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SUMMARY OF CONTENTS

Section a is a review of results in general topology

and basic dimension theory which are used in the

sequel.

In section 1, we study the relationships between the

various dimension functions. We give a proof of

a result menTioned by Nagami and Roberts (Nagami

and Roberts, 1967) to the effect that on locally

compact metric spaces, all the dimension functions

studied here coincide. We prove a lemma (lemma 1.3)

which shortens the proofs of a number of results.

In section 2 we study examples which show that different

dimension functions can have different values on the

same metric space. We give an exam~le of a connected
2

subset of I which is a union of countably many

(an more than one) disjoint non-empty closed sets

which shows that a lemma used by Nagami and Roberts

(lemma 2.3) cannot be extended to noz ma L (in fact

metric) spaces. Nagami and Roberts also show that

if A., i~N is a disjoint sequence o~ closed sets of
l

In at least two of which are non-empty, then dim
00

(In - UA.) > n-l. They give a sketch of a Cantor
i::=1 l -

2-manifold for which this result is not true. We give

a rigorous proof of this. Nagarni and Roberts have

given an example of a metric space (X,t) with d2

(X,t) = 2, d3 (X,6) = ~-dim (X,t) = 3 and dim

(X,t) - 4. This has been the only known example



where d2 and d3 differ. We generalize this to

examples with d2 < n-2, d3 =U-dim = n-l and dim

~ n for any n, n > 4.

In section 3 we study results which show that a

given metric-dependent dimension function can give

different values for equivalent metrics on a set.

We then study realization theorems, i.e. theorems to

the effect that there exist equivalent metrics to a

given metric that make a given dimension function

realize given values. We prove a lemma (lemma 3.4)

which generalizes a similar Lemma by Goto (Goto J

lemma l).

In section 4 we study more characterizations of

metric-dependent dimension functions, notably

Lebesgue cover characterizations. We study a weak

sum theorem for some metric-depende~t dimension

functions.
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INTRODUCTIO'~ :

Dimension is a basic notion in geometry. A curve is

one-dimensional, a surface two-dimensional, e.t.c.

It is a basic fact of nature that space-time is four-

dimensional.

Certain mathematical discoveries in the nineteenth

century, e.g. that the unit interval can be continuously

mapped smto -t he unit square reveaLed that the intuitive

notion of dimension is insufficient. Mathematical

concepts, however, if they are not clear ~nough

to be taken as primitivi ideas, must be rigorously

defined. Dimension theory results from a successful

attempt, in the latter half of the nineteenth century,

to give rigorous definitions to the vague notion of

dimension expressed above.

LITERATURE REVIEW:
Dimensjon theory as a subject had its beginnings

in certain publications by Poincar6 {Poincar6) and

Le~esgue (Lebesgue). Poincar~ considered curves as

boundaries of surfaces, surfaces as boundaries of

volumes e.t.c. Thus to separate a space of n

dimensions one needs a space of n-l dimensions.

Poincar~'s idea of dimension was given a rigorous

topologically invariant definition by Brouwer (Brouwer)

leading to the definition of the small inductive

dimension ind and the large induct~~e
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dimension Ind on the class of topological spaces.

Lebesgue's idea of dimension, on the other handt

lead to the definition of the covering dimension

dim on the class of torotogical spaces and the metric

dimension ~-dim on the class of metric spaces.

Ind, ind, dim and !-I-dimare refered to as di.mension

functions. The dimension function ~-dim was defined

by Alexandroff in 1935. !-I-dimdiffers from the other

three dimension functions in that it is defined on

the class of metric spaces and its definition involves

the metric. It is what we call a metric-dependent

dimension function. Many other metric-dependent

dimension functions have been defined to date. We

thus have the metric-dependent dimension functions

d , d (Nagami and Roberts, 1965), d
3

f dlj(Nagam i and
1 2

Roberts, 1967), d s (Hodel, 1967), ds and d 7 (Smith,

1968).

Dimension functions, by requirement, must have a
. nvalue of n on R , i.e. if d is a dimension function,

then we must have d(Rn) = n. By convention, d (¢)
= -1.

This thesis is a study of the metric-dependent

!-I-dimand their relations with the covering dimension

function dim which is the most widely used dimension

function.
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SBCTION 0

In this section we review results in general topology

and basic dimensions theory. The proofs of the results

in general topology can be found in "General

Topology" by J. L. Kelly wh i I.e the proofs of the

resul ts in d imen s i.on theory can be found in "Df.mens i.on

Theory!! by R. Engelkin.

Theorem 0.1 (Urysohn's lemma)

Let X be a normal topological space and C, C' be

two disjoint closed sets of X. Then 3 a continuous

function f: X-> I s.t. feC) = {O} and feC') == {l}

Theorem 0.2 (Tietze's extension ~heorem)

Let X be a normal topological space and F"a closed

subset of X. If f: F-> I is a co nt Lnuous funct ion,

*then f has a cont inuous ext ens ion f : X-:> 1. I

may be replaced in this theorem by R, n nI or R .

Defn 0.1

A t opo Log Lc aI space X is said to be co~plej:ely

normal if every subspace of X is normal.

Theorem 0.3

Let X be a completely normal topological space and Y
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a subspace of X. then if U, VI are disjoint open

sets of y,3 d i sj o Ln t open sets V, V' of X s.t. VnY = U

and V I 1\ Y = U I •

Defn 0.2

Let X be a set and 1.1= {V ,C'I.f::cA},ex

collection of subsets of X. Let n =-1, 0, 1, 2, 3....
an indexed

we say ~L has order not exc eed i.ng n and write ord 6'll..

< n if for any n+2 distinct members
n+2

of cA we have ()
i=l

U ex = ¢
i
n+l

order to be < n if ()
i=l

(some authors define the

Ua.
1

- <P for dtstin.ct 0:.).
1

We say ord OU= n if ord oz.L~ nand or-d 1J..t n-l.

Note that the order depends on the indexing so,

strictly speaking we should write srxme t htng like QT'0
;)( € .4

{V} but this has not been the tradition. No
r::t

confusion will arise over the indexing. Something

like ord {bdry V, V E'tt; w i l 1 mean :U~ U1, U2'···· Un+2n+2 .
are d i st i nct members of U then (I !br~dryU. =cjl.

. 1 11=

Every set indexes itself so when we merely talk of a

collection 1.)

n+2
will mean (l

i=l

wi thout giving an indt~x1ng, ord 1.) < n

u. = ¢ for any n+2 d~stinct members
1

U., 1<i<n+2, of 1.). Likewise, when we say a
1

collection {Ua' aE6} is locally finite, we shall

mean that for each x, x has a nbhd ~~tersectiDg U
a

for only finitely many indi.cesa. 'f'besame will

apply for point finiteness, point-botlndedness and

other such properties.
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If XEX, we say the order of....1&atx does not exceed n
and wri te ord 'it < n if there are no 0+2 clistinctx -
indices 0.1, ~ ... %+2 Ord x

4,{.= n if ord U <rl and ord ·1t..,:. n-1. If Y is a subsetx - x -
then ord'Uly w iL'l always be with reference toof X,

the indexing {U (\ v , Udi}~

Defn 0.3

Let X be a topological space and C, C' be two subsets
of X. We say a subset Y of X separates C and C' if
X-Y is the union of two disjoint relatively open
sets one containing C and the other containing Ct.

Three dimension functions, the smalJ!:inductiv~
dimension ind, the large induct ive (1imensi2.P~Ind
and the covering dimension dim are defined on the
class of topological spaces as follows:-

Let X be a topological space.

Defn 0.4

- ind X < -1 iff X = ~
for n = 0, 1, 2, ..... , ind X < n ~f for any point

XEX and closed set C of X s.t. X~Ct 3 a closed set
B of X s.t. B separates {x} and C ~nd ind B < n-l.
(Note the inductive nature of the de£inition).

ind X = n if ind X < nand ind X l n-l.
ind X 0.) if ind X I.. n for n = -1 ., 0, 1, 2,
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Defn 0.5

- Ind X < -1 iff X = <l>

-for n = 0, 1, 2 , Ind X < n if for any pair.

C, CI of disjoint closed sets of X 3 a closed

set B of X s.t. B separates C and CI and Ind B

< n-l.

Ind X = n if Ind X < n and Ind X I.. n-l.-
Ind X = 00 if Ind X l- n for n = -1, 0, 1, 2 ,

Defn 0.6

For n = -1, 0, 1, 2, ....dim X < n if for any

fini te open cover 1J of ~, 1) has an open refinement

e s.t. ord 8 < n.

Theorem 0.4 (Otto-Eilenberg theorem).

Let X be a normal space. Then the ~ollowing are

equivalent (n > 0):-

(i) dim X < n

(ii) For any n+l pairs (C., C'. l<~<n+l of
1 1 --

disjoint closed sets of X 3 closed sets

B. , 1 < i < n+l s.t. B. separates C. and C' .
1 - - 1 1 1

and n+l B. ¢=.(\ 1l=

(iii) For any n+l pairs (C., C'.) 1 < i < n+l
1 1 - -

of disjoint closed sets of X 3 pairs of

disjoint closed sets (E., E'.J 1 < i < n+l
1 :1.

n+J.s.t. C. c. E., C'. t: E'. and V (E. V E I .) = X
1 1 1 1 i=1 1 1



- 7'-

(iv) For any n+I pairs (C, C',) 1 < i < n+ll} 1

of d i aj oi.nt closed sets of X:3 pairs (D., D'.)
1 1

of open sets of X, 1 < i < n+l s.t.
D.() tr. = <P , C.eD., C' .cD' ., 1 < i < n+l

1 1 1 1 1 1

and n+l (D. D' .) X.V V =
i=l 1 1

Theorem 0.5

Let X be a normal space. Then the following are

equivalent Cn > 0):-

(i) dim X = n

(ii) If F is a closed set of X and f: F -) Sn

is a continuous function then f has an

extension f*: X --) Sn.

Theorem 0.6

Let X be any topological space and F a closed set

of X. Then if d is any of the dimension function

ind, Ind or dim, we have d(F) < dCX).
,his is aL'jo cLe.Q)'"L~ t.lu,e for- ~ll the. dlmei1slo\,\ fu-nctjo)1s
d is c u.ss ad !rdow e.xc e p t.. d6 und cL1 ltnc.{ wi tL L-e. t'l. S'SU me. d
without- Yl1€;nt.iOl'\.

Theorem 0.7 (Countable sum theorem)

Let X be a normal topological space. Let X =

Ci~ 6 Fa where Fa is a closed set of X and dim FCi

< n for each o then if 6 is countable or {F ,CiE,6}
Ci

is l.f, then dim X < n.

Theorem 0.8 CUrysohn's inequality)

Let X be a completely normal topological space
n+l

Then if X = V X. we have
1i=l

n+l
Ind X < n + LInd X ..

1
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Defn 0.7
A subset A of a topological space X is said to be an

F set if A is a countable union of closed sets of X.-CT'
A is'said to be a Go set if A is a countable

intersection of open sets of X.

Defn 0.8

A topological space X is said to be perfectly normal

if X is normal and every open subset of X is an Fa

set.

Theorem 0.9

Let X be a perfectly normal topological space.

Then if Y is a subspace of X, then dim Y < .dim X.

Theorem 0.10

A Hausdorff topological space X is ~etriz~ble iff

X is regular and has a a-locally discrete base.

Theorem 0.11

A metrizable topological space is completely normal

and perfectly normal.

Defn 0.9

Let (X,~)be a met~ic space. Let u be a collection

of subsets of X. Then 9,-mesh u (or just mesh u if

9..is understood) is defined to be sup {~(U), U ED }.
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Theorem 0.12

For a metric space (X,~) the following conditions

are equivalent:-

(a)

(b)

dtm X < n

3 a sequence of l.f. open covers u., iEN, of X
1

1 -s.t. mesh u, < Ii,.ord {U, U cu.}« n, and u. 11 1 - 1+

< u Vi EN.
1

(c) 3 a sequence of l.f. closed covers~., iEN,
1

of X s.t. mesh n. < l/i, ord ~. < n and ~'+l1 - 1 - 1

< ~ V i EN,i

(d) X has a 0.1. f. base X s .t. ord { b dry ' U, U EX}

< n-l.

(e) X has a 0.f.l. base consisting of open sets

with boundaries of dim < n-l.

(f) X = Xl V X2 with Ind Xl < 0, Ind X2' < n-l.

(g) Ind X < n .

Theorem 0.13

If X is a separable metric space then ind X = Ind X =
dim X.

Theorem 0.14

ind nn = Ind Rn - dim Rn = n.

Theorem 0.15
nIf M is a subset of R , then dim M = n iff the interior

nof I'll in R'- is non-empty.
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SECTION 1

In this section we define the various metric dependent

dimension functions and study relations between them.

The dimension function dl is defined inductively on

metric spaces as follows:-

Def 1.1 (Nagami and Roberts, 1965).

Let (X,!) be a metric space

- dl (X, t) 2 - 1 iff X = ¢

for n ~ 0, dl (X,e) < n iff for €ach pair C, C'
. 0f c 1 0sed set s 0f X s.t. ,9,(C, C') > ° 3 a c10sed

set D of X s.t. B separates C and C' and dl (B'£!B)
< n-l where tlB is the metric t restricted to B.
d 1 ( X, y,) = n iff d 1 ( XJ) < n and d 1 ( X, 9,) ~ n= L,

dl (X,t) = 00 iff dl (X, 9) {. n for n = -1,0,1,2 •..

The metric-dependent dimension func~tions d2, d3, d4,

d5, d6, d7 and u-dim are defined as follows:-

(X,t) is always a metric space.

Def 1. 2 (Nagami and Roberts, 1965),

d2 (X,f) 2 -1 iff X = ~

for n ~ 0, d2 (~,t) < n iff for ~ny n+l pairs

(C., C'.) 1 < i _< n+l, of closed sets of X s.t.
l l -

e (C., C'.) > 0:3 closed
l l

s.t. B. separates C. and C'. and
l l l

sets B., 1 < i
l -n+l

{\
i=l

< n+l

B. = ¢
l
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For n = -1, 0, 1, 2, cl2 eX,~) = n if

d2 (X,n < nand d2 (X,f) ~ n-l.

d2 (X,£) = 00 if d2 (X,t) ~ n for n = -1,

0,1. .....

Def. 1.3 (Nagami and Roberts, 1967).

d3 eX,l) ~ -1 iff X
for n > 0, d3 (X,l) < n iff the following.

-- ¢

condition ig satisfied:- Given any positive

integer k and k pairs (C., C' ')11 < i _< k,
1 1 -

of closed sets of X such that t(C., C'.) > 0,
1 1

3 closed sets Bi, 1 ~ i ~ k, of X s.t. B.
1

separates C. and C'. and ord {B.) 1 < i < k}
1 1 1

< n-l.

for n = -1, o , 1, 2 ....d3 ex, 9,) = n if d3 eX,9,)

< n and d3 (X,£.) I.. n-l.
:- -
d3 ex,l ) = 00 if d3 ex, 9) l- n for n= -1, 0, 1, 2 , ••••

Dei. 1.4 (Nagami and Roberts, 1967).
d4 (X,£) ~ -1 iff X = 1J

for n > 0, d4 eX,~) < iff X satisfies the following

condition:- Given any sequence (C., C' .;iEN
1 1

of closed sets of X s.t. l(C., C'.) > 0 Y i, 3
1 1

a sequence Bi, iEN, of closed sets of X s.t. B.
J.

separates C. and C'. and ord { B _.. i = 1, 2, •.•• }1 1 1...

< n-l.
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for n = -1,0,1,2, ..... , d4(X,g,) = n iff

d 4 (X, Q.) 2. n and d 4 (X ,9,) ~ n-1 •

1,2, .....•.

Def. l.~ (Hodel)

d , (x,9-) < -1 iff X = <p
v -

for n > 0, dS (X,!) < n iff (X,~) satisifes

the following condition:- given any sequence

(C. , C' . ) , iEN, of pairs of closed sets of X
1 1

such that for some real number El$E > 0; 9( c. ,, 1

C' . ) > EV iE:N, :3 a sequence B. , jl£ N, of closed
1 1

sets of X s.t. B. separates C. arDd C' . and ord
1 1 1

{B. , iEN} < n-1.
1 -

for n = ,-..L, nTI.f < n

and dS (X,~) t. n-l.

dS (X,9~) = 00 if dS (X, fL) ( n for m = -11

0, 1....

Defn. 1. 6 ( Sm ith, 19 6 8 ) •

d 6 ( X ,9, ) < -1 iff X = <!l

for n ~ 0, d6 ex, fL) 2. n iff for each sequence

(C., C'.) of pairs of closed sets of X s.t. for
1 1

some E> 0, 9,(C ., C I .) > E Vi and {X -C ' 1" i EN }
1 1

is locally finite, 3 a sequence B., iEN, of closed
l

sets of X s.t. B. separates C. aDd C'. and ord
111

{B., iEN } < n-1.
1
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for n = -1, o , 1, ..... d6 (X ,£' ) -- n tff d ex, t)6
< n and d6 (X, £,) I:. n-l.-

d6 (X, £,) _. 00 if d6 (X,9» 1- n, n = -1, 0, 1, 2 , ••.•

Defn. 1.7 (Smith, 1968)

d7 ex, n 5. -1 iff X =<P

for n > 0, d7(X,£') < n iff given any collection

(Ca, CI ), aE6 , of pairs of closed sets of X
Ci.

s.t. for some E> 0 9.eca, Cia) :. €vaE6 and {X-Cia,

aE6} is locally finite, then 3 a collection

. IDa' aE6} of closed sets of X s.t. Ba separates

Ca and C I a for each «an d ord { Ba, aE6} < n-l.

Defn 1.8 (Alexandroff)
. .

For n -.-1, 0, l ...~ I.l-dim(X,£') < '!i,j.fffor any

G > 0 "3 an open cover <& of (X ,.Q) s. 'to ord '11< 11

and mesh "U5. £.

Evidently, d2 < d3 < d6 < d5 < d4 an d d6 < d7·- - - - -
We shall show that for any metric space (X,X-),

dl (X, 9,) = d4 ex,£ ) = d i.m X.

Theorem 1.1. (Nagami and Roberts, 1965).

For any metric space (X,t), dl eX,t) = dim X.

Proof: It is clear from a trivial induction that d1
(X,t) < Ind X = dim X. We show that dim X < dl
(X,t). The proof is by induction. Assume that for

some n, n = -1, Os 1, 2, .. e •• d1 eX,tJ:) < n =:}dim X < n.
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Suppo~e that dl (X,e) < n + 1. Let C, C' be

disjoint closed sets of X. Let E. == { x eX:
1

e.( x , C) + t(x , C') ~ 1n}, i == 1, 2,

Then t(Ei, X-lnt Ei+1) > 0 V icN.

......

So for each iEN 3 an open set G. s.t.
1

E.cG.cG.clnt E.+l and dl'(bdry G.)< n. By the induction111 1 1 -

hypothesis, dim bdry G. < n V iEN. Clearly G., i~N,
1 - 1

satisfy:-

(i)
PO

X == U G.
1i==l

p (C f'I IT., C' n G. )i- 1 1 > O.(ii)

From (ii), and since dl (X,e) ~ n+l,:3 open sets

U., VI. s.t.:-
1 1

( a 1) ·C f\ G. C V ., C I (l G.CV' .
~ 1 1 1

(a2) U. 1\ V I. == ¢
1 1

(a3) dl (X - (V.uV'.» < n V ifN.1 1 -
From (a3 ) and the induction hypothesis, we have:-

(a4) dim (X - (V. U V' .» < n V iEN.11-

Let V. = V. f\ G., V' 1. ==V' .,., G ..11111

Claim:-

(bl) dim bdry Vi < n , d im bdry V'. < n.
1 -

(b2)

(b3)

(b4)

C f"\ G. C V., C' r'I G. c::.V' .1 1 1 1

V." C' == ~11 C == ¢
1 1

V."V'. = k,1 1 'T

(bl) follows since bdry V. c: bdry U. lJ bdry G. C
1 J. 1

, [X-(V . U V' .)] U bdry G.. And similarly for V' ..1 1 1 1

(b2) (b4) are clear and (b3) follows from (al) and

(a2) .
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Let Vv. =
1

V.
1

U
j<i

V'. W'.
J ' 1

00

U
i=l

.."
V'.-- U V. (U V. =1)·

1 j<i J j~4> J

Let W =
00

U
i=l

\V., Vft =
1

W'
i

Then W, W' are open, C c. W, .C 'eW' (from (i), (b2) ,

and (b3» and dim (X - (W L)\V'» < n. To see the

1 ast par t, 1 et xe X - (W u IV ' ) • Either x ¢. (V. UV'.)
1 1

i. If x ¢'if i£N or x sCb dry Vi Vbdry V'i) for some

(V. UV'.) 'if iEN, then, since XE:GiO for
1 1

some iO'

then x f/; Ui U U'. whence x£X-(U. \)U.). Thus X-
o 10 ~ 10 10

(W V \'V , )c U [X-(U. L.J U' .)] 1..1 U [b d.ry (V.) I.) bdry
'1 1 1'1 11= 1=

:V'i]' From the countable sum theorem, dim X-(W UW')

~ n, so Ind (X-(WlJW'» < n. Thus dim X == Ind X <

n+1. The result is trivial when n = -lor oa and

this completes the induction.

Theorem 1.2 (Nagami and Roberts, 1967)

If X is a normal space with dim X ~ 11, then X

satjsfies the following condition:- If (C., C'.)
J J

jE N is a sequence of pairs of disjoint closed sets

of X, then :3 closed sets Bj' j EN,

C. and C' . and ord {B ., j E NJ < n-l.
J J J -

s.t. B. separates
J

Proof: The collection of subsets of N containing

precisely n+l elements is countable. Denote these

;3 open sets U .., U' ..,
1J 1J

i, jeN, satisfying the following conditions:-

(iii)

C.eU .., C'.cU' .., U .. (,!U' .. =:tj>V'i,jGN
J 1J J 1J 1J 1J

U U U ' U ' ll" "\Tijc i+lj' ijc i+lj 'J 1.., J£l~.

U (U .. UD' .. ) = X
J.J 1Jj£o(.

1

(i)
(ii)
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The construction is by induction on i.

Assume ~he construction achieved upto i = k.

By the Otto-Eilenberg theorem, 3' open sets (V" VI .)
J J

= cp V j6'1'k+1jEc{+'1 s.t. Uk,CV" Vlk·C VI" V. i~VI,
-k J J J J J J

and X = U (V. VVI.) < Let V1+1· = Uk'
j£ C'( J J ~ J J

k+1

Uk+1J~ = V if J·f.~1 VI = VlkJ' if j ri:':'C<k+lj - ~k+l' k+lj

and Vl
k+1j = Vlj if j€qk+l' VIi' VIIi are

constructed by replacing Ukj, U;kj above with

Cj, Cl
j if j£<{l' and letting- U1j, V'lj be open sets

wi th disjoint closures con t.a Ln Ln g C. and C I . respect ively
J J

if j ¢t(l' Clearly, U,., UI. , satisfy conditions1J 1J
(i), (ii), (iii).

00 ~
Let U. U U .. , U/. U I Let X-= :;;: V, .• B. =J i=1 1J J i=1 1J J
(U , V V~ ). Then B, " j EN are as ro:::quired.J _J J ~ ~

;

Theorem 1.2.5 (Nagami and Roberts. 1967).

For any metric space (X,e), d4(X,t) = dim X.

Proof.

From theorem 1.2., d4(X,t) ~ dim X.

We show that dim X < d4(X,e). It is enough to a.ssiAme

d4(X,t) < n and show dim X < n.

< n. X has a a-locally discrete

Suppose d4(X,t)

base Cf1 = u U,
iEN 1

where

~, is locally discrete.
1

Let V. =
1

l) U and E'1 =
CI/ 1~»e-u,

1

ixt.:x: f,.(x, X-Vi) ?.1/k

"3 open sets G. i, keN1k

.Q4 (X,e) ,~ n LmpLi e s that

s.t. E.1cG'k cv . a.nd ord
l_.C - 1 1
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{bdry.GikJ i,

DE 'U.s is a
l

, 'l
G, Gc:IiJ2

k,~N} < n-l. Then ~ 0=. t G. k ("I U, .i , keN,
J_

~-locally discrete base of X with ord lbdry

n-l Ca f t.e r noting that bdry (G'k '" U) C bdry
l "

Gik and bdry (Gik f\ U) f\ b dr y (Gik f\ V) = cP for U 1= V,

U} V£'lli)' It follows from theorem 0.12 that dim X < n.

Having shown that dl a.n d. d4 are equa.l to the cover :i_rJ g

dimension dim, we now concentrate on the dimension

functions d2, d3l dS' d6, d7, p-dim;t and d i.m ,

It is clear from theorem 0.12 that p-dim (X,t) <

dim X for any metric space (X,e).

