BY

This thesis is submitted in partial fulfilment for the degree of Master of Science in Pure Mathematics in the Department of Mathematics.

UNIVERSITY OF NAIROBI

This thesis is my original work and has not been presented for a degree in any other University.

Signature:. .axamo.............

DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF NAIROBI,
P.O. BOX 30197,

NAIROBI,
KENYA,

This thesis has been submitted for examination with my approval as the University Supervisor.

> M. CHARALAMBOLS

DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF NAIROBI,
P.O. BOX 30197 ,

NAIROBI,
KENYA.
TABI疋 OF CONTENTS Page
Introduction 1
Literature review 1
Section 0 3
Topological preliminaries and basic dimension theory.
Section 1. 10
Relations between dimension functions
Section 2. 32
Examples illustrating that the variousdimension functions do not coincide.
Section 3. 78
Realization theorems
Section 4. 100Lebessue-cover and other characterizationsof metric-dependent dimension functions
Concluding remarks. 124

Section 0 is a review of results in general topology and basic dimension theory which are used in the sequel.

In section 1 , we study the relationships between the various dimension functions. We give a proof of a result mentioned by Nagami and Roberts (Nagami and Roberts, 1967) to the effect that on locally compact metric spaces, all the dimension functions studied here coincide. We prove a lemma (lemma 1.3) which shortens the proofs of a number of results.

In section 2 we study examples which show that different dimension functions can have different values on the same metric space. We give an example of a connected subset of I^{2} which is a union of countably many (an more than one) disjoint non-empty closed sets which shows that a lemma used by Nagami and Roberts (lemma 2.3) cannot be extended to normal (infact metric) spaces. Nagami and Roberts also show that if A_{i}, i $\in N$ is a disjoint sequence of closed sets of I^{n} at least two of which are non-empty, then dim $\left(I^{n}-\bigcup_{i=1}^{\infty} A_{i}\right) \geq n-1$. They give a sketch of a Cantor 2-manifold for which this result is not true. We give a rigorous proof of this. Nagami and Roberts have given an example of a metric space (X, ℓ) with d_{2} $(X, \ell)=2, d_{3}(X, \ell)=\mu-\operatorname{dim}(X, \ell)=3$ and dim $(X, C)=4$. This has been the only known example
where d_{2} and d_{3} differ. We generalize this to examples with $\mathrm{d}_{2} \leq \mathrm{n}-2, \mathrm{~d}_{3}=\mu$-dim $=\mathrm{n}-1$ and dim $=n$ for any $n, n \geq 4$.

In section 3 we study results which show that a given metric-dependent dimension function can give different values for equivalent metrics on a set. We then study realization theorems, i.e. theorems to the effect that there exist equivalent metrics to a given metric that make a given dimension function realize given values. We prove a lemma (lemma 3.4) which generalizes a similar lemma by Goto (Goto, lemma 1).

In section 4 we study more characterizations of metric-dependent dimension functions, notably Lebesgue cover characterizations. We study a weak sum theorem for some metric-dependent dimension functions.

ACKNOWLEDGEMENTS.

I wish to thank my supervisor, Dr. M.G. Charalambous for his guidance throughout my M. Sc. course.

I also wish to thank the Chairman of the Department of Mathematics Dr. B.W. Ogana for his advice on administrative matters.

