 [54.4] 30 [78.9]  

Highest education level    



25 

 

N = 621 

FSW MSMW 

p-value 502 [80.8%] 119 [19.2%] 

Frequency [%] 

 Secondary or below 76 [96.2] 25 [65.8] <0.0001 

 College or above 3 [3.8] 13 [34.2]  

GBV in the last 3 months    

      Yes 15 [19.2] 2 [5.6] 0.05673 

       No 63 [80.8] 34 [94.4]  

 

4.3 Viral load distributional properties 

4.3.1 Key population and age-stratified viral load distributions on a 

logarithmic scale, log10 copies per mL 

Figure 1 shows a histogram of HIV viral loads by key population type. The viral loads (VL) are 

right-skewed hence violates the normality assumption. To normalize the VL data, a 

transformation of the form log (x+1) was done to the VLs, where x is follow up VL. One was 

added since log10 (0) = infinity. When direct log transformation was first carried out, there were 

virally suppressed groups that were below the limit of detection (LOD) of the laboratory machine 

(usually <50 copies/ml). This meant that there were values of zeroes corresponding to the LOD.  

A subsequent plot is illustrated in figure 2 below showing the transformations. After the 

transformation, the data appears normally distributed. 
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Figure 1: HIV viral density by key population type 
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Figure 2: Log-transformed HIV viral load by key population 

A linear model was fitted with ggplot2 disregarding the key population type and other variables. 

The model was fitted with log viral load as the response and age as the predictor. From the 

output below, it seems that older sex workers have somewhat higher viral loads. Figure 3 – 5 

illustrates the viral load distributions.  
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Figure 3: Log-transformed HIV viral load with a linear model of baseline age 
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Figure 4: Stratified log HIV by baseline age 
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Figure 5: Stratified plot of log HIV VL with a linear model 

A plot of the residuals is shown in figure 6 below. The red line seems to be nearly flat, similar to 

the faint grey dashed line around zero. The plot appears to suggest the presence of unusual 

dataset given the points above and below the red line.  
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Figure 6: Residuals vs Fitted plot of log HIV VL +1 

On subsequent fitting of qqplot shown in Figure 7, the points do not fall onto the diagonal dashed 

grey line. This plot exemplifies all the characteristics of badly-behaved residuals against fits plot. 

The expectation is that the residuals bounce randomly around the zero line and that no single 

residual stands out from the pattern. It also shows that there are two sets of observations – those 

contributing one and those with at least one observation. This shows that the assumption of 

linearity is not feasible.  

The independence assumption is violated. This is because the sex worker’s data were collected 

multiple times leading to clusters of observations per sex worker of different sizes. It’s therefore 

reasonable to note that data from the same sex worker are more alike hence correlated. 
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Figure 7: Normal Q-Q plot 

4.2.1 Box-Cox transformation of the HIV viral loads 

Linear mixed effects model assumption is that the model residuals are normally distributed. The 

HIV viral loads were highly positively skewed. The statistical literature typically recommends 

log normalization already implemented and shown in Figure 2 and a Box-Cox transformation 

(Box & Cox, 1964) for such positively skewed data. However, even after log transformation, the 

viral loads still appear skewed. A histogram plot of the log-transformed HIV viral load shows the 

multimodal appearance of the viral load data as shown in Figure 8 below. This still violates the 

normality assumptions.  
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Figure 8: histogram plot of the log-transformed HIV viral load 

So a Box-Cox transformation of viral load +1 was implemented to handle this and a resulting 

histogram plot showed normally distributed viral loads (Appendix E).  
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Figure 9: Box-Cox transformation of viral load +1 
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Figure 8 shows a summary of the mean log viral loads since the initial viral measurement at 

SWOP–City. The temporal means are clustered around log (viral load +1) =1, that is, a higher 

number is virally suppressed when back transformed. There is higher variability in MSMW 
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Figure 10: Temporal means of log viral load 

 

Figure 11: Temporal medians of log viral load 
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The change depicted by the plot of the medians is quite trivial when compared with the temporal 

means given the logarithmic transformations. 

4.3 Individual profile plots 

The observation plans were quite irregular. And since 67.5% of the data wasn’t clustered, the 

profile plot of the whole data was taken, given that a random sample of the data taken consisted 

of only one observation. It is clear from the plot that each sex worker has his/her own intercept. 

Some sex workers initiated ART at higher levels while others began with relatively low viral 

loads. 

 

Figure 12: Individual profile plots by months since baseline 

4.4 Analyses of sociodemographic and epidemiologic fixed effects 

On multivariate analysis of the relationship of sociodemographic factors at baseline with log 
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Table 2: Multivariate Analyses of sociodemographic and epidemiologic fixed effects 

Fixed effects Value 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 0.3503355 1.2395178 40 0.282639 0.7789 

Baseline Age -0.0007971 0.0184604 40 -0.043180 0.9658 

Baseline viral load 0.6411213 0.0793368 40 8.081006 0.0000 

MSMW -0.4252316 0.4079186 40 -1.042442 0.3035 

Marital Status      

      Single -0.0987403 0.6495295 40 -0.152018 0.8799 

      Divorced -0.1854457 0.6900373 40 -0.268747 0.7895 

      Separated -0.0722443 0.6338960 40 -0.113969 0.9098 

      Widowed -0.1313249 0.9026399 40 -0.145490 0.8851 

First CD4 -0.0000111 0.0004260 40 -0.025995 0.9794 

BMI 0.0035646 0.0199652 40 0.178540 0.8592 

Baseline WHO 2 0.2013966 0.2292234 40 0.878604 0.3849 

Baseline WHO 3 0.6832387 0.5773912 40 1.183320 0.2437 

Baseline WHO 4 0.2582573 0.6795783 40 0.380026 0.7059 

Education      

Did not complete primary 2 0.2827462 0.2783826 40 1.015675 0.3159 

Completed secondary -0.0470213 0.3141607 40 -0.149673 0.8818 

Did not complete     

secondary 
0.0430963 

0.3404536 40 
0.126585 0.8999 

Completed tertiary 0.5968396 0.5348929 40 1.115811 0.2712 
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Never attended school -0.0464107 0.6827156 40 -0.067980 0.9461 

 

4.5 The influence of syndemics on HIV viral load outcomes and ART adherence 

4.5.1 Univariable Models by log10 copies per mL 

All the sex workers whose data were analysed did not show signs of Mycobacterium tuberculosis 

(TB) infections. Hence HIV-TB syndemic was not included in the models. 