Lemma 1.1.

If X is a p ar-acornpa ct topo Log i.c a I space and 11 is an

open cover of X w i th ord''/j 2 n , n = -,]L, 0, 1,

then '1.1. has an open locally finite n,=::finement trwi th

or d elf < n.

Proof. Let au be an open cover of X w i th ord ''V- 2 n.

Since X is paracompact, 3 an open locally finite

r e f i nerne nt "'11-/0£ 5jJ. • :3 a function f: sF_'_,> ~ s. t. for

each \'lev,' IV Cf(W). For each U£'U, let g(U) = U w.
W€'>t;-"
f(W)=U

Then clearly or d 172 ord6jJ ~ n. It is; also easy to see

that 1/ is locally fini te and the Lensma is proved.

Theorem J .• 3 (Hodel)

For any metric space (X,e), d~(X,t) < u-dim (X,t).
;)
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Proof: The proof is trivial if u-dim (X,e) = -1,

Assume u-dim (X,e) ~n~O. Let (C., C I .) be a
1 1

sequence of pairs of closed sets with ece., CI.)
1 1

>£>0 V iEN for some £. Since u-dim (X,t) 2n,3 an

open cover ,'tC of X s .t. ord '1)..' ~n and mesh "tf <E.

From lemma 1.1, -3 a 1. f. open cover "llof X s. t. ord 6U

<n and mesh 1f ~ e . Because 6lJ is 1. f. and X is normal,

we can find a closed cover [Eu' Uc.;11J of X s.t.

E cU for all U Using normality, we can constructu

a sequence G. (for each U) of open sets of X s.t.lU
E cG1 c G1 c G2 CG2 •.••• cU. If we let 61ti. = LG. ,u u u u U 1 lU
U6UJ then mesh '71. <£, 1J.. is 1. f., and 11. covers X111
for each i.

Let H. = U G. , F. = U G.1 Ue <?,L. lU 1 u e "U lU
G.I"IC.f:q> G. l'C.#Lj>lU 1 lU 1

Since mesh <fl. < €. , F. '" C'. = cp. Also" F. is closed
1 1 1 1

because U. is 1.f. H. is an open se;;t containing C.
111

and H. cF. so if we set B. = F.-H ~ then B. is a
1 1 1 1 i 1

closed set separating Ci and Clio

We show that ord fBi' i = 1, 2, ...•• J < n-l
mSuppose X€ f'l Bik where ik, i~k~m at:.·e di s t r Lct .

k=l

Then for each k , 1<k<m,3 U (;l,[ s.t. x e G. -
- - k 1kUk

G. U . Uk l<k<m are distinct. For suppose Uk = Uk'lk k '- -

Then we would h ave x d:;:' u and x¢G. U
lk k lk' k

a contradiction since G. U c Gi I U
lk k' k k.
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Also,

= min {ik, 1~k~m1, then x t G. U10 k
1<k<m.

But 11. is a cover of X so x e G. U for some DO
10 10 0

m
So x E: t'\ Uk with

k=O
Uk O<k<m distinct. If we put m=n+1, then we see- -m
that n B. =cj; since ord -u ~ n. So ord {Bi, i :.-::

k=1 1k

1, 2, .... ~ < n-l as required. Thus d5(X,t) < nand

it follows that d5 (X,/!")~ u=d i.m (X,e.).

We can summarize the results so far obtained in the

following proposition.

Proposition 1.1.

For a metric space (X,t), d2(X,e) ~'d3(X,~) ~

d6(X,t) ~ d5 (X,e) < ~-dim (X,?) < dim X and

d6 (X,t) ~ d7 eX,t).

Remark 1.1.

It is also true that d7 (X,t) ~ u=d Lm (X,t·). This

will be proved in Chapter 4 after we have developed

the theory of Lebesgue cover characterizations of

metric dependent dimension functions.

To qualify as dimension functions, the above

functions should have a value of n or Rn, euclidean

n-space. To that end we prove:-
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Theorem 1.4
If (X~e) is a locally compact metric space, then

d2(X,t) = d3(X,e) = d6(Xse) = d7(X,e) = dS(X,e)

= u-dim (X,e) = dim X.

Proof: Let X be a locally compact metric space.

In view of prop. 1.1. and remark 1.1., it suffices

to prove d2(X,t) > dim X. This is obvious if

d2(X,e) = -1,00. Assume d2(X,~) ~n~O. Every point

of X has a compact, hence closed, nbhd. Since in a

compact metric space E f'\ F = 1> =-> e.. (E, F) > 0 for

E, F closed, we immediate ly have d Lm Y < n if Y

is a compact subspace of X. Thus each xeX has a

nbhd, and hence an open nbhd of dim < n. So X has

an open cover~s.t. for Wf'1~/dimW < n. It follows,

since X is normal and paracompact, Lhat X has a l.f.

open cover 11s.t. {u, U f'U] ref ines 1;2r:. Thus dim U

< n for Dc:ft. From theorem 0.12 U b.acs a ~.l.f.

(in U) base 0 I consist ing of sets with boundaries.V u

(in D) of dim < n-l. Since U is closed in X, it

follows that $' is CY'.l.f.inX •."'
u

Let -;n be~vu
the collection of those members of 5;' u whcse.. closu'r"es 11\ X. «r-e

contained in U. Then 13u is a 0-'.1.f' ~ (in X) base for

U whose members have boundaries in X of dim < n-1.

Let$= U$. Then;?is a (J.1.f. base for X with
U ell u " 0:1/

boundaries of dim < n-l. It follows from theorem 0.12

that dim X < n.

To see that CZfl is &': 1.f., let ~ru
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where Wi. is 1. f. Let x E X and let i be fixed. '1 a
u

nbhd Vo of x which intersects only a finite number

of the members of~, say U1, U2' ..• ·.., Uk' For

eac h 'j, 12j 2k ,j a nbhd V. of x which
J i

only finitely many members of$ .
UJ

intersects
k

Let V = n
j=O

V .•
J

i
intersecting

i
Thus U$

Uc/li. u

only finitelyThen V is a nbhd of x

many members of U::-~.
U€?j U

is l.f. for each

i. Since ']=
00

U
i=l

i
[ U'Zj3], J5 is
VEt{ u

o-:1.f.

The equality of the various dimension functions does

not, however, appear to be a 'strong condition on a

metric space. We give an example of a non-locally

compact non-complete metric space X ~here the above

dimension functions coincide. We note that if

It is

obvious that in that case all the function coincide.

Also if dim X=l then, from the above observation

we cannot have d2(X,e)~O so we must have d2(X,e)=1

and hence d(X,t) = 1 where d is any of the functions

d2, d3, dS' d6, d7 or ~-dim. In view of this, we

would like the example we give of a non-locally

compact non-complete space where the dimension

functions coincide to have dim = 2.

Example 1.1. (Nagami and Roberts, 1967)

Let A be the subset -£ (xl" x2' x3): xl = 0 1 of

13. Let B be the subset~xl' x2' x3): xl' x2' x3
are rat Lon aI 1 Let X = AU B. We have dim X<2 from
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the countable sum theorem. Also d2(X,t) ~ d2(A, e:)
= 2 (d2 satisfies an obvious subset theorem).

'£11emetrics tand t-:). are the euclidean metric and its

restriction to A. d2(A,e') = 2 from theorem 1.4.

We have, from proposition 1.1. that d2(X,e.") = d3 (X,i,.")

= d-(X e.") = d (X u") = d (X "II) = ~-dim (X 0");)' 6' c- 7' c- , c...-

= dim X where e." is the restriction to X of the

euclidean metric. X is not locally compact at

any point, because for XE-X, assume D is a compact

nbhd of x. 3Then for some open subset V of I ,

Q3 f\ V C U (where Q3 = QxQxQ). Since D is compact,

it is closed in 13 so v c: q3n V cD a contradiction

since the lirrationalstin V which are not on bdry 13

are not contained in X. Obviously X is not complete

since it is not closed in 13.

We will need the following lemma to prove the next

theorem.

Lelmna 1.2

If fF:::{, 0( ecAlis a 1. f. collect ion of closed sets of

a paracompact Hausdorff topological space X and

{D~ ,c<c.: c4.}isa collect ion of open sets of X s.t .

Fe.-( C Do{ Vd..E ••{, then:3 a collect ion f Vb{, X€vt]of open

sets of X s.t. Fo(CV:J..CUd,. and {Vo<..,c.f.£:eAJiSof the

same type as [Fv<.,oI.t=e4], i.e. for any subset$ofc4',

For a proof of this lemma, see Nagami "Dimension

Theory" prop 9.2 pp 47.
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Lemma 1.3

Let X be a paracompact Hausdorff space and let

fV~,«6~~ be a l.f. or countable open cover of X s.t.

fVc.<.,~(e,d has a refinement [q" ,iJ{f:,A~ with GtI,.C V,x, and ord

[bdry Gd..,~cutJ < n-l. Then iV~,c(ccAl has an open

refinement of order < n.

Proof; First take the case where fU«: ,~~vtlis 1. f.

Let ~ be a well ordering on eA and < the associated

d..~~ andc{=I=f3 •

( U G -s = cp) •
f3E 4> I

strict partial order i. e. cI. <f3 iff

For each cX.cc4., let Eo( =: G(;( - U Gpf3L..d.

For suppose ({1'C{·2'..... '((n+2 are n-t2 distinct

members

Suppose

of cA.
n+2

x € (l E~-X' •. ~ 11=1
That x£Ec< implies xt/:-Gc(. ,

n+2 . 1

i<n+2, because the G~IS are open. Bu t E tX. C G ",.
1 1

so XEG~. 1<i<n+2. Thus xebdry G~. l<i<n+l. (note
1 1

that the condition of the theorem implies n~O).

This is impossible because ord [bdry Go(", c\tc4} ~ n-l.

Since·Eo<.c-Uo<.'[Ec.<' ~cA3is l.f. From lemma 1.2, :3

open sets Vr::!..' .x~vf s , t. Eo{c..Vor:,. c: V;;z and ord tY"" r:1..E: -A}

< n. Because ~ is a well ordering on cA, [E~ ,:'<E-&ij ,

and therefore {Vt:(',C<fvi], covers X. Thus {Vo<,o(c;v{J

is the required refinement. If [U"" ,<>«(:,,4.] is countable

then it may be taken as Vi' ieN in which case

{Ei, iEN] is still l.f. and the result follows.
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Theorem 1.5 (Hodel)

If (X,t) is a separable metric space, then d5(X,E)

= u=d Lm (X,t).

Proof: It suffices to show that ~-dim (X,t) ~

d5(X!t) (in view of prop. 1.1.). Leaving out the

trivial cases d5(X,e) = -1,000, assume d5(X,t) < n>O.

Let € > 0 be given, and let x., Ls N be a dense subset
1

of X. Let E. _. B(x. ,c) and U. = B (x . , 2€) • Then
1 1 1 1

{E. , i€NJ is a cover of X since any X£"X must satisfy
1

lex, x . ) <£ for some 1• We have t(E. , x-u. ) >fV ieN
1 1 1

so d5(X,e) < n impliesjopen sets V., ieN s.t. E.c.
- 1 1

V .C.V.e.u and ord fbdry V., iEN'l-< D.-I. From lemma
111 1 J -

1. 3, U. has an open refinement of order < n.
1

This

refinement also has mesh < 4 c. Since c.. is arbitrary,

this shows that ~-dim (X,t) < n.

Theorem 1.6 (Nagamiand Roberts, i967)
If (X:t) is a totally bounded metric space, then

Proof: In view of prop. 1.1. and r-ernark 1.1., we

need only sow that ~-dim (X,t) ~ d3(X,t). Leaving

out the cases d/X, fD = -1, oo , assume d3(X, e) ~n~O.

Let £>0 be given. Since (X,t) is totally bounded,3

a fin itee 0ver f B (x .,C), 1< i<k10f X by 0pen ball s 0 f
1 - -

radius ~ . Let E. = B(x~ and U. = B(x., 26).
1 1 1 1

Proceeding as in the proof of theorem 1.5 we obtain

the result.
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So far we have seen conditions under which certain

dimension functions coincide. While the various

dimension function do not always coincide, any two

of them, say d and d' may only differ within the

limits of the inequality d(X,t) < 2d' (X,t,,). \\le

shall now prove this inequality but first we prove

a lemma.

Lemma 1.4 (Roberts)

Let X be any topolosical space.

2,3, ....

Let G., j = 0, 1,
J

be open sets of X s.t. GO =tP, GjcGj+1,
. -G .. Let F. = G. - G. l'

J J J J-.
.... and X =

c::.:.
U

j=1
j :0;: 0, 1, 2,

j=1, 2, .... Suppose C and C' are disjoint closed

sets of X and B., j = 1, 2, ..... are closed subsets
J

of F. s.t. B., separates CnF. and C'nF. in F .• Then
J J J J J

3 a closed set B of X separating C and C' and s.t.
00

B c. V (B. U bdry G.).
j=1 J J

Proof: Let F. -B. = U. LJV. where C (1iF .c U ., C' (l F. c..V . ,
J J J J J J J J

and U., V. are disjoint relatively open subsets of
J J

F .. Set B = U [B.U(U."V. 1)U(U-+1AV.)]. (F:il)1~1)
J j=1 J J J+~ J J

We have:-

(a1) B,,(CuC') =4>. For, obviously" B.n(CUC') =4>.
J

On the other hand if x sU .("l V. l' then xe F", 1 and
J J+ J+

xf;. U. +::J1CnF. 1 so x¢C. Similarly x eF". and x¢C' 1'\ F.
J J+ J JP.?

so x¢.C'. Similarly for x e U. J f\ V.. Let U=( U U. )-B,
00 J+. J j=1J

V=( U V~)-B. In view -of (a1) and tbe fact that C C
j=1 J

()O

U U ., C Ie.
j=1 J

<XI

U V_.,
j =1 J

we have (a2) CcU, C' e v .
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ro ~
Because B:/ X- ( U U . U u v . ), we have (a3) X-B

j==1 J j=1 J

= U UV. (a4) B is closed.

For suppose x is a limit point of B. xs Gr for some
rU [I3. U

j =1 J
r which means x must be a limit point to

(D . n V. 1) V (U. 1 (\ V .)] which in turn means x is a
J J+ J+ J

limi t point to 13k or Uk" Vk+1 or UkI'1V"for some l<k
00

q-. If x¢ U B., then x is a limit point to Uk (\
j::=1 J

Vk+1 or Uk+1() Vk. Suppose x6Uk n Vk:1; then XEFk,

xeUk and, because Uk' Vk are relatively open and

disjoint, x¢ Vk. Since also x¢ BkJXEUk. Similarly

x£Vk+1 so x e Uk (\Vk+1· Similarly if x,,-Uk+1f" V1<;: (x¥:
<Xi

UB.) then x6Uk+1f\Vk. Thus for xEB, we must have
j=1 J

xeB so B is closed.

Ca5) U, V are disjoint. For suppose x~U. Then

xeu -B for some r. Since V. c F., U. c: F ., and F. ('\
r J JJ J l

F. =~if !i-j! >1, we only need to show that xl;.
J

Of course xtE:V.r

: X€U () V 1 C B contradicting x € U",,-B. Similarlyr r+ .•.

for x ~ V 1 so U 1"\ V = £t> •r-

(a6) U, V are open. For let x be a limit point of

U. Because xEG for some r, we must have x being ar

limit point of some Uk' 1~k~r. If x£V, we must have

xevk+1 - B or x£Vk_1 - B (because x €.Fk). We wouLd

then have x being a limit point of Ok f'Vk+1 or Uk (\Vk_l

and hence of B contradicting the fact that B is closed

and Xc;:Vk+1- B or x€,Vk_1 - B. So xf;.V. Similarly,
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U does not contain points of V. SO U, V are disjoint

closed sets of U U V. Since U t.J V = X-B is open, U, V

are open. Conditions (a2), (a4), (as), (a6) mean that

are contained in

(Of course ujr.Vj+1 and Uj+1{\Vj

F. (\ F. 1 which is equal to bdry G.).
J J+ J

B is as required.

Theorem 1.7 (Roberts)

Let (X,t) be a metric space. Let d, d' be any of the

dimension functions d2, d3, dS' d6, d7, ~-dim,'or

dim; then d(X,e) < 2d' (X,e).

Proof. In view of proposition 1.lQ.Yl4b ..e~Cl'\C.l.1"t ~u~~i"es

to show that dim X ~ 2d2 (X,e). Assume d2(X,e) ~ n.

Let (C., C'~) l<j<2n+l be pairs of disjoint closed sets. J J --

of X. We want to construct closed sets B.
J

s. t . B . separates C. and C I . v., ~~j ~2n+l and
J J J J

Id<2n+l
- -2n-q

A
j=l

B. = ~ •
J

3 open sets G., iCN s.t.:-
1

(al) U G. = X
iEN 1

(a2) tCc/,Gj.)cjtlGi) > 0 V ieN, 1~j~211+l

(a3) t(Gi, X~Gi+l) >0 V ieN.

2n+1 {Infact, let G. = r. x sX: e.(x, C.) + e,(x, C'.)
1 j=l J J

> 11i J. It is clear that (a1) to (a3) aresatisfied.

Let F. = G.-G. 1 (GO= 4». Then e.( c . f'\ F., C'." F ~)
1 1 1- J 1 J1

> 0 V iEN, l~j~ 2n+1. Since d2 (X,8) ~ 119 and from

(a3), 3) for each i£N, closed sets 3'.1j
open set H. s. t . B'. . separates C. n F .

1 1J J 1

V j, l_<j_<nG. 1e H"cH. C G. (GO = cP) and1- .L 1 1

and
n

( rt
j=l

C' . () F.
J 1

B' .. )
1J
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(\ bdry H. ::: 4. Let B. = B' .. (\ F. 1<j <n.1 1j 1J 1
Then B: . , 1<j <n and H. satisfy:-

1J 1

(bl) B .. separ ates C.f'lF. and C'.(\F. in F. for
1J' J 1 J 1 1

(b2)

(b3 )

G. lC H.cH.cG.1- 1 1 1
n( (\ B .. ) (\ bdry

j=l 1J
H. =cP.

1

It is clear from (b z.) that F. f'l bdry H., = ¢ if
1 1

ifi'. Combining with (b3), and since B .. c- F. ,1J 1
we obtain:-

n
(b4) ( II B .. ) n( U bdry Hk) = cP Vi.

j=l 1J keN

It is also clear that:-

"

(b5) B. ,f\B"" cF.('.F.,cbdry G.ubdry G., if i;l:i'.1J 1 J 1 1 1. 1
r : 1<J<n' . '.

From Lemma 1.4, for each j, l~).::n,:1a closed set Bj

s.t. B. separates C, and C', and:-
J J J

(b6) B . C U (B,. U bdry G.)
J lJ 1it! N

We now turn to the case where n+1 ~j~2n+1.

From (al), (a2) and b2), it is clear that:-

(c1) U
ifN

H. = X
1

(c2) H. C.H . 1 V it:. N
1 1+

(c3) e(C,I1H.,
J 1

(U bdry
ic:N

c: .n a .»
J 1

G.)f\(U
1 iEN

> a v it::N, 1~j ~2n+ l.

bdry H.) = cf).
1

(c4)

Let F'i - Hi - Hi_1 ieN (Ha. = ~). As in the case for
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G., we obtain closed sets B .. n+1 <j<2n+1 s.t.
l lJ - -

B.. , separates C.AF'. and C'. f\F'. in F'. and
lJ J J. J l l

(d1)
2n+1

()
j.=n+1

B .. = if>.
lJ

From lemma 1.4 ::I closed sets B. n+1 <j<2n+1 s.t. B.
J - - J

separates C. and C'. in XJn+1 <j< 2n+1 and:-
J J

(d2) B . C U (B .. LJ b d ry II.).
J iGN lJ l

We have:-

(d3) B .. tiB., .,cF'.f\F'.,cbdry H.,,)bdry H., if
lJ l J l l l l

1 :f i' J n+1 ':j~2n+1

Now D., 1<j<2n+1 are closed sets s.t. B. separates
J - - J

C. and C'. in X.
J J

2n+1
Claim: n B. = ¢.

j:=:l J
2n+1

2n+1
For suppose x e: f'I B .• '

j=1 J

ThenxG.~ D., F-rom (d1), (d2) and (d3), .we have.:;-.
j=n+1 . J

( e1) Xc u bdry H ..
lifN

(e2) x C

n
n B .. From (b5) and (bG), either':-

j =1 J
n
(\ B .. for some ioEN or:-

j=1 lvJ

Also XE

(e3) xc l) bdry G .•
i£N l

Both (e2) and (e3) contradict (e1)
2n+1

and (c4) respectively. So n
j=1

in view of (b3)

B. = <fJ and the proof
J

is complete.

Historical. ~otcs:

The relation d i.m X .: 2d2(X,e-) obtained by J.H. Roberts

(Rob ort s ) is t l e last in a series of results each of
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which generalizes the previous one. Katetov

(Kat~tov) proved in 1958 that dim X < 2 ~-dim (X,£).

In 1967 Hodel (Hodel) sharpened this result to

dim X < 2d3(X,e). Finally Roberts (Roberts) proved

in 1970 that dim X < 2d2(X,t).
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SECTION TWO

In the last chapter, we saw that for any two of the

above mentioned dimension functions, say d and dr,

we have d<2d'. We shall now give examples to show

that if d is any of the above dimension functions

different from the covering dimension dim, then there

ex ist s a metric space where d and dim differ by the

maximum amount allowed by the inequality in theorem
1. 7.

Lemma 2.1 (Nagami and Roberts, 1967)

Let X be a completely normal space and Y a subset of

X with dim (X-Y) < n. Then for any n pairs (Ci, C'i)

l~i~n, of disjoint

l~~~n, of X, s.t.
n

closed sets of X:I closed sets B.,
. . .... ;.. : :. ".:. 1 '.

B . separates C. 'a.udC' . and
1 1 1

n
i=l

B.cY.
1

Proof: Let X, Y, C., C': 1<i<n be as in the statement
1 1 --

of the theorem. Let U., U'. be open sets of X s.t.
1 1

C. cU., C' .cU'. and U..nu'. = <p for l<i<n. Because1 1 1 1 1 1

dim X-y <n, "3) by the 0rem a. 4 ope n s€ tsa. ,
1

U Yo U ' Va' 0 0 I. '-' tf..i - -C i' i- 1. C. i > 1{I i'- 't'

a'. of
1

. X-'J-Q..Ylc!' J-X-Y s.t.
n
U a. U 0' .• Because Xi::::11 1

disjoint open sets V., V'. of X s.t.
1 1

is completely normals 3

a.cv., a'.e111

V' .•
1

Let W. --U. U (0 .-U' . ), W'. = U' . tJ (0 t •1 1 11 1 1 1

Let Bi = X-(WiuW'i)' Then Bi, 12i~'n, satisfy the

required condition.
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Lemma 2.2 .

Let X'be a compact Hausdorff space and let Hand K

be disjoint closed sets of X such that no connected

set .of X intersects both Hand K. Then the empty

set separates Hand K.

For a proof of this Lernma, see Nagami"Dimension

Theory!! corollary 6-8 pp 41.

Lemma 2.3

A connected compact ITausdorff space cannot be the

disjoint union of a countable collection of more

than one non-empty closed sets.

For a proof of this Lemma see Nag am i "Dimension

Theory!! theorem 6-10 pp 41.

We would like to give an example to show that lemma

2.3 cannot be extended to normal (infact metric)

spaces.

Example 2.1 A connected subset of 12 that is a

union of a countable collection of more than one

none~empty disjoint closed sets.

Let q1' Q2' Q3 ...... be the rational numbers in 1.
C\O

Let X = Ix -tOl UC'U [Q ·1 x [l/i, 1] ) .
i=l l

Let A. ={Q1x [l/i, 1] and B = I x {o3. Then X is
l ):'

the union of the non-empty closed sets B. ) A1,
A2, A3 .••..•
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X is connected; for suppose not, and assume X =

U v» where U, V are d i s j o i.n t non-empty open sets of
'T Since r2 is completely normal, ::3 disjoint open.A.

sets G, II of r2 s.t. GI1X = U, H"X = V. Since B

is connected, B is wholly contained in either G or H.

