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SUMMARY OF CONTENTS

Regression analysis and the analysis of variance are
some of the most widely used statistical methods in biomerics.
In this project, we use regression analysis to study the
relationship between modulus of rapture of timber with
density taking into account of site effects. This shall be
done for two species of wood, namely the pine and cypress.
The analysis of variance is used to study the variation of

strength of these two species of wood with site.

Chapter I section 1.1, gives a general introduction on-
forest management. Section 1.2 gives previous studies done
on forest management and techniques used. The statement and
significance of the problem are contained in sections 1.3
and 1.4 respectively. We make use of sample regression
methods because population parameters are not known. These
techniques are under chapter II. Section 2.1 introduces
the general linear regression, while section 2.2 describes
the linear regression model and some of the major applicable
results. In chapter III the Analysis of Variance is reviewed

and the major results to be applied displayed.

Chapter IV gives the methodology on the applications
of the above techniques to the data of the strength of the
two species of wood, the Pine and Cypress grown in various
districts in Kenya. Indicator variables to define the
district levels are tabulated in tables 2 and 3 for the
two species respectively. Results on the application of

the two statistical techiniques are tabulated in tables



vii

4, 5, 6, 8, 9, 10, 12 and 13.

Finally Chapter V deals with the discussion and
concluding remarks based on the results in chapter IV.
In brief we discuss how the findings can be beneficial
in efficient utilization of timber from the two species
and in forest management in general. We also give

recommendations for future studies in the area.
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CHAPTER 1
INTRODUCTION

1.1 General Introduction on Forest Management

A forest Manager dealing with a renewable forest
resource is usually concerned with the optimal harvesting
strategy, when trees are classified by age structure or
size structure. This would avoid unplanned depletion of
the resource. Unfortunately data to carry out such a study

is not available from the forest inventory of Kenya.

On the otherhand a forest utilization officer is
interested in knowing characteristics of wood such as the
modulus of rapture, modulus of elasticity, stress at limit
of propotionality and many more. These properties of
mature wood could help such an officer to calculate design
stresses in order to set quality standards of the material

concermned.

In this project we shall deal with two types of soft-
woods grown in Kenyan forests for commercial use, these
being the pine and cypress species. It is from these two
species that some of the timber used in construction work
is obtained. Each of these two species is grown in a given
number of districts. The main property of interest under
study for these two types of wood is their strengths. In
particular the modulus of rapture which contributes greatly
on deciding the strength of wood shall be studied. In the
past a sample of size Nji was collected from district
i 5 i =2 1,2, o W where v is the number of

districts, then conclusions about design stresses maede from



a pooled down sample. Modulus of rapture is the maximum
load the experimental material can be able to support before
it fails or breaks. Knowledge of material strength is a
fundamental necessity in all structural designs. In Kenya
strength values of the locally available wood are not

reliably known.

Variation of strength of wood with site is one aspect
which has not been given attention in the past. In this
project we shall develop a one way analysis of variance
model to study this. We shall take the various sites
(districts) as the treatments. A general linear regression
model of modulus of rapture on density shall be developed
taking into account of site. This shall necessitate the
use of indicator variables. The study shall be based on
data obtained from the FOREST PRODUCTS RESEARCH PROGRAMME

under KENYA FOREST RESEARCH INSTITUTE.



1.2 LITERATURE REVIEW

Forest management is an area in forestry where alot
has been done. Scientists have done studies on both manage-

ment methods and properties of timber itself.

Biolley (1920, 1954) deals with a method of management
of renewable resources which is called the check method.
His system of management aims at producing as much timber
as possible, consistent with the constraints of quality

and conservation.

Selection forests as an example of renewable resource

was first conceived by Gurnaud in the nineteenth century.

Colette (1934, 1960) considered methods of selection
working and the exploitation of the stand was based on the
results of periodic enumerations where records by species
and circumference classes is a pre-requisite. Colette uses
this information to calculate approximate probabilities of
transition from one circumference class to the class above
and figures usea to calculate the exploitation. The stem-
number curve forms a graphical check on the stand. The
curve is compared with a theoretical smooth curve in which
the number of trees in each successive class is represented
by a decreasing geometric progression. Successive terms
in this progression are related by the coefficient of

"diminuation"

Another notable contributions towards the problem of
forest management have been made by Usher. For example,

Usher (1966) describes a method of calculating the



coefficient of diminuation. Taking into account that a
manager of a selection forest knows the individual recruit-
ment probabilities in each class to classes above, a
theoretical structure can be determined which can be deter-
mined for any set of management objectives. The structure
according to Usher is unique and it optimizes the yield
from the resource over a long period of time. With the
recruitment data available Usher came up with a matrix M
that links the number in various size groups at time t

to that at time t+1, and the relation is

Mie = Dz
From this a stable structure can be predicted. This struc-
ture is associated with a dorminant latent root of the
matrix, which is greater than unity. Associated with this
latent root is a latent vector such that all its elements
can be chosen positive. However the model did not tell
whether the solution is unique or not.
In another paper Usher (1969) developes a model for the
management of renewable resouce. The mathematical develop-
ment in this paper shows that there is only one solution
of the model that is biologically meaningful. The solu-
tion is associated with the only latent root of matrix M
which is greater than unity. This latent root has a latent
vector such that all its components can be chosen as

positive. He tested the data for a Scots pine forest.

Patterson (1971), in his study of the Kenyan wood,

found that Kenya's timber strength may strongly be



related to
(a) density and to some species to
(b) moisture content and age.
He found that heavy timber are strong and light ones are
weak. If S 1is to represent strength and W weight
then

S = f(W)
which is an increasing function of W. This is because
heavy timber contain more wood substance per unit volume,
than light ones. He conducted an experiment on 46 species
grown in Kenya and fitted graphs of strength versus weight;
He pointed out that there was considerable variations about
the mean curves he obtained when a species was considered
on its own. Patterson found out that species like pencil
cedar and Australian mountain Ash (Eucalyptus regnaus)
are strong for their weight and others like Muirungi
(casearia) and Muchichia (Premna) are weak for their
weight. The variations are due to the anatomy of the
timber. Moisture content causes variation only when it is
below saturation point that is below 27%. When trees are
still growing then age affects strength but after 25 years

of age it is not very significant.

Burges (1962) suggested that the load-deflection
relationship derived from certain tests on timber may be
interpreted as a skewed normal integal

X . ;
Y = kg Jexp(x--k,) C da

fz"ﬁo 2k

3



He investigaged methods of fitting such a curve to experi-
mental results and the effect of strain-rate was examined,
by using data by Brokaw and Foster (1945). The approach

is indicative of the physical representation of the
mechanism of strain and failure, unlike the purely heuristic
linear approach. A brief indication is given of a}guments
justifying the phenomenological study of apparently non-

stochastic responses in stochastic terms.

Brister (1962), carried out an experiment on Kenyan
pine timber where five thirty-year old trees were selected
for test. Results showed that density and strength incr-
eases moving outward from the pith. Strength tests show a
stronger correlation with distance from the pith than age.

This paper shows that strength increases with density.

Sunley (1956) carried a research on modules of
rapture for the sitka spruce species obtained from various
sources. He established the fact that modulus of rapture
is described as the normal curve for a given population
of a given species of trees. This idea supports the
current work where it is assumed that modulus of rapture
y 1s given by

Y = p+d+e ~ N(u+d,o?)

E(e) = O and E(ez) = o2,

Where d 1is the effect of the district from which Y

is observed.



3.3 STATEMENT OF THE PROBLEM

If we let ¥, to denote the jth observation

J
(modulus of rapture) from district Di ( i=1,2, .... v )
i =1, 2, ....., nj- Then the problem is divided into two

parts.

First using this information it is proposed to carry
out a one way analysis of variance to see if there is a
marked variation of modulus of rapture with site. From
this we shall be able to say something about the variation

of strength of wood in Kenya with site.

The second part of the problem is to fit a linear
regression model with the response variable being the
modulus of rapture (MOR) while the explanatory variable
is the density. We shall make use of indicator (dummy)
Variébles to take care of the site levels, which are
qualitative variables. For a given district the model
is of the form |

Y(MOR) = gy + 'sl,x + e
but with the inclusion of indicator variables it becomes
a multiple regression model

Y = X B+ e

The total number of observations is

The results shall help to tell whether the relationship
is appropriate or not. If not then we shall suggest

reasons for that.



1.4 SIGNIFICANCE OF THE STUDY

The analysis of variance results shall help to tell
whether in future design stresses for constructional pur-
poses should be done district by district or not. This
will help in the efficient utilization of the material.

The Kenya Bureau of Standards may use the results in setting

standards of the Kenyan timber.