The intercept (FSW) of the estimate is statistically significant, however, the estimate of MSMW 

is not significant as shown in Table 3 below. This shows that log viral load is not predictable by 

key population type. 

Table 3: Solution to key population type fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.16401 0.05171 667.89660 22.510 <0.00001 

MSMW -0.08508 0.12009 703.63305 -0.708 0.479 
 

 

Table 4 below shows that a unit increase in age at last visit is associated with 0.016 decreases in 

log viral load. The effect is statistically significant. 

Table 4: Solution to Age at last visit fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.761223 0.212368 687.951193 8.293 <0.00001 

Age last visit -0.015589 0.005273 683.677545 -2.956   0.00322 
 

 

Condom use and having experienced condom violence does not predict log viral load as 

indicated in Table 5 and 6.  The p-values show a lack of significant effects. The estimate for 

condom use is so negligible too to amount to any effect. 
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Table 5: Solution to baseline condom use fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.544x10-14 1.302 112.4 0.000 1.000 

Use condoms 1.302 1.308 112.3 0.996     0.322 
 

 

 

Table 6: Solution to baseline condom violence fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.286452 0.399882 67.726983 3.217 0.00199 

Condom violence 0.001944 0.237458 73.751998 0.008 0.99349 
 

 

There is a no syndemic association of alcohol use during sex with log viral load as shown in 

Table 7 below. A statistical significance with none use is however present as depicted by the p-

value of 0.000159. 

Table 7: Solution to baseline use of alcohol during sex fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 0.8562 0.2184 104.5845 3.920 0.000159 

Use alcohol during sex 0.1775 0.1046 90.9301 1.697 0.093070 
 

 

Having an STI or having experience GBV in the past 3 months at baseline were not associated 

with a unit change in log viral load outcome. As exemplified in Table 8 and 9 below.  
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Table 8: Solution to any STI fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.13885 0.04743 676.67235 24.012 <0.00001 

Any STI 0.28903 0.26316 669.21145 1.098 0.272 
 

 

 

Table 9: Solution to baseline GBV in the last 3 months fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.5472 0.4360 91.4078 3.549 0.000613 

GBV in the last 3 Months -0.2009 0.2348 95.1682 -0.856 0.394253 
 

 

On nutritional assessments, it was established that normal weight, being obese, overweight and 

underweight did not yield statistical significance in the prediction of a unit increase in log viral 

load as shown in Table 10 below.  

Table 10: Solution to Nutritional assessment fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.06673 0.11888 764.40180 8.973 <0.00001 

Nutrition Assessment      

      Normal 0.16322 0.14175 731.98252 1.151 0.2499 

      Obese 0.01046 0.15084 722.62082 0.069 0.9447 

      Overweight 0.02301 0.15630 728.08250 0.147 0.8830 

      Underweight 0.58325 0.30746 699.36943 1.897 0.0582 
 

 

A statistically significant association was found for poor adherence to CTX and ARV 

medications with p=values of 0.0185 and <0.001 respectively. Table 11 and 12 shows the results.  
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Table 11: Solution to last CTX adherence fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.09848 0.11535 760.54478 9.523 <0.00001 

Last CTX adherence      

      Fair 0.70415 0.40170 600.72317 1.753 0.0801 

      Good 0.03144 0.12636 744.01651 0.249 0.8036 

      Poor 1.11367 0.47197 768.95627 2.360 0.0185 
 

 

Table 12: Solution to last ARV adherence fixed effects 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.09075 0.11326 756.58847 9.630 <0.00001 

Last ARV adherence      

      Fair 0.83222 0.40756 638.74475 2.042 0.041569 

      Good 0.02869 0.12517 738.62302 0.229 0.818745 

      N/A 0.05660 0.22860 699.24731 0.248 0.804524 

      Poor 1.47060 0.44153 773.55219 3.331 0.000907 
 

 

4.5.2 Estimates of baseline and longitudinal ART adherence effect on 

syndemics 

A unit increase in the months since baseline was associated with 0.055110 Box-Cox transformed 

viral load, however, this effect wasn’t statistically significant (p>0.005).  A unit increase in the 

Poor ARV adherence variable was associated with 3.408471 in Box-Cox transformed viral load 

(p= 0.0225). Longitudinal ART adherence was associated with a reduction in Box-Cox 

transformed viral loads, nonetheless, these effects were not statistically significant as shown in 

Table 13 below. 
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Table 13: Multivariable analyses of longitudinal ART adherence effect 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.452759    1.555093  111.035577    0.934    0.3522 

Condom use  0.814601     1.419900  106.356418     0.574    0.5674 

STI  2.493874     1.178182   111.871006    2.117    0.0365 

Sex under alcohol  0.021026    0.157045  111.333307     0.134    0.8937  

Use drugs  -0.193695     0.278021  111.033599    -0.697    0.4875 

GBV last 3 months  0.436554     0.337270   101.008574    1.294    0.1985 

Sex Alcohol: month   0.002879    0.010557  108.838961    0.273    0.7856 

Use Drugs: month                        0.011056    0.020340  104.494743    0.544    0.5879 

GBV last 3 

Months: month                        

-0.013711    0.020098  110.360585  -0.682    0.4965 

Nutritional assessment 

Normal weight  -1.811510    1.076736  109.947301    -1.682     0.0953 

    Obese -2.685814    1.132014  110.410357  -2.373    0.0194 

    Overweight -1.918072    1.064696  111.173872  -1.802    0.0743 

    Underweight  -2.913506    1.511005  111.271489   -1.928    0.0564 

     Normal: month 0.079027    0.113806  101.194580    0.694    0.4890 

    Obese: month 0.094694    0.117310  102.313567    0.807    0.4214 

 Overweight: month  0.066506     0.115501  104.774918     0.576    0.5660 

Month  -0.055110    0.106997   101.316395   -0.515    0.6076 

Good ARV 

Adherence 
 0.774124    0.941507  109.669341    0.822    0.4127 

N/A ARV 

Adherence 
2.182887    1.189886  110.921060    1.835   0.0693 
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Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Poor Last ARV 