Assume without loss of generality that Be G. Since

HnX ::f:q>, H n A. ::f:¢ for some i, say io' Since A.
1 lo

is connected, A. c H. We have, because r is compact,
lo

that Ix[O,f:)cG for some e. Also V x {a} C H

for some nbhd V of q. and aE[l/io' 1]. V contains
lo

infinitely many rationals so it contains some rational

qJ' with j~io and 1/j< E. But then (q-, t/j)EA.nG
J J

::f: ¢ and (q., a) EA. 11 II * cPcontradic ting the fact
J J

that A. is connected.
J

Defn 2.1

Let X be a normal space. A collection of n pairs

(C., C'.) 1<i<n of subsets of X is said to be an
1 1

essential family if (i) C., C'. are disjoint closed
1 1

(i1) for any n closed sets B., 1<i<n s.t.
1 --n

1"\
i=1

B.
1

separates C. and C'. we have
1 1

Lemma 2.4 (Nagami and aoberts, 1967)

Let X be a normal space, F a closed set of X and

f: F-;> Sn-l a continuous function. Considering
n-l nS as the boundary of J- where J = [-1, 1], let

C. =
1 [<Xl' X2' ..•. xn)€J

n: xi

.....x )E In: x. = 1} forn 1
1<i<n.~
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-1If the collection (f (C.),
1

an essential family, then f

X-» Sn-1.

f-l(C' » 1<i<n is not
i

has an extension f*:

Proof: First we construct a function g: X->Jn

which extends f and does not assume the value 0
(= (0, 0, ..... ,0» in In. -1 . -1Since (f (C.), f (CI.»

1 1

•

1<i<n is not an essential family, ~ pairs V., V'. of
1 1

-1 -1disjoint open sets, 1<i<n, s.t. f (C.)cV., f
- - 1 1n

(C' . ) c V'. and U CU. u V' .) = X. Since X is normal,
1 1 i=1 1 1

3 closed sets E., E I. s.t. E. c: V., E'. c V'. and1 1 1 1 1 1
n -1
U (E. U E' .) = X. Let F. = E. U f (C. ),. F'. =i=1 1 1 1 1 1 1

E'.U F-1(C' .). Then F., F'. are disjoint closed sets1 1 1 1 n
wi th f -1 (C .)c F., f -1 (c' . ) c Fl. an d U (F. V F' .) = X.

1 1 1 1 i=1 1 1

By Vrysohn' s lemma, 3 for each t , ~~.i.:n,a continuous

function h.: X-> J s.t. h.(F.) = -1, h.(!:".) = 11 1 1 1 J. 1

Let h: X-> In be the funct ion.

hex) = (h1(x), h2(x), ... hn(x». Then h is continuous.

By Tietze's extension theorem then is a conti.nuous
- nextension f: X-->J of f. Let V be the set

{xC::X: f. (x rh , (x) > 0 for some i, 1~i.:n~where f. is
1 1 1.

the ith coordinate function of f. If V = X then set

,- . Otherwise, we note that V is

open and V contains F. Since X-U 1= ¢;I, by Vrysohn' s

lemma a continuous function ~: X-> I s.t. ~(F)

1 and ~(X-V) = 0 . Let g(x) = f(x)t(x) + hex)
(1 -q(x». Then if xcV then f or some i,f. (x)h. Cx ) > °1 1

lIW.YE~ OF NAIRO J
UBR7J{Y
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whence I.(x)i(x) + h.(x)(l-~(x) # 0 whence g.(x) # 0
111 1

whence g Cx) f. O. If x¢V then g Cx ) ::: hex) f. 0', (cteoJl'")

and for x,F, g(x) = fex). So g is as required.
Now let <.f: (In- 0 )-;> Sn--l be the proj ect ion ,~-,(a)

a
= \(a Ii where /j a 11 is the sup norm of a i.e. il a IJ =

sup 1.1a.f,1::i::n1where a = (aI' <, ••• a ).
J_ n

Put f* --

'If,,g.Then f* is the required ext ens ion of f.

Theorem 2.1 CNagami 1967)

Let X be a compact completely normal space with dim

X >n>O. Let A. s i = 1, 2, ....be disjoint closed sets
1

of X s.t. dim A. < n-1.
1 -

ro
Then dim (X - U A.) > n-1.

. 11-1=

Proof: We omit the trivial case n = 0 so assume

n>l. Since dim X > n, by theorem 0.53 a closed set

.F of X and a continuous function f : F-;> n-lS s.t.

f does not extend to X.

nStep 1.3 a continuous function h: X-> I s.t. h
(;Q

extends f, 0 ¢ h( U A.UF).
i=1 1

,

We construct h as follows:- Since dim A.<n-l f
1-

extends to F lJ AI' and hence to VI wb ere VI is an

open set containing F VAl' Similarly, f extends to

V1UA2 and hence to V2 where V2 is open and contains

U U ~ ( 'I'l ..' . t Sn-l ) 'V t h1 1:-121eSe ext ens i.on s are .i n 0 • we us

define recursively a continuous
M

where U = U
i=1

n-lfunct ion g: V-> S
(KJ

V. is an open set con taining F LJ ( U A
1
·).

1 .1=1

::;:O. rThen q:: :::
be s.t. ~.(F UA.) ::: 1/2i,
00 1 1

-4 '~ cpo is a continuous function
.i==I 1

_ JLet (i',. :
"1'1

4>·(x-u)
1

x->
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into [ 0., 1] s.t. CP (F) ={15,<P(A. )c(O,1]. Define
1

h by hex) = CP(x)g(x) for xe.U, hex) = 0 for x¢U.

Then h satisfies the given conditions.

Step 2. Assume d irn (X -
is normal, and h-l(O) is

~
U A.)

i=1 1

Gs1dim

()O

< n-1. Then, because X- U Ai
co i=l

-1 - U((X-h (0»- A.)<n-l.
i=l ]-

For a set S in Rn and a set J in R, let JS denote the

set js, jEJ, seSe

We take I to be the interval [-1f 1J.

Let B = {x£In: x =1} i.e. one face o£ In (see
n

fig. 2.1). Let P be the pyramid [0, 1]B

For l<i<n-l, let S. = {xCB: x. = -I}, S'. --{XEB: xi=I}.
1 1 - 1

Let T. = (0, 1] S ., T'. =(0, 1] S' ..
1 1 1 1

Then h-1(T.), h-1(T'.) l<i<n-1 are disjoint closed sets
1 1

of X-h-1(O). By lemma ~.1,3 closed' sets B. 1<i<n-l
1

] -1-1of X-h- -(0) s.t. B. separates h (T.) and h (T'.)
1 ,]. n-1 1

-1 - n-l ~in X-h (0) and n B.c U A.. Let H = n .B..
1 1 1i=li=l i:-:1

-1HUh (0) is closed in X and is there£ore compact.
-1 ,j...,Assume IIn h (B) =f 0/. Suppose some connected set J

-1 - -1· -1 -of IIUh (O)intersects both HAh (B) and h (0).
- -1 -Then J isa connect~d compact set of HUh (0)

-1 -1 -intersecting both H~h (B) and h (O).
-1 -a non-empty intersection with h (0) and

Then J has
00
lJ A. (which

. 1 11=
. -1 - -is disjoint from h (0».

Thus J is the union of a disjoint countable collection

of more than one closed set contrary to lemma ~.3.
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-1 -Thus no connected subset of HUh (0) touches

both h-l(O) and H fih-l(B). By lemma 2..2 H Vh-l(O)

is a union of two disjoint closed sets one containing
1 -1 -H "h:- (B) and the other contain ing h (0) .

Claim:- HUh-\O) Vh-l(B) is a union of two disjoint
-1closed sets one containing h (B) and the other

containing h-l(O).

One of these closed sets is formed by uniting h-1

(B) to the one of the two closed sets of HUh -1 (0)

which contains H t'I h-1 (B) (this is assuming H (\h-l

(B) ¢ ~ because otherwise th~ result is obvious).

The other closed set is just the closed set of
1 -1IIUh- (0) wh i.ch does not contain Hil h (B).

By extending to disjoint open sets of X we obtain a

closed set B
n

-1 . -1 -of X separating h (B) and h (0)

without touching H. ~ecause of the compactness of
1 ~-1X, and considering that h- (0) = "h ([0, 1/i]B),

i=l

We see that B also separates h-1(B) and h-1( ftJ B)
n

for some t, 0<t<1. Restricting attention to the

space Y = h-:-l([t,1]B), if B'. = B ..nY, then Bt.
1 1. 1

separates h-1CIt, 1]Si) and h-1([t, 1]S'i)(= h-1

(T.) '"Y and h-1(T'.) "y) in Y. Bt. is closed in Y
111.

since YcX - h-1(0). That, so far, is for 1<i<n-l.

If i = n, the n agai n B' = B r\ Y separ ate s h-1 ( ~ t~B )n n
-1 nand h (B) in Y. Now ('\B. = 4> by the construct ion

. 1 11= •
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-1 -1l~i~n-l and h ([t}B), h (D) is not an essential

family in Y.
n-l

Buft~BU V
i=l

Let C = boundary in Rn of [t, l]B =
([t,l]S.1J[t,l]S'.).

1 1

n-lC is homoemorphic to S with (B, {t]B), ([t,l]Si'

[t, l]S'.) l<i<n-l corresponding to pairs of
1 --

opposite faces so, in view of lemma 2.4 .3 a map

'r :y--;> I -1 IfC s.t. 1Vextends h h (C). we define

e: x-» In by

e(x) =tX
)

for xcy

hex) for x¢y

then e is a continuous map which does not assume

values in the interior (in Rn) of [t, l]B (8 is

continuous because it coincides with -If on Y and it

coincides with h on X-y). If we compose 8 with

the projection from an interior (in Rn) point of
n-l[t, l]B to S ,we obtain an extension of f

contrary to the choice of f. So we cannot have dim
co

x- UA. <n-l.
i=l 1

Corrollary 2.1 (Nagami 1967)

Let A., i£N, be a sequence of disjoint closed sets
1

of In at least two of which are nOD-empty. Then
co

dim In - U A. >n-1.
. 1 11=

Proof: With the notation introduced in theorem 1.1,

if [tlIn does not meet two A. 's for any O<t<l then 3
1

n-lio s.t. A.G S if iiiD• Since (0,
1n ()r;)

have dim I - U A. > dim (0, l)In -
i=l 1 -

n·1) I 4= A. , we
loao

U A. = dim
i=l 1
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(0, l)In_A. = n.
. 10

A. for ifj and by
J

• J.. ( ,\. f c ,- so 'rt\e -c E. 0 j 1.) J

oth8 rV!ise \ {t} In intersec ts
J/

. :=1 of'. 1. nlemma 2.3, ~ x (ilt..,)I s.t.

A. ,
1

00
x~o U A .•

i=l 1

We may assume x = O. n-lWe let F = S ,f = identity,

h = identity and proceed as in theorem 3.1.

Corrollary 2.2. (Nagami 1967).

Let X be a connected metric space s.t. every point

has a nbhd homeomorphic to In. Let A. be a disjoint
1

sequence of closed sets of X at least two of which

are non-empty. Then dim (X -
00

U
i=l

11.) > n-l.
1

Proof: Let A. be as in ~he corrollary.
J.

Let I be a nbhd of X homeomorphic to In for XGX.x

If each I is contained in some A., then each A. isx 1 1

clopen contradicting the connectedness of X.
Q:)

We cannot have leU A. for each XEX because, Lnx . 1 1l=.l
view of the above observation, this would contradict

lemma 2.3.

So for some xo'
~

I 4- u
Xo i=l

A .•
1

00

U
i=l

A. > dUm I1 - Xo
~
U

i=l
A.=n

1

If I intersects atx"
most one A. then dim X -

1

(since it is oPen in I ).x If Ix intersects two
(;\::;1

U A 0 > dim I
i=l 1 - Xo

A. 's then by corrollary 2.1, dim X -
1

00

U A. > n-l.
i=l 1 -

Defn 2.2.

A compact Hansdorff space of dimension n, n>l is

called a Cant or n--man}fold if it cannot be separated

by a closed subset of dimension less than n-].
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a proposition
2

" Id X s.t.
I.e 2. • Lf o 2~xamD 2-man ~ =

~ J tor dim Aa can "Iso gives 2.1 fal .
Fig 20" 0 -r oLlary subset

to cor 00 A is aX analogous X _ U .i
for ~ _ 0 since 1"=1U A -dim X - "_ i
but 1-1 tinuum.

1 disconof Cantor s

" 2:2.Flg.
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'.

We would like to give an explanation (omitted from

~agami and Roberts 1967) as to why X is a Cantor

2-rnanifold.

First we note that the sets A .. (i=1, 2, •••• 1<j<n.lJ - - l
are so chosen that for any E > a , only finitely many

of them have a span exceeding e in the y-direction.

This ensures that X is closed in R2. Since it is

bounded, it is compact.

The sets A .. of fig 2.2. have the following properties.lJ

(i) A .. is homeomorphic to 12.lJ
(ii) U A,. is dense in X

I ,j lJ

(iii) "3 an infinite s ubco Ll.e ct i.orr.e-q of {A. ·1s.t.lJ
for any Lnf i.ni.te subcollection;£ of ~A , u A

AE'1S

intersects each A .. on a set of dim 1. v4lJ
is the collection All' A12, A13·····

(i) implies that Aij is a cantor 2-manifold,

(see Engelkin pp 77). Suppose X is separated by a

closed set B, with X-B == U U V, U, V disjoint) U.=f= ¢i- V)
Because A .. are cantor 2-manifolds,lJ

== ¢ or

we

must have A .." UlJ
Let $1 == l AijEcA: A. ,1'\ VlJ
Then one of <-]11' 112 must

A. ,('\V == cP for each .i , j.lJ
= ~ 1, '312 = {A - .Ed.: A .. f"\ U = cfJ}.lJ lJ
be infinite. Assume it is $1'

Because U A. . is dense , at least one A .., say A. .. . lJ lJ lc Jol,J
intersects V. Then U A r.«. . cB.

. AE$l J. 0 Jo

But dim ( u A ~A .. )= 1 (from (iii» so dim B > 1,
" .1i2. lc J('I.'-1 (: .v1

a. CO"l'\t)--Qdic.f:iDl'L
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So X cannot be separated by a zero-dimensional closed

set and is therefore a cantor 2-manifold, (of course

dim X :.:.2).

LelThl1a2.5 (Nagami and Roberts, 1967).

Let (X,t) be a metric space and C. i=l, 2, ..•.. be
1

a sequ~nce of closed subsets of X s.t. dim C. < n ..
1 - 1

Let 'Ube any open cover of X, and r any positive

integer. Then:1 r 1.f. open covers OU1' 112,...'.:'Vr

and r,l.f. closed covers ;1' g2' ..... ~r. s.t.

(i) Sl ref ines e2( (we will write ;1 < 11) and

gi+1 < 2Ii < ~i for 1sisr. (1.::::.'1 toy- the. fi\,-st ine·i!.lG.l~tS)

(ii) If E1, E2, .... Es are s distinct members of

5. 1 for some positive integer s, then 3 s1+

distinct members U1, U2' ....Us of1Ji s.t.

E1CU1, E2CU2' ....Esc:Us and similarly for

'1<'iand ;i'

(iii) ord ~ilCi ~ n.
1

1<i<r.

(iv )L"(ll§ Ie. < n. for 1< i< rr 1 1

Proof: The proof is by induction. Assume the result

true for r-1. Then we can obtain covers g., ~.
·11

1~i~r-1 satisfying (i) - (ii1) with r replaced by

r-1. qr = [U ('\C , U E4( 11 is an open cover of C .r r- r
Since dim Cr ~ nr and from lemma 1.l,4-ihas an open

l.f. refinement of order < n. This in turn has a
r

closed l.f. refinement of order < n. Furthermore,r

uslng a technique as in the proof of Lemma 1.1, this

closed refinement may be assumed to be of the form
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tHu' Ut1~_11 where HUCDr.Cr (and the order is

indexwise, see defn. 0.2). By lemma 1.2, since Hu

is closed in X,'3 a i .«. open co Ll.e c t Lon iGu' U£'Ur_l~

s.t. HuCGuCUf.,"Ur_l and ord {Gu1 ~ nr.

Let MU -= GU U (U-Cr) . [MU) U6'Ur_1r is R 1. f.

(because'~ 1 is) open cover of X s.t. its restriction
1'-

to C .i . e. <' tiU 1'1C l UE Jj }7 has 0 I'de l' < n .r L l' . 1'-.) r

Normality of X implies the existence of an open

cover [wu'
C ~-:-
'}r == /...wu'

U e ~ 1t wit h Wu c: MU•
r-..&.../

"Ii IU£ v j.
1'-1

Let 1-t
l'

Conditions (i), (ii), (iii) are

satisfied while (iv) follows from (ii)' and (iii).

The construction when 1'=1 ts just as above, taking 1).

instead of'1.L I.'
1'-

Theorem 2.2. (Nagami and Roberts, 1967).

Let (X,e) be a metric space and C., i == 1, 2, .
.1

be a sequence of closed sets of X s.t. dim C. < n ..
1 - 1

Let~{be an open cover of X. "3 a sequence ~. ==tF<><.,
1

~GB.J of l.f. closed covers of X s.t.
1

(i) 6J::' refines'1J.-.
1

mesh 1:'. < 1/ i.
1 _.

(ii)

(iii) ~, Iord J. C.
1 J

< n.
J ,

J
(iv) 3. a system of functions Ii: OJ -) Bi i~j s.t

i ., t .t " fj. fk == kf. == laen ,J ... y, . c . f. and for .,{€B.
1 1 J 1 1

and j>i, Fc{ U. 1 FA'
If(f~)- (0() r:

.L

(v) For any pos t t i.ve integers i, j., k , if C>(I' «2'"''

~k are distinct elements' of Bj, then dim
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k
(n F~ ~ Ci < ni-k+l where x means max ix, - 11
,r=1 r

for x€R.

Proof: We construct sequences ~J. of l.f. closed covers
1

and ~i of l.f. open covers of X satisfying:-

(i) '9:. 1 <j-t. 1 < 'G.. Vi andj-Jl <OZ{.1+ 1+ 1

Cit) ord J-lilcj < nj for j~i.

(i i i) me sh ji. < 1I i.
1 -

The construction is by induction. Assume the sequence

constructed upto i=r-1.

Then let'Jf and't be t and?t. (respectively) ofr ~r Jr r
lemma 2.5, replacing 5£{ of lemma 2.5.» wi th a 1.f .

.,..
open refinement of ~ 1 whose mesh is < 1/i. (i),r-

(ii), (iii) are obviously satisfied. Let ~1' ~1 be

~l' 111 of lemma 2.5 with qj replaced by a 1.f. ope~
refinement of'"2twith mesh < 1.

Now write :>I.
1

Define f~+l:
1

B·+1 -73. s.t. for Ac3. l'J. 1 r: 1+ H c H . 1
fJ f ~+ «(3).

1

U13i, let Ko( = -1
at=J(. (0<)

1

j _ i+1 i+2 .j iFor i<j let f. - f. ,1 f. 1 U ••••••••. .,f.1 and let f.1 1 1+ J- 1
i k k= identity. ~e note that f~of. = ~ .• Let B = inv
1 J 1

lim [B., f~ <. and IT.: 13-7 B. be the projections. For1 1 j 1 1

each .i , define a c.ollection ')(.as :fo110ws:- for d..c:.
1

fu

[ " Hli.(a)]j=i J
(we take
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Claim:-

(i) Kco:. C H"" for each C(!?-Bi for each i.

(ii) :x . is l.f. for each i.
1

(iii) For i<j andc(f.b., Ko{ = U . 1 K(9
1. (Jc (f~r (~)

1

( i) follows from the fact that if acrr-:- to{) and j > i
1 -j

then f~ Or.(a» = f.o·lf. (a) = IT.(a) =c{ so H.n- ( )G
1 J 1 J 1 "J a

H~ (the last part follows easily from the definition

of f~+l J'
1 and f. i<j)

1 -

(ii) follows from (i) because dist inct members KC(' ,
1

! I K
... • . " ~ of -Xi are contained in dist inct members H c< '

1
•.••.. H of:U. ("1' ....•. !:( <::B.).

~ viI r 1
r

To see (iii), let i<i' arid rz e B..
1

~ ~
Kt.,(= U 1 [ti H-rr'(r)J == U., -1 [r1 H ()J

a6~ (:;() j=i J a at:(f~'u'rri') (Ul) j=i Ifj a

U -1 i' -1a s 'IT. 1(( f.) ( o{) )
1 1

(
C'0

U -1 [ n
aclt· , 0'6) j =i

1

. , i '
Now for J'<J" 'rr/.(a) - fJD1 (a) = f--:- IIJ - j ,j , J. (7[., (a»

J
and, as before, I-I (a) c: H..,.. ( ). So the sequence1T. , II. a. J J

H;r.(a) is decreasing so
J

DO
() H

1/. ( a)j=i J
= n H'iT. (a) .

Jj=il
00

[" 11'_ ]
• .j 71. (a)
J=L J
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'.

Now for each i, put F~

{ F i.{, c(EB . !.
1

Claim:-

(i) Fc(c He>(

(ii) 6'/..~. is 1.f. for each j.-f
l

(iii) -For i<j andc(€Bi, Fo(,=U. 1 F(~.
f.!t:(f~)-· (oi.)

.i.

(i) follows because Hf.{ is closed so K...<,Gl-It( => K~x.

c: H~ •

(ii) follows from the fact that fK.>(, :l(,t'Bi 11.f.

implies lK~,~EB. S is l.f.
1

(iii) follows from condition (iii) and (ii) of the

previous claim (i.e. the same conditions as

above but for the K c\ ).

Condition (iv) of the theorem has now been established.

(i) and (t i ) follow immediately ;from the fact that

Fo(,cHc{,O{6Bifor any 1. To see (iii) i.e. that

ord ~. \C. < n , , take first the case where j c i , then;
1 J - J

the result follows from the fact that ord J·j.1 C. <
1 J-

of~. are
1

nj; since distinct members F G\- , •••• F Co(

1 r
contained in the distinct members H« H~ of

1 r
,~ .. Now take the case where i<j. The fact that for

1

o(eBi, Fp( = U . 1 FpC U . 1 n ,
P(f~)- (0() f->c(f~)- (C<) r:

1 1

together with the fact

imply that ord (1./ C .)
1 J

Condition (v) of the theorem follows from condition

tha t H fal f. Hf-'2. if fol f= 11'j2

< 0rd )1 . Ic. < n. as requi red.
- J J - J

(ii), (iii) and (iv) as follows:-
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Let i, j, k, ~1' «2'" ""~k be as in condition (v).
k

LetZ= (fi F.)nC .• :ZcFc(, so for any p > j~ fFc\t1'l,
r=l C<.r 1 1

c( E ( f ~)-1 (0(1 ) 1 ='1- is a 1. f. c 10 sed co ve r 0 f Z wit h
J P

mesh ~ < 1/p. Furthermore;;t. < £. I f p<m so if wep - . m p

can show that ord£ < n.--k+1 it will follow fromp - 1

theoreci 0.12 that dim~ < n.-k+l. Let q = n.-k·~l + 2
- 1 1

and let L;5 = F 3 nZ, LA = F,;.;(\'Z, .... , Lfl = F0' {\ 21 '1 2 2 q I~q
be q dist inct members of;t for some p > j and'

p .
A P -1 0(/: 1 ••...• ';f3q(;( f j ) (1 ) •

k
(f"l Fe< )nC .• Since
t=2 t 1

L(JnL(2: ••.••• I1L;qC
1 2

L~ Co F /?, 1,:t ~q an d F0{ =
I~t 't t

U FA 2<t<k, we have
/.1. G (f I? ) - 1 (0(' ) r:r-: J t

L P () .•.••. (\ L c. U -1 Ff3 n ..... () Ff3 () F/l> In ... nFf I
1 ~q /!> I 2Eo ( f~) (d 2) 1 q r 2 o

I P -1 .fo 3E ( f j ) (U(3 )

» Ik€(f~)-l(C<k)

j31~ f>2""lqc'(f~)-1(c(1) and folt€(f~)-l(O\) 2,:t~k

imply that f\, 1~2"'" ,!'q' 1'12, •••• ,131 k are all

distinct (of course 1\,12, •••• 'f3q are distinct.J

These are q+k-l > n.+2 which implies
- 1

FAt'\ ••• ()FA 1\ FA; t\ ..... nFL),1 ('\ C.C.HArt •••.• ()
r1 rq r 2 I

J k 1 r1

Hf-> 1'0 HAl (\ ..•.•. "HI'1I (\ C. = 4> since cJ..f.p => HeX. =f Hf3
q {- 2 r k 1

and ord jJ Ic. < n. (s ince i ~p) .
P 1 - 1

So L f3 n .... (\ L f3
___ 1 q

ni-k+1 as required and this completes the proof of the

= ¢. This shows that ordX p <



- 50 -

Lemma 2.6. (Nagami 1967).

If (X, £) is a metric space, u= d im (X,9, ) :f n

iff for each s> 0, 3a l.f. closed cover ~of X s.t.

