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IV
SUMMARY OF CONTENTS

Section 0 is a review of results in general topology
and basic dimension theory which are used in the

sequel.

In section 1, we study the relationships between the
various dimension functions. We give a proof of

a result mentioned by Nagami and Roberts (Nagami

and Roberts, 1967) to the effect that on localiy
compact metric spaces, all the dimension functions
studied here coincide. We prove a lemma (lemma 1.3)

which shortens the proofs of a number of results.

In section 2 we study examples which show that different
dimension functions can have differeﬁt values on the
same metric space. We give an example of a connected
subset of I2 which is a union of countably many

(an more than one) disjoint non-empty closed sets
which shows that a lemma used by Nagami and Roberts
(lemma 2.3) cannot be extended to normal (infact
metric) spaces. Nagami and Roberts =zlso show that

if Ai, icN is a disjoint sequence of closed sets of
" at least two of which are non-empty, then dim

00
CE" = L}Ai) > n-1. They give a sketch of a Cantor
i=1 -

2-manifold for which this result is not true. We give
a rigorous proof of this. Nagami ard Roberts have
given an example of a metric space (X,/) with d,
(X,6) = 2, d; (X,£) = p-dim (X,£) = 3 and dim

(X,8) '

il

4. This has been the only known example



v

where d, and d; differ. We generalize this to

examples with d,

I

n-2, d; = y-dim = n-1 and dim

= n for any n, n 4.

v

In séction 3 we study results which show that a
given metric-dependent dimension function can give
different values for equivalent metrics on a set.

We then study realization theorems, i.e. theorems to
the effect that there exist'equivalent metrics to a
given metric that make a given dimension function
realize given values. We prove a lemma (lemma 3.4)
which generalizes a similar lemma by Goto (Goto,

lemma 1).

In section 4 we study more characterizations of
metric-dependent dimension functions, notably
Lebesgue cover characterizations. We study a weak
sum theorem for some metric-dependent dimension

functions.
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LIST OF SYMBOLS.

Symbol Meaning

s.t. such that

v for all

= there exists

iff if and only if

W.L.G. ' without loss of generality

w.r.t with respect to

clopen closed and open

F,1l.%t. O0-locally finite

N locally finite

nbhd neighbourhood

Int A interior of A

bdry A boundary of A

B(X,Ej the open ball of radius € about x.

2 (U) diameter of U in a metric space (X,%).
ﬁC!A The restriction of %to A where L

is a collection of sets, i.e.
{cra, c.
WV <U & refines U where 9, Y are collections

of subsets of a set X.

[x] the integral part of x.

N The set of natural numbers 1, 2, 3,...
Q. The set of rational numbers

R The real 1line

R" Euclidean n-space.

I - The unit inte%val @, 1] (or

. - b
sometimes 171, 1%)

I The n-cube IxIx...xI n-times.

~an ——r



INTRODUCTION:

Dimension is a basic notion in geometry. A curve is
one-dimensional, a surface two-dimensional, e.t.c.
It is a basic fact of nature that space-time is four-

dimensional.

Certain mathematical discoveries in the nineteenth
century, e.g. that the unit interval can be continuously
mapped onto the unit square revealed that the intuitive
notion of dimension is insufficient. Mathematical
concepts, however, if they are not clear enough

to be taken as primitive ideas, must be rigorously
defined. Dimension theory results from a successful
attempt, in the latter half of the mineteenth century,
to give rigorous definitions to the vague notion of

dimension expressed above.

LITERATURE REVIEW:

Dimension theory as a subject had its beginnings

in certain publications by Poincaré (Poincaré) and
Lebesgue (Lebesgue). Poincaré considered curves as
boundaries of surfaces, surfaces as boundaries of
volumes e.t.c. Thus to separate a space of n
dimensions one needs a space of n-1 dimensions.
Poiﬁcaré's idea of dimension was given a rigorous
topologically invariant definition by Brouwer (Brouwer)
leading to the definition of the small inductive

dimension ind and the large inductive



dimension Ind on the class of topological spaces.
Lebesgue's idea of dimension, on the other hand,
lead to the definition of the covering dimension
dim on the class of torological spaces and the metric

dimension p-dim on the class of metric spaces.

Ind, ind, dim and p-dim are refered to as dimension
functions. The dimensicn function p-dim was defined
by Alexandroff in 1935. up-dim differs from the other
three dimension functions in that it is defined on
the class of metric spaces and its definition involves
the metric. It is what we call a metric-dependent
dimension function. Many other metric-dependent
dimension functions have been defined to date. We
thus have the metric-dependent dimension functions
dl, dz(Nagami and Roberts, 1965), da, d, (Nagami and
Roberts, 1967), ds (Hodel, 1967), ds and d7 (Smith,

1968).

Dimension functions, by requirement, must have a

value of n on R, i.e. if d is a dimension function,
n -

then we must have d(R) = n. By convention, d (%)

= -1,

This thesis is a study of the metric-dependent
dimension functions ¢;, d,, d,, d,, dg5, dz, dy,
p-dim and their relations with the covering dimension
function dim which is the most widely used dimension

function.



5CTION O

In this section we review results in general topology
and basic dimensions theory. ‘he proofs of the results
in general topology can be found in "General
Topology'" by J.L. Kelly while the proofs of the

results in dimension theory can be found in "Dimension

Theory" by R. Engelkin.

Theorem 0.1 (Urysohn's lemma)

Let X be a normal topological space and C, C' be

two disjoint closed sets of X. Then 3 a continuous

-
function f: X—>1 s.t. f(C) = {0} ~and f(C') = {1}
Theorem 0.2 (Tietze's extension theorem)

Let X be a normal topological space and F'a closed
subset of X. If f: I 1 is a continuous functioﬁ,
then f has a continuous extension fx: —I. 1

) . I i s n n
may be replaced in this theorem by R, I or R .

Defn 0.1

A topological space X is said to be completely

normal if every subspace of X is normal.

Theorem 0.3

Let X be a completely normal topological space and Y



a subspace of X. then if U, U' are disjoint apen
sets of Y,d disjoint open sets V, V! of X s.t. VnY =10

and V'aY = U'.

Defn 0.2
Let X be a set andU={U_, 054 an indexed
collection of subsets of X. Let n =-1, 0, 1, 2, 3....

we say 94 has order not exceeding n and write ord ‘U

< n if for any n+2 distinct membersvdl, a2’f""’an+2

n+2
of ({ we have N U, =¢?¢ (some authors define the
i=1 i
n+l
order to be < n if N U, =¢ for distinet o.).
- i=1 i *

We say ord U= n if ord 4¢< n and ord £ n-1.

Note that the order depends on the indexing so,

strictly speaking we should write something like Qfd,
X & 4

{Ua} but this has not been the tradition. No

confusion will arise over the indexing. Something

like ord { bdry U, Ue&fy will meiizif Ul’ U2""'Un+2
are distinct members of %/ then n bdry Uy =0,
i=1

Zvery set indexes itself so when we merely talk of a

collection y without giving an indexing, ordv < n
n+2

will mean N Ui =& for any n+2 distinct members
i=1

Ui’ 1<i<n+2, of . Likewise, when we say a

collection {Ua,cmﬂ} is locally finite, we shall

mean that for each x, x has a nbhd intersecting U

for only finitely many indiceso . ‘he same will

apply for point finiteness, point-baundedness and

other such properties.



If x¢X, we say the order of 4fat x does not exceed n
and write ordy?{< n if there are nc n+2 distinct

indices Gys Ogeee€yn Suela XEU“i, 1<i<n+2. Ordx
U= n if ord Y <mand ord AL n-1. If Y is a subset
of X, then ordﬂﬁY will always be with reference to

the indexing {UNY, U]

Defn 0.3

Let X be a topological space and C, C' be two subsets
of X. We say a subset Y of X separates C and C' if
X-Y is the union of two disjoint relatively open

sets one containing C and the other containing C'.

Three dimension functions, the small inductive

dimension ind, the large inductive dimension Ind

and the covering dimensiocn dim are defined on the

class of topological spaces as follows:-

Let X be a topological space.

Defn 0.4
- ind X < -1 iff X = @

- fer n

Il
o
—
[\

AP IR » ind X < n if for any point
x€X and closed set C of X s.t. x¢¥C, H a closed set
B of X s.t. B separates {x} and C znd ind B < n-1.

(Note the inductive nature of the definition).

- ind X n if ind X < n and ind X ¢ n-1.

- ind X

-l

e if ind X £ n for n = -1, 0, 1, 2,



Defn 0.5
- Ind X < -1 iff X =29
- forn =20, 1, 2, Ind X < n if for any pair

C, C' of disjoint closed sets of X d a closed

set B of X s.t. B separates C and C' and Ind B

< n-1.
- Ind X = n if Ind X < n and Ind X £ B
- Ind X = *®if Ind X £ n for n = -1, 0, 1, 2,
Defn 0.6
For n = -1, 0, 1, 2,....dim X < n if for any

finite open cover vyof X,uv has an open refinement

0 s.t. ord 0 < n.

Theorem 0.4 (Otto-Eilenberg theorem).

Let X be a normal space. Then the following are

equivalent (n > 0):-

(i) dim X < n
(ii) For any n+l pairs (Ci, C'i 1<i<n+1 of
.disjoint closed sets of X A closed sets

B., 1 < i < n+l s.t. B. separates C, and C',
i - - i i i
and n;l B, =9
. i
i=1

(iii) For any n+l pairs (Ci’ C'i) I < i< ntl
of disjoint closed sets of X 3 pairs of

disjoint closed sets (E,, E'i) 1 < i < n+l
i 3 -

1 ! n+i
Sait s CicEi, C icE i anq v

i=3%

1



(iv) For any n+l pairs (Ci'c'i) 1 < i< n+l

of disjoint closed sets of X 3 pairs (Ui’ U'i)

ct

of open sets of X, 1 < i < n+l s.
-—-—_I__: 1 ' 1 +
Ui(\Ui @,CicUi,CicUi,lﬁlgnl
and "0 (U, v U, = X.

i i

i=1

Theorem 0.5

Let X be a normal space. Then the following are

equivalent (n > 0):-

(i) dim X = n

(ii) If F is a closed set of X and f: F —> §"

is a continuous function then f has an

extension f*: X — Sn.

Theorem 0.6

Let X be any topological space and F a closed set
of X. Then if d is any of the dimension function

ind, Ind or dim, we have d(F) < d(X).

This is also clearly true for qll the dimension functions

discussed below except dy and dy and will e assumed
without menticon.

Theorem 0.7 (Countable sum theorem)

Let X be a normal topological space. Let X =

U[ F, where F_ is a closed set of X and dim F
Qe LY Q Q Q

< n for eachathen if A is countable or {E},asA}

is 1.f, then dim X < n.

Theorem 0.8 (Urysohn's inequality)

Let X be a completely normal topologiecal space
n+l

Then if X = vy Xi we have
i=1
n+1

Ind X <n + % 1Ind X

=



Dein 0.7
A subset A of a topological space X is said to be an
Fv cset if A is a countable union of closed sets of X.

A is'said to be a Gg set if A is a countable

intersection of open sets of X.

Defn 0.8

A topological spéce X is said to be perfectly normal

if X is normal and every open subset of X is an Fo

set.

Theorem 0.9

Let X be a perfectly normal topological space.

Then if Y is a subspace of X, then dim Y < .dim X.

Theorem 0.10

A Hausdorff topological space X is wmetrizable iff

X is regular and has a o-locally discrete base.

Theorem 0.11

A metrizable topological space is completely normal

and perfectly normal.

Defn 0.9
Let (X,4) be a metric space. Let v be a collection
of subsets of X. Then g-mesh v (or just mesh v if

% is understood) is defined to be sup {2(U), U ev }.



Theorem 0.1.2

For a metric space (X,9%) the following conditions

are equivalent:-

(a) dim X < n

(b) T a sequence of 1.f. open covers Vs ieN, of X

1

s.t. mesh v; < /i,.ord {T, Uevi}g_n; and v

i+l

< u. ¥ieN.
i

(c) Fa sequence of 1.f. closed coversq,, 1eN,

of X s.t. mesh . < 1/i, ord Q. < n and Q.
i i - i+l

< 0. ¥ ieN,
i
(d) X has a 0.1.f. base X s.t. ord { bdry U, Uex}

= n-1.

(e) X has a o.f.1l. base consisting of open sets
with boundaries of dim < n-1.

(f) X = Xl\)X2 with Ind X1

~(g) Ind X < n.

< 0, Ind X2 ¢ D=l

Theorem 0.13

If X is a separable metric space then ind X = Ind X

dim X.

Theorem 0.14

ind " = 1nd R" = dim R™ = n.

Theorem 0.15

If M is a subset of R", then dim M = n iff the interior

. n .
of M in R° is non-empty.
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SECTION i

In this section we define the various metric dependent

dimension functions and study relations between them.

The dimension function d1 is defined inductively on

metric spaces as follows:-

Def 1.1 (Nagami and Roberts, 1965).
Let (X,y) be a metric space

- dy (X,2) ¢ -1 iff X =9

- for n > 0, dl (X,€) < n iff for each pair C, C'
"of closed sets of X s.t. (C, C') > 0 3 a closed

set B of X s.t. B separates C and C' and d1 (B,Q!B)

< n-1 where MB is the metric 2 restricted to B.

- 4y (X,%) =n iff dy (X,%) < n and dy

- dy (X,2) = © iff d; (X,9 £ n for n = -1, 0, 1, 2...

(X, 9 £ n-1.

2? d3’ &

d5’ d6’ d7 and p-dim are defirned ass follows:-

The metric-dependent dimension functions d
(X,2) is always a metric space.

Def 1.2 (Nagami and Roberts, 196%),

- d, (X, < -1 iff X = 0

2
- for n > 0, d, (X,2) < n iff for =any n+l pairs

(Ci’ C'i) 1 < 1 < n+l, of closed sets of X s.t.

z(Ci, C'i) > 03 closed sets Bi’ I < i< ntl

s.t. B. separates C ac a "3 os =&
-t. B, sepa es C; an ; an in ;=



- Forn-=-1, 0, 1, 2,...... d2 (X,2) =n if
d2 (X,%) < n and d, (X,2) £ n-1.

- d2 (X,8) = « if d2 (X,2) £n for n = -1,
0, 1' * & o

Def. 1.3 (Nagami and Roberts, 1967).

- dg (X,%) ¢ -1 iff X =0
- for n > 0, d3 (X,8) < n iff the following
condition is satisfied:- Given any positive
integer k and k pairs (C,, C'i)?l < i<k,
of closed sets of X such that z(Ci, C'i) > 0,
J closed sets Bj, 1 <1<k, of Xs.t. B,
separates Ci and C'i and ord {Bi, 1 < i<k}

< n-1.
- for n = -1, 0, 1, 2....d3 (X,9) = n if d3 (X,9)
< n and d3 (X,2) £ n-1.
- d3 (X,2) = «if dg (X, » £n for n= -1, 0, 1, 2,...

Def. 1.4 (Nagami and Roberts, 1967).

- d, (X,8) < -1 iff X

- for n > 0, d4 (X,%) < iff X satisfies the following

$

condition:- Given any sequence (Ci, C'i)ifN

of closed sets of X s.t. «Cy, C'y) >0¥id, 3

a seqguence Bi’ ieN, of closed sets of X s.t. Bi
separates C; and C'; and ord { B, i =1, 2, cendl

< n-1.
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-~ forn=-1, 0, 1, 2,.....

, d4(X,g) = n iff
d4'(X,£) < n and d4 (X,0,) £ n-1.
- d4(X,Q) = «if d, (X,2) £n for n = -1, 0,

Def. 1.5 (Hodel)

- 4 (X,0) ¢ -1 iff X =¢

~ for n > 0, dg (X,2) < n iff (X,p) satisifes
the following condition:- given any sequence
(Ci’ C‘i), ieN, of pairs of closed sets of X
such that for some real number ¢, ¢> 0, Q(Ci,
C'i) > €¥ ieN, 3 a sequence B, ic N, of closed
sets of X s.t. Bi separates Ci and C'i and ord

{B., ieN} < n-1.

i

- for n = -1, 0, 1,,...d5(X,2) = n if d5 (X,2) <n
and d5 (X,2) £ n-1.

- d5 (X,9) =« if d5 (X, £ n for m = -1,
0, 1....

Defn, 1.6 (Smith, 1968).

- d6 (Xh ) £ =1 1IFf X =9

- forn > 0, d6 (X,8) < n iff for each sequence
}(Ci, C'i) of pairs of closed sets of X s.t. for
some €> 0, 9(Ci, C'i) > e¥i and { X—C'i, ieN }
is locally finite, 3 a sequence.Bi, ieN, of closed

sets of X s.t. Bi separates Ci amd C'i and ord

{B;, ieN } ¢ n-1.



- forn=-1, 0, 1, ..... dg (X,2) = n iff dg (X,%)
< nand dg (X, D £ n-1.
- d, (X,8) = ®if d. (X,2) £n, n=-1, 0, 1, 2,....

6 6

Defn. 1.7 (Smith, 1968)

- a4y (X,8) ¢ -1 iff X =0

- for n > 0, d7(X,£) < n iff given any collection
(Cy» C'a),dsA , of pairs of closed sets of X
s.t. for some €> 0 £(C,, C' ) > ey aed and {X—C‘a,
aeh} is locally finite, then 3@ a collection
B

a,aeA} of closed sets of X s.t. B, separates

C, and C', for each cand ord { BG,CWA} < n-1.
Defn 1.8 (Alexandroff)
For n = -1, 0, 1...: u—aim (X,%) < n iff for any
€ > 0 J an open cover Y of (X,L) s.t. ord < n
and mesh U< €.
Evidently, d2 £ d3 % d6 <dg < d4 and d6 < d7.
We shall show that for any metric space (X,%),
d1 (X, H = d4 (X2 ) = dim X.

Theorem 1.1, (Nagami and Roberts, 1965) .«

For any metric space (X,£), d, (X,£) = dim X.

1

Proof: It is clear from a trivial induction that d1

(X,2) < Ind X = dim X. We show that dim X < d1

(X,£). The proof is by irduction. Assume that for

some n, n = -1, 0, 1, 2,..¢..d1 (X,£) < n=dim X < n.
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Suppose that d; (X,€) <n + 1. Let C, C' be
disjoint closed sets of X. Let Ei ={:X5X:
£(x, C) + E(x, C' > 17if i =1, 2, ......

Then Z(Ei, X-Int hi+1) > 0 ¥ i#N.

So for each ieN J an open set Gi s.t. .
E.cG,eG . elnt E; 4 and dl(bdry Gi>§ n. By the induction
hypothesis, dim bdry Gi < n ¥ ieN. Clearly Gi’ ieN,

satisfy:-

(£ v]
(i) X = J G,
i=1 _
(ii) £(CnG;, C NGy > 0.
From (ii), and since dl (X,£) < n+1, 3 open sets

U., U', s.t.:-
i i

-~ ! ~ 1
(al) Cr‘\GiCUi, € nGiCU i
¥ T7 1t =
(a2) U, AU, ¢
— ' 7 T
(a3) d1 (X (Uiu'U i)) < n ¥ i€N.
From (a3) and the induction hypothesis, we have:-

(a4) dim (X - (Ui v U'i)) < n ¥V ieN.

= Tl ! = !
Let Vi Lir\Gi, Vv i U i'\ Gi'

Claim:Q
(bl) dim bdry V., < n, dim bdry V'i < n.
1
(b2) CnGic:Vi, G c’\Gic:V‘i
kT2 v o= gt -
(b3) Viﬁ(l \% ;nC &

(b4) V. nV', = ¢

(bl) follows since bdry Viczbdry UjL;bdry Gic:
:{X—(UiLIU'i)]L}bdry Gi‘ And similarly for V'i.
(b2) (b4) are clear and (b3) follows from (al) and

(a2).



v = v V. =d)
Let W. =V, - U ¥ ,w., =v.-U V. (U V,=.
S Pt A 1509 jep d
oo oD
Let W= U w.,, w = Uw
=1 = i=1 i

Then W, W' are open, CeWw, ‘'C'eW' (from (1), (b2),
and (b3)) and dim (X - (WvW')) < n. To sece the
last part, let xeX-(WuW'). Either X ¢.(V1‘JV'1)
¥ i€N or xe(bdry ViL)bdry V'i) for some i. If x &

vy uv';) ¥ ieN, then, since xc;GiO for some ig,

then x € U, v U'. whence xeX-(U. v U.J). Thus X-
1 a i i
Y 0 s 0 0

WyWHe U [X-(U,vU' DIV U [bdry (V,)ubdry
i=1 i=1

‘V'i]' From the countable sum theorem, dim X-(W UW')
< n, so Ind (X-(WuvW')) <n. Thus dim X = Ind X <
n+l. The result is trivial when n = -1 or &5 and

this completes the induction.

Theorem 1.2 (Nagami and Roberts, 1967)

If X is a normal space with dim X < n, then X
satisfies the following condition:- If (Cj’ gL L)

Je N is a sequence of pairs of disjoint closed sets
of X, then F closed sets Bj’ jeN, s.t. Bj separates

Cj and C'j and ord{Bj, Je N}S n-1.

Proof: The collection of subsets of N containing

precisely n+l elements 1s countable. Denote these

~+ 1
subsets by«xl,dz,qé ..... Elopen sets Uij’ U ij?
i, jeN, satisfying the following conditions:-
i i ‘.., ..U, .= i, Jje
(1) Cjc(%J, C‘J¢1113, UlJ "y ¢vi, je N

. , -
(ii) Uichi+lj’ U ijcu 141
(iii) Y (U..ubU',,) =X



The construction is by induction on 1i.
Assume the construction achieved upto 1 = k.

By the Ottc-Eilenberg theorem, I open sets (Vj’ V'j)

L

; . 1 0! T T V! =(k F

Jéﬁ%+1 St Ukjc:Vj, U kjc; V e Jj;\V ) bV e 1
= { =" - 3 e 3

and X = U (’vjnjv'j), Let Uy, = Uy if Jeaf )

jeo 1

_ . . 1 B 1 = .' e

1 = G s o % Tt
and U K413 th if J&dk+1. Uli’ U 1y are

constructed by replacing Ukj’ U'kj
1 o CI . ' ] =
Cj’ c < if JEWl, and letting Ulj’ U 13 be open sets

with disjoint closures containing Cj and C'. respectively

above with

s - . . -
if j ¢qi. Clearly, Uij’ U o satisfy conditions

(i), (ii), (iii).

; 0, = .E& ;.. Let B, = Z=
= J

(Uj v Ug 3. Then BjAg j €N are as required.

Theorem 1.2.5 (Nagami and Roberts, 1967).

For any metric space (X,g), d4(X,ﬂ} = dim X.

Proof.

From theorem 1.2., d4(X,B) < dim X.

We show that dim X < d4(X,B). It is enough to assvme
d4(X,&) < n and show dim X < n. Suppose d4(X,£)

< n. X has a o-locally discrete base 9 = L)?Zi where
i€ N
(. is locally discrete. Let Vv, = U U and E, =
i i ik
Ue@(i
{xex: p(x, X-V.) >1f, . .d, (X,£) < n implies that

3 open sets Groze p keN s.t EjkCTle ch and ord



$ bary By T k,ENY < n-1. Then §= {Gian, i, keN,

Ueﬁg}is a ¢-locally discrete base of X with ord {bdry
G, Gegg}f n-1 (after noting that bdry (Gik(\U)éibdry
G,, and bdry (G, N U)nbdry (G, AV) = ¢$ for U # V,

U, Vé?g}, It foilows from theorem 0.12 that dim X < n.
Having shown that dl and.d4 are equal tolthe covering
dimension dim, we now concentrate on the dimension

d

functions dz, d d

d p-dim, and dim.

3 75 76’ "7?

It is clear from theorem 0.12 that u-dim (X,£) <

dim X for any metric space (X,8).