From the regression model we shall be able to decide
whether much of the variability in the modulus of rapture
is explained by density or not. This is by making use of

the sample coefficient of determination, r2

If not much variability is explained then we shall propose
that other independent variables be included in the model
in a future study. Then a better predictive regression
model can be developed. The study is important in the
sense that it can serve as a.starting point for future
studies. The results of the study shall indicate whether
a better method of collecting the data should be adopted

or not.

Finally the work of the study may prove valuable in
that, it will provide reading and reference material for
research scientist both in Physical and Biological Sciences
and Social Sciences. Biostatiscians may find the work

very useful in their research activities.




CHAPTER 11
REGRESSTON ANALYSIS

2% 1 INTRODUCTION

Regression analysis is a statistical method which deals
with the study of the relationship between measurable
variables. In regression analysis we usually deal with two
types of variables namely the response variablef) also called
the dependent variable(s); and the explanatory variables
also known as independent variables.

Let Y denote the response variable and let

X715 Xoy eennn 5 Xp denote’the explanatory variables. Then

a usual assumption in regression analysis is that obser-
vations on response variables are subject to error but
observations on the explanatory variables are made without
error. Assuming a functional relationship between the
response variable Y and the explanatory variables

X5 Xp, wennn 5 X

We can write
Y = f(xl, Xoy wenes , X_) (2.1)

where f 1is some function. This is called the regression
function of Y on X1, Xoy eeen, Xp. If £ 1is a linear
function then we say the regression is linear. If f is a
non-linear function then the regression is non linear.

One of the main reasons for fitting regression models
to observed data is to describe the relationship between the
response and explanatory variables and to predict the values
of the response variable. Regression analysis has been
applied in varied fields. These include social and economic

sciences, physical and biological sciences, technological

applications and many others.



2+2 THE LINEAR REGRESSION MODEL

Suppose we have a population of individuals each of
which has p*tl characteristics, say

Y, X5 evees xp

For example with human beings we might have height (Y),

weight (Xl) and girth (xz). The whole ponulation may be

thought of as forming a cluster in a p+l dimensional
space IRp+1. Frequently we are interested in questions
of the type (i) how much of the variation in Y can be

attributed to the variation in X1, X5, eene, xp

OR (ii) what can we say about Y for an individual

given that it has specified values for

X715 Xoy wene, Xp'
Looked at in this way we consider what function of

X1, Xop eeees Xp should be used to predict Y and

what the error of such prediction will be. We shall
confine ourselves to linear functions of the form

Y = o #* lel + BZXZ S, + B X (2.2)

This is called a linear predictor for the characteristic
Y. Polynomial predictors are included as a special case

since we could have x, equals X12 and so on.

The constants g4, By s eennn s B are called
regression coefficients. In particular Bj(j=1,2, ceeesD)

is the coefficient of partial regression of Y on Xj'

It measures the rate of change of Y w.r.t. Xi when

the other variables are fixed.



R 1

It is reasonable to define the best predictor of Y

from X5 X5y eveeennnnn s Xp as that linear function

[Y - f(xl,Xz,. ..... Xp)] (2.3)

is minimum. This is the predictor which will result in
minimum mean square error of prediction. It is called

the least squares predictor.

To obtain the values of Bgp, By # % wnens , Bp
we have to minimize

Q= E(Y-Bo=Bj X =B X -eeenn.... -Bpxp)2 (2.4)
Setting the derivative of Q w.r.t f, equal to zero

and writing E(xj) = vj; and E(Y) = uy we have

Uy'eo Blul szz- -------------- "Bppp = 0
that 1is
Bo = Uy' Blul - BZUZQ .......... = BpUp

if we substitute this value of B85 into Q we obtain

2
E [FY_UY) = By (Xy=pgl) = Bz(xz—uz)-....—Bp(xp—upi] (2.5)
Differentiating equation (2.5) w.r.t. By,Bp,00 036D
and equating each derivative to zero we obtain P equations.

These are



_ 2
Oy = B191% Booipt Lo * Bo1p
%y B1912% B29 * i * B0
. . : ' (2.6)
Opy Blolp 8202p+ ........... + B‘O 2
where
Giy = E [(xi—ui) (Y—uy)] i=1,2, ..... 3P
0ij= E [(Xi-ui) (Xj-uj)] i * j= 1,2, ..... ’p
. 2 _

oj = var(xj) and oy = var (Y)

To obtain the values of the regression coefficients 87,8y, ..... 5 Bp
We solve the system of linear equations (2.6) simultaneously.
For known values of o..'s, o._'s and o?'s these are

ij iy i
the population regression coefficients.
Multiple Correlation:

Suppose that Y, X15 conces xp are jointly normally
distributed then the conditional mean of Y given Xqs eevnnnn :
xp will be a linear function of the form

E(Y/xp ...... ,xp) = %) tByXgte. & 8pxp
which can be written as
E(Y/xl, ...... ,xp) = p_+ Bl(xl-ul) e

B - ) (2.7
+p(><p up)( )

Then a measure of the linear relationship between Y

and X1y X5y weeenn 3 X is given by the multinle correlation

P
coefficient. This can be calculated as the ordinary correlation



2 % =

between
B(Y/X jo0e-,X ) and ¥, Let
1 p
ﬂ
5 @ nneemn :
vy ly 1204
Uly Oll ...... Olp
E: =
Py Tlp sexersr pp
{ J
1 9
where Olyw ﬁll Opp oo Olp
Jy2 = |o2y Ly, = 012 022 o2p
L “py | “1p “2p " “pp)

Then it is easily shown that

1

Ry.123..... p EyzZEZ Zy2 (2.8)
“yy
and
Var(Y/X], sissse y Xl = oyy (1 = Rzy. 123...p) (2.9)
The quantity o (1 - R2 12 ) is called the
vy 8 [ N P

residual variance of Y when the effects of Xpp Xy eeeny

xp are eliminated.

It is easily seen that the residual variance will

be zero if and only if

This means that the linear relationship between Y and

X1 eceee , Xp will be perfect if

2
Y120 T 1



If R2 12 p = O then there is no linear relationship
Y o

between Y and X{y +oens , X_. Thus R% i 1 A p can

P 2
be used as a measure of the degree of the linear relation-

ship between Y and oo Xp eeeenns > Xp-

SAMPLE LINEAR REGRESSION:-

In a practical situation we do not deal with the whole
population but instead a sample is collected and the
corresponding response and explanatory variables determined
for each sample point. Suppose n(>p) observations are
available, and let Yy denote the ith observation on the

response variable and Xij denote the ith level of the

jth explanotory variable X Assuming that the observed
responses are subject to experimental errors
and the explanotory variables have fixed levels, we can

write the linear model as

Yi = BO + lei1+ Bzxiz + L asaes + BpXip + ei
P oaw. . & .
= B+ I BjXij €i (i=1,2, ..., n) (2.10)

We assume E(g) =0 and Var(g) = ¢21 , where £ is

shown below: -



- 15 -

In matrix notation we may write

Y ( o r 9 9
Y1 1 Xq1 X194 v = oo le Bo f 91’
Y2 L Xy Egge w« vr By ] 1 &,
= +
\ynJ T *n1 pZ =4~ ¢ Xn% LBpJ enJ
]

Or in an obvious compact notation

Y = X8+ & (2.11)
where

Y is nx1, X is n x (p*1l), B is (p+1l) x1 and
£ is nxl1
To obtain the sample estimate of the regression

vector B8, we use the least squares method. That 1is

we obtain B8 which minimizes

S(8)

I
N~
—
L)
]
"
| oy
| v
1]
P
s
<
i R
—
—
%
>
] i)
f—

Differentiating S(f) w.r.t 8 and equating to zero

we obtain p+1 normal equations given by

1

1
XXR= XV

which gives the least squares estimate of g as

A - r
Tt xy (2.12)

1
provided that(X X) is non singular.
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Note that g is unbiased estimator of g

since
E®) = E [(X'X)'lx'x ]
- E [(X'X)‘l X' (X8 +§)]
= E [:(X'X)_l X X e+ (x'x)! X'_g_]
= @4 ks (2.13)
and E (E J = 1L
Also Cov ( g ) = Var [CX'X)’lX'X] = (X'X)‘lo2
The matrix C = (X'X)—1 is sometimes called the unscaled

' =
covariance matrix. When (X X) L does not exist then we

1 '
use the g- inverse of X X, normally denoted by (X X)*
Then a least squares estimator of B 1is

= X)Xy

This estimator is not unique because a g inverse of a

matrix is not unique.

