
SEED ENTERPRISE MANAGEMENT INSTITUTE (SEMIs)

Seed Production Field Diagnostics Short Course 16th – 22nd November 2014

Abiotic Disorders In Seed Production

Prof. James W. Muthomi Department of Plant Science and Crop Protection University of Nairobi

- Abiotic plant problems are sometimes termed "physiological disorders
- Abiotic disorders" refers to a wide array of plant problem
- "Abiotic" to indicate that the symptom is not caused by a biological agent such as an insect, mite or pathogen.
- Abiotic disorders are associated with non-living causal factors such as weather, soils, chemicals, mechanical injuries, prolonged drought, cultural practices and, in some ute cases, a genetic predisposition rsity of Nairobi
- Abiotic stressors can also predispose plants to pathogens

- Genetic mutations and reversions
- Chimeras Leaf variegation
- Low-temperature injury

Frost injury

Sunscald and frost cracking

- Lightning and hail
- Nutrient deficiencies and excesses
- Salt injury
- Herbicides
- Pesticides
- Drought and heat Enterprises Mappingtionent Institute
 Flooding University of Nairobi

Prof. James W. Muthomi

 Plants suffering from nutrient or physiological disorders, the plant exhibits disease-like symptoms

 Nutrient disorders are sometimes mistaken for a disease

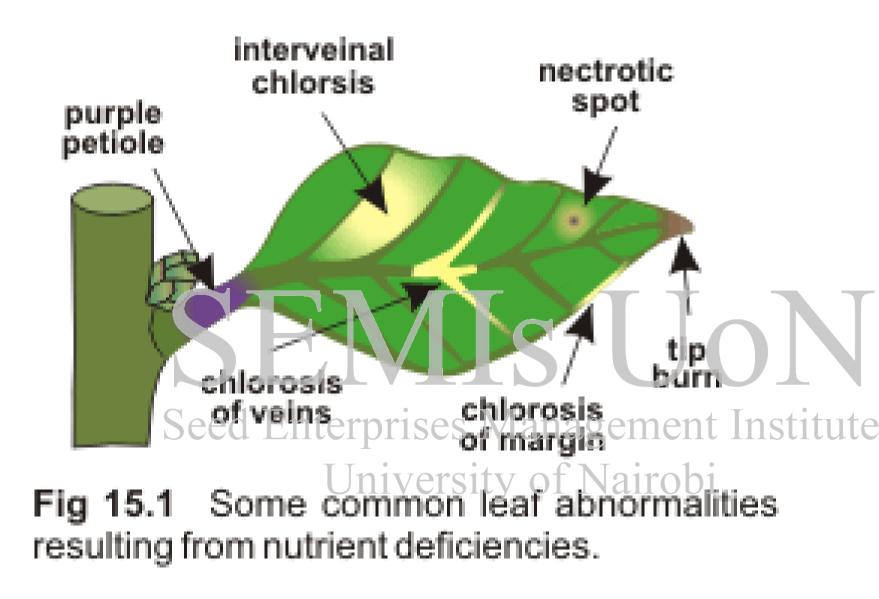
- Nutrient deficiencies lack visible signs, they are often mistaken for virus diseases Management Institute University of Nairobi
- Nutrient disorders may result in a reduction in yield