Ci ) mesh~< c

(ii) ord ~~ n.

Proof: This is obvious from lemma 1.2.

Lemma 2.7 (Nagami 1967)

Let (X, £) be a metric space and C1, C2, ....be a

sequence of closed subsets of X with dim C.( n ..
(,- 1

Let £:>0 be given. Then 3a l.f. closed cover

~= {Fo<.,o(t:c4} of X s.t.

(i) mesh 6)' ~ E

(ii) ord a:¥ICi < ni-

(iii) if F~, F~t are t distinct members of
. t

d'.fthen dim (n Fo(,*.)0.Ci< n . -t+ 1 for any i, t.
r'< l ~ 1.

Proof:

The lemma is a direct consequence o£ theorem 2.2.

Example 2.3 (Nagami and Roberts, 1~67)

Construction of totally bounded metric spaces (Yn,~n)
n .with u= dim (Yn,£n) = [2"], dim Yn > n-1.

Let (X,£) be a compact metric space with dim X = n

for n ~ 3 •

We want to construct a sequence Bi, i=l, 2, 3, .....

of closed sets of X and a sequence 2 , ~ •.••
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of l.f.closed covers of X satisfying.

(i)

(ii) BinBj = o f o r i:f j.

(iii) mesh ~i < lli-
(iv) ord ';YiI X-Bi < [~·I2 ~ •

The construction is by induction.

Assume Bi and 0'5ihave been constructed for l<i<k.
nLet m = [ 12] + 2

From lemma 2.7 wi t h C~~, C')', replaced by X, B1"'
J. ~

B B if CD and t == liCk + 1)1 we obtain a2'· .. ··· 1(' I.J- '''."1 •••• ,... ~

l.f. closed cover ~of X s.t.

( a) me sh "';~ 1l(k + 1)

(b)
<>"""-!.Iare t distinct members of ;:.J-

for any positive integer t, then if C is any of
1:

(II Fj }nC < dim C-t+l
j=l

X, B" B , .....we have dim
.1. 2

Let B == { x: or d ~> m-2}x

Then B = ~) .F'V where Fry is an intersection of at
'Y E:j"1 I

least ill members of ~ and the

is l.f.

collection ¥ F " YErJl~ Ji.

(A collection consisting of arbitrary

intersections of members of a l.f. c-'Ollection is

l.f., the gist of the proof being that only a finite

number of intersections can be formed from a finite

number of members.) From condition (b) above, dim

Fj < n-m + 1. Since F is closed and {F.y} is J.. f .

we have from theorem 0.7 that dim B < n-m+l = n-[%J-l.

Again from condition (b) above we have that if i < k,
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< n-[~J-l -([~]+2)+1 = n-2([P2~]+1)= --1 so Bf'\Bi =4- .- 2 2

From the construction of B, ordK~2 m-2= [~J if x ~
~\ <r nX-B which means ord zr 1 ",,-B2 [2]' Thus if we let

~k+l =d:'and Bk+l = B then conditions (i) to (iv)

are satisfied. B1 is constructed as above with C1 s

C2, replaced with X, ¢, ¢, .
00

Now let Yn = X - U Bi.
i=l

nSince dim Bi < n - [2] - 1 2 n-l, we have from

theorem 2.1 that dim Yn > n-l.

Condition (iv) above implies that ord:ti \Yn < [~]- 2
for ~ach i. Combining this with the fact that

~ilYn is l.f. with mesh 21/i, we have from lemma

2.6 that u= d i.m (Yn, en) < [*J (en is the inherited
£,

metric of Yn).

It follows from proposition 1.1. that if d is any

of the dimension functions d2, d3, dS' d6, d7 or

IJ-dim, then d(Yn, en) 2 [~], and if n is odd dim

Yn = n-l. It is obvious that(Yn, en)is totally

bounded.

NOTE. If we start with X = rn, then dim Yn = n-l.

This is because IJ-dim (Yn, en) 2 [~J implies lnt

Yn(in In) =¢' which inturn implies, by theorem 0.15

that dim Yn < n-l.

These examples show that d2, d3, d5' d6, 'dl, and IJ=d im

do not always coincide with dim. We next give an

example to show that d2 and IJ-dim and d2 and d3
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do not always coincide.

Lemma 2.8

Let (X,t) be a compact metric space. Then for any

positive integer m, 3a collection (Cik, e'ik)

l:k:m, iE N of disjoint closed sets of (X,£) s.t. if

(Ck, elk) l<k<m are any m pairs of disjoint closed

sets of (X,9,), then3iE N s.t. Ck zr Cf.k and elk C:C'ik

for I < k < m.

Proof: Let'iti be a f i n i. te covering of (X, Q, ) by

open balls of radius i/i.

For each i EN,::1 po s Lt i v e integers \ and open sets

Uijk, U'ijk l:j:ti,l~k~m s.t. ~s j varies, we obtain

all possible rn pairs (UijJ, U'ijl), (Uij2, U'ij2), ... ,

(Uijm, D'ijrn) s.t. Uijk, U'ij.k ate unions of members

ofUi and UijkrtU'iJk = ¢ for al~ l~k~m.

Let C sijk = {XEX: £ (x , X-UiJk) > lis}

and C'sijk = {XE:X: .Q,(x, X-U'ijk) > l/s} for

sE: N. Let (CI, C'I), ..... , (em, Clm) be any m

pairs of disjoint closed sets of X. Because X is

compact,:3 E> 0 s.t. £(Ck, C'k) > E V k , 1 < k < m.

Choose i s.t.1/i < ~ E. If for each k we let Uk

be the union of members of OZLiwhich intersect Ck and

U I k be the union of members of 6l{i which intersect

C'k, then Uk (fU'k -- ¢. So for some j, Uk = U'i.j.k ,

U'k = U'ijk for I < k < m. So CkcUijk, C'kCU'ijk,

I < k < m. Again because X is Compact, £(Ck, X-Uijk)

>0> 0 and £(C'k, X - 1J'ijk) >6> {) for 1 < k < m



- 54'-

for some 5. Choose 9 E, N s. t .~l/§<tS

Then CkcCsijk, C'kCC'sijk for 1 < k < m •

,

So the collection (CSijk, Ctsijk) S,.iG:N, l<j<t~)
- - :1

l~k~m is the required collection (the tuples (5,i,j)

are countable.).

Lemma 2.9

If C, CI are disjoint closed sets of a completely normal

topological space X and 21 A are closed sets of X
s.t. AcZ. and A separates Cn'? and C'~·.c.in 7.,

then 3 a closed set A t of X' s. t. A I separates C

and C I in X and Ain7. CA.

Proof. ~ -A = k'uk I where 1<, K' 8~re open sets of Z ,
1/" 1< ' - 4'> d C "J.. C "1-' n, '7. ~, ',.7,l\.(, - ,an () J.- -' ~, \,;;'1/_ f_ t ....• 'i'hen K () C' :::

KIn C = ~ (closures in X). This~ tGgether with the

fact that X is completely normal implies that we can

obt a i n 0 pen set s G 00, G( l<') 0 f X ~J • t. G( l<)(1 ~l::: K,

G(K')"tz = 1<:, GCK)(lGct(') =4), G(f.~)n C' = G(K')('\C

= (p . -3 disjoint open sets HCC), Hec I) of X

containing C and C' respectiveJy.

Put V ::: GU<) UCH(C) - GCj<.i)'),

V'::: GCK'>liCHCC') - GCI<)')

Then putting AI = X - (DuD'), we see that AI is as

required.
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Def. 2.3

Let CiJ iEN be a sequence of subsets of a topological

space X. Then 1iminf Ci is the set {xEX: for each

nbhd U of x , '3 mEN s.t. I >m=> DnCiF ¢}.

Limsup Ci is the set -[xeX: for each nbhd U of x and

each J E. N,:1 i~~i s.t. Ul)Cifi::¢

Clearl~, liminf Ci and limsup Ci are always closed

sets of X and liminf Ci C limsup Ci.

Lemma 2.10.

Let X be a compact, normal topological space. If

liminf Cil¢ ,and each Ci is connected, then

limsup Ci is connected.

Proof. Let X, Ci be as above with XC liminf Ci

and assume limsup Ci is not connected. Then limsup

Ci is the union of disjoint, closed~ non-empty sets

E, F. Since limsup Ci is closed in X, E, E are

closed in X. :1 disj oin t open sets U, V of X with

EcU, FcV. W.L.G. assume xED. Then for some mE N,

i>m => Ci~Uf¢. Let yEFcV. Then for iEN,3 ris.t.

"r i?i, Cr j(W fo~~ (because y £. 1imsup C:iL). Then for

i~m, we have Cr.J'IUI¢ICr.J1V. Sd nc.e cr~: is connected,]. l 1.

Wi = Cri _'"[X-(UuV)] f ¢. Let xi EWi. Then, since

X-(UuV) is compact, the sequence {xi} has a convergent

subsequence converging to say z ,z ~:X-(UUV). But

then z E limsup Ci contrary to the fact that limsup Ci:;:

EUFcUvV.
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]3xample 2.4

For any integer .n, n~4, we construct a metric space

(Xn, 9"n) with d2 (Xn, .Q,n)~ n-2, d3(Xn, .Q,n)== ~-

dim(Xn, .Q,n) = n-l, and dim Xn = n . This generalizes

on the example given by Nagami and Roberts (Nagami

and Roberts, 1967 pp 430) of a met r f.c space (X, .Q,)

with d2(X, .Q,)= 2, d3(X, .Q,)= u=d tm (x, .Q,)= 3, and

dim ex, .Q,) = 4. Note that the inequality dim X ~

2d2 (X,.Q,) implies that in our example, when n;"'4

we must have d2(Xn,2 n) = n-2. The main sets discussed

are subsets of In, so when we talk of hyperplanes

e.t.c. we shall mean their intersection with In.

In addition, boundaries, closures, ~nteriors e.t.c.

of subsets of In will be with reference to 111.

Boundaries, closures, interiors e.t.c. of subsets

of I will be with reference to I.

First we construct a metric space (Yn, 011) with

d2(Yn, 0 n ) ~ n-2, u=d imf Yn , 0 n)= d Ira Yn = n= I .

For a prime number II, lT~5, let~(,() be the

collection of overlapping intervals
{EO ~) ('1:-2 1] (2k-l 2k+2)k =JL

'If' If' , 11'11' ,
1f-32, .... -2-}

Let ~(~) be the collection of closures in I of the

intervals of ~Or) .

Let ~('i-r) =:: {Dl x D2 x ....xDn; Dl,
~ ('-<". 'J' • nJ \I lS an open cover of I .

••• Dn 'D ("rr) }.

From lemma 2.8,3 a collection of disjoint pairs of
nclosed sets of I Cij, l~j~n-l, iEN such that if

(Cj, C'j) l<j<n-l are any n-l pairs of disjoint closed

sets of In then for some .i , CjCCij, C'jCC'ij l~j~n-l.



- 57 -

Let o:ij, i =: 1, 2, 3, .... 1 ~ j ~ n-1 be distinct

prime numbers s. t. \f ij .: 5 and for each i max

mesh 5 (lhj) < mi n {d(Cij, CI ij) 1 ~ j ~ n-13 ~here d
J

is the euclidean metric (In is compact so Cjj nc 1 ij ::.:ct>

=> d(Cij, C'ij) > 0).

Let Bij = bdry {U E },
E E: 5Crlij )
E (\ Cij -f ¢

Then BiJ separates CiJ and C 1 ij .
n-l

L8t Bi = (\ BiJ.
j=l

Proposition 2.1. If p,q are distinct positive prime

numbers and a,b are o + s.t. 1< a< p-l and111"egers

1< b< alp * bq-l then Iq .- -
Whenever we talk of a/l1\i in the rest of th~s discussion,

we shall have ac{1,2, ... lhj-l}
.

, unless otherwise

stated.

Let Os I ('r"tij) be the collection of the closures of

those members 01 ~(rrij) which Lnter s-ect with Cij.

Let Fjj = U E. Then Bij. ~ bxdr y Fij. Let i
E E:;I (11ii)

be fixed (until after the proof of a.sse r t Lon 3).

Let p~ the collection of faces of members of

~ 1 (trij) which faces intersect with the interior of

In °
, 1. e. faces of the form

D:z. X •••• x {a/1"fij'} x •••• xTIn and not D1.x •••• X{ O} x ....

xDn or Dj,x .... x{l} x ..•.. xJ)n, D,f.~(1Tij).

For a member S of pj. where S = D1x .... xD x {anfiJ
o

}

i-1 °

x ••.. xDn, we say S has normal vectoJ.- e and write
r

N ( S) = e~ r e1 = (1,0, .... 0) €2 = (0" 1, 0, .... ,0)

e.t.c.).

We note that Bij C. U S vj, 1 < .:i <: n-l
SE:P'j
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Diagram 2.1

~ € ~/(IfW)

Sf< E e; ) 'i ~ k s ~
Sk f- Pj } If- ~ k~6
N(5k)::: Ek) :t.~ k s '3

Proposition 2.2.
(i) If X6Bi, then for any j, l~j~n-l, there is at

least one and at most two integers r, l~r~n, s.t. x

is contained in a member of Pj with normal vector er
Furthermore, if for some jo there are two integers r

s.t, x is contained in a member of P. with normal
Jo

vector e , then for any j, j#j , there is only oner 0

integer r s.to.x is contained in a member of P . with
J

normal vector e .
r

(ii) 3 n-l distinct integers r., l<j<n-l s.t.
J

x = a ./lt. .(fc, it E: 6..: )rj J lJ ..•. .
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Proof:

BiJ c: U Sand Bi c. B'i.i , 1 <3<n-1, we have for each
S<:.P·

j., tha,t JXES£Pr for aome S w i t h N(S) == e\_. _ and x., -
J .) j~

aJ-; lIi~\for some y-;. From propos it i on 1, aj-;Tfij.,•.\
l~j~n-l are distinct, and therefore y~_, l~j~n-l

are distinct. This proves part (il). If in addition

for some jo we have two more t nt ege r-s YJ;
with ,'f': distinct and X~S':::p;

J~ ~
, xE,S"(;.P je w i th N(SI!) ::: er,,:

.10

with

NeSI
) =e'r.'

Jo
then we would have a I, IT

XY·~ . - ~J1~ / I i.Ju X,,;!
Jo In

Since x has only n coordinates,

=

this
Ld f f ".4- . ..r I " 1wou .o rce , .o r some .1, .l'r J.o , '!: r. IT' ,r I r

. J •.Ie ..,0 ...•
a .,.,... S I t»: 'Ii 1_.] . ., . .and /lllJ. E'IO~J 1,.1' aJ /tfr.J r wh i.ch lS Lmpossi.bLe in

t c. tt (J 4-)~1
view

of prop. 2.1. Similarly 1 we canuo t have two in~.e[~ers
" •• ' •••• ....".. 4 ••

J, l<J<n-l for each of which th~re are two integers

r s.t. x£Se.P.j with N(S) :::e.,. for some S.

If k:l=i, then Bkf'tBi =4~ .
This follows immediately from prop. 2.2. (ii) and

Assertion 1.

prop. 2.1. since x E:. Bi n Bk wou ld imply:;3 n-l integers

'fi' .... ;'r';"_:1 and n-l integers y~ ••• v ''\''~,j.•.1 s.t.

x'r,'-;= aj/rr:j l~.i~n-l and xl"~ :::djJrrki.l 1.9·~n-l.
J J

Assertion 2

(i) Bi does not meet the n-2-dimensional edge of

In and (ii) Bl meets the surface of In at only

finitely many points.
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To see this, we note that prop. 2.2. (ii) implies Hi

is contained in a union of line segments of the form

{"~f!:In: ';,\ = aj '71' • J 1~)~n-11 with '\'j, , l~J~n-l:-;~.i I l-J

distinct. Since 0 < a.' irr •• < 1, any such segment meets;J I It..!

the surface of In at only two points. There are

only a finite number of them for each i, hence the

assertion.

Assertion 3

(i) Hi is a finite union of line segments of the

~, . 1 1
IIijll

Y1, 0 ~ J ~ n-1 d istinc t, a e { 0, 1,.... 11ijI ")

b E {O, , .•.. , T( iY',}

('i i) B{ is the disjoint union ·of a finite number

of simple closed curves and a finite number of simple

arcs (i.e. Bi does not contain s ome t.n ing Lik e this...L)?

the curves and arcs being closed sets of In.

We first give an intuitive argument. If x £. Bi,

then, with the exception of at most one j, x is

not contained in a of B'-"
1J '

of x, ~j coincides with a hyperplane. Furthermore,

L 1corner i.e. on some nbhd

when x is contained in a 'corner' of Bi5 it must be a

'simple corner', i.e. one that involves the intersection

of only two faces. This is because %or each J, at

least one coordinate of x is determined at a value of
.

the form...,~and to be contained in a 'corner' of 13i~;
Tti.i

means at least two coordinates ,of x are determined at
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values of the form~~. while to be contained in a-1'1...1

'complex 60rner' means at least three coordinates

of x are determined at values of the form ~~.. The
Ll.

claim now follows from proposition 2.1. Given also

that the intervals of~(1TiJ) are either a positive

distance apart or overlapping, it follows that when

x is at a 'corner' of Bil, then on some nbhd of x

BiJ coincides with the union of two half-hyperplanes

Hi' H.2 intersecting along their edges both of·

which edges contain x. (see fig. 2.3a) . Thus at

worst we could have a situation where on some nbhd

of xJBi coincides with the intersection of n-1

sets, n-2 of them being hyperplanes and the n-lth

being a union of two half-hyperplanes intersecting

along their edges, both edges contajning x. The.

hyperplanes and half-hyperplanes furthermore, have

distinct normal vectors. In this case Bi coincides)

on the nbhd of x, with an arc having a corner at x.

Otherwise Bi coincides on some nbhd of x with the

intersection of n-l hyperplanes ha~ing distinct

normal vectors in which case 3i cO~Dcides, on the

nbhd, with a line segment. This sbows that Bi

cannot contain something like this _1-.. That Bi is

a finite union of line segments is intuitively

clear. The assertion then follows.

We now give the detailed proof.

First we show that Bi is a finite union of line

segments. From pror 2.2. (ii), xfB~ implies x is

contained in a line segment of the form {"!1e.In:
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'.

distinct.

Let r; be the unique integer s.t. 12-'1-;;' 2-n,

10 4= f ~ , 12-J2.n-l~.

{aeI: (Xl' x2'

Then x,_ f J.
o

.... x j I a.) .. , ~•• , 'X:Y\)
"0-

Let J' be the component

Let J be the set

of J containing x~
o

Then J' is an interval (from

a property of R). Let b = inf J' and b' = sup J'.

J' is closed in J (being a component of J) and therefore

in I since J is closed in I. So b) b' €. J'. Thus

(Xl' x2' •••• x ) b; .,', ..... x..:.1) is contained in Biro-l '
and for any c. > 0, :3 0<0< E s.t. (x]' x2' •.•. x'r:_n-l . 0 .1

Since Bi = n ]3i,,", then for some
j.=lb ' + &, . . . . x'lI ) <f Bi .

<

Jj> (xl' x2' .... ·x'i; ..1 ,b', ..... x)E.. BiJ1

and for any £ > 0, '3 0 < S< 5 , s. t .

'(Xl, x2'····xy- ",. .l b •.+b, ..... ,x·l1) cf Bij1 The same
·c-.J..

statement then holds for some E in f' (rrij1) which
a'

makes it clear that b' = 11"i.51.for so-me a' Eo{O, 1, ...
a

'r, iJ:t 1 S imil a r 1y, b - 1\U:t'- a E f 0 9i "" ~ 11'Li 2-) •

Since J'cJ, the line segment [x11.x. ~.... x {Xr:.-11x."a a( . v

[lHS:.l,. ,·1Ii.)1] x .... ·X{x.-n5 is con t a iined in Bi (and

contains x). Thus Bi is a union of such line segments

which are fini te in number (recall Xr/. = C1.Ji;(;J, lj::f:. fa
.1

and aj, a, ale. {O, ..... jli~/} for tho appropriate j.').

This proves part (i).

We next prove the following:-

Let X. E.Bi, then:-
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Proposition 2.3: Either (1)3 a nbhd U of x s.t.
n-l

B.nUcL = n H. where H. is a hyperplane of the form
1 j=l J J .

{y€In: y =x =a./I"f..}or (ii)3a nbhd U of x and anrj rj J lJ
integer j , l<j <n-l s.t.

o - 0- n-l
B.nUcL =[(Dr? H.)I"'IHI ] V[( 1'1 H.)nIr! ] where

1 . J J' . 1 1 JJ.=+ 0 J.=. oJ . 0
JtJa .l~"\o n

hyperplane of the form {Y61 : Yr.
J

H I. is a half-hyperplane of
Jo

H. is a
J

a.I'r( ~ j#j ,
J .. 0lJ

{YEln: Yr I =
jo

= x r.
J

the form

=

< a'! IT( ..Jo lJO
=

.,
xr" j(or Yrlt >aJ').rn ..Jo jo- 0 lJO

hyperplane of the form

Yrl.Jo
< a I. lIT..Jo lJO =x I](orr.

Jo
first

= X It )r.
J o

ty6In:Yr'! = xr'!
Jo Jo

> a ~ rt: ..
-lo lJO

and H'.' is a halfJo
= a'! 171.. ,Jo lJO

We see that in the

u
"r ',

Jo
case, .because

= xr' )
jo

a.ITr .. ,J lJ
and therefore x ,and therefore r .•l<j<n-l arerj J - - .
distinct (prop. 2.1), L is a li'ne segment containing

x while in the second case, for simi:n..arreasons, L

is an arc containing x with a corner at x {the union

of two line segments ending at x). This together

with part (i) of assertion 3 gives us part (ii) of

assertion 3.

We divide the argument into two cases (in view of

prop. 2.2. ).

Case 1. For all j, 1~j~n-l,30ne and only one

r. s. t.
J

Fix j.

XE:SfP.
J

Let Q.. J

with N(S) = er.(fig.
J

={sePj: XES}. Then!

2.3 b)

since N(S) = er., we have SJ _

{a/1Tij}x ..•.. XDD, D'rC'J)(~'j)'

for S~Q.,
J

= D1x .. w •• xD rj_1 x

Since :'::;ES we have a/Tl"l' J'=x rj
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Thus U
SEQ,

, ,1

- n -.
SeE, = tyEI : y = x = aj/ifl'J'}(for some

J rj rj

aj). The set lJ S is closed so 3 a nbhd Uj of x
SlOP ,-Q,

J .J
s.t. ( U s i o n .e U S.

SEP, J SEQ,
J J

Bij"UjC( U S)rIU .c U S cH-;.
8fPj J SEQ, J

J n-l
Now unfix j and let U = n u,.

j=l J
n-l

= f".
j ~-.:1

Since B, ,c LJ S,
lJ S£Pj

n-l
Then BinUe( n BiJ,)AU

j=l

n-l
(9ijnU)c n HJ, as required.

< .1==1

Case r I, "
Jo

r-"
Jo

s.t. XESIEPJ,O and NeS') = er" for
Jo

and He ~~f!) = e II for some Sf!.r,
,)0

Define Q, as j.ncase 1.
J

N(~) = e As in caserj
~l = x =aa zrr. ,'1. for J'=fJ' •.)r, r . lJJ 0

J J

each j, j:l=j~:3r, s.t. SEQ,=>
((» J J

1, we have U SeB, =fyeln:
JSEQj

Again fro~ Prop. 2.2.,

Then from prop. 2.2., for

S<s QJ' 0 => Ii( S) := e orr',
Jo

Let QI, = {S;:oQJ' : N(S)
Jo 0

H( S) = e IIr,
Jo

= er I,}, Qff,
Jo Jo =iS~Qi : N(S) =

D

For x£0E? where S = D1x .....xDr -1 x{xr 1x .....xDn,
J 0 0

we shall say x is within S if x elnt D for r~rr r 0

where lnt D is the interior of D in I. Thus x isr r
within 3 iff xslnt S where lnt S is the interior of

S in the hyperplane containing S.

If x is not within S for any S in IJ I
-c jo' then

u ~r ~''\7 r T n 0 yy .•
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u S .{ In
S "I c. s e :"'~ .Jo Yr'.'

Jo
> X "r.

Jo
- a ''.1)T(. .?~

o lJo"S

Likewise, if x is not within S for any S in Q~o'

= a '.IT[ .. 1.Jo lJO

For, suppose x is not Within S for so@e S in Q~ .
Jo

Then S = D1x •••• x D , -1 x {X,I 1 x ...•xDn,
I' . 1 .

