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ABSTRACT

In this thesis we have studied how operator theory is applied in signal processing and how

some concepts in group theory are crucial in the design of cryptosystems and their use in hiding

information. A frame is a redundant (i.e. not linearly independent) coordinate system for a

vector space that satisfies a certain Parseval-type norm inequality. Frames provide a means for

transmitting data and, when a certain loss is anticipated, their redundancy allows for better

signal reconstruction. We have started with the basics of frame theory and given examples of

frames and applications that illustrate how this redundancy can be exploited to achieve better

signal reconstruction. The key idea is that in order to protect against a noise, we should encode

the message by adding some redundant information to the message. In such a case, even if

the message is corrupted by noise, there will be enough redundancy in the encoded message to

recover, or to decode the message completely

Cryptography is the science of information security, it is the practice of defending information

from unauthorized access, use, disclosure,disruption, modification, perusal, inspection, record-

ing or destruction. It is a general term that can be used regardless of the form the data may

take(electronic, physical, etc). We have explored and demonstrated how simple concepts like

divisibility of integers, primes and other concepts in number theory come in handy in cryptog-

raphy. We have demonstrated how to use group theory concepts to send messages(plaintext)

in disguised form so that only the intended recipients can remove the disguise and read the

message(ciphertext). To be able to achieve all this, we have spent a bit of time developing the

notion of Hilbert space frames, some groups, number systems and their their properties. We

have chosen the most optimal frames(tight frames) and groups(cyclic) for use in sending signal

and also reconstructing the sent signal and enciphering and deciphering a message.
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STRUCTURE OF THE THESIS

This research thesis consists of six chapters.

Chapter I begins with an introduction, background of the problem, definitions, key terminologies,

notations and continues to focus on some basic results and examples that seem to be of greatest

relevance to signal processing and cryptography.

In Chapter II we present the literature review, which in essence forms a basis to the research

problem. It also gives an overview of what has been done in this research area. We identify

the research or knowledge gap and identify a strategy on how to fill it. We formally state the

research problem, objectives and significance of the study.

In chapter III, we look at the mathematical underpinnings of this research. We develop the

mathematics required for signal processing and cryptography. We study vector spaces, metric

spaces, normed spaces, Hilbert spaces and some group theory/number theory and the public-key

RSA cryptosystem.

In chapter IV we present results on frames in both finite and infinite dimensional Hilbert spaces.

In chapter V, we provide applications of these concepts in cryptography and signal processing.

In chapter VI we give a summary of the main results and conclusion. We have also given direction

for further research.
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Chapter 1

PRELIMINARIES

1.1 Background of Signal Processing and Cryptography

Signal processing is a subfield of mathematics, information and electrical engineering that con-

cerns the analysis, synthesis, and modification of signals, which are broadly defined as functions

conveying information about the behavior or attributes of some phenomenon, such as sound,

images, etc. In signal processing, each vector is interpreted as a signal. In this interpretation,

a vector expressed as a linear combination of the frame vectors is a redundant signal. Redun-

dancy can be used to mitigate noise, which is relevant to the restoration, enhancement, and

reconstruction of signals.

Cryptography is the science of disguising data so that only the sender and recipient can read

the data. Cryptographers call the data they want to send plaintext, usually converted into a

string as a vector in a vector space. The process of disguising the data is encryption. Encryption

is a one-to-one mathematical function that requires a key (a unique number or set of numbers)

and a plaintext as input to produce the encrypted text or ciphertext. The ciphertext, a new string

(or vector) of integers between 0 and 255, can be converted back to the same medium as the

plaintext and sent through the mail, internet, or any other mode of data decryption. Decryption

is the inverse mathematical function of encryption which takes a key and a ciphertext as input

to reproduce the plaintext.

The domains of the plaintext and ciphertext along with the keys, encryption function, and

decryption function make up a cryptosystem. A good cryptosystem is one that is computationally

efficient and requires little storage space. Cryptographers are encouraged to develop systems that

have a small key size, so that the keys are easy to share through covert channels; for example,

short verbal communication, an encrypted email or disguised postal letter. The cryptostem must

be secure against attack.
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1.2 Notations, Terminologies, Definitions and Basic Re-

sults

In thesis,H,H1,H2,K,K1,K2, etc will denote Hilbert spaces andHN will denote anN -dimensional

Hilbert space. By B(H), we denote the Banach algebra of bounded linear operators on a Hilbert

space H. We denote by B(H1,H2) the Banach space of all bounded linear operators from a

Hilbert space H1 into a Hilbert space H2.

T, T1, T2: etc denote bounded linear operators.

T ∗: denotes the adjoint of an operator T .

〈x, y〉: Inner product of two vectors x and y.

‖x‖: norm of a vector x.

‖T‖: norm of a bounded linear operator T .

M: a closed subspace or closed linear manifold of a Hilbert space H.

M: closure of a subspace M.

M⊥ = {y ∈ H : 〈x, y〉 = 0, x ∈M}: the orthogonal complement or annihilator of a subspace

M.

Ran(T ) = {y : Tx = y}: the range of T , where x belongs to the domain of T .

Ker(T ) = {x : Tx = 0}: the kernel of T .

M⊕N : the orthogonal direct sum of subspaces M and N .

F: any field.

C: field of complex numbers

Mn(C): the algebra of n× n matrices over the field of complex numbers.
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σ(T ): the spectrum of a bounded linear operator T .

A ≈ B: similar bounded linear operators A and B.

A ∼= B: unitarily equivalent bounded linear operators A and B.

`2(Z) = {x = (x1, x2, ...) :
∑∞

n=1 |xn|2 <∞} with the inner product 〈x, y〉 =
∑∞

n=1 xnyn.

L2(R) = {f : R −→ C :
∫
R |f(t)|2dt < ∞}(in the sense of Lebesgue) with the inner product

〈f, g〉 =
∫
R f(t)g(t)dt, where the ”bar” denotes complex conjugation. This inner product induced

norm ‖f‖ = 〈f, f〉1/2.

Definition 1.2.1. Two operators A ∈ B(H) and B ∈ B(K) are said to be similar (denoted

A ∼= B) if there exists an invertible operator N ∈ B(H,K) such that NA = BN or equivalently

A = N−1BN , and are unitarily equivalent (denoted by A ∼= B) if there exists a unitary operator

U ∈ B+(H,K) (Banach algebra of all invertible operators in B(H)) such that UA = BU (i.e.

A = U∗BU , equivalently, A = U−1BU).

Definition 1.2.2. Two operators A ∈ B(H) and B ∈ B(K) are said to be metrically equivalent

(denoted by A ∼m B) if ‖Ax‖ = ‖Bx‖, (equivalently, |〈Ax,Ax〉| 12 = |〈Bx,Bx〉| 12 for all x ∈ H,

[22]). Two operators S and T are said to be nearly equivalent if there exists an invertible operator

V such that S∗S = V −1T ∗TV .

Clearly similarity, unitary equivalence, near-equivalence and metric equivalence are equivalence

relations on B(H).

Definition 1.2.3. An operator T ∈ B(H) is said to be:

self-adjoint if T = T ∗,

normal if T ∗T = TT ∗,

unitary if T ∗T = TT ∗ = I, where I denotes the identity operator,

a projection if T = T ∗ and T 2 = T ,

an isometry if T ∗T = I,
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a co-isometry if TT ∗ = I,

a partial isometry if T ∗ TT ∗ = T ∗ or TT ∗T = T ,

a scalar if T = αI, where α ∈ C.

Definition 1.2.4. An operator T ∈ B(H) is said to be positive if it is self-adjoint and that

〈Tx, x〉 ≥ 0, for all x ∈ H.

Definition 1.2.5. A field F is said to be algebraically closed if the only irreducible polynomials

in the polynomial ring F[x] are those of degree one, or every polynomial over F factors completely

into linear factors.

Definition 1.2.6. Let T ∈ B(H). If there exists an operator TD ∈ B(H) satisfying the following

three operator equations

TTD = TDT, TDTTD = TD, T k+1TD = T k,

where k = ind(T ), the index of T , which is the smallest non-negative integer for whichRan(T k+1) =

Ran(T k) and Ker(T k+1) = Ker(T k), then TD is called the Drazin inverse of T .

The Drazin inverse of an operator T is a generalized inverse and if T is invertible, then its inverse

is equal to its Drazin inverse. That is, T−1 = TD.

Definition 1.2.7. A group is a set G, together with a binary operation ∗ that is closed, asso-

ciative under ∗ and has an identity element and an inverse element for every element in G.

Remark. The group of operators U = {Un×n : U∗U = UU∗ = I} is called the unitary group,

and is denoted by SU(n).

Definition 1.2.8. A plaintext is a message to be communicated. A ciphertext is a disguised

version of a plaintext message.

Definition 1.2.9. The process of creating a ciphertext from a plaintext is called encryption.

The process of turning a ciphertext back into plaintext is called decryption.

Definition 1.2.10. The process of changing plaintext to bits(usually numbers) is called encod-

ing. Decoding turns bits or numbers back into plaintext.

Definition 1.2.11. A signal is a formal description of a physical phenomenon evolving over time

or space.
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Signal is a physical phenomenon that carries information. This physical phenomenon is described

by mathematical functions, and usually the signal and its mathematical function are used for

one another, i.e., synonymous. For instance, when we talk about a sinusoidal signal, we use the

sinusoidal function, a mathematical function, to characterize the signal, and the name sinusoidal

is used for the signal. Signals are usually depicted in graphs to observe their behavior and analyze

them. Sinusoidal signals are the main signals and all the other signals can be considered as being

made up of sinusoidal signals with different frequencies and amplitudes.

Definition 1.2.12 ([24] ). Signal processing generally is any manual or electronical/mechnical

operation that involves a prescribed manipulation(modification, analysis or otherwise, of informa-

tion contained in a signal) of signals in order to achieve some useful goal such as communication,

compression, information extraction, information enhancing, and storage.

Digital signals are obtained from continuous time signals via sampling operation. Digital signals

are represented as mathematical sequences, and the elements of these sequences are nothing but

the amplitude values taken from continuous time signals at every multiple of the sampling period.

Definition 1.2.13. A frame is a sequence of vectors {fi} for a Hilbert space H for which there

exist constants 0 < α ≤ β <∞ such that for all vectors f ∈ H

α‖f‖2 ≤
∑
i

|〈f, fi〉|2 ≤ β‖f‖2.

Remark. The constants α and β are called the lower and upper frame bounds, respectively.

They are, respectively, the smallest and largest eigenvalues of the frame operator S. The numbers

(〈f, fi〉) are called the frame coefficients. A frame is a redundant or over-complete(i.e. not

linearly independent) coordinate system for a vector space that satisfies the Parseval-type norm

inequality. A set of vectors in a finite dimensional Hilbert space is a frame if and only if it is

(just) a spanning set.

Definition 1.2.14. Let {fi}mi=1 be a frame for HN . Then a frame {gi}mi=1 is called a dual frame

for {fi}mi=1 if

f =
m∑
i=1

〈f, fi〉gi, ∀f ∈ HN .

Remark. Frames are similar to a basis for a Hilbert space but have a special feature: they

contain redundancy that could be used to hide data. Any vector in a Hilbert space can be

reconstructed using a frame and its dual.

We define some special operators associated with a frame in Hilbert space.
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Definition 1.2.15. Let {fi}mi=1 be a frame for a Hilbert space HN . The operator T : HN → `m2

defined by Tf = (〈f, fi〉)mi=1, for all f ∈ HN is called the analysis operator of the frame. The

adjoint T ∗ : `m2 −→ HN of the analysis operator T defined by T ∗(ai)
m
i=1 =

∑m
i=1 aifi is called the

synthesis operator of the frame.

The following results give some basic properties of the analysis and synthesis operators of a frame

which are necessary in the rest of the thesis.

Lemma 1.2.16. Let {fi}mi=1 be a frame for HN with associated analysis operator T . Then

(i). ‖Tf‖2 =
∑m

i=1 |〈f, fi〉|2, ∀f ∈ HN .

(ii). {fi}mi=1 is a frame if and only if T is injective.

(iii). T ∗(ai)
m
i=1 =

∑m
i=1 aifi.

Proof. (i) and (ii) are immediate consequences of the definition of T and that of a frame.

To prove (iii), suppose that f, g ∈ HN . Then

〈T ∗f, g〉 = 〈f, Tg〉 = 〈
m∑
i=1

aifi, (〈g, fi〉)mi=1〉 =
m∑
i=1

ai〈g, fi〉 = 〈
m∑
i=1

aifi, g〉.

This proves the claim.

The next result summarizes some basic, yet useful properties of the synthesis operator of a frame.

Lemma 1.2.17. Let {fi}mi=1 be a frame for HN with associated analysis operator T and let

{ei}mi=1 be the standard basis for `m2 . Then

(i). T ∗ei = T ∗Pei = fi, where P : `m2 −→ `m2 denotes the orthogonal projection onto Ran(T ).

(ii). {fi}mi=1 is a frame if and only if T ∗ is surjective.

Proof. The proof of (i) follows from Lemma 1.2.16 and the fact that Ker(T ∗) = Ran(T )⊥.

(ii). is a consequence of the fact that Ran(T ∗) = Ker(T )⊥ and Lemma 1.2.11 (i) and (ii).

Remark. The analysis and synthesis operators of a frame play a central role in the analysis, re-

construction and recovery of any function or signal f ∈ HN . The analysis operator, as the name

suggests- analyzes a signal f ∈ HN in terms of the frame by computing its frame coefficients

(〈f, fi〉)mi=1.

Often frames are modified by the application of an invertible operator, which multiplies all its

frame vectors. The next result shows not only the impact on the associated analysis operator,

but also the fact that the new sequence again forms a frame.
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Proposition 1.2.18 (Njagi et al[18], Proposition 3). Let Φ = {fi}mi=1 be a sequence of vectors in

HN with associated analysis operator TΦ and let F : HN −→ HN be a bounded linear operator.

Then the analysis operator of the sequence FΦ = {Ffi}mi=1 is given by TFΦ = TΦF
∗. Moreover,

if Φ is a frame for HN and F is invertible, then FΦ is also a frame for HN .

Proof. For any f ∈ HN we have

TFΦf = (〈f, Ffi〉) = 〈F ∗f, fi〉mi=1 = TΦF
∗f.

This proves that TFΦ = TΦF
∗. The second claim follows easily from Lemma 1.2.17(ii).

Next, we analyze the structure of the matrix representation of the synthesis operator. This

matrix is of fundamental importance, since this is what frame re-constructions focusses on. The

next result provides the form of this matrix along with its stability properties.

Lemma 1.2.19 (Njagi et al [18], Lemma 4). Let {fi}mi=1 be a frame for HN with analysis operator

T . Then a matrix representation of the synthesis operator T ∗ is the N×m matrix whose columns

are the frame vectors given by

T ∗ =

 | | · · · |
f1 f2 · · · fm

| | · · · |

 .
Moreover, the Riesz bounds of the row vectors of this matrix equal the frame bounds of the column

vectors.

Proof. The form of the matrix representation is obvious. To prove the moreover part, let {ej}Nj=1

be the corresponding orthonormal basis of HN . Let

ψj = [〈f1, ej〉, 〈f2, ej〉, · · · , 〈fm, ej〉]

be the row vectors of the matrix. Then for f =
∑N

j=1 ajej we obtain

m∑
i=1

|〈f, fi〉|2 =
m∑
i=1

m∑
j=N

aj〈ej, fi〉 =
N∑

j,k=1

ajak

m∑
i=1

〈ej, fi〉〈fi, ek〉 =
N∑

j,k=1

ajak〈ψk, ψj〉 = ‖
N∑
j=1

ajψj‖2.

This proves the claim.

Definition 1.2.20. Let {fi}mi=1 be a sequence of vectors in HN with associated analysis operator

7



T . Then the operator S : HN −→ HN is defined by

Sf = T ∗Tf =
m∑
i=1

〈f, fi〉fi, ∀f ∈ HN ,

is called the frame operator of the sequence.

From the definition, we deduce that the frame operator S = T ∗T , where T is the analysis operator

of the sequence. A first observation concerning the close relationship of the frame operator to

frame properties is the following lemma.