Lemma 1.1.
If X is a paracompact topological space and Uis an
open cover of X with ord?{g n, n=-1, 0, 1, 2,...,

then %7/ has an open locally finite refinement 2 with

ord‘iff n.

Proof. Let 9be an open cover of X with ord QLS n.
Since X is paracompact, J an open lecally finite

. Ar‘. e 5 5 sy 7
refinement Y of U .4 a function f:F"—U s.t. for

each Weﬂfﬁvcf(W). For each UdQL Tet ¢(U) = U W.
We’
Let? = § g(u), Ue. TCHI=0

Then clearly ord®< ord7(< n. It is also easy to see

that 9 is locally finite and the lemma is proved.

Theorem 1.3 (Hodel)

For any metric space (X,¢&), dS(X;ﬁ) < u-dim (X, &).
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Proof: The proof is trivial if p-dim (X,€) = -1,
Assume p-dim (X,E€) <n>0. TLet (Ci, C'i) be a

sequence of pairs of closed sets with £(Ci, C'i)
>€>0 ¥ igN for some €. Since p-dim (X,£) <n;4 an
open cover %' of X s.t. ordﬁﬂfﬁn and mesh Y'<€.

From lemma 1.1, a 1.f. open cover Zof X s.t. ord U
<n and mesh 7/< €. DBecause qlis 1.f. and X is normal,
we can find a closed cover {Eu, Ue?ﬁ} of X s.t.

EdFU for all U . Using normality, we can construct
a sequence Giu (for each U) of open sets of X s.t.
EcG, € G

{
1 1u G2

Ue} then mesh "Z[i< £, °Z(i is 1.f., and "Z[i covers X

G ot O = 3
EGy eeeecUl If we let g4 iGiu,

for each 1i.

Let H, = W/ G. , F. = tJ G. .
i Ve U iu i Ue U iu
G, nC.#¢ G. nC.#
iy 1 1u b i

Since meshﬁki<€., Fir\C'i =¢. Also, F, is closed
becaﬁseiﬂi is 1.£. Hi is an open set containing Ci
and H. ¢, so if we set B, = F,-H_ , then B. is a

i i i i 74 i

closed set separating Ci and C'i.

We show that ord {Bi, 121, 22,0008 € n-1

m
Suppose x¢ P

B. where i., i<k<m are distzict.
K i k -2

1 k

Then for each k, 1§k§m,3Uk€lZfs.t. xeG. =

1kUk
GikUk. Uk 1<k<m are distinct. For suppose Uk = Uk'
with i, <i ,. Then we would have xehikuk-and X¢Gik'Uk

a contradicti ince G, :
diction sin lkukc le,uh

Fime
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So xeGi U

c U, for 1<k<m with U _ distinct. Also,
k'k -

k k

if iy = min {ik, lskﬁm}, then x & Gy 1<k<m.

oYk

But‘Z% is a cover of X so xe;Gi U for some U

0 0Y0 0

m
Of course U, # U. for 1<k<m. So xe¢ n U _with
0 k i k=0 k
Uk O0<k<m distinct. If we put m=n+1, then we see
m
that A B, =@ since ord?/< n. So ord {B,, i =
k=1 ‘g .
; 2,....} < n-1 as required. Thus ds(X,Eb < n and

it follows that d. (X,£) < w-dim (X,8).

We can summarize the results so far obtained in the

following proposition.

Proposition 1.1.

For a metric space (X,£), d,(X,&) < dB(X,BJ <

dG(X,f) < dg (X,£) < p-dim (X,£) < dim X and
dg (X,8) < d, (X,0).
Remark 1.1.

7

will be proved in Chapter 4 after we have developed

It is also true that d, (X,&) < p-dim (X,£). This
the theory of Lebesgue cover characterizations of

metric dependent dimension functions.

To qualify as dimension functions, the above
functions should have a value of n or Rn, euclidean

n-space. To that end we Prove:-

/
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Theorem 1.4
If (X,£ 1is a locally compact metric space, then

dz(X,@) = d (X,8) = d6(X,~’Z) = d7(X,£’) = d.(X,8)

= p-dim (X,£) = dim X.

Proof: Let X be a locally compact metric space.

In view of prop. 1.1. and remark 1.1., it suffices
to prove d2(X,ﬂ) > dim X. This is obvious if
d,(X,£) = ~1,00. Assume d,(X,£) <n>0. Every point
of X has a compact, hence closed, nbhd. Since in a
compact metric space EAF =P —= 2(E, F) > b for

E, F closed, we immediately have dim Y < n if Y

is a compact subspace of‘X. Thus each x€X has a
nbhd, and hence an open nbhd of dim < n. So X has
an open cover 2/ s.t. for We%dim W < n. It follows,
since X is normal and paracompact, that X has a 1.f.
open cover Us.t. {ﬁ, Ué?{frefinesﬂ%ﬁ Thus dim U

< n for Ue¢d/. From theorem 0.12 U has a o-1.f.

(in U) basefﬁ’u consisting of sets with boundaries
(in U) of dim < n-1. Since U is closed in X, it
follows that $' is 6.1.1. in X,
Let B, be
the collection of those members of‘ﬁylluﬂwsac&guvesinxxare

contained in U. ThenfBu is a 0n1.f. (in X) base for

U whose members have boundaries in X of dim < n-1.

Leth= U

Then 33is a o.1.f. base for X with
Uel

u.

boundaries of dim < n-1. It follows from theorem 0.12

that dim X < n.

. ) oty s - T
| To see that P is o<1.f., 1et;§u

1
i
1
29
}._I.
(e
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where s,Bi is 1.f. Let xeX and let i be fixed. T a
“u

nbhd V. of x which intersects only a finite number

0
of the members of ‘U, say Uys Ugpenieney Uy For
each j, 1<j<k,da nbhd Vj of x which intersects
- i k
only finitely many members ofjﬁ « L&t V = [\ Vj’
U j=0
d

Then V is a nbhd of x intersecting only'finitely

1 i
many members of LV$ . Thus (P is 1.f. for each
UeU'u UeY u

i. SinceP= 8 [ U$l], B is o:1.f.

i=1 UeYd u
The equality of the various dimension functione does
not, however, appear to be a 'strong condition on a
metric space. We give an example of a non-locally
compact non-complete metric space X where the above
dimension functions coincide. We note that if
d2(X,£) < 0 then dl(X,ﬂ) < 0 so dim X<0. It is
obvious that in that case all the function cpinci@e.
Also if dim X=1 then, from the above observation
we cannot have d2(X,£)§O so we must have d2(X,ﬂ)=1
and hence d(X,£) = 1 where d is any of the functions

d d d

2’ 3’ d

50 dgs d7 or p-dim. 1In view of this, we
would like the example we give of a non-locally
compact non-complete space where the dimension

functions coincide to have dim = 2.

Example 1.1. (Nagami and Roberts, 1967)

Let A be the subset {(Xl* Xgy Xg)i Xq = O‘} of
13. Let B be the subset{(xl, %

5y X

e
>
o

)¢ X1s Xg» Xg

are rational} . Let X = AUB. Ve have dim X<2 from



e GY

the countable sum theorem. Also dz(X,ﬂ) 2 dz(A,g))
= 2 (d, satisfies an obvious subset theorem).

The mefrics gand ¢! are the euclidean metric and its
restriction to A. d2(A,g') = 2 from theorem 1.4.

We have, from proposition 1.1. that dz(X,g”) = dy (X, "

7

dim X where g” is the restriction to X of the

A (X, £M) = d (X, 2") = d; (X,¢") = u-dim (X, ")

It

euclidean metric. X is not locally compact at
any point, because for xe¢X, assume U is a compact
nbhd of x. Then for some open subset V of IS,

Qgr\Vc:U (where Q3 = QXIXQ). Since U is compact,

it is elosed in I° so Ve Q3N VeU a contradiction

! 3
since the‘irrationals in V which are not on bdry I
are not contained in X. Obviously X is not complete

since it is not closed in I3.

We will need the following lemma to prove the next

theorem.

Lemma 1.2

If {E(,qe¢4ﬁs a 1.f. collection of closed sets of
a paracompact Hausdorff topological space X and
{Uss ®cffis a collection of open sets of X s.t.
F(E Uy ¥esf, then Ja collection {VQ)(, C(e‘uffof open
sets of X s.t. Fy ¥V, U and {Yg,%iﬁp4}is of the
same type as {Ei,déaﬂi i.e. for any subsetJof4,

N Vg =¢piff NTFy =q.
e ¢ FALL ¢

For a proof of this lemma, see Nagami "Dimension

Theory" prop 9.2 pp 47.
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Lemma 1.3

Let X be a paracompact Hausdorff space and let
{QX,WGyigbe a 1l.f. or countable open cover of X s.t.
{U&,dﬁe{g has a refinement {gd,me¢4§ with EmciUd and ord
{bdry Gd,xcu{ < n-1. Then {Ui,ucufghas an open

refinement of order < n,

Proof: TFirst take the case where {U,,%¢e4f is 1.f.
Let < be a well ordering on of and < the associated
strict partial order i.e. &< iff ﬁffzand'x¢/3.

For each g¢ let E, = G, - G, ( U Ggz=¢).
O(E.c/{’ A A /Sué.o( f3 Bed I(‘

Then E, cGueUy. Claim:= ord {By, dceff< n.
For suppose qi’“é"""’qn+2 are n+2 distinct

S eilare (s sun N Lo wive, s .
members Ofgfé W G. assume d1<4bu <A .o
Suppose x€ N Ex.. That xcE | implies X¢Gy. »

sia oL : e

i=1 1+2
. 1 ; ":’
i<n+2, because the Gy 's are open. But E“ic qu
so xeGy; 1<i<n+2. Thus xebdry Gq; 1<i<n+l. (note
that the condition of the theorem implies n>0).
This is impossible because ord {bdry G“,Qéc4}S n-1.
Since‘Eicux,zEd,xe@4gis 1.f. From lemma 1.2, I
open sets V,,Re.fs.t. Ey < Vyc Uy and ord {W&ﬂiem4}
< n. Because < is a well ordering on .4, {E,,xeed},
and therefore {Wx,«ed}, covers X. Thus {Wx,dev{}
is the required refinement. If {U,,R¢.A¢is countable

then it may be taken as Ui’ ieN iIn which case

{Ei, ieN} is still 1.f. and the result follows.



Theorem 1.5 (Hodel)

If (X,¢) is a separable metric space, then dS(X,E)

= p-dim (X,8).

Proof: It suffices to show that u-dim (X,&) <
ds(X,g) (in view of prop. 1.1.). Leaving out the
trivial cases dS(X,E) = -1,00, assume d5(X,£) < n>0.
Let £€> 0 be given, and let X ieN be a dense subset
of X. Let Ei = B(xi,e) and Ui = B (xi, 2¢) . Then
{Ei, ieN} is a cover of X since any x€X must satisfy
£(x, Xi) <¢ for some i. We have g(Ei, X—Ui) >e¥ ieN
SO dS(X,g) <n implies j open sets Vi’ ieN s.t. Eic
V.cV.cU, and ord {bdry V., ieN} < n-1. From lemma
i iTd i -
1.3, Ui has an open refinement of order < n. This

refinement also has mesh < 4¢. Since ¢ is arbitrary,

this shows that p~-dim (X, £) < n.

Theorem 1.6 (Nagami and Roberts, 1967)

If (X,p) is a totally bounded metric space, then

dB(X,g) = dG(X,g) = dS(X,ﬁ) = d7(X,£) = p-dim (X, 2).

Proof: 1In view of prop. 1.1. and remark 1l.1., we
need only sow that W-dim (X,£) < dg{X,£). Leaving
out the cases d3(X,£) = -1, &, assume d3(X,Z) <n>0.
Let €>0 be given. Since (X,{) is totally bounded, J
a finite cover{B(xi,é), lfisk}of X by open balls of

radius ¢ . Let Ei = B(xi,e) and Ui = B(xi, 2€).

Proceeding as in the proof of theorem 1.5 we obtain

the result.
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So far we have seen conditions under which certain
dimenéion functions coincide. While the various
dimension function do not always coincide, any two
of them, say d and d' may only differ within the
limits of the inequality d(X,£) < 24' (X,&). Ve
shall now prove this ingquality but first we prove

a lemma.

Lemma 1.4 (Roberts)
Let X be any topological space. Let Gj’ j =10, 1,

2, 3,.... be open sets of X s.t. G, =¢, chG.

g1
: B (<& . - =
d =0, 1, 2y se=s 80d X = .&a Gj' Let Fj = Gj - Gj—l’
J
j=1; 2,.... Suppose C and C' are disjoint closed
sets of X and Bj’ j=1, 2,..... are closed subsets

of . s.t. Bj,separates CnFj and C’nFj in Fj' Then
da closed set B of X separating C and C' and s.t.

<o
Bc UV (B, vbdry G.).

Proof: Let F.-B. = U. yV., where CnnF.cU., C'nF.cV.,
J I J J Jd J J J

and Uj’ Vj are disjoint relatively open subsets of
F.. Set B= U [B.U(U. AV, )Ul, nV.)].(F:131*1>

J

We have:-
(al) Ba(CuC') =¢. TFor, obviously, By a(CuCh =d.

then xeF. and

On the other hand if xeU. AV
] J+1

j+1’
X Ujé?CnFj+1 so x¢C. Similarly xeFj and x¢C'/\Fj

oo
so x¢C'. Similarly for xe€U.,.AV.. Let U=( p U.)-B,
00 g1 03 j=1
V=( &ij)-B. In view of (al) and the fact that C €
3=
00 0 .
U.,, C'&¢ WU V., we have (a2) CelU,; C'ecV.
j=1 J j=1 4
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e a0
Because B2>X-( U Uj U UVJ.), we have (a3) X-B

j=1 ¥ 331

= UUuUV. (ad4) B is closed.

For suppose x is a limit point of B. XEGr for some
r

r which means x must be a limit point to U [Bj U
J=1

(anv,j+1) U(Uj+1r\Vj)] which in turn means X is a

e or U

then x is a 1imit point to Uk('\

then x¢F

limit point to B, or Uan 1kaor some 1<k

)
k k+

%
<v. If x¢ UB
< 391
NV

J”

(= ‘< —.———__7—“—
Vk+1 or Uk+1 Suppose erkn'\

K k+1? K’
Xeﬁk and, because Uk’ Vk are relatively open and
disjoint, x¢ v, . Since also x¢ B, ,xeU, . Similarly

X;E;fk+1 so xe U NV
jngj) then erk+1nd. Thus for x€B, we must have

Similarly if xeU v, (x¢
k+1° imilarly if xe k+10 Vi (XF

xeB so B is closed.

(a5) U, V are disjoint. For suppose xeU. Then

- i ~ ¥ 7
err B for some r. Since Vchj, b,ijj’ and Fir\
FJ. =¢if [i-j| >1, we only need to show that x¢

! and x¢ Vr Of course xéVr. But X£Vr+1 =

= *
x.sUr N Vr+1 c B contradicting x € Ur—B' Similarly

7
r+1

for x eV so UnV =¢.

-1

(ab) U, V are open. For let x be a limit point of

U. DBecause xeGr for some r, we must have x being a

limit point of some Uk’ 1<k<r. If xeV, we must have
eV — 7 - ~ X

Xdkﬁ-l B or xeV, 4 B (because = eFk). We would
~ _ . & . 4= » > Z ~»

then have x being a limit point of Lk nd+1 or Uk (\Vk-l

and hence of B contradicting the fact that B is closed

and X€Vk+1 - B or gik_l - B. So x#£V. Similarly,
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U does not contain boints of V. So U, V are disjoint
closed sets of UVV. Since UyV = X-B is open, U, V
are open. Conditions (a2), (a4), (ad5), (a6) mean that
B is as required. (Of course Ujr\Vj+1 and Uj+1f\Vj

which is equal to bdry Gj).

are contained in FjrﬁF5+1

Theorem 1.7 (Roberts)

Let (X,f) be a metric space. Let d, d' be any of the

d d d

dimension functions d2, d 50 e p-dim, or

3,
dim; then d(X,£) < 2d' (X,£).

7’

Proof. 1In view of proposition 1.landvemarkl.i it svifices
to show that dim X < 2d2 (X,£2). Assume d2(X,6) < n.
Let (Cj’ C'j) 1<j<2n+1 be pairs of disjoint closed sets

of X. We want to construct closed sets B. 1§j<2n+1

“2n+1
s.t. Bj separates Cj and C‘j Vj’ 1<j<2n+1 and £y

j=1

- open sets Gi’ igN s.t.:-
(al) PG, =X
ieN *
(a2) ﬁ(cjnéimgnﬁi) >0 ¥ ieN, 1<j<2n+1
(a3) f(ﬁi, X-Gj,4) >0 ¥ ieN.

Infact, let G; = 2n;1'{X6X: £(x, C.) + p(x, C')

j=1 J J
> l/i} . It is clear that (al) to (a3) aresatisfied.
- G - = ! N
Let F;, = G;~G; ; (Gy= #). Then £(CinFy, C'yinFy)

> 0 ¥ ieN, 1<j< 2n+l. Since d2 (X,£) < n, and from

(a3), 3, for each ieN, closed sets B'i' 1<j<n and an
g =Ys

7 ' P o] ! N
open set Hy s.t. B i separates CjzﬁFi ang & .(\Fi
j j<n G. ,€H.CH,c = : s
Vi, 1< G, € BEH G, (Gy = ) and (j91 By )
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r H, = = B! ) i<n.
Abdry #; =$. Let By, = B', nF; 1

J
Then Bij’ 1<j<n and Hj satisfy:-

(b1) Bij separates CJ.I'\Fi and C'j(\Fi in F, for

1<j<n
(b2) Gi_chHFHicGi ¥ i€EN.

n J -
(b3) (:9 Bij)(\bdry Hy ¢ .

j=1

It is clear from (b2) that Fir\bdry Hoy =@¢if
i¥i'. Combining with (b3), and since Bijc:Fi,
we obtain:-

n
(b4) (A B..)n( Ubdry H)) =¢p V 3 .
j=1 1 keN k

It is also clear that:-

X e e
(b3) Bij{\Bi,j,c:FinFi,CZbdry GiL)bdly Gil if i#Fit.

1m0 v gL

From lemma 1.4, for each j, I<j<n, 3 a closed set Bj
s.t. B, separates C, and C', and:-
J J J
(b6) B.< U (Bi.klbdry Gi)
iey Y
We now turn to the case where n+l <j<2n+l1.
From (al), (a2) and b2), it is clear that:-

(c1) U H, =X
ieN 1
(c2) H.cH. ¥ ieN
i i+l
(c3) £(Cj11Hi, C'j(\Hi) > 0 ¥ ieN, 1<j<2n+l.
(c4) (U bdry Gi)f\( U bdry H.) =&,
ieN i€N -

U =N - i = b 5 41 e ~
Let F', = H, - H; ; ieN (H, 4). As in the case for



Lo
(=]
I

Gi’ we obtain closed sets Bii n+tl <j<2n+l s.T.

¢l

Se es C.NTF', aj L I L Rt A =~
B.., separates CJ it 5 and C Jr\F i in F i and

1]
2n+1

(1) N B.. =¢.
i=n+1 1J

From lemma 1.4 I} closed sets Bj n+l <j<2n+l s.t. Bj
separates Cj and C'j in X, n¥] ij 2n+1 and:-

(d2) B.c U (B..Ubdry H.). We have:-
30 1] 1
i¢N

q k ot ni - " . i 7} :

(d3) Bij'\Bi,j,cF jA T ©bdry H @ bdry Hy, if
i# i, n+l <j<2n+1

How Bj’ 1<j<2n+1 are clesed sets s.t. Bj separates

C. and C'. in X.
J J

2n+1 2n+1
Claim: N B, = ¢. For suppose X€ N B..
=1 7 o
2n+1
Then x¢ A B., . From (d1), (d2) and (d3),.we have;:-.
j=n+1"3 s - .
(el) xe VYV bdry H,.
i€ N -
n

Also x¢ o B.. From (b5) and (b6), either:-
j=d. ©

n
(el) % n

B. . for some i,eN or:-
j=1 tvd ’

bi

(e3) x¢ U bdry Gi'
iEN

Both (e2) and (e3) contradict (el) in view of (b3)
2n+1

and (c4) respectively. So N Bj = {0and the proof
J=1

is complete.

Historical Notes:

The relation dim X < Qd?(X,EJ obtained by J.H. Roberts

(Roberts) is the last in a series of results each of
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which generalizes the previous one. Katétov
(Katétov) proved in 1958 that dim X < 2 p-dim (X,£).
In 1967 Hodel (Hodel) sharpened this result to

dim X < 2d3(X,£). Finally Roberts (Roberts) proved
in 1970 that dim X < 2d,(X,£).
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SECTION TWO

In the last chapter, we saw that for any two of the
above mentioned dimension functions, say d and d',

we have d<2d'. We shall now give examples to show
that if a is any of the above dimension functions
different from the covering dimension dim, then there
exists a metric space where d and dim differ by the

maximum amount allowed by the inequality in theorem

g

Lemma 2.1 (Nagami and Roberts, 1967)
Let X be a completely normal space and Y a subset of
X with dim (X-Y) < n. Then for any m pairé (Ci’ C'i)

1<i<n, of disjoint closed sets of X Fclosed segs_Bi,
1<i<n, of X, s.t. B, Separates'ci‘amd C'i and

n

2 BicY.

i=1

Proof: Let X, Y, Ci’ C'i 1<i<n be as in the statement
of the theorem. Let Ui’ U'i be open sets of X s.t.

) [ I 71 — " : -
Cic:Ui, C inU i and Ui(\U i ¢ for 1<i<n. Because
dim X-Y <n, %, by theorem 0.4 open sets Oi’ O'i of

= . = = i - A T N/
X;l—l s.t. U, - Ye0,;, U',-Ye0', ,0;00;=¢ and:X =
U OiLJO'i. Because X is completely normal, 3
i=1

3 s N - o e 71 g 1
disjoint open sets Vi’ V i of X s.t. Oic:Vi, 0 ic
V..

&

Let W,
i

1

. ~U!'. W — ' ; 1 -1
UiL,(Oi U 1)’ ! 5 U il)(& i Ui).

1

Let Bi X—(WiL;W'i). Then Bi’ 1<i<n, satisfy the

required condition.



Lemma 2.2.

Let X-be a compact Hausdorff space and let H and K
be disjoint closed sets of X such that no connected
set .of X intersects both H and K. hen the empty

set separates H and K.

For a proof of this lemma, see Nagami ''Dimension

Theory'" corollary 6-8 pp 41.

Lemma 2.3
A connecfed compact Ilausdorff space cannot be the
disjoint union of a countable collection of more

than one non-empty closed sets.

For a proof of this lemma see Nagami '"Dimension

Theory" theorem 6-10 pp 41.

We would like to give an example to show that lemma
2.3 cannot be extended to normal (infact metric)

L]

spaces.

Example 2.1 A connected subset of 12 that is a

union of a countable collection of more than one

none-empty disjoint closed sets.

Let Ays Ggs Ggeeeens be the rational numbers in I.
oo
Let X = Ix §0} YC Y {a,3 x [1/74, 11).
i=1 | :
Let A, ={q§x [1/i, 1] and B = I x §€%. Then X is

the union of the non-empty closed sets B., Al’



X is connected; for suppéée not, and assume X =
U VvV where U, V are disjoint non-empty open sets of
X. Since 12 is completely normal, 3 disjoint open
sets G, H of 12 s.t. GAX =U, HAX = V. Since B
is connected, 3 is wholly contained in either G or iH.
Assume without loss of generality that B« G. Since
HoX #¢, HaA, # & for some i, say i,. Since Al

o
is connected, Aioc-H. We have, because I is compact,
that Ix[0,e)cG for some €. Also Vxd{a$cH

for some nbhd V of qio and ae[i/i,, 1]. Vlcontains
infinitely many rationals so it comntains some rational
qj with j>i, and 1/j< €. But then (qj, I/j)gAjnG
#C}ﬁ and (qj, a) EAJ.I'\H #¢contradicting the fact

that Aj is connected.