Adherence 
 3.408471    1.472739  111.724423     2.314     0.0225 

Months: Good last 

ARV Adherence 
-0.009743    0.062218  107.373371   -0.157  0.8759 

Months: N/A last 

ARV Adherence 
 -0.021690     0.076786    96.122805   -0.282     0.7782  

 

4.5.3 Multivariable Model by log10 copies per mL and Box-Cox transformed 

viral loads 

From a multivariable model, only STI and condom use had a statistically significant effect. The 

results of multivariable analyses are shown in Table 13 below. 
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Table 14: Solution to Multivariable Fixed Effects under log10 and Box-Cox transformations 

 Log10 transformation Box-Cox transformation 

Fixed effects Estimate t-value Pr(>|t|) Estimate t-value Pr(>|t|) 

Intercept -1.523546 -0.787 0.4332 -1.16365 -0.611 0.5426 

MSMW 0.522025 0.665    0.5082   0.57266 0.761 0.4490 

Age last visit -0.009883 -0.598 0.5519 -0.01171 -0.736 0.4640 

Use condoms 3.684080 1.988 0.0498 3.87133 2.123 0.0364 

Condom violence -0.037274 -0.130 0.8973 0.02043 0.074 0.9413 

Use alcohol during sex 0.099010    0.4552   0.4552   0.09571 0.764 0.4476 

GBV in the last 3 Months   0.137668  0.424    0.6731   0.06532 0.212 0.8331 

STI 2.887143 2.251 0.0268 2.00675 1.588 0.1156 

Nutrition Assessment       

    Normal 1.961354    1.481    0.1422   1.68226 1.289 0.2005 

    Obese 1.399240     1.085    0.2807   1.12909 0.887 0.3772 

    Overweight 1.793974    1.347    0.1813   1.60480 1.224 0.2241 

    Underweight 0.596436    0.333    0.7396   -0.22127 -0.125 0.9006 

Last CTX Adherence       

      Fair -2.706450    -1.544    0.1260   -2.26829 -1.310 0.1936 

      Good -3.089226      -1.904    0.0606  -3.03946 -1.929 0.0572 

Last ARV Adherence       

      Good 0.585044    0.581    0.5639   0.64564 0.678 0.5007 

      N/A 1.749141     1.556    0.1256   1.99664 1.880 0.0653 
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4.6 Syndemics and viral load outcomes and effect modification by linkage to 

psychosocial support 

STI was included in the model since it was statistically significant in the multivariable model 

fitted before. The interaction between STI and linkage to psychosocial support had statistically 

no significant association with change in log viral load. Statistically significant modification 

effect was reported between poor CTX adherence and linkage to psychosocial with a p-value of 

0.00858. The sex workers linked to psychosocial support had 3.76283 increase for a unit increase 

in linkage to psychosocial support variable. Further, a unit increase in linkage to psychosocial 

support was associated with 0.10077 reductions in log10 viral load, nonetheless, this was not 

statistically significant at alpha 0.05 (p=0.454).  The underweight sex workers linked to 

psychosocial support had 0.6904 decreases in viral load.   

     

Similarly, significance in effect modification in terms of interaction between poor adherence to 

ARV and linkage to psychosocial support with a p-value of 0.0196 was established. 

Table 15: Solution to modification effect on log10 viral load of linkage to psychosocial support 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Linkage to psychosocial 

support 
 

  
  

      Intercept 1.16233 0.05041 668.33412 23.056 <0.0000001 

      Linked -0.10077  0.13448    701.65477    -0.749      0.454  

Age Last Visit      

     Intercept 1.759 0.2325 685.3 7.564 <0.0000001 

     AgeLastVisit:Linked 0.0003448   0.01468   676.4     0.023   0.98127 

STI      

      Intercept 1.1582      0.0508  664.2407   22.798 <0.0000001 

       STI:Linked 0.1513      0.5485  707.0791    0.276     0.783 

Nutrition Assessment – 

underweight 
 

  
  

    Intercept 0.6904 0.3326   0.066    2.076 0.0383 

    Underweight:Linked -0.6904   1.022 0.08027 0.676    0.4994 
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Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Last CTX Adherence      

      Intercept 1.11890     0.11911  751.39542    9.394 <0.0000001 

      Intercept(Fair) 
0.89861     0.43230  609.10972    2.079  

0.03806 

0.03806 

      Intercept(Good)  0.02633      0.13168   732.11429     0.200   0.84160 

      Intercept(Poor) 0.63612     0.50535  751.39542    1.259   0.20851 

      Fair:Linked 
-1.17521     1.19390  537.87470  

- 

-0.984   0.32539 

      Good:Linked  0.22390     0.49339  754.59293    0.454   0.65011 

     Poor:Linked  3.76283     1.42813   801.07046     2.635   0.00858 

Last ARV Adherence      

       Intercept 1.11018     0.11726  744.92270   9.468    <0.00000001 

       Intercept (fair) 0.90813     0.42990  606.99023    2.112    0.0351 

       Intercept(Good) 0.02366     0.13095  723.95962    0.181    0.8567 

       Intercept(N/A) 0.06615     0.24620  689.39726    0.269    0.7883 

       Intercept(Poor)  1.10081    .  0.47019  756.01469     2.341     0.0195 

       Fair:Linked 
 -0.66395      1.39780  788.90935  

- 

 0.475       0.6349 

       Good:Linked  0.22161      0.49225   749.85811     0.450    0.6527 

       N/A:Linked 0.12615     0.72488  701.64283    0.174    0.861 

       Poor:Linked 3.29823     1.41071  797.45617    2.338    0.0196 
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4.7 Random effects model for viral load by last adherence 

4.7.1 Random intercept model of Box-Cox transformed HIV viral load and 

adherence with month interaction 

Tables 15 and 16 shows the results from linear mixed-effects fits by random intercept and only 

random slopes. The intercepts are highly statistically significant. 