Soil nutrients

Macro-nutrients

Constitute main elements required by plant for basic functioning

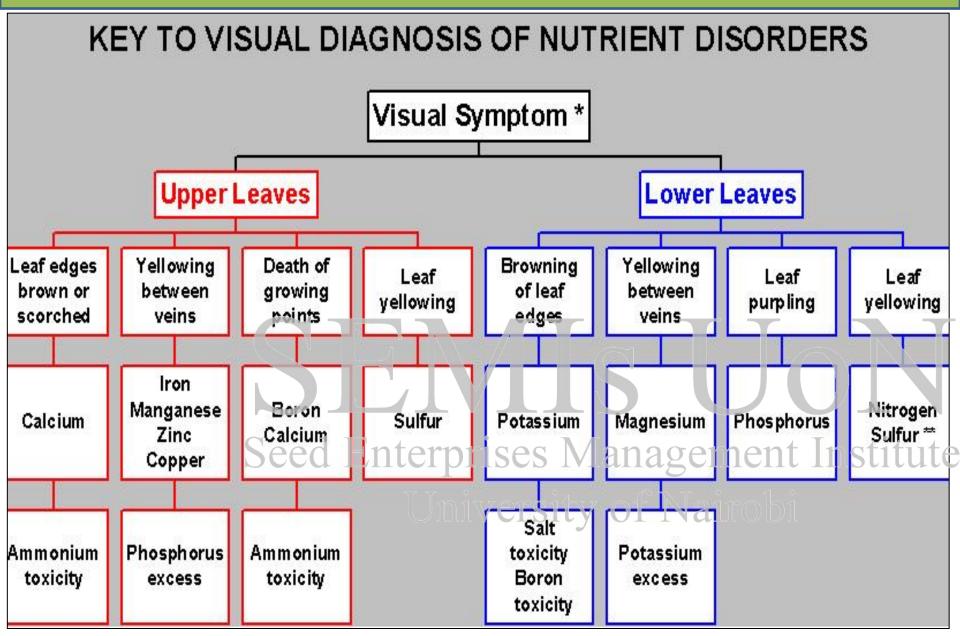
- Phosphorous (P),
- Potassium (K),
- Nitrogen (N)
- Calcium (Ca)_{eed} Enterprises Management Institute
- Magnesium (Mg)
 Magnesium (Mg)
- Sulfur (S).

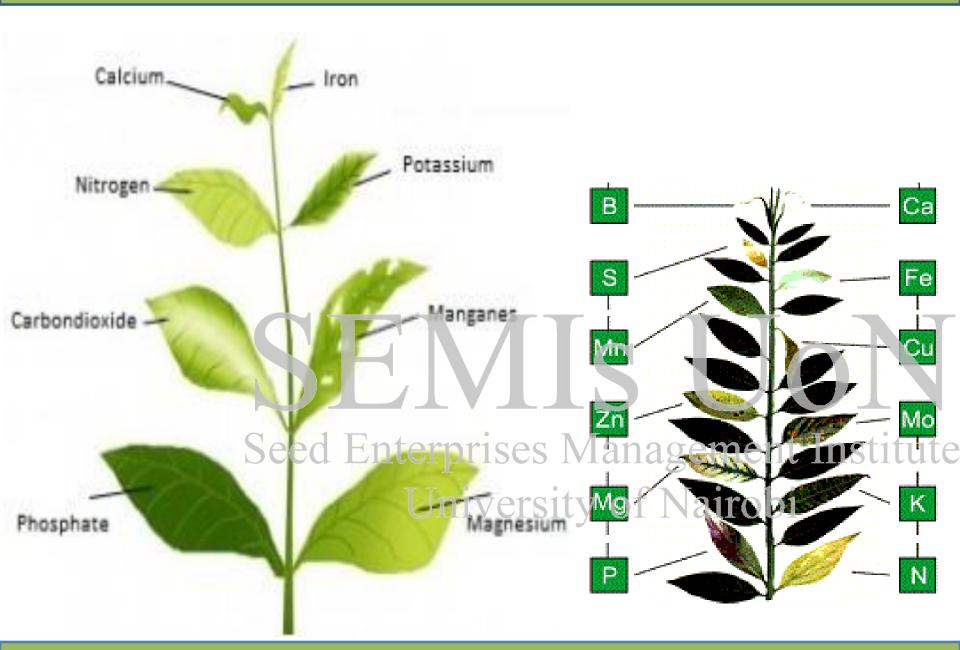

Micro-nutrients (trace elements)

Required in very small amounts but are essential for normal growth

- Iron (Fe),
- Zinc (Zn)

- Molybdenum (Mo)
- Copper (Cu)