Jo Jo
D E J) or.. ) with a/If.. ::::X = inf D or

I' lJO lJO 1'1 1'1 «t r:..lJ. =o

x = sup D for some 1'1'
r'1 1'1

this impl ies XES 'f Q. with
Jo

But

since

r~ . we must infact have 1'1
Jo

above on Qj). Thus either
o

== a " /T{.. } or
Jo lJO

Sc[y Eln: y"r.
Jo

= 1": (see a condition
Jo

SC)uEIn: ,\,' < x
(,) oJ .r " - r"

Jo Joi?-. X ,,"-1/:-;:alt. j'7j_.l,.Suppose
, • J ';1')Jo o Jo

now that x is'not within S for any S in Q.'i. If
vo

S2c ty c:In:

The second part of proposition 2.4 is proved in a

similar manner.

~e now divide case two into four situations.

Situation 1: x is not within S for c:n~.I [] in QI. and
Jo

x is not wi thin S for any S in Q'! (:[:Lg. 2.3c) . Of, Jo
four po ss i.o Le cases h!?re, we treat only one, the rest



1, tha.t \J 8ctYEln: y_ ,
S Q' r.,E. . J

f 11 Jo 0
S c .~Y E I : Y. " =x " ==a" I 'fr. . 1.

I . r . .J 1J
Jo Jo 0 0

x s. t. B. . n U
J
. C U1Jo 0 8('0 ... 'VJo

(U., H., jfj have been treated
J J 0

-. b'{ -

being sLrn i La.r. 80 we assume

x "r.
Jo

Ue have, as in case

= a '. /7r. . } 8.. ndJo l.JO' U
ScQ'!v.J 0

30 if we let H'. == {YEll1:
Jo

we have SeH'. vII'! •
Jo Jo

-.
y " <r, -

Jo

< xr'.
Jo

= a', t tt:.. )Jo 1JO'

= xr '.
Jo

As before, 3 a nbhd U· of
Jo

8 .. If we let U =
·n
n

j==1
U.

J

earl~er) then we end up

with the situation in prop. 2.3 (ii).

Situation 2: (fig 2.3d) x is nbt w~thin 8 for any 8

in Q~ and x is within 80 for some S in
. Jo 0

jfj is treated as in case 1 so we haveo

Q'! Again
Jo

U., H., r.
J J J

satisJying the same candi tions as in .case 1. For

some E Ef'(l1ij ), S is ao J 0 0

= Dt~~···· .xDn, Dr£Vc'i1ijo)
XJx 1x " it hL'r'!J ••••• X.!..JIlVv'J.: xr'!

Jo Jo
within S , x (Int D if ro r - r

face of E so we ha.ve E0) 0

arid C' - n..·X xDL. 00 - .v.- it •••••• r '.' -1
Jo

== a '! IIT.... Since x lS. J I'"o .s )

* r" .J o
Either x " == infr.Jo

D" or XI".' == sup D ". We consider only the caser. r.
Jo Jo Jo

where xr'! = sup Dr'! ' the other case be ing similar.
Jo Jo

Then E = D.x .....xD 11 1 x [x .,'-3f!lt .. , x " ]x ..o.xDn.0.1 r. - I . ) Jo r.
Jo Jo Jo

From prop.2.,'f(and the assumpt i on of s-Ltuation 2, we

either bave \7
J r",

°0
< x " '1 orr. -

JC}
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Yr'! ~ xr,!}. Tbe latter inclusion implies that xr'!
Jo Jo Jo

D for some DE~( ITij ) (recall x <:: U Sandy-! * ,(,,;')
o S~Q!. Jo ~c

but we already have xr'! = sup Dr,,,Jo and we have seer!
Jo Jo

earlier that this cannot bappen. So

< x,,}.- r.
Jo

Let

x Cx " -31T( .. , IJx ••.•• x Int Dn , Th en VI is a nbhd ofr. lJ
Jo 0

x s.t. (.fYt:In:

Thus ((YEIn:1 Y1".'
Jo

Yr '.' < x "1- S ) fI V 't: In t- r. 0
Jo Jo

< x "'J"B .. )t\U'c.S •- r. lJ 0
Jo 0

E cInt F .. cX-B ..•
o lJo lJO

Since USe
SE-Q~

Jo
[( U S)nB .. ]('\D'c.S. As

SeQ! lJO 0
Jo

. niy c;I : < x ,,1, we baver.
Jo

in case 1, Yr'.1
Jo

= x ,,1.r.
Jo

Again as in case 1,

:I a nbhd UI. of x s.t. B .. fl UI
. C U S.

Jo lJO Jo SEQ.
"Jo

UI
• Then BiJ.f1Uj. C U SC[YEln: Yr'!

o 0 SE Q'! J
Jo 0

Put H. =[y€In: y" = x " = a " /7( .. J. Let r. = r " .
Jo r. r. Jo lJO .10 Jon--l Jo .10

Then with U = n D., we have a situation as in prop.
j=l .1

Let U.
Jo

2.3.(i).

Situation 3. x is not within S for any S in QI! and
Jo

This situation isx is within S for some S in Q! .o 0 Jo
similar to situation 2.

Sit.uation 4. (fig 2.3a)

x is wi thin S I for some S I in Q I. and x is wi thin SIt
Jo

for some SIt in Q'! •
Jo

For some E', E"E ~'err .. ), S' is a f a c e of E' and- lJO
SIt is a face of E". We have E' =: D1x xD'n, E" =

D" . ,'III SID I r DI 1" 1. D I1x ••••• Xv n , = 1x 0 0 ••• x r
J
. 0- x ~x ,. I ) X •••• x n ,

-'-jo
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SIt

= a j. I ~' , x" = a '.' I ic • , x E In t D' if r + r '. ,Jo 1JO r. Jo 1JO r r JoJo
and x E Int D" if r t r " Furthermore, xI~'. 6tsuP

r r .J 0 J
o

D', , inf DI ,land x II€{SUP DII" , inf DII,,"Z. Of ther. r.5 r. r. r . .)
Jo Jo Jo Jo Jo

four possible ~ases, we consider only one, i.e. x, =r.
Jo

inf D'
r '.

Jo
and x "r.

Jo

= sup /I
D " •r.

Jo

Then E' = D~x .... xDlrl. -1 x [xr'. ,xr'. + 3/i1ijo]x ••••• x
Jo Jo Jo

3 hr.. , X " ] x . . . xD"
l.JO rjo= D"x xD" x1 .... r'.'-l

Jo

ex " -r.
Jo

and Uo
S nlyEI :

3ru., ,1] x .. ~Jr!,'\!:D"n1J
O

.

x [(1, x I + 3/1T" )x. r. 1J
Jo 0

D" xr'! -1
Jo

Let UI = Jnt D1' x .•... X Int DI r I. -1
Jo

.~lnt.D'n. and U" = Int °D]:x .•... x Int

U '" L In.SeQ'! l:iCtYE •
Jo

a nbhd of x s.t.

~l n"= .K ItJc.u •r.
Jo

As in case 1,

in case

( U
SiO-Q'.

"J o
1, obtain S.B .. «v « U

1JO SEQ.
n Jo

Let U. = U (\y. Then (*) B .. (\U. cS'US"CfyEI :
Jo 0 1JO Jo
= x, = a ' t tt... ?'VLS"y€In: y" = X II = a'! lIT .. S.

r . J 1J d r : r . J 1JJo 0 J Jo 0 0
o . n

a previous case (because U.C 0') we have {yEI :
Jo

Y > x 11 nU. clnt E'clnt F .. c Iil_ B ..r I. r . . J 1J 1J.Jo Jo 0 0 0

Similarly, £y<.;In: y" < x "l('lu. c. In - B ..•r . r .: J 1JJo Jo 0 0
Thus n .. tiU-;C{YEln: y I < X~,}()t:Yfln: Yr'! >1Jo JO rJ. - I.

o Jo Jo

a nbhd V

(U S) (\V c. S" .
S€,Q'.' 0

Jo
o f-x s . t.

Aswh eric e S)f'tU CS' ando

Yr I.

Jo
As in
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Combinin~with (*) above, we have Bijc ('t US:, c. H'j" U

HI!, .Where H' . HI! . - are as in prop. 2.3 (ii) .J 0 • ..10 ) jo
n-l

Thus letting U = .n Uj, we have a situation as in
J =1

prop.. 2.3 (i 1) .
00

Let (vo , (7'n) In - U Bi with the inheri ted
i=l

(euclidean) metric. We show that (Yn, OJn) satisfies

the requirements mentioned earlier.

Assertion 4

Proof: Let (CJ, C'j) 1 < J < n-l be n-l pairs of

closed sets of (Yn, O"n) s. t .

tl'n(C,j, Clj) > 0 Vj, 1.:j~n-1. Then if Cj and Clj

are the closures of CJ and CIJ in In we have CjA Clj

So for some i E..N, CJ C Cij, Clj C C I ij

Thus BiJ serarates Cj, and. C 'j in In for

each j, l~j~n-l. Let B'j = Bij(iYn. Then B" is aj

closed set of (Yn, G"n) separating cj and Clj for
n-l n-l

each j. Furthermore n B I 'I = (.11 Bi J) f\ Yn =
j-=l " j=l

Bif1Yn = cp. Thus d2(Yn,o'n) .: n-.1.

Assertion 5 u= d im (Yn, o-n) > n= L,

Proof. Assume Il-dim (Yn, ern) < n-2. For l:::k~n,

let Ak == {y~In: y~~= O}, A'k = ty£In: Yk == IJ.
We want to construct closed sets Mk. O':k~n, of In

satisfying:-

(1) MO = In, Mn = ¢
( 2) ~lkc: Mk-1 1< k < n

(3) !11kseparates Ak {\ ;"lk·-1 and .AI kf\Mk-1 in Mk-l.
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The construction is by induction. Assume, for some

J, a~~in-2, that we have constructed closed sets

Mk of In and collect ions OJ' k of closed subsets of

Yn s~tisfying:- (f6~

(i) !vIa = In

(i i ) MkC Mk-1, 1 ~ k ~ j.

(iii) Mk separates AknMk-l and A'knMk-l in Mk-l

(iv) ~k is finite

(v) ~~ = {F, Fe ~k1 covers Mk.
(vi) Mesh~t ...< 1

~v(vii) If x c Mk"Yn, then ordx ;;1 k ~ n-k-2

Construct :¥i+l and Mi+l as follows.

Put W = (U F) f\ Mj. and let M.;l + 1 be the
F6.~~+l

boundary in Mj. of W. (i) and (ii) are obvious.

To see that (iii) holds, note that Mi-( U F)
F e~..i~e;;j.;.-l

is an open set of 1M (condition iv) containing
6\.J

Aii+ 1 Ii tl.i (by the canst ruct ion of .7.i+1) and contained

in IV (because of (v». Furthermore, (vi) implies

that WAA'j.+l =4>. This proves (iii).

(iv), (v) and (vi) are obvious. To see (vii), let

Then XE M,j.-wc. (U F) --
F ~~.i
,F ~ ~ j_+l

U F
F~:r;i
FfJ:j.+ 1

(from iv) (closures are in In).

So for some F, Ft:"'Y.i, F4:Gj"J.+l, xz.E,

Since x£Yn and F is a closE;d set of Yn, x£F. Thus
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"

n 6'W
Put MO= I ~nd construct 70 as follows.

Let] be
1

radius "3

')1",

a finite open cover of I by open balls of

Since I~ is compact, ~ has a Lebesque

number f, so that any set of diameter' not exceeding e
(j)is contained in a member of ,.p. Since u=d im Y".,<n-2,

3 a closed (inYj\) 1. f . (;in Yi) cover~' of Ynwi th

or d 1- I 2. n-2 and mesh Oyl <£. Then

£;. r:r~:$s. t . F c. f (F) • For B f, $,
U F. Let ~rO = {g(B)t B(::'23l .

FE~;:'
f(F)==B

let g(B) =

Then ~O

c.:;r
is a finite closed cover of Yn, with mesh ~O < 1, and

,?<,.<
o r dc+O < 11-2.

Yn is dense in

Also V ·F
C't'

W FEYO
.LJ Bi < n-l
l:::l -

-11-'
I. Thus

is a closed set containing

(countable sum theorem),

therefore s~own

U, F
F c~':fo

that (U, (iv),

n,
= I . We have

(v) ~ (vi) an d (v i i)

are satisfied. The rest of the conditions are vacuously

satisfied. We can therefore construct closed sets

W<, 0<k<n-1 satisfying conditions (i) to (vU.).

However, the empty set ""49 not s epa.r a t e An{\ Mn-l

and A' n n l\in-l Ln Mn-l. We shall therefore refer to

Mn-l as M and construct the proper ~n-l from it.

From
(;"-

(v ii) if xt:Mr.Yn then ord;}( 3n-1 < -1. But Me

U F and further, if xd1nY),then xEF, Ft:.~n-l =>
Ff'j~n-1

xe F since F is a closed set of Yn.
t:N--

So ..:J' n-l covers

Mf\Yn. Combining this with ordX ~n-l < - 1 for x E. M(\

Yn, we see t ha t M(\Yl"l = ¢ .
Let T = I xE~.rn-2:

---
or dX,,}' n - 2 > I}" is a closed
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-,
00

set of Mn-2. McTcMn-2 f\ ( U Bi). The first
i=l

inclusion follows because x€M =) xeF for some F~

~n-l and xcF for some F€ vj: n-2 --'.jn-1(as we have seen

earlier). To see that the second inclusion holds,

we recall that Xe Mn--211Yn and xEF, F€~n-2 implies

xt:F so for xfMn-2f\Yn ordX oJ'n-2 = ord:x~n-2 ~ 0
00

(from (vii)), So TcMn-2 - Yn = Mn-2 t\( UBi)
i=l

Let P, pI, Q, QI be the union of components of T

that intersect An-I, Aln-l, An, Aln respectively.

These sets are closed. Take P, for example. Let

<X £: T be a limit point of P. ::l aeque ncea ~i of

points of P and Ci of components of P s.t. lim ~i =d
i

and o(iECi. Then 0< 6.liminf Ci (w.r,t.T). So,

from lemma 2..10, limsup Ci (w.r.t.T)) is connected.

Limsup Ci intersects An-l. This is because each

Ci intersects An-l at, say, ~i. ~xempting the trivial

case where thepi are only a finite number,

is an infinite subset of the compac.ttT 1'1 An-l and so

has a limit point f. Then {J€.limsll!pCi. So

limsup Ci is a connected set of T iDtersecting An-I

which implies limsup Ci c: P so 0( G l:iminf Ci Climsup

Ci c P. So 0( 6-P. So P is closed in T. Simi larly,

pI, Q, QI are closed.

Claim: There is no connected set o~ T intersecting

both PUP I and Q" Q I. For suppose -there were.

Then we could construct (by uniting with appropriate

components of T and taking the closure) a connected
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compact set of T intersecting An and A'n and one
()t>

(or both) of An-l and A'n-l. Since T C U Bi
i=l

and from assertion Lj aasert Lon 3(ii)" and lemma 2.3"

this connected subset must be contained in some

simple arc or some simple closed curve say r of

some Bi. This would imply that r touches An-l

(or Aln-l), An, and A'n. From assertion 3(i) and

assertion 2(ii) it follows that r is a simple arc

and r nmeets the surface of I only at its end

But now assertion 2(i) implies r has threepoints.

end points, impossible for a simple arc.

It also follows that PUP' and QnQ' are disjoint

(a point is connected). So there exist, by lemma

2.2, disjoint clopen sets U, UI of T with T = UuU',

PvP I c U, and Q r\ Q' c: U' •

Because An-l U A'n-l does not intersect UI (because

An-l lJ A In-1nTc;.U), we have [(An-1VA In-l) (\Mn-2] U U

and UI are disjoint closed sets of Mn.~ We can

therefore find an open set V of M'l'I~l.s.t.V"T = UI and

V/i (An-l uA'n-luU) = tP. Define Mn-l as follows.

Let Mn-l = (M-V) U (V-V) .

We recall that 111 separates An-l (\Mn-2 and A' n-l n Mn-2

in Mn-2. Let G, GI be open sets of Mn-2 s.t.

Mn -2 -M = G uG', An -1 1\ Mn -2 c G, A' n-1 (\Mn -2c.G I.
a.nd (,. (\ &'::. 4>

Let H = G-V, ,HI =(GIl) 'V-(V-V).

Then clearly H, H' are open sets of Mn-2 s.t.

Mn-2-Mn-l = HuH',

An-l " Mn-2cH, A' n-lf\Mn-2cH', and HIlH I = <p
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So j1n-l separates An-l n11n-2 and Afn--ln Mn-2 in Mn-2.

We show that no component of Mn-l meets both An and

A' n. We first note that (V-V) {\T = cP. For suppose

x E T = Uv U' (see ab0 ve ) . If x £U 'e V the n x fJ-V . If

xsU then we already have Vf\U = <P.

Since MeT, Mn-l is a union of the disjoint clopen

sets M-V and V-V. It suffices to show that no

component of either of these sets meats both An and

A'n. Suppose a component of M-V meets both An and

A'n. Then it is contained in a component of T that

meets both An and A'n. But such a component is

contained in Q~Q'c U'cV,.a contradiction. To see that

no component of V-V touches both An and A'n, we recall

that (V -'\POT =!b and T is the set {X£!d11-:l.:' ord)(~ n-2

Since V-V C 11n-2, we have ordX~{\_;l ~ 0 if

Thus G:¥.h Iv-v is a finite disjoint clopen cover.-:;).x € V-V.

of V-V. So any component of V-V must lie in a member

of ct lv-v. Since mesh 111~..,_<1, no such member, and
'71-.;J.. /.

therefore no component of V-V can touch both An and

A'n. So no component of Mn-l touches b6th An and A'n.

Let J be the union of components of Mn-l that touch An

and J' thd union of components of Mn-l that touch

An'. AS: in the case for P, P', Q, Q', J and J'

are closed sets of Mn-].. There is no connected set

of ~n-l touching both J and J' since this would

yield a component of Mn-l touching both An and An'.

It follows that JnJ' =1>. By lemma 2.2. J, J' are

separated in Mn-l by 4). Since An ('\~fn-lcJ, A'nt1Mn-lc: J' "
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An (\Mn-l, A I nflMn-l are separated in Mn-l by <p. The

sets Mk, O<k<n then satisfy conditions (1), (2), (3)

at the beginning of the proof. NoVi from lemma 2.9,

3 nfor each l~k~n, a closed set Nk of I s.t.

separates Ak and A I k in In and Nk fI Mk-lcMk.
j

Suppose for l~j~n-l that n NkCMj.
k=l

Nk

j+l
Then (\ Hk

k=l

j
= (() Nk) ()Nj+lC;YljrINj+lci,lj+l.

k==l
n

Since HI = N1f1In = N1f'MoCIvi1,we have f'\ NkCMnk=l
Nk l<k<n s.t.,Thus we have found closed sets

n
separates A, and Akl and n N

K k=l k
This, however,

.. .bl d f In. nn.. h i1S r.mpo ss i e; the boun ary 0" r n J:\, 1S t aomor p lC

to 8n-1 so we refer to it as Sn-1. Let f: Sn-l_;> Sn-l

be the function given by f(x) "" (1--:-x1,l-x2, l-x3, ..... ,

1-xn). Then f is continuous and f-1CAk) = A~, f-l(A~)

= Ak, l~k~n. From the condition satisfied by Nk, above,
-1 -1f (Ak), f (A~) l~k~n is not an essential family (see

def 2.1). So from lemma 3.4 (after adjusting to

using 1= [0, 1] instead of J ~ [-1, 1]), f has an

extension f*: 1n_;> Sn-1. But then f* is a continuous

function of In into In not having a fixed point

contrary to Brouwer1s theorem. This contradiction

shows that u=d im (Y , <:r) > n-1.. n n -

Assertion G. dim Y < n-1.
n -

oo
The set U B. is dense in In. For, let U be an

i=l 1.

open set of In, U :f: ¢ . '3 an open set V of In s.t.

1> '* VcVcU. Now dim V = n > n-2. So;]:n=I pairs

(Cj, C1j) of disjoint closed sets of V s.t. if Tj,
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l<.i<n-l, are closed sets of V s. t. T.i separates C.i
n-l

and Clj. in V for 19"~n-l, then f'I Ti ~¢ . Ci and
d= l

C'i are also disjoint closed sets of In for each .i

so by the choice of Di.i, 3 ieN s.t. BiJ separates

Ci and C'i in In for l<.1<n-l. Then BiinV is a

closed set of
n-l

Thus CPt f1
.i=l

V separat~ng CJ.
n-1

(B ii f\ V) = ( f'.
.1=1

and ell in"V, 1~.i2n-l

B Id ) fl V = B i (\V c:

Bi " U. So for some i c N Bj_n U =#=: ~b. The assertion

now follows from theorem 0.15.

We therefore have ~-dim (Yn, ~n) = n-l

We now construct (Xn, tn.).

Let Ct., 1f') be a totally bounded and therefore bounded

metric space as in example ~.3 with dimZ = n and ~-

dim (.t.; ,}?') = d2(t,1//) = [n;l] < n-2 (remember n>4).

We may assume the diameter 6f Yn and Z is 1.

Let Xn be the disjoint union of Yn and ~ and define

the metric en on Xn as follows:-

en(x,y) = O"'n(x,y) if x, y E. Yn ,

en(x,y) = rf (x, y) if x, y(t Z
En(x,y) = 1 if xcYn, Y6Z or xcZ, y € Yn.

Clearly, en is a metric, d2CXn, en) ~ n-2,

~-dim (Xn, en) = n-] and dim Xn = n. Furthermore,

(Yn , o-n) is clearly tot ally bounded and so, therefore,

is (Xn, en). From theorem 1.6, d3(Xn,en) = ~-dim

(Xn ,en). Thus (Xn,en) is as required.
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SECTION THREE

A natural question to ask about metric-dependent

dimension functions is whether they actually depend

on the metric as opposed to, say, the topology

arising from the metric. That is, is the terminology

'metric-dependent' justified? We show below that

it is. Infact for any integer n, n~3, we shall exhibit

a set Xn and equivalent metrics tni, [~] ~ i < n-l,

on Xn such that d(Xn, e nil = i, where d is any of the

metric-dependent dimension functions discussed

above, and dim Xn = n-l.

Le~na 3.1 (Nagami and Roberts, 1967).

If X is any metrizable topological space with dim

x = n, 3 a metric e on X giving the topology of X

s.t. (X,t) is bounded and d(X,~)= n where d is any of

the above metric-dependent dimension functions.

Proof: In view of proposition 1.1 and remark 1.1,

we only need to find a metric e s.t. d2(X,~) = n.

Since X is metrizable, 3 a metric e'on X giving the

topology of X and s.t. (X,~')is bounded. If n=O,

we would necessarily have d2(X,e') = 0 and we would

be through. Assume n>O. Since dim X > n-l, 3 n

pairs (Ci, C'i), 1 < i < n, of closed sets of X

satisfying:-

(i) Cif)C 'i = cP 1 < i .< n.

(ii) If Bi, 1 < i < n are n closed sets of X s.t.
n

Bi separates Ci and C'i, then n Bi~~.
i=l
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(This is because of theorem 0.4.) 3, by UrysohnI s

lemma, continuous funct ions fi : X -) I 1 < i < n

s.t. fi(Ci) = to}, fi(C1i) fl~ for 1 < i < n.

De f Ln e a metric t! on X by
n

C(x, y) = tl(x,y) + Z11 fi(x) - fi(y) 1. It is
i=l

clear that e is an equivalent metric to tl and so

gives the topology of X. It is also clear that t is

bounded, since e' is. The fact that

t(Ci, e'i) > 1 Vi, 1 < i < n and the pairs (Ci, C'i),

1 < i < n, satisfy condition (ii) implies that d2
(X, e) > n= L, But d2 (X, t-) < dim X So d2(X, e )= n

as desired.

Example 3.1 (Nagami a~d Roberts, 1967)

Let n > 3. For n[ ·~X] +1 2. j.. < n, let CY.i, 0'"' j.) be a

bounded metric space with d2 (Y.i, G./.i) = ~-dim (Yj., O""J)

_ .i
- [-] and dim Y.i = J-l as in example 2.3. From2
lemma 3.1) 3, for each j., [%]+1 2. •

j < .n a bounded

metric ~'J on Yj. which is equivalent to ~j. and s.t.

d2 (Yd , &,IJ) = dim Yd. ::-:.i-I. Let Xn be the disjoint

un ion of the spaces Yj.s [~] + 1 < j. < n. We may assume

the diameters of the spaces CYj., &'j), (Yj.,O""tj.) are

all less than 1. Define for each i, [~] ~ i ~ n-l

a metric eni on Xn as fol10ws:-

eni(x,y)

~cr'.i~x,y) if x , y£Yj. and j.-t-i+l

=)O't.).Cx, y) if x,y€Y.i and j. = i+l

L 1 if x€.Yj.l' Y6Y.i2 and j.,., ~~ .i2 .
."