Lemma 1.2.21 (Njagi et al[18], Njagi et al[21]). Let {fi}mi=1 be a sequence of vectors in HN with

associated frame operator S. Then for f ∈ HN ,

〈Sf, f〉 =
m∑
i=1

|〈f, fi〉|2.

Proof. The proof follows directly from the fact that

〈Sf, f〉 = 〈T ∗Tf, f〉 = 〈Tf, Tf〉 = ‖Tf‖2 =
m∑
i=1

〈f, fi〉〈fi, f〉 =
m∑
i=1

〈f, fi〉〈f, fi〉 =
m∑
i=1

|〈f, fi〉|2.

Clearly, the frame operator S = T ∗T is positive and invertible if the underlying sequence of

vectors form a frame.

Theorem 1.2.22. If a bounded linear operator S is a frame operator, then S is invertible.

Proof. Suppose S is the frame operator of a frame {fk}nk=1 for a Hilbert spaceH. Since S = A∗A

is self-adjoint, where A is the analysis operator of {fk}nk=1, it is enough to prove that if f ∈ H
and Sf = 0 then f = 0. Suppose that Sf = 0. Then by definition

0 = 〈Sf, f〉 = 〈
∑n

k=1〈f, fk〉, f〉

=
∑n

k=1〈f, fk〉〈fk, f〉

=
∑n

k=1〈f, fk〉〈f, fk〉

=
∑n

k=1 |〈f, fk〉|2

This implies that 〈f, fk〉 = 0 for all k = 1, 2, · · · , n, which means that f = 0. This shows

that S is injective. Since {fk}nk=1 is a frame, by Lemma 1.2.17 A∗ is surjective. Therefore

Ran(S) = Ran(A∗A) = Ran(A∗) = H. This proves that S is surjective. This proves the claim.

8



Remark. The invertibility of S and that of its inverse S−1 is crucial for the reconstruction

formula.

Proposition 1.2.23 (Frame Reconstruction/Reproducing Formula, Njagi et al[21], Proposition

3.8). Let {fi} be a frame for a Hilbert space H with analysis operator T and frame operator

S = T ∗T . Then

f =
∑
i

〈S−1f, fi〉 =
∑
i

〈f, S−1fi〉fi =
∑
i

〈f, fi〉S−1fi, ∀f ∈ H.

Proof. Let f ∈ H. By definition and self-adjointness of the frame operator S, we have

f = SS−1f =
∑
k

〈S−1f, fi〉fi =
∑
i

〈f, S−1fi〉fi.

Similarly,

f = S−1Sf = S−1
∑
i

〈f, fi〉fi =
∑
i

〈f, fi〉S−1fi.

This proves the claim.

Theorem 1.2.24 (Njagi et al[18], Theorem 6). The frame operator S of a frame {fi}Mi=1 for HN

with frame bounds is invertible and satisfies

αI ≤ S ≤ βI.

Proof. By Lemma 1.2.21 we have

〈αf, f〉 = α‖f‖2 ≤
m∑
i=1

|〈f, fi〉|2 = 〈Sf, f〉 ≤ β‖f‖2, ∀f ∈ HN .

This implies the claimed inequality.
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Chapter 2

LITERATURE REVIEW

The Fourier transform has been a major tool in signal processing for over 100 years. However, it

solely provides frequency information, hides(in its phases) information concerning the moment

of emission and duration of a signal.

In 1946, Gabor[11] resolved this problem by introducing a fundamentally new approach to signal

decomposition. Gabor’s approach quickly became the paradigm for this area because it provided

resilience to additive noise, quantization, and transmission losses as well as ability to capture

signal characteristics.

In 1952, Duffin and Schaeffer[10] were studying some deep problems in non-harmonic Fourier

series for which they required a formal structure for working with highly over-complete families

of exponential functions in the Hilbert space L2[0, 1]. For this, they introduced the notion of

a Hilbert space frame in which Gabor’s approach is now a special case, falling into the area of

time-frequency analysis.

Much later, in 1986, Daubechies et al[9] revived the fundamental concept of frames and resolved

its importance in data processing. In 2004, Miotke and Rebollo-Neira[17] published a theoret-

ical private key encryption scheme using infinite frames and over-sampling of Fourier coefficients.

Cryptography is the art or science of hiding data and it relies heavily on invertible mathematical

functions or operators. Mathematicians have explored a plethora of mathematical concepts in

their quest to develop an unbreakable system. In 1977, Rivest, Shamir, and Adleman proposed

a trapdoor function which resulted in a public-key cryptosystem, called RSA. The function was

RSA(n, e, x) = xe mod n,
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where n is the product of two large primes p and q and gcd(e, ϕ(n)) = 1, where ϕ(n) denotes

Euler’s (totient) function defined by ϕ(n) = ϕ(pq) = (p− 1)(q − 1).

In 2005, Harkins et al[12] published a set of private key encryption schemes using finite frames

and Hadamard arrays. Both of these schemes use the same frame theory structure. It is always

important that once a cryptosystem is developed, it be tested for vulnerable attack.

In 2005, Harkins et all[12] showed that their system was vulnerable to a chosen ciphertext attack.

Later, in 2006, Osvik et al[23] published paper showing that the general cryptosystem used by

Mioke and Rebello-Neira[17] was vulnerable to a known plaintext attack.

In this thesis, we have used the redundancy of finite frames in an N -dimensional Hilbert space

and some techniques in number theory and group theory to show how to send and reconstruct

signals and how to hide information.

2.1 Statement of the Problem

We investigated some application of operator theory and group theory concepts in signal pro-

cessing and cryptography. First, we have developed some finite frame theory and investigated

properties of some frames. We have investigated and demonstrated how notions of divisibility,

non-divisibility and modular arithmetic can be utilized to hide data or information.

2.2 Objectives of the Study

The main objective is to develop the abstract theory of finite frames and group theory and

demonstrate some of the applications in signal processing and cryptography.

The specific objectives of this study are

(i). Given a frame, determine the analysis, synthesis and the frame operator, a dual frame,

canonical dual.

(ii). To explore and further develop the abstract theory of finite Hilbert space frames, their

properties.

(iii). To explore prime numbers, divisibility and modular arithmetic and how they can be

used to design cryptosystems. Our focus will be to demonstrate how these concepts work. We
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focus on the working of the RSA.

(iv). Demonstrate how we can still reconstruct, encode and decode information securely, even

after dropping some vectors in an over-complete frame.

(v). Demonstrate some applications of frame theory and group theory in signal processing

and cryptography.

2.3 Significance of the Study

This study will generalize some existing results on Hilbert space frames and cryptography and

will contribute significantly to a better understanding of how to send, reconstruct, encrypt and

decrypt messages or signals.

The results obtained in this research will broaden the scope of understanding of frame theory

and positively contribute to the mathematics and the scientific community.
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Chapter 3

VECTOR SPACE THEORY AND

GROUP THEORY CONCEPTS

In this chapter we explore some basic vector space and group theory concepts of importance in

the rest of the chapters of this thesis.

3.1 Elementary Vector Space theory

In this section, we study vector spaces and their properties. The following definitions and results

will be useful in the sequel.

Definition 3.1.1. A vector over a field F is a set V with two operations, + addition of vectors

(x, y) −→ x + y and . multiplication by scalar function (λ, x) −→ λx from F × V to V defined

on it and satisfying some axioms.

The elements of a vector space are called vectors.

Definition 3.1.2. Let V be a vector space over F. A subset U of V is called a subspace of V if

it is a vector space itself over F under the same operations that make V a vector space over F.

Definition 3.1.3. Let V be a vector space over a scalar field F and let f1, f2, · · · , fn vectors in

V . The finite sum
n∑
k=1

akfk

for some scalars a1, a2, · · · , an is called a linear combination of the vectors f1, f2, · · · , fn.

Definition 3.1.4. Let V be a vector space over a scalar field F and M be a subset of V . The
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span of M is the set

span(M) =
{ n∑
k=1

akfk : n ∈ N, ai ∈ C and fi ∈M
}
.

Definition 3.1.5. Let V be a vector space over a scalar field F. We say that vectors f1, f2, · · · , fn
be vectors in V are linearly independent if from

n∑
k=1

akfk = 0

one can conclude that a1 = a2 = · · · = an = 0.

Remark. Clearly, vectors f1, f2, · · · , fn are linearly independent if no vector fk is a linear com-

bination of the other vectors. We call an infinite number of vectors{fk}∞k=1 linearly independent

if every finite subset {fk}nk=1, where n <∞ of those vectors is linearly independent.

Definition 3.1.6. Let V be a vector space over a scalar field F. We say that vectors f1, f2, · · · , fn
in V are linearly dependent if there exists scalars a1, a2, · · · , an not all equal to zero such that

the linear combination
n∑
k=1

akfk = 0.

Remark. Trivially, any list of vectors that includes the zero vector in a vector space V is linearly

dependent.

Definition 3.1.7. Let X be a non-empty set. A metric on X is a distance function d : X×X −→
R+, that satisfies the following properties

(i). d(x, y) ≥ 0.

(ii). d(x, y) = 0 if and only if x = y.

(iii). d(x, y) = d(y, x).

(iv). d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈ X.

The set X, when equipped with a metric d, and denoted by (X, d) is called a metric space.

A distance function ρ satisfying properties (i), (iii) and (iv) of a metric and that ρ(x, y) = 0 for

some x 6= y is called a pseudo-metric. Clearly every metric is a pseudo-metric.

Definition 3.1.8. Let V be a complex vector space. A function ‖.‖ : V −→ R2 satisfying the

following properties

(i). ‖f‖ ≥ 0

(ii). ‖f‖ = 0 if and only if f = 0.

14



(iii). ‖αf‖ = |α|‖f‖,∀f ∈ V, ∀α ∈ C.

(iv). ‖f + g‖ ≤ ‖f‖+ ‖g‖,∀f, g ∈ V
is called a norm. A vector space V with a norm is called a normed space. A complete normed

space is called a Banach space.

Definition 3.1.9. Let V be a complex vector space. A complex bilinear function 〈., .〉 : V×V −→
C is called an inner product if for any f, f1, f2, g, g1, g2 ∈ V and α1, α2 ∈ C, the following

conditions are satisfied.

(i). 〈f, f〉 ≥ 0.

(ii). 〈f, f〉 = 0 if and only if f = 0.

(iii). 〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉.
(iv). 〈f, g〉 = 〈g, f〉 and 〈f, α1g1 + α2g2〉 = α1〈f, g1〉+ α2〈f, g2〉. A vector space V endowed with

an inner product is called an inner product space. A complete inner product space is called a

Hilbert space.

Given an inner product 〈., .〉 in a vector space V , induce norm is defined as

‖f‖ = 〈f, f〉1/2, ∀f ∈ V.

Theorem 3.1.10 (Cauchy-Schwarz Inequality). For any two vectors f, g in an inner product

space H, we have

|〈f, g〉| ≤ ‖f‖‖g‖.

Definition 3.1.11. Two vectors f, g ∈ H are said to be orthogonal if 〈f, g〉 = 0. If in addition

they have the additional property ‖f‖ = ‖g‖ = 1, then they are called orthonormal vectors. A

subset X of non-zero vectors in a Hilbert space H is called an orthonormal set if

〈fi, fj〉 =
{ 1, if i = j

0, otherwise
, fi ∈ X.

Remark. In Definition 3.1.11, the subset X can be finite, countably infinite or even uncountably

infinite. When X is countably infinite, then it can be arranged in a sequence and we now refine

the definition using the Kronecker delta function

δn,m =
{ 1, when m = n

0, otherwise
.

This leads to the following definition of an orthonormal sequence.

Definition 3.1.12. A sequence of non-zero vectors {fn}∞n=1 in a Hilbert space H is called an

orthonormal sequence if 〈fm, fn〉 = δn,m, for all m,n ∈ N.
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3.2 Group Theory and the RSA Encryption System

In this section we discuss one of the main methods of encrypting data, the RSA encryption

system. This system has an algebraic structure of a group. The RSA encryption system was

invented in 1978 by Ron Rivest, Adi Shamir, and Leonard Adleman[25], and is one of the most

common methods of encrypting data used today.

First we introduce the notion of prime numbers, divisibility, congruence calculus and modular

arithmetic.

Definition 3.2.1. An integer x ≥ 2 with only trivial factors ±1 and ±x is called a prime number.

If an integer y ≥ 2 is not a prime, it is called composite.

Definition 3.2.2 (Congruences). Given three numbers a, b and m, we say that ”a is congruent

to b modulo m” and write a ≡ b mod m if the difference a− b is divisible by m. Here, m is called

the modulus of the congruence.

Clearly, for a fixed modulus m, the congruence modulo m is an equivalence relation. For fixed m,

each equivalence class with respect to congruence modulo m has one and only one representative

between 0 and m − 1. This is equivalent to saying that any integer is congruent modulo m to

one and only one integer between 0 and m − 1. We will denote the set of equivalence classes

or residue classes by Z/mZ or Zm. Clearly, congruences with the same modulus can be added,

subtracted and multiplies: If a ≡ b mod m and c ≡ d mod m, then a ± c ≡ b ± d mod m and

ac ≡ bd mod m Clearly, Zm is a commutative ring. In fact, Zm is a field.

Theorem 3.2.3. (a).([15]) If a ≡ b mod m, then a ≡ b mod d for any divisor d of m.

(b). If a ≡ b mod m and a ≡ b mod n, and m and n are relatively prime(i.e. gcd(m,n) = 1),

then a ≡ b mod mn.

Remark. The idea of congruence calculus is that computation is only done with the remainders

of integers using a fixed divisor or modulus m ≥ 1.

Definition 3.2.4. A function f which is easy to compute but for which f−1 is hard to compute

without having some auxiliary information beyond what is necessary to compute f is called a

trapdoor function.

We note that for a trapdoor function, the inverse f−1 is easy to compute, however, for someone

who has the decrypting key. The RSA uses a trap-door function.

Definition 3.2.5. A function f which is easy to compute but for which f−1 is hard and cannot

be made easy to compute even by acquiring some additional information is called a one-way

function.
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There exist a one-way cipher, where it is possible for a computer to verify passwords without

storing information that could be used by an intruder to impersonate a legitimate user. This

uses the principle of a one-way function.

To describe the RSA system, we start with the following data:

-distinct prime numbers p and q.

-an integer e relatively prime to (p− 1)(q − 1).

The trap-door function is

RSA(n, e, x) = xe mod n,

where n is a product of two large primes p and q and gcd(e, ϕ(n)) = 1, where ϕ(n) is Euler’s

(totient) function defined by ϕ(n) = ϕ(pq) = (p− 1)(q − 1)

From this data we build an encryption system. Let n = pq. For convenience and without loss of

generality, we restrict our attention to encrypting numbers. This is satisfactory since any text

message can be converted to numbers by replacing each letter with an appropriate number. Let

M be an integer, considered to be a message we wish to encrypt. We then calculate M e mod n,

the remainder after dividing n into M e. This remainder is our encrypted message.

Example 3.2.6.

Let p = 3486784409, q = 282429536483 and e = 19. Then n = pq = 984770904450021093547.

Also, (p − 1)(q − 1) = 984770904164104772656. To encrypt the message 12345, we calcu-

late 1234519 mod n, to get 123355218486796132288. Therefore, if we wish to transmit the

number 12345, we would instead transmit 123355218486796132288. For the person receiving

123355218486796132288, the question is how to know that it represents 12345. First, our as-

sumption that e is relatively prime to (p − 1)(q − 1), we know that e has an inverse modulo

(p− 1)(q − 1). That is, there is an integer d with

ed ≡ 1 mod (p− 1)(q − 1).

If an encrypted number N is received, then one calculates Nd mod n and the result returns the

original message. In this example, Maple computation gives d = 207320190350337846875. Thus

to recover the original message 12345, we compute

123355218486796132288207320190350337846875 mod 984770904450021093547 = 12345.

Remark. While this calculation looks formidable, Maple can do it virtually instantaneously. In
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fact, on an average personal computer, Maple can calculate Md mod n in a couple of seconds

even if d and n are 400 digit numbers, so the calculations in RSA system are easy to do even

with very large numbers.

To summarize, the RSA encryption system starts with two prime numbers p and q an an in-

teger e satisfying gcd(e, (p − 1)(q − 1)) = 1. We then calculate a positive integer d satisfying

ed ≡ 1 mod (p − 1)(q − 1). We then encrypt an integer M by replacing it by N = M e mod n.