Prof. James W. Muthomi


Prof. James W. Muthomi

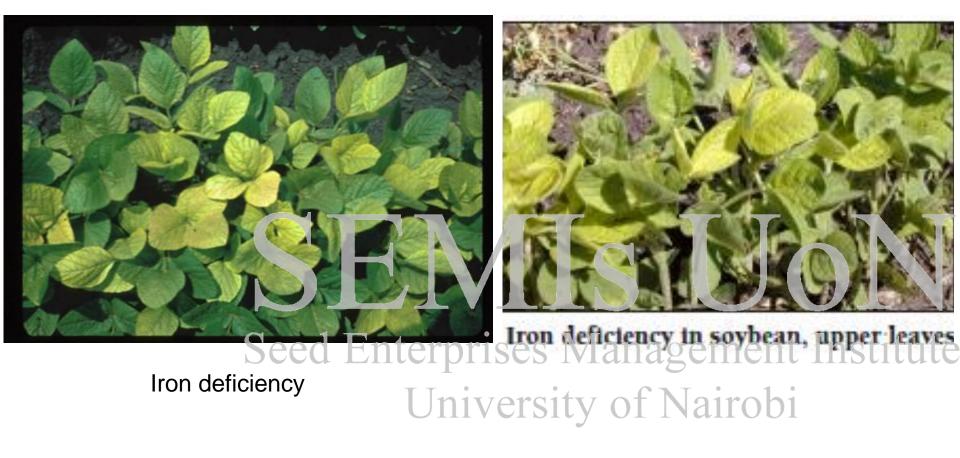
Nutrient deficiencies

- symptoms of nutritional disorders occur in defined patterns and are specific for each nutrient
- Symptoms are first seen in older leaves for some deficiencies, and in young leaves and/or tissues for others
- mobile nutrients (N, P, K and Mg) deficiencies are first seen in older leaves;
- immobile nutrients (Ca, B, Cu, Zn and Fe) deficiencies are first seen in youngest leaves and/or growing tissue
- pesticide toxicity or disease symptoms may resemble nutrient deficiencies or toxicities
 Seed Enterprises Management Institute
- symptoms of nutritional disorders are often species or variety dependent
- soil and plant tissue analysis should be used to help confirm whether the symptoms truly are nutritional
- Magnesium deficiencies are often confused with viruses and other nutrient
 Pproblems: However, symptoms of viruses are typically manifested in the young, ya

Prof. James W. Muthomi

Prof. James W. Muthomi

SYMPTOMS OF ABIOTIC DISORDERS SEEVEN Seed Enterprises Management Institute University of Nairobi


Prof. James W. Muthomi

LEGUMES

Prof. James W. Muthomi

Iron

Prof. James W. Muthomi

Manganese Deficient Soybean Manganese Deficiency of Peanut Seed Enterprises Management Institute University of Nairobi

Prof. James W. Muthomi

Molybdenum

Molybdenum Deficiency of Peanut (Right) (Right) Grown in Strongly Acid Soil (PH

Prof. James W. Muthomi

SYMPTOMS ON CEREALS

a healthy corn plant leaf is deep green and glossy

a leaf from a plant with nitrogen deficiency yellows down the midvein starting at the tip and moving back towards the stem

a leaf displaying phosphorus denciency turns red-purple releng the leaf marging nagement Institute

a leaf from a potassium deprived plant features firing and yellowing along the leaf margins

Prof. James W. Muthomi

Phosphorus

Prof. James W. Muthomi

Potassium

Prof. James W. Muthomi

Potassium

Prof. James W. Muthomi

Potassium

Seed Enterprises Management Institute University of Nairobi

Prof. James W. Muthomi

Nitrogen

Prof. James W. Muthomi

Nitrogen

Prof. James W. Muthomi

Wheat Nitrogen deficiency Potassium denciency Seed Enterprises Management Institute University of Nairobi

Phosphorus deficiency

University of Nairobi, Kenya

Prof. James W. Muthomi

Magnesium

Prof. James W. Muthomi

Sulphur

Prof. James W. Muthomi

Boron

Prof. James W. Muthomi

Manganese

Manganese deficiency

7

Prof. James W. Muthomi

Zinc Deficiency of Rice

Zinc Deficiency of maize

University of Nairobi, Kenya

Prof. James W. Muthomi

Zinc

Prof. James W. Muthomi

Iron

Prof. James W. Muthomi

Calcium

Boron Deficiency in Papaya

Prof. James W. Muthomi

MANAGEMENT OF NUTRIENT DEFICIENCIES SEEDING UON Seed Enterprises Management Institute University of Nairobi

Prof. James W. Muthomi

Conditions leading to nutrient deficiency

N - infection by root pathogens such as root-knot nematodes Nitrogen deficiencies can cause increased susceptibility to certain leaf pathogens such as *Alternaria solani*, while excessive plant N levels may result in increased susceptibility to other pathogens

P - acid and clay soils are particularly prone to P deficiency. Cool conditions or poor oxygen availability to the roots can lead to P deficiency

Fe - Most soils have adequate supplies of Fe; availability decreases as soil pH increase

Seed Enterprises Management Institute

K - availability reduced by presence of competing cations such as $Ca)^{2+}$ and $NH_4^{+;}$ Potassium can also be readily leached from sandy soils. Plant uptake of K may be reduced by certain environmental conditions including temperature, soil moisture, and oxygen availability.