Symbol	Meaning
s.t.	such that
V	for all
\exists	there exists
iff	if and only if
W.L.G.	without loss of generality
w.r.t	with respect to
clopen	closed and open
$\sigma .1 . f$.	σ-locally finite
1.f	locally finite
nbhd	neighbourhood
Int A	interior of A .
bdry A	boundary of A
$B(x, \varepsilon)$	the open ball of radius ε about x .
$\ell(\mathrm{U})$	diameter of U in a metric space ($\mathrm{X}, \%$).
OL	The restriction of \mathscr{V} to A where \mathscr{L}
	```is a collection of sets, i.e. {CrA, C & q\|. .```
$v<ひ$	Vrefines $\mathscr{U}$ where
	of subsets of a set $X$.
[x]	the integral part of x .
N	The set of natural numbers $1,2,3, \ldots$
Q	The set of rational numbers
R	The real line
$\mathrm{R}^{\mathrm{n}}$	Euclidean n -space.
I	The unit interval $[0,1]$ (or
	sometimes $[-1,1]$
$\mathrm{I}^{\mathrm{n}}$	The n -cube IxIx...xl n -times.

INTRODUCTION:

Dimension is a basjc notion in geometry. A curve is one-dimensional, a surface two-dimensional, e.t.c. It is a basic fact of nature that space-time is fourdimensional.

Certain mathematical discoveries in the nineteenth century, e.g. that the unit interval can be continuously mapped onto the unit square revealed that the intuitive notion of dimension is insufficient. Mathematical concepts, however, if they are not clear enough to be taken as primitive ideas, must be rigorously defined. Dimension theory results from a successful attempt, in the latter half of the mineteenth century, to give rigorous definitions to the vague notion of dimension expressed above.

## LITERATURE REVIEW:

Dimension theory as a subject had its beginnings in certain publications by Poincaré (Poincaré) and Lebesgue (Lebesgue). Poincaré considered curves as boundaries of surfaces, surfaces as boundaries of volumes e.t.c. Thus to separate a space of $n$ dimensions one needs a space of $n-1$ dimensions. Poincaré's idea of dimension was given a rigorous topologically invariant definition by Brouwer (Brouwer) leading to the definition of the small inductive dimension ind and the large inductive
dimension Ind on the class of topological spaces. Lebesgue's idea of dimension, on the other hand, lead to the definition of the covering dimension dim on the class of topological spaces and the metric dimension $\mu$-dim on the class of metric spaces.

Ind, ind, dim and $\mu$-dim are refered to as dimension functions. The dimension function $\mu$-dim was defined by Alexandroff in 1935. $\mu$-dim differs from the other three dimension functions in that it is defined on the class of metric spaces and its definition involves the metric. It is what we call a metric-dependent dimension function. Many other metric-dependent dimension functions have been defined to date. We thus have the metric-dependent dimension functions $d_{1}, d_{2}$ (Nagami and Roberts, 1965), $d_{3}, d_{4}$ (Nagami and Roberts, 1967), d5 (Hodel, 1967), d6 and d7 (Smith, 1968).

Dimension functions, by requirement, must have a value of $n$ on $R^{n}$, i.e. if $d$ is a dimension function, then we must have $d\left(R^{n}\right)=n$. By convention, $d$ ( $\Phi$ $=-1$.

This thesis is a study of the metric-dependent dimension functions $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}$, $\mu$-dim and their relations with the covering dimension function dim which is the most widely used dimension function.

## SECTION 0

In this section we review results in general topology and basic dimensions theory. The proofs of the results in general topology can be found in "General Topology" by J.L. Kelly while the proofs of the results in dimension theory can be found in "Dimension Theory" by R. Engelkin.

Theorem 0.l (Urysohn's lemma)

Let $X$ be a normal topological space and $C, C^{\prime}$ be two disjoint closed sets of $X$. Then $\exists$ a continuous function $f: X \rightarrow I$ s.t. $f(C)=\{0\}$ and $f\left(C^{\prime}\right)=\{1\}$

Theorem 0.2 (Tietze's extension theorem)

Let $X$ be a normal topological space and $F$ 'a closed subset of $X$. If $f: F \longrightarrow I$ is a continuous function, then $f$ has a continuous extension $f^{*}: X \longrightarrow I$. I may be replaced in this theorem by $R$, $I^{n}$ or $R^{n}$.

Defn 0.1
A topological space $X$ is said to be completely normal if every subspace of $X$ is normal.

Theorem 0.3

Let $X$ be a completely normal topological space and $Y$
a subspace of $X$. then if $U, U '$ are disjoint apen sets of $Y, \exists$ disjoint open sets $V, V$ of $X$ s.t. $V \cap Y=U$ and $V^{\prime} \cap \mathrm{Y}=\mathrm{U}^{\prime}$.

Defn 0.2
Let $X$ be a set and $\mathcal{U}=\left\{U_{\alpha}, \alpha \varepsilon_{c}\right\}$ an indexed
collection of subsets of $X$. Let $n=-1,0,1,2,3 \ldots$
we say $\nVdash$ has order not exceeding $n$ and write ord $थ$
$\leq n$ if for any $n+2$ distinct members $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+2}$
of $\mathcal{A}$ we have $\bigcap_{i=1}^{n+2} U_{\alpha_{i}}=\Phi$ (some authors define the
order to be $\leq n$ if $\cap_{i=1} U_{\alpha_{i}}=\varnothing$ for distinct $\alpha_{i}$ ).
We say ord $\mathcal{U}=\mathrm{n}$ if ord $\mathscr{U} \leq \mathrm{n}$ and ord $\mathscr{U} \not \leq \mathrm{n}-1$.
Note that the order depends on the indexing so, strictly speaking we should write something like ord $\left\{\mathrm{U}_{\alpha}\right\}$ but this has not been the tradition. No
confusion will arise over the indexing. Something
like ord $\left\{\right.$ bdry $U, U \in\{ \}$ will mean $\underset{n+2}{ } U_{1}, U_{2}, \ldots U_{n+2}$
are distinct members of $\mathscr{U}$ then $\cap_{i=1} \operatorname{lom}_{\mathrm{i}} \mathrm{U}_{\mathrm{i}}=\Phi$.
Every set indexes itself so when we merely talk of a collection $u$ without giving an indexing, ord $u \leq n$ $n+2$
will mean $n_{i=1} U_{i}=\Phi$ for any $n+2$ distinct members
$U_{i}, 1 \leq i \leq n+2$, of $u$ Likewise, when we say a
collection $\left\{U_{\alpha}, \alpha \varepsilon \Delta\right\}$ is locally finite, we shall
mean that for each $x, x$ has a nbhd intersecting $U_{\alpha}$ for only finitely many indices $\alpha$. The same will apply for point finiteness, point-boandedness and other such properties.

If $x \in X$, we say the order of gat $x$ does not exceed $n$ and write ord $\mathscr{U} \leq \mathrm{n}$ if there are no $\mathrm{n}+2$ distinct indices $\alpha_{1}, \alpha_{2} \cdots \alpha_{n+2}$ s.t. $x_{\varepsilon} U \alpha_{i}, 1 \leq i \leq n+2$. ord $x_{x}$ $\mathfrak{q}=n$ if ord $X_{x} \leq n$ and ord $\chi_{x} n-1$. If $Y$ is a subset of x , then ord $\mathcal{U}_{\mathrm{Y}}$ will always be with reference to the indexing $\{U \cap Y, U \varepsilon \mathcal{X}\}$ 。

Defn 0.3
Let $X$ be a topological space and $C, C^{\prime}$ be two subsets of $X$. We say a subset $Y$ of $X$ separates $C$ and $C^{\prime}$ if $X-Y$ is the union of two disjoint relatively open sets one containing $C$ and the other containing $C^{\prime}$.

Three dimension functions, the small inductive dimension ind, the large inductive dimension Ind and the covering dimension dim are defined on the class of topological spaces as follows:-

Let $X$ be a topological space.

Defn 0.4

- ind $X \leq-1$ iff $X=\Phi$
- for $n=0,1,2, \ldots \ldots$, ind $X \leq n$ if for any point $x \varepsilon X$ and closed set $C$ of $X$ s.t. $x \notin C$, $\exists \mathrm{a}$ closed set
$B$ of $X$ s.t. $B$ separates $\{x\}$ and $C$ and ind $B \leq n-1$.
(Note the inductive nature of the definition).
- ind $X=n$ if ind $X \leq n$ and ind $X \leq n-1$.
- ind $X=\infty$ if ind $X \& n$ for $n=-1,0,1,2$,

Defn 0.5

- Ind $X \leq-1$ iff $X=\Phi$
- for $\mathrm{n}=0,1,2$, Ind $\mathrm{X} \leq \mathrm{n}$ if for any pair $C, C^{\prime}$ of disjoint closed sets of $X \exists$ a closed set $B$ of $X$ s.t. $B$ separates $C$ and $C^{\prime}$ and Ind $B$ $\leq n-1$.
- Ind $X=n$ if Ind $X \leq n$ and Ind $X \leq n-1$.
- Ind $X=\infty$ if Ind $X \& n$ for $n=-1,0,1,2$,

Defn 0.6
For $n=-1,0,1,2, \ldots . d^{2} X \leq n$ if for any
finite open cover $v$ of $X, u$ has an open refinement $\theta$ s.t. ord $\theta \leq n$.

Theorem 0.4 (Otto-Eilenberg theorem).
Let X be a normal space. Then the following are equivalent $(\mathrm{n} \geq 0)$ :-
(i) $\operatorname{dim} \mathrm{X} \leq \mathrm{n}$
(ii) For any $n+1$ pairs $\left(C_{i}, C^{\prime}{ }_{i}{ }^{1 \leq i \leq n+1}\right.$ of disjoint closed sets of $X$ closed sets $B_{i}, \quad$ l $\leq i \leq n+1$ s.t. $B_{i}$ separates $C_{i}$ and $C^{\prime}{ }_{i}$ and ${\underset{i=1}{n+1} B_{i}=\Phi}_{n}^{n}$
(iii) For any $n+1$ pairs $\left(C_{i}, C_{i}^{\prime}\right) 1 \leq i \leq n+1$ of disjoint closed sets of $X$ pairs of disjoint closed $\operatorname{sets}\left(E_{i}, E_{i}{ }_{i}\right) 1 \leq i \leq n+1$

(iv) For any $n+1$ pairs $\left(C_{i}, C_{i}^{\prime}\right) 1 \leq i \leq n+1$ of disjoint closed sets of X $\exists$ pairs ( $U_{i}, U^{\prime}{ }_{i}$ ) of open sets of $X, I \leq i \leq n+1$ s.t. $\overline{U_{i}} \cap \overline{U_{i}^{\prime}}=\Phi, C_{i} \in U_{i}, C^{\prime}{ }_{i} \subset U^{\prime}{ }_{i}, 1 \leq i \leq n+1$ and $\underset{i=1}{n+1}\left(U_{i} \cup U_{i}^{\prime}\right)=X$.