Let us denote the residual sum of squares by SSgs

1

! A
SSg = ee = (YxB) (v-xB)

jo

1

= Y'Y -

| =

x'z (2.16)

(2.14)

(2.15)



since the residual sum of squares has n-

(p*1) degrees

of freedom, the residual mean sum of squares is given by

MSp =  SSg
n- p-1
NOW
y =x38
'
=X (x x)
=Hy
Where H =x((x'x)-1x
Then e = y - X8
= y-Hy
= (I -H) vy

(Z2:17)

Clearly I-H is both symmetric and idempotent, therefore

1

SSp = e'e = y'(I-H)y
Since
Var(y) = o2
E(SSp) = tr(I-H) o + [Ey]
= (@- p-1) o + g'x'
= (n- p-1) o + 0O
= (n- p-1) o?
Thus
h[;-§sE _ o2
\n- (p*1)

So an unbiased estimator of

(2.18)
(1-10) [Ey)]
(1-x(x'071x"Y xs
is given by

(2.19)
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Sample Multiple Correlation:-

2

We shall let r

y.12....p denote the sample multiple
correlation between Y and x's.
i \
s
Let Syy Ty coereeeees spy
_ s
S = 1}7 Sll ---------- Slp
S‘ v o a i
"y 1P Spp |
where
S n ')
= L (y:-y
A T i
n
n — -
n
n - .2
S e = .3 X..=-X.
J3J 1=]1 ( 1] 1)
n
s T(x5:-Fs)  ( %)
.1 = X X:.=-X. o uy | = Xk
jj i=1 i 77 ij j'
n
Further iet
[s ) (s s s
1Y 11 12 0000000000 lp
%y S 197 S99 cesseaans S 2p
s _ _ ’ ) .
Sy2 = =
Y , S22 .
S le S2 e v « o © 1S
wa p P PP



Then taking S as the maximum likelihood estimator for

the population variance-covariance matrix I we have

-1
= v S
0 1. R P §y2 822 2v2

S
vy

(2.20)

. 2
The quantity Ty.12....p 1is called the coefficient of
determination and is used to measure the degree of the
linear relationship between Y and the x;'s obtained from

the sample.

Testing for Regression

Under the assumption that the error vector £ is
normally distributed with mean vector O and variance o1
that is & ~ N(O, 021) it follows -that the observations

y. are normally and independently distributed with mean

i
p
jgl Bjxij and variance o2. Since the least squares

estimator B is a linear combination of the observations

Bo *

it follows that

g v N [E . (X')()_1 02] (2.21)

Now let us denote (X')()'1 o2 by olC.

A
-1 -
We next consider the transformation o = (oZC) 2 (E i)

Then it follows that

o~ o)



and since

A 2 1
-8 = (2O
Then
1 - 1
A CHO LI Ao B e
1
= S
+1
= pZ a.2
P |
1%)

But each o3 ~ N( O, 1) which means that

2

Q v x™ (p+1)

That 1is

Q = 8 xx 8 ~ YD (2.22)

assuming o2 is known.
Now, we wish to test the hypothesis
Hy: B8 = 9o against Hy : B %0

under Ho the expression in (2.22) reduces to:

AL T A
Q = £ X XJE
(01

Now E(QO) = 0 when Ho is true and
> 0 when Ho is not true
Hence to test the above hypothesis for known o2

we compute

o = £Lu'x? (2.24)
(0]

from the sample data and reject Ho whenever

P = prob (Q > QO/HO ) (2:25)



&

is small. Now from (2.18) we have that the sum of
squares due to error denoted by
SSg is given by

SSg = y' (I-H)y

where H = X(X'X)'1 X'
and
E(SSg) = (n- p-1) o2
(m) -
n-p-
Now from the model y = XE + ¢ we deduce that
E(y) = Xg since & ~ N [o,61]

Then it follows that

and

(y-X8) ~n N[g, 021]
Now we shall consider the quadratic form

(y-x8) (I-H) (y-xe) (2.26)

Then we see that

E {(X-Xg)'(l-ﬂ)(z-x.e_)) trace (I-H) o2

= (n-p-1) o2
Therefore
4
(y-x8) (I-H) (y-Xg)
n~p-1
is an unbiased estimator of 02 (2.27)

But (y -x8) (I-H) (y-Xg)

y' (I-H)y-y'(I-H)Xg -p'x' (I-H) y + g'x' (I-H)Xg

X'(I—H) y
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because the last three terms in the expansion above are
equal to zero.
Therefore the quadratic form in (2.26) gives the sum of

squares due to error, SSg. In other words

SS

__E (2.28)
(n-p-1)
is an unbiased estimator for 02.
Now
) 1 1 -1.1 1 gt
(1) H = XX X)) °X = X(X X) °X
meaning F''is symmetric

oy 2 ; ' . ' '
(11) " . (x(x'x)’lx ) (}(x X~ x ) = x(x'071x

hence H 1is idempotent.

From these two properties of H it follows that I-H
is also symmetric and idempotent. Then from cochran's
theorem (1934) the quadratic form

(y - Xx8) (I-H) (y - X§)
has the wishart distribution with a scale parameter

o2 and n-p-1 degrees of freedom denoted by:

W g

2
1 ( 2, n-p-1) = o’ X (n-p-1)

that 1is
' 2 2
y (I-H) y ~ o" X(n-p-1)
and so

SSE N X?(n-p—l) (2.29)
el =
O;.

where 02 is known.

From (2.22)

(B -8 (XX (E-8) ~ ¥(p+1)

52
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o ¢
when 1s known.

It then follows that

F o= (-8 (X0 (E-8 v % (pr1)
2
o (p+1)
SSg (2.30)

(n-p-1) o?

has the Fishers F distribution with p+1 degrees of freedom
in the numerator and n-p-1 degrees of freedom in the

denominator.

That is F ~ F( p+l, n-p-1)
The expression (2.30) Treduces to
VoS 1 ] A
Fo= (8-8) (X Xx) (E-8) (2.31)
(p+1) SSg
n-p=l

which is independent of the unknown a’
The random variable F can be used to test the hypotheses

Ho : B = 0 against H, 8 =0

]

Under Ho that is when g8 = O the expression in (2.31)

reducds to

Poo- "o x = £'xx) 2 &~ F (p+1, n-p-1)
(p+1) SSg (p+1) MSEg .
SOE L
n-p=1

Al A
In regression analysis the quantity 8{X X3i8 1is

called the sum of squares due to regression denoted by

SSreg



Therefore

n

E, SSreg v F(p+1, n-p-1) (2.32)
(p+1)MSE

Now E(FO/HO) = 0 and E (Fy/Hy) > O
Hence to test the above hypothesis we compute

FC = SSreg
(p+1)MS,

from the sample data and reject Ho if the attained

significance level
P = prob ( F > E./H,) (2.33)

is small.

MARKING PREDICTIONS

Consider the linear model

Y = XB + €

Then a particular variable y is given by

Y = BO + lel + o o o o + Bpxp + e

From the earlier assumptions on e it follows

E(y) = Bg+ B1X] * .ven.... +oBpx,  (2.38)
Let
= * X i A *
u 80 o lel * 82 2 + Bpxp
and
A _ A A % A * A g _ % A
i = BO s lel + SZXZ R + Bpkp = x*'%
where
1
5* = (1, Xl*’ ............... 5 Xp*)

is a point in the space of explanatory variables.

We wish to obtain confidence bounds on vp.



Now
ECW) = E(x*'B) = x*'g
var () =var (x*'®) = x*' var (&) x* = (X' x)x*
if we let
ve o= xrr (x'xtl xe
Then
var(§) = o2 v* (2.35)
Since E is normally distributed it follows that
b N (x*'B, ofv* )
and so
z = f -4 ~ N(,1)
g2v*
since
SSg & 2 .
—7 X (n-p-1)

Then the random variable

T = ﬁ - U

Ve
where v* = x*' (x'X T x*, has the student t distribution
with n-p-1 degrees of freedom.
Therefore confidence bounds on u are given by the
probability statement

P(-ta<t <ta) = 1+ a

z 2

which implies

which gives

o 8/ ) =1-0a (2.36)



since 32 = MSE

Thus the (1-a) 100% confidence interval for
x*'g 1is

( x*'g - ta G‘/V*, X*B + to i JV* ) (2.37)

2 2

Note that the standard error of the fitted y which is

A

y 1is

s.e®) = 3/_)5*'(x‘x)_1§* (2.38)

Hence the model is useful for prediction only for

vectors x*

near the centre of the region defined by the
initial set of explanatory points used to fit the linear

regression model ,

y = X8 * &
As an example we shall consider the simple linear
model

y = o * BXx *. €

In this case

E(f) = E@®% + Bx*) = o + Bx*
and
-2
var(p) = 1 + (x*-x) 52
n T (x —i)z
i
and so
t = - v t(n-2)
- - 2
% * (x*-X)
n Z(xi—x)
where
2 2
£" o _A 2~
o = ik Op- @ - Bxy)




Hence
n A A 2 2
igl (Yi - o - BXi) v X (n-Z)
o b

Therefore confidence bounds on u are obtained from

P( - ta <t.< ta ) = 1-a
2 o - 2

o)
1
r—+
e
| A
a» -
e
+ =S
L~
> 1
*
! =
>
p—
)
| A
~+
N R
1
[}
1
Q

which gives

P(: - ta 8 jﬁ + (X*—i)z < q L+ to 3/& + (x*—i)z
5 = = 5 /g ——=12] = -
2 n I(x;-X) 2 4 m Z(xi—x)“ L

Thus the (1-a) 100% confidence interval for u = a+BxX* is

A+Bx*- ta G‘/l + (X*—)_()Z , Q‘*’éx**’ ta f.‘/l + (X*_)-()Z

n < ~ /n =2
2 Z(xi—x) 2 Z(xi—x)

The standard error of the estimated y which is ? is

A AJ/r - 2
s.e (¥) o [1 + (x*-x)
Ak z(x —i)z

A
o

‘ e )
at any pont Xx, where ? = + BX the behaviour of
s.e(§) as x deviates from the centre point is illustrated

in the graph sketched in figure 1.