Good ARV adherence is associated with a decrease in viral load by 0.2522 but not statistically 

significant. A unit increase in the month since baseline was associated with -0.001811 change in 

transformed viral load. However, an interaction of Good last ARV adherence and month since 

baseline did not yield a statistically significant result.  

A unit increase in the variable Poor Last ARV Adherence was associated with 1.237 positive 

change in transformed viral load baseline effects. An interaction with month yielded 0.1528 

negative change suggestive of programme intervention along the follow-up.  

Table 16: Random intercept Linear mixed model fit by maximum likelihood 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.710 0.1330 839   12.856 0.0000 

Month -0.001811 0.01512  830.1   -0.120 0.9047 

Fair ARV Adherence  0.2499  0.5211 740.3  0.480   0.6317 

Good ARV Adherence -0.2522 0.1488 837.1  -1.695 0.0904 

N/A ARV Adherence  0.02378   0.3026 815.7  0.079 0.9374 

Poor Last ARV Adherence  1.237 0.4907  823.7 2.522 0.0119 

Month: Fair last ARV 

Adherence 
0.03171  0.03622 643.9  0.875  0.3816 

Month: Good last ARV 

Adherence 
 0.01333 0.0157 830.9   0.849 0.3960 

Month: N/A last ARV 

Adherence 

-

0.00003732 

0.02425 831.8 -0.002 0.9988 

Month: Poor last ARV 

Adherence 
-0.1528 0.09255 838.9  -1.651 0.0990 
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Table 17: Random slope Linear mixed model fit by maximum likelihood 

Fixed effects Estimate 
Standard 

Error 

Degrees of 

freedom 
t-value Pr(>|t|) 

Intercept 1.727139 0.133695 840.0 12.919 0.0000 

Month -0.005885 0.015298 840.0 -0.385 0.7006 

Fair ARV Adherence  0.2499  0.510392 840.0  0.528  0.5975 

Good ARV Adherence -0.222942 0.149175 840.0  -1.494 0.1354 

N/A ARV Adherence  -0.002194  0.300550 840.0   -0.007 0.9942 

Poor Last ARV Adherence  1.250819 0.489553 840.0 2.555 0.0108 

Months: Fair last ARV 

Adherence 
0.036011 0.034965 840.0  1.030 0.3033 

Months: Good last ARV 

Adherence 
  0.014355 0.015880 840.0   0.904 0.3663 

Months: N/A last ARV 

Adherence 
0.002876 0.024532 840.0 0.117 0.9067 

Months: Poor last ARV 

Adherence 
-0.145579 0.093040 840.0 -1.565 0.1180 

 

Residual variance associated with random slopes was 1.501 with SE of 1.225. 

Table 18: Likelihood ratio test 

 Model DF AIC BIC LogLik Deviance Chisq. Chi Pr(>Chisq) 

LMM 

(slope) 
1 4 2780.0 2799.0 -1386.0 2772.0    

LMM 

(intercept) 
2 4 2770.5 2789.5 -1381.2 2762.5 9.5294 0 <0.0000001 

 

The fixed parts of the two models seem to be identically close to that of each other, however, the 

standard errors associated with intercept and levels of adherence are different. On doing a 

likelihood ratio test (LRT) by analysis of variance (anova(modelML_slp,modelML_int) to 

compare the models, the results showed that the two models were significantly different (p-

value<0.0001) as shown in Table 17 below. Given the small standard errors obtained from linear 

mixed-effects model fit by maximum likelihood, it was an easy pick of LMM. The broad 

analysis interest was to understand the growth of the cohort effect. 
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All the models were fitted by maximum likelihood (ML) estimation. A chi-square test for 

comparing the log likelihoods of the two models was done. The likelihood ratio test/χ2 test is 

generally conservative for significance testing of a random effect since the null value (σ2=0) lies 

at the feasible space boundary. However, looking at the scenario, strong evidence existed for 

rejecting the null hypothesis that the two models are the same. The model with random effects of 

sex worker from the models is 1386.0 - 1381.2=4.8 log-likelihood units better. Chi-square test 

was then done, and since twice the log-likelihood of the value is χ2 distributed, the direct p-value 

computation gave a value of - -2.710908from the R code: pchisq(2*4.8, df=1,lower.tail=FALSE, 

log.p=TRUE)/log(10). This is a p-value of approximately 102.710908(or 0.001945772) which is 

overwhelmingly statistically significant.  

The variance of the random intercept effect and slope was 0.2043 and 1.501 respectively and 

these capture individual sex worker variation not explained by fixed effects. The residual 

variance is 1.2877 which relates to within individual sex worker variation in which case where 

no fixed effects differ within individual sex worker. The residual variance is the conditional 

variance of the random effects model shown in Table 18 below. 

Table 19: Variance of the random effects 

Random effects Groups Name  Variance   Std. Dev 

Random 

intercept 

ID Intercept  0.2043  0.452 

Residual  1.2877 1.135 

Random slopes ID Month 0.000 0.000 

Residual  1.501 1.225 

 

4.7.2 Within cluster resampling – Multiple outputation 

Sixty-seven point five percent of the data wasn’t clustered, that is, they had single rows of data 

per sex worker. The data was subsetted and unique rows of data sampled with replacement in 

order to apply independent data statistical method (linear regression) in the analysis (Appendix 

G).  The estimates appeared closely similar to those fit by linear mixed effects method. The 

intercepts fitted by both methods are both highly statistically significant at 5% level of 

significance. A unit increase in variable poor adherence was associated with 1.043836 positive 

change (increase) in Box-Cox transformed viral load at p<0.05. However, interaction with a 
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number of months since baseline, it was associated with 0.139589 negative change (reduction) in 

Box-Cox transformed viral load. 