To decrypt N , we see that M = Nd mod n.

The reason why this method works will be addressed in our study of group theory. The theoretical

fact that the inventors of the RSA system needed was Euler’s theorem, which is a special case

of Lagrange’s theorem.

Definition 3.2.7. A group is a nonempty set G together with a binary operation ∗ on it that

makes it closed, associative, there is an identity element such that every element in G has an

inverse in G.

Proposition 3.2.8. If a ≡ b (mod m), then an ≡ bn (mod m) for any positive integer n.

Proof. Since a ≡ b (mod m), we can multiply the congruence by itself to get a2 ≡ b2 (mod m).

Continuing to multiply, we get an ≡ bn (mod m) for any positive integer n.

Remark. Being able to compute an (mod m) for large values of n is extremely important in

cryptographic applications. This process is known as modular exponentiation.

To encrypt a message using the RSA cryptosystem, we first convert the plaintext into a list of

nonnegative integers. In this chapter, we will again assume that all messages are written using

only the characters in the alphabet L = {A,B,C, ..., Z}, and associate each of these characters

with their corresponding elements in the ring R = Z26 under the bijection ψ : L −→ R given by

A 7−→ 0, B 7−→ 1, C 7−→ 2, · · · , Z 7−→ 25.

We then choose distinct primes p and q and let n = pq and m = (p− 1)(q − 1)(Here ϕ(n) := m,

where ϕ is Euler’s function?). Next, we choose a ∈ Zm with gcd(a,m) = 1, and find b ∈ Zm
that satisfies ab = 1 mod m). To encrypt a numerical plaintext message, we raise the plaintext

integers to the power a and reduce modulo n.

We note that the RSA is based on the tremendous difficulty of factoring. One chooses

two extremely large prime numbers p, q(say of 100 digits each) and lets n = pq. Knowing the

factorization of n, it is easy to compute ϕ(n) = (p − 1)(q − 1) = n + 1 − p − q. Next, one
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randomly[using a random number generator or computer program, of course] chooses a number

e between 1 and ϕ(n) which is relatively prime to ϕ(n)

We state the next case as a lemma.

Lemma 3.2.9. Let p and q be distinct primes. Then ϕ(pq) = (p− 1)(q − 1).

Proof. Set n = pq. To count ϕ(n), we first count the number of integers between 1 and n and

not relatively prime to n. If 1 ≤ a ≤ n, then gcd(a, n) > 1 only if p divides a or q divides a. The

multiples of p between 1 and and n are then

p, 2p, · · · , (q − 1)p, qp = n,

so that there are q multiples of p between 1 and n. The multiples of q in this range are

q, 2q, · · · , (p− 1)q, pq = n,

so that there are p multiples of q in this range. The only number on both lists is n. This follows

from unique factorization. Therefore, there are p + q − 1 integers between 1 and n that are not

relatively prime to n. Since there are n = pq numbers in this range, we see that

ϕ(n) = pq − (p+ q − 1) = pq − p− q + 1 = p(q − 1)− (q − 1) = (p− 1)(q − 1),

as desired.

To summarize, the group Z∗n has ϕ(n) elements, and if n = pq is the product of two Disney

primes, then Z∗pq has (p− 1)(q − 1) elements. The significance of this result and its application

to the RSA encryption system will become clear when we prove Lagrange’s theorem. To do this,

we first discuss subgroups.

Definition 3.2.10. Let G be a group. A nonempty subset H of G is said to be a subgroup of

G if the operation on G restricts to an operation on H, and if H is a group with respect to this

restricted operation.

Lemma 3.2.11. A nonempty set H of a group G is a subgroup if and only if it is closed under

the operation inherited from G and the inverse of every element in H is also in H.

Remark. If G is a group and a ∈ G, then the cyclic subgroup generated by a is the set

〈a〉 = {an : n ∈ Z}.

To formally define an, we first define a0 = e, the identity of G. If n is a positive integer, then we

define, inductively, an+1 = an.a. For negative exponents, if n > 0, we set a−n = (an)−1. Clearly,
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〈a〉 is a subgroup of G by Lemma 3.2.11.

Lemma 3.2.12. Let G be a finite group and let a ∈ G. If n = min{m : m > 0, am = e}, then

n = |〈a〉|, the number of elements in the cyclic subgroup generated by a.

Proof. We prove the claim by showing that 〈a〉 = {ar : 0 ≤ r < n} and that these elements

are all distinct. First, any element of 〈a〉 is of the form as for some integer s. By the division

algorithm, we may write s = qn+ r, with 0 ≤ r < n. Then

as = aqn+r = aqrar = (an)qar = ar,

since an = e, so (an)q = e. Therefore, as can be written as a power ar of a with 0 ≤ r < n. This

proves the first claim. For the second claim, suppose that ar = at with 0 ≤ r, t < n. Suppose

that r ≤ t. Then, by the laws of exponents, e = ata−r = at−r. Since n is the smallest positive

integer satisfying am = e, and since 0 ≤ r, t < n, we must have t− r = 0. Thus, t = r. So the el-

ements a0, a1, · · · , an−1 are all distinct. Since these elements form 〈a〉, we conclude that |〈a〉| = n.

We now consider Lagrange’s theorem. First, we note that if H is a subgroup of a group (G, ∗)
and if a ∈ G, then the coset of H generated by a is the set

Ha = {ha : h ∈ H}.

Remark. Cosets are equivalence classes for the following equivalence relation: for a, b ∈ G,

define a ∼ b if ab−1 ∈ H. Clearly, ∼ is an equivalence relation and the equivalence class of a is

the coset Ha. This means that the cosets of H form a partition for the group G.

Theorem 3.2.13 (Lagrange). Let G be a finite group and let H be a subgroup of G. Then |H|
divides |G|.

Proof. It suffices to show that each coset has |H| elements, which means that |G| is equal to |H|
times the number of cosets. To do this, let a ∈ G. We wish to prove that |Ha| = |H|. One way

to prove that two sets have the same size is to produce a one-to-one correspondence(one-to-one

and onto map) between them. We define a function f : H −→ Ha by f(h) = ha. Clearly f

is one-to-one since if f(h) = f(k), then ha = ka. Multiplying both sides on the right by a−1

yields h = k. The function f is also onto since if x ∈ Ha, then x = ha for some h ∈ H, and so

x = f(h). Since f is a one-to-one correspondence(on-to-one and onto map) from H onto Ha, we

conclude that |Ha| = |H|, as desired.

Remark. Combining Lemma 3.2.12 and Theorem 3.2.13[Lagrange], we get a result in the RSA

encryption system.

20



Corollary 3.2.14. Let G be a finite group with n = |G|. If a ∈ G, then an = e.

Proof. Let m = |〈a〉|. By Theorem 3.2.13(Lagrange’s Theorem), m divides n, so n = mt for

some integer t. By Lemma 3.2.12, am = e. Therefore, an = amt = (am)t = et = e, as desired.

A special consequence of Corollary 3.2.14 is Euler’s theorem. Recall that Euler’s (totient) func-

tion ϕ(m) gives the count of those integers x in the intervals 1 ≤ x ≤ m for which gcd(x,m) = 1.

That is

ϕ(m) = |{x : 1 ≤ x ≤ m and gcd(x,m) = 1}| = |Z∗m|.

This is the number of reduced residue classes modulo m in the multiplicative group Z∗m =

{1, 2, ...,m − 1} (called the group of units) of Zm. It is a convention that ϕ(1) = 1. Note that

all elements α ∈ Z∗m have the property that gcd(α,m) = 1. This means we can find α−1 mod m,

their inverses modulo m. Euler’s (totient) function will be needed in the RSA cryptosystem.

Theorem 3.2.15. (a). If p is a prime and k ≥ 1, then ϕ(pk) = pk−1(p − 1). In particular,

ϕ(p) = p− 1.

(b). If gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).

The following results prove useful in the sequel(For more literature on prime numbers and

modular arithmetic see Kraft and Washington[16]).

Theorem 3.2.16 (Euler’s Theorem). Let n be a positive integer. If a is an integer with

gcd(a, n) = 1, then aϕ(n) ≡ 1 mod n.

Proof. If gcd(a, n) = 1, then a ∈ Z∗n = {1, 2, ..., n − 1}, a group of order ϕ(n). By Corollary

3.2.14, we have aϕ(n) = 1. By definition of coset multiplication, we have aϕ(n) = aϕ(n). The

equation aϕ(n) = 1 is equivalent to the relation aϕ(n) ≡ 1 mod n.

Euler’s Theorem is often useful when we compute powers modulo n. A consequence of Euler’s

Theorem is the following result.

Theorem 3.2.17 (Fermat’s Little Theorem). If p is a prime and x is not divisible by p, then

xp−1 ≡ 1 mod p.

Note that when n = p is prime, Euler’s Theorem is the same as Fermat’s Little Theorem. If

the factors of the modulus m are known, that is if we can write m = m1m2...mk, the congruences

x ≡ y mod mi (i = 1, 2, ..., k) naturally follow from x ≡ y mod m. If the modulus is a large

number, it may often be easier to compute these smaller moduli. We note that this becomes

even easier if the factors are pairwise co-prime, that is, if gcd(mi,mj) = 1, when i 6= j.

The above remark leads to the Chinese Remainder Theorem.
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Theorem 3.2.18 (Chinese Remainder Theorem). If the numbers y1, y2, ..., yk are given and the

moduli m1,m2, ...,mk are pairwise co-prime, then there is a unique integer x modulo m1m2...mk

that satisfies the k congruences x ≡ yi mod mi (i = 1, 2, ..., k).

Remark. We have laid the foundation and are now in a position to see how group theory will

tell us that the method of decrypting in the RSA system recovers the original message.

Let G = Z∗n, where n = pq is the product of two distinct (large) prime numbers. Using the Euler

(totient) function, |G| = ϕ(n) = (p− 1)(q − 1). We have an integer e (the decrypting exponent)

satisfying gcd(e, ϕ(n)) = gcd(e, (p − 1)(q − 1)) = 1. RSA’s secret key ks consists of n and e).

The public key kp is formed of the number n = pq (multiplied out) and the integer d (called the

encrypting exponent) satisfying

ed ≡ 1 mod ϕ(n).

We may write 1 = ed + sϕ(n), for some integer s. The claim of the RSA system is that, for

any message M , we have (M e)d mod n = 1. Written another way, it claims that (M
e
)d = M .

Assuming that M is not divisible by p or q, we have M ∈ Z∗n. Therefore

M = M
ed+sϕ(n)

= M
ed
M

sϕ(n)
= M

ed
(M

ϕ(n)
)s = M

ed
(1)s = M

ed
,

since M
ϕ(n)

= 1 by Corollary 3.2.14. Thus, (M
e
)d = M , and so the decryption RSA recovers the

original message.

From the above argument, we have two very important functions of the RSA. The encrypting

function is

Ekp(M) = (Md,mod n),

and the decrypting function is

Dks(C) = (Ce,mod n).

We note that in our argument, we assume that M was not divisible by either p or q in order to

conclude that decryption would recover M . This is not a necessary assumption, but it makes

the argument a little simpler.

3.2.1 Secure Signatures with RSA

One issue in data transmission is the ability to verify a person’s identity. If a client sends a

request to a bank to transfer money out of an account, then the bank would want to know if

the client is the owner of the account. If the client makes the request over the internet, how can
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the bank check his or her identity? The RSA system encryption gives a method for checking

identities.

Suppose that person A transmits data to person B, and that person B wants a method to check

the identity of person A. To do this, both person A and B get sets of RSA data: person A

has a modulus nA and an encryption exponent eA, which are publicly available. That person

also has a decryption exponent dA that remains private. Person B similarly has data nB, eB and

dB. In addition, Person A has a signature, a publicly available number. To convince person B

of his identity, person A first calculates T = SdA modnA and then R = T eB modnB. Person

A then transmits R to person B. Person B then decrypts R with with her data, recovering

T = RdB mod nB. Finally, she encrypts T with person A’s data, obtaining T eA mod nA = S. By

seeing that this result is the signature of person A, the identity has been validated.

We demonstrate this in an example. We used Maple calling sequence x mod m to carry out the

heavy modular computation. Of course, this example is not secure, since the numbers are so

small that it would be easy for Eve to factor the modulus N. Secure implementations of RSA

use moduli N with hundreds of digits.

Example 3.2.19.

Suppose that the data for person A is

nA = 2673157, eA = 23, dA = 2437607, S = 837361

and person B has

nB = 721864639, eB = 19823, dB = 700322447.

Person A then calculates

8373612437606 mod 2673157 = 1216606,

and then

121660619823 mod 721864639 = 241279367.

Person A then transmits 241279367 to person B. When person B receives this number, he goes

ahead and calculates

241279367700322447 mod 721864639 = 1216606,
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and finally recovers S as

S = 121660623 mod 2673157 = 837361.

To explain why this works, we denote by encryptA(M) and dencryptA(M) the integersM eA mod nA

and MdA mod nA, respectively. We similarly have encryptB(M) and dencryptB(M). The validity

of the RSA system says that

decryptA(encryptA(M)) = M,

ecryptA(dencryptA(M)) = M.

Similar equations hold for B. With this notation, Person A calculates

R = encryptB(decryptA)(S)

and then Person B calculates

S = encryptA(decryptB(R)).

Therefore, person B will calculate

encryptA(decryptB(decryptB(decryptA(S)))) = encryptA(decryptA(S)) = S.

Therefore, person B does recover the signature of person A.

The reason that this method validates the identity of person A is because only person A can

calculate dencryptA(S). If another person tries to claim he is person A, or tries to substitute a

number F in place of dencryptA(S), he will transmit encryptB(F ) to person B. Person B will

then calculate

encryptA(decryptB(encryptB(F ))) = encryptA(F ).

However, in order to have encryptA(F ) = S, we must have

decryptA(S) = decryptA(encryptA(F )) = F,

which means that this person has to have the correct decrypted number decryptA(S). This means

that he cannot send any other number without person B realizing it is a fake number.

We note that all the computation in this section can be implemented on a computer running
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Maple 18. The random numbers can be generated using the RandomTools[MersenneTwister]

package or library in Maple 18 with the following calling sequence

>With(RandomTools[MersenneTwister]):

>GenerateInteger();

A Marsenne number is a number of the form Mn = 2n − 1. For Mn to be prime, n must be

prime.

If the number is even, we add 1(to get an odd integer). Then Primality Test is carried out from

this odd integer to generate a prime number from the randomly generated number.

One of our main contributions in this chapter is how to use Maple 18 to test whether a given

number is prime:

> isprime(n);

> p := nextprime(400043344212007458000);

> q := nextprime(500030066366269001200);

> n := p ∗ q;

> m := (p− 1) ∗ (q − 1);

> a := 10098768900987679000910003;

To verify that the preceding value of a is a valid RSA encryption exponent given our value of m,

we will use the Maple igcd function, which is designed to calculate the greatest common divisor

of a pair of integer inputs. The following command returns the greatest common divisor of the

integers a and m. Note that, as required, gcd(a,m) = 1.

> igcd(a,m);

Theorem 3.2.20. The trapdoor function RSAn,e is a permutation over the cyclic commutative

group Z∗n.
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Proof. Let n = pq for some large prime numbers, e is a number such that gcd(e, ϕ(n)) = 1,

where ϕ(n) is Euler’s (totient) function. Then by Theorem 3.2.16 (Euler’s Theorem), there exists

a number d such that

ed ≡ 1 mod ϕ(n).

Given x ∈ Z∗n, consider the element xd ∈ Z∗n. Then

RSAn,e(x
d) ≡ (xd)e mod n ≡ xed mod n ≡ x mod n.

This shows that the function

RSAn,e : Z∗n −→ Z∗n

is onto and since ϕ(n) = |Z∗n| if finite, we conclude that RSAn,e is a permutation over Z∗n.

Remark. From Theorem 3.2.20, it clear that the RSAn,e has a unique inverse. Using the fact

that gcd(e, ϕ(n)) = 1, we can find a d ∈ Z∗n such that

RSA−1
n,e(x) = (xe mod n)d mod n = (xe)d mod n = x mod n.

Once we find a d such that ed ≡ 1 mod ϕ(n), then we can invert RSAn,e efficiently because then

RSAn,e(x
d) = (xe)d ≡ x mod ϕ(n).