Theorem 0.5
Let $X$ be a normal space. Then the following are equivalent ( $n \geq 0$ ):-
(i) $\quad \operatorname{dim} X=n$
(ii) If $F$ is a closed set of $X$ and $f: F \longrightarrow S^{n}$ is a continuous function then $f$ has an extension $f *: X \longrightarrow S^{n}$.

## Theorem 0.6

Let $X$ be any topological space and $F^{*}$ a closed set
of $X$. Then if $d$ is any of the dimension function
ind, Ind or dim, we have $d(F) \leq d(X)$.
This is also clearly true for all the dimension functions discussed below except $d_{6}$ and $d_{7}$ and will $b e$ assumed without mention.
Theorem 0.7 (Countable sum theorem)
Let $X$ be a normal topological space. Let $X=$ $\underset{\alpha \varepsilon}{U} \Delta F_{\alpha}$ where $F_{\alpha}$ is a closed set of $X$ and $\operatorname{dim} F_{\alpha}$ $\leq \mathrm{n}$ for each $\alpha$ then if $\Delta$ is countable or $\left\{\mathrm{F}_{\alpha}, \alpha \in \Delta\right\}$ is l.f, then $\operatorname{dim} X \leq n$.

Theorem 0.8 (Urysohn's inequality)
Let $X$ be a completely normal topological space $\mathrm{n}+1$
Then if $X=\underset{i=1}{u} X_{i}$ we have
$n+1$
Ind $X \leq n+\sum$ Ind $X_{i}$.

Deín 0.7
A subset $A$ of a topological space $X$ is said to be an $\underline{F}_{\sigma}$ set if $A$ is a countable union of closed sets of $X$. A is said to be a $\underline{G}_{\delta}$ set if $A$ is a countable intersection of open sets of $X$.

Defn 0.8
A topological space $X$ is said to be perfectly normal if $X$ is normal and every open subset of $X$ is an $F_{\sigma}$ set.

Theorem 0.9
Let $X$ be a perfectly normal topological space. Then if $Y$ is a subspace of $X$, then $\operatorname{dim} Y \leq \operatorname{dim} X$.

Theorem 0.10
A Hausdorff topological space $X$ is metrizable iff $X$ is regular and has a $\sigma$-locally discrete base.

Theorem 0.11
A metrizable topological space is completely normal and perfectly normal.

Defn 0.9
Let ( $X, \ell$ ) be a metric space. Let $u$ be a collection
 $\ell$ is understood) is defined to be $\sup \{\ell(U), U \in U\}$.

Theorem 0.12
For a metric space ( $\mathrm{X}, \mathrm{l}$ ) the following conditions are equivalent:-
(a) dim $X \leq n$
(b) ヨa sequence of $1 . f$. open covers $u_{i}$, $i \varepsilon N$, of $X$ s.t. mesh $v_{i} \leq 1 / i$, ord $\left\{\bar{U}, U \varepsilon v_{i}\right\} \leq n$, and $u_{i+1}$ $<u_{i} \forall i \varepsilon N$.
(c) Ja sequence of l.f. closed covers $\Omega_{i}$, i\&N, of X s.t. mesh $\Omega_{i} \leq 1 / i$, ord $\Omega_{i} \leq n$ and $\Omega_{i+1}$ $<\Omega_{i} \mathrm{I}_{\mathrm{i}} \mathrm{i} \in \mathrm{N}$,
(d) $X$ has a $\sigma .1 . f$. base $X$ s.t. $\operatorname{ord}\{b d r y \cdot U, U \varepsilon X\}$ $\leq n-1$.
(e) $X$ has a J.f.l. base consisting of open sets with boundaries of dim $\leq n-1$.
(f) $X=X_{1} \cup X_{2}$ with Ind $X_{1} \leq 0$, Ind $X_{2} \leq n-1$.
(g) Ind $X \leq n$.

Theorem 0.13
If $X$ is a separable metric space then ind $X=$ Ind $X=$ $\operatorname{dim} X$.

Theorem 0.14
ind $R^{n}=\operatorname{Ind} R^{n}=\operatorname{dim} R^{n}=n$.

Theorem 0.15
If $M$ is a subset of $R^{n}$, then $\operatorname{dim} M=n$ iff the interior of $M$ in $R^{n}$ is non-empty.

## SECTION 1

In this section we define the various metric dependent dimension functions and study relations between them.

The dimension function $d_{1}$ is defined inductively on metric spaces as follows:-

Def 1.1 (Nagami and Roberts, 1965).
Let ( $\mathrm{X}, \ell$ ) be a metric space
$-d_{1}(X, l) \leq-1$ iff $X=\Phi$

- for $n \geq 0, d_{1}(X, e) \leq n$ iff for each pair $C, C^{\prime}$ of closed sets of $X$ s.t. $\because\left(C, C^{\prime}\right)>0 \exists$ a closed set $B$ of $X$ s.t. $B$ separates $C$ and $C^{\prime}$ and $d_{1}\left(B,\left.l\right|_{B}\right)$ $\leq n-1$ where $\ell_{B}$ is the metric $\ell$ restricted to $B$.
$-d_{1}(X, l)=n$ iff $d_{1}(X, l) \leq n$ and $d_{1}(X, l) \underline{n}-1$.
$-d_{1}(X, \ell)=\infty$ iff $d_{1}(X, l) \leq n$ for $n=-1,0,1,2 \ldots$

The metric-dependent dimension functions $d_{2}, d_{3}, d_{4}$, $d_{5}, d_{6}, d_{7}$ and $\mu$-dim are defined as follows:$(X, \ell)$ is always a metric space.

Def 1.2 (Nagami and Roberts, 1965),
$-d_{2}(X, \ell) \leq-1$ iff $X=\Phi$

- for $n \geq 0, d_{2}(X, \ell) \leq n$ iff for sny $n+1$ pairs $\left(C_{i}, C_{i}^{\prime}\right) 1 \leq i \leq n+1$, of closed sets of $X$ s.t. $\ell\left(C_{i}, C^{\prime}{ }_{i}\right)>0 \exists \mathrm{closed}$ sets $B_{i}$, $I \leq i \leq n+1$ s.t. $B_{i}$ separates $C_{i}$ and $C_{i}^{\prime}$ and $\bigcap_{i=1}^{n+1} B_{i}=\phi$
- For $n=-1,0,1,2, \ldots . d_{2}(X, \ell)=n$ if $d_{2}(X, \ell) \leq n$ and $d_{2}(X, \ell) \leq n-1$.
$-d_{2}(X, l)=\infty$ if $d_{2}(X, l) \underline{n}$ for $n=-1$, 0, 1.....

Def. 1.3 (Nagami and Roberts, 1967).
$-d_{3}(X, \ell) \leq-1$ iff $X=\Phi$

- for $n \geq 0, d_{3}(X, \ell) \leq n$ iff the following. condition is satisfied:- Given any positive integer $k$ and $k$ pairs $\left(C_{i}, C^{\prime}{ }_{i}\right), 1 \leq i \leq k$, of closed sets of $X$ such that $\ell\left(C_{i}, C^{\prime}{ }_{i}\right)>0$, $\exists$ closed sets $B_{i}, 1 \leq i \leq k$, of $X$ s.t. $B_{i}$ separates $C_{i}$ and $C^{\prime}{ }_{i}$ and ord $\left\{B_{i}, l \leq i \leq k\right\}$ $\leq n-1$.
- for $n=-1,0,1,2 \ldots d_{3}(X, \ell)=n$ if $d_{3}(X, \ell)$ $\leq n$ and $d_{3}(X, \ell) \leq n-1$.
$-d_{3}(X, \ell)=\infty$ if $d_{3}(X, \ell) \npreceq n$ for $n=-1,0,1,2, \ldots$

Def. 1.4 (Nagami and Roberts, 1967).
$-d_{4}(X, \ell) \leq-1$ iff $X=\Phi$

- for $n \geq 0, d_{4}(X, \ell) \leq i f f X$ satisfies the following condition:- Given any sequence ( $\left.C_{i}, C^{\prime}{ }_{i}\right) i_{\varepsilon N}$ of closed sets of $X$ s.t. $\ell\left(C_{i}, C_{i}\right)>0 \forall i, \exists$ a sequence $B_{i}$, $i \varepsilon N$, of closed sets of $X$ s.t. $B_{i}$ separates $C_{i}$ and $C^{\prime}{ }_{i}$ and ord $\left\{B_{i}, i=1,2, \ldots.\right\}$ $\leq n-1$.
- for $n=-1,0,1,2, \ldots ., d_{4}(X, l)=n$ iff $d_{4}(X, \ell) \leq n$ and $\dot{a}_{4}(X, \ell) \not \leq n-1$.
$-d_{4}(X, l)=\infty$ if $d_{4}(X, l) \underline{n}$ for $n=-1,0$, 1, 2,......

Def. 1.5 (Hodel)
$-d_{5}(X, \ell) \leq-1$ iff $X=\Phi$

- for $n \geq 0, d_{5}(X, \ell) \leq n$ iff $(X, \ell)$ satisifes the following condition:- given any sequence $\left(C_{i}, C^{\prime}{ }_{i}\right)$, i $\varepsilon N$, of pairs of closed sets of $X$ such that for some real number $\varepsilon_{s} \varepsilon>0_{2}$, $\left(C_{i}\right.$, $C^{\prime}{ }_{i}$ ) $\geq \varepsilon \forall i \varepsilon N$, $\exists$ a sequence $B_{i}$, ïeN, of closed sets of $X$ s.t. $B_{i}$ separates $C_{i}$ and $C^{\prime}{ }_{i}$ and ord $\left\{B_{i}, \quad i \varepsilon N\right\} \leq n-1$.
- for $n=-1,0,1, \ldots d_{5}(X, \ell)=n$ if $d_{5}(X, \ell) \leq n$ and $d_{5}(X, l) \leqslant \mathrm{n}-1$.
$-d_{5}(X, \ell)=\infty$ if $d_{5}(X, \ell) \leq n$ for $n=-1$, 0, 1....

Defn. 1.6 (Smith, 1968).
$-d_{6}(X, \ell) \leq-1$ iff $X=\Phi$

- for $n \geq 0, d_{6}(X, \ell) \leq n$ iff for each sequence $\left(C_{i}, C^{\prime}{ }_{i}\right)$ of pairs of closed sets of $X$ s.t. for some $\varepsilon>0, \quad \ell\left(C_{i}, C^{\prime}{ }_{i}\right) \geq \varepsilon \forall i$ and $\left\{X-C^{\prime}{ }_{i}, i \varepsilon N\right\}$ is locally finite, $\exists$ a sequence $\mathbb{B}_{i}$, i $\varepsilon N$, of closed sets of $X$ s.t. $B_{i}$ separates $C_{i}$ and $C^{\prime}{ }_{i}$ and ord $\left\{B_{i}, \quad i \varepsilon N\right\} \leq n-1$.
- for $n=-1,0,1, \ldots d_{6}(X, \ell)=n$ iff $d_{6}(X, \ell)$ $\leq n$ and $d_{6}(X, \ell)$ 大 $n-1$.
$-d_{6}(X, \ell)=\infty$ if $d_{6}(X, \ell) \npreceq n, n=-1,0,1,2, \ldots$

Defn. 1.7 (Smith, 1968)
$-d_{7}(X, \ell) \leq-1$ iff $X=\Phi$

- for $n \geq 0, d_{7}(X, l) \leq n$ iff given any collection $\left(C_{\alpha}, C^{\prime}{ }_{\alpha}\right), \alpha \varepsilon \Delta$, of pairs of closed sets of $X$ s.t. for some $\varepsilon>0 \ell\left(C_{\alpha}, C^{\prime}{ }_{\alpha}\right) \geq \varepsilon \forall \alpha \varepsilon \Delta$ and $\left\{X-C^{\prime}{ }_{\alpha}\right.$, $\alpha \varepsilon \Delta\}$ is locally finite, then $\exists$ a collection $\left\{\mathrm{B}_{\alpha}, \alpha \varepsilon \Delta\right\}$ of closed sets of X s.t. $\mathrm{B}_{\alpha}$ separates $C_{\alpha}$ and $C^{\prime}{ }_{\alpha}$ for each $\alpha$ and ord $\left\{B_{\alpha}, \alpha \varepsilon \Delta\right\} \leq n-1$.

Defn 1.8 (Alexandroff)
For $n=-1,0,1 \ldots, \mu$-dim $(X, \ell) \leq n$ iff for any $\varepsilon>0 \exists$ an open cover $\mathscr{U}$ of (X,\&) s.t. ord $\mathscr{Q} \leq n$ and mesh $V \leq \varepsilon$.

Evidently, $d_{2} \leq d_{3} \leq d_{6} \leq d_{5} \leq d_{4}$ and $d_{6} \leq d_{7}$. We shall show that for any metric space ( $X, \ell$ ), $d_{1}(X, \ell)=d_{4}(X, \ell)=\operatorname{dim} X$.

Theorem 1.1. (Nagami and Roberts, 1965).
For any metric space $(X, \mathcal{e}), d_{I}(X, \mathcal{E})=\operatorname{dim} X$.