Clearly, eni is a metric on Xn.

en i IY.i = a-'.i if .i -f i +1 ~ en i ! Yi+1
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It is clear that d2(Xn,fni)

= i arid dim Xn = n-l.

Since ~~ and ~IJ are equivalent [%J+l < J < n, it

w-dim (Xn,eni)

is clear that tni, [%J ~ i ~ n-l are all equivalent.

We now turn to the following question: ~-

If d is a metric-dependent dimension function and

d(X, t) = ~I < n = dim X, then do there exist metrics

ei for each i, m< i < n s.t. ei is equivalent to e
and d(X, ei) = j?

We answer this question in the affirmative for the

metric-dependent dimension functions u-dtm, d2, d3

Lemma 3.2 (Roberts and Slaughter)
671Let X be a paracompact Hansdorff spac e and v< an

open cover of X s.t. ord 1/< n > O. Then
- - 'T1

has an open 1.f. refinement 5lJ - U OUi
i=O

where each

Vj is a disjoint collection.

Proof: The proof is by induction on n. The result

is obvious when n = O. Now assume the result

true for some non-negative integer n. Suppose 1.) is

an open cover of X s.t. 1.f.

open refinement of order < n+l so may assume 1.-{ is

1.f. Let S (1D be the collection or all subcollectionE

of <1U.with n+2 members. For each A E S (1).) let VA =

n u. Then [VA' Af:S(1i)} is a 1,.£. open disjoint
UtA
collection of subsets of X. It is disjoint because

ord 1.1 < n+1. Let Y = X--U VA
M:'S(U)
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Then Y is a closed subset of X and l1/y I s an open

(in Y):, 1.f. (I'n Y), cover of Y of order < n.

has an open (in Y), 1.f (in Y) refinement ·'f1T1 S. t.
n

O).TI =. U <VI i. Where each 1T~ is a disjoint collection.
i=O

Because Y is normal, Cfll has a 1.f. (in Y) closed
n

ref inement ~ = () ~i where each j-i is disjoint.
i=O

Since Y is closed, ~~:Ls also 1.f. and closed in X.

Since X is paracompact and normal, 3 ,by lemma

1.2 an open
n 6lf"'

0/" = U 1/
1
,

i=Oe P-l for some U.
n+l

0/= U Vii=O

1.f. collection 0/1" of subsets of X s.t.
each qh disjoint, and V(E5fj-1I => Vc:U

aP-Letu n+l = Then

is the required refinement of u..

Lemma 3.3. (Roberts and Slaughter)

Given [; > 0 and a positive integer k,::1 k :finite

open covers Sl' ~2' ·····'jk of the unit interval I

s . t .

(i) mesh ;i < 6- V .i , 1 < i < k.
(ii) ord 5. < 1 V i , 1 < i < k.

1 - - -
(iii) If ordx Sio -- 1 then ord ;i .\, 0 for i=f:j·o·X --

Proof: :3 a set of k distinct prime numbers ql' Q2'"

qk s.t. qi > 3 and l/qi < e/3

Vi) 1 < i < k. Let [; = min r =

1, 2, ...... , q. -1 5 = 1, 2,...., qj -1. and l~i,i~k, 1~.:j:J... '.

\"":;5} . (We note that /-;i - ;il > 0).
1 i~ 1 ~t5 2 :1

Let ;i [ 0 , qi (qi -- ~8\= + 2. ), !2:.. , qi + / ,
2 .-/ 3 1d '11:1. 18(qi

.:!'-& _.2.- qi + :z.. ), •••• ' •• (. .q1 - 1.. 1]

Then the covers ~ ,71 C f~2"'" ~ ~k are as required.
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Theorem 3.1 (Roberts and Slaughter)

If (X,e) is a metric space with u-dim (X,e) < rand

f: x-~I is a continuous function, then 0-: XxX-~ R

defined by 6"'(x,y) == e(x,y) +If(x)-f(y)i is an equivalent

met r i c totand u=d tm (X,O") 2. r+1.

Proof: The facts that t(.x,y) 2.o-(x,y) 'if x:,YEX

and 0-: XxX-~ n is cont inuous w. r. t . e imply that e and

~ are equivalent.

Le t c > 0 be given. Since u-vd i rn (X,e) ~ r::lan open

cover'Uof X with e-mesh~V<~€. and ordP!2.r.
r

By Lemma 3.2, Uhas an open ref inemen t cu.' = U"Zli
i=O

where each ftti O~i2.r is dis jo i nt . By Lemma 3.3.3 r+l

open covers'fo, $l' fr of I s.t. (i) meshSi<'~€'

ord ;i<l and (iii) if ord ~i = 1 then ordx 0 x
(ii)

~i~O if i*:1o
For each 0.2.i 2.r,

Then 1Ji. is is an
r

~V== u CU~i is a
i==O

c e 3i1
u U so

Udti
open collect ion' and U V ==

V~5Ji
cover of X.

Claim 1: ord qr < r+ 1.

Let X € X. Suppose that x ' is contained in r+3 dist inct

members of d"LT, say V , Vi' .•••• , V 2' Suppose threeo r+

of these, say V0' V l' V2 are membe~s of qr io for some

io' Since 11i is discrete, and 11 V. f t, we must have
o j=O J

V. = Uf)f-l (G.) 0<j<2 for some u c ~i and G.€. ~i, G.
J J - - <) 0 J 0 J

dist inct . This impli es x c. n f-l (G ,) which implies
j ==0 J

2
f Cx ) € () G. contradicting the fact that ord ~ iO < 1.

j==O J . -
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So we cannot have three members of {Vo"" ,Vr+2 }

being in the sarhe6)J"io' It follows that we must have

two members: S8.y V0' V1 in Via and two other members,

say V2, V3 in~il' iOtil' (VO' VI' V2, V3 are all

distinct), From an argument analogous to the one

above, we see that f(x) t: G{'GI GO' Gl being distinct

members of ~iO and f(x)[ G2(1G3, G2, G3 being

distinct members of t. il. Thus ordf(x) ~ io = ordf(x)

~ il = 1 contradicting condition (iii) above for the ~i.

So x cannot be contained in r+3 distinct members of 0If .

Since x is arbitrary, ordlf< r+l as required.

Claim 2. a -mesh <'}j~ [

-1For, if V ['if, then V = un! (G) for some UE~C and

GE ?:' for some iO' Since ~UI refines CZl and mesh :u.. <<.,.10

~ E diameter U < 1 Also, since mesh ~iO < ~ c ,, Z[

x, s » f-l(G) => f(x) - f (~) I < ~E . Thus x, YE

V = > a (x, y) = Q,( x, y) + '/ f (x ) - f (:J ) I .< [. So

o(V) < c and a mesh 6'if < [ as required.

So for [> 0, :3 an open cover'lTof X s.t. ord 0/

< r + 1 and o-mesh'U< [ which shows that u=d i.m (X, 0)

< r+l.

Theorem 3.2 (Roberts and Slaughter)

Let (X,Q,) be a metric space wi~h u-dim (X, Q,) = r <

n = dim X. Then for each i, r < i < n :3 a met r ic z d

on X s . t . Q,i is e qui val ent tor. and J.1 - dim (X,Q,i) = i.
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Proof: Since dim X > n-l,' 3 n pairs (Ci, C'i)

1 < i ~ n of disjoint closed sets of X s.t. if

1'BiJ 1 < i < n] is any collect ion of closed sets of
n

X s. 1;: • Bi separates Ci and C' i then () Bi::F ¢ .
i=l

By Urysohn's lemma, ::1 contjnuous functions fi: X

--~ I, 1 < i < n, s.t. fi(Ci) = 0 and fi(Ci) = 1.

j
Let ej (x , y) = e (x, y) + :£ I f i (x) - f i( y ) I , 1 < j < n J

i=l
to = r:. As in the proof of lemma 3.1, tj is

equivalent to e, for :1.:S. j ~ nand u= dim (X,en) =71.

From theorem 3.1, u=d Im ex, ej+l) ~ u= dLm ex, tj)

+1 for 0 < j < n-1. I t follows from these facts that

for each I , r < i < n , 3j, 1 ~ j 2. n s.t. u=d irn

ex, ej) = i. This proves the theorem.

Lemma 3.4

Let ex, ~ be a metric space, (C, C') be disjoint

closed sets of X and Wi, i =' 1, 2, •... be subset s

of X s.t.

ei) 9.(Wi+i ,X-Wi) > 0

eii) Q,eC-Wi, C'-Wi) > 0 Vi.

Then 3a continuous function f: X -3> I s.t.

feC) ={o}= feC') = {I} and fix-Wi is uniformly

continuous w.r.t. Q,for all i.

Proof:

Then fex)E I, f is continuous and f(C) = {o}

feC') = {l}.
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Claim: For each it 3 8i > 0 s.t.

£(x, C) + £(x, C') > 8i V xEX-Wi.

Infact, put c i == min {£(C~-Wi+l, C'-Wi+l), £ (Wi+l,

X-Wi) } Suppose for some YEC, y'E C' we have

£(x, y) + Z(x, y') < 5i where XE X-Wi.

Then £(y,y') < £eC-Wi+l,. C'-W:i+l) so we must have

either yE Wi+1 or y'E Wi+l. Assmne W.L.G, that YE

Wi+l. Then, since XE X-Wi, £(x,y) ~o i, a contradiction.

So for yEC, y' EC', we always have 9.(x, y) + £ex, "~')

~ oi if xtWi. Fixing x and y' and letting y vary over

C, we have and similarly,

£(x, C) + i(x, C') > 61.

Let g(x) = t(x, C) and hex) = £(x, C) + £(x, C'),

Since I i ea, A) .- s. (b, 11) I .s: i ea, b ) fora, b , EX

and A a subset of X, g(x) and hex) are uniformly

continuous functions. We have seen above that hex)

> 0 i for XEX-Wi. Fo I' x, Y EX-IV i , i f (x ) - f(y) I =

I g Cx ) hey) - h(x) g(y)l= l(g(x)h(y)-;<x)b(x»'.(h(x)g(y)-h(x)g(x»1
hex) hey) --hex) hey) --

< g ( x) I h ( x) - h ( Y ) I + h ( x) I g ( x )::-~ ( y ) I
.- hex) hey)

h( y) I + I g(x) -- g(y)1

1 1
Since h( y) < IT

g(x)
V y EX-Wi, hex) ~ 1, and hand g

are uniformly continuous functionss it is now clear

that f is uniformly cont inuous on :'>Wi.

Notation: For a set X and a collection U of subsets

of X, if x EX, \ve denote by St (x , \;) the set U U.
De;u
XED
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If A is a subset of X, we denote by St(A,u) the

set U U. I f (X, t) is a metric space we denote by
U,£u
mlA*tP

U(£,s) the collection of all open balls of radius

s w.r.t. L

Def 3.1 . A cover 'J of X is said to be a star

.ref inement of a cover Vof X and we write 'J *< u

if the collection {St (V, 'J ), Vs'J} refines \J •

Lemma 3.5

If 'Jk, k=l, 2, ....is a sequence of open Lebesque

covers of a metric space (X,Z) s.t.

( i) 'J k+ 1 *< 'J k V K EJ.~

(ii) The collection {St (x, 'J k) k=l, 2, .•.• } is a

neighbourhood base at x : V x cX then 3 a

metric 0 equivalent to Q, s. t . 'J k+ 1 <
-kU ( 0, 2 ) < 'Jk Vk •

For a proof of this lemma, see Isbell, theorem 4.

Lemma 3.6 (Goto)

Let (Ci, Cli) I ~ i < r be r pairs of disjoint closed

sets of a metric space (X, Q,). Then "3 a metric 0 on

X and r continuous functions fi: X--> I I < i < r

s.t.

(i) 0 is equivalent to £ and Q,)O i.e. given

o > 0, '3 s > 0 s. t . Q, (x , y) < s => (J (x, y) < 0 v x, Y EX.
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(ii) f i.IC'i ) = {o} , fi(C'i) = {l }

(iii) For any F.: > O,.::l an opc n set U of X s.t.

O(U) < Eand filx-u is uniformly continuous w.r.t.

o for each i.

Proof: Lot (X,£) and (Ci, C'i) 1 < i < I' be as in

the lemma. Let -ku k = U(9., 2 ), k = 2,3,4, ....

Then (ai) Uk is a uniform open cover of (X, t) .

(a2) \)k+l *< u k

(a3) mesh \) k < I/h:.

For k = 2, 3, .... and 1 < i ~ r, let

Aki = {xsX: z Cx , Ci) < 17k ,t(x, C'i) < 11k}.
r

Let Ak = U Aki.
i=l

Then (bl) Ak+l c Ak

(b2) For each xsX,"3 \:.0 s. t . 1
U Ak» IkO'

k=kO

(bl) is obvious. To Gee (b2), let xc X. '3 0>0

s.t. for each i, e t t he r £.(x, C'i ) >-5 or £(x, C'i)7c

Choose ko s.t. 1/ko < icS. Suppose 1: ~ kO and

If £'(X, '];f) ~ 1/ko then, since £.(y, Ci) ~ 1/1< <

and £(y, c..!) ~ l/k~l/kO for some .i , we have
..•.

£(x, Ci) ~ 2/kO <0 and lex, c~ ) < 8 for some i
.l.

contradicting the choice of 0

ys Ak.

1I k o

1z Cx , y) > IkO .,. I\\nJ.C.1 proves (b2) .

If for some k Ak =0 then t(Ci, Ci') > 0 for

1 < i < r and the metr ic e and f unc '. ions

£.(x, Ci) would satisfy conditions (i) to
£.(xsCj.) +.Q.(x~Ci')

(iii) o~ lemma 3.G. (iii) would be s~tisfied because
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9,(x, Ci) + 9,(x, Ci') .: <5 > a v x for some 0 if

9,(Ci, Ci') > 0 and we would then proceed as in lemma

3.4.

So we- assume Ak:f ¢ for all K.

Let Gk = St(Ak,i)k) and let V'k = {Gk} U{UE<'Jk:

U(lAk=.q)} . Then V'k is a Lebesgue open cover of X

(since Uk < V'k and u k is Lebesgue) and the sequence

'ilk, k = 2, 3, ..... satisfies:-

(cl) V' k+1 *< Vk

(c2) The collection {St(x, V'k ) k = 1, 2, .... } is a

nbhd base at x for each XEX.

To see Cc L) , suppose VE V'k+ 1. We want to show

St (V, V' k+l) CV'E V'k for some V'. Suppose V =

Gk+1. Clearly St(Gk+l,V' k+l) = St(Gk+1,u k+1).

Suppose UE \) k+ 1 and U(;Gk+It1:. Then St (U ,"U k+ 1) n

Ak+l * <P. But St(D, u k+1) cD' Eu k for some D'.

D' (\Ak+1 t <P, so DI{JAk:; q;, so U' c St(Ak, u 1-:) = Gk.

So DcGk (infact St(U, uk+l) c Gk). It follows that

St(Gk+l,U k+1) cGk so St (Gk+1, V'k+1) CGkE V'k ,

Now suppose V :f Gk+1. Then V = Uo F.: u k+1. If

Gkl-l()DO = '1>. then St (DO'V' k+1) = St(UO,uk+1)C

D'cVI for some D' E 1)k and VI E v«. If Gk+l nUot q!,
then, as above, St(DO' Vk+l)C.Gk. ~~m\',- clearly St (Va'

V1{+1)

Gk+lCGk
To show

St(Do,Vk+l).UGk+l· -Since Ak+1cAk: and"tJk+l<~l('

soStcDo' Vk+l) CGkc Vk•
(c2), we only need show that for any x~

and E> 0,3 kO s.t. t(St(x, VkO» <£. Let XEX.

(b2) implies:1kO s.t. l/kO < lE and leX, Aka) .: l/kO'
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Since mesh u 1<:0 So if XEVc9kO then

Thus '17k, k = 2, 3, ••.• satisfy the conditions of

lemma 3.5 and ;1 a metric a on X s.t:- ( d l ) a is

compatible withl and I1k+l < D (0, 2-k) < 9 k

v k, k = 2, 3, .....
k 1 -kSince DC9" 2- - ) = uk+l < II k+l < U( 0, 2 ), we have

2-k-l => -k1(x, y) < a Cx,y) < 2 and condition Ci) of

lemma 3.6 follows.

Claim: For each k, k = 2, 3, 4, ... and 1 < i < r

St(Ci-Gk, II k) ("!Cell -Gk)'= ¢

For suppose x c St CCi -Gk, II k ) (J (C 'i - Gk ) . Then

X EVE 'V k for some V s.t. v11(Ci-Gk);t:Q) , WI (Ci'-

Gk):t ~' Obviously V:t:Gk so v c \fk so lCV) < 11k.

But. this implies XE Ak c Gk contrary to the fact that

c'.
f Gk.

= cj' Hence

<II k , St(Ci-Gk, DCO,,'2-k»(1 (

-ko(Ci-Gk, C'i-Gk) > '2 •

C~-Gk)1.

i ( < 2-k+1}Now let Wk = tXEX: a x, Gk) k= 2, 3, ....
-kSince Gk+Lz. Gk it follows that o(Wk+l, X-WId> 2 •

Since Gk C Wk we have o( Ci-Wk, C' i-Wk) > 2-k Vi,

l<i<r~ Now from lemma 3.4,3 for each i, a continuous

function fi; x-~ I s.t. fi(Ci) = {oJ fiCC'i):=.{1}

and fi is uniformly continuous on X-Wk w.r.t. a
for each k. To complete the proof, it is only necessary

to show that lim o(Wk) - O. Since GkE 11k and II k
k

we have o(Gk) It
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-k+3then follows that a (Wk) < 2 and the proof is

complete.

Lerr@a 3.7 (Goto)

Let (X, 1) be a metric space. Let I'Tbe a metric on I ,

for some positive integer 1', giving the usual topology
h;.VIetic· (\

of Ir; Let f : X--> IT be a continuous A S. t. for any

E> 0, :3 an open set U of X s.t. 1 CU) < E and f Is uni-

formly continuous on X-U w.r.t. 1~T

If a: XxX-O> R is the function described b y o (x , y)

= l(x,y) + TCf(x), fey»~, then o is an equivalent

metric toQ, and d2(X,a) < max I d2CX, x.) , r } •

Proof: We may assume d
2
(X, .Q,) < 00 otherwise there is

nothing to prove. It is clear that 0" is a metric

equivalent to L Let "" max { d2(X,1>, r }

Let (Ci, Cli) I < i < m + I be m+l pairs of closed

sets of X s.t.a (Ci, Cli) > 0 I < i < m+l. Let 0 =

min {aCCi, Cli), 1 < i < m+lJ By hypothesis 3

an open set U s.t. ~(U) < ~6 and f is uniformly

continuous on X-V w.r.t. t
1

lex, U) < 8 s l .

T. Let V=-{ x EX:

Then leV) < ~o
Claim: T(f(CinV), f(Cli(')V» ~ ~ <5 • \:f .i , I 2 2·< m+l,

For, if xECi(IV, yf;:Cli(iVand T Cf(x), fey») < ~ 0 ,

we would have ~(x,~) = l(x,y) + TCf(x), fey»~ <

to + ~o =0 contrary to the choice of 0 .
£>1 = f (C i I (IV),]Let B:L = f(CHW), < i < m+l.- -

Then B:L (\ B.i= Ii> Vi, 1 < i < 1~1+1. Since dim r" = I' < m

and using theorem 0.4 3 closed sets Ei, Eli I < i < m+l
I'of Is. t . :-
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(bl) BicEi and

(b2) EiI\.E'i = ¢
m+l

(b3) U (E~~'i) = Ir.
i=l

Since Ir is compact, we have:-

(b4) T(Ei, Eli) >01> 0 'if i for some 01.

We have for each i that 9~(f-l (Ei) - U, f-l(E'i) - U)

. > O.

To see this, let c > 0 be Sot. x , ycX-U and 9,(x, y)

< c=> T (f(x), fey»~ < (; 1. Such an c exists because

-1 Uf is uniformly continuous on X-U. Let x[i (Ei)-

-1, ycf -(Eli) - U for any io Then t(x,y) < c=>

T (f(x), f Cy ) < rSi, contrary to (b4) since f(x)c Ei,

-1 -1f(y)cE'i. So ,Q,(x,y) ~ C. Thus ,Q,(f (Ei)-U, f (Eli)

-U) > e Vi 1 < i < m+10

Now let Fi = f-l(Ei)()U, F'i

Then:-

(dl) 9" (Fi-U, F I i-U) > 0 Vi 0

It is .a l so clear that:-

( d2 ) C i( 10cFi, C I i (1 U c F I i

(d3) Finp'i = ¢
m+l

(d4) u
i=l

(FiUF'i) :::;.U.

d2 follows from (bl), (d3) from (b2) and (d4) from

(b3).

Claim:-

(dS) ,Q,(Fi-U, C'i - U) > 0, teF'i-U, Ci-U) > 0 Vi.

To see this, let 02 = min {i c, ~(f-l(Ei)-U, f-l(E'i)-U)
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Suppose x c: C I i-U and X( x, Fi-U) < (:52 •

1 - 1Then lex, Fi-U) < ~ E so 1(x) U) < ~ E

Fieu. So xcV. So x cC'i(IVcf-l(E'i).
-1Since xiU, xcf (Eli) - U and so

-1 -1e(x, f (Ei) - U) ~ £ef (Ei)-U,

since

lex, Fi-U) ~
f-1(E'i)-U) > &2,

a contradiction. It follows that £(Fi-D, C'i-U) > 8~

> O. Simila~ly £(F'i - D, Ci - U) > O .
.We also have:-

(d6) £(Ci-U, C'i-U) > 0 Vi,1 < i < m+l.

To see this, choose 63 s.t.

o < 03 < min {O'(Ci, Cli), 1 < i < m+l} Since f

is uniformly con t Lriuous on X-D,:3 c > 0 s s t .

E<!O and for x, y EX-V £(x,y) < E=>
TCf(x), fCy» < i03
for any I , £(x,y) < E => T(f(x») :!fey»~< !03 •

So a(x,y) = £(x,y) + T(f(x), fCy ) <: E+ !03 < 03

contrary to the choice of 03 and the fact that x cei,

which implies £(Ci-U, Cli-U) >E > a v i.

Since Fi, F'i are disjoint closed sets of U s.t.

disjoint closed sets of X (since Cif C'i are disjoint).

Furthermore, it follows from (dl), (d5) and (d6)

that £(Di-V, D'i-U) > o vi , 1 ~ i < m+l.

Sin ce d 2 ( X ,£ ) < m, 3 c Losed set sKi, 1<1i of X s.t.
m+l

= U (Ki lJ K'i)
i=1

Ki()KiI r/, D' U 17' D= ~" l - Cl\.l, i I - U C Ki I a.nd X
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Let Wi = (Ki _.U)UDi, W'i - od.. - U)U D'.i.

Since (Ki - U)::>(Dj.- U), CK;:-U):::;>(D'i-U)·and;J.

Ki-V, K'i-U are disjoint, Wi, W'i are disjoint.
m+l

Clearly CicDicWi, C'icDtic:W'i and lJ (VhUW'i)
i=l

m+l
lJ [ (Ki

i=l
m+l

[[ LJ
i=l

m+l
U)u(K'1-U)]U [ lJ

i=l
!n+l

(KiUKti)]-l.JJ LJ[ U
i=1

(FjJ,)F'i)]:5 eX-V)\) V = X

reusing (d4) ).

So we have found disjoint closed sets Wi, W'i 1 < i < m+l
m+l

s.t. Cic wi , C'ie: Iv'i and U (W:LUW'i) - X. Thus
i=l

We are now ready to prove a result analogous to theorem

3.2 for the dimension function d2.

Theorem 3.3. (Goto)

Let (X, £, ) be a met r ic space s.t. d2(X, £, ). = m < n

= d i.m X. Then for each i. , m < i < D. ::1 a metric 9. on- -l '1

X s.t. e . is equivalent to 9. and d2(X, 9~i ) - i.
1

Proof: Let i > m (there is nothing to show 1f i = m).

The conditions of the theorem imply m > a so i > 1.

Since dim X > i-I, 3 i p~irs of disjoint closed sets

(Ci, CIJ) 1 < j < i s.t. for any closed sets Yj, l~j~i,
i

s.t. Yj separates Cj and Ctj, we have n Yj * ¢.
j=l

By lemna 3.6 J a metric oon X and continuous functions

f. : X-> I 1 < j < j. s. t . :-
,1
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Fig. 3.1

t
/
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(i) o is equivalent to Q, and 9, > o .