We observe that the simple linear model is useful for
prediction only near the centre of the x- values that are

near X.

Prediction Intervals

Let yy denote the predicted value of y at the point

Ek - t 1, xl(k), xz(k), ..... s Xp(k) f
that is Yk is a future observation given by
Y = 80+81x£k)+62x§k)+ ........ +Bpxékx-gk (2.39)
for k > n
Then Yk is estimated by
P = B oebx (e L £ x  = 2

We wish to determine the probability bounds on Yic+

A
Now consider Yk = Yk

Then

ECyy - }I:k) = 0 (2.40)



. N . .
and since 'y, is based on observations excluding

the two are idependent;

therefore

A A
var ( Yk~ Yk ) Var(yk) + Var(yk)

.y
= 02 + var(§i§)
= 02 + ozii(X'X)_lzk
2

= g

~1
(1+xp X'X) %)

Hence
A 2 -1
Yk Yk v N [O, o” (1 + 5& (x'x) ék)]

This means that

~ A
Z = Yk T Yx ~ N(O, 1)
-1
but we also know that
(n-p-1) MSg vy (n-p-1)
2
9)
t = -9
Yk T Yk v t(n-p-1)
-1
ﬂSE(1+§1'<(x'x) x)
or
t = - P
Yk T Yk v t(n-p-1)
A -]
(IJA+§i(X'X) Xy
since
52 = wMsg
‘and so
P[L1tl s 1o} = l-o

Yk

(2.41)

(2.42)

(2.43)



which implies that

A
~
li
—
|
Q

lyk - Yk'
éJ/1+5£(x'x)_1§k

that is

A A =i A A -7
P -t 1+x! ! < 7 < + t 1+x! ! X
(Yk % 0/ Xk (x'x) _X.k = }k yk % 0/ _Xk (X'x) k)

ol e

Thus the (1-a) 100% prediction interval for vy, is

x Bota 8f1ec o0 x L xibrea 8 e o0 7 )(2 1)
kK~ 2 K K K 3 K k 44

The standard error of the predicted Vi which is 9k is
A _ A s |
s.e(y,) 5 [1 + X (xX'x) Tx

Hence as in the case of estimating the mean response the

model is useful for predicting only for vectors X near

the centre of the region join%iy defined by the original

levels of the regressors;

( Xi1s X5p5  eeees 7Xip ) i=1,2, .... n

INDICATOR VARIABLES

We consider the case of simple linear rcgression where

N observations can be formed into Vv groups with the Vth

group having n, observations. The most general model

consists of v separate equations, such as

y = Byt B Xt e v=1,2, ....... yV (2.45)



It is often of interest to compare the general model to a
more restrictive one. Indicator variables are helpful in
this regard. To fit the reduced model, define v-1
indicator variables _Dl’ DZ’ .......... R Dv—l

corrsponding to Vv groups and fit

Yy = Bo * Byx + B,D; *+ 8Dy + ..... + gD, (2.46)

each D3 1=1,2, sesssnscsa s V-1 can only take value
O or 1. In particular they all take value O if an
observation is from group 1, if D; takes value 1 and the
rest zero then that observation is from group 2. In
general if Dj_q takes value 1 and the rest zero then
that observation is from group i. Then by the use of the
F- test we can make conclusions on whether or not

Bo=Bz= ... .
and hence determine if it is needless to fit the reduced
model or iflthe reduced model is valid. It is proposed
to use this idea on the forest data with the groups being
the districts.
From model given by (2.46) we note that

E(ylx, the data is from group i) = 80+81X+81Di—1 (2.47)
so that when D;_; = 1 ; meaning the data point is from

group 1 we get the fitted simple model for group i as

?& = %o+§i) + glx (2.48a)
i=2,3, s V
and that for group 1 1is
91 = Bg * B1X (2.48b)



CHAPTER 111

ANALYSIS OF VARIANCE

3.1 Introduction

The analysis of variance is perhaps the most widely
used computational procedure in biometrics and analysis of
quantitative inheritance. The procedure has widely different
functions. The most important of these functions include
the following:-
(1) The study of the variance in a population, by decom-
posing the total variation into distinct components such as
as the division of variance into genotypic and environmentai
components. In this respect the analysis of variance is
essentially a procedure for estimating statistical parameters.
(ii) Testing hypothesis or constructing tests of signi-
ficance for any of the populations mentioned above.
(iii) Testing the statistical significance of formulae
which give the dependence of one variate on other variates

e.g. in regression analysis.

9.2 PARTITION OF VARIANCE

If an observation Y 1is determined additively by

two effects G and E such that

Y = G + E (3.1)
it is preferable for a statistician to redefine the
equation as

Y = u+G+E : o (3.2)
where u 1is a constant while G and E are now redefined
as deviatinns which sum to zero over the whole population

of G and E. consider a one-way fixed effects model



Yij = ¥ t ts 4 eij i=1,2, ssses v
j=1,2, ..... n. (3:3)
and v
.L_n:. =n
1=1 1
where yij is the jth response on the i-th treatment

t. 1s the effect due to treatment 1i.

is the experimental error associated with the
ij-th response.
We shall assume

e, ~ N(O, ¢2) and y._ ~ (u+t_, o%)  (3.4)
ij i i

J
where o is the error variance, assumed to be unknown.
Then to test the significance of the treatment effects

t st, we test the null hypothesis

1,
Hot Bg= By snnermes = £ (3.5)
against the alternative hypothesis

H,: t. # t. , for some i and j
1 1 ]

This is an analysis of variance problem and is tested by
partitioning the total variation into two compontents,
namely variation due to treatment effects and variation
due to error.

Let

<
[

be the mean response on the i-th treatement. Then by the

use of least squares method with the condition

v L
Ity - 0 (3.6)
1~ .

we get the estimates of u and t; as



= 3 =

T o= ..

A . o= =

4 T Y30
and

A _

£ij Yij Y4

substituting these estimates in (3.3) we get

i =Y. = Gy, =¥, 0% O - ¥;) (3.7)

squaring and summing both sides in (3.7) we get

v o ny - 2 v n; 2 v Tig
Iz (yij—y..) =Lz iy )+ z z (yij
i=1l j=1 i=l j=1 i=1 =1

v ? v.ony
= I n(y; -y )7+ 1T (yisi-y
i=1 ' 1 i=1 j=1 M

Thus the total sum of squares
Vv ni
S = & I (. -Y¥..)
i=1 j=1 1)

has been partitioned into two components
V — —
B = B 0 tyesd

called the treatment sum of squares and

vy 2

§88. = I % ALt
E i=1 j=1 (%J %, )

called the error sum of squares. For computational

purposes we shall use the formulae,
Vv  n.

12 2
SS = I I yé. - G
T i=l j3=1 1] n
2
88, = & T - &
t i:l . —
n n



and
SSg = SSp - SS,
ny
where Ti = j§1 yij 1=1,2, cissees , V
v n.
C = _Z Zl y..
i=1 j=1 7]

The Null distribution of SSt

Here we wish to find the distribution of

under the null hypothesis given by equation (3.5)

From the model

Yij T MFtiteiy
and
2 .
yij v N( p+ty, o ), 1 2 1,2, siesas v
J = 12y weaves ny
Now
n-
- i
Y- = 1 I y..
i. - j=1 "1]
This implies that
y. v N( u+ty, o2) i21,2, cesnsse WV

I -
i

if we let wy utt., then we have that

2 X
v N ( Wi, O /ni) i=1,2, ceveene yV (3.9)

<
[Wh



30

Since one of the assumptions in the model is that the

v subpopulations are independent it follows that
Y1.s Vg 5 ccvvee , ¥,., are independently
distributed as
?i ~ N( wi, oz/n' ) 121,2, ciseos v
: i
and since
y = 1 I y;
.ie = g=q s
it follows that under HO
v 2
I on (7. -y )2 A X (v-1)
t‘=| 1 1. o
2
o)
OR
5t ;
— 2 2 2
_Zl ni( yi.-Y..) voooy (v-1) (3.10)
1:

The distribution of SSe

n.