Proof: It is clear from a trivial induction that $d_{1}$ $(X, \mathcal{C}) \leq$ Ind $X=\operatorname{dim} X$. We show that $\operatorname{dim} X \leq d_{1}$ (X,e). The proof is by induction. Assume that for some $\mathrm{n}, \mathrm{n}=-1,0,1,2, \ldots \ldots \mathrm{~d}_{1}(\mathrm{X}, \mathscr{P}) \leq \mathrm{n} \Rightarrow \operatorname{dim} \mathrm{X} \leq \mathrm{n}$.

Suppose that $d_{1}(X, \ell) \leq n+1$. Let $C, C^{\prime}$ be disjoint closed sets of $X$. Let $E_{i}=\{x \in X$ :
$\left.e(x, C)+e\left(x, C^{\prime}\right) \geq 1 / i\right\}, i=1,2, \ldots$.
Then $\ell\left(E_{i}, X-\operatorname{Int} E_{i+1}\right)>0 \forall i E N$.
So for each i $\in \mathbb{N} \exists$ an open set $G_{i}$ s.t. $E_{i} \in G_{i} \in \bar{G}_{i} e \operatorname{Int} E_{i+I}$ and $d_{i}\left(b d r y G_{i}\right\rangle \leq n$. By the induction hypothesis, dim bdry $G_{i} \leq n \forall i \in N$. Clearly $G_{i}$, i $\in N$, satisfy:-
(i) $X=\bigcup_{i=1}^{\infty} G_{i}$
(ii) $\ell\left(C \cap \bar{G}_{i}, C^{\prime} \cap \bar{G}_{i}\right)>0$.

From (ii), and since $d_{1}(X, Q) \leq n+1, \exists$ open sets $U_{i}, U_{i}{ }_{i}$ s.t.:-
(a1) $C \cap \bar{G}_{i} \subset U_{i}, C^{\prime} \cap \bar{G}_{i} \subset U^{\prime}{ }_{i}$
(a2) $U_{i} \cap U^{\prime}{ }_{i}=\phi$
(a3) $d_{1}\left(X-\left(U_{i} \cup U_{i}^{\prime}\right)\right) \leq n \forall i \in N$.
From (a3) and the induction hypothesis, we have:-
(a4) $\operatorname{dim}\left(X-\left(U_{i} U U_{i}^{\prime}\right)\right) \leq n V i \in N$.
Let $V_{i}=U_{i} \cap G_{i}, V^{\prime}{ }_{i}=U^{\prime}{ }_{i} \cap G_{i}$.

Claim:-
(bl) dim bdry $V_{i} \leq n, \operatorname{dim} b d r y V_{i} \leq n$.
(b2) $C \cap G_{i} \subset V_{i}, C^{\prime} \cap G_{i} \subset V^{\prime}{ }_{i}$
(b3) $\overline{\mathrm{V}}_{\mathrm{i}} \cap \mathrm{C}^{\prime}=\overline{\mathrm{V}}_{\mathrm{i}} \cap \mathrm{C}=\phi$
(b4) $V_{i} \cap V^{\prime}{ }_{i}=\phi$
(b1) follows since bdry $V_{i} \subset$ bdry $U_{i} u b d r y ~ G_{i} \subset$ : $\left[X-\left(U_{i} \cup U^{\prime}{ }_{i}\right)\right]$ bdry $G_{i}$. And similarly for $V^{\prime}{ }_{i}$. (b2) (b4) are clear and (b3) follows $\mathbf{I}$ rom (a1) and (a2).

Let $W_{i}=V_{i}-\underset{j<i}{U} \bar{V}^{\prime}{ }_{j}, W^{\prime}{ }_{i}=V^{\prime}{ }_{i}-\bigcup_{j<i}^{U} \nabla_{j}\left(\bigcup_{j \in \phi}^{U} \bar{V}_{j}=\phi\right)$.
Let $W=\bigcup_{i=1}^{\infty} W_{i}, W^{\prime}=\bigcup_{i=1}^{\infty} W^{\prime}{ }_{i}$
Then $W, W^{\prime}$ are open, C $C W, C^{\prime} \subset W$ ' (from (i), (b2), and $(b 3))$ and $\operatorname{dim}\left(X-\left(W U W^{\prime}\right)\right) \leq n$. To see the last part, let $x \in X-\left(W \cup W^{\prime}\right)$. Either $x \notin\left(V_{i} \cup V^{\prime}{ }_{i}\right)$ $\forall i \in N$ or $x \in\left(b d r y ~ V_{i} U b d r y V^{\prime}{ }_{i}\right.$ ) for some $i$. If $x \notin$ $\left(V_{i} U V_{i}^{\prime}\right) \forall i \in N$, then, since $x \in G_{i_{0}}$ for some $i_{0}$, then $x \notin U_{i_{0}} \cup U^{\prime} i_{0}$ whence $x \in X-\left(U_{i_{0}} U^{U} U_{i}\right)$. Thus $X-$
$\left(W \cup W^{\prime}\right) \subset \bigcup_{i=1}^{\infty}\left[X-\left(U_{i} \cup U^{\prime}{ }_{i}\right)\right] \cup \bigcup_{i=1}^{\infty}\left[\operatorname{bdry}\left(V_{i}\right) \cup\right.$ bdry V' $\left.V_{i}\right]$. From the countable sum theorem, $\operatorname{dim} X-\left(W U W{ }^{\prime}\right)$ $\leq n$, so $\operatorname{Ind}\left(X-\left(W \cup W^{\prime}\right)\right) \leq n$. Thus $\operatorname{dim} X=$ Ind $X \leq$ $\mathrm{n}+1$. The result is trivial when $\mathrm{n}=-1$ or $\infty$ and this completes the induction.

Theorem 1.2 (Nagami and Roberts, 1967)
If $X$ is a normal space with $\operatorname{dim} X \leq n$, then $X$ satisfies the following condition:- If ( $C_{j}, C^{\prime}{ }_{j}$ ) $j \in N$ is a sequence of pairs of disjoint closed sets of $X$, then $\exists \mathrm{closed} \operatorname{sets} B_{j}, j \in N, s . t . B_{j}$ separates $C_{j}$ and $C^{\prime}{ }_{j}$ and ord $\left\{B_{j}, j \in N\right\} \leq n-1$.

Proof: The collection of subsets of $N$ containing precisely $n+1$ elements is countable. Denote these subsets by $\alpha_{1}, \alpha_{2}, \alpha_{3} \ldots . \exists$ open sets $U_{i j}, U^{\prime}{ }_{i j}$, i, $j \in N$, satisfying the following conditions:-
(i) $\quad C_{j} \subset U_{i j}, C^{\prime}{ }_{j} \subset U^{\prime}{ }_{i j}, \bar{U}_{i j} \cap \bar{U}^{\prime}{ }_{i j}=\phi \nexists i, j \in N$
(ii) $U_{i j} c U_{i+l j}, U^{\prime}{ }_{i j} c U^{\prime}{ }_{i+l j}$ $^{Z} i, j \in N$.
(iii) $\bigcup_{j \in \alpha_{i}}\left(U_{i j} \cup U_{i j}^{\prime}\right)=X$

The construction is by induction on $i$.
Assume the construction achieved unto $i=k$.
By the Otto-Eilenberg theorem, $\exists$ open $\operatorname{sets}\left(V_{j}, V_{j}\right)$
$j \in \alpha_{k+1}$ set. $\bar{U}_{k j} \subset V_{j}, \bar{U}_{k j}^{\prime} \in V_{j}^{\prime}, \bar{V}_{j} A^{\prime} \bar{V}_{j}=\varphi \psi_{j} j \in \alpha_{k+1}$
and $X=\bigcup_{j \in Q_{k+1}}\left(V_{j} U V_{j}^{\prime}\right)$. Let $U_{k+1 j}=U_{k j}$ if $j \notin Q_{k+1}$
$U_{k+1 j}=V_{j}$ if $j \in a_{k+1}, U_{k+1 j}^{\prime}=U_{k j}^{\prime}$ if $j$ \& ${ }_{k+1}$
and $U_{k+1 j}^{\prime}=V^{\prime}{ }_{j}$ if $j \in q_{k+1} . U_{1 i}, U^{r}{ }_{I i}$ are
constructed by replacing $\bar{U}_{k j}$, $\overline{\mathrm{U}}^{i} k j$ above with $C_{j}, C^{\prime}{ }_{j}$ if $j E C_{1}$, and letting $U_{l j}, U^{\prime}{ }_{I j}$ be open sets with disjoint closures containing $C_{j}$ and $C^{\prime}{ }_{j}$ respectively if $j \notin q_{I}$. Clearly, $U_{i j}, U^{\prime}{ }_{i j}$ satisfy conditions (i), (ii), (iii).

Let $U_{j}=\bigcup_{i=1}^{\infty} U_{i j}, U_{j}^{\prime}=\bigcup_{i=1}^{\infty} U_{i j}^{\prime} \cdot$ Let $B_{j}=X-$ $\left(U_{j} \cup U_{j}^{\prime}\right.$ ). Then $B_{j}, j \in N$ are as required.

Theorem 1.2.5 (Nagami and Roberts, 1967).
For any metric space $(X, \ell), d_{4}(X, \ell)=\operatorname{dim} X$.

Proof.
From theorem 1.2., $d_{4}(X, C) \leq d i m X$.
We show that $\operatorname{dim} X \leq d_{4}(X, l)$. It is enough to assume
$d_{4}(X, C) \leq n$ and show $\operatorname{dim} X \leq n$. Suppose $d_{4}(X, C)$
$\leq n . \quad X$ has a $\sigma$-locally discrete base $\mathscr{U}=\bigcup_{i \in N} \mathscr{U}_{i}$ where
$\mathscr{U}_{i}$ is locally discrete. Let $V_{i}=\bigcup_{U \in \mathscr{U}_{i}}^{U}$ and $E_{i k}=$
$\left\{x \in X: E\left(x, X-V_{i}\right) \geq 1 / k \cdot d_{4}\left(X, \sum\right) \leq n\right.$ implies that
$\exists$ open sets $G_{i k} i, k \in N$ s.t. $E_{i k} \subset G_{i k} \subset V_{i}$ and ord
$\left\{b \operatorname{dry} . G_{i k}, i, k, \in \mathbb{N}\right\} \leq n-1$. Then $\mathscr{L}_{\mathcal{L}}=\left\{G_{i k} \cap U, i, k \in N\right.$, $\left.\mathrm{U} \in \mathscr{U}_{i}\right\}$ is a $\sigma$-locally discrete base of $X$ with ord $\{b d r y$ $\left.G, G \in C_{d}\right\} \leq n-1$ (after noting that bdry $\left(G_{i k} \cap U\right) \subset$ bdry $G_{i k}$ and bdry $\left(G_{i k} \cap U\right) \cap b d r y\left(G_{i k} \cap V\right)=\phi$ for $U \neq V$, U, $V \in \|_{i}$ ). It follows from theorem 0.12 that $\operatorname{dim} X \leq n$. Having shown that $d_{1}$ and $d_{4}$ are equal to the covering dimension dim, we now concentrate on the dimension functions $d_{2}, d_{3}, d_{5}, d_{6}, d_{7}, \mu-d_{i m}$, and dim.

It is clear from theorem 0.12 that $\mu$-dim $(X, \hat{E}) \leq$ $\operatorname{dim} X$ for any metric $\operatorname{space}(X, E)$.

Lemma 1.1.
If $X$ is a paracompact topological space and $\mathcal{Z}$ is an open cover of $X$ with ord $\mathscr{H} \leq n, n=-1,0,1,2, \ldots$, then $\%$ has an open locally finite refinement ${ }^{2}$ with ord $V \leq n$.

Proof. Let $\mathscr{U}$ be an open cover of $X$ with ord $\mathbb{U} \leq n$. Since $X$ is paracompact, $\exists$ an open locally finite refinement $\mathscr{V}^{\prime}$ Of $\mathscr{U}$. ヨa function $f:{ }^{\prime} \rightarrow \mathbb{U}$ s.t. for each WEV,' WCf(W). For each UCV, $\operatorname{let} g(U)=U_{W \in V^{\prime}} W$. $\operatorname{Let} \mathscr{V}=\{g(U), U \in \mathscr{U}\}$. $f(W)=U$

Then clearly ord $\mathscr{V} \leq$ ord $\mathscr{U} \leq n$. It is also easy to see that $\mathscr{V}$ is locally finite and the lemma is proved.

Theorem I. 3 (Hodel)
For any metric space $(X, e), d_{5}(X, V) \leq \mu$-dim $(X, e)$.

Proof: The proof is trivial if $\mu$ - $\operatorname{dim}(X, \ell)=-1$, Assume $\mu$-dim $(X, Q) \leq n \geq 0$. Let $\left(C_{i}, C^{\prime}{ }_{i}\right)$ be a sequence of pairs of closed sets with $\mathcal{E}\left(C_{i}, C^{\prime}{ }_{i}\right)$ $\geq €>0 \forall i \in N$ for some $\epsilon$. Since $\mu$ - $\operatorname{dim}(X, \mathcal{C}) \leq n, \exists$ an open cover $\mathcal{Q}^{\prime \prime}$ of $X$ s.t. ord $\mathcal{W}^{\prime} \leq n$ and mesh $\mathcal{U}^{\prime}<\epsilon$. From lemma 1.1, 島a l.f. open cover $\mathscr{H}$ of $X$ s.t. ord $\mathscr{U}^{\boldsymbol{U}}$ $\leq n$ and mesh $\mathscr{U} \leq \epsilon$. Because $\mathscr{U}$ is l.f. and $X$ is normal, we can find a closed cover $\left\{E_{u}, U \in \mathscr{U}\right\}$ of $X$ s.t. $E_{u} \subset U$ for all U • Using normality, we can construct a sequence $G_{i u}$ (for each $U$ ) of open sets of $X$ s.t. $E_{u} \subset G_{1 u} \subset \bar{G}_{1 u} \subset G_{2 u} \subset \bar{G}_{2 u} \ldots . c \mathbb{}$. If we let $\mathcal{U}_{i}=\left\{G_{i u}\right.$, $U \in \mathscr{U}\}$ then mesh $\mathscr{U}_{i}<\varepsilon, \mathscr{U}_{i}$ is l.f., and $\mathscr{U}_{i}$ covers $X$ for each i.