Prof. James W. Muthomi

Deficiency	Symptoms	Remedies
	Poor germination, seedling	
	establishment & plant growth; leaves	Apply
Phosphorous	may be dull bluish/greyish-green or have	phosphorus
(P)	red pigment in leaf bases and dying	fertilisers &
	leaves; oldest leaves may turn yellow &	manure
	drop	
Potassium (K)	Yellowing on older leaves; scorching of	Apply K fertilizer
	edges and/or interveinal region	rate
	Poor plant growth; older leaves are pale	Add N fertilizer
Nitrogen (N)	green to yellow and they eventually dry and drop; fruit and tubers are small.	improve
		irrigation
	and drop, mult and tubers are small.	management.

Calcium (Ca)	Retarded growth; yellowing & distortion of young leaves; blossom end rot in cucurbits and tomatoes	Side dress with a Ca fertilizer	
	Growth retarded; chlorotic patches	Application of	
Magnesium	between the veins of older leaves; a	fertilizer or	
(Mg)	triangle of green remains at base of leaf;	weekly foliar	
	leaf margins may burn.	sprays	_
	Yellowing of young leaves while older	Application of	l
Sulfur (S)	leaves remain dark green; growth	sulfate	
	stunted.	compounds.	• •
Boron (B)	Bushy stunted growth & dying growing		ι
	tips; internal brown rot, brittle plant	Application of	
	tissue & split easily; hollow areas in	boron-fertilizers	
	stems.		

lron (Fe)	Leaves turn yellow/bleached between vein margins; stunting & abnormal growth; fruit may not mature.	Spray iron sulphate; reduce soil pH below 7.5
Manganese (Mn)	Yellow patches between veins; reduced flower formation.	Foliar sprays with manganese sulphate
Molybdenum (Mo)	stunted, pale green or yellow stunting & pale green or yellowish green colour between the veins & along edges of leaves; leaf tissue of margins dies;	Liming to increase soil pH to 6.5: foliar applications of sodium or ammonium molybdate.
Zinc (Zn)	Stunted & pale with creamy yellow finterveinal area; distorted young leaves.	Application of Zn foliar spray
Copper (Cu)	Chlorosis in young leaves; tips of leaves distorted; stunted growth.	Apply a copper fertiliser

Prof. James W. Muthomi

NUTRIENT TOXICITIES AND SHEMICALINJURY USAN Seed Enterprises Management Institute University of Nairobi

Prof. James W. Muthomi

Nutrient toxicities

- Chloride toxicity Caused by saline water and soil conditions; plants wilt when soil moisture seems adequate; test and monitor irrigation water quality; plants vary in their tolerance to salinity.
- Manganese toxicity Yellowing of margins of older leaves: poor root development; favoured by acidic, waterlogged soil; lime soil to correct pH.
- Ammonium toxicity "jelly butt" Poor emergence followed by wilting and death of seedlings; browning of the central root tissue; favoured by excess ammonium from fertiliser or poultry manure in cold wet soil.

Nutrient toxicity

Broadcast nitrogen solution

Broadcast solution nitrogen

Prof. James W. Muthomi

Nutrient toxicity

Prof. James W. Muthomi

Nutrient toxicity

Salt injury on taxus.

Enterprises Management Institute University of Nairo

Leaf cupping/ curling due to a growth regulator herbicide.

Two examples of improper use of non-selective herbicide.

Prof. James W. Muthomi

Physiological disorders

- Tipburn (physiological/nutritional) a result of a calcium transport problem within the plant.
- Blossom end rot (physiological/nutritional) caused by a deficiency of calcium or insufficient calcium uptake and translocation to growing points.
- Riciness of cauliflower.
- Seed Enterprises Management Institute
 Gomasho (grey speck) of cabbage and Chinese cabbage.
- Measles on smooth skinned melons and cucumbers.

Management

- Investigate weather patterns
- Analyze plant nutrient status
- Look for drainage and compaction
- Check for irrigation problems
- Get a chemical use history
- Plant nutrient deticiencies are best diagnosed using plant tissue analysis. As opposed to soil nutrient analysis, plant tissue analysis allows one to determine plant nutrient uptake rather than plant nutrient availability

Diagnostic Methods for Seed borne Diseases

Prof. James W. Muthomi