Defn 2.1

Let X be a normal space. A collection of n pairs
(Ci’ C'i) 1<i<n of subsets of X is said to be an
essential family if (1) Ci’ C'i are disjoint closed

sets of X, 1<i<n

(ii) for any n closed sets Bi’ 1<i<n s.t. Bi
n
separates C. and C', we have N B. # ¢.
i i i=1 i
Lemma 2.4 (Nagami and Roberts, 19673

Let X be a normal space, F a closed set of X and

f: F— Sn_1 a continudus function. Considering

Sn_1 as the boundary of J% where J = [-1, 11, let
= > "oy no :._ " 4 1 =

C, = {(x;, xgyeevex e s x, 1} v, = {(x,,

n .
oy venne Xn)E J e X, 0= 1} for lslgn,
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If the collection (f_l(Ci), f_l(C'_)) 1<i<n is not
. 1 -7

an essential family, then f has an extension f*:

%y g1

Proof: First we construct a function g: X——-——>Jn

which extends f and does not assume the value 0
(= (0, 0,.....,00) in ", since (£ 1cc,), 171cr )
1<i<n is not an essential family, = pairs Ui’ U'i of

disjoint open sets, 1<i<n, s.t. f‘l(Ci)cUi, =t

n

(C'.)eU', and U (U.vuU'.,) = X. Since X is normal,
i i i=1 i i

= closed sets Ei’ E'i St Eic:Ui, E'ic:U'i and

n
-1
1 el = — . 1 =
iszl (EiUE i) X. Let F.i EiU f (Ci), F i

E'.U F_I(C'i). Then F;, F', are disjoint closed sets

1

n
. - =1 -
with £° (Cj)e F;, £ 7(C')cF', and U (F;UF i)— X.

i=1
By Urysohn's lemma, 3 for each i, 1<i<n, a continuous

function h,: X— J s.t. h(F;) = -1, hy(g') = 1

Let h: X—>J" be the function.
h(x) = (hl(x), h2(x),... hn(x)). Then h is continuous.
By Tietze's extension theorem there is a continuous
extension T: X=53% of £. Let U be the set

{xeX: fi(x)hi(x) > 0 for some i, 1§i§d3where . is
the ith coordinate function of f. If U = X then set

9=F . .. . Otherwise, we note that U is

open and U contains F. Since X-U #tbg, by Urysohn's

lemma a continuous function é: X— I s.t. ¢(F)
1 and ¢(X-U) = 0 . Let g(x) = F(x)$(x) + h(x)

(1 -¢(x)). Then if x¢U then for some i'¥i(X)hi(x) > 0

DNIVERSITY DF NAIROB]
LIBRARY
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whence Ti(x)¢(x) + hi(x)(1~¢(x) # 0 whence gi(x) # 0
whence g(x) # 0. If x¢U then g(x) = h(x) # 0, (gteav)
and for xeF, g(x) = f(x). So g is as required.

Now 1et‘?:(JD~ 0 )—> s% ! pe the projection 4 (a)

2
a

1!

= yaj where jja| is the sup norm of a i.e. dlail

sup ﬁaj;, 1§i§n} where a = (al, .....

94.g. Then f* is the required extension of f.

Theorem 2.1 (Nagami 1967)

- Let X be a compact completely normal space with dim

X >n30, Let Ai’ i=1, 2,....be disjoint closed sets
’ oS
of X s.t. dim Ai < n-1. Then dim (X - U Ai) > n=1l.
i=1
Proof: We omit the trivial case n = 0 so assume

n>1. Since dim X > n, by theoremlo,Szla closed set

n-1
S

F of X and a continuous function f: F—> s.t.

f does not extend to X.

Step 1.7 a continuous function h: X—> 1" s.t. h

—_— & *
extends £, 0 ¢ h( U AUF).
i=1

We construct h as follows:-~ Since dim Ai<n—1 f

extends to FijAl, and hence to ﬁl where U1 is an

open set containing F UA Similarly, f extends to

1
ﬁlL)A2 and hence to 62 where U2 is open and contains

— ; ; n-1
U, VA, (These extensions are into S ). We thus

- ¥ s : ; n-1
define recursively a continuous function g: U—> S
oo e o)
where U = WU Ui is an open set containing Fu( U Ai).
i = :1 ) i = 1
: £z S i
Let ¢ 1 K== [Q;@ﬂﬁ& be s.t. 4a&r UA,) = 1/21,
i = i i
n I 5 r — ”’V“‘ ‘; 2 . -
¢i(X"U> = 0. Then¢= Z| %E is a continuous function

i == 1
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into [0, 1] s.t. ¢(F) =11}, ¢(a,)c(0,1]. Define

h by hix) = ¢(x)g(x) for xeU, h(x) = 0 for x¢U.

Then h satisfies the given conditions.

co oo
Step 2. Assume dim (X - (JA.) < n-1. Then, because X- L}Ai
e i=1 * 1. @ i=1
is normal, and h™"(0) is Gg,dim ((X-h "(0))- U A )<n-1.
vy L i=1 ~

For a set S in R" and a set J in R, let J8 denote the

set js, jeJ, segS.

We take I to be the interval [-1, 1].

Let B = {ern: Xn=1} i.e. one face of i (see

fig. 2.1). Let P be the pyramid [0, 113

For 1<i<n-1, let S, = § xeB: x, = -1}, S'; = {xeB: xi=1}.
Let T; = (0, 1]8,, T';=(0, 1]s',.

i
1 -1

Then h~ (Ti), h (T'i) 1<i<n-1 are disjoint closed sets

of X-h~1 (D). By lemma 2.1, 3 closed sets B, 1gi<n-1

of X-h~1(T) s.t. B. separates h"lcTi) and h"l(T'i)
oo ‘ n-1
Bie yA,. Let H = {21,3

in X-h‘l(ﬁ) and T
i=1 1=l

Huh—l(U) is closed in X and is therefore compact.
Assume Hr?h—l(B) # &, Suppose some connected set J

of HUh T (T)intersects both HA R T(B) and b~ 1(0).

Then J is a connected compact set of gun~t

(0)
intersecting both Hoh 1(B) and h™1(T). Then T has

_ 00
a non-empty intersection with h—l(O) and U Ai (which
i=1

is disjoint from (o).

Thus J is the union of a disjoint countable collection

of more than one closed set contrary to lemma 2.3 .
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Thus no connected subset of Hi)hul(ﬁ) touches
both h™1(T) and HAh™Y(B). By lemma 2.2 Huh 1(T)
is a union of two disjoint closed sets one containing

HAah“'(B) and the other containing n"l ().

Claim:- HUL™ (D) vh X(B) is a union of two disjoint
closed sets one containing hal(B) and the other

containing h_l(ﬁ).

One of these closed sets is formed by uniting h"1

(B) to the one of the two closed sets of HIUh_l(ﬁ)

which contains H@ﬁh—l(B) (this is assuming H n h--1

(B) # ¢ because otherwise the result is obvious).
The other closed set is just the closed set of

Hluh—l(O) which does not contain Hi%hnl(B).

By extending to disjoint open sets of X we obtain a

closed set B of X separating h~1(B) and h™1(T)

without touching H. Because of the compactness of

] o ! N s | .
X, and considering that h “(0) = m h “([0, 1/1i1B),

i=1
We see that B also separates h—l(B) and h—l( it% B)

for some t, 0<t<l., Restricting attention to the

space Y = h™Y([t, 1]B), if B'. = B, nY, then B',

1 1

separates h—l(It, 1]Si) and h™ ~([t, 118" ) (= h™

(Ti)r\Y and h—l(T'i) AY) in Y. B'i is closed in Y

since YcX - h™1(T). That, so far, is for 1<i<n-1.

If i = n, then again B;n = B nY separates n1( $t%B)

= n
and h™1(B) in Y. Now n By = by the construction

i=1.

=]

of Bi’ Thus the system h~1([t, 1]83), W, lls'i)
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1<i<n-1 and h—l({t}B), b (B) is not an essential
family in Y. Let C = boundary in R" of [t, 1]1B =
Bu{t}BUI.l\:’l ([t, 118, UTt,118').
i=1
C is homoemorphic to s 1 with (B, {t}B), ([t,118,
[t, I]S'i) 1<i<n~-1 corresponding to pairs of
opposite faces so, in view of lemma 2.4 H a map
W:iY— C s.t. P extends hih*l(C). If we define
8: X— IT by
8(x) = {¥(x) for xcY
?;(x) for x#Y
then 8 is a continuous map which does not assume
values in the interior (in R") of [t, 1IB (6 is
continuous because it coincides with % on Y and it
coincides with h on X-Y). If we compose 8 with
the projection from an interior (in ) point of
[t, 1IB to Sn~1, we obtain an extension of f
contrary to the choice of f. So we cannot have dim
(= w]

K= L)k, 45=1.
: i
i=1 .

Corrollary 2.1 (Nagami 1967)

Let Ai’ ieN, be a sequence of disjoint closed sets
, ,

of I at least two of which are non-empty. Then
co

dim 17 - U A, >n-1.
. i =
i=1

Proof: With the notafion introduced in theorem 2.1,

it {t}1" does not meet two Ai's for any 0<t<l then I

i, s.t. A, © sh—1

if i#i,. Since (8, 1)I"¢A. , we
1o
n o n -
have dim I~ - A. > dim (0, 1)I7 -~ U A, = dim
. i< ) i
i=1 i=1
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" fovr some te (es1),
(o, 1)In—A. = n., Otherwise {i}ln intersects A.,
: ig A i
0
Aj for i#j and by lemma 2.3, 3 x eft31” s.t. x¢ UA;-
i=1

We may assume x = 0. We let F = S , T = identity,

h = identity and proceed as in theorem 3.1.

Corrollary 2.2. (Nagami 1967).

Let X be a connected metric space s.t. every point
has a nbhd homeomorphic to 1", Let Ai be a disjoint

sequence of closed sets of X at least two of which
(% ¢]

are non-empty. Then dim (X - U Ai) > n-1.
i=1

Proof: Let Aj be as in the corrollary.
Let IX be a nbhd of X homeomorphic to I" for xeX.
If each IX is contained in some Ai’ then each Ai is

clopen contradicting the connectedness of X.
o
We cannot have I_« U A. for each x¢X because, in
i=1 -
view of the above observation, this would contradict

lemma 2.3.

oo
So for some x,, I_ 4 U A.. If I intersects at
%
A, >dim I - U A=n
i=1 7 o i=1

Ce

most one Ai then dim X -

(since it is open in IX ). If IX intersects two

oo
A.'s then by corrollary 2.1, dim X - U A, > dim I
i N i = Xo
- i=1
= A; > n-1,
i=1 B
Defn 2.2,

A compact Hansdorff space of dimension n, n>1 is

called a Cantor n-manifold if it camnot be separated

by a closed subset of dimension less than n-1.



Example 2.2.

Fig 2.2. gives a cantor 2-manifold X s.t. a prcposition
for X analogous to corrollary 2.1 fails. dim x = 2

feel (&)
but dim X - U Ai = 0 since X - U Ai is a subset

i=1 i=1
of Cantor's discontinuum.

Fig

-
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We would like to give an explanation (omitted from
Nagami and Roberts 1967) as to why X is a Cantor

2-manifold.

First we note that the sets Aij (i=1, 2,....1§j§ni
are so chosen that for any € > 0, only finitely many
of them have a span exceeding € in the y—direction.
This eﬁsures that X is closed in Rz. Since it 1is

bounded, it is compact.

The sets Aij of fig 2.2. have the following properties.

(i) Aij is homeomorphic to 12.
(ii) UA.. is dense in X

P |

1,

(iii) = an infinite subcollection ¢4 of {Aij}s.t.

for any infinite subcollection 3B ofed , y A
AcP

intersects each Aij on a set of dim 1. w4

is the collection All’ A12, A13""f
(1) implies that Aij is a cantor 2-manifold,
(see Engelkin pp 77). Suppose X is separated by a

closed set B, with X-B = UuV, U, V disjoint, ({ 0%V,
dimB £0. Because Aij are cantor 2-manifolds, we
must have AijnIJ:=¢ or AijnV =¢ for each i, j.
e = i G’ . . = d < = - . /R — L
Then one of‘ﬁl, ié must be infinite. Assume it isfﬁl.

Because LlAij is dense, at least one Aij’ say A.

i,J _ e Jo
intersects V. So A. .NU =¢7. Then —U A NA. - B
Lo Jo AcB 1o Jo
. 1
But dim ( v A A, )= 1 (from (iii)) so dim B > 1,
Aeﬁl 1.Jdo -

a contvadiction.
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So X carnot be separated by a zero-dimensional closed
set and is therefore a cantor 2-manifold, (of course

dim X = 2).

Lemna 2.5 (Nagami and Roberts, 1967).
Let (X,£) be a metric space and C, i=1, 2,..... be
a sequence of closed subsets of X s.t. dim Ci £ n,.

Let Ube any open cover of X, and r any positive

integer. Then 3 r 1.f. open covers‘?ﬁ,‘ﬂé,...;ﬁ%}
and r.1.f. closed covers 51’ Eé, ..... f?. Siats
(i) gl refines 2¢ (we will write El <) and

: : ; s et} (kg
is1 <‘2/i < %, for 1gigr. (i<v Lor the fivst inequels )

7

(ii) If E B ""'Es are s distinct members of

1’ 29
§i+1 for some positive integer s, then I s
distinct members Ul’ U2""'Us of%Vi s.t.

m.c:U Ezc:Uz,....ESc:US and similarly for

1 17
?Vi and %..

1

< n. 1<i<r.
l — —

(iii) ord gij C4
(iV)mdér‘Ci < n, for 1<ige

L]

Proof: The proof is by induction. Assume the result
true for r-1. Then we can obtain covers 5., %;
1<i<r-1 satisfying (i) - (iii) with r replaced by
r-1.%0 = {unac , Uel. .} is an open cover of C_.

r r-1 r
Since dim C < n_ and from lemma 1.1,%has an open
1.f. refinement of order < n.. This in turn has a
cloesed 1.f. refinement of order < n - Furthermore,

using a technique as in the proof of lemma i.1l, this

closed refinement may be assumed to ke of the form



o A5 & o

S“ - é’j" X . T U Y -he - 4
LH U Lé_l} where I%JC‘Jf‘Cr (and the order is

indexwise, see defn. 0.2). By lemma 1.2, since H

U’
U
is closed in X, T a 1.f. open collection {GU, Uéur—i%

s.t. HycGyeUeZl, _y and ord {Gy} < n.

Let iy = Gy U(U-C). {3y, Uel _ ¥is a 1.1.
(becauseﬂﬂr_l ig) open cover of X s.t. its restriction
to Cr i.e. detﬁCr, U¢“?_l}has order < n,

Normality of X implies the existence of an open

cover WU, Ue%%_jfwith WUc:MU. Let?ér = {WU, Ue%&_%,
ér = {Wh, Uézé_ﬁ' Conditions (i), (ii), (iii) are

satisfied while (iv) follows from (ii)" and (iii).
The construction when r=1 is just as above, taking U

instes > ) o
instead of J%“l

Theorem 2.2, (Nagami and Roberts, 1967).

Let (X,£2) be a metric space and Ci’ i=1, 2,

be a seguence of closed sets of X s.t. dim C. < n

i it
Let? be an open cover of X. 3 a sequence ﬁ?i ={Fd,
deBi} of 1.f. closed covers of X s.t.
(i) ﬁfl refines Z£.
(E1) mesh‘ﬁi < 1/i.
(iii) ord}?f}C. < n.
113 = 3 3
(iv) H a system of functions fi: Bj —> By 1] s.t
i 5 4 f j k k .
fi = identity, fg cfj = fi and for AeBi
and j>i, Fd = gj.j 1 B
,ﬁt(ii) ()
(v) For any positive integers i, j, k, if s Ao

dk are distinct elements of Bj’ then dim
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k
(n F« r\Ci < ni-k+1 where x means max {x, - 1}
r=1 T
for xeR.

Proof: We construct sequences 3& of 1.f. closed covers

muléi of 1.f. open covers of X satisfying:-

(i) §i+1 <N, <Gy ¥iandH, <K

(ii) ord 311103 < nj for j<i.

(iii) mesh P, < 1/i.

The construction is by induction. Assume the sequence

constructed upto i=r-1.

Then let QG‘and'gr be gr ande% (respectively) of
lemma 2.5, replacing Z{of lemma 2.5. with a 1.f.
open refinement of §r_1 whose mesh is < 1/i. (i),
(ii), (iii) are obviously satisfied. Let ?%) 51 be
§1’721 of lemma 2.5 with % replaced by a 1.f. opén

refinement of§y with mesh < 1.

i = iT C (- 9 = i
Now write i, {Alx,dwi} whered# g => H,# Hyg

. i+l 1
Define fi : Bi+1 >Bi S«t« for,g¢31+1. Hﬂc:H i+1
fi (A.
e @ fd  pitl _i+2 &3 i
For i<j let £y fi ‘)fi+1°’ ...... Ufj_l and let fi
= identity. We note that fi°f§ = f?. Let B = inv

. 5 J e o . .
lim ZBi, fij}and T+ B—> Bi be the projections. For

each i, define a collection‘ag.as follows:- for ol¢
oo
B., let K, = U [ A H_, .1 (we take U A =@).
o "
i aETTil(c() g=4 nj(a) Acd

Tet_‘ g
- )ﬁl ={K4,o%eB. ] .
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Claim: -

(i) Ky cHy for eachdeB, for each 1i.
(ii) ; is 1.f. for each i.
(iii) For i<j anddeB,, K = U . Kp
- 1 pe (I5 )
(i) follows from the fact that if aén;%d) and j>i

: J
.cJ = TT = = (= C.
then £y (ﬂg(a)) £, . (a) W&(a) o so H‘ﬂj(a)
Hy (the last part follows easily from the definition
N % | .
ot Ls and fi 1<)

(ii) follows from (i) because distinct members K

s 7
“1
r
""" © %} ofixi are contained in distinct members H, ,
1
...... %} ofﬂ{i (dl’f""'q}GBi)'
To see (iii), let i<i' andfieBi.
o So
K= U _ [ A He 1 = U [ n H_ ]
X aéﬂil(d) 2oy ja) aé(fic’ﬁi') l(a) §=i j(a)
(=]
= U, i1 Lo By (a)y!
aew ((£7 )7 () J=i_ 13277

U Z‘U [N ]}
= - _ :Hw/
peslH ™l laeni(py 5=1 3

j 1

i . _ - I
Now for j<j 7%(a) = fjb”j' (a) = fd (ﬂﬁ' (a))

and, as before, 4 < H . So the sequence
? » P () TP (a) ed

“,j Ij
Hﬂs(a) is decreasing so
o0 oo
N H = Hs .
j=i G gope M)
< = U [ A ]
So X, = v U n 7
% = { "1 = ol .
peeT ! 0 lacy (o g=t 5%
v as required

= ot K
/J’é(fi)"%cx) P



= A

Now for each i, put Fy, = KM’“EBi and let Qﬁ =

{Fq,«éBi}.

Claim:-
(ii) {%i is 1.f. for each i
(iii) For i<j and ®eB., F, =U . F .
s i = 3
R peeh
(i) follows because Hy is closed so K <H, => Ky

CHu %

(ii) follows from the fact that {Ky,«xeB,§ 1.f.
implies {Kd,deBi} ig Lol
(iii) follows from condition (iii) and (ii) of the

previous claim (i.e. the same conditions as

above but for the Kd ).

Condition (iv) of the theorem has now been established
(i) and (ii) follow immediately from the fact that
FdF:Hd:“EBi for any i. To see (iii) i.e.‘that
ord‘ﬁE\Cj < nj, take first the case where j<i, then:
the result follows from the fact that ordfﬁi}Cj <

. « . 52
n‘js since distinct members F c.Fy of 3} are

o S
I T
contained in the distinct members H“ ..... ‘Hd of
T
34i. Now take the case where i<j. The fact that for

®eB., F, = U . F,& U . H

I _1 , £ — 4

t peceh e P pdeh e P

together with the fact that Hfz # Hﬁzlf ﬂa #1ﬂ2
imply that ord (@1,03) < ord?ij)Cj < nj as required.
Condition (v) of the theorem follows from condition

(ii), (iii) and (iv) as follows:-



- 49 _

Let i, j, k, &, Ky evones™ be as in condition (v).

k

k )
Let Z= ( r'\l F )0 ci.chdl, so for any p > j, 1F1 %,
r:: I‘ s

d_&(f?)"l (0(1)} =Ip is a 1.f. closed cover of Zwith
inesh ECp < 1/p. Furthermore zm < ‘Zp if p<m so if we
can show that ord tZ,p < ni-k-#.f it will follow from

theorem 0.12 that dim Z < n,-k+1. Let q = n -k+1 + 2

and let L/J,1 = Flglnz, Ll,j,2 = F/J;2r\’2, ceees L, = Fﬂqn'Z.
be q distinct members of ‘Ip for some p > j and’
ooy 4 o -
ﬁl ...... ,/qu(Ij) (%). Lpgn L weeens NLg &
K 1 2
(n F_,)nC.,. Since Lg < F 1<t<q and F, =
t=2 %t 1 P == t
v B F s 2<t<k, we have
g3 = of - -
~oc (fj) ( ’ft) |
Lo Blson v o o nL  c U P o s s ua ANF, NF_,Nn...nF_,
Py ’q ,slze(fg)“l(a’p) y Pq 7'y f

t ¢ - -1 /
/3 3c(fj) ("(3)

[ py-1
Ve kc(fj) (C"k)

. P ~1 “1 e p =1
/s ﬁz,..,pqe(fj) (%) and p tr:(fj) (&%) 2<t<k
imply that /31, /2 ,....,/éq, floseeee,py are all
distinct (of course /3'1, /32,.....pq are distinct.)
These are g+k-1 > ni+2 which implies

F n-.,ﬂF AFir‘ootnulﬁF nc.(:.H nn.o-.n
£y Pq Py Py TATTA

Ho AH,, A ......nl, N C. =¢ since d#p=> Hy # H
Pq £'y /5k i ?
and ord “}}plci < ny (since i<p).

SO Lia® wa e AL =&, This shows that ord L <
£y s ? p

ni—k+1 as required and this compietes the proof of the



Lemma 2.6. (Nagami 1967).

If (X, %) is a metric space, p-dim (X, ) £ n

iff for each €> 0, da 1.f. closed cover ¥of X s.t.

(i) mesh ¥< €

(ii) ord % < n.

Proof: This is obvious from lemma 1.2.

Lemma 2.7 (Nagami 1967)

Let (X, %) be a metric space and C C .be a

1, 2’...
sequence of closed subsets of X with dim C;f ni.

Let ¢€>0 be given. Then 321 1.f. closed cover
¥ = {Fy, «esf} of X s.t.

(i) meshgyg €

(ii)  ord ¥lci < ny

(iii) if Fof,co00ee are t distinct members of

Fy
1 tt
7Y then dim (1

r—let)r\Ci < n; -t+ 1 for any i, t.

Proof:

The lemma is a direct consequence of theorem 2.2,

Example 2.3 (Nagami and Roberts, 1867)

Construction of totally bounded metric spaces (Yn,’n)

: " n
with p-dim (Yn,%n) = [5], dim Yn > n-1.

Let (X,%) be a compact metric space with dim X = n

for n > 3.

We want to construct a sequence Bi, i=1, 2, 3,.....

gl

of closed sets of X and a sequence “#i i=1, 2,.....

e



of 1.f. closed covers of X satisfying.
. . . n

(i) dim Bi < n - [3] -1

(ii) BimBj = ¢for i j.

(iii) mesh&Fi < 171

(iv) ord ¥i| X-Bi < [%].