Let $H_{i}=\underbrace{U}_{\substack{U \in U \\ G_{i u} \cap C_{i} \neq \phi}}, G_{i u}=\bigcup_{\substack{U \in \mathcal{U} \\ G_{i u} \cap C_{i} \neq \phi}}^{\bigcup}$.
Since mesh $\mathscr{U}_{i}<\epsilon, F_{i} \cap C^{\prime}{ }_{i}=\phi$. Also, $F_{i}$ is closed because $\mathscr{H}_{i}$ is l.f. $H_{i}$ is an open set containing $C_{i}$ and $H_{i} \subset F_{i}$ so if we set $B_{i}=F_{i}-H_{i}$, then $B_{i}$ is a closed set separating $C_{i}$ and $C^{\prime}{ }_{i}$.

We show that ord $\left\{B_{i}, i=1,2, \ldots \ldots\right\} \leq n-1$ Suppose $x \in \bigcap_{k=1}^{m} B_{i k}$ where $i_{k}, i \leq k \leq m$ ame district.

Then for each $k, 1 \leq k \leq m, \exists U_{k} \in \mathscr{H}$ s.t. $x \in \bar{G}_{i_{k}} U_{k}-$ $\mathrm{G}_{\mathrm{i}_{\mathrm{k}} \mathrm{U}_{\mathrm{k}}} \cdot \mathrm{U}_{\mathrm{k}} 1 \leq \mathrm{k} \leq \mathrm{m}$ are distinct. For suppose $\mathrm{U}_{\mathrm{k}}=\mathrm{U}_{\mathrm{k}^{\prime}}$ with $i_{k}<i_{k}$, Then we would have $x \in \mathbb{E}_{k} u_{k}$ and $x \notin G_{i_{k}, ~} U_{k}$ a contradiction since $\bar{G}_{i_{k}} u_{k} \subset G_{i_{k}} u_{k}$
 if $i_{0}=\min \left\{i_{k}, 1 \leq k \leq m\right\}$, then $x \notin G_{i_{0}} U_{k} 1 \leq k \leq m$.

But $\mathscr{U}_{i_{0}}$ is a cover of $X$ so $x \in G_{i_{0}} U_{0}$ for some $U_{0}$. Of course $U_{0} \neq U_{k}$ for $1 \leq k \leq m$. So $x \in \bigcap_{k=0} U_{k}$ with $\mathrm{U}_{\mathrm{k}} 0 \leq \mathrm{k} \leq \mathrm{m}$ distinct. If we put $\mathrm{m}=\mathrm{n}+1$, then we see that $\bigcap_{k=1} B_{i_{k}}=\phi$ since ord $\mathscr{Z} \leq n$. So ord $\left\{B_{i}, i=\right.$ $1,2, \ldots\} \leq n-1$ as required. Thus $d_{5}(X, P) \leq n$ and it follows that $d_{5}(X, P) \leq \mu$-dim $(X, P)$.

We can summarize the results so far obtained in the following proposition.

Proposition 1.1.
For a metric space $(X, \ell), d_{2}(X, e) \leq d_{3}(X, E) \leq$ $d_{6}(X, \ell) \leq d_{5}(X, C) \leq \mu-\operatorname{dim}(X, Q) \leq \operatorname{dim} X$ and $d_{6}(X, \ell) \leq d_{7}(X, C)$.

## Remark 1.1.

It is also true that $d_{7}(X, V) \leq \mu$-dim $(X, V)$. This will be proved in Chapter 4 after we have developed the theory of Lebesgue cover characterizations of metric dependent dimension functions.

To qualify as dimension functions, the above functions should have a value of $n$ or $R^{n}$, euclidean n-space. To that end we prove:-
$\frac{\text { Theorem I. } 4}{\text { If }(X, E) \text { is }}$
$\mathrm{d}_{2}(X, \ell)=\mathrm{d}_{3}(X, \theta)=\mathrm{d}_{6}(X, \ell)=\mathrm{d}_{7}(X, \ell)=\mathrm{d}_{5}(X, e)$
$=\mu-\operatorname{dim}(X, Q)=\operatorname{dim} X$.

Proof: Let $X$ be a locally compact metric space.
In view of prop. 1.1. and remari 1.1., it suffices to prove $d_{2}(X, V) \geq$ dim $X$. This is obvious if $d_{2}(X, \ell)=-1, \infty$. Assume $d_{2}(X, \ell) \leq n \geq 0$. Every point of $X$ has a compact, hence closed, nbhd. Since in a compact metric space $\mathrm{E} \cap \mathrm{F}=\Phi \Rightarrow \ell(\mathbb{E}, \mathrm{F})>0$ for E, F closed, we immediately have dim $Y \leq n$ if $X$ is a compact subspace of $X$. Thus each $X \in \dot{X}$ has a nbhd, and hence an open nbhd of dim $\leq n$. So $X$ has an open cover $W$ s.t. for $W \in \mathscr{W} d i m W \leq n$. It follows, since $X$ is normal and paracompact, that $X$ has a l.f. open cover $\mathscr{U}$ s.t. $\{\overline{\mathrm{U}}, \mathrm{U} \in \mathscr{U}\}$ refines $\hat{W}^{2}$. Thus dim $\overline{\mathrm{U}}$ $\leq n$ for UEUl. From theorem $0.12 \bar{U}$ has a or.1.f. (in $\bar{U}$ ) base $\mathbb{B}_{u}$ consisting of sets with boundaries (in $\bar{U}$ ) of dim $\leq n-1$. Since $\bar{U}$ is closed in $X$, it follows that $\beta_{u}$ is O.I.f. in $X$.

$$
\text { Let } B_{\mathrm{u}} \text { be }
$$

the collection of those members of ${ }^{3}$ whose closures in $X$ are contained in $U$. Then $B_{u}$ is a r.f. (in $X$ ) base for $U$ whose members have boundaries in $\mathbb{X}$ of dim $\leq n-1$. Let $B=\underset{U \in \mathscr{Q}}{\bigcup} \beta_{u}$. Then $\mathcal{B}$ is a $\sigma \cdot 1 . f$. Dase for $X$ with boundaries of $\operatorname{dim} \leq n-1$. It follows from theorem 0.12 that $\operatorname{dim} X \leq n$.

To see that $\mathbb{Q}$ is $\sigma .1 . f ., \operatorname{let} \mathcal{Q}_{u}=\bigcup_{i=1}^{\infty} \mathcal{Q}^{i}$,
where $\mathbb{R}_{u}^{i}$ is l.f. Let $x \in X$ and let $i$ be fixed. $\exists$ a nbhd $V_{0}$ of $x$ which intersects only a finite number of the members of $\mathscr{U}$, say $U_{1}, U_{2}, \ldots, \ldots, U_{k}$. For each $j, 1 \leq j \leq k, J a \operatorname{nbh} V_{j}$ of $x \underset{i}{\text { which intersects }}$ only finitely many members of $\prod_{U_{i}}^{i}$. Let $V=\bigcap_{j=0}^{k} V_{j}$. Then $V$ is a nbhd of $x$ intersecting only finitely many members of $\underset{U \in U^{B}}{\cup}{ }^{i}$. Thus $\bigcup_{U \in U}^{U}{ }_{u}^{i}$ is l.f. for each
i. Since $B=\bigcup_{i=1}^{\infty}\left[\bigcup_{U \in \mathcal{U}} \#_{u}^{i}\right], B$ is o.l.f.

The equality of the various dimension functions does not, however, appear to be a'strong condition on a metric space. We give an example of a non-locally compact non-complete metric space $X$ where the above dimension functions coincide. We note that if . $d_{2}(X, C) \leq 0$ then $d_{1}(X, V) \leq 0$ so dim $X \leq 0$. It is obvious that in that case all the function coincide. Also if dim $X=1$ then, from the above observation we cannot have $d_{2}(X, e) \leq 0$ so we must have $d_{2}(X, e)=1$ and hence $d(X, \ell)=1$ where $d$ is any of the functions $d_{2}, d_{3}, d_{5}, d_{6}, d_{7}$ or $\mu$-dim. In view of this, we would like the example we give of a non-locally compact non-complete space where the dimension functions coincide to have dim $=2$.

Example 1.1. (Nagami and Roberts, 1967)
Let $A$ be the subset $\left\{\left(x_{1}: x_{2}, x_{3}\right): x_{1}=0\right\}$ of $I^{3}$. Let $B$ be the $\operatorname{subset}\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}, x_{2}, x_{3}\right.$ are rational\}. Let $X=A \cup B$. We have $\operatorname{dim} X \leq 2$ from
the countable sum theorem. Also $d_{2}(X, 2) \geq d_{2}\left(A, \ell^{\prime}\right)$ $=2\left(d_{2}\right.$ satisfies an obvious subset theorem).

The metrics $\ell$ and $\ell$ are the euclidean metric and its restriction to $A . d_{2}\left(A, P^{\prime}\right)=2$ from theorem 1.4 . We have, from proposition 1.1 . that $d_{2}\left(X, \ell^{\prime \prime}\right)=d_{3}\left(X, e^{\prime \prime}\right)$
$=d_{5}\left(X, e^{\prime \prime}\right)=d_{6}\left(X, e^{\prime \prime}\right)=d_{7}\left(X, e^{\prime \prime}\right)=\mu-\operatorname{dim}\left(X, e^{\prime \prime}\right)$
$=\operatorname{dim} X$ where $E^{\prime \prime}$ is the restriction to $X$ of the euclidean metric. $X$ is not locally compact at any point, because for $x \in X$, assume $U$ is a compact nbhd of $x$. Then for some open subset $V$ of $I^{3}$, $Q^{3} \cap \operatorname{VCU}$ (where $Q^{3}=$ QxQxQ). Since $U$ is compact, it is closed in $I^{3}$ so $V \subset \overline{\Omega^{3} \cap V} \subset U$ a contradiction since the 'irrationals' in $V$ which are not on bdry $I^{3}$ are not contained in $X$. Obviously $X$ is not complete since it is not closed in $I^{3}$.

We will need the following lemma to prove the next theorem.

Lemma 1. 2
If $\left\{F_{\chi}, \propto \in_{e} f\right\} i s$ a l.f. collection of closed sets of a paracompact Hausdorff topological space $X$ and $\left\{U_{\alpha}, \mathcal{\alpha} \in \mathscr{A}\right\}_{i s}$ a collection of open sets of $X$ s.t. $F_{\alpha} \subset U_{\alpha} \forall \propto \in \circ\left\{\right.$, then $\exists \mathrm{a} \operatorname{collection}\left\{\mathrm{V}_{\alpha}, \chi \in \mathcal{C} \mathcal{A}\right\}$ of open sets of $X$ s.t. $F_{\alpha} \subset V_{\alpha} \subset U_{\alpha}$ and $\left\{V_{\alpha}, \mathscr{Q} \mathcal{E}_{\mathcal{E}} \mathcal{A}\right\} i$ of the same type as $\left\{F_{\alpha}, \alpha \in c \mathcal{A}\right\}$, i.e. for any subset $\mathcal{\beta}$ of $\mathcal{A}$, $\bigcap_{\alpha \in B} V_{\alpha}=\phi$ iff $\bigcap_{\alpha \in \mathcal{\beta}} F_{\alpha}=\phi$.

For a proof of this lemma, see Nagami "Dimension Theory" prop 9.2 pp 47.

Let $X$ be a paracompact Hausdorff space and let $\left\{U_{2}, \dot{c} \epsilon_{\mathcal{C}}\right\}$ be a l.f. or countable open cover of $X$ s.t. $\left\{\mathrm{U}_{\mu}, \alpha \in \mu\right\}$ has a refinement $\left\{\mathrm{G}_{\alpha}, \alpha \in \mu \mathcal{A}\right\}$ with $\overline{\mathrm{G}}_{\mu} \subset \mathrm{U}_{\alpha}$ and ord $\left\{\right.$ bdry $\left.G_{\mathscr{C}}, \dot{a} \in \mathcal{C} i\right\} \leq n-1$. Then $\left\{\mathrm{U}_{\alpha}, \dot{\infty} \in \mathcal{A}\right\}$ has an open refinement of order $\leq n$ :