Remark An encrypting function must be injective, so that it won’t encrypt two different plain-

texts to the same ciphertext. Encryption can still be random, and an encrypting function can

encrypt the same plaintext to several different ciphertext, so an encrypting function is not actu-

ally a mathematical function, but an injective relation.
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Chapter 4

HILBERT SPACE FRAMES

Hilbert space frames were introduced in 1952 by Duffin and Schaeffer[10] to address some deep

questions in non-harmonic Fourier series. In 1986, Daubechies, Grossman and Meyer[9] re-

introduced the notion of frames and observed that frames can be used to find series expansions

of functions in the Hilbert space L2(R). Frames are generalizations of orthonormal bases in

Hilbert spaces. The main property of frames which makes them so useful is their redundancy.

In this chapter we further develop the theory and Hilbert space frames and present new results.

4.1 Pseudo-inverses and the Singular Value Decomposi-

tion

Definition 4.1.1 ([6], Definition 1.7). A singular value decomposition (SVD) of an M ×N
matrix A is a factorization A = UΣV ∗, where Σ = diag(σ1, σ2, ..., σp, 0..., 0) is an M × N real

matrix, p = min{M,N} and σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 are the singular values of A, U =

[u1, u2, ..., uM ] is an M ×M unitary matrix, V = [v1, v2, ..., vn] is an N ×N unitary matrix.

Theorem 4.1.2 (Singular Value Decomposition, SVD). Let A be an M×N matrix with M ≥ N .

Then there exists a unitary M ×M matrix U , a unitary N ×N matrix V and a diagonal M ×N
real matrix Σ = diag(σ1, σ2, ..., σN) with σ1 ≥ σ2 ≥ ... ≥ σN ≥ 0 such that A = UΣV ∗ holds.

Moreover, the column vectors of V are the eigenvectors of A∗A associated with the eigenvalues

σ2
i , i = 1, 2, ..., N . The columns of u are the eigenvectors of the matrix AA∗.

Proof. The existence claim is trivial. We prove the second claim. First note that A∗A =

(UΣV ∗)(UΣV ∗)∗ = V DV ∗, where D = Σ∗Σ = diag(σ2
1, σ

2
2, ..., σ

2
N) is N×N . Thus A∗AV = V D.

This shows that σ2
i is an eigenvalue of A∗A. Similarly, AA∗ = UΣV ∗(UΣV ∗)∗ = UΣΣ∗U∗, where

ΣΣ∗ = diag(σ2
1, σ

2
2, ..., σ

2
N , 0, ..., 0) is M ×M . Clearly if UΣV ∗ is a singular value decomposition,

then V Σ∗U∗ is a singular value decomposition of A∗. The non-zero singular values of A are the
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square roots of the non-zero eigenvalues of A∗A or AA∗.

Definition 4.1.3. A Moore-Penrose pseudo-inverse of an M × N matrix A is an N ×M

matrix A† that satisfies the four Penrose conditions:

AA†A = A; A†AA† = A†; (AA†)∗ = AA†; (A†A)∗ = A†A.

Theorem 4.1.4 ([6], Theorem 1.2). If A an M ×N matrix has SVD given by A = UΣV ∗, then

its pseudo-inverse is A† = V Σ†U∗, where Σ† = diag( 1
σ1
, 1
σ2
, ..., 1

σp
, 0, ..., 0) is N ×M .

The notion of pseudo-inverse can be extended to any bounded linear operators. Let A ∈ B(H,K).

If AA∗ is invertible, then B = A∗(AA∗)−1 is the pseudo-inverse of A. Equivalently, if A∗A is

invertible, then B = (A∗A)−1A∗ is the pseudo-inverse of A. From this definition, it is succinctly

clear that the pseudo-inverse of a bounded linear operator need not be unique. That is, bounded

linear operator may admit infinitely many pseudo-inverses. In fact, if an operator has more than

one pseudo-inverse, then it has infinitely many(see [13]).

4.2 Frames and their Associated Operators

Theorem 4.2.1. (Parseval Identity) Let {fk}nk=1 be an orthonormal basis for an n-dimensional

Hilbert space H. Then for any f ∈ H,

n∑
k=1

|〈f, fk〉|2 = ‖f‖2.

We note that the Parseval Identity also holds in infinite dimensional Hilbert spaces.

A subset {fk}k∈J of a Hilbert space H is said to be complete if every element f ∈ H can

be represented arbitrarily well in norm by linear combinations of the elements in {fk}k∈J . A

complete set {fk}k∈J is said to be over-complete or redundant if removal of an element fj from

the set results in a complete set or system. That is, if {fk}k∈J\{j} is still complete.

Definition 4.2.2. A sequence of vectors {fk} in a Hilbert space H is a frame for H if there

exists real numbers 0 < α ≤ β <∞ called frame bounds such that for all f ∈ H

α‖f‖2 ≤
∑
k

|〈f, fk〉|2 ≤ β‖f‖2.
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The numbers α and β are called the lower bound and upper bound of the frame, respectively.

They are, respectively, the smallest and largest eigenvalues of the frame operator. The numbers

(〈f, fk〉) are called the frame coefficients. A frame is a redundant or over-complete (i.e. not

linearly independent) coordinate system for a vector space that satisfies a Parseval-type norm

inequality. A set of vectors in a finite dimensional Hilbert space is a frame if and only if it is

(just) a spanning set.

Let J be an indexing set. If α = β, then the frame {fk}k∈J is called tight and if α = β = 1, the

frame is called a normalized tight frame or Parseval. If ‖fi‖ = ‖fj‖, for all i, j ∈ J , then {fk}k∈J
is called an equal-norm or uniform norm frame, and if in addition α = β = 1, we have a uniform

normalized tight frame (UNTF). If a frame is equal-norm and if there exists a c ≥ 0 such that

|〈fj, fk〉| = c, for all j, k with j 6= k, then the frame is said to be equiangular. A frame {fk} that

ceases to be a frame when an arbitrary element {fj} is removed is called an exact frame. For

more exposition about these classes of frames(see,[8],[9],[10]).

Definition 4.2.3. Let {fk} be a frame for a Hilbert space H. The operator A : H → `2(Z)

defined by

Af = {〈f, fk〉}, for all f ∈ H and k ∈ Z is called the analysis operator of the frame {fk}.

Definition 4.2.4. Let {fk} be a frame for a Hilbert space H with analysis operator A. The

Hilbert space adjoint of the analysis operator A∗ : `2(Z) → H defined by A∗({〈f, fk〉}) =∑
k〈f, fk〉fk is called the synthesis operator of the frame {fk}.

Remark. The analysis and synthesis operators of a frame play a central role in the analysis,

reconstruction and recovery of any function or signal f ∈ H. The analysis operator analyzes a

signal in terms of the frame by computing its frame coefficients.

Definition 4.2.5. Given a frame {fk} in a Hilbert space H with analysis operator A, another

frame {gk} with analysis operator B is said to be a dual frame of {fk} if the following repro-

ducing formula or frame decomposition formula holds

f =
∑
k

〈f, fk〉gk, ∀f ∈ H. (4.2.1)

We call {fk} and {gk} a pair of dual frames or a dual frame pair.

Remark. Equation (4.2.1) says that B∗A = I, where I denotes the identity operator in H. This

means that a frame {gk} with analysis operator B is dual to a frame {fk} with analysis operator

A if and only if B∗A = I or equivalently (B∗A)∗ = A∗B = I. Therefore all the duals of {fk}
are left inverses B∗ to A (or equivalently, right inverses to A∗). Dual frames are not unique.

However, it has been shown that if the frame is exact, then the dual is unique(see [6]).
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Definition 4.2.6. Let {fk} be a frame in a Hilbert space H with analysis operator A. The

operators S = A∗A and G = AA∗ are called the frame operator and Grammian, respectively.

The frame operator S : H → H is positive and invertible, while the Grammian G : `2(Z) →
`2(Z) need not be invertible, since its range need not be all of `2(Z). The Grammian operator

and its pseudo-inverse G† play a crucial role in the process of recovery of f ∈ H from frame

representation.

Proposition 4.2.7. Suppose that {fk} is a frame for the Hilbert space H with analysis operator

A and Grammian G = AA∗ and frame bounds α and β.

(i). If the set {fk} is an orthonormal basis for H, then the Grammian operator G is the

identity.

(ii). The frame {fk} is a Parseval frame if and only if the Grammian operator G is an

orthogonal projection.

Proof.

(i). Since {fk} is an orthonormal basis for H, we have that A = A∗ = I. Therefore G = AA∗ = I.

(ii). Clearly {fk} is Parseval if and only if the frame operator S = A∗A = I. It is easily verified

that Grammian G = AA∗ is self-adjoint and that

G2 = (AA∗)(AA∗) = A(A∗A)A∗ = A(I)A∗ = AA∗ = G.

Proposition 4.2.8 (Frame Reconstruction/Reproducing Formula). Let {fk} be a frame in a

Hilbert space H with analysis operator A and frame operator S = A∗A. Then

f =
∑
k

〈S−1f, fk〉fk =
∑
k

〈f, S−1fk〉fk =
∑
k

〈f, fk〉S−1fk =
∑
k

〈f, S−1/2fk〉S−1/2fk, f ∈ H.

Proof. Let f ∈ H. By definition and self-adjointness of the frame operator S, we have

f = SS−1f =
∑
k

〈S−1f, fk〉fk =
∑
k

〈f, S−1fk〉fk.

Similarly,

f = S−1Sf = S−1
∑
k

〈f, fk〉fk =
∑
k

〈f, fk〉S−1fk =
∑
k

〈f, S−1/2fk〉S−1/2fk.
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Finally, using the fact that I = S−1/2SS−1/2, we have

f = S−1/2SS−1/2f = S−1/2
∑
k

〈S−1/2f, fk〉fk =
∑
k

〈f, S−1/2fk〉S−1/2fk.

Remark. The reconstruction formula shows that all information about a given vector or signal

f ∈ H is contained in the sequence {〈f, S−1fk〉}. We note that the choice of coefficients in

Proposition 4.2.8 is not unique, in general. If the frame {fk} is linearly dependent(redundant or

over-complete), a typical phenomenon in applications, then there exist infinitely many choices of

coefficients ck = 〈f, S−1fk〉 in the expansion of f ∈ H as f =
∑

k ckfk. This possibility ensures

resilience to erasures or noise in a signal f ∈ H. A new approach (see [5] ) has emerged recently,

and has received increasing attention, namely choose the coefficient sequence to be sparse in the

sense of having only few non-zero entries, thereby allowing data compression while preserving

perfect reconstruction or recoverability.

The sequence {S−1fk} is called the canonical dual of {fk}. Bijectivity of S clearly implies that

the canonical dual {S−1fk} is also a frame in H with frame bounds 1
β

and 1
α

and frame operator

S−1.

The sequence {S−1/2fk} is also frame(by the bijectivity of S−1/2), called the canonical tight

frame associated with the frame {fk}(see [2], [6]). By Definition 4.2.5, we note that the canonical

dual frame is the pseudo-inverse of A, which we write (A∗)† = (A∗A)−1A∗ = S−1A∗.(see also [2]).

Proposition 4.2.9. Let {fk} be a frame in a Hilbert space H with analysis operator A and a

frame operator S = A∗A. Then the frame operator provides a stable reconstruction process

Sf =
∑
k

〈f, fk〉fk, f ∈ H.

Proof. Follows immediately from the definition of S and Proposition 4.2.8.

Remark. Notice from Proposition 4.2.9 that

〈Sf, f〉 = 〈A∗Af, f〉 = 〈Af,Af〉 = ‖Af‖2 =
∑
k

〈f, fk〉〈fk, f〉 =
∑
k

〈f, fk〉〈f, fk〉 =
∑
k

|〈f, fk〉|2, ∀f ∈ H.

Therefore if α and β are the frame bounds, we have

〈αf, f〉 = α‖f‖2 ≤
∑
k

|〈f, fk〉|2 = 〈Sf, f〉 ≤ β‖f‖2 = β〈f, f〉, ∀f ∈ H.

This says that

αI ≤ S ≤ βI.
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It has been shown in ([2], Theorem 2.2) that if {fk} is a frame for a Hilbert space H with frame

operator S and T ∈ B(H), then the frame operator for {Tfk} equals TST ∗. Using this result,

we conclude that the canonical tight frame has frame operator S−1/2SS−1/2 = I. This means

that {S−1/2fk} is a Parseval frame.

Theorem 4.2.10. Let {fk} be a tight frame in a Hilbert space H. Then the canonical dual frame

{S−1fk} = { 1
α
fk}. Moreover, f = 1

α

∑
k〈f, fk〉fk and α is the tight frame bound.

Proof. Suppose that {fk} is a tight frame with frame bound α and frame operator S. Then by

definition of S and the reconstrution formula in Proposition 4.2.9, we have

〈Sf, f〉 =
∑
k

|〈f, fk〉|2 = α‖f‖2 = 〈αf, f〉.

Since S is self-adjoint, this implies that S = αI. Thus S−1 is the multiplication by 1
α

operator.

The rest of the proof follows from application of Proposition 4.2.8 and definition of a frame.

4.3 The Singular Value Decomposition, Pseudo-inverses

and Dual Frames

When designing frames with prescribed properties, it is important to check the behavior of the

canonical dual frame {S−1/2fk}. In some cases, especially in high dimensional settings, however,

the complicated structure of the frame operator and its inverse make this a difficult task. For

instance, if {fk} is a frame in the Hilbert space L2(R) consisting of functions with exponential

decay, there is no guarantee that the functions in the canonical dual frame {S−1fk} have expo-

nential decay.

Some frames have advantages over others. For tight frames, by Proposition 4.2.8, Proposition

4.2.9 and Theorem 4.2.10, the canonical dual frame automatically has the same structure as the

frame itself. If the frame has a wavelet structure or a Gabor structure, the same is the case for

the canonical dual frame. In contrast, there are non-tight wavelet frames which lack this special

property. We use the singular value decomposition to avoid inverting the frame operator S.

Theorem 4.3.1 (The dual frame of a tight frame). {fi} is a tight frame for a Hilbert space H
with analysis operator A and frame bound α if and only if its dual is given by Φ̃ = { 1

α
fi}.

Proof. Suppose that Φ = {fi} is an α-tight frame. Then for any f ∈ H, we have

‖Af‖2 = 〈Af,Af〉 = 〈A∗Af, f〉 = α‖f‖2 = α〈f, f〉,
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and thus A∗A = αI, where I denotes the identity operator on H. It follows that (A∗A)−1 = 1
α
I,

and so Φ̃i = 1
α
fi. Conversely, suppose we know that the dual frame satisfies Φ̃i = 1

α
fi. Then the

associated analysis operator Ã satisfies

Ãf = 〈Φ̃i, f〉 =
1

α
(Af)i.

This is equivalent to A = αÃ. Therefore

A∗A = αÃ∗A = αI.

So, for any f ∈ H, we have

〈A∗Af, f〉 = 〈Af,Af〉 = ‖Af‖2 = α〈f, f〉 = α‖f‖2,

which proves that {fi} is a tight frame with frame bound α.

Example 4.3.2.

In R2, any set of three vectors that are equally distributed(i.e. equiangular, with angle

between them as 120◦) on the unit circle is a tight frame. A special case is the Mercedes-Benz

frame {( 1

0

)
,

(
−1

2√
3

2

)
,

(
−1

2

−
√

3
2

)}
is a tight frame.

Example 4.3.3.

For an example on how to construct a frame for C2 consisting of three vectors that satisfies

α = β = 1 (see [19], Example 8).

Proposition 4.3.4. Let {fk} be a frame in a Hilbert space H and suppose that {gk} is its dual

frame. Then

f =
∑
k

〈f, gk〉fk =
∑
k

〈f, fk〉gk, ∀f ∈ H.

It is clear that if {gk} is a dual frame for {fk}, then {fk} is also a dual of {gk}.(see [6]). If the

frame {fk}Mk=1 for a Hilbert space of dimension N and M > N(that is the frame contains more

vectors than is needed for the spanning property-that is, it is over-complete or redundant), there

exists infinitely many dual frames(no rigidity as is the case of bases or when M = N)(see [2]).
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We find the SV D(A) as A = UΣV ∗, where A is any M ×N matrix of real numbers with rank k,

U is a matrix whose columns are the M orthonormal eigenvectors associated with the non-zero

eigenvalues of the self-adjoint matrix G = AA∗. On the other hand, matrix V is formed with the

orthonormal eigenvectors associated with the non-zero eigenvalues of the self-adjoint operators

S = A∗A. In a frame, S is invertible, and hence has no zero eigenvalues(see [13]).