L4 1 2
SSe = 3Ip 31 (r3577;.)
Again if we let B = utty then
2
Yij v N ( My, O ) 1=1,2, coveocsos 5V
Y=L sd; swnnuzana )y
For a given 1 we have that
: Tia A
AL 1 -
Vit LT Vi Ty
n. J
i
and since yij gy 321,24 svmaaws o711 is a random sample

of size n:

1

Var(?i.)

g

n.

it follows that

2

1



but we also know that
1- 2
i _
% .-y,
§=1 (ylj yl.)
ni-l

; . . 2
is an unbiased estimator of o

Therefore
: Y 2
j=1 __llz_l;~ v X (ni-1) (3.11)

And by the additive property of ch-square variables which

can be stated as

k> 7 K

a§1 x, (KOL) v X ( Otgl Koc)
it follows that

vk — .2 2

I (yij—yi.) vy (-v)

=1 el ===

(6}

OR

SS & o’y (n-v) - (3.12)

e x :

Since SST = SSt + SSe

we conclude that
SSy/0 ~ ¥ (n-1)

Therefore when HO is true then the statistic

F = SSt/v—l (3.13)
SSe/n—v
has the Fishers distribution with degrees of freedom v-1

and n-v in the numerator and in the denominator respectively.

The computation needed for the above analysis can

arranged in an Analysis .of variance table as follows:-



TABLE 1: ANOVA TABLE SHOWING THE ENTRIES IN EACH
COLUMN AND THE COMPONENTS OF TOTAL VARIANCE

SOURCE OF DEGRELS SUM OF MEAN SUM  THE F STATIST]
VARTATION OF SQUARES (SS) OF SQUARES (F)
FREEDON(D. F) (MSS)
v 2
SOURCE OF v-1 Zhi0y - ) S8 MS,
v-1 MS
= 55 ¢
A\ l’li
WITHIN TREATMENTS n-1 A SS_=MS
i=1 J=1 (ylj yl.) _€ e
n-v
= SS
e
v n, 2
Total n-1 z I (y..-y )
i:l j=1 1] .

To test the hypothesis HO given in (3.5), the procedure
is to compute the sample value of F which we call F_. and

reject HO whenever

P = Prob ( F>F./Hg) is small (3.14)

Paired Comparisons

More often it is of interest to know whether a given
pair of treatments have same effects on the observation or
not. That is we wish to test the hypothesis.

5 ° q ty = O.

against (3.15)

)

+
1

(-+
1

0O itk=1,2,...,v



Now we know that the estimates of ti and tk are

given by
A _
T Yy oY,
and
A _— ——
tk = Yk. —y
Therefore
A A _ _ o
L T D £ T 4™ (3.16)
is the estimate of t; - t; from the samples
Now
Var ( yi - 7k ) = EE * Ei
B By
= of(1 +1 )
n; ny
and under HO
ECYy, -%) = 0 (3.17)
Therefore
6.5 s ¥y ~ N(0,1) (3.18)
Pl s
n, ny
When H is true and 02 is known. However in most

practical problems 02 is not known. In this case we replace
2 . . . .

g in (3.18) by its unbiased estimator, the pooled sample

error variance, which is the mean sum of squares due to error

denoted by M%a to obtain

t = Yi - ;k' v t(n-v) (3.19)

MS (L + 1)
n

i Mk




Therefore to test the hypothesis given by (3.15) we compute
the value of the statistic t from the sample. We shall
call this value t that is we shall compute

C’

te = Yi, T Yk, (3.20)

Sose v 1)
n. n
1 k

and reject Ho whenever

1tc‘ - l?i. - ?kj > ta
ﬁv[se (1 + 1) z (3.21a)

In the case of

n1=n2=.... = n._ = N

t% / 2MS, (3.21b)
n

is called the least significance difference ( Lsd ).

the quantity

However the rejection criterion can be made more flexible
by computing the quantity

P = pr ( t(n-v) < - t. or t(n-v) = tC/HO) (3.22)

then reject HO whenever P is small. P is called

the attained significance level or the P- value.
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CHAPTER 1V

APPLICATION TO FOREST DATA

4.1 INTRODUCTION

In this chanter we will apply the statistical methods
described in chapters two and three. As earlier on stated,
we have two species of trees which are grown for commercial
use. These are the Pine and Cypnress. The data for the
Pine specie was obtained from nine districts which we
represent by Di (i=1,2, ...... 9). These are Nakuru,
Kiambu, Nyeri, Kericho, Baringo, Meru, Laikipia, Nyandarua
and Murang'a respectively.

The Cypress data was obtained from eleven districts
again denoted by Di i) 25 «wnwns 911). These are Nakuru,
Kiambu, Nyeri, Kericho, Baringo, Elgeyo, Uasin Gishu, Meru,
Laikipia, Nyandarua and Muranga resvmectively. For each of
the species, a number of logs n. was obtained from
district Dj. These samples were then transported to

Karura forest laboratory for testing.

4.2 BRIEF DESCRIPTION ON THE EXPERIMENTAL PROCEDURE

For each of the n. logs from district Di a
maximum of two pieces of size 20 mm by 20 mm by 300 mm
were obtained, to give two specimens, one and two. Each
specimen is supported on a span of 280 mm and the force
applied at mid-span using loading heads. A deflectometer,
located on the neutral axis of the specimen, is used to
record the central deflection of the specimen relative to

a span of 280 mm.
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The diagram below explains the above.

Loab
Diagram 1: l
o . . J\‘ lﬁbmm
K— iuomm ——p—— IHomm — 2o mm
k— 3060mm 5|

From the experiment the following quantities were

determined: -
b = width of specimen
d = depth of specimen
L = 1loading span and span of deflectometer
P' = 1load at 1imit of proportionality
P = maximum load
A = deflection at 1imit of proportionality

From the above quantities the following measures of

strength for each specimen were computed:-

(i)  Stress at 1imit of proportionality= 3p'L/zbd?
(ii) Modulus of rapture = 3PL/2bd2
(iii) Modulus of elasticity = P'L3/4Abd3

In this project the property of wood that is going to
be studied is Modulus of rapture in (ii) above. This
was measured in Mega-pascals. Another quantity of interest
which was also determined for each specimen is the density
3

for green timber, called the basic density in grams/cm”.

The density was comnuted from the formulae:-

Basic density (green timber) = W 100
bdL (100+M)
where
W = mass of specimen

Z‘
1}

moisture content of specimen.
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We shall let yij denote the j-th modulus of rapture

value from distict 1 JEL 2, wrvesws n. and 1=1,2; «ssns

In otherwords yij is the 1ij-th observation. v shall

be nine or eleven depending on whether we are considering

the Pine or the Cypress species.

4.3 RLGRESSION ANALYSIS RESULTS

The dependent or response variable is Modulus of
rapture and the independent variable is the Basic density.
We will fit a linear models of the form.

Y = Bov F BiyX * & (4.1)
where
v=1,2, ...., 9 1in the case of Pine species

v = 1,2, ..+:,11 1in the case of Cypress species

Instead of fitting the linear models separately we

make use of indicator variables, and fit a model of the

form
Y T By P BIXpt BoXy ...t BUXL Bl 1Xye1” €
(4.2)
The variables XZ’ x3, ........ , X are the indicator
A
variables, take values O or 1. In particular they all

take the value zero if the data point y_ _ is from district
1)

1. The full set of indicator variables is shown velow.



TABLE 2: INDICATOR (DUMMY) VARIABLES FOR THE PINE SPECIES. A
GIVEN ROW SHOWS THE VALUES OF THE INDICATOR VARIABLES
WHEN AN OBSERVATION IS FROM THE DISTRICT AT THE END
OF THE ROW.

DISTRICT

>
o]

XZ X3 X4 XS X6 X7 X8

NAKURU (1)

KIAMBU (2)

=
o
o |[© |O

NYERT (3)

o | |© |O

KERICHO  (4)

bt

o |©O [ |0 |O

BARINGO  (5)

o

e

MERU (6)

o O |©O |©O |O |o |O

IAIKIPIA  (7)

o [©O |o | | | | |Oo

NYANDARUA  (8)

| o
o |o |o |o |o
o |lo |o |o
o |o |o
o |o
o |+
.