(i i ) fj (C j) = 0, fj (C' j) = I

(iii) Given E> 0,;] an open set U of X s.t. 0 (U) < E:

and ~ Ix-u is uniformly continuous w.r.t. oV
j, I < j < i.

Let f: X-;, r ' be given by f Cx ) = (~.t (x ) , f2(x), ••.• ,

i.(x».
l

r:
T(X,y) =

Let T be the metric on Ii given by
i
L I Xj - Yj

j=l
I where x = (xl' x,), .... x.),

~ . l

Y:(YI' Y2' ..... Yi)· T zives the usual topology
of Ii. Condition (iii) above implies that f satisfies

the uniformity condition of Lemma 3.7; i.e. given

t: < 0, =1 an open set U of X s.t. o (U) < E and f I X-u

is uniformly continuous w.r.t. 0, T . Let £i be

given by 9vi(x, y) :..0: Q,(x, y) + T(f(x)J fey»~. Then

from lemma 3.7, d2(X, 1i) ~ max {d2(X,0 ), i}. Since

£> 0, d2(X,0 ) ~ d2 (X, ~) < i so d2 (X, £i) < i.

On the other hand, we have Zi (Cj, C'j) > I

Vj, I ~ j ~ i and yet if Yj, I ~ j < i are closed sets
i

sepa rat i.ng Cj and C' j then (\ Yj t Q. This implies
j=l

i as required.

We restate a special case of lemma 1.4.

Lemma 3.8

Let X be a topological space, C, C' be disjoint closed
k

sets of X and X = ~) Di where Di 1 ~ i ~ k is open
i::.:1

and TIie Di+1. For each i, let Fi be the closed set

Di - Di·-l (DO ::.:¢ ). Suppose 13i, 1 < i < k are closed
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sets of Fi s.t. 13i separates CliFi and C'(JFi in Fi.

Then 3· a closed set B of X s.t. 13 separates C and C'
k

in X and D cu (13iU bdry Di) This lemma is obtained
i=l

from.lemma 1.4 by putting Gj = X, j > k .

Theorem 3.4 (Nichols, 1969)

Let (X, 9J) be a metr ic space and f: X-r-> I a

r-: continuous function. Define o : XxX---> R by

a(x, y) = 9.,( x , y) + If(x) - f(y) I

equivalent metric to 9, and

(i) d5 (X, a ) < d (X, 9J ) + 15

(ii) d3 (X, a ) < d3 (X,9, ) + 1.

Then a is an

Proof: Since the p~oofs of (i) and (ii) are similar~

they are proved simultaneously. We have seen earlier

that a and Q, are equi valen t .

Let (X, 9,), f, a be as given with ,d~(X, 9,) < m
o

(respectively d3(X, 9,) < m).

Let A be a countable (resp. finite) set.

Let Cj, C' j j sA be pairs of disjoint closed sets

of X s.t. a( Cj, C'j) > E > 0 11 j €A for some E .

Choose N s.t. 11 N < ~ E .

Since A is countable, 3 distinct members Mj, jCA of

the interval ( 0 , l/N ) .

For each j , let MO j 0 Ml j Mj, :'12j Mj 1= = = + IN ,

M3j = ii1j+ 2/N, •... ~Pj = Mj + N -l/N , MjN+l = 1.

Put k = N+l.

Then (1) Mij < Mi+lj and 1fi+lj - Mij < F V jEA,

o < i < k ·-1.
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Both 1 . are clear.c,,-alms

and j E A, let Dji -1 [ 0 , ).1ij)For 0 < i < k-l, = f--
and let Djk = X. Then for fixed j , it is clear that

the sets Dji 0 < i < k sat Ls f y the conditions of lemma- -
3.8. It is also clear that if Fji is defined by Fji

= Dji Dji-l 1 < i < k (i.e. as in lemma 3 .8) , then:-- -

(3) f(FjI ) C [Mji-1 , \1.i]r>; I'.J •

Claim: (4). 9,(CjrlPji,C'jnFji) ~ ~E V jEA, 1 ~ i ~ k

For, if x E CjnFji, yEC'j(iFji, then, since 0' (Cj, C'j)

> E. o (x, y) > E; but from (3) and (1), ! f(x) - fey)

~ ~ E so 9- (x,y) = 0' (x,y) - I f(x)-f(y)! > 2E and the

claim follows.

Thus the collection (CjnFji, C'jnFji) jEA, 1 ~ i ~ k

is a countable (resp. finite) collection satisfying

( 4 ) . Sin ce d5 (X ,9-) ~ m (re sp-, d3 Cx ,9" ) < m) , we

can find closed sets Btji, jEA, 1 < i < k of X s.t.

B'ji separates CjnFji and C'jnFji in X and ord

{B'ji, jEA, 1 < i ~ k} < m-l. Let. Bji = B'jiI1Fji.

Then Bji is a closed set of X (and Fji) separating

CjnFji and C' jf\Fji in Fji and o rd {Bji, jEA.

1 < i < k ] < m-l.

We want to constru6t closed sets Bj of X s.t.

Bj separates Cj and C'j in X and o~d [Bj, jeA} <

ord [Bji j€A, 1 < i < k} +1.

From Lemma 1, .3 for each fixed, j a elosed set Bj of
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X s.t. Bj separates Cj and C'j and:-
k

(6) Bj c. U (Bji U bdry Dj i )
i=l

Claim: ord {Bj,

For, suppose

j c A}
t

xE r'I
r=l

A(t>l) .

< ord {Bj .i , j£A, 1<i<k1 +1.

Also bdry Dj k =(. k r

So V bdry Dj i
i=l r

members of
k

(7) Xc U (BjriVbdry Djri) for each r, l~r~t.
i=l .

Now bdry DjriCFjrin Fjri+1C f-l(Hj; )(from (3»

bdry X = ¢
k-l

= U bdry Dj i. We therefore haveri=l

B. where j , l<r<t are t distinctJr r --
Then, from (6) we have:-

k k-l -1 . k-l
i~lbdry Dj i c U ("! ·1 ) . Now from ( 2) , (f f'LJ Ur . 1 r i=ll=
f-1 (~\lji))fl .k-l -1 (ill .~ )) = ¢ if j :f j I •( V f

i=l J

k
Thus X can belong to the set U bdry Dj i for at

i=l r k
most one r, l<r<t. Then from ( 7) , x belongs to U

i=l
Bj i for at least t-l indices r, say l<r<t-l.r

For each r, 1<r<t-13 i , l<i <k s.t. x GBj i. Then- - ) r - r- r r
x£Dj i for t-l distinct pairs i j. It follows thatr r r r

ord fB., j6A}< ord{Bji, JEA, l<i<k}+l
J - - -

Thur ord {Bj, j E AJ~ m. This shows that d5 (X, o: )

< m+l (resp. d3(X, 0") ~ m+l).

We finally prove a result analogous to theorem 3.2.

for the dimension functions d3 and d5.

Theorem 3.5 (Nichols, 1969).

Let (X,t) be a metric space with ~.,[i,e) ='\'Y'I-<Y\:: d;~)<..
{v-es~. d-; (X, e,) :: ll'\ ~ ~ :::: d~TV\ X ) . 1he..Y\ fov- al'lj ;'I'\ie~e.v- S suc.h
thqt 11\ ~ S ~'Y\ j a. 'YI'Ieh;c.. t.s e.'b-u~"<l.I.eY\f t-o e .s.t.
d, (XI es);: s (V'-ec;p. d., o: ts):= 5).
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Since dim X > n-l,3 n pairs of disjoint closed sets

(Cj, Clj) 1 < j ~ n s.t. if Bj 1 < j < n are closed

sets of X s.t. Bj separates Cj and C1 j for 1 < j < n-n
Bj ::l: ~then f'I . By Urysohns lemma, 3 for each

j=l

Jo 1 < J_o < n, a continuous function f.:: X--> I s.t., ~

fj (Cj ) = {OJ fj (C 1 j ) = {11. For each i ,
i

~l < i < let flo (x, y) = e(x, y) + ~ IfJ (x)-fj (y)\n "'l
j=l

Let eO = e Then from theorem 3. L1 , ti, 0 < i < n

are equivalent and d(X, ei) ~ d(X, ti-l)+l, 1 ~ i ~ n,J~

As in lemma 3.1, dS(X, en) = n (resp. d3 (X,tn)=n).

It follows from the above facts that for any ~) m<s<n

"3 a metric er- equivalent to e s.t. d::;:(X,tc;) = s...> J "

Historical notes:

The realization theorem for d3Ctheorem 3.5) was first

proved for separable metric spaces only by Roberts

(Roberts, 1968) in 1968. Nichols ( ichols 1969)

generalized the result to all metric spaces in 1969.

The same result for d2 (theorem 3.3.) was first

proved in a very special case (for the spaces (Yn, tn)

in example 2.3 whe~e X = rn) by Nichols (Nichols,

1973) in 1973. Goto proved the result for all metr~c

spaces in 1976.
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SECTION 4

In this section, we study some characterizations of

the metric-dependent dimension functions ~-dim, d2,

d3, d5, d6 and d7 and prove a weak sum theorem for

the dimension functions d2, d3, d6, d7 and ~-dim.

In the proofs, we leave out trival cases where the

dimension 1s -1.

Definition 4.1

A cover aVof a metric space (X, t) is said to be a

Lebes8ue Sover of (X, e-) if for some 5 > 0, every

subset of X of diameter not exceeding S" is contained

in some member of ':U.. Such a <5 is called a L b~. e esque

number for ~ .

Definiticn 4.2

A cover ~ of a metric space (X~e) is said to be

uniformly shrinkable if for some 6> 0, ;:1 a cover
(Recall

that e(x, ¢) = co V X€X by convention). ~Fu' UG.-'V 1
is called a uniform shrinking of tl.

Theorem 4.1

A cover U of a metric space (X, e) is a Lebes~ue

cover of C X, e) iff it is uniformly shrinkable.

Proof: Necessity: Let 1ibe a Lebeague cover of

(X, t) with Lebesgue number 5. For each

Let FU = {XtX: ecx, X-U) > ~SJ
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Then {FU' V(~OUl is a cover of X.

Be x, 6·/2) C Vo for some Vo If cLL •

S/2 so x E.. F~ . Obviously eCFU'
lJO

SO 'U is uniformly shr Lnkab Le •

For suppose x€X.

So e(x, X-VO) ~

X-V,.:S/2 V Vr::iJ ..

Sufficiency: Suppose a cover 11 of a metric space

ex, t) is uniformly shrinkable.

Let t}1J' V&~}be a cover of X s.t. t(FV' X-V)

v .:6 > 0 V V £'21 for some (, .

Let A be any subset of X with teA) < l&
Leaving out the trivial case A = cP , A ('I Fot- cP

o
for some DO €. SU. But this implies A c. Vo proving

that rtl is L8bes~ue.

Corollary 4.1

Every Lebesgue cover.fU of a metric; space (X, e)
has an open Lebesgue refinement f G~~, V E '111 s . t .

'oj

G cu.
U

-Proof: If ~ is a Lebesgue cover of ex, ~),
let {FlJ ' V £ 'Ul be a uniform shrinking of ''Us.t.

(FV' X-V) > S > 0 V Vr:: -7). for some S .-

Let GU = B(Fi;, 0) . Then {Gv' »vu 1 is an open

Lebesgue cover of (X, e) and GU C V.

Defn. 4.3 Let- fr:iy' YEA} be a collect ion of

collections of subsets of a set X. Let r be the

set of funct ions f: 1\ -> U .~ 'Y
:'yfA

s.t. fey) € E'Y 'if yG/\.

Then /\Yfl\ 'ri'Y is defined to be the collection

t n fey), fEr}
'YfA
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Defn 4.4. A collection ~;::: 1. CtA'-~ f cA 1 of subsets

of a s'e t X is said to be m--point boundecl if it is

of order m-l. It is said to be pojnt bounded if it

is of finite order, and is said to be point finite

if every point is contained in C~ for only finitely

many IX

Lemma 4.1

be a collection of collections of

subsets of a metric space (X, t).

(i) If- ~ 'Y is a Lebesgue cover of (X, c , with Lebesgue

number S for each Y {;; A for some:S ,then 1\ -yr:A '[ 'YO

is a Lebesque cover of (XI e) with Lebesgue

number 0'

(ii) If ~y = {Gy G'y} and {G'-y ,"y.::;\} Ls locally
II ,-;.

finite, then YeA Iiy is locally finite, - It is

co un tab Le \f A;s C.OLLYltQ.\rLe..

(iii) If<jy =[Gy, GyJ
• y> -

bounded, then /\-y 1:/1 l,;i ry 1S point bounded.

countable 'if 1\ j~ cou:rtt_£llrle.

and

H. is

(iv) If9:,y= tG'Y' G'y} and {G'y, "161\1 is point

finite, then !\'YE~lJ'yis point finite.lt·lscountable
'If /I. ',So c.cun h)..~le.

Proof: (i). Suppose each '1"1 is Lebesgue with

Lebesgue number S Let A be any set of diameter

1101:: exceeding S. For each Y e A let f (y) be a

member of -~y contain in[,; A (Since <Jr,/ is Lebesgue

with number [j ). Then Ac; n fey)£:: /\YC:/\ '0.. y .
Yo\
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This shows that AYr:-II.~_Y is a Lebesgue cover of ex, e)
with Lebesque number ;) .

e i i ) Sup po Se 5 y == tG,y I G!y 3 and {G ''Y ' 7 c A j is 1 . f.

For any x£X, 3 a nbhd U of x S.t. U intersects only

finitely many G'y'S, say G' G' Put BN , • e •• , 'Y
'1 k

t v, , ••• e , -1/ '!. Let r be as in defn 4.3. If f € {""1
'k

is s.t. Un(n f(']'»'.fq7 we must have f ('y) = Gy for 'Y4"B.-y (1'\

There are only finitely many such fls in r and so U
.~

intersects only fini tely many members of /\ 'Yc:A ~1:

~'A 'e A 'eSo /\YeA .;,'_y is 1. f . To see t ha t /1"'101 $l. 'Y is coun table,

1et f £.14 be s. t. f ('Y ) = G '-y f CJr in fin i tel y may 'Y 's in

1\. Then, since £G I"y ,}'(/iJ is 1. f. () fC>') == cP So
'Y~/I, .

if n f(Y);!::cj.;, we mu.st have f("!) = G'y
'Ye-A

for only finitely many V's. There are only countably
',0

many such f I S in r! and that implies /.~t·cA::11' is

countable. The proof of (iii) and (iv) are similar to

the proof of (ii).

Lemma 4.2

Let X be a normal space and (F., F~ ),tl..6.c4 a collection
c.\ '"'"

of closed sets of X s.t. ~ V FI1.1\.- ,:.( ,

C\Cc4} is point f Ln it e . If E =A ~tO,,--t {X-Fc(, X-F'c.t1

open refinement of order ( n > 0 then 3 closed sets

B0( , CI. Eer{ s . t . Be.< separates F0{ and F 10( and ord {B C<'

For a proof of t h t:::; lemma, see Nagata "Mo der n dimens ion

theory II II, 5, D pp 23-25.
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In the rest of this section, In denotes the set

{I, 2; 3, .... ,n} for a positive integer n.

Theorem 4.2 (Smith, 1968)

Let (X, t) be a metric space. Then d2(X, e) < n

iff for each collection· {~_ .i , ifJn+l'~ of n+l binary

Lebesgue covers of X (i.e. covers consisting of two

members), the cover .~::= l\ iEJn+l ~i of X has an open

refinement of order < n.
<,
)
Proof: Necessity: Suppose d2CX, e) 2 n ~ O.
Let (t; . . J ] -j bIb' T b h1 J1, 1~ n+. e n+ lnary uS esguc covers of

X. From corollary 4.1, we may assume each ?1i to be

an open cover. Clearly, each gi CF,n be written as

[ Gi, X-Fi1 where e (Fi, X-Gj.) > t, > 0 Vi for some S .

Then, since d2CX~t-) 2 11, :;lopen .ae t s ui , iCJn+l s.t.
n+l

Fic UicUiCGi and tt Bi = cP where B:ii = bdry Ui. For
i=l

each non-empty subset I of In+l let ~I b~ the

collection {C (\( n Bi), Cf .~i,; I £ ui , X-Ui-~t
i~I

(Take 11 Bi = X).
iG~

n+l
U <1Yk covers X (recall

k=l

~~.

For kCJnu) let ". l~ be the collect ion

n~l
(\

J~'l
Bi = CP) and ,

clearly, refines .~iCJn+l !J.j.. If F, FI are distinct
;}:t'members of...) k , then for some j (;:In+j we must ha.ve a

s i.t uat ton where FeUi and FI eX-Ui or F e x-ui and FIe

Vi so that F(lpt = 4). Thus '1'k, being finite, is a

disj oint co1Le~tjDy\ of re la ti vely open ~~ubsets of U F.
F £ "tk

Since X is completely normal and
0\ .'

1:- is finite,'ja



disjoint collection ~k of open subsets of X s.t.

'}\k = {H." F[''Jl-J and FeEF.
l'

is a member of I\i fJn +1 !1i

Let H' = RF n G where GF

containing F. Then"J4 'k

= SR' F£ Vjk } is a disjoint collection of open
l ° F'

"....., .(.\J
sets of X and Jk refines Jl'k (but they are not

necessarily covers of X) which in turn refines Ai

GJn+l~i.

Since LJ ~ k
kEJn+l

covers X, so does U '}{ I k
kEJn+l

~i ,

say •

) Claim: ord ~ < n. This is clear because each ~4k

is a disjoint collection. It is also clear that ~~

ref ines 1\ it:Jn +1o~ i since each '}l k does. Thus we

have found an open refinement of A iCJn+l ~i of

order < n.

Su ff iciency: Assume that for each collect ion i -s. .i ,

iE:Jn+lS of n+l binary Lebesgue covers of (X,t),

/iifJn+l '5i has an open refinement of order < n.

Let (Ci, C'i) i€Jn+l be n+l pairs of closed sets

s. t . t (Ci, C'i) > O. Then [x-c i , X-C I i ~, i E In +1,

are clearly n+l binary Lebesgle covers of (x,e),'~iE3)')+1

{X-Ci, X-C'i} has an open refinement of order

< n by hypothesis. From lemma ~.2, 3 closed sets Bi,

icJn+l s.t. Bi separates Ci and C'i and ord {Bi, i£

In+ls < n-l. Thus d2(X, e . ~ n.

Theorem 4.3 .. ( Smi t h, 1968). Let (X, e) be a

metric space. Then d2(X, 'e : ~ n iff every Lobe s que

cover °fr= {G1, G2' .... , G1'1;.)..}.of cx , t), consisting

of n+2 members has an open refinement of order < n.
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Proof: Necessity: Assume d2(X, t) ~ n.

Let ~ = [Gl ..... s G~ 1 be a Lebesaue cover of (X, t).1')+.2 j J-

From theorem 4.1 (and taking closures) 3 a closed

cover .1"J:' = {Fl, F2, .... , F'11+':l1 of X s.t. t(Fi, X-Gi)

> 0 Vi, 1 < i < n+2. AiC::Jn+l {Gi, X-Fi ~ refines 'IL
This is because if HC~ieJn+l [Gi, X-Fi1 , then

e it he I' HeGj. f a I' some i, i (;J n+I, a I' HeX - U Fi
iEJn+1

in which case HCFn+2 cGn+2 (since ~'covers X).

) By theorem 4 ., 2, 1\ iE In {Gi, X-Fi 1 has an open

refinement of order < n. Thus ''5. has an open refinement

of order ~ n.

Sufficiency: Suppose each Lebes9ue cover E- = {Gl' ....

. . , Gn+2J of (X, e> consisting of n+2 members has an

open refinement of order < n. Let (Ci, C'i) i E: In+l

be n+l pairs of closed sets of X s.t. t(Ci, C'i)

> O. Let 5 be s.t. 0 < S< min {eeCi, C'i), ic;:rYI+l~

For i E In+l, let Ui = B(ei, 8 ) and Fi = B(Ci ,6/4).

Let Un+2 = X - U Fi.
i£Jn+l

Then OJ) = {VI' U2' .... , UYl+,.1 is un iformly shrinkab Ie

and so is a LebeE.9ue cover. To see that 1) is uniformly

shrinkable, let U'i = BeCi, 5/2) i€Jn+l and

U'n+2 =X-u B(Ci, 0/3). Theni.u'1' .... u'n+1-~
iE.Jn+1

is a uniform shr Lnlr i ng of 11. By hypothesis, 'U. has

an open refinement t5lU of order ~ n. '3 a function f: OUI

--> 0/). s. t. for WE:'lV, W Cf(W). For each i € In+2,

let Hi = U W. Then ),1)1 = [eT H 7. .
WE6iU j HI' ••.• , "'n+2SlS

feW) = Ui
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an open ref inemen t of 6'tl s. t . Hi C Ui i EJn+2, and

ord }1 < n. Let Ei == Ci - Hi, iEJn+l. Let Yi ==-
B(Ei, 0/4») i E..rn- i ,(recall that t( x, 4 ) = 00 by

convention), and let Vi = HiUYi, i<=Jn+l, and Vn+2 =

Hn+2. Yi(\Hn+2cYi0Un+2 =4:»ie..Jn+l from the

definition of Yi and Un+2. Thjs, together with ord

~-I~ n implies or d '51) ~ n where 6fJ == t VI ' •••• , V -~.rH:;' j

It is clear that Ci C Vi C X-C' i iEJn+1 and V"covers

X. Since X is normal, 3 closed sets Di,iEJn+2

"/\s.t. CicDiCV1) icJn+l and ~ == S'Dl, .... D .~L 'YH.').}

covers X. Again, since X is normal, :1 open sets Ki,

iEJn+l. Then clearly Bi separates Ci and C'io

Claim: ord { Bi, i£Jn+l} < n-1.-
Suppose Xc (\ Bi. Then x 4·: Di for icJn. Thus

i63n+1

xf:Dn+2 s Lnc e ~ covers X. Thus x c vn+z . Also

x cvi , i£Jn+1 since Bi e vi , 1['Jn+l, so XE. () Vi
i€.Jn+2

which is impossible since or d .1'fj- < n , This shows

that d2 (X, t) ~ n.

Defn 4.5 A collectiqn~ of subsets of a metric

space (X, t) is said to be n-uniformly discrete, n~J.,
n

if 't= U [fi where &i, I < i < n satisfy the
i=l -

condition that :3 ,£ > 0 s.t. Vi, 1 < i < n, and C, C'

€ eei with c+ c: we have lcc, C') > E
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Lemma 4.3 (Smith and Nichols)

If ~ is a Lebes5ue cover of a metric space (X,!)
and ~ = \.J ~a where each so. is m-point bounded,

0.(6

m a fixed positive integer, then ~ has a refinement G
s.t. e = \.J Go. and each Go. is m-uniformly discrete.

0,(6

Proof: The proof is by induction on m.

Suppose the result true for a positive integer m.

) Let ~ be as in the lemma with ill replaced by m+1. ~

has a Lebesque refinement s. t.

For each «ct:

lettq be the collection of all subcollections of ~a

with m+l members. For each S.(~a r let Gs = n Fc'
C(S

Then for any a , if S, Sis-ra , stsl ~ 3 c E~a (YJ./...- &)
s.t. C(S, C¢SI. Then) since sa is m+l-point

bounded, Gs 1 () C = c!> • But GsC FC so ! (Gs, Gs I) > 6 •

Ya: a.nd let Z =: X - Y.Let Y (J. = LJ GS'
Sera

Let Y = l)
a(6

For each (J.(6

Let n = l)
cJ.(6

no Then IT is a LebesGue cover of Z.J

For each ~E6, na is m-point bounded. By the induc-

tion hypothesis, IT has a refinement 0' _ \.J
- 0.(6 G' a

where f/~ is m-uniformly discrete w~th =
m
\.J A

i=l

where A ai, 1 < i < m satisfy the condition that
for some 01 > 0, k', 1{1 E A aj , K ...•:"l(t =>

Let 0 a =

for any i. For each a
m+l
U A. 01 .

i=l

, ·let Seta}·

Then e == \L) 0 a is the
act':!

required refinement of ~ If ill - 1 then
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'.

D = {pc C Edc'

is the required refinement. This completes the

induction.

Lemma 4.4. (Smith and Nichols)

Let ~ be a Lebesgue cover of a metric space (X, t)

s. t. ~ == l J t;« where each ~a is m-point bounded.
UE6

Then ~ has an open Lebesgue refinement 8 s.t. 8
)

== a~i 8a where each 8(( is m-uniformly discrete.

.n=
Proof: z:; has a Lsbe sque refinementA{FCl cc~} s.t.

t(FC) X-C) >5>0 V C E ~ for some <5, Let ria == {Fe,

C cl:;a } Then n == U ria and each ~a is m-point
aci',

bounded.