The construction is by induction.
Assume BRi and‘?& have been constructed for 1§i5k.

Let m = [n/] + 2

2
From lemma 2.7 with C._, Cy,....... replaced by X, Bl’
i 3 &
st----'Bk,é,@ $3 0 ¢t e 0 e sc o0 and. € =1/C&+])7 we Obtaj_n a

1.f. closed cover S¥of X s.t.

(a) mesh “¥ < 1/(k +1}_
(b) if FI’ F;},....Ft are t distinet members of ¥

for any positive integer t, then if € is any of

T

X, B,, By, .....we have dim ( ' Fime < dim g-tHl
s & j:].

Let B = { x: ordX§¥> m~2}

Then B = UJ ¥ where F,, is an intersection of at

Cyen 7 U i

least m members of ¥ and the collection %F&g'y€§ﬁj
is 1.f. (A collection consisting of arbitrary
intersections of members of a 1.f. eollection is
1.f., the gist of the proof being that only a finite
number of intersections can be formed from a finite
number of members.) From condition (b) above, dim

Fy < n-m +1, Since F is closed and {E&} is 1.f.

we have from theorem 0.7 that dim B < n-m+l = n—[%]—l.

Again from condition (b) above we hawe that if i < k,

then, putting C = Bi, dim BABi < dim Bi -~ m + 1



< n-[3]-1 _([%]+2)+1 = n~2([%]+1) = -1 so BABi =¢

From the construction of B, ordxf§§ m-2 = [%] if x e
X-B which means ord %?§X~B < [%J. Thus if we let
ﬁ¥k+1 =€¥and Bk+1 = B then conditions (i) to (iv)
are satisfied. B is constructed as above with Cys
Cys....replaced with X,d, d, ...,

oo
Now let Yn = X - {J Bi.
i=1
Since dim Bi < n - [%] - 1 < n-1, we have from

theorem 2.1 that dim Yn > n-1.

Condition (iv) above implies that ord{?E‘Yn < [%]
for each i. Combining this with the fact that
qﬁJYn is 1.f. with mesh El/i, we have from lemma

2.6 that p-dim (Yn, €n) < [3] (fn is the inherited

metric of Yn).

It follows from proposition 1.1. that if d is any

of the dimension functions d2, d d d d7 or

37 T8* Te!
-dim, then d(Ym, én) < [3], and if n is odd dim
Yn = n-1, It is obvious that(¥Yn, £n)is totally

bounded.

NOTE. If we start with X = In, then dim Yn = n-1.
This is because py-dim (Yn, £n) % [%} implies Int
Yn(in IM) =(ﬁ, which inturn implies, by theorem 0.15

that dim Yn 4 n-1.

These examples show that d2, d3, d5’d6’3d7’ and p-dim
do not always coincide with dim. We next give an

example to show that d2 and p-dim and d9 and dS



do not always coincide.

Lemma 2.8

Let (X,%) be a compact metric space. Then for any
positive integer m, Ja collection (Cik, C'ik)

1<k<m, i€ N of disjoint closed sets of (X,.) s.t. if
(Ck, C'k) 1<k<m are any m pairs of disjoint closed
sets of (X,?%), thenJie N s.t. Cke&Cik and C'k €C'ik

for 1 < k < m.

Proof: Let?/i be a finite covering of (X,2 ) by

open balls of radius i/i.

For each i €N, Fpositive integers ti and cgpen sets
Uijk, U'ijk lfjfti’ 1<k<m s.t. gs j varies, we obtain
all possible m pairs (Uijl, U'ijl), (Uij2, U'ij2),...,
(Uijm, U'ijm) s.t. Uijk, U'ijk are unions of members
of i and Uijk MU'ijk = ¢ for all 1<k<m.

Let C siik

Il

{xeX: 2(x, X—bijk) > 1/s}
and C'sijk = {xeX: 2(x, X-U'ijk) > ¥s}for
s€ N. Let (Cl, C'1),..... , (Cm, C'm) be any m
pairs of disjoint closed sets of X. Because X is
compact, @ €> 0 s.t. £(Ck, C'k) >e ¥k, 1 < k < m.
Choose i s.t.bi. < 3 €, If for each k we let Uk

be the union of members of?%& which intersect Ck and
U'k be the union of members of %i which intersect

C'k, then UkNU'k = ¢. So for some j, Uk = Uijk,

U'k = U'ijk for 1

I

k < m. So Cke¢Uijk, C'kCU'ijk,
1 <k« m. Again because X is compact, % (Ck, X-Uijk)

>6> 0 and % (C'k, X - U'ijk) >8> 0 for 1 < k < m



for some 6. Choose e N s.t.4/4<8 .
Then échsijk, C'kcCisijk for 1 < k < m. - ”
= 8 . . - S V' z ‘ P ’A .‘ - A
So the collection (Cs5ijk, C'sijk) 5,1 &N, 1§j§t57
1<k<m is the required collection (the tuples (5,i,3)

are countable.).

Lemma 2.9

If C, C' are disjoint closed sets of a completely normal
topological space X and Z, A are closed éeté of X

s.t. AcZ and A separates CnZ and C'aZin %A ,

then Ja closed set A' of X' s.t. Af separates C

and C' in X and AnZ < A.

Proof. % -A = KuK' where K, K' are open sets of %,
KnkK' =@ , and CaZk < K, C'wZc'. Then KNC' =
K'NnC =& (closures in X). Thié, together with the
fact that X is completely normal implies that we can
obtain open sets G (K), G(k') of X s5.t. G(K)ﬁtﬁ= K,
G(KINZ = k', G NGIKY) =6, G NC' = G(K)AC
=q> . A disjoint open sets H(C), i(C') of X

centaining C and C' respectively.

Put U

= G(K) UE) - GO,
U= G(K')UH(C') - G(K))

Then putting A' = X - (Uyl'), we see that A' is as

required.



Def. 2.3

Let Ci; ieN be a sequence of subsets of a topological
space ¥X. Then liminf Ci is the set {xeX: for each
nbhd Uy of x,JmeN s.t. i>m=> UnCi# ol .

Limsup Ci is the set '{XeX: for each nbhd U of x and

each jeN, Ji>j s.t. UaCik ¢

Clearly, liminf Ci and limsup Ci are always closed

sets of X and liminf Ci climsup Ci.

Lemma 2.10.

Let X be a compact, normal topological space. If
liminf Ci#9 , and each Ci is connected, then

limsup Ci is connected.

Proof. Let X, Ci be as above with =€ liminf Ci

and assume limsup Ci is not connected. Then limsup

Ci is the union of disjoint, closed, non-empty sets

E, F. Since limsup Ci is closed in X, E, F are
closed in X. A disjoint open sets i, V of X with

EcU, FeV. W.L.G. assume x€U. Ther for some m€ N,

i>m => CinU#¢. Let yeFeV. Then for ieN,d Tis.t.
T&Zi, Crian¢ (because y glimsup Ci). Then for

i>m, we have Cri/\U#¢ #Cr.nV. Since CT; is connected,
Wi = Cri!ﬁ[X-(UuV)]F ¢. Let x; €Wi. Then, since
X-(UyV) is compact, the sequence {xﬁé has a convergent
subsequence converging to say z,z £X-(UyV). But
then z € limsup Ci contrary to the fact that limsup Ci=

EvFcUuV.



Ixample 2.4

For any integer n, n>4, we construct a metric space

(Xn, *n) with d, (Xn, 2n) < n-2, dS(Xn, 9n) = p-

2
dim(Xn, £n)= n-1, and dim Xn = n. This generalizes

on the example given by Nagami and Roberts (Nagami

and Roberts, 1967 pp 430) of a metric space (X, 2)

with dZ(X,Q,) = 2, d3(X,2,) = p-dim (x, ¢ )= 3, and

dim (X, £ ) = 4, Note that the inequality dim X <

2d2 (X, %) implies that in our example, when n=4

we must have d2(Xn,2 n) = n-2. The main sets discussed
are subsets of In, so when we talk of hyperplanes
e.t.c. we shall mean their intersection with In.

In addition, boundaries, closures, interiors e.t.c.

of subsets of I Wili be with reference to I'.

Boundaries, closures, interiors e.t.c. of subsets

of I will be with reference tc i.

First we construct a metric space (¥n, o n) with
d2(Yn,<5n) < n-2, p-dim(Y¥Yn, 0 n)= dim Yn = n-1.
For a prime number i, T >35, 1et§p(wﬂ be the

collection of overlapping intervals

2 -2 2k-1 2k+2 . -3
{ro, :r?), ('7, 11, ( = = bk =k, 2,.. ‘.ﬂ’_z_}

Letﬁifﬁ) be the collection of closures in I of the
intervals of Cr).

Let £ () = {D; x Dy x ....xDp; Dy, D,, ...D PCW }.
?(ﬁﬁ is an open cover of .

From lemma 2.8,> a collection of disjoint pairs of
closed sets of I" Cij, 1<j<n-1, ieN such that if

(C3; C*3) 1§j§n~1 are any n-1 pairs ©f disjoint closed

sets of I" then for some i, €€Cij, €' 3CC'iJ. 1< j<n-1,



Let Wijg, 1 = 1, 2, 3,....1 < j < n-1 be distinct
prime numbers s.t. Wftj > o and for each i max
‘ J
mesh % (i j) < min{a(Cij, C'ig) 1 < j < n—l} where d
3 2 2
is the euclidean metric (In is compact so CijinC'ij =‘P

= d(Cij, C*ij) > 0).

Let Bij = bdry{ U E L
E E?(ﬂij)
Ef\CiJ';é (0
: n-1
Then Bij separates Cij and C'ij. Let Bi = 1\ Bij.
j=1

Proposition 2.1. If p,q are distinct positive prime

numbers and a,b are integers s.t. 1< a< p-1 and
1< b< g-1 then a/p + b/q .

Whenever we talk of a/THj in the rest of this discussion,

we shall have ac{l, 2,v.:Tij~1} ,'unless otherwise

stated.

Let £'(Tij) be the collection of the closures of

those members of ?(ﬂaj) which intersect with Cij.

Let Fid = U E. Then Bii = bdry Fij. Let i
E e¥' (Tid)

be fixed (until after the proof of assertion 3).:

Let PJi the collection of faces of members of

£1(WiJ ) which faces intersect with the interior of

In, i.e. faces of the form

Dix....x {arﬂij'}x....XDn and not Dix----x{o}x----

xDn or Dyx....x{1} x.....xDn, DoePewiy).

For a member S of Pi where S = Dix....xD x {afﬂij}

X....xDn, we say S has normal vector E} and write
N(S) = e. (E1 = (1s0540..0) ez = (0, 1, 0,....,0)
e.t.c.).

We note that Bijc U S ¥, 1 <4 <« n-1
SEP4 B
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Diagram 2.1

1 Lfga H—““~;§:;7

¢

/7/ .
v —
f

o, /i s

Ee BGril)

g Skel 12ksn
Ské P, askss
Nod=e€) ,14k<3

Proposition 2.2.

(i) If xeBi, then for any j, 1$j§n—1, there is at
least one and at most two integers r, 1<r<n, s.t. x
is contained in a member of Pj with normal vector e,
Furthermore, if for some jo there are two integers r
s.t, X is contained in a member of Pj with normal
vector e then for any J, j#jo, therg is only one
integer r s.t. x is contained in a member of Pj with

normal vector er.

(ii) 3 n-1 distinct integers rj, 1<j<n-1 s.t.

%, = a /7 (for '“Bi)-



Proof:

&

if xeSeP; and N(8) =€y, then x, = /7.

-

51

~

neeg

(

Bij ¢ U S and Bi «BiJ, 1§§§n~1, we have for each

SePs
J, that ané?j for some S with N(S) =8&.. and x. =
3 J

T S ) L AL, s
J/ 7M1 for some ¥i.. From proposition 1, "3/ Tig,

o

1<y<n-1 are distinct, and therefore ¥i., 1<j<n-1

are distinct. This proves part (ii). If in addition

.

- . e et ]
for some J, we have two more integers V] and Ny

(o) J(S’
with v ,Y% , Y'Y distinct and x & S8'eP; with
Jo o o de Yo

N(S') =8y, = , xe8"€ P J, with N(S") = Ery 3

J Yo

(¢} a [ S )
then we would have xy:.. = “J4y /HHd, , Xya

11

a -, . : Y i
J /Hij, . Since x has only n coordinates, this

would force, for some i, d:fd, , ﬁ;g{?g
“e

I R N TN Ay I . . . - . .
and "/ Tij 6gav,/mg,ﬂjoﬂﬁi%whlch is impossible in view
¢ - v ARy

1",
» TN

of prop. 2.1. Similarly, we cannot have two integers

d, 1<i<n-1 for each of which there are two integers

r s.t. xeSeP d with N(S) = &, for some S.

Assertion 1. If ki, then BkABi =& .

This follows immediately from prop. 2.2. (ii) and

prop. 2.1. since x£& BinBk would imply 3 n-1 integers

. - . ¥ A— 1 At

Yo, "‘”‘%»i and n-1 integers Yi""'wﬂ“i S.t.
== "v i 3 ‘ - o "p. 7 . 3 e

Xy, "QJEdlfafn‘l and>wj ~Gu[w941£dinnl.

Assertion 2

(1) Bi does not meet the n-2-dimensional edge of
" and (ii) Bi meets the surface of 1" at only

finitely many points.



w B0

To see this, we note that prop. 2.2. (ii) implies Bi

is contained in a unicn of line segments of the form

. . Ny v — 5
%Hél‘; éYi -CQﬁ%‘,1§3§n~1} with ¥;., 1<i<n-1

|

distinet. Since 0 <&/my< 1, any such segment meets

the surface of 1" at only two points. There are

only a finite number of them for each i, hence the

assertion.

Assertion 3

(i) Bi is a finite union of line segments of the

" 2 g g

fornlfﬁe, , s
’ o Ty Ty

: "jrd :Q:}.in/c'\;s 12:!5“”““19 Y

i, 0 <j < n-1 distinct, agio, 1,.... 7'}
bedo,,. ..., iy .

(ii) Bi is the disjoint union -of a Tinite number
of simple closed curves and a finite number of simple
arcs (i.e. Bi does not contain something like this“L-),

: n
the curves and arcs being closed sets of 1.

We first give an intuitive argument. If x € Bi,

then, with the exception of at most wne 3, x 1is

i 3 ¢ ] : : ’
not contained in a corner of B{i’ i.e. on some nbhd
of x, BL? coincides with a hyperplans. Furthermore,

when x is contained in a ‘corner' of Bij it must be a
'simple corner', i.e. one that involwes the intersection
of only two faces. This is because for each J, at

least one coordinate of x is determimed at a value of

a o g & .o
the form.z and to be contained in a ‘corner' of Biy

i ;
means at least two coordinates .of x are determined at
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values of the fornu%ﬁ; while to be contained in a
'complex corner' means at least three coordinates
of x are determined at values of the form‘%%J. The
claim now follows from proposition 2.1. Given also
that the intervals ofﬁXTﬁj) are either a positive
distance apart or overlapping, it follows that when
X is at a ‘'corner' of Bii, then on some nbhd of x
Bi) coincides with the union of two half-hyperplanes
Hi’ Hl intersecting along their edges both of’
which edges contain xX. (see fig. 2.3a) . Thus at
worst we could have a situation where on some nbhd
of x,Bi coincides with the intersection of n-1
sets, n-2 of them being hyperplanes and the n-1th
being a union of twb half-hyperplanes intersecting
along their edges, both edges containing x. The:
hyperplanes and half-hyperplanes furthermore, have
distinct normal vectors. In this c¢ase Bi coincides,
on the nbhd of x, with an arc havimg a corner at X.
Otherwise Bi coincides on some nbhc of x with the
intersection of n-1 hyperplanes hawing distinct
normal vectors in which case Bi coincides, on the
nbhd, with a line segment. This shows that Bi
cannot contain something like this _l.. That Bi is
a finite union of line segments is intuitively

clear. The assertion then follows.

We now give the detailed proof.
First we show that Bi is a finite umion of line
segments. From prop 2.2, (ii), x¢23i implies x is

contained in a line segment of the form {3&In:



Yr, =Aifrg, 1<i<n-1§ with 715, 1¢jn-1  distinet.
Let ’Y‘; be the unigue integer s.t. 1<1q <n,
- ’l
Té‘f— {Ys s 1_<_J§n-—15 R
%

Let J be the Set {a.é]:: (X e X ,a)slfoflx:n)

10 Koo ey
.,e.Bi} .. Then x_¢ J. Let J' be the component
(e}
of J containing x,. . Then J' is an interval (from
© .

a property of R). Let b = inf J' and b' = sup J'.

J' is closed in J (being a component of J) and therefore

in I since J is closed in I. So b, b'e J'. Thus
(Xl, Xq ““XYO—‘J. FB v g X,) 1is contained in Bi
and for any €> 0, 4 0<&<e¢ s.tr.lml(xl, Ky v on Xy o3
b‘+6,..,.x,n)¢«;Bi. Since Bi = ¢\ Biy, then for some
. i=1
Jyy (X, Xghennn. Xe q By sesan X,) € Biyy
and for any €> 0,1 0<86<e, s.t.
(xq, Xopee oo X oo b'+&,..... ,Xy) & Bid, . The same
statement then holds for some E in Z'(Wij; ) which
al
makes it clear that b' = ﬁiji for some a'e{O, 15 ook
. a .
Trj_ai} . Similarly, b =71}, a.efD,, A jTi;‘)y_}.
Since J"CJ, the line segment b‘l}x ...... X {be_l'kx

a a
[Ty, EEL IR x{x,n} is contained in Bi (and

contains x). Thus Bi is a union of such line segments
which are finite in number (recall X = o3 i, Y‘b:}"»TS
-3

and ay, @, a'e {0, ..... Ti[;'} for ths appropriate i').

This proves part (i).
We next prove the following:-

Let x¢Bi, then:-

/



Proposition 2.3: Either (i)Z a nbhd U of x s.t.
n-1 .
BinUCL = ﬂ Hj where Hj is a hyperplane of the form
=1
*r.

IILJ

{yeln: y —a./ﬂt.}or (ii)3a nbhd U of x and an
3 4 7
integer jo’ lgjosn—l St . -
B.nUcL =[("RY H.)aH' TUIC A H)NHY 1 where
1 e J j - J J
j=1 Jo j=1 o
KERTS LA ‘
Hj is a hyperplane of the form {yeI Yy, =X, =
J J
a./;r Y j#j , H! is a half-hyperplane of the form
I ° Jo
n
fyel s ypr =x_, =a' /M, ypo < all /W =
. b il 4 r. - 1
3o jo Jo Mo’ 7T, Jo e

r” 5(01 Y >a” /ﬂ’ = X 4 ) , and H'Y dis a half
jo~ Jo 1o rjo Jo

hyperplane of the form {yeln:yrq = X4 = ag /TlJO,
. Jo Jo 0
ypt < al /TT = xr,_}(or Vet 2 al /ﬂ}. = Ky ) s
JO JO JO jo Jo JO JO 'jO
We see that irn the first case, because a'/ﬂij’

and therefore X s and therefore rj,1<j§n~1 are

J
distinct (prop. 2.1), L is a line segment containing
x while in the second case, for similar reasons, L
is an arc containing x with a corner at x (the union
of two line segments endiﬁg at x). This together

with part (i) of assertion 3 gives ws part (ii) of

assertion 3.

We divide the argument into two cases (in view of

pYop. 2.2.).

Case 1. For all j, 1<j<n-1,3cne and only one

r. s.t. XESEPj with N(S) = erj(fig. 2.3 b)

J
Fix j. Let Q "{SCPJ x€S$. Then, for S¢Q
since N(S) = e, , we have S = D.x.....xD r, X

¥y _ 1 j—-1

a = Z A s @ S S ELE e 9 = .
{ /“ij} w = wes XDH DT(LSNFQJ). qiDCC,-MLS we have a/WlJ er



Thus (J ScH. = {yeln: y = % o= aj/m. . ¥ (for some
seq. o 30013 -
v o
aj). The set U S is closed so H a nbhd Uj of x
Ser—Qi
s.t. ( U 8)nu.c y s. Since B, U 8,
Sep. SeqQ., ) sepjy
J J
B,.aUsc( U 3)nU.«c U ScH..
1 =
S SePj J seq. #
. J n-1
Wow unfix j and let U= n U..
oy J
J
n-1 n-1 n--1
Then BinUC( /A B..)nU = n (B;;rU)c A H. as required.
i 1j J iy
J=d: J=L E=1
Case 2.3 1<j.<n and integers r% , r" 1<r! <r" <n
v S 2 +5Jpsh JO} i = Js ig
- cQle P (S = & A
Sl S “Fio and N(8') = Cv 4 some S', xe3YP;
: 4 Jo
and N(S") = erﬂ for some S". Define Qj as in case 1.
Jo
Then from prop. 2.2., for each j, j#j@,arj s.t. SEQj=
N(S) = € . As in case 1, we have {J Sci, ={yer’:
r. : 3,
J SeQy
yrj = xrj=a1/,gj}for j%jo. Again from Prop. 2.2.,
SeQj, => N(S) = €, or W(S) = &,
Jo JO
Let Q'. =1S¢Q; : N(S) = Ert}, Q. ={seq; : N(S) =
io i & JO ( JO’ Q JO Q'lc i
erx-r 1
Jo
'r‘"\ o 3~ sl e = 3 ,7_(4 <
For xeoch where S Dlx.....xDro_l ktxr'gx.....an,

we shall say x is within S if x.eInt Dr for r#ro
where Int Dr is the interior of Dr im I. Thus x is

within 8 iff x¢Int S where Int S is the interior of

S in the hyperplane containing S.

Proposition 2.4.

If x is not within S for any S in Q'.

Jo
U f\'/‘errTne ¥ e 2 s e

= A " ~

, then



V) -1
Sel! SC{ yel™: Ypu 2 Fpu T a”‘io/Trij%
Iy Jo Jo ¢

Likewise, if x is not within S for any S in QU ,

o)
then U Sc{yeln: V.. X = 0«’3 ]t 'Q o
Sel! rj So ¢ 1J,
J O
- n
v bc{yeI Py, > X, = a{/%i. [P
SeQ' lj - 1j Jo tg
For, suppose X is not within S for scme S in Q! .
o)
Then 8 = Dyx....x D, 4 X {x,:3 x....xDn,
da g
e V(.. ) with a/y.. = x. = inf D_ or a/Tw. .
Dr 3) ilg 17130 ry Ty ijg =
s . 3 1 4-
xI_1 sup Dr1 for some Ty, lgrlgn, rf%rjo. But
this implies x&S'eQ. with N(S8') = e, and since r1¢
Jo 1
rj . we must infact have r, = rg (see a condition
o)

above on Qj ). Thus either SafyeIn: ¥ < x
Jo J

o .
_ 7 . n, . > _ , < Q.
= ag /”ij 3 or Sciyer’: Y rﬂxry.,aﬂ}hﬁ%fbuppose

o Jo o e ujo
now that X is'not within 8 for any 5 in Q% . If
o)
3., S.€Q' with Scfyer®: < X_, % and S,ciyel:
17 S8 fivel : ypu & Xy Fand Sycayel

% Jo  Jo
yrg > x_.}, then inf D:supfﬁ: X ., for some D,D'¢e
(o} i J
o o

@(T(ijo), But the desc‘r}p{fon of mtervals n ;D(TQJO) ?Y&cludes this,

We must therefore have (J SC{yéIn: Ve <X G

.._ '
SfQJ o) JO
o
or U SC{yéInz yI'” Z Xrn}‘
Seq: Jo Jo
(e}

The second part of proposition 2.4 is proved in a

similar manner.

We now divide case two into four situ=ztions.

Situation 1: x is not within S for euny S in Qj and
o
x is not within S8 for any S in Qg (fig. 2.3c). Of
‘ o
four possionle cases here, we treat orly one, the rest



being similar. So

Ve have,

= al
3]

3 4 b & ¢ n —
S0 if we let nj = {yel Ty =X =a!