MURANG'A  (9)

TABLE 3: INDICATOR (DUMMY) VARIABLES FOR THE CYPRESS SPECIES

DISTRICT

>

5
N
bel
(O3]
bl
~
~
[9a]
>
(@)
el
~J
bed
oo
el
Ne]
>
—
(@]
sl
—

NAKURU (1)

=

KIAMBU  (2)

P
O
o [O |[O

NYERT (2)

o |O | |o

jud

KERICHO  (4)

c |©O | |o |©

-

BARINGO  (5)

o |© |]O |© |©O |O

—

ELEGEYO (6)

o | |o |©O |o |© |O

[

U.GISHU  (7)

o | o | |© |©O |O

—

MERU (8)

o |[© |]o [0 |]o |© |o |o |o

IAIKIPIA (9)

o |© | |©O |o | |o |©o | |o

NYANDARUA (10)

o | |©o |o | |o |© (O
ObOOOOO
o |© |©O |o | |o

o |© [O |© |o

o |© |©O |O

0 0 1 MURANG'A (11)

o lo |o o © |©O |o |© |o




The variable X,41 was introduced to cater for the
two specimens from a given log.

That 1is
O 1if the observation is specimen 1

Xy+1 = ' (4.3)
: . & :
1 if the observation is specimen 2

)
The model given by (4.1) becomes a multiple linear

regression models after the introduction of the indicator
variables shown above
From the solution given in equation (2.12) of chapter 2

that 1is

E = (_X'X)—1 x'y

We get the models for each species as below;

REGRESSION ANALYSIS FOR THE PINE SPECIES

We shall let MOR denote the Modulus of Rapture

For this species the indicator variables are Xoy eenns » Xg

and X;9 to serve the purpose given by (4.3) above.
The fitted linear regression model of MOR on density

was found to be

MOR = 37.0675 + 9.3770 DENSITY - 3.1824X2 + 3.7590)(3
+2.9981x4 - 5.0891x5 - 5.5916X6 - 11.4224x7
-5.4467x8 + 8.2375x9 = O.62151x10. (4.4)
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To get the simple linear regression model for
district i, say i=7 all we need to do is to set all
the Xj's = 0 except X (J22,3, seisaes 9). That is

the linear regression model for Laikipia district is

MOR (37.0675 - 11.4224) + 9.3670 DENSITY - 0.62151x

10
= 25,6451 + 9.3670 DENSITY - O.62151x10 (4.5)
The same can be done for other districts.
TABLE 4: ANALYSIS OF VARIANCE TABLE SHOWING THE

PARTITION OF THE TOTAL SUM OF SQUARES INTO
REGRESSION AND RESIDUAL SUM OF SQUARES

SOURCE VARIATION D.F  SUM OF SQUARES  MEAN F
SQUARE

REGRESSION 10 7734,8533 773.4853  5.1846

RESIDUAL 190 28345.7824 149.1883

TOTAL

Coefficient of determination ri 12 0.21438 (4.6)

which implies T 0.46301

standard error which is given by

s.e. =  149.1883 - 12.21427. (4.7)
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COMMENTS: -
Since P( F(10,190)>3.137) = 0.001,
It follows that
P( F(10,190)>5.1846)<0.001, (4.8)

hence we reject the hypothesis that
Bl = 62= 63= e o o o = 610 -

at level of significance 0.001.

From the coefficients of the sample linear regression model
we find that Murang'a, Nyeri, Kericho and Nakuru produce
timber of higher strength for the Pine spécies than the

others.

REGRESSION ANALYSIS RESULTS FOR THE CYPRESS SPECIES

For this species we had Xy, Xz, +..., Xq7 to represent

the indicator (Dummy) variables to take care of the district
levels as explained in table 3 of this chapter. It was
found that the difference between the two specimens for a
particular log was not significant hence the model does not
have an extra indicator variable Xq,-

There were 572 observations in all, that were used
to fit the sample linear regression model. The calculated
model for this species is given by:-

MOR

n

34.7294 + 14.5099 DENSITY - 1.6614x2 + 1.7186x3

+ 3.3781x, + 5.6254x, + 4.5034x

+

5.93519%

4 5 6 7

2.4627x, + B8.8309x, * 4.5593% - 3.,7619x (4.9

8 9 10 11
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To obtain the linear regression model for district

i, say 1=3 we set all the Xj's = 0

except Xx ( j=2,3, cieeenn , 11)

That is the linear regression model for NYERI district

is given by:-

MOR = 34.7294 + 14.5099 DENSITY + 1.7186
= 36.4480 + 14.5099 DENSITY (4.10)
TABLE 5: The table gives the analysis of variance results
for this regression model. Beneath, we give the’
coefficient of determination together with the
standard error.
SOURCE OF D.F SUM OF SQUARES  MEAN E
VARIATION ‘ (SS) SQUARE (MSS)
REGRESSION 11 10107.2865 918.8442 11.7780
RESIDUAL 560 43687.6181 78.0136
TOTAL
Coefficient of determination rz = 0.18789
Yellissas P
Standard error = 8.83253
COMMENTS:
Since Prob \F(11,500) > 2.9061) = 0.001 ,
It follows

Prob (F(11,560) > 11.7780) < 0.001, (4.11)



hence we reject the hypothesis that
BiEB, = Bz = sove = By 7 O

at significance level 0.001.

From the coefficients of the sample linear regression model
for the Cypress species, we may say that Laikipia, Elgeyo,
Kericho, Uasin Gishu, Nyandarua, Nyeri, Baringo and Nakuru
districts produce timber of quite a high strength. While
Murang'a, Kiambu and Meru districts are not doing well as

far as the strength of the product is concerned.

4.4, ANALYSIS OF VARIANCE

In this section we wish to study the variation of
Modulus of Rapture with location (District). We need to
tell whether or not location affects the modulus of Rapute
and hence the strength of timber. We shall adopt the model

.. = w+d + &
ij i ij
i=1,2, ..... 5 9 for the Pine species

1=l ,2, <issa , 11 for the Cynress species

location parameter common to all observations

=
¢]
H
[¢]
=
1l

[a®
I

effect peculiar to ith district

gijz normally distributed random variable with
mean zero and variance R

We shall need the following quantities in order to set the

ANOVA table appropriately:-

v n.
(1) G = pX Ity and n =

i=1 j=1 *J i

nm™M<g
=]

q 4



(ii) For each district D. we computed the following
o3

i i = I y..; total for district D,

1 j: 1) 1

y. =T./n_; sample mean for district D,

v 8 i1 i

i o2 L
Lo y:.. = Sum of squares for district D.
J:l 1) 1

12] 85 answsa , 9 or 11

Then after this the following were computed as required;
The total sum of squares TSS given by

2 2
85 = 3. 2. y=. = B
i=1 j=1 'ij T

Sum of squares due to site (treatments) given by

2 2

SS = X " -
=| Tl/ni

¢ s ¢

Then from the two sum of squares above the within sum
of squares or error sum of squares was obtained by

subtraction, that is

ESS = TSS - SSt

The following are the results for the Pine species.

TABLE 6: ANOVA table for the Pine species. It gives the components

of the total sum of squares and finally the F-statistic
is obtained

SOURCE SUM OF SQUARES DEGREES OF FREEDOM MEAN SQUARE
TREATMENTS 3890.085 8 486.2606
(SITE) ‘

WITHIN DISTRICTS 14224.095 92 154.6007
(ERROR)

TOTAL 18114.180 100




From the table, the calculated F(8,92) is given
by:-
F = 486.2606 . 2.14 51

154.6097

Then using the Fishers tables with 8 and 92 degrees of
freedom in the numerator and demoninator respectively
we get

Prob ( F(8,92) » 2.9929) = 0.005
which implies

P = Prob ( F(8,92) > 3.1451) < 0.005 (4.12)
Hence we reject the hypothesis

Hy: =dy=d,.eninn... = d
at significance level 0.005. Meaning that the effect due
to districts on Modulus of rapture is different for at least

two districts or di=dj for i=j.

Next we carry out a paired comparison test for the Pine

species.

PAIRED COMPARISONS FOR THE PINE SPECIES

Below we arrange the sample means from each district
which Pine is grown in descending order of magnitude. This
will facilitate the computations for the calculated t

statistics.



TABLE 7: MEANS ARRANGED IN DESCENDING ORDER OF MAGNITUDE

SAMPLE MEAN SAMPLE NO DISTRICT
¥y = 47.8956 n; = 18 NAKURU

?S' = 46.7098 n, = 13 NYERI

Yo = 46.0466 ng = 6 MURANG' A

Y, = 40.4684 n, = 6 KERICHO

Y = 38.3521 ng = 8 BARINGO

Y = 37.9624 Ny = & NYANDARUA

Yo, = 35.3212 ng = 7 MERU

Y, = 34.8838 n, = 30 KIAMBU

Yy = 28.1457 n, = 7 LAIKIPIA

To test the hypothesis numbered (3.15) in Chapter

IIT we compute the sample t statistic given by

By = Yi. = x|
MSe(1_ + 1)
ni Nk

and reject H when the value

P = Prob { t(n-v) > tz or t(n-v) < - tC/HO)
is small.
This value is called the attained significance level.