Table 20: Within cluster resampling – Mulitple outputation 

 Sample 1 Sample 2 Sample 3 Sample 4 Average 

Fixed effects Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate 

Intercept 1.732383 0.0000 1.70143 0.0000 1.761369 0.0000 1.77266 0.0000 1.741961 

Residual 

variance 
1.317098  1.330892 

 1.30116  1.344535  

1.323421 

Slope 

variance 
0.315324  0.2939389 

 0.2922447  0.2953493  

0.299214 

Adherence  

Fair -0.616729 0.2725 -0.02879     0.9577   -0.071289    0.8951 -0.31152     0.5667 -0.25708 

Good -0.129688 0.3847 -0.21241     0.1578 -0.162801    0.2773  -0.20210     0.1855  
-0.17675 

N/A -0.054627 0.8670  -0.05812     0.8534 0.288852    0.3509  0.36628      0.2436 0.135596 

Poor 1.043836 0.0309  1.18093      0.0121 1.014850    0.0349 1.00355     0.0401 1.060792 

Month   -0.01204     0.5161  -0.012758    0.4513  -0.01350     0.4475 -0.00957 

Adherence* month  

Fair 0.106749 0.0220 0.10768     0.0214 0.109995    0.0166  0.03276     0.4174 
0.089296 

Good 0.003623 0.8443 0.01188     0.5379  0.010554     0.5514 0.01336     0.4711 
0.009854 

N/A 0.018586 0.4888 0.3583 0.3583 -0.001035    0.9686  -0.01009     0.7143 
0.09144 

Poor -0.139589 0.1126 0.0654 0.0654 -0.133425    0.1265  -0.13269     0.1354 
-0.08508 
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4.7.3 Both random intercept and random slope effects 

The study’s last objective was whether a random intercept would be sufficient or the longitudinal 

model needs to have a random slope as well. It appeared that the random intercept was adequate 

– or a random slope as seen in Section 4.8.1.  

Further, it was found that there was probable un-identifiability of random effects parameters and 

residual variance if both random effects were fitted. This is because the number of random 

effects was the total number of observations, this is reminiscent of the irregular observation plans 

in the cohort. On inclusion of both random intercepts and random slopes, the number of random 

coefficients resulting was equal to a number of observations and as such the model could not be 

fitted. Implemented in R as: fit1<-

(lmerTest::lmer(vlbox~month*lastARVAdherence+(month|id),data=i.swop)). Graphical 

summaries of the data such as the individual profile plots and temporal trends detailed in Chapter 

4, Section 4.3.2 and 4.4 also portrayed adequacy of just a random intercept model. 
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CHAPTER FIVE 

5. DISCUSSIONS AND CONCLUSIONS 

5 Introduction 

This Chapter presents a comprehensive discussion of the results of the linear mixed-effects 

method and corresponding findings provided in Chapter 4. 

5.2 Discussion 

The objective of this study was to examine and model the association of syndemics with HIV 

viral load outcomes as well as ART adherence among sex workers living with HIV in the 

SWOP–City cohort using linear mixed-effects. In the background of global efforts of ART scale-

up, this study’s results draw substantial issues of sex workers’ HIV treatment. 

The log viral load temporal means clustered around log (viral load +1) =1, this suggested high 

numbers of sex workers were virally suppressed. This is an important aspect of TasP. Graphical 

summaries showed the adequacy of random intercept model.  

Investigating the longitudinal trajectories of HIV viral load following ART initiation is important 

in identifying HIV viral load change points. There were high numbers of left-censored 

observations (15%) at LOD, 71% having had 10 HIV viral load copies and overall, 92% with 

viral load copies below 350 copies/ml. 

A number of syndemic factors were looked at in the study. Condom use and having experienced 

condom violence, alcohol use during sex, STI, experiencing GBV did not have a statistically 

significant effect in the prediction of log viral load. Poor CTX and poor ARV adherence were 

significantly associated with poor low log viral loads all with p<0.05. On the fitting 

multivariable model, STI and condom use had a statistically significant effect (p<0.05). Linkage 

to psychosocial support played a key role in modifying the relationship between log HIV viral 

and poor adherence (for CTX p=0.00858 and ARV p=0.0196). All other effect modifications by 

linkage to support was not statistically significant. 

Characteristically, medium and high linkage to psychosocial support tend to be associated with 

higher levels of HIV viral load suppression to LOD and lower HIV viral load means (Friedman 

et al., 2017) and medians. 
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Consistent with earlier studies (Bain-Brickley, Butler, Kennedy, & Rutherford, 2011; Duff et al., 

2016; Kranzer, Lawn, Johnson, Bekker, & Wood, 2013; Ortego, Huedo-Medina, Vejo, & Llorca, 

2011; Ramadhani et al., 2007; Rupérez et al., 2015), sex workers with good adherence had 

higher inclination to viral suppression. Syndemics, mostly psychosocial ones, are additively 

associated with poor ART adherence (Blashill et al., 2015) but when these are tackled, this effect 

is lessened. 

It is vital to assess hypotheses under a suitable random effect structure. For instance, often it is 

inadequate to just include random intercepts in the LMM. Random slopes may perhaps be 

essential. However, looking at the output presented in Chapter four, the results demonstrate that 

LMM with a random intercept was fairly adequate. This implies that every sex worker studied 

started at a specific own intercept of viral load at ART initiation and then viral load diminishes 

with ongoing care – especially for those virally suppressed.  

This study considered fitting GLS since there were many sex many sex workers on ART who 

contributed single rows of data (one observation). There was a statistically significant difference 

between GLS model and LMM as demonstrated by likelihood ratio test and Chi-square test. 

Given the small standard errors obtained from LMM fit by maximum likelihood, the LMM 

characteristically important in understanding the evolutions of viral loads. The main interest in 

fitting the intercept was to understand the growth of the cohort effect the slopes.  

In many observational studies, patients are usually followed over a period of time and are 

evaluated at regular intervals/times in a schedule common to all of them. Practically, this is 

infeasible in situations like that of sex workers following dynamic observation plans. This 

dynamism results in irregular plans of observations. Trying to fit a random intercept model in 

this study led to many random effects equivalent to the number of observations. However, the 

random intercept model was well enough for the analysis of the cohort effect and individual 

trajectories of log viral load. 