X 13
AR

Jo
we h
X St

(Uj’

O

ave

1o

T

H.
J

Y
a'l /ir.. ¥Yand
Jo Mo

/W&j},and U

(¢} Sng

o

a'l I, . } an
3y  Edp”
U ScH!

Ser
<O

YNTE

. - ¢ .n
we assume U Seiyel : y_,
Sed! r.

Vg .

“Jo

i q n

) Sedyel < x = at' /. ..
ScqQ! o Yrt = Jo 1 ;
Jo

as in case 1, that U Seiyel : y = X

O

O
agy ={yer’: Vowe = Xypow = &5 [ Y £Xy
J O I' . © l"o ! “’o-\

vyHY . As before, @ a nbhd U-O of

d s o J

B.. nU. ¢ U S.. If we let U= N U,

iJO J() S('

. j#jo have

with the situation

Situation 2: (fig

:Q j=1 J

~Jo
been treated earlier) then we end up

in prop. 2.3 (ii).

2.3d) x is not within S for any S

in Qj and x is within SO for some SO in Q" . Again

it

O

Jo

is treated as in case 1 so we have Uj’ H., r

J’ ]

satisfying the same conditions as in case 1. For

soine

A

Z

mo€5'<”ijo)’ S5

. : ‘ L & = T
= DiXaowneXDn, Draﬁ(hlJo) and Sq = Bgx......xD,

is a face of EO SO we have EO

1]

-1

J
" : . 0

X{x n§Xeeo..xDn with x_,, = a' /w.. . Since x is

r. r J 1%

Jo J o oo

¢)
within 8, x «Int D, if r # r'" . Bither X = inf
O Jo
Dr” or X... sup Dr” . We consider only the case
Jo Jo Jo
where Xpun T sup Dr” , the other case being similar.
o Jo

Then Eo = Dix""'XDru 1 X [qu —3/ﬁ%j s X IX. ¢ o XD0,

C O . :
From prop.2.# and the assumption of situation 2, we

either have L) Sciy

SeQ!t
Jo

& n o n
(.V’ el yI‘” S Xrn 3 or U 3 C{S’GI .
J0 Jo SéQj

o



Vo 2 Xr”}. The latter inclusion implies that x_,, =
<) Jo Jo

D for some De@(hij ) (recall xe¢ lJ S and v! + s )

O - J J

SeQ! ° )
but we already have X . T Sup Dr”Jo and we have seen
Jo Jo
earlier that this cannot happen. So U SCdeIn:
Ser
: o)

Y < Xr”}' Let U!' = Int D,X Int D.,X....xX Int qu

1 2

: -1
i Jo - J

O

X(Xr” _Sfﬂ&j , 11x...e.. x Int Dn. Then U' is a nbhd of
des ~o
c o t I, - ' Tt n .
x s.t. ({yel : Ve < x.,}~ 5 )nU'cInt E clnt F;SX Bijo.
Jo
Thus ({yeln: Vo, < X ”},?B.. nU'eS . Since U S <
p = Tpl ij o .
AT S N
iyEI PV £ qu}, we have [( U S)m_%ij ]nU'cSO. As

J J SeQ! o
O (@) JO

(0]

in case 1, U Sefyer™: ot = Xr"}' Again as in case 1,
Seqr T

Jo
da nbhd Ui of x s.t. BjyAULe U 8. Let U, =1Uin

o o 0 ScQj 0 ¢}

o ‘jO_

O
U'. ‘i'hen Bi N0, < U S‘iifyeln: Vo = XY"'-': Ckl&c/?f’w }
Jo Yo SeQ" J Yo 43,

J O
=a" /. .t. Let r. = r" .
i, "iig jo g

: o
. _ n

Put ﬂj —{yeI PV T X

2 1 Jo Jo

Then with U Uj’ we have a sitwation as in prop.

1l
2>

- 2.3.(1).,

Situation 3. x is not within S for any S in Q' and
Jo
X is within S for some S_1in Q! . This situation is
o e} 5
similar to situation 2.

Situation 4. (fig 2.3a)

X 1is within S' for some S' in Q!

' and x is within S"
Jo

for some 8" in Q" .
Jo
For some Ef, E'¢ E’(hij ), S' ig a face of E' and
' o)
8" is a face of E". We have E' = Dix.....xD‘n, B o=
DRy comeZDMMy 8% = DIy« ou@D ', ~1 48 tX....xD'n,

1 1 Joot s
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S" = Dix...... xD" g X{&rq'gx....xD”n. where x_,,
=a'/m. , x, =a'l /W, , x €lnt D'_if r § rt ,
Jo "1do rjo PR R v Jo
v : ; §
and erInt D”r if r ¥ rj . Furthermore, X1 €1Sup
o) Jo
D’ int D', } and x_,e{sup D", , int DY,}. Of the
i ! Y i '
Jo g Jg Jo Jo
four possible cases, we consider only one, i.e. x_, =
| | Jo
inf D;l and X.n = Sup D;q
Jo ds Jo
Then E' = Dix....xD' , 5 X [x., , X + 3/  Ix.....x
Jo Jo Jo  TTo
-~ - . . _ "
w" DYx 'XD”]?'.' -1 X [Xl".' 3/77130’ Xr:]! Ix...xD
Jo J, o
Let U' = Int Di XvesseX 1D D'rl g X [Q{ Xt 3/ﬂ1j )X
Jo Jo o
AIntD'n. and U" = Int DYy x.....x Int D", | X
- JO
(X0 = 3/ﬂi. , 11x..%4¢ED'"n
5 o '
and U, = U'nU". Then U is a nbhd of x s.t. UyN
n - U%ﬂ n
5 . = 7 ¢ 3 7 = X i QS
{yeI R XrEJCS'7@§CI PV AerCD .
Jo 'JO JO Jo
: ¢ el
As in case 1, U Setyel: y,, = xr,‘gand
A ) r!
StQj Jo Jo
U & ¢ .10 ©
scQ! Scyyvel s y., = X t
Jo Jo des
whence ( U S)aU €S' and ( Y S)YnU €¢S". As
o o e o o
SeQ! SeQ
Jo Jo
in case 1, obtain a nbhd V ofgs.t. B..nVec|) S.
1J :
O Ser
Let U, = U_av. Then (*¥) B,. aU, cS'uS"dyer™: °
i, © ij, do
- = 5 § n, - = a" /9T
Ypr T Epr T 8y /Wij§U£y€I P Vpu Xy all /.t
Jo Jo o Jo Jo o o
As in a previous case (because U.<¢ U') we have iyeIn:
o
1 n‘_
yrt > XI“.} nU. cInt E'elnt FlJOC_I Bijo
Jo Jo o .
Similarly, §yeI": y_, < x_,}aU.cI" - B,. .
r' ol J ij
n Jo Jo Of n o
m e wiic . e e i T >
Thus Bijé\UJS{yeI PV < xr{}nLytL P Moy 2 kng‘



Combining with (*) above, we have Bij. O Uj;c:H'gou

are as in prop. 2.3(ii).

’30. Where H'j H"§_
n—l - . .
Thus letting U = | U;, we have a gsituation as 1n

prop. 2.3 (ii).
n ¥ .
Let (Yn,orn) = I - U Bi with the inherited
i=1
(euclidean) metric. We show that (¥n, Gh) satisfies

the requirements mentioned earlier.

N

=
I

\]

Assertion 4 dz(Yn ¢'n)

Proof: Let (Cj, C'yj) 1 < g <n-l be n-1 pairs of

closed sets of (Yn, ¢n) s.t.
®n(Cy, C'j) > 0 ¥j, 1<j<n-1. Then if Cj and C'j

are the closures of Cj and C'j in 1™ we have 63” 6'5

= ¢ 1<j<n-1. So for some ieN, CjeCij, C'j€C'ii
1<j<n-1.  Thus Bij separates C; and E"j in 1" for
each j, 1<j<n-1. Let B'j = Bijn¥n. Then B'i is a

closed set of (Yn, 61) separating Cj and C'} for
‘ n-1 n-%
each j. Furthermore A B'| = (. A Bij) AYn =

451 J=L
BifAYn = & . Thus dz(Yn,Wn) < n-2.

Assertion 5 p-dim (Yn, @n) > n-1.

Proof. Assume p-dim (Yn, o'n) < n-2. For 1l<k<n,

o4

let Ak = 'fyéln: ¥y, = 0}, Ak = {yer™: Vi = 1] .
We want to construct closed sets Mk, 0O<k<n, of "
satisfying:-

(1) My =1I", M = ¢ .

(2) MkeMk-1  1<k<n

(3) Mk separates AkAMk-1 and A'kaMk-1 in Mk-1.



The construction is by induction. Assume, for some
d, 0<j<n-2, that we have constructed closed sets

n . P
Mk of I  and collections %k of closed subsets of

Yn satisfying:- ( fov o02k<])

(i) My = 1"

(ii) MkeMk-1, 1 <k <3

(iii) Mk separates Ak nMk-1 and A'knMk-1 in Mk-1
(iv) Fi is finite

(v) g = {F, Fe’fyk} covers M.

(vi) Mesh¥i < 1

(2%

>k < n-k-2

(vii) If x € MkAYn, then ordy ¢ <

Construct@?i+1 and Mdi+1l as follows.
Put Fi+l = {F e Wi: Fnaicinuiddl

put W = ( {J F)NMi and let Mi+1l be the
Fe "Zi+l

boundary in Mi of W. (i) and (ii) are obvious.

To see that (iii) holds, note that Mi-( F)

| . N F e -Fons

is an open set of Mj (condition iv) containing
Ai+l A Mi (by the construction of@§i+1) and contained
in W (because of (v)). Furthermore, (vi) implies
that WnA'j+l = & . This proves (iii).

(iv), (v) and (vi) are obvious. To see (vii), let

X edi+lnYn. Then xe Mi-We ( U ® o= U F
Fe%i Fedi
Fé&Fi+l FEFi+1

(from iv) (closures are in In).
So for some F, Fe¥i, F&Fi+l, xeF.
Since xeYn and F is a closed set of Yn, xeF. Thus

ord, “Fi+l < ordy Fi = 1 < n-(i+l) - 2



o
Put MO = 1¥ 2nd construct 20 as follows.

Letz% be a finite open cover of I by open balls of
radius % . Since 1" is compact,%B has a Lebesgue
number € so that any set of diameter not exceeding ¢
is contained in a member ofﬁB . Since py-dim Ym< n-2,
da closed (in ¥ 1.f. (in Yp cover ' of Yawith
ord %' < n-2 and mesh %'<¢ . Then 3 & fumnction,
lnggiygg s.t. Fe&f(F). TFor Bed, let g(B) =

U F. Let 90 = {g@), BeBf . Then o
FeZ!
£(F)=B

. o . N o
is a finite closed cover of Yn, with mesh F0 < 1, and

ord¥0 < n-2. Also ¥£,~f is a closed set containing

o> Fes0
Yn. Since dim i&g Bi < n-1 (countable sum theorem),
Yn is dense in I%. Thus U T = I". We have

FeFo
therefore shown that (i), (iv), (v), (vi) and (vii)

are satisfied. The rest of the conditions are vacuously
satisfied. fe can therefore construct closed sets

Mk, O<k<n-1 satisfying conditions (i) to (vii).

However, the empty set wmay not separate AnA Mn-1

and A'nr¥Mn_1 in Mn-1. We shall therefore refer to

Mn-1 as M and construct the proper ¥n-1 from it.

From (vii) if xeMa¥n then ordyZn-1 < -1. But M€

U

&4 F and further, if xeMaYnthen x€F, Fefyn—l =>
Fe 2 n-1

. . . o
X¢ F since ¥ is a closed set of ¥Yn. So “n-1 covers

MnYn. Combining this with ordxcfn~1 < -— 1 for xe Mn
Yn, we see that Ma¥n= 0.

k|

et T = ZXan—Q: ordysﬁ'n—Z > l}». T is a closed



Tao
set of Mn-2. McTeMn-2nAn( 4 Bi). The first
1=1

inclusion follows because xéM => xéF for some Fe
-1 and x¢F for some Fe Fn-2 -¥n-1 (as we have seen
earlier). To see that the second inclusion holds,

we recall that xg& Mn-2 N Y¥Yn and xefﬁ, Fen-2 implies

1!

xXeF so for xeMn-2aAYn ordxﬁyn—Z ordx%%h—2 < 0

(from (vii)), So TclMn-2 - ¥n

1]

oz
Mn-2 N ( Y Bi)
i=1

Let P, P', Q, Q' be the union of components of T
that intersect An-1, A'n-1, An, A'n respecfively.
These sets are closed. Take P, for example. Let

% e T be a limit point of P. ™ sequences @i of
points of P and Ci of components of P s.t. 1%mfxi.=“
and X{igCi. Then & & 1imianCi (w.r.t.T). So,
from lemma 2.1C, limsup Ci (w.r.t.T) is connected.
Limsup Ci intersects An-1. This is because each
Ci intersects An-1 at, say, Ai. Exempting the trivial
case where the/ﬁi are only a finite number, {,61%
is an infinite subset of the compact TANAAn-1 and so
has a limit point A Then fsglimsup Ci. So
limsup'Ci is a connectcd set of T imtersecting An-1
which implies limsup Cic€P so X ¢liminf Ci €limsup
CicP. SoxegeP. So P is closed in T. Similarly,

P', Q, Q' are closed.

Claim: There is no connected set of T intersecting
both Py P' and QnQ'. For suppose there were.
Then we could construct (by uniting with appropriate

components of T and taking the closure) a connected



= H e

compact set of T intersecting An and A'n and one
(or both) of An-1 and A'n-1. Since Tec .t; Bi

and from assertion 1,assertion 3(ii), and 1;éma 2.3,
this connected subset must be contained in some
simple arc or some simple closed curve say M of
someBi. This would imply that I touches An-1

(or A'n-1), An, and A'n. From assertion 3(i) and
assertion 2(ii) it follows that [' is a simple arc
and |7 meets the surface of I only at its end

points. But now assertion 2(i) impliesr1 has three

end points, impossible for a simple arc.

It also follows that PuP' and QnQ' are disjoint

(a point is connected). So there exist, by lemma
2.2, disjoint clopen sets U, U' of T with T = UeU',
PvP'c U, and QnQ'cU"'.

Because An-1 U A'n-1 does not intersect U' (because
An-ltJA'n—inTcU), we have [(An-1VA'n-1)n Mn-2]0U U
and U' are disjoint closed sets of Mn.n We can
therefore find an open set V of My.,s.t. VaT = U' and
VN (An-1UA'n-10U) = & . Define Mn-1 as follows.
Let Mn-1 = (M-V) U (V-V).

We recall that M separates An-1n Mn-2 and A'n-1n Mn-2
in Mn-2. Let G, G' be open sets of Mn-2 s.t.

Mn-2 -M = GuG', An-1AMn-2¢G, A'n-1nMn-2¢ G'.
av\i Ga GJ: St’
Let H = G-V, H' =(G'V V~(V-V).

Then clearly H, H' are open sets of Mn-2 s.t.
Mn-2-Mn-1 = HuH',

- An-1 A Mn-2¢<H, A'n-1aMn-2<H', and HaH' =¢>



So Mn-1 separates An-1 NnMn-2 and A'n-10 Mn-2 in Mn-2.
We shéw that no component of Mn-1 meets both An and
A'n. We first note that (V-V) AT =¢. For suppose
x¢T = UvU' (see above). If xeU'«V then X%V—V. If

xeU then we already have VaU =&,

Since McT, Mn-1 is a union of the disjoint clopen

sets M-V and V-V, It suffices to show that no
component of either of these sets mects both An and
A'n. Suppose a component of M-V meets both An and
A'n. Then it is contained in a component of T that
meets both An and A'n. But such a component is
contained in QnQ'c U'cV, a contradiction. To see that
no component of V-V touches both An and A'n, we recall
that(V -YaT =$ and T is the set {xeMna:ordy ¥ n-2

> 1} . Since V-V € Mn-2, we have ordxéin,lf 0 if

x € V-V. Thus %%FJV—V is a finite disjoint clopen cover .
of V-V. So any component of V-V must lie in a member
of‘%%ﬂ!V—V. Since mesh é%hfl, no such member, and
therefore no component of V-V can touch both An and

A'n. So no component of Mn-1 touches both An and A'n.

Let J be the union of components of Mn-1 that touch An
and J' the union of components of Mn-1 that touch

An'. As: in the case for P, P', @, Q', J and J'

are closed sets of Mn-1. There is no connected set

of Mn-1 touching both J and J' since this would

yield a component of Mn-1 touching both An and An'.

It follows that JnJ' =¢. By lemma 2.2. J, J' are

separated in Mn-1 by ¢ . Since Ana Mn-1leJ, A'naMn-1le&J',



An & Mn-1, A'nNMn-1 are separated in lin-1 by @. The

scts Mk, 0<k<n then satisfy conditions (1), (2), (3)
at the beginning of the proof. Now from lemma 2.9,

3 for each 1<k<n, a closed set Nk of In‘s.t. Nk

separates Ak and A'k in ™ and Nkn Mk-1lcMk.
J
Suppose for 1<j<n-1 that N NkCMj.
-7 k=1
J+l J
Then A Nk = ( A Nk) NANj+1eMjnNj+1<Hj+1.
k=1 k=1
I n
Gt kS — - T Iv, i Y = .
Since Ny = N Al N,AM €M, we have - N, €M = ¢
Thus we have found closed sets N 1<k<n s.t. N
n
separates A, and A' and A N
k k .
k=1
n

. ) . n o, s .
is impossible; the boundary of I™ in R is isomorphic

to Sn"1 so we refer to it as Sn_l. Let f: Sn_l——~~>8n“1

k k

3
. =¢. This, however,

be the function given by f(x) = (l-x 1-x

l’ 2’
1-x ). Then f is continuous and f“1(Ak> =, £

Ak’ 1§k§n. From the condition satisfied by N above,

K’
f_l(Ak), f_l(Aé) 1<k<n is not an essential family (see
def 2.1). So from lemma 3.4 (after adjusting to

using I = [0, 1] instead of J = [-1, 1]), f has an
extension t%: I"—>s™ 1. But then £* is a continuous
function of I into In not having a iixed point

contrary to Brouwer's theorem. This contradiction

shows that p-dim (Yn, Gh) > n-1.

Assertion 6. dim Yn < n-1.
oo

The set U Bi is dense in In. For, let U be an
i=1

open set of I", U #¢ .3 an open set ¥V of IV s.t.

¢+ VeVeU. Now dim V = n > n-2., Son-1 pairs

(Cj, C'j) of disjoint closed sets or V s.t. if Tj,
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1<i<n-1, are closed sets of V s.t. TJ separates Ci

- n-1

and C'd in V for 1<j<n-1, then A Ti $¢ . Ci and
- d=1

C'd are also disjoint closed sets of ™ for each 4

so by the choice of Bid, 3 ieNr s.t. Bid separates

Ci and C'd in I" for 1<i<n-1. Then BiinV is a

closed set of V separating Ci and C'd in'V, 1l<i<n-1

Thus ¢~¢nr~\1 (Bid nV) = (n;\.l Bid)nV = BinV ¢
d=1 i=1

BiNU. So for some i€éN BinU#f¢. The assertion

now foliows from thecrem 0.15.

We therefore have p-dim (Yn, ¢n) = n-1

We now construct (Xn, Cn).

Let (4, ¥) be a totally bounded and therefore bcunded
metric space as in éxample 2.3 with dim% = n and u-

dim (% , ) = dz(z, V) = [ngl 1 < n-2 (remember n>4).

We may assume the diameter of Yn and Zis 1.

Let Xn be the disjoint uunion of Yn and Z and define
the metric €n on Xn as follows:-

fn(x,y) =6n(x, y) if x, ye¥n,

n(x,y) = Y (x, y) if x, ye ‘A&

Kn(x,?) = 1 if x£¥Yn, ye Zor xX€%, ve Yn.

Clearly, &n is a metric, d,(Xn, £n) < n-2,

p-dim (Xn, £n) = n-1 and dim Xn = n. Furthermore,
(Yn, On) is clearly totally bounded and so, therefore,
is (Xn, €n). From theorem 1.6, dS(Xn,fn) = p-dim

(Xn,#n). Thus (Xn,fn) is as required.



SECTION THREE

A natural question to ask about metric-dependent
dimension functions is whether they actually depend

on the metric as opposed to, say, the topology

arising from the metric. That is, is the terminology
'metric-dependent' justified? We show below that

it is. Infact for any integer n, n>3, we shall exhibit
a set Xn and equivalent metrics £ni, [%] £ 1 € n-1;

on Xn such that d(Xn, &ni) = i, where d is any of the
metric-dependent dimension functions discussed

n-1.

Il

above, and dim Xn

Lemma 3.1 (Nagami and Roberts} 1967).

If X is any metrizable topological space with dim

X =n, d a metric £ on X giving the topology of X
s.t. (X,£) is bounded and d(X,£)= n where d is any of

the above metric-dependent dimension functions.

Proof: In view of proposition 1.1 and remark 1.1,
we oply need to find a metric £ s.t. d2(X,£) = n.
Since X is metrizable, I a metriec #‘'on X giving the
topology of X and s.t. (X,£') is bounded. If n=0,
we would necessarily have dZ(X,ﬂ'} = 0 and we would
be through. Assume n>0. Since dim X > n-1, H n

pairs (Ci, C'i), 1 i

I
I

n, of ciosed sets of X
satisfying:-

(i) cinC'i =¢

-
A
=

< B,

(ii) If Bi, 1 €1 < n are n closed sets of X s.t.

) n
Bi separates Ci and C'i, then »n Bif ¢.
i=1



-79 -

(This is because of theorem 0.4.) I, by Urysohn's
lemma, continuous functions fi { X —> I 1 <1 < n

s.t. fi(ci) = {0F, fi(cri) = {1} for 1

I

i < n.
Define a metric Zon X by

C(x, y) = £'(X,y) + ;% 1 fi(x) - fi(?) 1. It is
clear that £ is an eé;%vglent metric to gZ' and so
gives the topology of X. It is also clear that /2 is
}bounded, since p2' is. The fact that

£(Ci, C'i) > 1 Vi, 1 < i < n and the pairs (Ci, C'i),
1 < i < n, satisfy condition (ii) dimplies tﬁat d2

(X, £) > n-1. But d, (X, £) < dim X So dz(X,éZ)= n

as desired.

Example 3.1 (Nagami and Roberts, 1967)
Let n > 3. For [gl+l < 4 < n, let (Yi, ¢’i) be a
bounded metric space with d2 (Yd, 674) = p-dim (Yd, 07d)

= [%] and dim YJ = j-1 as in example 2.3. From
lemma 3.1, 3, for each {, [%]+1 < ..5 < n a bounded
metric o’'j on Y4 which is equivalent to ¢’d and s.t.
d2 (Yi, sv'd) = dim Yy = g-1. Let Xn be the disjoint
union bf the spaces YJ, [%]+1 < ! < n. Ye may assume
the diameters of the spaces (Yd, ¢d), (Yi,¥'d) are
all less than 1. Define for each i, [%] < i < n~1
a metric €ni on Xn as follows:-

6 i(x,y) if x, yeYd and § 4 i+l
Cni(x,y) S\or'i(x, y) if x,ye¥d and 4 = i+l

Zl if xeYil, Y€Yi2 and.iaﬁ:iz.
Clearly, fni is a metric on Xn.

{
Onilvi =0 it i#i+l, Lnilvi+)

Il
%

TN
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It is clear that d2(Xn,in) = p-dim (Xn,fni)

= i and dim Xn = n-1.

Since i and 6’'d are equivalent [%]*1 <d <n, it

is clear that £ni, [%] < i < n-1 are all equivalent.