Below we give the table of results.
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TABLE 8: SHOWS PAIRS OF DISTRICTS WITH THE
CORRESPONDING CALCULATED STUDENT STATISTIC
AND THE ATTAINED SIGNIFICANCE LEVELS
DISTRICT PAIRS CALCULATED STUDENT  P= P [t(92) > t_ or
t s t(92) < -t ]

NAKURU - NYERI .2560 0.70 < P < 0.80
NAKURU - MURANG'A .3154 0.60 < P < 0.70
NAKURU - KERICHO 2871 0.20 < P < 0.30
NAKURU - BARINGO .8063 0.05 < P < 0.10
NAKURU - NYANDARUA 6946 0.05 < P < 0.10
NAKURU - MERU .2703 0.02 < P < 0.05
NAKURU - KIAMBU - 5099 P < 0.001
NAKURU - LAIKIPIA .5658 P < 0.001
NYERI - MURANG'A .1081 0.90 < P < 0.95
NYERI - KERICHO .0858 0.20 < P < 0.30
NYERI - BARINGO 3771 0.10 < P < 0.20
NYERI - NYANDARUA 4254 0.10 < P < 0.20
NYERI - MERU .9537 0.05 < P < 0.10
NYERI - KIAMBU . 8643 0.002 < P < 0.01
NYERI - LAIKIPIA .1846 0.001 < P < 0.002
MURANG'A - KERICHO « T7 TP 0.40 < P < 0.50
MURANG'A - BARINGO .1458 0.20 < P < 0.30
MURANG'A - NYANDARUA .1261 0.20 < P < 0.30
MURANG'A - MERU .5504 0.10 < P < 0.20



DISTRICT PAIRS CALCULATED STUDENT P= P [t(92) > 7t or
t = tC t(92) < -tc]
MURANG'A - KIAMBU 2.0074 0.40 < P < 0.05
MURANG'A - LAIKIPIA 2.5876 0.01 < P < 0.02
KERICHO - BARINGO 0.3151 0.70 < P < 0.80
KERICHO - NYANDARUA 0.3491 0.70 < P < 0.80
KERICHO - MERU 0.7441 0.40 < P < 0.50
KERICHO - KIAMBU 1.0043 0.30 < P < 0.40
KERICHO - LAIKIPIA 1.7813 0.05 < P < 0.10
BARINGO - NYANDARUA 0.0580 0.97 < P < 0.98
BARINGO - MERU 0.4709 0.60 < P < 0.70
BARINGO - KIAMBU 0.7010 0.40 < P < 0.50
BARINGO - LAIKIPIA 1.5657 0.10 < P < 0.20
NYANDARUA - MERU 0.3818 0.60 < P < 0.70
NYANDARUA - KIAMBU 0.5536 0.50 < P < 0.70
NYANDARUA - LAIKIPIA 1.4191 . 0.10 < P < 0.20
MERU - KIAMBU 0.0838 0.90 < P < 0.95
MERU - LAIKIPIA 1.0796 0.20 < P < 0.30

KIAMBU LAIKIPIA 2.29110 0.10 < P < 0.20
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As earlier stated we reject the hypothesis

against

whenever the

Taking

P<0.10

H
o

p-value

d. - d, =

0

in column IIf of table 8 is small.

to be small, we conclude that the mean

strengths of timber from the district pairs listed in table

9 below differ significantly.

TABLE 9:

PAIRS OF DISTRICTS WHICH SHOW A SIGNIFICANT

DIFFERENCE IN MEAN STRENGTH FOR THE PINE SPECIES

DISTRICT PAIRS P- VALUE
NAKURU BARINGO 0.05 < P < 0.10
NAKURU NYANDARUA 0.0 < P < 0.10
NAKURU MERU 0.02 < P < 0.05
NAKURU KIAMBU P < 0.001
NAKURU LAIKIPIA P < 0.001
NYERI MERU 0.05 < P < 0.10
NYERI KIAMBU 0.02 <= P = 0.01
NYERI LAIKIPIA 0.001 = P < 0,002
MURANG'A KIAMBU 0.02 < P < 0.05
MURANG'A LAIKIPIA .01 < P = 0.02
KERICH LAIKIPIA 0.05 < P < 0.1
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ANALYSIS OF VARIANCE RESULTS FOR THE CYPRESS SPECIES

In this case there were

computation similar to those

to the following ANOVA table.

eleven districts and from

with the PINE species lead

Table 10: ANOVA table for the Cypress species. It
shows the components of the total sum of
squares and finally the F-statistics is obtained.
SOURCE OF SUM OF SQUARES DEGRESS OF MEAN SQUARE
VARIATION (SS) FREEDOM (MSS)
TREATMENTS 4242.2314 10 424.2231
(SITE)
WITIN SITES 25573.6230 281 83.8914
(ERROR)
TOTAL 27815.854 291 F(10,281)
From the table the calculated F(10,281) statistic
is given by:-
Foo= 424.2231
83.8919
= 5.0568
Since Prob ( F(10,250) > 3.0893) = 0.001
It follows that
P = Prob ( F(10,281) > 5.0568) < 0.001 (4.13)



The meaning of the statement in (4.13) 1is that the

hypothesis,

Ho - d1 i d2= ............. = d11

is rejected, at level of significance of 0.001. This
implies that the quantity under study namely the Modulus of
Rapture, a measure of the strength of wood, is different
for at least two districts that is

d. #d

3 o Hor A%k =1.Z, .uvees , 11

The next step is to carry out pairwise comprisons to discover

which pair of districts bring about this difference.

PAIRED COMPARISONS FOR THE CYPRESS SPECIES

Below we arrange the sample means from the districts
which CYPRESS is grown in descending order of magnitude.
This will facilitate the computations for the calculated

student t statistics.

TABLE 11: MEANS ARRANGED IN DESCENDING ORDER OF MAGNITUDE
SAMPLE MEAN SAMPLE NO DISTRICT
?9 = 48.6767 ng = 15 LAIKIPIA
76 = 47.3294 ng = 25 ELGEYO
?4 = 46.6421 n, = 55 KERICHO
?7 = 45.8388 n, = 25 UASIN GICHU
Yi0. - 44.5428 N 6" 16 NYANDARUA
?S = 43,2006 n, = 34 NYERI
75 = 42,2048 n. = 30 BARINGO

Y, = 41.3058 n., = 39 NAKURU



TABLE 11: CONTINUED:

SAMPLE MEAN SAMPLE NO DISTRICT
?11 = 38.0558 nyq = 15 MURANG'A
?2 = 37.8601 n, = 38 KIAMBU

35.5560 20 MERU

<
o0
[
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TABLE 12: SHOWS DISTRICT PAIRS WITH THE CORRESPONDING

CALCULATED STUDENT t STATISTIC AND THE ATTAINED

SIGNIFICANCE LEVELS, FOR THE CYPRESS SPECIES.

" DISTRICT PAIRS CALCULATED STUDENT P= Prob(t(281) »
t o=t or t(281) < -t
LATIKIPIA - ELGEYO 0.4503 0.65 < P < 0.66
LATKIPTA - KERICHO 0.7198 0.47 < P < 0.48
LATKIPTA - U.GISHU 0.9487 0.34 < P < 0.35
LAIKIPTA - NYANDARUA 1.2558 0.21 < P < 0.22
LATKIPTA - NYERI 1.9288 0.05 < P < 0.06
LATKIPTA - BARINGO 2.2345 0.02 < < 0.03
LAIKIPIA - NAKURU 2.6488 P < 0.01
LATKIPTIA - MURANG'A 3.1757 P < 0.01
LATIKIPIA - KIAMBU 3.8728 | P < 0.01
LATKIPTA - MERU 4.1940 P < 0.01
ELGEYO - KERICHO 0.2866 0.77 < P < 0.78
ELGEYO - U.GISHU 0.5754 0.56 < P < 0.57
ELGEYO - NYANDARUA 0.9503 0.34 < P < 0.35
ELGEYO - NYERI 1.7110 0.08 < P < 0.09
ELGEYO - BARINGO 2.0661 0.03 < P < 0.04
ELGEYO - NAKURU 2.5668 0.01 < P < 0.02
ELGEYO - MURANG'A 3.1001 P < 0.01
ELGEYO - KIAMBU 4.0147 P < 0.01
ELGEYO - MERU 4.2847 P < 0.01
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TABLE 12: CONTINUED
DISTRICT PAIRS CALCULATED STUDENT = Prob(t(281) >
S or t(281) <« =