Remark. For computational purposes, it is important to notice that the pseudo-inverse of an

operator T can be found by the singular value decomposition of T .

We will explore the use of MAPLE software to find the duals of frames and avoid finding the

inverse of the frame operator S.

Example 4.3.5 ([21], Example 4.2). For the frame {fk} =
{( 1

0

)
,

(
0

1

)
,

(
1

1

)}
for H =

R2,

G = (〈fm, fn〉)1≤m,n≤3 =

 〈f1, f1〉 〈f1, f2〉 〈f1, f3〉
〈f2, f1〉 〈f2, f2〉 〈f2, f3〉
〈f3, f1〉 〈f3, f2〉 〈f3, f3〉

 =

 1 0 1

0 1 1

1 1 2

 .
A simple calculation shows that G is not invertible. A simple computation shows that S =[

2 1

1 2

]
, and S is invertible. It is easy to show that σ(G) = {0, 1, 3} and σ(S) = {1, 3}.

Theorem 4.3.6 ([21], Theorem 4.3). Let {fn} be a frame for a Hilbert space H with analysis

operator A and frame operator S and Grammian G. Let the associated canonical dual frame be

{f̃n}, where f̃n = S−1fn with an associated analysis operator Ã. Then Ã = (G|Ran(A))
−1A.

Proof. We first note that Ãf = (〈f, f̃n〉) = (〈f, S−1fn〉). Thus Ran(A) = Ran(Ã), since S is

invertible. Thus

A∗Ã = Ã∗A = IH,

where IH is the identity operator on H. On Ran(A), A, Ã, and hence the Gramian G for{fn} are

invertible and we have that A−1 = Ã∗ and Ã−1 = A∗. Thus the relation between the analysis

operator A and its dual Ã is

Ã = (G|Ran(A))
−1GÃ = (G|Ran(A))

−1AA∗Ã = (G|Ran(A))
−1A.

Proposition 4.3.7 ([6], Corollary 1.10). A frame {fn}Mn=1 for an N-dimensional Hilbert space

H has a unique dual frame if and only if M = N .
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Proposition 4.3.8. Let {fn}Mn=1 be a frame for an N-dimensional Hilbert space H with frame

bounds α and β. Let P be an orthogonal projection of H onto a subspace M. Then {gn} =

{Pfn}Mn=1 is a frame for M with frame bounds α and β. In particular, if {fn}Mn=1 is a Parseval

frame, then {Pfn}Mn=1 is a Parseval frame.

Proof. For any f ∈M, we have that f = PMf and so

α‖f‖2 = α‖Pf‖2 ≤
M∑
n=1

|〈Pf, fn〉|2 =
M∑
n=1

|〈f, Pfn〉|2 ≤ β‖Pf‖2 = β‖f‖2.

If {fn}Mn=1 is Parseval, then we have

‖f‖2 = ‖Pf‖2 =
M∑
n=1

|〈Pf, fn〉|2 =
M∑
n=1

|〈f, Pfn〉|2 =
M∑
n=1

|〈f, gn〉|2.

The canonical coefficients from the frame expansion arise naturally by considering the pseudo-

inverse of the analysis operator. The pseudo-inverse can be given by the singular value decom-

position of A.

Theorem 4.3.9 ([20], Theorem 3.11). If {fk}nk=1 is a frame for an N-dimensional Hilbert space

H with frame operator S and T is an operator on H, then the frame operator for {Tfk}nk=1 equals

TST ∗.

Proof. The proof follows from the fact that the frame operator for {Tfk}nk=1 is given by

n∑
k=1

〈f, Tfk〉Tfk = T (
n∑
k=1

〈T ∗f, fk〉fk) = TST ∗.

Alternatively, from Lemma 8.20, the frame operator of {Tfk}nk=1 is given by

B∗B = (AT ∗)∗(AT ∗) = TA∗AT ∗ = T (A∗A)T ∗ = TST ∗.

Clearly

TST ∗f = T (
n∑
k=1

〈T ∗f, fk〉fk) =
n∑
k=1

〈f, Tfk〉Tfk.

This leads to the following consequences.

Corollary 4.3.10. If {fk}nk=1 is a tight frame for an N-dimensional Hilbert space H with frame

operator S and T is an operator on H, then the frame operator for {Tfk}nk=1 is a scalar multiple

of TT ∗. Moreover, if {fk}nk=1 is Parseval/normalized and tight, then the frame operator for

{Tfk}nk=1 is TT ∗.

The canonical tight frame {S− 1
2fn}Mn=1 inherits properties of the original frame {fn}Mn=1.
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Proposition 4.3.11. If {fn}Mn=1 is a frame for a Hilbert space H with frame operator S and

frame bounds α and β, then {S− 1
2fn}Mn=1 is a tight frame with frame bound 1(i.e. it is Parseval)

and f =
∑

k〈f, S−1/2fk〉S−1/2fk for all f ∈ H.

Proof. We need to show that {S− 1
2fn}Mn=1 satisfies the reconstruction formula f =

∑n
k=1〈f, fk〉fk

for all f ∈ H. Clearly, the operator S−1/2 is well defined and commutes with S−1. Therefore by

Proposition 4.2.8, every f ∈ H can be reconstructed as

f = S−1/2SS−1/2f = S−1/2
∑
k

〈S−1/2f, fk〉fk = S−1/2
∑
k

〈f, S−1/2fk〉fk =
∑
k

〈f, S−1/2fk〉S−1/2fk.

This proves the Parseval reconstruction formula for f .

Taking the inner product with f we have

‖f‖2 = 〈f, f〉 =
∑
k

〈f, S−1/2fk〉〈S−1/2fk, f〉 =
∑
k

〈f, S−1/2fk〉〈f, S−1/2fk〉 =
∑
k

|〈f, S−1/2fk〉|2.

This shows that {S− 1
2fn}Mn=1 is a tight frame with frame bound 1.

We note that the first claim can be proved easily using Theorem 4.3.9 by showing that the frame

operator of the canonical tight frame is Scan = S−1/2SS−1/2 = I. This is equivalent the statement

that for every f ∈ H, we have

Scanf =
∑
k

〈f, f̃k〉f̃k =
∑
k

〈f, S−1/2fk〉S−1/2fk = S−1/2
∑
k

〈S−1/2f, f̃k〉fk = S−1/2SS−1/2f = f.

Therefore Scan = I.

Theorem 4.3.12. Let Φ = {fk} be a frame for a Hilbert space H with frame operator S and

frame bounds α and β. The canonical dual frame Φ̃ = {S−1fk} has frame operator S−1.

Proof. The synthesis operator of Φ̃ is given by B∗ = S−1A∗(see [2]), where A is the analysis

operator of Φ. Thus the frame operator for Φ̃ is given by

S̃ = B∗B = S−1A∗(AS−1) = S−1(A∗A)S−1 = S−1SS−1 = S−1.

Alternatively, by ([2], Theorem 2.2), the frame operator of {S−1fk} is

S̃ = S−1S(S−1)∗ = S−1SS−1 = S−1.

This result can also be proved as follows:

For every f ∈ H, we have

S̃f =
∑
k

〈f, f̃k〉f̃k =
∑
k

〈f, S−1fk〉S−1fk = S−1
∑
k

〈S−1f, f̃k〉fk = S−1SS−1f = S−1f.
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Therefore S̃ = S−1.

We note the claim can be proved easily using ([21], Theorem 4.6) by showing that the frame

operator of the canonical dual frame is Ŝ = S−1SS−1 = S−1. This is equivalent the statement

that for every f ∈ H, we have

S̃f =
∑
k

〈f, f̃k〉f̃k =
∑
k

〈f, S−1fk〉S−fk = S−1
∑
k

〈S−1f, f̃k〉fk = S−1SS−1f = S−1f.

Therefore S̃ = S−1.

Since S is the frame operator, we have that 〈αf, f〉 ≤ 〈Sf, f〉 ≤ 〈βf, f〉 for all f ∈ H. This is

equivalent to the statement that αI ≤ S ≤ βI. We conclude that 1
β
I ≤ S−1 ≤ 1

α
I.

We have seen that the problem of finding duals to a frame Φ = {fk}mk=1 with analysis operator

A boils down the problem of finding the set of matrices or operators B such that B∗A = I or

A∗B = I. Equivalently, this is the set of all left-inverses or pseudo-inverses B to A or the adjoints

of all right inverses to A. Since m > N , the frame is redundant(consists of more vectors than

needed to span H), Gauss-Jordan elimination shows that there are infinitely many dual frames.

We give examples for the cases m = 3, 4 and H = R2.

Example 4.3.13 ([21], Example 5.1).

Consider the sequence {fk}3
k=1 := {

(
1

0

)
,

(
0

1

)
,

(
1

1

)
}. Clearly the analysis operator is

A =

 1 0

0 1

1 1

 and the synthesis operator A∗ =

(
1 0 1

0 1 1

)
. A simple calculation shows that

the frame operator S := A∗A =

(
2 1

1 2

)
and the Gram matrix G := AA∗ =

 1 0 1

0 1 1

1 1 2

.

Clearly S−1 =

(
2
3
−1

3

−1
3

2
3

)
and hence the canonical dual frame

{S−1fk} =
{( 2

3

−1
3

)
,

(
−1

3
2
3

)
,

(
1
3
1
3

)}
.

The pseudo inverse ofA∗ computed by singular value decomposition isB = (A∗)† =

(
2
3
−1

3
1
3

−1
3

2
3

1
3

)
and its columns give the dual frame vectors. Notice that BA∗ = I, and so the columns of B

represent the alternate dual frame. Notice that in this case the alternate dual coincides with the

canonical frame {S−1fk}. Notice also that the above result can be obtained from B = S−1A∗.
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However, the frame has infinitely many duals. For instance the matrix

(
2 1 −1

−1 0 1

)
is an-

other pseudo-inverse for A. This frame has a redundancy 3
2
.

Example 4.3.14 ([21], Example 5.2).

The frame {fk}4
k=1 := {

(
1

0

)
,

(
0

1

)
,

(
0

1

)
,

(
1

0

)
} is a tight frame for R2 since S = 2I

and hence S−1 = 1
2
I. The normalized frame is Ψ = { 1√

2
fk}. A simple computation shows that Ψ

is a normalized tight frame for R2, with Grammian GΨ =


1
2

0 0 1
2

0 1
2

1
2

0

0 1
2

1
2

0
1
2

0 0 1
2

, which is an orthog-

onal projection. More calculations show that the alternate dual frame consists of the columns

of Ã∗ =

(
1
2

0 0 1
2

0 1
2

1
2

0

)
. Since S̃ = Ã∗Ã = 1

2
I, we conclude that the dual frame is also tight.

This frame has redundancy 2. Another computation shows that G̃ = G† = 1
4
G and G = G̃†.

This says that GG̃ = GG̃ = I.

From this example, we deduce two results.

Lemma 4.3.15. Let Φ = {fk}mk=1 be a frame for an N-dimensional Hilbert space H. If Φ has a

redundancy greater or equal to 2, then it has a tight dual frame.

Theorem 4.3.16. The Grammian of a frame Φ and its dual Φ̃ are pseudo-inverses. That is,

Gram(Φ̃) = Gram(Φ)†.

Proposition 4.3.4 and Theorem 4.3.16 leads us to a new relation, which we call duality of

finite frames. We denote this new relation by Φ
dual∼ Ψ if and only if f =

∑n
k=1〈f, gk〉fk for

all f ∈ H

Theorem 4.3.17 ([21]). Duality of frames Φ = {fk}nk=1 and Ψ = {gk}nk=1 for a Hilbert space H
is an equivalence relation.

Proof. Recall that Φ = {fk}nk=1 and Ψ = {gk}nk=1 are a dual pair if f =
∑n

k=1〈f, gk〉fk for all

f ∈ H. Clearly Φ
dual∼ Φ, since f =

∑n
k=1〈f, fk〉fk. This shows that

dual∼ is reflexive.

Suppose Φ
dual∼ Ψ. Then f =

∑n
k=1〈f, gk〉fk =

∑n
k=1〈f, fk〉gk for all f ∈ H. This shows

that Ψ
dual∼ Φ and therefore

dual∼ is symmetric. Now, suppose Ω = {hk}nk=1 be a frame for

H. Suppose that Φ
dual∼ Ψ and Ψ

dual∼ Ω. Then f =
∑n

k=1〈f, gk〉fk =
∑n

k=1〈f, fk〉gk and

f =
∑n

k=1〈f, gk〉hk =
∑n

k=1〈f, hk〉gk. This implies that f =
∑n

k=1〈f, fk〉gk =
∑n

k=1〈f, hk〉gk.
Equating the coefficients we have that 〈f, fk〉 = 〈f, hk〉 and therefore f =

∑n
k=1〈f, hk〉fk, which

proves that Φ
dual∼ Ω. Therefore

dual∼ is transitive. Thus
dual∼ is an equivalence relation.
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Example 4.3.18 ([21], Example 5.6).

Consider the frame in Example 4.3.13. It can be shown that the frame bounds are σ1 =

1, σ2 =
√

3 and so

‖f‖2 ≤ ‖Af‖2 ≤ 3‖f‖2.

and that the dual analysis operator is B∗ =


2
3
−1

3

−1
3

2
3

1
3

1
3

. Notice that in this case the alternate

dual coincides with the canonical dual frame.

Suppose we want to reconstruct f =

(
−5

2

)
in terms of the frame {fk} and in terms of the

dual. Then

B∗f =


2
3
−1

3

−1
3

2
3

1
3

1
3

( −5

2

)
=

 −4

3

−1

 .

Therefore

f =

(
−5

2

)
= −4f1 + 3f2 − f3.

To find the expansion of f in terms of the dual frame we compute the coefficients as

Af =

 1 0

0 1

1 1

( −5

2

)
=

 −5

2

−3

 ,

and so

f =

(
−5

2

)
= −5f̃1 + 2f̃2 − 3f̃3.

To find the canonical tight frame, we compute S−1/2. To achieve this, we orthogonally diagonalize

S−1/2. Let T = S−1. We find an orthogonal matrix U such that UTU−1 = D = R2, where D is a

diagonal matrix with diagonal entries the eigenvalues of T and R is any of the four square roots

of D. We ortho-normalize the eigenvectors of S−1/2 and let U be the matrix whose columns are

the normalized vectors. A simple computation gives λ1 = 1, λ2 = 1
3

as the eigenvalues of T with

corresponding eigenvectors [−1, 1]t and [1, 1]t. The vectors are already orthogonal and we only

need to divide each by its length. Thus U =

(
− 1√

2
1√
2

1√
2

1√
2

)
. Without loss of generality we let
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R =

(
1 0

0 1√
3

)
. Then

S−1/2 = T 1/2 = U∗R∗U =

(
1
2

+ 1√
12

−1
2

+ 1√
12

−1
2

+ 1√
12

1
2

+ 1√
12

)
.

This means that

B∗ = S−1/2A∗ =

(
1
2

+ 1√
12

−1
2

+ 1√
12

2√
12

−1
2

+ 1√
12

1
2

+ 1√
12

2√
12

)
is the synthesis operator for the canonical tight frame. Hence

Φcan =
{( 1

2
+ 1√

12

−1
2

+ 1√
12

)
,

(
−1

2
+ 1√

12
1
2

+ 1√
12

)
,

(
2√
12
2√
12

)}
, is the canonical tight frame for Φ.

A simple calculation shows that

〈fk, f̂k〉 = 〈fk, f̃k〉 = ‖f cank ‖2,∀k,

where f̂k denotes a canonical dual vector and f̃k denotes an alternate dual vector. This implies

that
3∑

k=1

〈fk, f̃k〉 = 2 = dim(H).