5.3 Limitations 

Since this is an observational cohort study, recall and social desirability biases may have arisen 

given the self-reported measurement of adherence. Limited time for the sex workers recently 

initiating ART may have been a challenge, however, the LMM method of analysis may take care 

of this. The initial interest of the study was to look ARV and CTX adherence as time-dependent 
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covariates, however, data for last adherence from the cohort was available and therefore used. 

Therefore, the longitudinal effect of adherence was not evaluated. 

5.4 Recommendations 

Given the statistical significance of the effect modification, the SWOP–City programme may 

deem it necessary to increase linkage to psychosocial support. This model has shown that it is a 

useful component in the reduction of viral load copies in the cohort. An interaction of linkage 

and poor adherence gave a statistically significant result.  Adherence to ART is important has 

public health implications. Considering the structural and social contexts that tend to shape the 

sex workers ART experiences and affect outcomes of treatment. 

5.5 Future research 

Typically, HIV patients follow semiannual person-visits after ART initiation. However, irregular 

observation plans present challenges and opportunities for further research. Such irregular plans 

may have some potentially informative follow-ups or visiting schemes within the cohort, as such; 

future research may need to consider outcome dependent visits/follow-ups and predictors of visit 

times. Similarly, it appears that informative and non-informative cluster sizes could possibly be 

modeled to understand why some sex workers contribute few repeated observations may be 

useful too for the future studies to look at arbitrary patterns of data missingness.  

Future studies may need to consider time-dependent/time-varying syndemics. Further research 

on HIV care among sex workers is necessary, alongside structural and community or outreach-

led interventions to sustain the sex workers access to and in-care retention. Additional statistical 

methods, specifically mixed-effect modeling of time-to-retention in care may prove useful in 

understanding the HIV care continuum. 

5.6 Conclusions 

This study found low to moderate effects of syndemics at the sex workers level. Syndemics have 

an influence on longitudinal HIV viral load outcomes, however, in the presence of medication 

(ART and CTX) adherence and linkage to psychosocial support, the effect appears to diminish. 

The relationship between syndemics and HIV viral load outcomes become insignificant as 

linkage to psychosocial support is sustained. Random intercept model was sufficient in the 

analysis of viral load longitudinal subject-specific trajectories and may prove useful in the 

clinical assessment of an individual sex worker with elevated viral load and at the programme 
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level to identify potential hotspot of viral transmission.  The results of this study suggest that for 

this sample of sex workers with a history of syndemic problems either medication adherence or 

linkage to psychosocial support was associated with comparatively reduced levels of log (viral 

load +1). 
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Appendix B: R scripts – Exploring log viral load longitudinal data  

##Individual profile plots 

# plotting for all the sex workers, first 

i.swop<-read.table(file="C:/MyPath/i.swop.csv", header=TRUE, sep="") #reading full swop data  

View(i.swop)  

#dropping the variables not needed currently  

dropvars<-names(i.swop) %in% c("N", "var")  

i.swop <- i.swop[!dropvars]  

View(i.swop) 

#plot  

library(ggplot2) #needs ggplot2 R package 

p_swop<- ggplot(data = i.swop, aes(x = visit, y = lgviral, group = sw_id))  

p_swop + geom_line() 

#all sex workers, separately by adherence category  

p_swop + geom_line() + facet_grid(. ~ lastARVadherence) 

#plotting individual profiles for a randomly selected 15 patients  

#first reading in data file containing swop data for 10 randomly selected sex workers 

i.swop<-read.table(file="C:/MyPath/i.swop.csv", header=TRUE, sep="")  

View(i.swop)  

library(ggplot2) #needs ggplot2 R package too 

 

is.factor(i.swop$id) #id variable needs to be in factor form 

as.factor(i.swop$id) #convert to factor  

p_swop <- ggplot(data = i.swop, aes(x = months, y = logVLplus1, group = id))  #defining graph  

#plotting  

p_swop + geom_line() 

#Average profile plots  

swop<-read.table(file="C:/MyPath/i.swop.csv", header=TRUE, sep="") #reading full swop data 

View(i.swop)  

#########  

#getting average profile plot  
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##########  

#first getting mean at each visit time point  

swopmean_v<-aggregate(i.swop$ logVLplus1, by=list(i.swop$months), FUN=mean) 

View(swopmean_v)  

names(swopmean_v)  

names(swopmean_v)<-c("months","mean_ logVLplus1") #renaming variables accordingly  

View(swopmean_v)  

#simple line plot as average profile plot  

plot(swopmean_v$months, swopmean_v$mean_ logVLplus1, type="l", ylab="Average Log HIV 

Viral Load", xlab="Month") 

####################################################################  

#Obtaining average profile plot by adherence category  

####################################################################  

#first obtaining mean at each visit time point by adherence  

swopmean_v_byadhr<-aggregate(i.swop$ logVLplus1, 

by=list(i.swop$months,i.swop$lastARVadherence), FUN=mean)  

View(swopmean_v_byadhr)  

names(swopmean_v_byadhr)  

names(swopmean_v_byadhr)<-c("Months","Adherence","Mean") #renaming variables 

accordingly  

View(swopmean_v_byadhr) 

#average profile plots by adherence  

swopmean_byadhr<- ggplot(data = swopmean_v_byadhr, aes(x = Visit, y = Mean, group = 

lastARVAdherence))  

swopmean_byadhr + geom_line(mapping=aes(colour=lastARVAdherence)) 

Appendix C: R scripts for – the evolutions in log10 viral load over time by adherence 

#Tests for fixed effects  

library(nlme) #call the nlme library  

#fitting random intercept model  
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randint_logVLplus1 <- lme(logVLplus1 ~ month*lastARVadherence, data = i.swop, random = ~ 

1|id, na.action=na.omit)  

summary(randint_logVLplus1) 

#fitting random slope model via restricted maximum likelihood (REML) – default 

randslp_lgviral <- lme(logVLplus1 ~ month*lastARVdherence, data = i.swop, random = ~ 

1+visit|id, na.action=na.omit)  

summary(randslp_logVLplus1) 

#############################  

#fitting same model under ML  

#############################  

#first call the nlme library  

library(nlme)  