KERICHO - U.GISHU 0.3349 0.73 < P < 0.74
KERICHO - NYANDARUA 0.7595 0.44 < P < 0.45
KERICHO - NYERI 1.5604 0.11 < P < 0,18
KERICHO - BARINGO 1.9471 0.05 < P < 0.06
KERICHO - NAKURU 2.5022 0.01 < P < 0.02
- KERICHO - MURANG'A 3.0377 P < 0.01
KERICHO - KIAMBU 4.0926 P < 0.01
KERICHO - MERU 4.3180 P < 0.01
U. GISHU - NYANDARUA 0.4420 0.65 < P < 0,67
U. GISHU - NYERI 1.0933 0.26 < P < 0.27
U. GISHU - BARINGO 1.4670 0.14 < P < 0.15
U. GISHU - NAKURU 1.9317 0.05 < P < 0.06
.U. GISHU - MURANG'A 2.6018 P < 0.01
U. GISHU - KIAMBU 3.3827 P < 0.01
U. GISHU - MERU 3.7422 P < 0.01
NYANDARUA - NYERI . 4834 0.62 < P < 0.63
NYANDARUA - BARINGO .8246 0.40 < P < 0.41
NYANDARUA - NAKURU .1904 0.23 < P < 0.24
NYANDARUA - MURANG'A .9706 0.04 < P < 0.05
NYANDARUA - KIAMBU L4482 0.01 < P < 0.02
NYANDARUA - MERU .9253 P < 0.01
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TABLE 12: CONTINUED

DISTRICT PAIRS CALCULATED STUDENT pP= Prob(t(281)

AL or t(281) <
NYERI - BARINGO 0.4340 0.66 = P < Q.E
NYERI - NAKURU 0.8817 0.37 <« P < 03
NYERI - MURANG'A 1.8122 0.06 < P < 0.0
NYERI - KIAMBU 2.4700 0.01 <« P < 0,0
NYERI - MERU 2.9618 P < 0.0
BARINGO - NAKURU 0.4042 0.68 < P < 0:6¢
BARINGO - MURANG'A 1.4325 0.66 < P < 0.67
BARINGO - KIAMBU 1.9422 0.05 < P < 0.06
BARINGO - MERU 2.5146 0.01 ¢ P < 0.02
NAKURU - MURANG'A 1.1679 0.24 < P < 0.25
NAKURU - KIAMBU 1.6504 0.09 < P < 0.10
NAKURU - MERU 22825 0.02 < P < 0.03
MURANG'A - KIAMBU 0.0701 0.94 < P < 0.43
MURANG'A - MERU 0.7990 0:36 < P.< 0.37
KTAMBU - MERU 0.9106 0.36 < P < Q.37

Note:

To compute the probabilities in the last column the student
t with 281 degrees of freedom was approximated to a standard
normal distribution.
We recall that the hypothesis we want to test is
H : d. - d = i

o i k

against

H1 - di = dk#O
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that is to test whether the mean strength of timber for

the Cypress species due to districts Di and Dk is the same

when the attained

or not. We reject the hypothesis HO

significance level is small. If we regard P < 0.10
as smalll, we obtain the list in table 13 below for which
the mean strength of wood differ significantly.

TABLE 13: PAIRS OF DISTRICTS WHICH SHOW A SIGNIFICANT

DIFFERENCE IN MEAN STRENGTH FOR THE CYPRESS

SPECIES

DISTRICT PAIRS P - VALUE‘

LAIKIPIA - NYERI 0.05 < P < 0.06
LAIKIPIA - BARINGO 0.02 < P < 0.03
LAIKIPIA - NAKURU P < 0.01
LAIKIPIA - MURANG'A P < 0.01
LAIKIPIA - KIAMBU P = 0.01
LAIKIPIA - MERU P £ 0.01
ELGEYO - NYERI 0.08 < P < 0.09
ELGEYO - BARINGO 0.03 < P < 0.04
ELGEYO - NAKURU 0.01 <« P <= 0.02
ELGEYO - MURANG'A P < 0.01
ELGEYO - KIAMBU P < 0.01
ELGEYO - MERU P =2 0,01
KERICHO - NAKURU 0.01 < P < 0.02
KERICHO - MURANG'A P < 0.01
KERICHO - KIAMBU P < 0.01
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TABLE 13 CONTINUED

DISTRICT PAIRS P - VALUE

U. GISHU - MURANG'A P = 0.01
U. GISHU - KIAMBU P <« 0,01
U. GISHU - MERU P < 0.01
NYANDARUA - MURANG'A 0.04 < P = 0.05
NYANDARUA - KIAMBU 0.01 < P < 0.02
NYANDARUA - MERU P < 0.01
NYERI - MURANG'A 0.06 < P < 0.07
NYERI - KIAMBU 0.01 < P < 0.02
NYERI - MERU P < 0.01
BARINGO - KIAMBU 0.05 < P < 0.06
BARINGO - MERU 0.01 < P < 0.02
NAKURU - KIAMBU 0.09 < P < 0.10
NAKURU - MERU 0.02 < P <. 0.03
U. GISHU - NAKURU 0.05 < P < 0.06




CHAPTER 5
DISCUSSION AND CONCLUDING REMARKS

Sl REGRESSION

For both wood species, the Pine and the Cypress we
rejected the hypothesis

Ho DOByT ByT ...l = g, =0

where v is 10 and 11 for the Pine and Cypress species
respectively. Given that in both the regression models most
independent variables were indicator variables to take care
of site levels, we conclude here that there is high depen-
dence of strength of timber with site apart from density of

the material

The small values of the sample coefficients of deter-
minations imply that little variability of the Modulus of
rapture is explained by the main independent variable the
density.

This was 21.43% for the case of the Pine species and only
18.8% for the case of the Cypress Species.

A course for these low values could be due to errors made

in the determination of the measurable variables, the
response variable which was the modulus of rapture and the
explanatory variable which was the basic density. This is
so, becuase the other independent variables were qualitative,
the site levels, in this case the districts.

The model can be improved in a future study by including
more explanatory variables. ’

Now, looking at the regression models closely we find very
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useful information. We can easily rank the Districts
according to quality (strength) of timber. From the
regression models we can retrieve the simple linear regre-
ssion models for each district. The simple linear regression
models have same gradient (slopeé)but different intercepts.
Let us consider the Pine species case; whose calculated
multiple regression model is given by equation (4.4). In
this model, the indicator variables all take the value zero
when the data point is from Nakuru district, hence the simple
linear model for the District. Taking Nakuru district

as the reference point we find that Murang'a, Nyéri, Kericho
produce timber of a higher strength than Kiambu, Baringo, Meru,

Laikipia and Nyandarua districts.

Similarly with the case of Cypress we get the simple
linear model for Nakuru when we put all the indicator variables
to take value zero in the model given by (4.9). Hence taking
Nakuru district as the reference point we find that Laikipia,
Elgeyo, Kericho, Uasin Gishu, Nyandarua, Nyeri, Baringo and
Nakuru districts produce Cypress wood of quite a higher

strength than Murang'a, Kiambu and Meru districts.

The findings here are important to a forest manager
because if the interest is the strength of wood then emphasis
can be put in the Districts which show a tendency of producing
timber of higher quality (strength). The manager can even
decide to substitute a species of lower quality with one of
higher quality for a given District. For a particular species,

~the manager can decide to follow a sequence of harvesting
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to avoid depletion of that species. Since if several
districts produce timber of higher quality for a given species
then harvesting can be planned in such a way that more
harvesting is done for those districts which have a bigger

number than those with a lower number.

5.2 ANALYSIS OF VARIANCE:

From the analysis of variance model

= p + di + eij 1=l 2y cnvosonwss Y%

Yij
we rejected the hypotheses

Ho : d1 =d, = .... = d9
for the Pine species, and

H : d, =d, =.... =4d

o | & 11

for the Cypress species, where the d,,  are the effects of

districts Di’ =1, Ly 25393 v = 9 or 11 on Modulus of
Rapture.

The conclusion here is that the mean strengths of wood for

a given species are not the same for at least a pair of
Districts. This was verified by the paired comparison. The
recommendation therefore is that in future constructional
standards for these species of wood should be calculated

per population in this case the districts, as opposed to the
past where the districts were taken as one population. This

may mean that even the prices of wood from district Di may

not be the same as that of district Di’



The results of the paired comparison can further

help in management because if wood from disrict Di and

that of district Dy show same effects on the strength of
wood, then if wood of a given strength is required and is
not available in District Di then it can be obtained from

district Dk'

The study in this project shall go a long way towards
helping the Kenya Bureau of Standards in setting standards
of the Kenyan wood. This is because in the past standards
were based on a pooled sample from the various districts,
but from the findings it appears.that there is need to
treat the districts individually.

On improving the carrying out of the study it is recommended
that in future in case of similar study an equal number of
observations per district be obtained since the analysis of
variance carried out here was aimed at comparing means of

v populations, where v is the number of districts. This
will make the computations for paired comparison easier by
making use of the least significance difference which is
common for all pairs.

It is believed that the study has answered some of
the questions intended to be answered as per the aim of

study.
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