MAPLE 18 software reveals that B∗BB∗ = B∗, which proves that B∗ is a partial isometry. This

agrees with an earlier remark. Further computation using MAPLE 18 approximates

Scan =

(
1 −1.899× 10−16

−1.899× 10−16 1

)
≈

(
1 0

0 1

)
= I

and

Gram(Φcan) =

 0.3333 −7.269× 10−17 0.4714

−7.269× 10−17 1 −1.813× 10−16

0.4714 −1.813× 10−16 0.6666

 ≈
 0.3333 0 0.4714

0 1 0

0.4714 0 0.6666

 .

Since Scan = I, we conclude that the canonical tight frame {S−1/2fk} is a Parseval frame, which

agrees with Proposition 4.3.11.

Theorem 4.3.19 ([21], Theorem 5.7). If Φ = {fk}nk=1 is a normalized tight frame for a Hilbert

space H and T : H −→ H is an invertible operator, then the frames {T ∗fk} and {T−1fk} are
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dual to each other.

Proof. Since Φ = {fk}nk=1 is a normalized tight frame, its frame operator S = I. Using this fact

together with Proposition 4.2.9, we have that {fk}nk=1 is normalized tight frame if and only if

f =
∑

k〈f, fk〉fk, for all f ∈ H. Let {gk} = {T ∗fk} and {hk} = {T−1fk}. We need to show that

f =
∑

k〈f, gk〉hk =
∑

k〈f, hk〉gk. Using the definition, we have

f =
∑

k〈f, fk〉fk =
∑

k〈f, TT−1fk〉fk

=
∑

k〈T ∗f, T−1fk〉fk

= T ∗
∑

k〈f, T−1fk〉fk

=
∑

k〈f, T−1fk〉T ∗fk

=
∑

k〈f, hk〉gk.

Similarly,

f =
∑

k〈f, fk〉fk =
∑

k〈f, (T ∗)−1T ∗fk〉fk

=
∑

k〈f, (T−1)∗T ∗fk〉fk

=
∑

k〈T−1f, T ∗fk〉fk

= T−1
∑

k〈f, T ∗fk〉fk

=
∑

k〈f, T ∗fk〉T−1fk

=
∑

k〈f, gk〉hk.

This proves the claim.

Theorem 4.3.20. If Φ = {fk}nk=1 is a frame for a Hilbert space H and Q : H −→ H is an

invertible operator, then the frames Ψ = {Qfk} is a frame for H, and Ψcan = UΦcan, where U is

a unitary operator.

Proof. The claim that Ψ = {Qfk} is a frame for H follows easily from the fact that Q is

invertible. To prove the second claim, we let

gk = Qfk = QS1/2S−1/2fk = (QS1/2)S−1/2fk = TS−1/2fk = Tf cank = TΦcan,
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where T = QS1/2 is invertible. Thus the synthesis operator for Ψ is T [f cank ]. But any canonical

tight frame is Parseval by Proposition 4.3.11. Thus Ψ = {Tf cank } is Parseval if and only if its

frame operator ScanΨ = I. That is if and only if ScanΨ = T [f cank ](T [f cank ])∗ = T [f cank ][f cank ]∗T ∗ =

TT ∗ = I. This means that T is an co-isometry. Since T is invertible, it must be a unitary

operator. So we let T = U , where U is unitary. Therefore Ψcan = UΦcan.

Remark. Let Φ = {fk}nk=1 be a finite frame for a Hilbert space H with analysis operator A

and frame operator S. The Grammian of the canonical tight frame is an orthogonal projection,

by ([2], Theorem 2.2), we have P = Gram(Φcan) = AS−1A∗ : `2(Z) −→ `2(Z) which gives the

coefficients ck with f =
∑

k ckfk of minimal `2-norm. This means that the canonical tight frame

gives a more precise and better reconstruction than the alternate dual frame. This means that

the canonical tight frame {S−1/2fk} inherits many of the properties of the original frame {fk}.
The only problem is that it is not easy to find {S−1/2fk} and that some nice properties of {fk}
may not be necessarily inherited.

Lemma 4.3.21. If {fk}nk=1 is a frame for a finite dimensional Hilbert space H with analysis

operator A and frame operator S and T is an operator on H, then the analysis operator for

{Tfk}nk=1 equals AT ∗.

Proof. Let B be the analysis operator of {Tfk}nk=1. Then

Bf =
n∑
k=1

〈f, Tfk〉fk =
n∑
k=1

〈T ∗f, fk〉fk = AT ∗f, ∀f ∈ H.

That is, B = AT ∗.

APPENDIX

Maple 18 Code for Example 4.3.13

>with(MTM):

>A:=matrix([[1,0],[0,1],[1,1]]); Enters matrix A

>svd:=svd(A); Gives the singular values of A

>U,S,V:=svd(A); Gives the full svd(A) and returns matrices U,S,V in that order

>PseudoInv:=MatrixInverse(A,method=pseudo); Returns the Pseudo-inverse of A

The output is

A :=

 1 0

0 1

1 1


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svd :=

 0
√
3

1


U,S,V :=

 0.4082 -0.7071 -0.5774

0.4082 0.7071 0.5774

0.8165 -5.5511 10-17 0.5774

 ,
 1.7321 0

0 1

0 0

 ,[ 0.7071 -0.7071

0.7071 0.7071

]

PseudoInv :=

[
2
3
−1

3
1
3

−1
3

2
3

1
3

]
The following result gives the relationship between analysis operator of a frame and that of any

of its infinitely many duals.

Theorem 4.3.22. If Φ = {fi} is a frame for H with analysis operator A and Ψ is a dual frame

with analysis operator B, then B∗A = A∗B = I.

The following result shows the optimality of the pseudo-inverse of a pseudo-inverse of the

analysis operator of a frame {fi}.

Theorem 4.3.23. If {fi} is a frame for a Hilbert space H with analysis operator A and let B be

the dual analysis operator. Then B∗ = A† is the left inverse of A with minimum induced norm.

That is, if B∗A = TA = I, then ‖B‖ ≤ ‖T‖.

4.4 Isomorphy and Unitary Isomorphy of Hilbert Space

Frames

There are several commonly used notions of equivalence among frames. There are frames which,

although they are technically different, are considered to be the ”same” in some sense. First

we explore the more general notions of isomorphy and unitary isomorphy of frames, associated

operators and their properties.

Definition 4.4.1. Two frames Φ = {fn}Mn=1 and Ψ = {gn}Mn=1 for an N -dimensional Hilbert

space H are said to be isomorphic, denoted Φ ∼ Ψ if there is an invertible operator F : H → H
such that Ffn = gn for all n = 1, 2, ...,M .

Definition 4.4.2. Two frames {fn}Mn=1 and {gn}Mn=1 for an N -dimensional Hilbert space H are

said to be unitarily isomorphic, denoted {fn}Mn=1
∼= {gn}Mn=1 if there is a unitary operator

U : H → H such that Ufn = gn for all n = 1, 2, ...,M .

Remark Balan in [1] has used the term F -equivalent to mean isomorphic. We note also that in

the literature the terms similarity and unitary equivalence have been used in place of isomorphy

and unitary isomorphy, respectively. In this thesis we adopt the latter and reserve the terms
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similar and unitary equivalence to operators.

Isomorphy and unitary isomorphy of frames are equivalence relations. We also note that isomor-

phy of frames is order-dependent. This means that the order in which the vectors are arranged

in a frame matters.

Example 4.4.3.

Note that if {en} is an orthonormal basis for an n-dimensional Hilbert space H, then the sets

{0, e1, e2, ..., en} and {e1, 0, e2, ..., en} are two non-similar frames for H, although they are the

same set.

Definition 4.4.4. Let Φ = {fn}Mn=1 be a frame for a Hilbert space H with frame operator S.

The sequence Φcan = {S− 1
2fn}Mn=1 is a frame, called the canonical tight frame.

The canonical tight frame {S− 1
2fn}Mn=1 is a Parseval frame that inherits properties of the

original frame {fn}Mn=1.

Remark. An interesting result in the context of frame isomorphy is that any Parseval frame

derived from a frame is in fact isomorphic to it.

Theorem 4.4.5 ([20], Theorem 4.5). Let {fn}Mn=1 be a frame for an N-dimensional Hilbert space

H with frame operator S. Then the Parseval frame {S− 1
2fn}Mn=1 is isomorphic to {fn}Mn=1.

Proof. The proof follows by letting Q = S−1/2.

Theorem 4.4.6 ([20], Theorem 4.6). Let {fn}Mn=1 be a frame for an N-dimensional Hilbert space

H with frame operator S. Then the canonical dual frame {S−1fn}Mn=1 is isomorphic to {fn}Mn=1.

Proof. The proof follows by letting Q = S−1.

Lemma 4.4.7 ([20], Lemma 4.7). Let {fn}Mn=1 and {φn}Mn=1 be isomorphic Parseval frames for

an N-dimensional Hilbert space H. Then they are unitarily isomorphic.

The above lemma says that the notions of isomorphy and unitary isomorphy coincide for

Parseval frames.

Theorem 4.4.8 ([20], Theorem 4.8). Every tight frame {fk} for a Hilbert space H with frame

bound α 6= 1 can be re-scaled to a Parseval frame.
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Proof. Suppose that {fk} is a tight frame with frame bound α 6= 1. Then∑
k

|〈f, fk〉|2 = α‖f‖2, ∀f ∈ H.

Thus
1

α

∑
k

|〈f, fk〉|2 = ‖f‖2, ∀f ∈ H.

Pulling 1
α

into the sum, we have

∑
k

|〈 1√
α
f, fk〉|2 =

∑
k

|〈f, 1√
α
fk〉|2 = ‖f‖2.

Theorem 4.4.8 says that given a frame, it is always possible to find a frame isomorphic to it.

Theorem 4.4.9. Every Riesz sequence {fk} for a Hilbert space H is isomorphic to an orthonor-

mal basis.

Theorem 4.4.10. Two frames for a Hilbert space H are unitarily isomorphic if and only if their

Grammians are equal.

Proof. Suppose Φ = {fk} and Ψ = {gk} are unitarily isomorphic. Then gk = Ufk, for some

unitary operator U ∈ B(H). By definition, the Grammian

GΨ = (〈gj, gk〉) = (〈Ufj, Ufk〉) = (〈fj, fk〉) = GΦ.

Conversely, suppose that GΨ = GΦ. Then 〈gj, gk〉 = 〈fj, fk〉 = 〈Ufj, Ufk〉 for some unitary

operator U ∈ B(H). Therefore gk = Ufk. This proves that the frames are unitarily isomorphic.

The theorem above says that unitary isomorphism preserves the Grammian of an operator. In

fact the Grammian characterizes the equivalence class of a frame.

Corollary 4.4.11. Let Φ = {fn}Mn=1 and Ψ = {gn}Mn=1 be frames for an N-dimensional Hilbert

space H with analysis operators A and B, respectively. Then the following conditions are equiv-

alent.

(a). Φ and Ψ are unitarily isomorphic .

(b). Ran(A) = Ran(B).

(c). Ker(A∗) = Ker(B∗).
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Proof.(a)=⇒(b): By ([20] Theorem 5.1), AA∗ = BB∗. Therefore

Ran(A) = Ran(AA∗) = Ran(BB∗) = Ran(B).

(b)=⇒(c): We use the fact that Ker(T ∗) = Ran(T )⊥ for any T ∈ B(H). So if

Ran(A) = Ran(B), then Ker(A∗)⊥ = Ker(B∗)⊥ which implies that Ker(A∗) = Ker(B∗).

(c)=⇒(a): We prove by contradiction. Suppose that Ker(A∗) = Ker(B∗) but Φ and Ψ are not

unitarily isomorphic frames. Then GΨ 6= GΦ. This implies that Ker(B∗B) 6= Kernel(AA∗).

Since Ker(AA∗) = Ker(A∗) and Ker(BB∗) = Ker(B∗), we have that

Ker(GΦ) = Ker(AA∗) = Ker(A∗) 6= Ker(B∗) = Ker(BB∗) = Ker(GΨ). This implies that

Ker(A∗) 6= Ker(B∗), which is a contradiction to the assumption that Ker(A∗) = Ker(B∗).

This proves the claim.

We note that unitary isomorphy need not preserve frame operators.

The next result characterizes the unitary somorphy of two frames in terms of their analysis

operators.

Corollary 4.4.12 ([20], Corollary 5.3). Unitarily isomorphic frames have unitarily equivalent

frame operators.

Proof. Suppose Φ = {fk}nk=1 Ψ = {gk}nk=1 are unitarily equivalent and suppose Φ = {fk}nk=1 has

frame operator S. Then by gk = Ufk for some unitary operator U ∈ B(H). by Theorem 4.3.9,

the frame operator of Ψ is USU∗, which is unitarily equivalent to S.

The following result gives a condition when unitarily isomorphic frames have the same frame

operator.

Corollary 4.4.13 ([20], Corollary 5.4). Unitarily isomorphic tight frames for a Hilbert space H
have same frame operators.

Proof. Suppose Φ = {fk} and Ψ = {gk} are unitarily isomorphic tight frames with frame

operators SΦ and SΨ, respectively. Tightness implies that SΦ = α1I and SΨ = α2I for some

0 < α1, α2 < ∞. Unitary isomorphy of the frames implies unitary equivalence of the frame

operators, which means σ(S) = σ(USU∗). Finally strict positivity of α1 and α2 implies that

α1 = α2. Therefore SΦ = SΨ. This proves the claim.

Recall that the Grammian of a tight frame Φ = {fk} is an orthogonal projection G = AA∗ =

P = PΦ. The columns of PΦ give a canonical copy of Φ and so the kernel of PΦ is the space of

linear dependence dep(Φ) between vectors in Φ. This leads to the following result.

Proposition 4.4.14. Let Φ = {fk}mk=1 be a tight frame for an n-dimensional Hilbert space with

Grammian G = PΦ. Then dep(Φ) = Ker(PΦ).
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Proof. Since the Grammian of a tight frame Φ = {fk} is an orthogonal projection, we have

Ker(PΦ) = {a = (a1, a2, ..., an) ∈ Fn : Pa =
∑
k

akPek = 0} = {a ∈ Fn : Pa =
∑
k

akfk = 0} =: dep(Φ).

Proposition 4.4.14 says that for a tight frame the Grammian is determined by its kernel. It also

says that P is the orthogonal projection onto dep(Φ)⊥. We also note from the definition that if

Φ is a basis of H, then dep(Φ) = {0}.

Theorem 4.4.15. Let Φ = {fk}nk=1 and Ψ = {gk}nk=1 unitarily isomorphic for a Hilbert space

H. Then dep(Φ) = dep(Ψ).

Proof. The proof follows easily from Theorem 4.4.10 and the definition of the notion of depen-

dence.

This result can be relaxed as follows.

Theorem 4.4.16. Let Φ = {fk}nk=1 and Ψ = {gk}nk=1 finite frames for a Hilbert space H with

frame operators AΦ and AΨ, respectively. Then the following are equivalent.

(a). Φ and Ψ are isomorphic.

(b). dep(Φ) = dep(Ψ).

Proof. (a)=⇒ (b): Suppose that Φ and Ψ are isomorphic. Then there exists an invertible

operator Q ∈ B(H) such that gk = Qfk for all k = 1, 2, ..., n. Thus the synthesis operator for Ψ

is A∗Ψ = [gk] = [Qfk] = Q[fk]. Note first that the Grammian of Ψ is a projection P = PΨ. Using

the fact that Ker(AA∗) = Ker(A∗) for any operator A and the definition we have

dep(Ψ) = Ker(A∗Ψ) = Ker(Q[fk]) = Ker([fk]) = Ker(A∗Φ) = Ker(PΦ) = dep(Φ).

(b)=⇒ (a): Suppose that dep(Φ) = dep(Ψ). Note that since A∗Φ = A∗ΦPΦ and Ran(PΦ) =

Ker(A∗Φ)⊥, we have that A∗Φ : Ran(PΦ) −→ H is invertible. Similarly A∗Ψ|Ran(PΨ) = A∗Ψ|Ran(PΦ) is

invertible. This means that Q := (A∗Ψ|Ran(PΦ))(A
∗
Φ|Ran(PΦ))

−1 : H −→ H is invertible. Using the

fact that fk = A∗Φek = A∗ΦPΦek, where {ek} is an orthonormal basis of `2(J), J = {1, 2, ..., n} for

H, have

Qfk = QA∗Φ(PΦek) = A∗ΨPΦek = A∗ΨPΨek = A∗Ψek = gk.