Proof: First take the case where $\left\{\mathrm{U}_{\alpha}, \propto \in e d\right\}$ is l.f. Let s be a well ordering on $\mathcal{A}$ and < the associated strict partial order i.e. $\alpha<\beta$ iff $\alpha \leq \beta$ and $\alpha \neq \beta$.
 Then $\mathrm{E}_{\alpha} \subset \overline{\mathrm{G}}_{\alpha} c \mathrm{U}_{\alpha}$. Claim: - ord $\left\{\mathrm{E}_{\alpha}, \alpha \in \mathbb{C}\right\} \leq \mathrm{n}$. For suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+2}$ are $n+2$ distinct members of of. W.L.G. assume $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{n+2}$. Suppose $x \in \bigcap_{i=1} E_{\alpha_{i}}$. That $x \in E \alpha_{n+2}$ implies $x \notin G_{\alpha_{i}}$, $i<n+2$, because the $G_{\alpha}$ 's are open. But $E_{\alpha_{i}} \subset \bar{G}_{\alpha_{i}}$ so $x \in \bar{G}_{\alpha_{i}} 1 \leq i \leq n+2$. Thus $x \in$ bdry $G_{\alpha_{i}} 1 \leq i \leq n+1$. (note that the condition of the theorem implies $n \geq 0$ ). This is impossible because ord $\left\{b d r y G_{\alpha}, Q \in \mathcal{A}\right\} \leq n-1$. Since $\cdot E_{\alpha} \subset U_{\alpha},\left\{E_{\alpha}, \alpha \in \mathcal{A}\right\}$ is l.f. From lemma 1.2, $\exists$ open sets $\mathrm{V}_{\alpha \in}, \alpha \in \mathcal{A}$ s.t. $\mathrm{E}_{\alpha} \subset \mathrm{V}_{\alpha} \subset \mathrm{U}_{\alpha}$ and ord $\left\{\mathrm{V}_{\alpha}, \alpha \in \mathbb{A}\right\}$ $\leq \mathrm{n}$. Because $\leq$ is a well ordering on $\mathcal{A},\left\{\mathrm{E}_{\alpha}, \alpha \in \mathscr{A}\right\}$, and therefore $\left\{\mathrm{V}_{\alpha}, \propto \in \mathcal{A}\right\}$, covers X . Thus $\left\{\mathrm{V}_{\alpha}, \propto \in \mathscr{L}\right\}$ is the required refinement. If $\left\{U_{\mathbb{C}}, \alpha \epsilon_{2} \mathcal{A}\right\}$ is countable then it may be taken as $U_{i}$, $i \in N$ in which case $\left\{E_{i}, i \in \mathbb{N}\right\}$ is still l.f. and the result follows.

## Theorem 1.5 (Hodel)

If $(X, l)$ is a separable metric space, then $d_{5}(X, E)$
$=\mu-\operatorname{dim}(X, \ell)$.

Proof: It suffices to show that $\mu-\operatorname{dim}(X, C) \leq$
$d_{5}(X, C)$ (in view of prop. 1.1.). Leaving out the trivial cases $\mathrm{d}_{5}(\mathrm{X}, \ell)=-1, \infty$, assume $\mathrm{d}_{5}(\mathrm{X}, \ell) \leq \mathrm{n} \geq 0$. Let $\epsilon>0$ be given, and let $x_{i}$, ieN be a dense subset of $X$. Let $E_{i}=\overline{B\left(X_{i}, \epsilon\right)}$ and $U_{i}=B\left(x_{i}, 2 \epsilon\right)$. Then $\left\{E_{i}, i \in N\right\}$ is a cover of $X$ since any $X \in X$ must satisfy $\ell\left(x, x_{i}\right)<\varepsilon$ for some $i$. We have $\ell\left(E_{i}, X-U_{i}\right) \geq \epsilon \forall i \in N$ so $d_{5}(X, e) \leq n$ implies Jopen sets $V_{i}$, i€N s.t. $E_{i} \subset$ $V_{i} \subset \bar{V}_{i} \propto U_{i}$ and ord $\left\{b d r y V_{i}, i \in N\right\} \leq n-1$. From lemma 1.3, $U_{i}$ has an open refinement of order $\leq n$. This refinement also has mesh $\leq 4 \epsilon$. Since $\epsilon$ is arbitrary, this shows that $\mu$ - $\operatorname{dim}(X, C) \leq n$.

Theorem 1.6 (Nagami and Roberts, 1967)
If $(X, G)$ is a totally bounded metric space, then $\mathrm{d}_{3}(\mathrm{X}, \mathcal{E})=\mathrm{d}_{6}(X, \mathscr{e})=\mathrm{d}_{5}(X, \mathscr{E})=\mathrm{d}_{7}(\mathrm{X}, \mathcal{e})=\mu-\operatorname{dim}(X, \mathcal{R})$.

Proof: In view of prop. 1.l. and remark l.l., we need only sow that $\mu$-dim $(X, E) \leq d_{3}(X, \ell)$. Leaving out the cases $\mathrm{d}_{3}(\mathrm{X}, \ell)=-1, \infty$, assume $\mathrm{d}_{3}(\mathrm{X}, \ell) \leq \mathrm{n} \geq 0$. Let $\in>0$ be given. Since $(X, E)$ is totally bounded, $\exists$ a finite cover $\left\{B\left(x_{i}, \epsilon\right), \quad 1 \leq i \leq k\right\}$ of $X$ by open balls of radius $\epsilon$. Let $E_{i}=\overline{B\left(x_{i}, \epsilon\right)}$ and $U_{i}=B\left(x_{i}, 2 \epsilon\right)$. Proceeding as in the proof of theorem 1.5 we obtain the result.

So far we have seen conditions under which certain dimension functions coincide. While the various dimension function do not always coincide, any two of them, say $d$ and $d$ may only differ within the limits of the inequality $d(X, E) \leq 2 d^{\prime}(X, \epsilon)$. We shall now prove this inequality but first we prove a lemma.

Lemma 1.4 (Roberts)
Let $X$ be any topological space. Let $G_{j}, j=0,1$, $2,3, \ldots$ be open sets of $X$ s.t. $G_{0}=\phi, \bar{G}_{j} \epsilon G_{j+1}$, $j=0,1,2, \ldots$ and $X=\bigcup_{j=1}^{\infty} G_{j}$. Let $F_{j} \cdot=\bar{G}_{j}-G_{j-1}$, $j=1,2, \ldots$ Suppose C and C' are disjoint closed sets of $X$ and $B_{j}, j=1,2, \ldots$. are closed subsets of $F_{j}$ s.t. $B_{j}$. separates $C \cap F_{j}$ and $C^{P} \cap F_{j}$ in $F_{j}$. Then Ja closed set $B$ of $X$ separating $C$ and $C^{\prime}$ and s.t. $B \subset \bigcup_{j=1}^{\infty}\left(B_{j} \cup \operatorname{bdry} G_{j}\right)$.

Proof: Let $F_{j}-B_{j}=U_{j} U V_{j}$ where $C \cap F_{j} \subset U_{j}, C^{\prime} \cap F_{j} \subset V_{j}$, and $U_{j}, V_{j}$ are disjoint relatively open subsets of $F_{j} . \quad$ Set $B=\bigcup_{j=1}^{\infty}\left[B_{j} U\left(U_{j} \cap V_{j+1}\right) U\left(U_{j+1} \cap V_{j}\right)\right] .(F i g 1.1)$

We have:-
(a1) $B \cap\left(C^{\prime} C^{1}\right)=\phi$. For, obviouslys $B_{j} \cap\left(C u C^{\prime}\right)=\phi$. On the other hand if $x \in U_{j} \cap V_{j+1}$, then $x \in F_{j+1}$ and $x \notin U_{j+1} \underset{\sim}{C} \cap F_{j+1}$ so $x \notin C$. Similarly $x \in F_{j}$ and $x \notin C^{\prime} \cap F_{j}$ so $\underset{\infty}{x \notin C^{\prime}}$. Similarly for $x \in U_{j+1} \cap V_{j}$. Let $U=\left(\bigcup_{j=1}^{\infty} U_{j}\right)-B$, $V=\left(\bigcup_{j=1}^{\infty} V_{j}\right)-B$. In view of (a1) and the fact that $C c$ $\bigcup_{j=1}^{\infty} U_{j}, C^{\prime} \subset \bigcup_{j=1}^{\infty} V_{j}$, we have (a2) $C \subset U, C^{\prime} \subset V$.

Because $B \supset X-\left(\bigcup_{j=1}^{\infty} U_{j} \bigcup_{j=1}^{\infty} V_{j}\right)$, we have (a3) $X-B$
$=\mathrm{U} U \mathrm{~V} . \quad(\mathrm{a4}) \mathrm{B}$ is closed.

For suppose $x$ is a limit point of $B . \quad x \in G_{r}{ }_{r}^{\text {for }}$ some $r$ which means $x$ must be a limit point to $\underset{j=1}{\bigcup}\left[B_{j} U\right.$ $\left.\left(U_{j} \cap V_{j+1}\right) U\left(U_{j+1} \cap V_{j}\right)\right]$ which in turn means $x$ is a limit point to $\mathrm{B}_{\mathrm{k}}$ or $\mathrm{U}_{\mathrm{k}} \cap \mathrm{V}_{\mathrm{k}+1}$ or $\mathrm{U}_{\mathrm{k}+1} \cap V_{\mathrm{k}}$ for some $1 \leq \mathrm{k}$ $\leq r$. If $x \notin \bigcup_{j=1}^{\infty} B_{j}$, then $x$ is a limit point to $U_{k} \cap$ $\mathrm{V}_{\mathrm{k}+1}$ or $\mathrm{U}_{\mathrm{k}+1} \cap \mathrm{~V}_{\mathrm{k}}$. Suppose $\mathrm{x} \in \overline{\mathrm{U}_{\mathrm{k}} \cap \mathrm{V}_{\mathrm{k}+1}}$; then $\mathrm{x} \in \mathrm{F}_{\mathrm{k}}$, $x \in \bar{U}_{k}$ and, because $U_{k}, V_{k}$ are relatively open and disjoint, $x \notin V_{k}$. Since also $x \neq \mathcal{F}_{k}, x \in U_{k}$. Similarly $x \in V_{k+1}$ so $x \in U_{k} \cap V_{k+1}$. Similarly if $x \in \tilde{U}_{\mathrm{k}+1} \cap \mathrm{~V}_{\mathrm{k}}$ ( x 夷 $\bigcup_{j=1}^{\infty} B_{j}$ ) then $x \in U_{k+1} \cap V_{k}$. Thus for $x \in \bar{B}$, we must have $x \in B$ so $B$ is closed.
(a5) U, V are disjoint. For suppose $x \in U$. Then $x \in U_{r}-B$ for some $r$. Since $V_{j} \subset F_{j}, \mathbb{U}_{j} \subset F_{j}$, and $F_{i} n$ $F_{j}=\phi$ if $|i-j|>1$, we only need to show that $x \in$ $V_{r+1}$ and $x \notin V_{r-1}$. Of course $x \notin V_{r}$. But $x \in V_{r+1} \Rightarrow$ $x \in U_{r} \cap V_{r+1} \subset B$ contradicting $x \in U_{r^{-}}-B$. Similarly for $x \in V_{r-1}$ so $U \cap V=\phi$.
(ab) $\mathrm{U}, \mathrm{V}$ are open. For let x be a limit point of U. Because $x \in G_{r}$ for some $r$, we must have $x$ being a limit point of some $\mathrm{U}_{\mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{r}$. If $\mathrm{x} \in \mathrm{V}$, we must have $x \in V_{k+1}-B$ or $x \in V_{k-1}-B$ (because $\mathbb{x} \in F_{k}$ ). We would then have x being a limit point of $\mathrm{U}_{\mathrm{k}} \cap \mathrm{V}_{\mathrm{k}+1}$ or $\mathrm{U}_{\mathrm{k}} \cap \mathrm{V}_{\mathrm{k}-1}$ and hence of $B$ contradicting the fact that $B$ is closed and $x \in V_{k+1}-B$ or $x \in V_{k-1}-B$. So $x \in V$. Similarly,

Fig ]. 1


Fig 1.2


$$
1 \leq r \leq n, \quad n+1 \leq s \leq 2 n+1
$$

$U$ does not contain points of $\widetilde{V}$. So $U, V$ are disjoint closed sets of UUV. Since UUV = X-B is open, U, V are open. Conditions (a2), (a4), (a5), (a6) mean that $B$ is as required. (Of course $U_{j} \cap V_{j+1}$ and $U_{j+1} \cap V_{j}$ are contained in $F_{j} \cap F_{j+1}$ which is equal to bdry $G_{j}$ ).