By lemma 4.3, rt has a refinement IT == lJ
dE6

IT Ci

m
where each ITa is m-uniformly discrete. 11 a = U 1\.(1-

i=l 1

where for some o 10:> o , K, KI C It ai- , 1 < i < m,-

Let oao min { 0 , c5 I a} for each «c t: .

{ B(H, 1/4 OCt), HcEcd, Go: is anThen if 8a ==

m-uniformly discrete open colJ.ect:Lon and 8 = lJ Sa
ac6

is the required open Lebesgue refinement of I:;

Corollary 4.2 (Smith and Nictiols)

Let ~ be an n-point bounded Lebesgue cover of a

metric: space (X, Q.). Then z:;has a.n n-ttniformly
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discrete open Lebesgue refinement.

Proof: This is irnmediate from Lemma 4.4.

Theorem 4.4. (Smith and Nichols)

Let (X, £) be a metric space. Then d2(X;' ) 2 n iff

every n+2 - point bounded Lebesgue cover of (X, Q, )

has an open refinement of order < n.

Proof: Necessity: Assume d') (X, 9, ) < n. Let Z;;
u

be an n+2 - point bounded Lebesgue cover of X. From
r:

Corollary 4.2, has Lebesgue refinement 8Z;; an open
n+2

where 8 = U 8 i and each 8 i is disjoint.
i=l

Let Gi = u G. t ci , 1 < i < n+2 }
G E 8 i

is a Lebesgue

cover of X witt n+2 members so, from Theorem 4.3,

{Gi} has an open refinement IT of order < n. '3

a function f: IT -:> 0, 2, ....n+2} s.t.

HCGf(H) V H En. Let II = {H()G9 HE IT, GE'8 f(H)} .
Then A is an open refinement of z;; of order < n.

Sufficiency: This is clear from Theorem 4.3 since

every collection consisting of n+2 members is n+2

point bounded.

Theorem 4.5 (Smith, Smith and Nichols)

Let (X, t) be a metric space. Then the following are

equivalent:-

(i) d3(X, 1)< n

(ii) Every finite Lebesgue cover of (X, 1) has an

open refinement of order < n.
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(iii) Every point bounded Lebesgue cover of ex, Q, )

has an open refinement of order < n.

(iv) If (C a , CI a ) aE6 are pairs of closed sets

of X s.t. Q, (Co" C' a) >0>0 V aE6 for some

o and {X-C' a , o.E6} is point bounded then

3 closed sets B a, aE6 s.t. Ba separates

C a and Cia and ord {Ba,aE6} < n-l.

Proof: We prove (j_) => (ii) =0) (iii) => (iv) => (i).

(i) => (ii).

J
Suppose d3(X, Q,) < n. Let 8 ={G1, G2' ,Gk}be

a finite Lebesgue cover of (X, Q,). From corollary

4.1, we may assume 8 to be an open cover. ~ , by

theorem 4.1, a closed cover n := {F l' F2' ..•.. ,Fk}

of X s. t . Q, (F., X - G.) > 0 f'o r 1 < i < \,.
1 1

Since d3 (X, Q,) < n, 30pen sets Ui, 1 < i < k s.t.

FicUicUi e: Gi, 1 < i 2. k, and ord { b dry U i, 1 < i < 1< }

< n=l . By Lemma 1.3,{ Gi} has an open ref inemen t of

order < n.

(ii) => (iii)

Assume (ii). Let ~ be a point bounded Lebesgue cover

of (X,9,) so for some positive integer m T is m-point
"

bounded. From corollary 4 • 2 , ~ has an open Lebesgue
m

refinement 8 where 8 = lJ 8 i and each 8 i is
i=l

disjoint. Let Gi = tJ G. {Gi, 1 < i < m }
G 8i -E

is a finite Lebesgue cover of (X, Q,). From (ii),

{Gi, 1 < i < m }has an open refinement IT of order < n.



'3 a function f: R-). { 1, 2, .... , m} s.t. Hc:G:fC\i)

V HEn". Let A ={HriG, n cn , GE Gf(H)"s Then A is

an open refinement of ~ of order < n.

(iii) => (iv)

Assume (iii). Let (C G , C' e1 ) aE6 and 0 be as .in

(iv). {X-C a, X-C' o l is a Lebesgue cover of (X,9, )

V aE 6 and so, therefore, is [\ aE6 {X-Ca, X-C' a}

from Lemma 4.1. Since iX-C'a,aE6} is point bounded,

ACJ.E6t x-c e, X-C' CJ.}is point bounded by lemma 4.1. So

from ((ii) , AaE6 { X-C a, X-C' c } has an open refinement

of order '< n. From lemma 4.2, 3 closed sets B ('I, O:E6

s. t . B a separates Ca and C' a and ord

{B a, a E t,} < n -1 .

(i v) => (i).

This is clear from the definition of d3.

Lemma 4.5 (Smith, 1970)

Let G = {G a, aE6}}be a star-countable collection

of subsets of a set X. Then 3 a partition {6 e
e EX} of 6 s. t. 6 B is countable for each BEX and if

we put X S = U G t h if ICJ.€6 sat en 1 S I S

Proof: Define a relat:i.on '\.,on 6 as follows.

0.'\.,0.' if 3 a finite number of members Gal' Ga2,··· .Gak

ofG s.t. GanGa1:t¢,Ga1l"'Gu2:f:¢, •••. Ga
k
(}

Ga':f. Q. Clearly '\., is an equivalence re la t Lon on 6 .

Let{6S , BEX}be the collection of equivalence



classes of '\,. Then the conditions of the lemma

are satisfied.

Lemma 4.6 (Sm i t h , 19 68)

Every countable Lebes~ue cover of a metric space. ~

(X,1) has a countable, open, l.f. Lebesgue refinement.

Proof: Let 8 be a countable Lebes5ue cover of a

metric space eX, 1). From corollary 4.1, 8 has

a countable open Lebesgue refinement IT ={ HI' H2,

..•.. }. Let st = {F1; F2' ..... } be a uniform

shrinking of IT with 9"(Fi, X-Hi) >6> 0 Vi, i = 1,

2,. '" for some 8

Let Ui = Hi - .\.).B(Fj, (/4) i = 2, 3, .... and UlJ c i

= HI' Clearly u = {U l' U 2' ..... } is an open,
countable, l.f. refinement of G . Furthermore,

if Ei = B(Fi, ~ 6) - tJ B(Fj, 1/36)
j< i

i = 2,3 ..... and El ;:::B (Fl/~ 8), then {El, E2 .....

} is a uniform shrinking of u so u is Lebesgue.

Theorem 4.6 (Smith, Smith and Nichols)

Let (x,1) be a metric space. Then the following

conditions are equivalent

(i) d6( x..» : n

(ii) Every countable l.f. Lebesgue cover of (X,!)

has an open refinement of order < n.

(iii) Every coun table Lebes9ue cover of (X, 1)

has an open refinement of order < n.
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(iv) Every star-countable Leb esque cover of (X, 9, )

'has an open refinement of order < n.

(v) Every Lebesgue cover of (X, ~) representable

as a unton U
i-I

i = 1, 2 .... for some positive integer m has

V i with 1) i m-poin t bounded

an open refinement of order < n.

Proof: We prove (i) =) (ii) =) (i1i) =) (iv) =)

(v) =) (ii) =) (i).

(i) =) (ii).

Let 8:= { G1 ~ G2' .•••• } be a coun tab1 eLf.

Lebesoue cover of (X, 9,). From corollary 4.1.,
_J

we may assume 8 is open. From theorem 4.1, 8 has

a closed refinement n = {Fl, F2 .•••. } s.t.

l(Fi, X-Gi) ) 6) a Vi, i = 1, 2, 3y •••• for some 8
Since d6(X, 1) < n,30pen sets Ui, i = 1,2, ....

s.t . Fi c Ui C UicGi i == 1, 2,.... and ord {bdry Ui,

i = 1, 2, ..... } ~ n-l. {Ui } is a cover of X

and by lemma 1.3 8 has an open refinement of order

< n.

(ii) ==> (iii).

This is obvious from le~na 4.6.

(iii) => (iv).

Assume (iii). Let 8 =: {Go, O:E:6} be a star countable

Lebe sSde cover of (X, 9, ). From lemma 4.5, '3 a

partitio:l{6S/BcX} of D s.t. each 1'IB is countable



and if =~S = Ga then XS (lXS' =<Pif S:t:f3', S ) S' EX

Clearly, for each SEX,US = {Ga,aE6S } u Ix-x s j

(= {Ga, aE.6.B}U . {U G a}) is a countable Lebesjue
afiJ~

cover of (X, £,). E From (iii), uS has an open refine-

Iment uS of order < n. If we let u" B be the collect ion

of these members of uS which are contained in some

Ga, aE6 (; , then U,:S is an open cover of XS of order

< n which refines { Ga,aE6S} • Let U == \J »" S.
SEX .

Then U is an open refinement of 8 of order < n.

(iv) => (v)

Assume (iv). Let ~ be a Lebes9ue cover of (X,£' )
00

s.t.s = tJ s i where 3 an integer m s.t. s i is
i=l

m-point bounded for each i. From lemma 4.4., 1:; has
00

an open Lebesgue refinement 0 s.t. CJ = U 8 i
. m i=l

and each 8 i = l} IT ij where ITij are disjoint.).=1

collections. For each i, i ::: 1, 2,~....and 1 ~ j ~ m,

let Hij = U H.
HE ITij

Then II ::= { Hij, i = 1, 2, •.••

1 < j < m} is a countable Lebesgue cover of (X,£, ).

From (i v) (or even (ii i») II has an open refinement

U of order < n , :3 a funct ion f: U -) Nx N -: s. t .

uenr (V) VUE U •

Then {VnK, VEU , K EITfeU)} is an open refinement

of s of order < n.
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(v) =) (ii) is immediate.

(ii) =) (i).

Assume (ii). Let (Ci, C'i) i S N be a collection of

pairs of closed sets of X s.t. i('"....,1, C'i) > 0> 0

V i c N for some 0 and {X-C'i, i c N} is r .r ,

From lemma 4.1, 8 =f..icN {X-Ci,X-C'i} isa

countable, l.f. Lebesgue cover of (X, ~). From

(ii), 8 has an open refinement of order ~ n. From

lemma 4.2, 3 closed sets Bi, icN s.t. Bi separates

Ci and C'i and ord {Bi, icN }< n-l. This completes

the proof.

Lemma 4.7

Every point finite Lebesgue cover of a metric space

(X,~) has a locally finite Lebesgue refinement.

Proof: Let u be a point finite L~besgue cover of

a metric space (X, ~). From Theorem 4.1 u has a

uniform shrinking {FU, UCU} s.t. i(FU, X-U) ) 0

) 0 V Ucu for some O. Let GU = B(FU, ~ 0).

Claim: 8 = {GU, Ucu } is a 1.f. Lebesgue cover of

(X, i). 8 is Lebesgue because {FU, UCU} is a

unifO_Y" m shrinking of 8. To see that 8 is 1.f., let

xeX. Then, since U is point finite, x is contained

in only finitely many members, say U U2' .... , Uk of_1
u. Now if x ¢ U co , then B(x, ! 0) () GU = ¢ so

B(x , ! 0) intersects at mo st a finite number of
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'.

Theorem 4.7 (Smith, Smith and Nichols)

Let (X, £) be a metric space. Then the following

conditions are equivalent:-

(i)d7(X, £) ~ n.

(ii) Every locally finite Lebesgue cover of (X,£)

has an open refinement of order ~ n.

(iii) Every point finite Lebesgue cover of (X,!)

has an open refinement of order < n.

(i v ) I f (C «, C' a) a E t. is a collection of pairs of

closed sets of (X,£) s.t. 2.(Ca, C'.a) >0>0 V

aEt. for some 0 and {X-C'a,aE6} is point finite

then 3 closed sets Ba,aEt. s.t. Ba separates

Ca and C 'a V aEt. and ord {Ba,aEt.} < n-l

Proof; We prove (i) => (ii) => (iii) => (iv) => (i).

(i) => (ii).

Assume d7(X,£) < n. Let 8 be a l.ff. Lebesgue cover

of (X, £). From corollary 4.1, we ooay assume 8 to be

open. From theorem 4.1, 8 has a closed refinement

{FG, G E8} s.t. £(FG, X-G) > 0> (J) V G E8 for some e .
Since d7(X, !) ~ n, 3 open sets Uc;..!t G E8 s.t.

FGCUGCUGcG V GE8and ord {bdry UG) GE8} < n-l.

From lemma 1.3, 8 has an open refi.nement of order

< n.

(ii) ==> (iii).

This is obvious from lemma 4.7
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'.

(iii) => (iv).

Let (Ca, CIa )aE6 and 6 be as in (iv).

{X-Ca, X-CIa} is a Lebesgue cover of (X,~ )
with Lebesgue number 6 V ac6 From lemma 4.1, G

=AaE6 {X-Ca, X-CIa} is a point finite Lebesgue cover

of (X, ~). From (iii) G has an open refinement of

order < n. From lemma 4.2, .3 closed sets Ba ,
a E 6 satisfying the condition in (iv).

(iv) => (i)

This is obvious.

Theorem 4.8 (Smith, 1970)
Let (X, ~ be a metric space.

Then the following conditions are equivalent

(i) d5 (X, ~) .s. n

I f (C a, C I a) a E 6 is a collection of pairs of(ii)

closed sets of (X l, ) s.t. s. (Ca,·Cla) >6

> 0 V aE6 for some 8 and {:;::-CIa ,aE 6} is

star countable, then :3 c Lo se d sets Bo , aEf',.
s.t. go separates Ca and C~a VaE6 and

ord {Ba, aE6} < n-l.

Proof:

(i) => (ii)

Assume d5(X,£) .s. n. Let (Ca, CIa) aE6 and o be

as in (ii). From lemma 4.5, ::1 a partition U~S

SEX} of 6 s.t. each 68 is countable and if XS =
\.J (X-C' a ) then X B (1XB I = ¢ i:[f3 ~ S' , S ..•s' EX

OE LIS
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Since 6S is countable and d5(X, t ) < n, 3, for-

each SEX closed sets' B a. ,cu:66 s.t. B a,
separates C a and CIa for each aE6S and ord

< n-l.

Then tJ { B a. ,as6SJ = {B a, a.Eld
SEX

is a collection

of closed sets of (X, t)'s.t. Bet separates Ca and

C' a VaE6 and ord {Ba,aE Ll} < n-l. To see that ord

{Ba,aE6} ~ n-l, we note that if Ba separates Ca

then Be G X-C'a. c. X6 if ac~~)SEX .

So if S;f:B' B, S' EX, then for as D.e and AE6 S ',
n« n B A = ¢ (because XS nxsl = $). T~is, together

with the fact that ord fBa. , a.Ei\3}~ n-l

that ord {Ba. , a.E6} < n-l.

Thus (ii) holds.
(ii) =) (i) .

This is obvious.

implies

Theorem 4.9 (Egorov)

For a metric space (X, £), ~-dim (X~ t) ~ n iff

every.Lebesgue cover of (X, £) has an open refinement

of order < n.

Proof: The proof is in~ediate.

From theorem 4.7, the following is now obvious:-

Theorem 4.10

For any metric space eX,t), d7(X,1) ~ ~-dim (X,t)

This justifies the claim in remark 1.1.
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We now use the Lebesgue cover characterizations

derived so far to prove a weak sum theorem for d2,

d3, d6, d7 and ~-dim.

Defn 4.6

Let 8 be an open cover of a topological space X.

Then G -dim(X) is the smallest integer n s .t.:3 an

open refinement of 8 of order < n. G -dim (X) = 00

if no such integer ex i.e t s , If YcX, then G -dim Y =

GIY-dim Y by definition.

Theorem 4.11 (Morita)

Let X be a normal topological space, { u«, a.Ell} a

lof. open collection and {Fa, a.Ell} a closed collection
CCLTe\~

s.t. Fa.cUa. V a.E/}. Let o be any 1.f . open"of X

s.t. G-dim (Fa.) < n V a.Ell If dim Fa. () F(3

< n-l for a.oft B, then G·-dim l)~ Fa. < n.
a.Ell

The proof of this theorem can be found in Morita.

We generalize theorem 4.11 to the following:-

Theorem 4.12 (Smith, 1970).

Let X be a normal topological space,

{Ua., a.Ell} a l.f. open collection and

{Fo:,a.Ell} a closed collection s.t. F('LeDa. Va.Ell •

Let G be any 1.f. open cover of X s. t. G -dim (Fa)

< n V a.Ell. If dim bdry (Rt )(') FS < n-l for a* (3 ,

then G-dim lJ Fa. < n.aEll

lJlUVER.Srr~ OF NAIR,OlU
UB~Y
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Proof: Let 8 , Va, Fa,aE~ be as above.

Let S( ~) be the collection of all finite non-

empty subsets of 6. For each A E S( 6 ), let HA =

() Fex -
aEA.

l), int Fa.
aEL\
oc¢A

Let VA = n U a.
aeA

Then II = { HA, AES (6 )} and

v = {VA' A cs ( 6 )} are locally finite, V is open)

Claim (i)
t)

= a, E f:l Fa .

(ii) If A, A'CS( 6) kiA' then

HA(\HA'c bdry (F a) () Fa' for some a, a'

To see (i), suppose x C U Fa. Since {F a, aE6} is
aE6

1. f. x is contained in only f ini tely many Fe<' so

{cx e ts: x cl"o }= AoES( 6).

Then xCHAo' To see (ii), suppose A, A' E S ( 6) with

AlA'. Either A-A' I ¢ or A'-A # ¢. W.L.G. assume

A-A' # ¢. Let oc A-A'. Since A' # ¢, :3 f3 E A'.

Then HAn HA' c (Fa-int FS)('\ FS c: Fan bdry Fe. Since n

is a closed collection, we have dim Ht ~IA' < n-l

if A#A', A,A' ES( 6). Since IT refines {Fa, aE6}

8 -dim (HA) ~ n V A E S( 6 ). We now apply theorem

4.11 to conclude that 8 -dim V Fa= 8 -dim \J
aEA M.:S( 6 )

Theorem 4.13 (Smith, 1970)
Let {F Cf, 0. r-04}bea 1. f. closed cover of a met r ic space
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(X,E) s.t. ifo!r'=j3thendim bdry (FO()f'lF~ ~ n-l.

If d (F0( ). ~ n V ct. £4 wher e d is IJ - dim, d7' d6' d3 0r d2 '

then d(X,e) < n.

Proof: Assume p-dim Fc<~ n VC<Ed (respectively d7,

d6, d3 and d2). Let 31 be a Lebesgue cover of (X, e.)
(respectively l.f. Lebesgue cover, countable Lebesgue

cover, finite Lebesgue cover or a Lebesgue cover with

n+2 members). For each rJ..t.cff,~)Fc{ is a Lebesgue cover

of Fo( (resp. 1.f. Lebesgue cover, countable Lebesgue cover,

finite Lebesgue cover or Lebesgue cover with n+2

members). Since ~-dim F~ ~ n (resp. d7(F~) < n, d6
(Fo() ~ n, d3(Fd.) ~ n, d2(Fo() ~ n)~\Fo( has an open

(in Fc..<.)1.f. (in Fc() refinement tlrJ.. s. t. ord ~{o(.~n.

Since F~ is normal,1(~has a closed l.f. (in F~)

refinement 5c(s.t. ord3o(2. n. ~o( is also l.f. in X.

Furthermore, since [Fc<5is 1.f. and E t 5c( => EcF"",S = u 5(:("" ~ EcA-
is 1.f. in X. Also 5" refines [i By lemma

1.2:3 an open 1.f. refinementtr"={v
E

, EE~~ of·~s.t.

EcVE for each E€~ and ord lYE' Etf~5 < n. Clearlyqr-dim

Fo( ~n Vcl.€4. By theorem 4.12, V-dim X < n. So o/and

therefore Fi, has an open refinement of order < n.

Thus ~-dim (X,e) ~ n (resp. d7(X,e) ~ n, d6(X,t) ~ n,

-d3(X,~) < nand d2(X,e) < n).

Remark

It might be speculated that the various metric-

dependent dimension functions satisfy other sum theorems

e.g. the countable sum theorem (theorem 0.7), a



monotone sum theorem (i.e. if Fi, i€N is an increasing
co

sequence of closed sets s.t. X = U Fi and d(fi)
i=l

< n then d(X) < n), or a finite sum theorem.

J.C. Nichols and J.C. Smith have shown (Nichols and

Smi~h) that none of the metric-dependent dimensions

functions discussed above satisfy any of the sum

theorems mentioned. They construct a metric space

(X,~) s.t. X=AIUA2, AI' A2 closed in X with ~-dim

Al ~ 1, ~-dim A2 ~ 1 but d2(X,~) ~ 2. This shows

that none of the metric-dependent dimension functions

satisfies the countable sum theorem or finite sum

theorem. They also give an example of a metric

space (X,~) s.t. X = U Ai, where each Ai is closed,
i€N

AiCAi+l, and ~-dim Ai < 1 for each i but d2(X,~)

> 2. This shows that none of the metric dependent

dimension functions satisfies the monotone sum

theorem.
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CONCLUDING REMARKS

Much of the current research in dimension theory

involves the dimension theory of uniform spaces. A

uniform space is a generalization of a metric space.

Of several possible definitions of a uniform space,

we give only one.

Defn

Let X be a set. Let 6 denote the subset {(x, x),

XEX }of XxX. If U, V are subsets oI XxX, let lieV
denote the set

{(x,y)sXxX: for eome zc X, (x,"2) E V and (z ,y) E U }.

A diag_onal uni formi ty on X is a coIJLection r (X)

(or just f), of subsets of XxX, caIRed surroundings,

which satisfy:-

(a) DEf=>6 < D

(b) Dl, D2 e r => D{l D2 cr
(c) ]jEf => EoEcD for some EEr

(d) r -1 ~DS => E cD for some EEl (E--l is the set

{(y, x ) , (x, s r e E }.)

(e) DEr , DeE => E eI'

A uniform space (X,f) is a set X together with a

diagonal uniformity r on X. A diagonal uniformity

on X gives rise to a topolo~y pn X as follows. For

XEX and DEf , let B(x,D) = {YEX: (~~y)E D }
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Then the collection {B(x, D), XEX, DEr} is a

base for a topology on X.

Any metric ~ on X generates a diagonal uniformity

{D~,E > O} where DE = {(x, y)EXxX: ~(x,y) < E } •

We therefore see that a uniform space is a generaliza-

tion of a metric space .. The condition that ~ (x, y) < E

in a metric space is replaced by the condition that

(x,y)CD, DE r in a uniform space, Therefore the

notion of two subsets being a posit~ve distance apart

or distant is meaningful in a uniform space. We say

two subsets C,CI of a uniform space (X, r ) are

distant if for some DE I', CxC'(JD = ¢ a A collection

Ca, CIa) a ED of pairs of subsets of (X,r ) are

uniformly distant if 3 DE r s.t.

Co. x C I OJl D = ¢ V- Cl.ED We see t hem-e fore that all

the metric-depedent dimension functn~ns discussed

above may be generalized to un{form £paces. For

these generalizations, Soniat (Sonimt) has obtained

Lebesgue - cover type characterizat:iLons for u= d.i.mand

d3 while Smith· (Smith ) has obtainoo Lebesgue-cover

type characterizations for d2, d6, and d7, These

dimension functions defined on un i ftorm spaces fail

to satisfy the equality d4 = dim or the inequality

dim ~ 2d2 satisfied by metric-dependent dimension

functions. Charalambous (Charalambous) has introduced

dimension functions r-dim, f-Ind,f -dl,r -d2, f -d3,

and r-d4 for a uniform space (X,r ) which satisfy

r-d1 < r-d < r-d = r=d i.m < 2 Ld and r -d =3 - 4 - 2 I
r-Ind and r-dim further satisfiestJJ.e countable sum



- 12-6-

theorem, a subset theorem, the Urysohn inequality

and a product theorem. It agrees with dim on L\ndeL"of

spaces and spaces with uniformity derivable from a

metric:.

There exist open problems in the theory of metric

(uniformity) dependent dimension functions. Notably,

is d3CX,£) = ~-dim (X,£) for any (separable) metric

space (X,£)?

More generally, which of the dimension functions d3;

dS' d6, d7 and ~-dim are equal and under what

conditions?

Which subset theorems are satisfied by d6 and d7?

Do d6 and d7 satisfy the realization theorem?

(see theorem 3.2).

The notion of dimension is quite fundamental and

of great intrinsic interest. Apart from that,

dimension theory is a subject that could intersect

with other areas of mathematics. Already, a strong

relationship has been found between dimension and

measure for metric spaces. (Hureuicz and Wallman,

Chapter VII).
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