This shows that gk = Qfk, and hence the frames are isomorphic.

Theorem 4.4.17 ([21], Theorem 5.9). Unitarily isomorphic frames have the same frame bounds.
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Proof. Suppose that Φ = {fk}nk=1 and Ψ = {gk}nk=1 are unitarily isomorphic frames for a Hilbert

spaceH. Suppose that Φ = {fk}nk=1 has S as its frame operator. By Corollary 4.3.9, Ψ = {gk}nk=1

has frame operator USU∗. Corollary 4.4.12 shows that the frame operators are unitarily equiv-

alent and hence have the same spectrum. That is σ(S) = σ(USU∗) and therefore the lower and

upper frame bounds are the same.

Remark. We note that Theorem 4.4.17 need not be true if we replace unitary isomorphy with

isomorphy. This is because isomorphism of frames need not imply similarity of frame operators.

To see this, consider the following example.

Example 4.4.18 ([21], Example 5.10).

Consider the frame Φ = {fk}3
k=1 = {

(
1

0

)
,

(
0

1

)
,

(
0

1

)
} for H = R2. Let U =(

0 −1

1 0

)
and Q =

(
2 0

0 2

)
. Clearly both U and Q are invertible and in addition U is

unitary. So the sequences Ψ = {Ufk}3
k=1 and Ω = {Qfk}3

k=1 are frames for H = R2. A simple

computation gives the corresponding frame vectors as SΦ =

(
1 0

0 2

)
, SΨ =

(
2 0

0 1

)
and

SΩ =

(
4 0

0 8

)
.

We note that the frame bounds for Φ are α = 1 and β = 2 are the same for Ψ, but the frame

bounds for SΩ are α = 4 and β = 8. This shows that unlike frame unitary isomorphy, frame

isomorphy need not preserve the frame bounds, and as can be seen in this example, frame iso-

morphy need not preserve tightness.

Remark. For frames which are not tight, isomorphy of frames is weaker than unitary isomorphy

of frames. Thus

Unitary Isomorphy =⇒ Isomorphy.

but the converse is not true, in general.

Theorem 4.4.19. A frame Φ = {fk}nk=1 for a Hilbert space H with a frame operator S, its

canonical dual Φ̃ = {S−1fk}nk=1 and its canonical tight frame Φcan = {S−1/2fk} are isomorphic

frames. Moreover, they are unitarily isomorphic if and only if Φ = {fk}nk=1 is Parseval.

Proof. The proof of the first claim follows from ([20], Theorem 5.8 and Theorem 5.9). The proof

of the second claim follows from Lemma 4.4.7.

Corollary 4.4.20. Two Parseval frames Φ = {fk}nk=1 and Ψ = {gk}nk=1 for a Hilbert space H
are unitarily isomorphic if and only if they are isomorphic.
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Proof. We prove the converse. The other direction is clear from the definition. Isomorphy of

Φ = {fk}nk=1 and Ψ = {gk}nk=1 implies existence of an invertible operator T such that gk = Tfk,

for all k. By ([2], Theorem 2.2) and Corollary 3.11 and the fact that the frames are Parseval

implies that the frame operator for Ψ = {gk}nk=1 is T (I)T ∗ = TT ∗ = I. This implies that T is

an isometry. Invertibility of the frame then implies that T = U , where U is a unitary operator.

Therefore gk = Ufk. Therefore the frames are unitarily isomorphic.

Remark. The above proof is equivalent to the following direct one: Let f ∈ H. Then

‖T ∗f‖2 =
∑
k

|〈T ∗f, fk〉|2 =
∑
k

|〈f, Tfk〉|2 =
∑
k

|〈f, gk〉|2 = ‖f‖2.

This proves that T ∗ is an isometry. That is, TT ∗ = I. Invertibility of T then implies that

T ∗ = T−1, which proves that T is unitary. The result now follows by letting T = U , for some

unitary operator on H.

Remark. We note that if a frame is unitarily isomorphic to a Parseval frame, then it is also a

Parseval frame. We note also that every Riesz basis is isomorphic to an orthonormal basis for a

Hilbert space H.

The following result characterizes isomorphic frames in terms of the Grammians of their canonical

tight frames.

Proposition 4.4.21. Let Φ = {fk}nk=1 and Ψ = {gk}nk=1 be finite frames for a Hilbert space H
with analysis operators A and B, respectively. Then the following are equivalent:

(a). Φ and Ψ are isomorphic.

(b). Gram(Φcan) = Gram(Ψcan).

(c). Ran(A) = Ran(B). Equivalently Ker(A∗) = Ker(B∗).

Proof. (a)=⇒(b): Suppose Φ = {fk}nk=1 and Ψ = {gk}nk=1 are isomorphic and that the frame

operator of Φ = {fk}nk=1 is S. Then there exists an invertible operator Q such that gk = Qfk for

all k. Then

gk = Qfk = QS1/2S−1/2fk = (QS1/2)S−1/2fk = Tf cank , ∀k,

where T = QS1/2 is invertible, since Q and S1/2 are. Hence Ψ = {Tf cank }. Let us denote the

frame operator of Ψ = {gk}nk=1 by SΨ. Let the synthesis operator be denoted by Ccan. Then

SΨ = T (Ccan)∗(Ccan)T ∗ = TT ∗ = I. Using the fact that Ψ = {Tf cank } is tight if and only if

SΨ = c2I for some c > 0, we conclude that T is a unitary operator. Thus Ψ is unitarily equivalent

to Φcan. Therefore Gram(Φcan) = Gram(Ψcan).
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(b)=⇒(c): Since P can
Φ := Gram(Φcan) and P can

Ψ := Gram(Ψcan)are orthogonal projections, they

are determined by their ranges, then P can
Φ = P can

Ψ if and only if Ran(A) = Ran(B).

(c)=⇒(a): Follows immediately from the equality of the Grammians. This means that the two

frames are unitarily isomorphic and hence isomorphic. Alternatively, first note that

Bf =
∑
k

〈f, gk〉fk =
∑
k

〈f, Tfk〉fk =
∑
k

〈T ∗f, fk〉fk = AT ∗f.

This shows that Ran(B) = Ran(AT ∗) = Ran(A). That is, Ran(B) = Ran(A). We now let

Ran(A) = Ran(B) =M, whereM is a closed subspace of `2(Z). Since A∗ and B∗ are invertible

when restricted to M, the operator T = B∗(AA∗)−1A : H −→M is onto and invertible on M.

Therefore

A∗(M⊥) = B∗(M⊥) = {0}.

Thus fk = A∗ek = A∗Pek and gk = B∗ek = B∗Pek, where {ek} is the standard basis for `2(Z).

Therefore

Tfk = TA∗Pek = B∗(AA∗|M)−1(AA∗|M)Pek = B∗Pek = gk.

That is, gk = Tfk, which implies that the frames are isomorphic.

Remark. Proposition 4.4.21 shows that finite frames are isomorphic if and only if their canonical

Gramians are equal. It also says that finite frames are isomorphic if and only if their analysis

operators have the same range.

We define the traditional notion of redundancy Red(Φ) of a frame Φ = {fk}Nk=1 for an n-

dimensional Hilbert space H as the quotient N
n

. This however, is a customary and crude quan-

titative notion of redundancy. For literature on other quantitative notions of redundancy ( see

[5],[6]). In any case, it is known that the redundancy of an over-complete frame is greater than

1.

Remark. We note that unitary isomorphy of frames preserves redundancy of frames. However,

equality of redundancy does not, in general translate to unitary isomorphy.

Example 4.4.22 ([21], Example 5.14).

Consider the frames Φ = {e1, e1, e2} and Ψ = {e1, e2, e2} where {ek} denotes the orthonormal

basis of R2. Then Red(Φ) = Red(Ψ) = 3
2
. However the frames are not unitarily isomorphic,
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since

Gram(Φ) =

 1 1 0

1 1 0

0 0 1

 6=
 1 0 0

0 1 1

0 1 1

 = Gram(Ψ).

Define F := {Φ : Φ is a frame} be the set of frames in a finite dimensional Hilbert space H.

Theorem 4.4.23. Define a relation
red∼ on F by Φ

red∼ Ψ if and only if Red(Φ) = Red(Ψ). Then
red∼ is an equivalence relation on F.

Let Φ,Ψ, and Ω be in F. Trivially, Φ
red∼ Φ, since Red(Φ) = Red(Φ). This shows that

red∼ is

reflexive. Now suppose Φ
red∼ Ψ. Then Red(Φ) = Red(Ψ). This is same as Red(Ψ) = Red(Φ)

which implies that Ψ
red∼ Φ. Thus

red∼ is symmetric. Finally, suppose that Φ
red∼ Ψ and Ψ

red∼ Ω.

Then Red(Φ) = Red(Ψ) and Red(Ψ) = Red(Ω). Thus Red(Φ) = Red(Ψ) = Red(Ω). Thus
red∼ is

transitive. This proves the claim.

Remark. Theorem 4.4.23 says that searching for a frame which possesses a predetermined

redundancy function is equivalent to searching for the equivalence class.

Corollary 4.4.24 ([4]). Let Φ and Ψ be frames for a finite dimensional Hilbert space H. Let ŜΦ

and ŜΨ denote the frame operators of their normalized versions. Then following conditions are

equivalent.

(a). Red(Φ) = Red(Ψ).

(b). ŜΦ = ŜΨ.

Corollary 4.4.24 says that
red∼ -equivalent frames must have the same number of non-zero frame

vectors.

Theorem 4.4.25. Unitarily isomorphic and isomorphic frames are
red∼ -equivalent.

In particular, orthonormal bases and Riesz bases/frames are
red∼ -equivalent.

Definition 4.4.26. Let H be a Hilbert space with dimension n and let Φ = {fk} be a collection

of (unit) vectors from H. The frame potential of Φ is the number PΦ =
∑k

i=1

∑k
j=1 |〈fi, fj〉|2.

The frame potential gives an intuitive idea of the configurations of the vectors which come

from tight frames. This notion can be extended to any collection of vectors with varied norms.

The inner product between vectors gives a quantity describing the orthogonality of the vectors.

For more in the literature about frame potential (see [26] ).

Theorem 4.4.27. Every tight finite frame {fi}ni=1 in a finite dimensional Hilbert space H has

the same frame potential.
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Lemma 4.4.28. If Φ = {fi}ki=1 is a tight frame of unit vectors in Rn, then the frame potential

of Φ is PΦ = k2

n
.

Proof. Since Φ is a tight frame of unit vectors, the frame bound is α = k
n
. By definition of a

tight frame, we then have

k∑
i=1

(
k∑
j=1

|〈fi, fj〉|2) =
k∑
i=1

α‖fi‖2 =
k∑
i=1

α =
k2

n
.

Remark. Frame potential of a frame Φ = {fi}ki=1 can be described in terms of the trace and

the Grammian matrix G. First, recall that tr(S) = tr(G), where S = A∗A and G = AA∗. The

frame potential can also be given by

PΦ =
k∑
i=1

k∑
j=1

|〈fi, fj〉|2 =
k∑
i=1

k∑
j=1

|Gi,j|2 = tr(G2) =
k∑
i=1

λ2
i ,

where λi are the eigenvalues of G.

The frame potential is minimized when the vectors are as orthogonal as possible. The next result

shows that unitary isomorphy preserves frame potential.

Lemma 4.4.29. If two frames are unitarily isomorphic, then they have equal frame potential.

Proof. Suppose that Φ = {fi}ki=1 is a frame for a Hilbert space H. Let Ψ = {gk}nk=1, where

gk = Ufk for some unitary operator U ∈ B(H). Then

PΨ =
k∑
i=1

k∑
j=1

|〈Ufi, Ufj〉|2 =
k∑
i=1

k∑
j=1

|〈fi, fj〉|2 = PΦ.

Given two M × N matrices A and B, we define the Hilbert-Schimdt trace inner product as

〈A,B〉H.S = tr(AB∗). This inner product induces the Hilbert-Schmidt norm ‖.‖H.S or the Frobe-

nius norm on the vector space of all M × N matrices. Using this distance notion we define a

distance function on the space of frames F = {Φ : Φ is a frame}.

Definition 4.4.30. Let Φ = {fk}nk=1 and Ψ = {gk}nk=1 be finite frames for an m-dim Hilbert

space H. The frame distance between them is dF(Φ,Ψ) = ‖Φ−Ψ‖H.S.

Clearly the frame distance is a metric on F.

Definition 4.4.31. Let Φ = {fk}nk=1 and Ψ = {gk}nk=1 be finite frames for an m-dim Hilbert

space H. The Grammian distance between them is dG(Φ,Ψ) = ‖Gram(Φ) − Gram(Ψ)‖H.S,
where Gram(Φ) = AA∗ and Gram(Ψ) = BB∗, where A and B are the analysis operators of Φ

and Ψ, respectively.
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Clearly the Gram distance is a pseudo-metric, because unitary isomorphism of Φ and Ψ im-

plies Gram(Φ) = Gram(Ψ), which means that dG(Φ,Ψ) = 0.

We also define a distance in terms of unitary isomorphy of frames.

Definition 4.4.32. Let Φ = {fk}nk=1 and Ψ = {gk}nk=1 be finite frames for an m-dim Hilbert

space H. The isomorphy distance between them is dI(Φ,Ψ) = infΦ′∼=Φ,Ψ′∼=Ψ ‖Φ
′ −Ψ

′‖H.S.

Clearly the isomorphy distance is a pseudo-metric, since dI(Φ,Ψ) = 0 whenever Φ and Ψ are

unitarily isomorphic.

Definition 4.4.33. Two frames Φ = {fn}Mn=1 and Ψ = {gn}Mn=1 for an N -dimensional Hilbert

space H are said to be switching equivalent , denoted Φ
s.e∼= Ψ if there is a unitary operator

U : H → H and a permutation π of the set J = {1, 2, ...,M} such that fj = Ugπ(j), for all j ∈ J .

We note that switching equivalent frames contain the same vectors but given in a different

order.

Theorem 4.4.34. Two Parseval frames Φ = {fn}Mn=1 and Ψ = {gn}Mn=1 for an N-dimensional

Hilbert space H are switching equivalent if and only if there exists a permutation π of the index

set J = {1, 2, ...,M} such that Gram(Φ)i,j = Gram(Ψ)π(i),π(j).

Proof. Define a matrix

P = Pi,j =
{ 1, if π(i) = j

0, otherwise
.

Let A and B be the analysis operators of the frames Φ and Ψ, respectively. Suppose that Φ
s.e∼= Ψ.

Then there is a unitary operator U : H → H and a permutation π of the set J = {1, 2, ...,M}
such that fj = Ugπ(j), for all j ∈ J . Thus A∗ = UB∗P ∗, where U is a unitary operator. This is

equivalent to

Gram(Φ) = AA∗ = PBU∗UB∗P ∗ = PBB∗P ∗ = P (Gram(Ψ))P ∗.

Thus the Grammians are identical up to conjugation by a permutation matrix. Therefore

Gram(Φ)i,j = Gram(Ψ)π(i),π(j). Conversely, suppose that Gram(Φ)i,j = Gram(Ψ)π(i),π(j). Then

〈fi, fj〉 = 〈gπ(i), gπ(j)〉 = 〈Ugπ(i), Ugπ(j)〉. Therefore fj = Ugπ(j), for all j ∈ J . That is the frames

are switching equivalent.

Remark. Note that if P = I in the proof of Theorem 4.4.34, then the Grammians of the frames

Φ and Ψ are equal, which means they are unitarily isomorphic by Theorem 4.4.10. This shows

that switching equivalence is weaker than unitary isomorphism.
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Theorem 4.4.35. If two tight frames Φ = {fn}Mn=1 and Ψ = {gn}Mn=1 for an N-dimensional

Hilbert space H are unitarily isomorphic then they have the same tightness.

Proof. Suppose {fk} is α-tight. Then f = 1
α

∑n
k=1〈f, fk〉fk, ∀f ∈ H. Taking inner product

with f we get

‖f‖2 = 〈f, f〉 =
1

α

n∑
k=1

〈f, fk〉〈f, fk〉 =
1

α

n∑
k=1

|〈f, fk〉|2.