Ye now turn to the following question: :-

If d is a metric-dependent dimension function and
d(X, £) =m< n = dim X, then do there exist metrics
£i for each i, m< i <n s.t. £i is equivalent to &

and d(X, £i) = i?

We answer this question in the affirmative for the

d

metric-dependent dimension functions p-dim, d2, 3

and d5.

Lemma 3.2 (Roberts and Slaughter)

Let X be a paracompact Hansdorff space and ??an

open cover of X s.t. ord ﬁ{s n > 0. Then U

has an open 1.f. refinement ¢J = hi%{qga‘where each
j=

i is a disjoint collection.

Proof: The proof is by induction on n. The result

is obvious when n = 0. Now assume the result

true for some non-negative integer n. Suppose i/is

an open cover of X s.t. ord /< n+l. U has a  1.f.
open refinement of order < n+l so we may assume 2 is
1.f. Let S (4) be the collection of all subcollections
of 9with n+2 members. TFor each A< S(¢I) let V, =

A

f\ U. Then {VA’ AeJSCﬂ)} is a J.f. open disjoint
UeA
collection of subsets of X. It is disjoint because

ord?/ < n+l. Let Y = X- U Va
AES () :
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Then Y is a closed subset of X and ‘21[\3 is an open
(in Y), 1.f. Gh Y), cover of Y of order < n. QLIY

has an open (in Y), I.f (in Y) refinement 7' s.t.

n
ar' = ) 9'i. Where each 9} is a disjoint collection.
i=0
Because Y is normal, ¢y' has a 1.f. (in Y) closed
n
refinement &¥ = | 9¥i where each f’}*i is disjoint.
i=0

Since Y is closed, @"is also lf and closed in X.
Since X is paracompact and normal, = , by lemma

1.2 an open l.f. collection gy' of subsets of X s.t.

E’ﬂfi, each Vi disjoint, and Ve => VcU

';lf” -
e t379%o0me U. Let U n+l = {v,, AeSEDY . Then
a1 / .
W = ig() V71 i5 the required refinement of .

Lemma 3.3. (Roberts and Slaughter)

Given £> 0 and a positive integer k,d k rinite

open covers *{’1’ §2, ..... ,'gk of the unit interval I
S.t.

(1) mesh §, <& ¥ i, 1 <1i < k.

(ii) ord 2, <1 ¥ i, 1 <i ¢ k.

il

(iii) If ord, i, = 1 then ordy 5i ¢ 0 for ii,.

Proof: d a set of k distinct prime numbers Ays Tge -

qQ s.t. q; >3 and 1/qi < €/3
r s I

Vi, 1 < i < k. Let &= min {’qi—qi , T =

Ly 2y a5 pws , qi—l,’ 5 = 1,Y2,...$.,q5..,1» ~and 1<i,d<k, {# 3
= 5} (We note that ,{ﬁ - E].:L’ > 0)

_ 1 1 1 1 2 1

Let gi = [0, gi + 32:5 ¥, Qi = ié‘—, qi + 5,5),

2 3 4 451 1

=, § =, =& g .S

(gl — & ; Qi * L7 ), enew O -ql—zfg,l]

Then the covers fl, 52,...., £ are as required.
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Theorem 3.1 (Roberts and Slaughter)

If (X,é) is a metric space with p-dim (X,£) < r and

f£: X

> 1 is a continuous function, then o : XxX—>R
defined by 6(x,y) = £(x,y) +]f(x)-f(y)l is an equivalent

metric tofand p-dim (¥,0) < r+l.

Proof: The facts that £(x,y) <o (x,y) ¥ x,yeX
and 0": XxX—>R is continuous w.r.t. £ imply that £and

0 are equivalent.

Let€ > C be given. Since p-dim (X,8) < ran open
cover#/of X with £-mesh?/<ie and ord ¥<r.

r
3y lemma 3.2,% has an cpen refinementdy' = Ui

where each i 0<i<r 1is d’isjoint. By lemma 3.3.3 r+1

open covers EO, §l, ....... \'fr of I s.t. (i) mesh %i<—§£,

(ii) ord §i<l and (iii) if ord_5i_ = 1 then ord_
»

1<0 if i#]
fico it ir3
For each 0<i<r, let VUi = {Unf-l((}), Ué‘yi, Ge %i}§
Then ¥; is is an open collection and VU v= U uso
veVi . vells

T
V= yg9Yi is a cover of X.
i=0

Claim 1: ord V< r+l.

Letxe X. Suppose that x is contained in r+3 distinct

>

V Suppose three

5 7 Y
members of ), say Vs V e

EERRREE)

of these, say Vo’ Vl’ V2 are members of év_io for some

9
i,. Since ﬂio is discrete, and N Vj ?‘-gi‘, we must have
§=0

v. = unt ! (G.) 0<j<2 for some Ue %i and G.€ 5i , G.

J J - - 9 o J o J
distinct. This implies xeé A f_l(Gj) which implies

o
5 j

f(X)E N Gj contradicting the fact that ord gio < 1.
j=0 | i



So we cannot have three members of {VO,....Vr+2}

being in the sameqfio. It follows that we must have

two members, say VO’ V., in )i, and two other members,

1 0

U
say V,, Vo in Vi, 10#:11. (Vg5 g» Vg are all

distinet). From an argument analogous to the one

Vis V

M
0 0’

members of Zio and f(x)c sz\GS, G

distinct members of éll. Thus ordf(x) Ely = ordf(x)

above, we see that f(x)e G G1 G G1 being distinct

X G3 being

gil = 1 contradicting condition (iii) above for the i,
So x cannot be contained in r+3 distinct members of UV .

Since x is arbitrary, ord?¥< r+l as required.

Claim 2. O -meshYX ¢

For, if v e, then V = Uﬂf_l(G) for some UeP' and

Ge Eio for some iO' Since X' refines L and mesh ¥ <
1€, diameter U < 3¢ . Also, since mesh Eio < %¢,

X, V€ f”l(G) => ] f(x) - f(Y)] < 3e . Thus X, Ve
V=>0(x, y) = Ux, y) + [£(x) - £(y)] -<e . So

(V) <€ and o mesh® < e as required.

So for €> 0, 3 an open cover YV of X s.t. ord VUV
< r + 1 and o-mesh < ¢ which shows that p-dim (X, o)
< r+1.

Theorem 3.2 (Roberts and Slaughter)

Let (X,2) be a metric space with p-dim (X, 3) = r <
n = dim X. Then for each i, r < i <n 3 a metric g 1

on X s.t. 2i is equivalent to § and p-dim (X,0 1) = i.
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Proof: Since dim X > n-1, F n pairs (Ci, C'i)

1 < i< n of disjoint closed sets of X s.t. if

{Bi,l < i X n} is any collection of closed sets of
n

X s.t. Bi separates Ci and C'i then N DBiF¢ .
i=1

By Urysoﬁn's lemma, o continuous functions fi: X

—> I, 1<4i<mn, s.t. fi(Ci) = 0 and fi(C}) = 1.

‘Let £j (x, y) = €(x, y) + .%:Ifi(x)—fi(y)|, 1 <J<n,

ﬁO ={¢. As in the proof o;_%emma 3.1, Cj is

equivalent to £ for 1< j < n and up-dim (X,fn) =7.
From theorem 3.1, p-dim (X, £j+1) < p-dim (X, ﬂj)

+1 for 0 <J < n-1. It follows from these facts that

for each i, r <1 < n,dj, 1 < j <n s.t. p-dim

(X, £j) = i. This proves the theorem.

Lemma 3.4

Let (X, %) be a metric space, (C, C') be disjoint

n

closed sets of X and Wi, i 1, 2, ....be subsets
of X s.t.

(i) AWi+s , X-Wi) > 0

(ii) 2(C-wi, C'-Wi) > 0 ¥i.

Then Za continuous function f: X —> I s.t.

f(C) ={0}=, £(C') = {1} and flX-Wi is uniformly

continuous w.r.t. & for all i.

Proof: Define f by f(x) = ggz’cg)+ 2(x.CT)
X - £(x,

Then f(x)e I, f is continupus and £(C) = {0} ,

f(C') = {1}



Claim:; 7Yor each i, 3 ¢&i > 0 s.t.

Lix, é) + f(x, C') > 61 ¥ xeX-Wi.

Infact, put 6i = min {4(C-Wi+l, C'-Wi+1l), g (Wi+l,
X-Wi) } . Suppose for some yeC, y'e C' we have

2 x, yv) + 2(x, y') < §1 where xe X-Wi,

Then (y,y') < 2(C-Wi+l, ¢’~-Wj.1) so we must have
either ye Wi+l or y'es Wi+i. Assume W.L.G, that ye¢

" Wi+l. Then, since xe X-Wi, f2(x,y) >6 1, a contradiction.
So for yeC, y'eC', we always have {(x, y) + 2(x, 4')

> 6i if x¢fWi. Fixing x and y' and letting y vary over
C, we have I(x, C) + %(x, y') >§ and similarly,
l(x, C) + 2(x, C') > &i.,

Let g(x) = 2(x, C) and h(x) = 4(x, €) + (x, C').
Since |2(a, A) - (b, A)] < L(a, b) for a, b, e X

and A a subset of X, g(x) and h(x) nre uniformly
continuous functions. We have seen above that h(x)
>81 for xeX-Wi. For x, y eX-Wi, |[#(x) - £(y)| =

| g(x) h(y) - b(x) g = [(eGOh() -2 )= (ax)g(y)-h)gG))]
h(x) h(y) h(x) h(y)

< g |h(x) - am| + nx) [ex) - gl
‘ h(x) h(y)

e
:hT%Y ‘%?%%’Ih(X) - hi(y)| + lgx) - g(y)l ]

1 1 (x)
Since h(y) ® i ¥ y €X-Wi, n(x) < 1, and h and g

[ofe}

are uniformly continuous functions., it is now clear

that £ is uniformly continuous on  .--Wi.

Notation: For a set X and a collection v of subsets

of X, if x £€X, we denote by St (x, ) the set (; U.
’ Jev
xeU
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If A is a subset of X, we denote by St(A,u) the

set ) U. If (X, &) is a metric space we denote by
UeV
Urad

U(2,e) the collection of all open balls of radius

e w.r.t. 2.
Def 3.1. A coverV of X is said to be a star
~refinement of a covervof X and we write V *U

if the collection {St (V, V), VeV} refines v

Lemma 3.5

If Vk, k=1, 2, ....is a sequence of open Lebesque

covers of a metric space (X,2) s.t.

(i) Vk+1 * Vk ¥ KeN

(ii) The collection {St (x,V k) k=1, 2, ....} is a
neighbourhood base at x @ ¥V xe¢X then H a
metric ¢ equivalent to & s.t. Vk+1 <

U( o, 27k < Vk. ¥k.

For a proof of this lemma, see Isbell, theorem 4.

Lemma 3.6 (Goto)

Let (Ci, C'i) 1 <1 < r ber péirs of disjoint closed
sets of a metric space (X,2). Then H§ a metric g cn

X and r continuous functions Tif X L L €1 £ K
S.t.

(i) 0 1is equivalent to & and 2 >0 i.e. given

6§50, >0 s.t.  o(x,y) <e> 0 (x,y) <8V x,yeX.



- 87 -~

(ii) fi(ci) = {0} , fi(cri) = {11}
(iii) TFor any £> 0, 3an open set U of X s.t.
0(U) < €and fi|X-U is uniformly continuous w.r.t.

O for each i.

Proof: Let (X,%) and (Ci, C'i) 1 < i < r be as in
the lemma. TLet Uk = U(y, 275), k = 2,3,4,....
Then (al) Vk is a uniform open cover of (X,%).

(a2) Vk+1 % vk

(23) mesh Vk < l/k.

For k = 2, 3,.... and 1 < i <r, let

Aki = {xeX: 2(x, Ci) < 1”§,£(X, Ct1i) < lfk}.

Aki.

<

Let Ak =
i=1
Then (bl) Ak+1¢C Ak

(b2) For each xeX,3k  s.t. 1(x, U Ak) > kg,
k=kg
(bl) is obvious. To see (b2), let xeX. T §>0
s.t. for each i, either 2(x, Ci) >$§ or (x, C'i)=> %

Choose k. s.t. 1/ko < 36 . Suppose k > k

0 9 and ye Ak.
If L(x, ¥) < /ky then, since (y, Ci) < '/k < 'k,
and 2(y, ¢}!) < l/kil/ko for some i. we have

2(x, Ci) < 2/k0 <8 and 2(x, Ci ) < & for some i
contradicting the choice of ¢

So yeAy, Xk > k0 = Mx, y) 3 1/kO which proves (b2).
If for scme k Ak =9 then #2(Ci, Ci') > 0 for

1 < i < r and the metric £ and functions

2(x, Ci) would satisfy conditions (i) to
2(x,Ci) +o(x,Ci')

(iii) of lemma 3.6. (iii) would be sutisfied because
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g(x, Ci) + 2(x, Ci') >8> 0 ¥ x for some ¢ if

2(Ci, Ci') > 0 and we would then proceed as in lemma
3.4.

So we- assume Ak#? for all K.

Let Gk = St(Ak,v k) and let Vk = {Gk} v{UeQ k:
UMk=%} . ThenVk is a Lebesgue open cover of X
(sinceVk <Vk and vk is Lebesguner) and the sequence
Vk, k = 2, 3,.....5atisfies:-

(c1)V k+1 % Vk

(c2) The collection {8t(x,vk) kX =1, 2,....} is a

nbhd base at x for each xeX.

To see (cl), suppose Ve V k+l. We want to show

St (V,V k+1) ¢V'e7 k for some V'. Suppose V =
Gk+1. Clearly St(Gk+1,V k+l) = St(GK+l,U.k+1).
Suppose UgV k+1 and U \Gk+1l#$¢ . Then St (U,=k+1) M
Ak+1 £ ¢. But St(U, vy k+1) «U'ev k fer some U'.

U' MAk+1 # ¢, so UYAk # 4, so U'e St(Ak,v k) = Gk.
So UeGk (infact St(U, Vk+1) <« Gk). It follows that
St(Gk+1,v k+1) cGk so St (Gk+1l, V k+1) €Gkey k.

Now suppose V ¥ Gk+1l. Then V = Uyev k+l. If
Gk+11U, = ¢ then St (Uy,v k+l) = St(Uy,v k1) &
U'cV' for some U'e Vk and V'e Vk. If Gk+1l nUO'—Fé’,
)

then, as above, St(UO,“\?k+1)CGk, Now, clearly St U,

Vk+1) - St(Uo"u_‘,.,{+1)-uGk+1'
L

Gy 41€G) SO S{(UO, Vies1) €6 V. -

To show (c2), we only nced show that for any xeX

Since cA -
Since Ak*' A- and

1 7k ‘Ux

k+1°<

and ¢ > 0,3 k; s.t. Z(St(x,‘VkO)) <e ., Let xtX.

(b2) implies§k0 s.t. 1/ kg < e and g(x, Ako) > 1/ kg
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. 1 . . o
SIHC? mesht)ko < /ko, X#Gko. So if erszO then

Veu ky and UV) < 1/k0. So 25t(x, V k) < 2/k0 <E .,

Thus V%, k = 2, 3,....satisfy the conditions of
lemma 3.5 and A a metric ocon X s.t:- (dl1)0 is
compatible with? and Vk+1 < U (o, 2°°) < Y k

¥k, k=2, 3,.....

-k~-1

Since U(Z%, 2 ) = Uk+l <Vk+l < U(g, 2—k), we have

k-1

Ax, y) < 27 = 0 (x,y) < 2“k and condition (i) of

lemma 3.6 follows.

Claim: For each k, k = 2, 3, 4,... and 1 <i <r
St(Ci~Gk, V k) (€'} -Gk) =0
For suppose x € St (Ci -Gk, V k)M (C'i - Gk). Then

x €Ve V k for some V s.t. VVW(Ci-Gk)$ao , V) (Ci'-

b

Gk)+ ¢ . Obviously V¥ Gk so Ve Uk so V) < L
But this implies x€ Ake< Gk contrary to the fact that

X€ Cé - Gk.
Since U(o, 275%) <V k, St(Ci-Gk, U(e,275))N ¢ ¢4 -Gl
= ¢ . Hence o (Ci-Gk, C'i-Gk) > 2“k.

—k+1 -
Now let Wk = {xeX: o(x, Gk) < 2 ek P BR= 2, B,:.5:
k

Since Gk+l1¢ Gk it follows that o(Wk+1, X-Wk) > 2~
Since Gk ¢ Wk we have o(Ci-Wk, C'i-Wk) > 27K ¥ i
lfifr, Now from 1emmg 3.4, § for each i, a continuous
function fi:!: X—1 s.t. fi(Ci) = {0} , fi(C'i)={1}

and fi is uniformly continuous on X-Wk w.r.t. ©
for each k. To complete the proof, it is only necessary
to show that ligxo(Wk) = 0. Since Gke Vk and V Kk

-k+1 -k+2

< U(o, 2 ) we have o(Gk) < 2 It
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~-k+3

then follows that ¢ (Wk) < 2 and the proof is

complete.

Lemma 3.7 (Goto)
Let (X, %) be a metric space. Let {be a metric on Ir,
for some positive integer r, giving the usual topology

T ‘Euh(‘éicn
Let f; X—> 1" be a continuous , $.t. for any

~

of 1%;
€> 0, H an open set U of X s.t. 2 (U) <gand f is uni-
formly continuous on X-U w.r.t.2,rt

If o: XxXX—> R is the function described byo (x, y)

= Ux,y) + 1(f(x), £(y)), theno is an equivalent

metric to? and d2(X,O ) < max { d2(X,2), r}

Proof: We may assume d2(X,2) <« otherwise there is
nothing to prove. It is clear that ¢ is a metric
equivalent to 2. Let wm = max{ d2(X,l), )

Let (Ci, C'i) 1 < 1 <m + 1 be m+l pairs of closed
sets of X s.t.0 (Ci, C'i) > 0 1 < i < m*+l. Let ¢ =
min {o(Ci, C'i), 1 < i < meld . By hypothesis 3
%5 and £ is uniformly
continuous on X-U w.r.t. & , T. Let V ={ xeX:

1
2(x, U) < 8§ &}.

an open set U s.t. 2(U) <

Then (V) < 16

Claim: Tt(£(CinV), £(C'iMNV)) > 3 § .¥i, 1 < i.< m+l,
For, if xeCifW, yeC'ifW and ¢ (f(x), f(y))< %3, |

we would have ¢(X,y) = 2(x,y) + t(f{x), f(y)) <

36 + 18 =8 contrary to the choice of § .

Let Bi = T(CifW), ®;= f(CirV),1 < i < m+l.

Then Bi(\fﬁé & Vi, 1 < i g m+l. Since dim I' = r <m
and using theorem 0.4 7 closed sets Ei, E'i 1 < i < m+l

of 1V s.t.:-
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(bl) BicEi and Bgcﬁ'i .
(b2) Ei"E'i = ¢

m+1 n
(b3) y (EigE'i) = I,

i=1

. i o .
Since I° is compact, we have:-

(b4) WEi, E'i) >61 > 0 ¥ i for some 6 1.

1

. - . -1,
We have for each i that 2 (£ (Ei) - U, £ "(E'i) - U)

> 0.

To see this, let€> 0 be s.t. x, yeX-U and 2(x, y)
< €=> 71 (f(x), f(y)) <&1. Such an ¢ exists because
f is uniformly continuous on X-U. Let Xafnl(Ei}'U
; ysf_l(E'i) - U for any i. Then £(x,y) < e=>

T(f(x), f(y)) < 84 contrary to (b4) since f(x)e Ei,
f(y)eE'i. So 2(xX,y) > e. Thus %(f—l(Ei)—U, f_l(E'i)
-U) >eVi 1 < i < m+l.
Now let Fi = f“l(Ei)fWE, Fri = £ N(E')NT.
Then: -
(d1) % (Fi-U, F'i-U) > 0 ¥i.

It is also clear that:-
(d2) CifUeFi, C'iNTUer'i
(d3) FiNr'i =

m+].
(d4) |, (FiuF'i) =U.

i=1 -
d2 follows from (bl), (d3) from (h2) and (d4) from
(b3).

Claim: -
(d5) %(Fri-u, C'i - U) > 0, «(F'i-U, Ci-U) > 0 ¥i.

To see this, let 82 = min {% €, Q(f—l(Ei)—U, 7 (E 1) -0)
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Suppose x € C'i-U and i(x,.Fi—U) <62 .

Then 2(x, Fi-U) < % e so 2(x, U) < % ¢ since

FicT. So xeV. So x eC'if) Vet N(E'i).

Since x¢U, XEf_l(E'i) - U and so g(x, Fi-U) >

2(x, (kD) - ) > a(e N@D-u, £HED-D) > 6,

a contradicticn. It follows that Q(Fi—U,‘C‘i—U) > Oa
> 0. Similarly L(F'i - ﬁ, Ci - U) > 0.

We also have:-

(d6) &(Ci-U, C'i-U) > 0 ¥i,1 < i < m+l.

Té see this, choose §3 s.t.

+1 Since f

B

0 < 63 < min {e(Ci, C'i), 1 < 1<

()

> 0 s.t.

™

.

is uniformly continuous on X-U, F
€< 36 and for x, y e€X-U 2(x,y) < g=>

T(f(x), f(y)) < 383 . Then if xeCi-U, yeC'i-U

for any i, L(x,y) < & => T(ftx), f(y)) < 3683

So 0(x,y) = L(x,y) + t1(£(x), f(y)) < e+ %83 < §;
contrary to the choice of §; and the fact that x ¢Ci,
yeC'i. So for xeCi-U, yeC'i -U p(x,y) > ¥ 1

which implies 2(Ci-U, C'i-U) >e > 0 ¥ i.

Let Di = CilFi, D'i = CiUF'i 1 < i < m+l.

Since Fi, F'i are disjoint closed sets of U s.t.
CinUe Fi and C'iNUcF'i, it follows that Di, D'i are
disjoint closed sets of X (since Ci, C'i are disjoint).
Furthermore, it follows from (dl1), {(d45) and (d6)

that 2(Di-U, D'i-U) > 0 ¥i, 1 < i < m+1.

Since d,(X,% ) < m, Fclosed sets Ki, Ki of X s.t.

’-§‘ T . SRS : m+1
ix*(\hl' = ¢ 3 Dl - UCI'&l, Dll . UCKi’ ?iz‘ld X - U

see Fig 3.1 -

(KjUKG)



Let Wi = (Ki - U)yDi, W'i = (Ki - UDU D'i.
Since (Ki - U)>(Di - U), (K{-U)>(D'i-U) and

Ki-U, K'i-U are disjoint, Wi, W'i are disjoint.
m+1
Clearly CiecDieWi, C'ieD'iceW'i and \J (WiUW'i)
i=1
m+1 m+1
= y [(Ki - U)uK'i-UJy [ uy Diyd'i)] =
i=1 i=1 :
m+1 m+1 :
{1 U ®UK'1)I-U} ULy (FIUF'D)]I2((X-U)y U = X
i=1 i=1

(" (using (d4) ).
So we have found disjoint closed sets Wi, W'i 1 % i < m+1
m+ 1
s.t. CieWi, C'ic¥W'i and U (WiywW'i) = X. Thus

i=1

d2(X,cr) < m as required.

We are now recady to prove a result analogous to thecrem

3.2 for the dimension function d2.

Theorem 3.3. (Goto)

Let (X, 2) be a metric space s.t. dZ(X’ 9).=m < n

= dim X. Then for each i, m < i1 < n. =T a metric 9. on
9 wed '1

X s.t. ﬂi is equivalent to £ and dz(X, gi) = i.

Proof: Let i > m (there is nothing to show if i = m).

The conditions of the theorem imply m > 0 so i > 1.

-t

Since dim X > 1 - 1, = 1 pairs of disjoint closed sets

(Ci, C'd) 1 < j < i s.t. for any closed sets Yj, 1<j<i,
' i

s.t. Yj separates Cj and C'j, we have Y3 £ ¢.