#fit random slope model  

randslp_lgviralML <- lme(lgviral ~ visit*adhere, random = ~ 1+visit|id, method="ML")  

summary(randslp_lgviralML) 

#testing for interaction using likelihood ratio test  

#fitting reduced model - without interaction  

randslp_lgviralML_red <- lme(logVLplus1 ~ monthst+lastARVadherence, random = ~ 

1+visit|id, method="ML")  

summary(randslp_lgviralML_red)  

#log likelihood for this model is xxxx.xxx  

#log likelihood for model with interaction (above) will be yyyy.yyy  

#computing likelihood ratio test statistic  

lrt<--2*(xxxx.xxx+yyyy.yyy)  

lrt 

#likelihood ratio test for significance - using Chi-Square with 2 degrees of freedom  

pchisq(lrt, df=2, lower.tail=FALSE) 

##repeating interaction test using anova function  

anova(randslp_lgviralML, randslp_lgviralML_red)  

#repeating test for interaction - F test  
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anova(randslp_lgviralML, type="marginal") 

 

Appendix D: R scripts – Test for the need of the random effects 

#fitting and testing for random slope  

randslp_lgviral<- lme(logVLplus1 ~ months*lastARVadherence, random = ~ 1+months|id)  

summary(randslp_lgviral)  

#maximum likelihood value = xxxx.xxx  

#fitting random intercept model  

randint_lgviral<- lme(logVLplus1 ~ months*lastARVadherence, random = ~ 1|id)  

summary(randint_lgviral) 

#maximum lik. value = xxxx.xxx  

#likelihood ratio test statistic  

lik_slp<--2*(xxxx.xxx+yyyy.yyy) 

#mixture of chi-square test with 1 and 2 df  

p_value<-0.5*pchisq(lik_slp, df=1, lower.tail=FALSE)+0.5*pchisq(lik_slp, df=2, 

lower.tail=FALSE)  

p_value 

 

######  

#testing for random intercept  

######  

#random intercept model  

randint_lgviralML<- lme(logVLplus1 ~ months*lastARVadherence, random = ~ 1|id, 

method="ML")  

summary(randint_lgviralML)  

#fit model without any random effect - just ordinary multiple linear regression  

linreg_lgviral<-lm(logVLplus1 ~ months*lastARVadherence)  

summary(linreg_lgviral)  

#extract max lik value  

logLik(linreg_lgviral) #xxxx.xxx 
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#likelihood ratio stat  

lik_int<--2*(xxxx.xxx+yyyy.yyy)  

#mixture of chi-square with 0 and 1 df  

p_value_int<-0.5*pchisq(lik_int, df=1, lower.tail=FALSE)  

p_value_int 

############  

#estimates of the random effects  

############  

random.effects(randslp_lgviral)  

##############  

#fitted values  

##############  

fitted(randslp_lgviral, level=0) #the cohort/community viral load – population average  

fitted(randslp_lgviral, level=1) #a sex worker viral load – subject specific 

############################################################################## 

################LINEAR MIXED MODELS################################### 

########################RANDOM EFFECTS####################### 

i.swop<-read.csv(file.choose()) 

#first call the nlme library  

library(nlme)  

library(lme4) 

library(lmerTest) 

###Random intercepts 

model1 <- gls(logVLplus1 ~ months*lastARVAdherence, data = 

i.swop,na.action=na.omit,method="ML") 

summary(model1) 
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model2 <- lmerTest::lmer(logVLplus1 ~ months*lastARVAdherence +(1 | id), data = 

i.swop,na.action=na.omit,REML=FALSE) 

summary(model2) 

model3 <- lme(logVLplus1 ~ months*lastARVAdherence, random = ~1|id, data = 

i.swop,na.action=na.omit,method="ML") 

summary(model3) 

lrt1<-anova(model1, model2) 

lrt1 

lrt3<-anova(model1, model2) 

lrt3 

lrt5<-anova(model1, model3)lrt5 

##Random slopes 

model4 <- lmerTest::lmer(logVLplus1 ~ months*lastARVAdherence +(1 | id), data = 

i.swop,na.action=na.omit,method="ML") 

summary(model4) 

lrt2<-anova(model1, model4) 

lrt2 

model5 <- lmer(logVLplus1 ~ months*lastARVAdherence, random = ~months|id, data = 

i.swop,na.action=na.omit,REML=FALSE) 

summary(model5) 

model6 <- lme(logVLplus1 ~ months*lastARVAdherence, random = ~1+months|id, data = 

i.swop,na.action=na.omit,REML=FALSE) 

summary(model6) 

m2 <- lmer(logVLplus1 ~ months*lastARVAdherence + (1+month|id), i.swop) 
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summary(m2) 

randslp_lgviral<- lme(logVLplus1 ~ months*lastARVAdherence, random = ~ 1+months|id,data 

= i.swop,na.action=na.omit,method="ML")  

summary(randslp_lgviral)  

randslp_lgviral<- lme(logVLplus1 ~ month*lastARVAdherence, random = ~ 1+month|id,data = 

i.swop,na.action=na.omit)  

summary(randslp_lgviral) 

fit1<-(lmerTest::lme(logVLplus1~months*lastARVAdherence+(months|id),data=i.swop)) 

fit1 

pchisq(2*25.045,df=1,lower.tail=FALSE,log.p=TRUE)/log(10) 

## -11.83312 

p<-10 ^-11.83312 

p 

Appendix E: R scripts – Box-Cox transformation of HIV viral loads 

##############################################################################

#########BOX-COX TRANSFORMATION OF VIRAL LOADS######################## 

########################################################################### 

plotNormalHistogram(i.swop$logVLplus1) ##Appears multimodal even after log transformation 

if(!require(MASS)){install.packages("MASS")}  

if(!require(rcompanion)){install.packages("rcompanion")} 

library(MASS) 

Box = boxcox(i.swop$VLplus1 ~ 1, # Transform VL as a single vector  

lambda = seq(-2,2,0.1) # using default values -2 to 2 by 0.1  

) 
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Cox = data.frame(Box$x, Box$y) # Creating a data frame having the results 