## Theorem 1.7 (Roberts)

Let ( $X, \ell$ ) be a metric space. Let $d, d '$ be any of the dimension functions $d_{2}, d_{3}, d_{5}, d_{6}, d_{7}, \mu-d i m$, or dim; then $d(X, C) \leq 2 d^{\prime}(X, \ell)$.

Proof. In view of proposition 1.Iandremark 1.1, it suffices to show that $\operatorname{dim} X \leq 2 d_{2}(X, \mathcal{e})$. Assume $d_{2}(X, e) \leq n$. Let $\left(C_{j}, C^{\prime}{ }_{j}\right) \quad 1 \leq j \leq 2 n+1$ be pairs of disjoint closed sets of $X$. We want to construct closed sets $B j \leq \frac{1 \leq j}{2 n+1}$ s.t. $B_{j}$ separates $C_{j}$ and $C^{\prime}{ }_{j}{ }^{\nexists}{ }_{j}, 1 \leq j \leq 2 n+1$ and $\bigcap_{j=1}$ $B_{j}=\phi$.
$\exists$ open sets $G_{i}$, $i \in \mathbb{N}$ s.t.:-
(a1) $\bigcup_{i \in N} G_{i}=X$
(a2) $\mathscr{C}\left(C_{j} \cap \bar{G}_{i}, C_{j}^{n} \cap \bar{G}_{i}\right)>0 \quad \bar{V} \quad i \in N, \quad 1 \leq j \leq 2 n+1$
(a3) $\ell\left(\bar{G}_{i}, X-G_{i+1}\right)>0 \quad i \in N$.
Infact, let $G_{i}=\underset{n_{=1}^{2}}{2 n+1}\left\{x \in X: \ell\left(x, C_{j}\right)+\ell\left(x, C^{\prime}{ }_{j}\right)\right.$
$>1 / i\}$. It is clear that (a1) to (a3) aresatisfied.
Let $F_{i}=\bar{G}_{i}-G_{i-1}\left(G_{0}=\phi\right)$. Then $\ell\left(C_{j} \cap F_{i}, C^{\prime}{ }_{j} \cap F_{i}\right)$
$>0 \forall i \in N, 1 \leq j \leq 2 n+1$. Since $d_{2}(X, \mathcal{C}) \leq n$, and from (a3), $\exists$, for each $i \in \mathbb{N}$, closed sets $B^{\prime}{ }_{i j}{ }^{1 \leq j \leq n}$ and an open set $H_{i}$ s.t. $B^{\prime}{ }_{i j}$ separates $C_{j} \cap F_{i}$ and $C^{\prime}{ }_{j} \cap F_{i}$ $\forall j, 1 \leq j \leq n \bar{G}_{i-1} \subset H_{i} \subset \bar{H}_{i} \subset G_{i}\left(G_{0}=\phi\right)$ and $\left(\cap_{j=1} B_{i j}^{\prime}\right)$
nbdry $H_{i}=\phi . \quad$ Let $B_{i j}=B_{i j}{ }_{i j} \cap F_{i} 1 \leq j \leq n$.
Then $B_{i j}, 1 \leq j \leq n$ and $H_{i}$ satisfy:-
(b1) $B_{i j}$ separates $C_{j} \cap F_{i}$ and $C^{\prime}{ }_{j} \cap F_{i}$ in $F_{i}$ for $1 \leq j \leq n$
(b2) $\bar{G}_{i-1} \subset H_{i} \subset \bar{H}_{i} \subset G_{i}$ FiEN.
(b3) $\left(\bigcap_{j=1}^{n} B_{i j}\right) \cap \operatorname{bdry} H_{i}=\phi$.

It is clear from (b2) that $F_{i} \cap b d r y H_{i},=\phi i f$ ifi'. Combining with (b3), and since $B_{i j} \subset F_{i}$, we obtain:-
(b4) $\left(\bigcap_{j=1}^{n} B_{i j}\right) \cap\left(\underset{k \in N}{\cup} \operatorname{bdry} H_{k}\right)=\phi \quad \forall j$.
It is also clear that:-
(b5) $B_{i j} \cap B_{i \prime j}, \subset F_{i} \cap F_{i}, \subset b d r y G_{i} \cup b d r y G_{i \prime}$ if ifi'. $1 \leq j \leq n$

From lemma 1.4 , for each $j, 1 \leq j \leq n$, 3 a closed set $B_{j}$ s.t. $B_{j}$ separates $C_{j}$ and $C^{\prime}{ }_{j}$ and:-
(b6) $\quad B_{j} \subset \underset{i \in N}{U}\left(B_{i j} U \operatorname{bdry} G_{i}\right)$
We now turn to the case where $n+1 \leq j \leq 2 n+1$.
From (a1), (a2) and b2), it is clear that:-
(c1) $\bigcup_{i \in N} H_{i}=X$
(c2) $\bar{H}_{i} \subset H_{i+1} \quad \forall \quad i \in N$
(c3) $\ell\left(C_{j} \cap \bar{H}_{i}, C^{\prime}{ }_{j} \cap \bar{H}_{i}\right)>0 \forall i \in N, \quad 1 \leq j \leq 2 n+1$.
(c4) $\left(\bigcup_{i \in N} \operatorname{bdry} G_{i}\right) \cap\left(\bigcup_{i \in N}\right.$ bdry $\left.H_{i}\right)=\phi$.
Let $F_{i}^{\prime}=\bar{H}_{i}-H_{i-1} i \in N\left(H_{0}=\Phi\right)$. As in the case for
$G_{i}$, we obtain closed sets $B_{i j} n+1 \leq j \leq 2 n+1$ s.t.
$B_{i j}$, separates $C_{j} \cap F^{\prime}{ }_{i}$ and $C^{\prime}{ }_{j} \cap F_{j}^{\prime}$ in $F_{i}^{\prime}$ and :$2 n+1$
(di) $\bigcap_{j=n+1} B_{i j}=\phi$.

From lemma $1.4 \exists$ closed sets $B_{j} n+1 \leq j \leq 2 n+1$ s.t. $B_{j}$ separates $C_{j}$ and $C^{\prime}{ }_{j}$ in $X, n+1 \leq j \leq 2 n+1$ and:-
(d2) $B_{j} c \underset{i \in N}{\cup}\left(B_{i j} U\right.$ bdry $\left.H_{i}\right)$. We have:-
(d3) $\left.B_{i j} \cap B_{i}{ }^{\prime} j^{\prime} \subset F^{\prime}{ }_{i} \cap F^{\prime}{ }_{i}, ~ \subset b d r y H_{i}\right)$ bdry $H_{i}$, if $i \neq i^{\prime}, n+1 \leq j \leq 2 n+1$

Now $B_{j}, 1 \leq j \leq 2 n+1$ are closed sets s.t. $B_{j}$ separates $C_{j}$ and $C^{\prime}{ }_{j}$ in $X$.
Claim: $\bigcap_{\substack{j=1 \\ 2 n+1}}^{2 n+1} B_{j}=\phi$. For suppose $x E \cap_{j=1}^{2 n+1} B_{j}$.
Then $x \in \in_{j=n+1} B_{j}$... From $(d 1)$, (d2) and (d3), we have:--
(e1) xe $\bigcup_{i \in \mathbb{N}}$ bary $H_{i}$.
Also $x \in \cap_{j=1}^{n} B_{j}$. From (b5) and (b6), either:-
(e2) $x \in \bigcap_{j=1}^{n} B_{i_{0}} j$ for some $i_{0} \in N$ or:-
(e3) $x \in \bigcup_{i \in N} \operatorname{bdry} G_{i}$.
Both (e2) and (e3) contradict (e1) 敢 view of (b3) $2 n+1$
and (c4) respectively. So $\bigcap_{j=1}^{2 n+1} B_{j}=\phi$ and the proof is complete.

Historical Notes:
The relation dim $X \leq 2 d_{2}(X, Q)$ obtained by J.H. Roberts
(Roberts) is the last in a series of results each of
which generalizes the previous one. Katêtov
(Katětov) proved in 1958 that $\operatorname{dim} X \leq 2 \mu$-dim ( $X, \mathscr{R}$ ).
In 1967 Hodel (Hodel) sharpened this result to
$\operatorname{dim} X \leq 2 d_{3}(X, e)$. Finally Roberts (Roberts) proved
in 1970 that $\operatorname{dim} X \leq 2 d_{2}(X, Q)$.

In the last chapter, we saw that for any two of the above mentioned dimension functions, say d and d', we have $\mathrm{d} \leq 2 \mathrm{~d}^{\prime}$. We shall now give examples to show that if $d$ is any of the above dimension functions different from the covering dimension dim, then there exists a metric space where d and dim differ by the maximum amount allowed by the inequality in theorem 1.7.

Lemma 2.1 (Nagami and Roberts, 1967)
Let $X$ be a completely normal space and $Y$ a subset of $X$ with $\operatorname{dim}(X-Y)<n$. Then for any $n$ pairs $\left(C_{i}, C_{i}{ }_{i}\right)$ $1 \leq i \leq n$, of disjoint closed sets of $X$ _losed sets $B_{i}$, $1<i \leq n$, of $X$, s.t. $B_{i}$ separates $C_{i}$ and $C_{i}^{\prime}$ and $\cap_{i=1} B_{i} \in Y$.

Proof: Let $X, Y, C_{i}, C^{\prime}{ }_{i} 1 \leq i \leq n$ be as in the statement of the theorem. Let $U_{i}, U^{\prime}{ }_{i}$ be operr sets of $X$ s.t. $C_{i} \subset U_{i}, C^{\prime}{ }_{i} \subset U^{\prime}{ }_{i}$ and $\bar{U}_{i} \cap \bar{U}^{\prime}{ }_{i}=\phi$ for $1 \leq i \leq n$. Because $\operatorname{dim} X-Y<n, \exists$, by theorem 0.4 open $\operatorname{set} 0_{i}, 0^{\prime}{ }_{i}$ of $X-Y$ s.t. $\bar{U}_{i}-Y \subset O_{i}, \bar{U}_{i}^{\prime}-Y \subset 0_{i}^{\prime}, O_{i} \cap O_{i}^{\prime}=\Phi$ and $: X-Y=$ $\mathrm{U}_{\mathrm{i}=1}^{\mathrm{U}}$
$\mathrm{dis} j$
$V^{\prime}{ }_{i}$.
Let $W_{i}=U_{i} U\left(0_{i}-\bar{U}{ }^{\prime}{ }_{i}\right), W^{\prime}{ }_{i}=U^{\prime}{ }_{i} U\left(0^{\prime}{ }_{i}-\bar{U}_{i}\right)$.
Let $B_{i}=X-\left(W_{i} \cup W_{i}{ }_{i}\right)$. Then $B_{i}, 1 \leq i \leq n$, satisfy the required condition.

Lemma 2.2.
Let $X \cdot$ be a compact Hausdorff space and let $H$ and $K$ be disjoint closed sets of $X$ such that no connected set of $X$ intersects both $H$ and $K$. Then the empty set separates $H$ and $K$.

For a proof of this Jemma, see Nagami ''Dimension Theory" corollary 6-8 pp 41.

Lemma 2.3
A connected compact Hausdorff space cannot be the disjoint union of a countable collection of more than one non-empty closed sets.

For a proof of this lemma see Nagami 'Dimension Theory" theorem. $\underset{:}{6-10} \mathrm{pp} .41$.

We would like to give an example to show that lemma 2.3 cannot be extended to normal (infact metric) spaces.

Example 2.1 A connected subset of $I^{2}$ that is a union of a countable collection of more than one none-empty disjoint closed sets.

Let $q_{1}, q_{2}, q_{3} \ldots .$. be the rational numbers in $I$. Let $X=\operatorname{Ix}\{0\} \cup\left(\bigcup_{i=1}^{\infty}\left\{q_{i}\right\} \times[1 / i, 1]\right)$.
Let $A_{i}=\left\{q_{i} x_{x}[1 / i, 1]\right.$ and $B=I x\{0\}$. Then $X$ is the union of the non-empty closed sets $B$. , $A_{1}$, $A_{2}, A_{3} \ldots$.
$X$ is connected; for suppose not, and assume $X=$ UUV where U, V are disjoint non-empty open sets of X. Since $I^{2}$ is completely normal, $\exists$ disjoint open sets $G$, $H$ of $I^{2}$ s.t. $G \cap X=U, H \cap X=V$. Since $B$ is connected, 3 is wholly contained in either $G$ or H . Assume without loss of generality that $\mathrm{B} \subset G$. Since $H \cap X \neq \phi, H \cap A_{i} \neq \phi$ for some $i$, say $i_{0}$. Since $A_{i_{0}}$ is connected, $A_{i_{0}} \subset H$. We have, because $I$ is compact, that $I \times[0, \varepsilon) \subset G$ for some $\epsilon$. Also $V \times\{a\} \subset H$ for some nbhd $V$ of $q_{i_{0}}$ and $a \in\left[1 / i_{o}, 1\right] . V$ contains infinitely many rationals so it contains some rational $q_{j}$ with $j \geq i_{0}$ and $1 / j<\varepsilon$. But then $\left(q_{j}, 1 / j\right) \varepsilon_{j} \cap G$ $\neq \phi$ and $\left(q_{j}, a\right) \in A_{j} \cap H \neq \phi$ contradicting the fact that $A_{j}$ is connected.