=1

J

o

By lenma 3.6 T a metric Ocon X and continuous functions

f. + X—>I 1
3 |

IA

j < 1s.t.:-
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(i) o0 is equivalent to f%and %> o.
(ii) f (Cj) =0, T (C'3) = 1
(iii) Given €> 0, 3an open set U of X s.t. o (U) < ¢

and f; | X-U is uniformly continuous w.r.t. o¥

g, 1< 3§ < i,

Let f: X—> 1" be given by f(x) = (fl(x), fz(X),....,

fi(x)). Let T be the metric on I* given by

i

T(X,y) = L lxj - yj | where x = (Xl, X5 .7Xi),
J=1

y:(yl, Vopooees yi). T gives the usual topology

of I1, Condition (iii) above implies that f satisfies
the uniformity condition of lemma 3.7; i.e. given

€< 0, ZFan open set U of X s.t. 0(U) < € and £lx-U

is uniformly continuous w.r.t. o, T . Let % be
given by fi(x, y) = L(x, y) + T(£f(x), f(y)). Then
from lemma 3.7, d (X, 2i) < max {d2(X,O ), i} . Since.

L> o, dz(X,o ) < d, (X, 2) <i sod, (X, £i) < i.

2

On the other hand, we have 2i (Cj, C'j) > 1

2

Vi, 1 < j <1 and yet if Yj, 1 < j < i are closed sets

separating Cj and C'j then
J

YJ ® . This implies

Tt

*
1

d2(X, £4) > i-1, so d2(X, 21) = 1 as required.

We restate a special case of lemma 1.4.

Lemma 3.8

Let X be a topological space, C, C' be disjoint closed
_ Kk
sets of X and X = ; Di where Di 1 < i < k is open
i=1 - B
and Dic Di+l. For each i, let Fi be the closed set

Di -~ Di-1 (DO =¢ ). Suppose Bi, 1 < i < k are closed



sets of Fi s.t. Bi separates CNFi and C'NFi in Fi.

Then F-a closed set B of X s.t. B separates C and C!
k

in X and B ¢y (Biybdry Di) This lemma is obtdined
i=1

from.lemma 1.4 by putting Gj = X, j > k.

Theorem 3.4 (Nichols, 1969)

Let (X, %) be a metric space and f: X—> I a

- continuous function. Define o : Xx¥X——> R by

O(x, y) = %x, y) + |f(x) - £(y)| . Then ¢ is an
equivalent metric to 2 and

) 9

(id) dg (X,0) < dg (X, %) + 1.

(i)  d, (X,0) < d; (X,2) + 1

Proof: Since the proofs of (i) and (ii) are similar,
they are proved simultaneously. fe have seen earlier

that o and 2 are equivalent.

Let (X, %), f,0 be as given with d5(X,2 ) < m
(respectively dS(X;Q ) < m).

Let A be a countable (resp. finite) set.

Let Cj, C'j JjeA be pairs of disjoint closed sets
of X s.t. o(Cj, C'J) > > 0 ¥ jeA for some ¢ .
Choose N s.t. 1/N < %3 e,

Since A is countable, I distinct members Mj, jEA of
the interval (O, 1/N).

For each j, 1let Moj = 0, Mlj = Mj, sz = Mj

MBJ = MJ + 2/N, ..o.MNj — MJ + N-l/N s MJN”I‘]_

-+

/N,

1l
—
.

Put K = N+1.
Then (1) M*j < Mi™Y5 ana ui*l; - wi; < 3% ¥ jEA,

6 < i <k-1.



(2) If j#j' and 1 < i,i'< k-1 then Mij#:ni'j'.
Both claims are clear.
For 0 < i < k-1, and j €A, let Dji = £ 1 [0, ¥'5)
and let Djk = X. Then for fixed j, it is clear that
the sets Dji 0 < i < k satisfy the conditions of lemma
3.8. It is also clear that if Fji is defined by Fji

= Dji - Dji-1 1 < i < k (i.e. as in lemma 3.8), then:-

(3) f£(Fii) e it uyty.

Claim: (4). 2(CjNFji, C'jNrji) > 3e ¥ JjeA, 1 < i < |
For, if x € CjNFji, ye€C'jNFji, then, since  (Cj, C'j)
>e. 0(x, y) >€3 but from (3) and (1), | £(x) - £(y) |
< 3e sol(x,y) =o0(x,y) - lf(x)—f(y)! > 3€ and the

claim follows.

Thus the collection (CjNFji, C'jNFji) jeA, 1 < i<k
is a countable (resp. finite)‘collection satisfying
(4). Since dS(X,Q) < m (resp. dg(x,% ) < m), we

can find closed sets B'ji, jeA, 1 < i <kof X s.t.
B'ji éeparates CjN¥ji and C'jNFji in X and ord
{B'ji, jeA, 1 < i <k} < m-1. Let Bji = B'jinFji.
Then Bji is a closed set of X (and ¥ji) separating
CjnTFji and C'jnFji in Fji and ord 4§ Bji, jeA.

1<i<k} <m-1.

We want to construct closed sets B3 of X s.t.
Bj separates Cj and C'j in X and ord {Bj, jeA} <

ord {Bji jeA, 1 < i < k} +1.

-

From lemma 1, d for each fixed j a closed set Bj of
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X s.t. Bj separates Cj and C'j and:-

k
(6) Bjec- U (Bjivubdry Dji)
i=1
Claim: ord {Bj, je A} < ord £Bji, JjeA, 1<i<k! +1.
t
For, suppose xe€¢ n B. where jr’ 1<r<t are t distinct
=1 T
members of A(t>1l). Then, from (6) we have:-
k
(7)) xe U (Bj i\)bdry Dj,1i) for each r, 1<r<t.
i=1

Now bdry Dj 1CFJ inFjpi+tlc £ 1"\13 ) (from (3))

Also bdry Dj k = bdry X = ¢
k T

k-1
So U bdry Dj i =  bdry Djri. We therefore have
i=1 r i=1
k k-1 1 ; k-1
U bdry Dj _ic U £ ° (itj* ). Now from (2), ( U
i=1 o b il
1.=]. i=1
-1 - 1 . x .
ragtyn Kgtoet i ooy =g oir £ g
i=]1
Kk
Thus x can belong to the set [ bdry DJ i for at
' i=1 k
most one r, 1l<r<t. Then from (7), x belongs to uyU
-7 i=1

Bjri for at least t-1 indices r, say 1<r<t-1.

For each r, lfrgt—lfﬂlr, 1<i <k s.t. x¢Bj i . Then
xijrir for t-1 distinct pairs irjr' It follows that
ord {Bj, je A}t < ord {Bji, Je A, 1<i<k}+l

Thur ord {Bj, je A}f m. This shows that dg (X, o)

< m+l (resp. dB(X’ o) < mtl),

We finally prove a result analogous to theorem 3.2.

for the dimension functions d3 and d5.

Theorem 3.5 (Nichols, 1969).

Let (X,£) be a metric space with dg (X,£)=m<m = dm X
(%es? dy (X, £)=m<mn = dim X). Then fov any mteger 5 such
that mgcsem 4 a mebrc ZS e%unm(en‘f to & st

ds (X, s)=5 (wesp. day (X, €5)= 3).



Proof:

Since dim X > n-1,2 n pairs cf disjoint closed sets

(Cj, €'3j) 1 < j <ns.t. if Bj 1 < J < n are closed

sets of X s.t. Bj separates Cj and C'j for 1 < j < n

n
then n Bji:& . By Uryschns lemma, I for each
J=k

j, 1 < j < n, a continuous function ﬁj:'X~~> L s.t.

fj(ciy = {03, f(C'3) = {1}. For each i,
i
“Mo<io<nlet £i(x, y) = l(x, y) ¢+ A |f GO-55 ()
hd 3

Let £, =f . Then from theorem 3.4,

-

, 0 <1 <n
are equivalent and d(X, £i) < d(X, gi—l)+1, 1 24 < n,dﬁ

As in lemma 3.1, d (X, €n) = n (resp. d, (X,Zn)=n).

3
It follows from the above facts that for any s, m<s<n

Ja metric £ equivalent tofs.t. d_(X, £e) = s

(resp. dg (X, Eg ) =81,

Historical notes:

The realization theorem for d3(theorem 3.5) was first
proved for separable metric spaces cnly by Roberts
(Roberts, 1968) in 1968. Nichols (Nichols 1969)
generalized the result to all metric spaces in 1969.
The same result for d2 (theorem 3.3.) was first
proved in a very special case (for the spaces (Yn, £n)
in example 2.3 where X = In) by Nichols (Nichols,
1973) in 1973. Goto proved the result for all metric

spaces in 1976.
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SECTION 4

In this section, we study some characterizations of
the metric-dependent dimension functions p-dim, d2,

d3, d

the dimension functions d2, d3, d6 d7 and u-dim.
’ s

50 d6 and d7 and prove a weak sum theorem for

In the proofs, we leave out trival cases where the

dimension is -1.

-

Definition 4.1

A cover 9{of a metric space (X, £) is said to be a

Lebesque Cover of (X, £) if for some &> 0, every

subset of X of diameter not exceeding & is contained

in some member of 7/. Such a & is called a Lebesaue
———————. e e

number for % .

Definiticn 4.2

A cover % of a metric space (X,£) is said to be

uniformly shrinkable if for some §> 0, T a cover

¥, UcU}of X s.t. £(Fy, X-U) >§V UeZ. (Recall
that £(x, §) = ¥ xeX by convention). {Fﬁ, UeU'§

is called a uniform shrinking of /.

Theorem 4.1

A cover §{ of a metric space (X, £) is a Lebesgue

cover of (X,/£ ) iff it is uniformly shrinkable.

Proof: Necessity: Let 7{be a Leb=aque cover of
; a}
(X, £) with Lebesgue number & . TFor each U € U

Let Fyy = {xex: €(x, X-U) > 35§
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Then {-FU’ Uc—;%{} is a cover of X. For suppose xXeX.
B(x, 5,‘/2)CU for scme U el . So £E(x, Xn-U ) >
$/2 so x¢ ¥ By - Obviously €(F,, X-U)> &/2 ¥ Uell.
So 74 is unlaformly shrinkable.

. . Fel .
Sufficiency: Suppose a cover 7 of a metric space

(X, £) is uniformly shrinkable.

Let {FU, Ue?ibe a cover of X s.t. €(F,, X-U)

U,
>85>0 ¥ UeZl for some & .

3

(S

Let A be any subset of X with £(A) <
Leaving out the trivial case A =¢ , A(\FU'$(‘P
for some U’Oéﬂ . But this implies ACUO proving
that 9/ is Lebesque.

Corollary 4.1

. 3 & - . o <
Every Lebesque cover U of a metric space (X, £)
has an open Lebesgue refinement {G,,, Ue UF s.t.
-~

G cU.
U

Proof: If U is a Lebesgue cover of (X, £),
let {FU, UeUY be a uniform shrinking of ¥/ s.t.
(Fyy, X-U) >8> 0 ¥ Ue U for some &

Let G = B(Fy, 8). Then {GU, UeU § is an open

Lebesgue cover of (X, £) and G.'UCU.
Defn. 4.3 Let {Qy, %A} be a collection of

collections of subsets of a set X. Let [' be the

set of functions f: A -— U gy
YeA

s.t. f(v)e§ ¥ veA.
Hop = TY |
Then /\’yc!\ﬁ is defined to be the collection

§ N ), fef_'}
Yen
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Defn 4.4. A collection F= 1 Cyo «cAY of subsets

of a set X is said to be m-point bounded if it is

of order m-1. It is said to be point bounded if it
is of finite order, and is said to be point finite
if every point is contained in C, for only finitely

many «

Lemma - 4.1

Let S,\gh, ,“/6/\} be a collection of collections of
subsets of a metric space (X, £).
(i) If'g»y- is a Lebesgue cover of (X, £) with Lebesque
number & for each Ye A for some § , then /\«/(.Ati’y
is a Lebesque cover of (X, £) with Lebesgue

number &

(ii) If Qy =1Gy , G4 and {G'y, , ¥eAJ is locally
finite, then /\},-C_!,I 9)« is localliy finite, _ Itis

countable tf A s countalle.

L G . P A2 s -
(iii) 1If 0_}, fG,, Gy} and 1{G y YeA§ is point
bounded, then A"‘/c/\ :'E[y is point bounded. It is

countable if A 15 countable.

(iv) It 'g,y= {G.y, G'\/} and {G'y, Yé& /\i is point
finite, then /\75/1 f;y is point finite,Tt 15 countable
£ A s countalble

Proof: (i). Suppese each E,y is Lebesque with

Lebesque number § . Let A be any set of diameter

net exceeding & . For each YeA let f(y) be a

member of ‘g’y containing A (Since \‘77 is Lebesque

with number &§ ). Then Ac N L(¥)E A YeA T’ A
» Ve



This shows thatﬁygqéi? is a Lebesgue cover of (X, &)

with Lebesque number & .

(ii) Suppose§y=:{G?7G%,3 and {Giy,Vcﬂ}is 1.8
For any xe¢X, d a nbhd U cf x s.t. U intersects only
Put B =

finitely many G%,'S, say G' PP ¢ &

71 Vk ’
§¥ seeresy 1o Let [ be as in defn 4.3. 1If fel
is s.t. Un%iu £CY))E¢ we must have £(y) = Gy.for @ﬁ#B.
There are only finitely many such f's in [? and so U
intersects only finitely many members of/\yGA?iY
Ayzg%;rf is 1.1, To see thatuﬁyaﬁ?iv' is countable,
let fel' be s.t. f(y) = G{y for infinitely may «'s in
A. Then, since {G! ‘,7Cﬁ}15 1.1, {) f(?) =¢ . So
if N £(v)xd, we must have f(7§}; G’
Yen ‘ Y
for only finitely many #'s. There are only countably
many such f's in [ and that impliesxﬁyCAE;y is
counﬁable. The proof of (iii) and (iv) are‘similar to

the proof of (ii).

Lemma 4.2

Let X be a normal space and (F_, ;i);decJ a collection

of closed sets of X s.t. Fy,n Fl =¢¥ueced and §{X-Fi,
3 . 3 . . =3 ‘. ‘ >
meo4}1s point finite. If g =/gi60iixﬁpd, X—F;&}
. pess 4 7 & Sr ;
(i.e. G =4 Eut? where dg= {X-T,, X«Fk(} ) has an

«

open refinement of order < n > 0 then 3 closed sets

By, %€4 s.t. B, separates F, and F'; and ord {Bd’

&
e A< n-1.

For a proof of this lemma, see Nagata '"Modern dimension

theory™ I1, 5, B pp 23-25.

3
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In the rest of this section, Jn denotes the set

{1, 2 3,....,n} for a positive integer n.

Theorem 4.2 (Smith, 1968)

Let (X, £¢) be a metric space. Then dz(X, 2) <n
iff for each collection -{é}i, iedn+1% of n+1 binary
Lebesque covers of X (i.e. covers ccnsisting of two

=t

members), the cover'§=:AiGJn+l,ii of X has an open

refinement of order < n.

Proof: Necessity: Suppose d2(X, £) <n > 0.

Let é%ii, iéJn+l§ be n+l1 binary Lebesque covers of
X. From corollary 4.1, we may assume each gii to be

an open cover. Clearly, each EZi can be written as
{Gi, x-Fi} where F£(Fi, X-Gi) >&> 0 ¥i for some & .

Then, since d2(X,ﬁ) < n, Jopen sets Ui, i&Jdn+l s.t.
o nEl
FicUicUicGi and A Bi = where Bi = bdry Ui. For
i=1 »
each non-empty subset I of Jn+l let Gﬁ be the

collection 1 C N ; Bi), Ce AieIfwi, x-Tils.
id1

(Take N Bi = X). TFor kéJn$%1etf¥$ be the collection

icd
e n+1éu n+1l
K).CE. U-§~k covers X (recall « Bi =<ﬁ) and,
[Il=k k=1 i=7
clearly, refines ﬁiCJn+l gi. If ¥, F' are distinct

members of%?k, then for some i€Jndi we must have a
situation where FcUi and F' < X-Ui or FeX-Ui and F'e
Ui so that FaF' = ¢ . Thus ﬁgk, being finite, is a
disjointcollectim of relatively open subsets of U F.

FeJk

) . oir L y
Since X is completely normal and “ k is finite,da



disjoint collection ?1k of open subsets of X s.t.

It = 8 ?.;:' T > LT T,et 1 = NG where
Hx {n,, Fe Ik} and Feu,. Let H'[ = Hy NG where G

is a member of AiEJn+1 gi containing F. Then ﬁ%‘k

= foF, Fe‘?& T is a disjoint collection of open

sets of X and §k refines fH'k (but they are not

necessarily covers of X) which in turn refines Ni

€JIn+1 gi.
Since |V ¥k covers X, so does U fH'k = 34,
keJn+1 keJn+l
say .
\>Claim: ord ?{5 n. This is clear because each 34k

is a disjoint collection. It is also clear that H
refines Aian+J_§i.since each 04k does. Thus we
have found an open refinement of iedn+l 31 of

order < n.

Sufficiency: Assume that for each collection {Eii,

ieJn+1} , of n+l binary Lebesque covers of (X,2),

AieJh+J §i has an open refinement of order < n.

Let (Ci, C'i) i€Jn+l be n+l pairs of closed sets

s.t. €(Ci, C'i) > 0. Then {X-Ci, X-C'i§, i € Jn+1,

are clearly n+1 binary Lebesqgie covers of(X,@g4163$+1
{X—Ci, X—C'i} has an open refinement of order

< n by hypothesis. From lemma 4.2, = closed sets Bi,

ieJn+l s.t. Bi separates Ci and C'i and ord {Bi, i€

Jn+l? < n-1. Thus d2 Xs £)Y < n.

Theorem 4.3. - (Smith, 1968). Let (X, £) be a
metric space. Then d2(X,]i) < n iff every Lebesgue

cover § = {Gl’ Gosuevnns Gﬁ_)} of (X, £), consisting
+

of n+2 members has an open refinement of order < n.
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Proof: Necessity: Assume d (X, £) < n.

Let § = {Gi....., G%+2} be a Lebesque cover of (X, £).
From theorem 4.1 (and taking closures)ﬁ a closed

cover ¥ = {Fl, F. of X s.t. £(Fi, X-Gi)

- L Eﬁ+2}
>0 ¥i, 1 < i < n+2. AieJn+l {Gi, X-Fi Yrefines 4.
This is because if He Aiegn+1 £Gi, X-Fi} , then

either HcGi for some i, iéJn+l, or HecX- Fi
iedn+l

in which case HCFn+2 cGn+2 (since “¥covers X).
T>By theorem 4 - 2, /ﬁieJn {Gi, X—Fi} has an open
refinement of order < n. Thuszihas an open refinement

of order < n.

Sufficiency: Suppose each Lebesgue cover £i= {Gl,....
% Gn+2} of (X,¢) consisting of n+2 members has an

open refinement of order < n. Let (Ci, C'i) i€ Jn+l

be n+l pairs of closed sets of X s.t. £(Ci, C'i)

> 0. Let § be s.t. 0 < 55 min {E(Ci, C'i)s i&'IYH1§

For i €Jn+l, let Ui = B(Ci, &) and Fi = B(Ci,8/4).

Let Un+2 = X - U Fi.
iedJn+1l

) 5y . o —
Then 7% = {Ul, U2""" Uh+2} is uniformly shrinkable
and so is a LebeSﬂue cover. To see that?/is uniformly
shrinkable, 1let U'i = B(Ci, &/2) i€Jn+1 and

U'nss =3X- U B (Ci, 6/3). Then {_U'l,....U'nm.%
iedn+t

is a uniform shrinking of 9/. By hypothesis, % has

an open refinement % of order < n. I a function f: 2L’

— A We T i
>  s.t. for We¥, Wcr(W). TFor each i € Jn+2,

let Hi = U . he N - ) .
e dw Then 31 {Hl, wx % 55 Hﬂ$2§1s
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an open refinement of Us.t. Hicvi i€Jn+2, and

ord % < n. Let Ei = Ci - Hi, i1é&€dJdn+1l. Let Yi =
B(Ei, 9/4),i €Jn+i (recall that ¢£(x, &) = % by
convention), and let Vi = HiuvYi, i€Jn+1, and Vn+2 =
Hn+2, YiNHn+2 ¢YiNUn+2 =@,i €JIn+l from the
definition of Yi and Un+2. This, together with ord
3I§ n implies ord 57 < n where ) = Z'Vl,....,Vn%l% .
It is clear that CicVieX-C'i i€Jn+1 and A covers
X. Since X is normal, H closed sets Di,ie€Jn+2

s.t. CieDieVi, icin+l and & = {D,....0 7}
covers X. Again, since X is normal, dopen sets Ki,

i€éJn+l s.t. DiCKiC§i£Vi,iéJn+1. Let Bi = bdry I~i,

iedJn+l. Then clearly Bi separates Ci and C'i.

Claim: ord {Bi, ie€Jn+1} < n-1.

~ Suppose x¢ N Bi. Then x¢ Di for i¢Jn. Thus

iedn+l
X € Dn+2 since ﬁ) covers X. Thus xé& Vn+2. Also

xeVi, i€Jdn+1 since BicVi, i€Jn+l, so xe¢ N Vi
i€dn+2

which is impossible since ord U < n. This shows

that d, (X, £) < n.

Defn 4.5 A collection & of subsets of a metric

space (X, £) is said to be n-uniformly discrete, n>1,
M .

if &= v Z;i where \Cfi, 1 < i< n satisfy the
i=1 S

condition that 3 &> 0 s.t. ¥i,

I A

i <mn, and C, C'

1
[ ZZi with C4C' we have £(C, C') > & .



- 108 -

Lemma 4.3 (Smith and Nichols)

If T is a Lebesgue cover of a metric space (X, )

and & = \J T& where each %¢ is m-point bounded,
. oel

m a fixed positive integer, then & has a refinement S
s.t. © =0;g 0o and each 0o is m-uniformly discrete.

Proof: The proof is by induction on m.

Suppose the result true for a positive integer m.
j>Let C be as in the lemma with m replaced by m+l. ¢

has a Lebesque refinement & = {F., Cez} s.t.

Q(Fc, X-C) >8> 0 ¥Cct for some & . For each cel

let 7@ be the collection of all subcollections of g

with m+1 members. For each Seva , let Gs = (1 F,.
CeS

Then for any @ , if S, S'eta , S#S', I C czo (VJ-L:G)
s.t. Ces, C¢S'. Then, since o is m+l-point

bounded, Gs'NC =¢. But GsCF, so 2(Gs, Gs') > §.

A
Let Yy = U GS' Let Y = UJ Y o and let ‘Z.=X"ys
Seta - ael
For each aeh s let Ta = { F,nZ , Ceta }
Let I =aé£ o, Then T is a Lebesgue cover of 'Z .

For each %€l Tlo is m-point bounded. By the induc-
. : . : i LJ Ak
tion hypothesis, II has a refinement © = gk 0 o

where @& is m-uniformly discrete with o = u Ao
i=1

where A o1, 1 < 1 < m satisfy the condition that

for some &' > 0, X, XK'e A af , KEFX* = K, K') >

for any 1 For each o ,-let hAamsex = {Gs, S¢ tak
m+1

Let @ @4 = yj A og . Then O = U 0 ¢ is the
{=1 . ogh

required refinement of ¢ . If m = 1 then
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@ = {p,, cetd =V o

ael

where {0 = {Fb, CECH §

is the required refinement. This completes the

induction.

Lemma 4.4. (Smith and Nichols)

Let & be a Lebesque cover of a metric space B4 2y

S«ts & = \gcu‘where each ro 1is m-point bounded.
aE
Then ¢ has an open Lebesque refinement g s.t. g

= oéi 0o where each 6u is m-uniformly discrete.

e
AL =

Proof: ¢ has aLebesgue refinement&{sz et =, t.