Now suppose gk = Ufk, for some unitary operator U ∈ B(H). Then using the fact that U∗ = U−1

we get

f = 1
α

∑n
k=1〈f, fk〉fk = 1

α

∑n
k=1〈f, U−1Ufk〉fk

= 1
α

∑n
k=1〈(U−1)∗f, Ufk〉fk

= (U−1)∗ 1
α

∑n
k=1〈f, Ufk〉fk

= 1
α

∑n
k=1〈f, Ufk〉(U−1)∗fk

= 1
α

∑n
k=1〈f, Ufk〉Ufk

= 1
α

∑n
k=1〈f, gk〉gk

Taking inner product with f gives

‖f‖2 =
1

α

n∑
k=1

〈f, gk〉〈gk, f〉 =
1

α

n∑
k=1

〈f, gk〉〈f, gk〉 =
1

α

n∑
k=1

|〈f, gk〉|2.

This shows that Ψ = {gk}nk=1 is also α-tight.

Remark. Theorem 4.4.35 can easily be proved as follows using the Corollary 3.11 and the fact

that unitary equivalence of operators preserves norm:

‖SΨf‖ = ‖USU∗f‖ = ‖Sf‖ = α‖f‖2.

Frame isomorphy and unitary isomorphy can be used to uniquely determine equivalence

classes of some Hilbert space frames. There are at most finitely many frame equivalence classes,

which means that the problem of determining, for instance, tight frames reduces to the problem

of finding representatives for each equivalence class and determining which of these equivalence

classes is optimal in application. Some classes of frames are enticing to frame theorists and

experts because their properties make calculations easier. Knowledge about the frame operators
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and synthesis operators is also crucial in classifying frames.

4.5 Gabor Frames

Frames having Gabor structure or wavelet structure involve translations and modulations of a

fixed function g ∈ L2(R), called the window function. A Gabor frame is a sequence for L2(R) of

the form {MmbTnag}n,m∈Z, where MmbTnag(x) = e2πimbxg(x− na), a, b > 0, Ta,Mb : L2(R) −→
L2(R) are the translation by a and modulation by b operators defined by (Taf)(x) = f(x−a) and

(Mbf)(x) = e2πbxf(x), respectively, where x ∈ R and f ∈ L2(R). Gabor frames are overcomplete

frames for L2(R). A wavelet system takes the form {2j/2ψ(2jx−k)}j,k∈Z, where D is the dilation

operator D : L2(R) −→ L2(R) defined by (Df)(x) = 2j/2f(2x), which are orthonormal bases for

L2(R). Wavelet frames are used to obtain Fourier expansion for f ∈ L2(R). It is known (see

[14], [3] and [6]) that most Gabor frames are overcomplete and that if ab > 1, then any Gabor

system is incomplete, if ab = 1, then a Gabor frame is a Riesz basis, and if ab < 1, then a Gabor

frame is overcomplete.

Over-complete Gabor frames and wavelet frames have been used in signal detection, image

representation, object recognition, noise reduction, sampling theory, wireless communications,

filter banks and quantum computing(see [7]).
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Chapter 5

SOME APPLICATIONS OF

OPERATORS, FRAMES AND

GROUP THEORY TO SIGNAL

PROCESSING AND

CRYPTOGRAPHY

5.1 APPLICATION OF GROUP-THEORETIC CONCEPTS

TO CRYPTOGRAPHY

We have seen in Chapter 3 that the most basic primitive for a cryptographic system like the

RSA is a trap-door one-way function f which is easy to compute but hard to invert, but f−1 is

easy to compute when a trapdoor or a secret string of information associated with the function

becomes available. The function g : (p, q) −→ pq for large prime numbers is conjectured to be a

one-way and also a trapdoor function, in the sense that given the product n = pq, it is extremely

hard to know the prime factors p and q or to factor n. The function

f(x) = xe mod n,

where e is relatively prime to ϕ(n) = (p − 1)(q − 1) is a trap-door function. The trapdoor are

the large primes p and q, knowledge of which allows one to invert f efficiently. The trapdoor

functions help in the design of protocols that allow for entities who have never met or exchanged

information to establish a shared secret key by exchanging messages over an unsecured commu-

nication channel.
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The main task in public-key cryptography like the RSA is to find a suitable trap-door one-

way function, so that both encryption and decryption are easy to perform for authorized users,

whereas decryption, the inverse of the encryption, should be computationally infeasible for an

unauthorized user (the adversary, eavesdropper or the enemy). One of the major advantages of

public-key cryptography is that it can be used not only for encryption bust also for digital signa-

tures, a feature which is useful for Internet security and which is not provided by the traditional

secret-key cryptography.

Sensitive data exchanged between a user and a Web site needs to be encrypted to prevent

it from being disclosed to or modified by unauthorized parties. The encryption must be done

in such a way that decryption is only possible with knowledge of a secret decryption key. The

decryption key should only be known by authorized parties.

The simple notion of the trapdoor function in RSA finds application in the design of pin num-

bers and passwords in the telephony, email communication and electronic banking industry(bank

transaction, bank account security, Personal Identification Numbers(PINs), passwords, credit

card transactions).

We have given examples in Chapter 3, on the encryption and decryption schemes for the

RSA. We have shown that for n = pq, where p and q are two large integers and e a positive

integer, most encryption and decryption protocols utilize a trapdoor function f : Zn −→ Zn
defined by f(x) = xe mod n. We have shown that if gcd(e, φ(n)) = 1, then this function

is the RSA encryption function RSAn,e : Z∗n −→ Z∗n given by RSAn,e(x) = xe mod n. To

decrypt a message securely, there is need for trapdoor, which consists of secret information that

permits easy inversion of the encryption key. We have shown in Theorem 3.2.20 that the inverse

f−1 has a similar form: f−1(x) = xd mod n for an appropriate value of d. These trapdoor

functions are designed using Euler’s theorem. This is where group theory comes into play. Since

ed ≡ 1 mod φ(n), it follows that ed = tφ(n) + 1, for some integer t ≥ 1. For x ∈ Z∗n, it follows

by Euler’s Theorem and Fermat’s Little Theorem that

(xe)d ≡ xtφ(n)+1 mod n ≡ (xφ(n))tx mod n ≡ 1tx mod n ≡ x mod n.

The values (n, e) comprise the public key and the values p, q and d form the private key. The

security of a public-key cryptosystem like the RSA is based on the belief that the encryption

function f(x) = xe mod n is a one-way function, so it will be computationally infeasible for an

opponent to decrypt a ciphertext. The trapdoor that allows the legitimate receiver to decrypt

a ciphertext is the knowledge of the factorization n = pq. Since this factorization is known, the
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receiver can compute φ(n) = (p− 1)(q − 1) and then compute the decryption exponent d using

the Extended Euclidean algorithm. To be on the safe side, the numbers p and q are chosen(or

randomly generated) to be 1024-bit primes, making n a 2048-bit modulus. Factoring a number

of this size is beyond the capability of the best current factoring algorithms.

Another application of group-theoretic concepts is in the design of certified or digital sig-

natures for public-key encryption, whose signing, authentication, identification and verification

algorithms uses the same concept of the RSA protocol, which is a product of Euler’s Theorem.

Certified signatures as demonstrated in Chapter 3, can be attached to the public-key encryption

messages in such a manner as to bind an entity to its identity to a piece of information (or its

signature), hence removing any doubt about the sender of a digital message. With the spread

of the internet and electronic banking, data security and guaranteed signatures have taken on a

wholly new dimension. These signatures are important in protecting computer systems against

illicit entry and manipulation, and safeguarding data files from unauthorised parties, falsification

and destruction. Certified signatures help mitigate against entities reneging(disowning a trans-

action), forgery, alteration of a transaction, and impersonation.

5.2 APPLICATION OF FRAMES AND OPERATORS

TO SIGNAL PROCESSING

Hilbert space frames and operators have been effectively used for the reconstruction of bandlim-

ited signals(those with compact support and their Fourier transforms vanish off a compact set)

from irregularly spaced sampling points in communication systems(see [10]). The analysis and

synthesis operators of frames have been used for signal reconstruction in signal processing. The

advantage of frames over bases is that frames can be considered as redundant while they provide

stable reconstructions.

The notion of filter or cryptosystem is a linear system. Subjecting a signal through a filter

or cryptosystem can be viewed as a multiplication operator

Filter.Signal = Signal

The analysis of a signal f ∈ H is typically performed by merely considering its frame coefficients

〈f, fi〉. However, if the task is transmission of a signal, the ability to reconstruct the signal from

its frame coefficients and also to do so efficiently becomes crucial. However, reconstruction from

coefficients with respect to a redundant system is much more delicate and requires the utilization

of a dual frame.
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Let {fi}mi=1 be a frame for H with frame operator S. Then for every f ∈ H we have

f =
∑
i

〈S−1f, fi〉fi =
∑
i

〈f, S−1fi〉fi.

as the reconstruction formula for f . This formula shows that every vector(or signal)f ∈ H can be

uniquely reconstructed from a set of measurements {〈f, fi〉} and that this reconstruction is stable.

This has been clearly demonstrated in Examples 4.3.13 and 4.3.18. A MAPLE 18 code has

been provided on how to compute the alternate dual frame using the notion of SVD and the

pseudo-inverse.

In real life application, a message spoken into a cellphone can be thought of as a vector. The

voice message is broken down into a series of coefficients which are digitized, transmitted, and

read by a receiver which knows how to transform the coefficients back into an audible sentence.

During the transmission, however, some of those coefficients may be scrambled up or lost(This

is what happens with payTV,e.g GoTV, DSTV, MTN, Verizon, etc when subscription expires

and is not renewed on time!-they erase all coefficients except for some local basic channels like

KBC, etc.). If there were extra coefficients used, we have a better chance of understanding the

message on the other end, even if it is not perfectly identical to the message that was sent.

Another advantage to redundancy is the variety of frames that exist. Frames are used in a

wide variety of applications, each having unique constraints. Orthonormal bases are very restric-

tive. The elements in an orthonormal basis must all be orthogonal, there can only be exactly as

many elements as the dimension of the space, and they must all have unit norm.

Frames can be structured to adjust the weight on each component by having vectors with

varying norms. Frames exist which pay special attention to some parts of a signal by grouping

more vectors in these areas. This is accomplished by constructing a frame with varied spacing

(measured by the inner products). between vectors.

Phase retrieval is the problem of recovering a signal from the absolute values of linear mea-

surement coefficients (frame coefficients) called intensity measurements. Note that multiplying

a signal by a unimodular constant does not affect these coefficients, so we seek signal recovery

modulo a unimodular constant. In [8], they determine what kind of reconstruction is possible if

we only have knowledge of the absolute values of the frame coefficients.

Compared to orthonormal bases, frame bases are generally over-complete. It turns out that
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this property is very advantageous for many applications. It makes frame bases a very flexible

tool for analysis and syntheses of signals in many branches of information theory.

During transmission of a signal through a channel(telephone, atmosphere, etc) there is pos-

sibility of noise, which may be caused by several factors including lightning, radio disturbance,

electromagnetic waves. To protect a message or signal against noise we should encode it by

adding some redundant information to it. This is the essence of the notion of redundancy asso-

ciated with over-complete frames.

In such a case, even if the message is corrupted by a noise, there will be enough redundancy in

the encoded message to recover or decode the message completely.

A good example is given in Example 4.3.18, where the signal f =

(
−5

2

)
in the Hilbert

space R2 has been expanded as a linear combination of the frame vectors. Since the frame {fi}3
1

in this example is over-complete, the signal can still be expanded as a linear combination of two

of the frame vectors in case one frame vector is lost during the transmission. It is also demon-

strated how the original signal can be reconstructed from the alternate dual frame of the original

frame.

The analysis operator A : H −→ `2(Z) denined by f 7−→ {〈f, fi〉} is the main tool used for

discretization of a signal f ∈ H using a frame {fi} for a Hilbert space H. Any signal f ∈ H can

be fully represented by the discrete vector Af . This means that the original signal can be reco-

vere from the discrete representation Af . In other words, f and Af contain the same information.

The Grassmannian operator G = AA∗, where A is the analysis operator of a frame and its

pseudo-inverse G† play a crucial role in the process of digital reconstruction from frame repre-

sentation. The fact that G operates on `2(Z), a Hilbert space of countable sequences(digital

sequences) immediately suggests that it is possible to implement G on a digital machine. The

size of the kernel of G is directly related to the robsutness to noise in the representation.
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Chapter 6

CONCLUSIONS AND

RECOMMENDATIONS FOR

FURTHER RESEARCH

6.1 SUMMARY

In this thesis we have shown major results:

In Chap 1, we have given notations, definitions and very important results that we have used in

the rest of the chapters in this thesis.

In Chapter 2, we have given literature review to the study and stated the statement of the prob-

lem. We have also stated the main objective, the specific objectives and the significance of the

study.

In Chapter 3, we have successfully identified the trap-door function in the RSA cryptosystem as

RSAn,e(x) = xe mod n,

where n is a product of two large primes p and q and gcd(e, ϕ) = 1, where ϕ(n) is the Euler

(totient) function defined by ϕ(n) = ϕ(pq) = (p − 1)(q − 1). We have shown that the trapdoor

information is a number d such that

d.e ≡ 1 mod ϕ(n).

We have demonstrated that as a collective, the RSA can be viewed as
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RSA =
{
RSAn,e : Z∗n −→ Z∗n, where RSAn,e(x) = xe mod n, n = pq, gcd(e, ϕ(n)) = 1

}
We have used Theorem 3.2.13(Lgrange) and Theorem 3.2.16(Euler’s Theorem) and Fermat’s

Little Theorem and examples, we have demonstrated how the public key cryptosystme RSA

works. We have used Maple to carry out most of the modular arithmetic involving large prime

integers and were able to randomly generate large positive integers and test their primality.

In Theorem 3.2.20, we have also shown that the trapdoor function RSAn,e is a permutation

over the cyclic multiplicative group Z∗n.

We have also shown that it is hard to break or hack the RSA because the factors of n cannot

be computed in any easy way. We have also shown that for encryption to work, a message block

must be coded as an integer in the interval 0 ≤M ≤ n− 1.

We have also shown that RSA signature key consists of a pair (ks, kp), where ks = (n, e) is the

secret signing key and kp = (n, d) is the public verifying key and that faking this signature is

akin to breaking the RSA.

In Chapter 4, we have shown the many major results. We have demonstrated how to determine

the analysis, synthesis and frame operator for a given frame in a Hilbert space. We have demon-

strated how to use the singular value decomposition(svd) and the notion of a pseudo-inverse to

find a dual to a frame, the canonical dual and the canonical tight frame. This has been shown

in Examples 4.3.5, 4.3.13, 4.3.14 and 4.3.18.

In Theorem 4.3.9, we have shown that if {fk}nk=1 is a frame for a Hilbert space H with a frame

operator S and T : H −→ H is an operator on H, then the sequence {Tfk}nk=1 is a frame with

frame operator TST ∗.

In Theorem 4.3.17, we have shown that duality of frames for the same Hilbert space H is an

equivalence relation.

In Theorem 4.3.19, we have shown that if {fk} is a normalized tight frame for a Hilbert space

H and T ∈ B(H) is invertible, then the frames {T ∗fk} and {T−1fk} are dual to each other.

In Corollary 4.4.12, we have shown that unitarily isomorphic finite frames have unitarily equiv-

alent operators. We have also shown in Corollary 4.4.13 that unitarily isomorphic finite frames

have the same frame operators. In Theorem 4.4.17, we have shown that unitarily isomorphic
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frames have the same frame bounds.

In Chapter 5, we have have given some of the applications of Hilbert space frame operators and

group theory in signal processing and cryptography. We have also discussed some applications

of cryptography.

6.2 FURTHER RESEARCH

Part of this thesis has focussed on results involving finite frames for finite dimensional Hilbert

spaces and their applications to signal processing. Further research could be carried out involv-

ing infinite dimensional Hilbert spaces and their applications. More work can also be done on

Gabor frames and wavelets in signal processing. We also suggest a new direction on the use of

group transforms, especially those that are ’fast’, for coding and pattern recognition purposes,

and group filters, for signal estimation.

In this thesis, we have focussed on RSA and how it works. Further research can be carried out

in other public key cryptosystems.

Almost all widely used encryption procedures are based on results in group theory( especially,

number theory) and involve computations of large integers. In is interesting to investigate

whether frames can also be used in the design of cryptosystems.
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