Cox 

Cox2 = Cox[with(Cox, order(-Cox$Box.y)),] # Ordering the created data frame by decreasing y 

Cox2 

Cox2[1,] # Displaying the lambda value with the greatest log likelihood 

lambda = Cox2[1, "Box.x"] # Extracting the lambda produced 

lambda 

T_box = (i.swop$VLplus1 ^ lambda - 1)/lambda # Transform the original data 

T_box 

library(rcompanion)  

plotNormalHistogram(T_box) 

##Back-transformation to HIV viral loads 

VL_1 = exp(log(-0.2222222 * T_box + 1) / -0.2222222) 

VL_1 

VL = (exp(log(-0.2222222 * T_box + 1) / -0.2222222))-1 ##1 was added to each viral load 

VL 

Appendix F: R scripts – Model fit by Maximum Likelihood  

######model fit by Maximum Likelihood##################### 

library(nlme)  

library(lme4) 

library(lmerTest) 

i.swop<-read.csv(file.choose()) 

model_nlme<- lme(vlbox ~ lastARVAdherence*month, random = ~month|id, data = 

i.swop,na.action=na.omit,method="ML") ##Random slope 
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summary(model_nlme) ##nlme 

#By lmerTest/lme4 

modelML_int <- lmerTest::lmer(vlbox ~ month + (1|id), 

data=i.swop,na.action=na.omit,REML=FALSE) 

summary(modelML_int) 

coef(modelML_int) 

modelML_int1 <- lmer(vlbox ~ lastARVAdherence*month + (1|id), 

data=i.swop,na.action=na.omit,REML=FALSE) 

summary(modelML_int1) 

#Random slope only by lmerTest/lme4 

modelML_slp <- lmerTest::lmer(vlbox ~ month + (month+ 0| id), 

data=i.swop,na.action=na.omit,REML=FALSE) 

summary(modelML_slp) ##by month only 

coef(modelML_slp) 

modelML_slp1 = lmerTest::lmer(vlbox ~ lastARVAdherence*month + (month+ 0| id), 

data=i.swop,na.action=na.omit,REML=FALSE) 

summary(modelML_slp1) 

coef(modelML_slp1) 

anova(modelML_int,modelML_slp) 

anova(modelML_slp,modelML_int) 

##Unidentifiable random effects when fitting both intercept and slopes 

modelML_RE <- lmer(vlbox ~ lastARVAdherence*month + (1+month|id), 

data=i.swop,na.action=na.omit,REML=FALSE) 

summary(modelML_RE) 
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Appendix G: R scripts – Subsetting data by random selection of unique rows for multiple 

outputation 

###Multiple outputation–within cluster resampling #4 samples 

############## 

i.swop<-read.csv(file.choose()) 

library(plyr) 

###Sample 1 

i.swop1 <- ddply(i.swop,.(id), 

    function(x) { 

          x[sample(nrow(x),size=1),] 

    }) 

write.csv(i.swop1, file = "i.swop1.csv") 

###Sample 2 

i.swop2 <- ddply(i.swop,.(id), 

    function(x) { 

          x[sample(nrow(x),size=1),] 

    }) 

write.csv(i.swop2, file = "i.swop2.csv") 

###Sample 3 

i.swop3 <- ddply(i.swop,.(id), 

    function(x) { 

          x[sample(nrow(x),size=1),] 

    }) 

write.csv(i.swop3, file = "i.swop3.csv") 

###Sample 4 

i.swop4 <- ddply(i.swop,.(id), 

    function(x) { 

          x[sample(nrow(x),size=1),] 

    }) 
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write.csv(i.swop4, file = "i.swop4.csv") 

#####Within cluster resampling – multiple outputation for syndemics############ 

i.swop1<-read.csv(file.choose()) 

i.swop2<-read.csv(file.choose()) 

i.swop3<-read.csv(file.choose()) 

i.swop4<-read.csv(file.choose()) 

lm_model1<- 

lm(vlbox~CDs+STI+Sex_Alcohol+Use_Drugs+GBV_3Mth+NutritionAssessment,data=i.swop1

) 

summary(lm_model1) 

lm_model2<- 

lm(vlbox~CDs+STI+Sex_Alcohol+Use_Drugs+GBV_3Mth+NutritionAssessment,data=i.swop2

) 

summary(lm_model2) 

lm_model3<- 

lm(vlbox~CDs+STI+Sex_Alcohol+Use_Drugs+GBV_3Mth+NutritionAssessment,data=i.swop3

) 

summary(lm_model3) 

lm_model4<- 

lm(vlbox~CDs+STI+Sex_Alcohol+Use_Drugs+GBV_3Mth+NutritionAssessment,data=i.swop4

) 

summary(lm_model4) 

###########Within cluster resampling – multiple outputation for viral load and########## 

##############ARV adherence*month interaction################################ 

model_vl<- 

lm(vlbox~lastARVAdherence+lastARVAdherence*month,data=i.swop1,na.action=na.omit,RE

ML=FALSE) 

summary(model_vl) 

vcov(model_vl)[2,2] ##Variance of the slope 

(summary(model_vl)$sigma)**2 ##Residual variance 

model_vl2<- 

lm(vlbox~lastARVAdherence+lastARVAdherence*month,data=i.swop2,na.action=na.omit,RE

ML=FALSE) ##REML disregarded in the model 
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summary(model_vl2) 

(summary(model_vl2)$sigma)**2 ##Residual variance 

vcov(model_vl2)[2,2] ##Variance of the slope 

model_vl3<- 

lm(vlbox~lastARVAdherence+lastARVAdherence*month,data=i.swop3,na.action=na.omit,RE

ML=FALSE) 

summary(model_vl3) 

vcov(model_vl3)[2,2] ##Variance of the slope 

(summary(model_vl3)$sigma)**2 ##Residual variance 

model_vl4<- 

lm(vlbox~lastARVAdherence+lastARVAdherence*month,data=i.swop4,na.action=na.omit,RE

ML=FALSE) 

summary(model_vl4) 

vcov(model_vl4)[2,2] ##Variance of the slope 

(summary(model_vl4)$sigma)**2 ##Residual variance 