Q(Ft, X-C) >8>0 ¥ Ce ¢ for some § . LetQo = {Fg,
Cega } . Thei § = U]Qa and each Qo is m-point
OEL
bounded.
By lemma 4.3, 2 has a refinement 1 = U I o
ged

m
where each Mo is m-uniformly discrete. II o = 1y Aai

i=1

where for some 6'a> 0, K, K' ¢ A @, , 1 < i < m,

L 229

KFK' => 2(X, K') > 68 ‘'

Let 80" = min { &, § ' a} for each gep .
Then if Oa = { B(H, 1/4 Sa), Hella} , 0o is an
m-uniformly discrete open collection and 0 = U Ou

ael

is the required open Lebesgue refinement of ¢

Corollary 4.2 (Smith and Nichols)

Let C be an n-point bounded Lebesgue cover of a

metric space (X, %). Then ¢ has an n-uniformly



discrete open Lebesgue refinement.

Proof: This is immediate from Lemma 4.4.

Theorem 4.4. (Smith and Nichols)

Let (X,?%) be a metric space. Then d2(Xﬁ,) < n iff
every n+2 - point boundéd Lebesque cover of (X, %)

has an open refinement of order < n.

Proof: Necessity: Assume d, (X, 2 ) < n. Let¢
—_— & - 5
be an n+2 - point bounded Lebesgue cover of X. From

Corollary 4.2, r has an open Lebesgue refinement O

n+2 .
where 0= ©1i and each 61 is disjoint.
aeell
Let Gi = v G. {Gi, 1 < i <n+2} is a Lebesgue
Ge o1i » :

cover of X with n+2 members so, from Theorem 4.3,
{Gi} has an open refinement II of order <n. 3

& function f£: H % {1, Z;::...0%¥2}F s.t.
HeG . t = NG, He :

Then M is an open refinement of ¢ of order < n.

Sufficiency: This is clear from Theorem 4.3 since
every collection consisting of n+2 members is n+2

point bounded.

Theorem 4.5 (Smith, Smith and Nichals)

Let (X, %) be a metric space. Then the following are
equivalent: -

(1) dg (X, £)< n

(ii) Every finite Lebesque cover of (X, ¢) has an

open refinement of order < n.
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(iii) Every point bounded Lebesque cover of (X, %)

has an open refinement of order < n.

(iv) If (Ca, C'a ) oaedh are pairs of closed sets
of X s.t. 2(Ca;y C'a) >8>0 ¥V aeA for some
§ and {X-C'a , aeA} is point bounded then

d closed sets B a, acA s.t. Ba separates

C o and C'oc and ord {Ba,occA } < n-1.

Proof: We prove (i) => (ii) = (iii) = (iv) = (1i).

(i) = (ii).

)

Suppose dS(X’ £) < n. Let © =[G1, Gz,......,Gk}be
a finite Lebesque cover of (X, £). From corollary

4.1, we may assume O to be an open cover. H , by

theorem 4.1, a closed cover § = {Fl, Foyeeeens By
of X s.t, Q(Fi,X—Gi)>0for1§i§‘,§
Since d, (X, £) < n,Jopen sets Ui, 1 <i <k s.t

FieUieUi«Gi, 1 < i < k, and ord {bdry Ui, 1 < i < Kk}
< n-1. By lemma 1.3, Gi}lhas an open refinement of

order < n.
(ii) => (iii) :

Assume (ii). Let ¢ be a point bounded Lebesque cover
of (X,%) so for some positive integer m ¢ is m-point

-

bounded. From corollary 4.2, ¢z has an open Lebesque

m
refinement © where 0 = UJ @i and each 01 is
i=1
disjoint. Let Gi = U G. {Gi, 1 < i < m}
Ge Oi - B

is a finite Lebesgue cover of (X, ¢). From (ii),

{Gi, 1 < i < ml}has an open refinement  of order < n.
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Ha function f:J—> {1, 2,...., m} s.t. HeGppy
¥ Hel" . Let A ={HNG, Hel, Ge 6 £(H)Y . Then A is

an open refinement of ¢ of order < n.
(iii) = (iv)

Assume (iii). Let (Cu, C'a )aeA and 6 be as in
(iv). {X-Cq, X-C'a} is a Lebesque cover of (¥, %)
¥ ae A and so, therefore, is A aehr {X-Cou, X-C'a}
from Lemma 4.1. Since {X-C'a,aeA} is point bounded,
Aoed {X-Co, X-C'a} is point bounded by lemma 4.1. So
from @ii), Aaed { X-Cqo, X-C' o} has an open refinement

o

of order & n. From lemma 4.2, I closed sets By, ael
s.t. Ba separates Coa and C'g and ord

Ba, aea} < n-1.

(iv) = (i).

This is clear from the definition of d3.

Lemma 4.5 (Smith, 1970)

Let © = {Ga, aeA}}be a star-countable collection
of subsets of a set X. Then T a partition {4 g ,

R ex}of A s.t.A B is countable for each Bey and if

- : . ¢ Sl
we put X B = ue&% Gao then if 8,8 € ¥, BB’, then

XB N XBI = (I)‘

Proof: Define a relation~non A as follows.

ova’ if d a finite number of members Gay s GQL?,....G@k
of 6 s.t. Gon Goy# @, GoyO Gay$0¢, ....Go 0

Ga'd$ o. Clearly ~ is an equivalence relation on A .

Let {AB » Beyx} be the collection of equivalence
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classes of v . Then the conditions of the lemma

are satisfied.

Lemma 4.6 (Smith, 1968)
Every countable LebesQue cover of a metric space

(X,%2) has a countable, ppen, 1.f. Lebesque refinement.

Proof: Let 9 be a countable Lebesgue cover of a

metric space (X, %). From corollary 4.1, © has

a countable open Lebesque refinement I ={ Hy, Hy,
ceees }o. Let Q= {Fl; Foyunens } be a uniform

shrinking of I with (Fi, X-Hi) >§> 0 ¥i, i =1,

2,.... for some § .

Let Ui = Hi - 4 B(Fj, 6/4) i = 2, 3,.... and Uy
j<i

= Hl' Clearly v = {Ul, U2, ..... } is an open,

countable, 1.f. refinement of 6 . Furthermore,

if Ei = B(Fi, } 6) - U B(Fi, /3 &)
3< i .
1= 2; 83sisss and E1 = B (Fl,% §), then El, E2.....

... } is a uniform shrinking of v so v is Lebesgue.

Theorem 4.6 (Smith, Smith and Nichols)

Let (X,%) be a metric space. Then the following

conditions are equivalent

(1) d6( X,%) <n

(ii) Every countable 1.f. Lebesque covér of (X, %)
has an open refinement of order < n.

(iii) Every countable Lebesque cover of (X, %)

J

has an open refinement of order < n.
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(iv) Every star-countable Lebesque cover of (X, %)

‘has an open refinement of order < n.

(v) Every Lebesque cover of (X, ¢ ) representable
as a union z Vi with Y i m-point bounded

i*1
i =1, 2.... for some positive integer m has

an open refinement of order < n.

Proof: We prove (i) => (ii) => (iii) => (iv) =>

(v) => (ii) => (i).

(i) => (ii).

Let 0 ={G G «e«.} be a countable 1.f.

i* “g*°
Lebesgue cover of (X, £). TFrom corcllary 4.1.,

we may assume O is open. From theorem 4.1, O has
a closed refinement Q = {Fl, Foernn.
2 (Fi, X-Gi) > 6> 0 ¥i, i =1, 2, 3,.... for some $
Since dG(X’ 2) < n,3open sets Ui, 1 =1, 2,....

s.t. FieUic UieGi i =1, 2,.... and ord {bdry Ui,

i=1, 2,..... } < n-1. {Ui } is a cover of X

and by lemma 1.3 © has an open refinement of order

(11) => (iii).

This is obvious from lemma 4.6.

(iii) => (div).

I

Assume (iii). Let © {Ga,aeA} be a star countable
Lebesque cover of (X,y ). From lemma 4.5, 3 a

partition {A8,Bex] of 4 s.t. each AB is countable
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and if X Go then XB()XB' =® if B#B',B , B' €X

= \J

aclAB
Clearly, for each Bey,uB = {Ga, aeAB } UIX-Xg}
(= {Go,aeng}V { U Ga}) is a countable Lebesgue

of bp

cover of (X, 2 ). € From (iii), vB has an open refine-
ment VB  of order < n. If we let u"8 be the collection
of these members of VB which are contained in some

Go, aeAf , then v”B is an open cover of Xg of order

< n which refines { Go,aeAB} . Let v =8§§ V"B,

Then v is an open refinement of 0 of order < n.

(iv) => (v)

Assume (iv). Let ¢

>

be a Lebesgue cover of (X,% )

oo}

s.t.c = ) r i where I an integer m s.t. % i is
i=1

m-point bounded for each i. From lemma 4.4., °C has
an open Lebesque refinement 0 s.t. @ = Y ¢ i

m i=1
and each 0i = J II ij where TTij are disjoint

J=1
collections. For each i, i =1, 2,.....and 1 < j < m,
let Hij = 4 H. Then T = { Hij, 1 = 1, 2,....

He IIij

1 < J % m} is é countable Lebesgue cover of (X, ).
From (iv) (or even (iii)) I has an open refinement
Vof order < n. 3 a function f:,, —> NxN I s.t.
UcHf(U) ¥ Ue v .

Then {UnK, Uev , K €Il £(uy !} is ar open refinement

of ¢ of order < n.
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(v) => (ii) is immediate.

(i1) = (i),

Assume (ii). Let (Ci, C'i) i1 €N be a collection of
pairs of closed sets of X s.t. f#(Ci, C'i) > 8> 0

¥ ieXN for some Sand {X-C'i, iegN} is 1.f.

From lemma 4.1, © =AieN {X-Ci, X-C'i} is a
countable, 1.f. Lebesgue cover of (X, 2). From
(ii), © has an open refinement of order < n. From
lemma 4.2, J closed sets Bi, ieN s.t. Bi separates

Ci and C'i and ord {Bi, ieN }< n-1. This completes

the proof.

Lemma 4.7
Every point finite Lebesgue cover of a metric space

(X,%) has a locally finite Lebesgue refinement.

Proof: Let v be a point finite Lebesque cover of
a metric space (X, &). From Theorem 4.1 V has a
uniform shrinking {FU, Uev} s.t. &(FU, X-U) > §
>0 ¥ Usu for some § . Let GU = B(FU, } 9).
Claim: © = {GU, Uev } is a 1.f. Lebesgue cover of
(X, &). 0 is Lebesque because {FU, UeV} is a
unif orm shrinking of © . To see that © is 1.f., let
xeX. Then, since vV is point finite, x is contained
in only finitely ﬁany members, say Ui U2,...., Uk of
v. Now if x¢ U ev , then B(x, 3 §) N GU = ¢ so
Bix, % §) intersects at mpst a finite number of

members (GU GU ""‘GUk) of 0 .

1° 2
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Theorem 4.7 (Smith, Smith and Nichols)

Let (X, 2) be a metric space. Then the following

conditions are equivalent:-

(1) d7(X,2) < n.
(ii) Every locally finite Lebesque cover of (X,0)

has an open refinement of order < n.

(iii) Every point finite Lebesgue cover of (X,%)

has an open refinement of order < n.

(iv) If (Ce, C' ) ach is a collection of pairs of
closed sets of (X,2) s.t. a{Ca, C'a) >5§>0 V¥
aeh for some § and {X-C'a,o0ecA} 1is point finite
then F closed sets Ba,acA s.t. Ba separates

Ca and C'a ¥ aeA and ord {Ba,acA} < n-1

Proof: We prove (i) => (ii) => (iii) => (iv) => (i).

(1) => (ddi),

Assume d7(X,2) < n. Let 0 be a 1.f. Lebesque cover

of (X, 2). From corollary 4.1, we may assume O to be
open.- From theorem 4.1, 0 has a clesed refinement

{F., G €0} s.t. L(FG, X-G) > 6> @ V G €0 for some &.
Since d7(X, 2) < n, Zopen sets Ug, G €0 s.t.

FeUgeUsG ¥ Geband ord {bdry U., Ge0} < n-1.
From lemma 1.3, © has an open refimement of crder

< n.

(ii) => (iii).

This is obvious from lemma 4.7



(iii) => (iv).

Let (éa, C'a acA and § be as in (iv).
{x-Co, X-C'al is a Lebesgue cover of (X,% )
with Lebesque number § ¥ acA . From lemma 4.1, ¢
=haed {X-Ca, X-C'a} is a point finite Lebesque cover
of (X, 2). From (iii) O has an open refinement of
order < n. From lemma 4.2, 3 closed sets By

’

a € A satisfying the condition in (iv).

(iv) => (1)

This is obvious.

Theorem 4.8 (Smith, 1970)

Let (X, 9 be a metric space.

Then the following conditions are equivalent

(i) d5 (X,2) <n

(ii) If (Co, C' o) aeh is a collection of pairs of
closed sets of (X2 ) s.t. 2 (Ca,-C'a) >8
> 0 ¥ aed for some & and {I-C'a ,0cA} is
star countable, then F closed sets Ba?agA

s.t. Bo separates Co and C'a ¥aeA and

ord {Ba, aed} < n-1.

Proof:

(i) => (ii) _

Assume dS(X,Q) < n. Let (Ca, C'a) cch and § be
as in (ii). From lemma 4.5, = a partition {28 ,

RBex} of & s.t. each AB is countable and if X8 =

\J (X-C'0) then X BAXR' = ¢ HifB8%p',B,8 ey
ce B



- 119 -

Since pg 1is countable and dS(X’ 2) <n, 3, for
each éex , closed sets: By ,0€l8B s.t. B @
separates C @ and C'a for each €48 and ord

{B a,0es8 } < n-1.

Then U {Bo,acsB} = {Bo,aeA}l 1is a collection
Bex

of closed sets of (X, 2 's.t. Ba separates Co and
C'o ¥oaeh and ord {Bg,ae A} < n-1. To see that ord
{Ba,0ed} < n-1, we note that if Bo separates Co
‘and C'a , then Ba € X-C'o < X8 1if oeldB Bex

So if B#R', 8,8 ex, then for aer and rep g ',

Bo NB A = & (because Xg nXg’ = @). This, together
with the fact that ord {Ba , aeAB}< n-1 implies

that ord {Ba , aen} < n-1.

Thus (ii) holds.

(ii) => (1),

This is obvious.

Theorem 4.9 (Egorov)

For a metric space (X, 2), p-dim (X, 2) < n 3£
every Lebesgue cover of (X, £) has an open refinement

of order < n.
Proof: The proof is immediate.

From theorem 4.7, the following is now obvious:-

Theorem 4.10

For any metric space (X,2% ), d,(X,2 ) < p-dim (X, 2 )

7

This justifies the claim in remark 1.1.



- 120 -

We now use the Lebesque cover characterizations
derived so far to prove a weak sum theorem for dz,

dy, dg, d and p-dim.

7
Defn 4.6
Let © be an open cover of a topological space X.
Then O -dim(X) is the smallest integer n s.t. 3 an
open refinement of O of order < n. 0 -dim (X) =
if no such integer exists. If YeX, then 0 -dim Y =

0|Y-dim Y by definition.

Theorem 4.11 (Morita)

Let X be a normal topological space, { Ua, ceA}l a

1.f. open collection and {Fo,aeA} a closed collection
coeuvew

s.t. FoecUa ¥ aeld, Let O be any 1l.f. openAof X

s.t. O-dim (Fao) <n ¥ aeA . If dim Fo ) FB

< n-1 for o# B, then 0-dim '/, Fo < n.
' ael

The proof of this theorem can be found in Morita.

We generalize theorem 4.11 to the following:-

Theorem 4.12 (Smith, 1970).

Let X be a normal topological space,

{va, aes} a 1.f. open collection and

{Fa,dEA} a closed collection s.t. FycUy Vaceh

Let © be any 1.f. open cover of X s.t. 0 -dim (Fy)
<n  ¥oaed, If dim bdry (R ).y F3 < n-1 for of 8 ,

then 0-dim \J Fa < n.
ae -

UNIVERSITY DF NAIROBI
LIBRKARY
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Proof: Let 0, Uqgy Fa,ach be as above.
Let S( A) be the collection of all finite non-
empty subsets of A. For each Ae S(A ), let H, =

A
M Fo - L, int Fou

Let V, = (yUa, Then II={1n,, A¢S (A )} and
ac Ly A

V= {VA’ A €S (L )} are locally finite, V is open,

I is closed,and HACVA ¥ AeS ( A),

Claim (i) Y H, =o 4 i we .
AeS (B)

(ii) If A, A'€S( 8&) A#A' then

HAAHA'c:bdry (Faoa)n ra' for some a, af

To see (i), suppose X € \Z Fo. Since {Faq aeA} is
aE

l.f. x 1is contained in only finitely many F,, so
{o €A xeFoal= A, eS(A).

Then XEHA . To see (ii), suppose A, A' ¢S (A) with
o

A#A'., Either A-A' # ® or A'-A # ¢. W.L.G. assume
A-A" # ¢, Let ae A-A'. Since A' #o, 48 ¢ A'.
Then HAr\HA'c:(Fa_int FR)VFRe FoNbdry Fg . Since 1

is a closed collection, we have dim HA“HA' < n-1
if A#A', A,A' €S( A). Since Ilrefines {Fy, acA}
0 —dim (HA) <n ¥ AeSCA). Ve now apply theorem

4.11 to conclude that 0 -dim U Fo= @ -dim vy
ach AES( L)

HA < n.

Theorem 4.13 (Smith, 1970)

Let {Fua,aqa efibe a 1.f. closed cover of a metric space
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(X,8) s.t. if & # gthen dim bdry (Fq)nF/; < n-=1,

d d, or d

If d(Fy) < n ¥Aegfwhere d is p-dim, d g5 4g

7’ 2’

then d(X,£) < n.

Proof: Assume.u—dim ng n Vgesf (respectively d7,

d., d, and dy). LetEZbe a Lebesque cover of (X,f£)

6> 73

(respectively 1.f. Lebesgue cover, countable Lebesgue

cover, finite Lebesgue cover or a Lebesgue cover with

n+2 members). For eachoaﬁﬁngd is a Lebesgue cover

of T (resp. 1.f. Lebesgue cover, countable Lebesgue cover,

finite Lebesgue cover or Lebesgue cover with n+2

members). Since p-dim Fy < n (resp. d7(Fd) < n, d6

(Fy) < n, dg(Fd) < n, d2(Fd) < n)gjﬁx has an open

‘(in Fy) 1.£. (in Fy) refinementZ@<s.t. ord Z{y<n.

Since Fy is normal, ?(y has a closed 1.f. (in Fy)

refinement §;s.t. ord$, < n. §4 is also 1.f. in X.

Furthermore, since{Fd}is 1.f. and Ee§y = EcF,, 3;:«'(?04 Igo(
is 1.f. in X. Alsogirefines g . By lemma

1.23 an open 1.f. refinement‘V={VE, Et\%g of Ys.t.

EeV, for each Eeg and ord {VE, Ee§y} < n. Clearly?-dim

F, <n Vaesf. By theorem 4.12, P-dim X < n. So VY and

therefomaﬁ, has an open refinement of order < n.

Thus p-dim (X,£) < n (resp. d7(X,£) < n, d6(X,E) < n,

‘d3(X,£) < n and dz(X,ﬁ) < n).

Remark
It might be speculated that the various metric-
dependent dimension functions satisfy other sum theorems

e.g. the countable sum theorem (theorem 0.7), a
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monotone sum theorem (i.e. if Fi, ieN is an increasing

sequence of closed sets s.t. X = U Fi and d(Fi)
i=1

<n then d(X) < n), or a finite sum theorem.
J.C. Nichols and J.C. Smith have shown (Nichols and
Smith) that none of the metric-dependent dimensions
functions discussed above satisfy any of the sum
theorems mentioned. They construct a metric space
(X)) 8.1, X=AlUA2, Al’ A2 closed in X with p-dim

Ay <1, p-dim A, < 1 but d2(X,£) > 2. This shéws
that none of the metric-dependent dimension functions
satisfies the countable sum theorem or finite sum

theorem. They also give an example of a metric

space (X,%) s.t. X =  Ai, where each Ai is closed,
ieEN

AicAi+1, and p-dim Ai < 1 for each i but dg(X,Q)
> 2. This shows that none of the metric dependent

dimension functions satisfies the monotone sum

theorem.
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CONCLUDING REMARKS

Much of the current research in dimension theory
involves the dimension theory of uniform spaces. A

uniform space is a generalization of a metric space.

Of several possible definitions of a uniform space,

we give only one.

Defn
Let X be a set. Let A denote the subset {(x, x),
xeX }of XxX. 1If U, V are subsets of XxX, let UeV

denote the set

{(x,y)ecXxX: for someze X, (x,2)e V and (z,y)e U }.

A diagonal uniformity on X is a collection T (X)

(or just T), of subsets of XxX, called surroundings,

which satisfy:-

(a) Del=>A¢eD

(b) D DzeF => D.N D, el

1.’ 1 2

(c) Del => E,EcD for some Eel

(d) Del =» E_%:D for some EceT (E-'—l is the set
{(y, x), (x, ¥DJe E }.)

(e) DerT , DcE => E ¢rT

A uniform space (X,T) is a set X together with a
diagonal uniformity T on X. A diazonal uniformity
on X gives rise to a topology on ¥ as follows. For

xeX and Del , let B(x,D) = {yeX: (:,y)e D}
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Then the collection {B(x, D), xeX, Del} is a

base for a topology on X.

Any metric 2 on X generates a diagonal uniformity
{De,e > 0} where De = {(x, y)exXxX: L(x,y) < € I .

We therefore see that a uniform space is a generaliza-
tion of a metric space. .  The condition that 2 (x, y) <€
in a metric space is replaced by the condition that
(x,y)€&, D€ I in a uniform space. Therefore the
notion of two subsets being a positive distance apart
or distant is meaningful in a uniform space. We say
two subsets C,C' of a uniform space (X,T ) are

distant if for some D€ I CxC"D = . A céllection

Co, C'0) a ev of pairs of subsets of (X,I ) are

uniformly distant if 3 De T s.t.

Ca x C'oNND = ¢ ¥ acev . We see therefore that all
the metric-depedent dimension functions discussed
above may be generalized to uniform spaces. For
these generalizations, Soniat (Soni@t) haé obtained
Lebesque - cover type characterizations for pu-dim and
d3 while Smith-(Smith ) has obtainesl Lebesque-cover
type characterizations for d2, d6’ and d7. These
dimension functions defined on unifwrm spaces fail

to satisfy the equality d4 = dim or the ineqﬁality

dim < 2d2 satisfied by metric-dependient dimension
functions. Charalambous (Charalambemis) has introduced
dimension functions TI'-dim, T-Ind,T «dl,r ~dg I _q

and F—d4 for a uniform space (X, }» which satisfy

3,

= - . = Tedi T ) T - =
i dl < T d3 < I'-d dim < 2 d2 and d

- 4 1

I'-Ind and T-dim further satisfies #he countable sum



theorem, a subset theorem, the Urysohn inequality
and a product theorem. It agrees with dim on l-indeldf
spaces and spaces with uniformity derivable from g

metric.

There exist open problems in the thecry of metric
(uniformity) dependent dimension functions. Notably,
is dB(X,Q) = p-dim (X,%) for any (separable) metric

space (X,g)?

More generally, which of the dimension functions d3;
d5, d6, d7 and p-~dim are equal and under what
conditions?

Which subset theorems are satisfied by d6 and d7?

Do d6 and d7 satisfy the realization theorem?

(see theorem 3.2).

The notion of dimension is quite fundamental and

of great intrinsic interest. Apart from that,
dimension theory is a subject that could intersect
with other areas of mathematics. Already, a strong
relationship has been found between dimension and
measure for metric spaces. (Hureuicz and Wallman,

Chapter VII).
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