## Defn 2.1

Let $X$ be a normal space. A collection of $n$ pairs $\left(C_{i}, C^{\prime}{ }_{i}\right) 1 \leq i \leq n$ of subsets of $X$ is said tọ be an essential family if (i) $C_{i}, C^{\prime}{ }_{i}$ are disjoint closed sets of $X, 1 \leq i \leq n$
(ii) for any $n$ closed sets $B_{i}, 1 \leq i \leq n$ s.t. $B_{i}$ separates $C_{i}$ and $C^{\prime}{ }_{i}$ we have $\cap_{i=1} B_{i} \neq \phi$.

Lemma 2.4 (Nagami and Roberts, 1967)
Let $X$ be a normal space, $F$ a closed set of $X$ and $f: F \longrightarrow S^{n-1}$ a continuous function. Considering $S^{n-1}$ as the boundary of $J^{n}$ where $J=[-1,1]$, let $C_{i}=\left\{\left(x_{1}, x_{2}, \ldots . x_{n}\right) \in J^{n}: x_{i}=-1\right\} C^{\prime}{ }_{i}=\left\{\left(x_{1}\right.\right.$, $\left.\left.x_{2}, \ldots . x_{n}\right) \in J^{n}: x_{i}=1\right\}$ for $1 \leq i \leq n$.

If the collection $\left(f^{-1}\left(C_{i}\right), f^{-1}\left(C^{\prime},\right)\right) 1 \leq i \leq n$ is not an essential family, then $f$ has an extension $f^{*}$ : $\mathrm{X} \rightarrow \mathrm{S}^{\mathrm{n}-1}$.

Proof: First we construct a function $g: X \longrightarrow J^{n}$ which extends $f$ and does not assume the value $\overline{0}$ $(=(0,0, \ldots, 0))$ in $J^{n}$. Since $\left(f^{-1}\left(C_{i}\right), f^{-1}\left(C^{\prime}{ }_{i}\right)\right)$ $1 \leq i \leq n$ is not an essential family, $\exists$ pairs $U_{i}, U^{\prime}{ }_{i}$ of disjoint open sets, $1 \leq i \leq n$, s.t. $f^{-1}\left(C_{i}\right) \subset U_{i}, f^{-1}$ $\left(C^{\prime}{ }_{i}\right) \subset U^{\prime}{ }_{i}$ and $\bigcup_{i=1}^{n}\left(U_{i} U^{U^{\prime}}{ }_{i}\right)=X$. Since $X$ is normal,
$\exists$ closed sets $E_{i}, E^{\prime}{ }_{i}$ s.t. $E_{i} \subset U_{i}, E^{\prime}{ }_{i} \subset U^{\prime}{ }_{i}$ and $\bigcup_{i=1}^{n}\left(E_{i} \cup E^{\prime}{ }_{i}\right)=X . \quad$ Let $F_{i}=E_{i} \cup f^{-1}\left(C_{i}\right), F_{i}^{\prime}=$ $E^{\prime}{ }_{i} U F^{-1}\left(C^{\prime}{ }_{i}\right)$. Then $F_{i}, F_{i}^{\prime}$ are disjoint closed sets with $f^{-1}\left(C_{i}\right) \subset F_{i}, f^{-1}\left(C^{\prime}{ }_{i}\right) \subset F^{\prime}{ }_{i}$ and $\bigcup_{i=1}^{n}\left(F_{i} \cup F^{\prime}{ }_{i}\right)=X$.

By Urysohn's lemma, $\exists$ for each $i, 1 \leq i \leq n$, a continuous function $h_{i}: X \longrightarrow J$ s.t. $h_{i}\left(F_{i}\right)=-1, h_{i}\left(F_{i}^{\prime}\right)=1$.

Let $h: X \longrightarrow J^{n}$ be the function.
$h(x)=\left(h_{1}(x), h_{2}(x), \ldots h_{n}(x)\right)$. Then $h$ is continuous.
By Tietze's extension theorem there is a continuous extension $\overline{\mathrm{f}}: \mathrm{X} \longrightarrow \mathrm{J}^{\mathrm{n}}$ of f . Let $U$ be the set $\left\{x \in X: \bar{f}_{i}(x) h_{i}(x)>0\right.$ for some $\left.i, 1 \leq i \leq n\right\}$ where $\bar{f}_{i}$ is the ith coordinate function of $\overline{\mathrm{f}}$. If $\mathrm{U}=\mathrm{X}$ then set $g=\overline{\mathcal{E}} \quad \therefore \quad$ Otherwise, we note that $U$ is open and $U$ contains F. Since $X-U \neq \phi \exists$, by Urysohn's lemma a continuous function $\phi: X \longrightarrow I$ s.t. $\phi(F)=$ 1 and $\phi(X-U)=0$. Let $g(x)=\bar{f}(x) \phi(x)+h(x)$
$(1-\phi(x))$. Then if $x \in U$ then for some $i, \bar{f}_{i}(x) h_{i}(x)>0$
whence $\bar{X}_{i}(x) \phi(x)+h_{i}(x)\left(1-\phi(x) \neq 0\right.$ whence $g_{i}(x) \neq 0$ whence $g(x) \neq \overline{0}$. If $x \notin U$ then $g(x)=h(x) \neq \overline{0}$, (chear) and for $x \in F, g(x)=f(x)$. So $g$ is as required. Now let $\psi:\left(J^{n}-\overline{0}\right) \rightarrow s^{n-1}$ be the projection $\psi(a)$ $=\left\|^{\frac{a}{a}}\right\|$ where $\|a\|$ is the sup norm of a i.e. \|a\|= $\sup \left\{\left|a_{i}\right|, 1 \leq i \leq n\right\}$ where $a=\left(a_{1}, \ldots . a_{n}\right)$. Put $f *=$ $Y_{0} g$. Then $\mathrm{i}^{*}$ is the required extension of $f$.

Theorem 2.1 (Nagami 1967)
Let $X$ be a compact completely normal space with dim $X \geq n \geq 0$. Let $A_{i}, i=1,2, \ldots$ be disjoint closed sets of $X$ s.t. dim $A_{i} \leq n-1$. Then $\operatorname{dim}\left(X-\bigcup_{i=1}^{\infty} A_{i}\right) \geq n-1$.

Proof: We omit the trivial case $n=0$ so assume $n \geq 1$. Since $\operatorname{dim} X \geq n$, by theorem $0.5 \geq$ a closed set $F$ of $X$ and a continuous function $f: F \longrightarrow S^{n-1}$ s.t. $f$ does not extend to $X$.

Step I. ヨ a continuous function $h: X \rightarrow I^{n}$ s.t. $h$ extends $f, \overline{0} \nLeftarrow h\left(\bigcup_{i=1}^{\infty} A_{i} U F\right)$ 。

We construct $h$ as follows:- Since $\operatorname{dim} A_{i} \leq n-1$ f extends to $F \cup A_{I}$, and hence to $\overline{\mathrm{U}}_{1}$ where $\mathrm{U}_{1}$ is an open set containing $\mathrm{FUA}_{1}$. Similarly, f extends to $\bar{U}_{1} \cup A_{2}$ and hence to $\bar{U}_{2}$ where $U_{2}$ is open and contains $\bar{U}_{1} \cup A_{2}$ (These extensions are into $S^{n-1}$ ). We thus define recursively a continuous function $g: U \longrightarrow S^{n-1}$ where $U=\bigcup_{i=1}^{\infty} U_{i}$ is an open set containing $F U\left(\bigcup_{i=1}^{\infty} A_{i}\right)$.

Let $\dot{\phi}_{i}: X \rightarrow\left[0,1 / 2^{i}\right]$ be s.t. $\phi_{i}\left(F U A_{i}\right)=1 / 2^{i}$, $\phi_{i}(X-U)=0$. Then $\phi=\sum_{i=1}^{\infty} \phi_{i}$ is a continuous function
into $[0,1]$ s.t. $\phi(F)=\{1\}, \phi\left(A_{i}\right) \subset(0,1]$. Define $h$ by $h(x)=\phi(x) g(x)$ for $x \in U, h(x)=\overline{0}$ for $x \notin U$. Then $h$ satisfies the given conditions.

Step 2. Assume $\operatorname{dim}\left(X-\bigcup_{i=1}^{\infty} A_{i}\right)<n-1$. Then, because $X-\bigcup_{i=1}^{\infty} A_{i}$ is normal, and $h^{-1}(\overline{0})$ is $G_{\delta}$.dim $\left(\left(X-h^{-1}(\overline{0})\right)-\bigcup_{i=1}^{\infty} A_{i}\right)<n-1$.

For a set $S$ in $R^{n}$ and a set $J$ in $R$, let $J S$ denote the set $j s, j \in J, s \in S$.

We take I to be the interval [-1, 1].
Let $B=\left\{x \in I^{n}: x_{n}=1\right\}$ i.e. one face of $I^{n}$ (see
fig. 2.1). Let $P$ be the pyramid [0, 1]B
For $1<i<n-1$, let $S_{i}=\left\{x \in B: x_{i}=-1\right\}, S_{i}^{\prime}=\{x \in B: x i=1\}$.
Let $\mathrm{T}_{\mathrm{i}}=(0,1] \mathrm{S}_{\mathrm{i}}, \mathrm{T}^{\prime}{ }_{i}=(0,1] \mathrm{S}^{\prime}{ }_{i}$.
Then $h^{-1}\left(T_{i}\right), h^{-1}\left(T_{i}^{\prime}\right) 1 \leq i \leq n-1$ are disjoint closed sets of $X-h^{-1}(\overline{0})$. By lemma 2.1, $\exists$ closed sets $B_{i} 1 \leq i \leq n-1$ of $X-h^{-1}(\overline{0})$ s.t. $B_{i}$ separates $h^{-1}\left(T_{i}\right)$ and $h^{-1}\left(T_{i}{ }_{i}\right)$ in $X-h^{-1}(\overline{0})$ and $\bigcap_{i=1}^{n-1} B_{i} \subset \bigcup_{i=1}^{\infty} A_{i}$. Let $H=n_{i=1}^{n-1} \cdot B_{i}$.
$H U_{h}^{-1}(0)$ is closed in $X$ and is therefore compact. Assume $\mathrm{H} \cap \mathrm{h}^{-1}(B) \neq \Phi$. Suppose some connected set J of $\mathrm{H} U \mathrm{~h}^{-1}(\overline{0})$ intersects both $H \cap h^{-1}(B)$ and $h^{-1}(\overline{0})$. Then $\bar{J}$ is a connected compact set of $H \mathrm{Uh}^{-1}(\overline{0})$ intersecting both $\mathrm{Hnh}^{-1}(\mathrm{~B})$ and $\mathrm{h}^{-1}(\overline{0})$. Then $\overline{\mathrm{J}}$ has a non-empty intersection with $h^{-1}(\overline{0})$ and $\bigcup_{i=1}^{\infty} A_{i}$ (which is disjoint from $\left.h^{-1}(\overline{0})\right)$.

Thus $\bar{J}$ is the union of a disjoint countable collection of more than one closed set contrary to lemma 2.3 .

Thus no connected subset of $H U h^{-1}(\overline{0})$ touches both $\mathrm{h}^{-1}(\overline{0})$ and $\mathrm{H} \cap \mathrm{h}^{-1}(\mathrm{~B})$. By lemma $2.2 \mathrm{H} \cup \mathrm{h}^{-1}(\overline{0})$ is a union of two disjoint closed sets one containing $\mathrm{H} \cap h^{-1}(\mathrm{~B})$ and the other containing $\mathrm{h}^{-1}(\overline{0})$.

Claim:- $H \cup h^{-1}(\overline{0}) \cup h^{-1}(B)$ is a union of two disjoint closed sets one containing $h^{-1}(B)$ and the other containing $h^{-1}(\overline{0})$.

One of these closed sets is formed by uniting $h^{-1}$ (B) to the one of the two closed sets of $H U^{-1}(\overline{0})$ which contains $H \cap h^{-1}(B)$ (this is assuming $H \cap h^{-1}$ (B) $\neq \phi$ because otherwise the result is obvious). The other closed set is just the closed set of $\mathrm{H} U \mathrm{~h}^{-1}(0)$ which does not contain $\mathrm{H} \cdot \mathrm{OH}^{-1}(\mathrm{~B})$.

By extending to disjoint open sets of $X$ we obtain a closed set $B_{n}$ of $X$ separating $h^{-1}(B)$ and $h^{-1}(\bar{G})$ without touching H. Because of the compactness of X , and considering that $\mathrm{h}^{-1}(\overline{0})=\bigcap_{i=1}^{\infty} \mathrm{h}^{-1}([0,1 / \mathrm{i}] B)$, We see that $B_{n}$ also separates $h^{-1}(B)$ and $h^{-1}(\{t\} B)$ for some $t, 0<t<1$. Restricting attention to the space $Y=h^{-1}([t, 1] B)$, if $B^{\prime}{ }_{i}=B_{i} \cap Y$, then $B^{\prime}{ }_{i}$ separates $\left.h^{-1}(I t, 1] S_{i}\right)$ and $h^{-1}\left([t, 1] S_{j}{ }_{i}\right)\left(=h^{-1}\right.$ $\left(T_{i}\right) \cap Y$ and $h^{-1}\left(T^{\prime}{ }_{i}\right) \cap Y$ ) in $Y$. $B^{\prime}{ }_{i}$ is closed in $Y$ since $Y \subset X-h^{-1}(\overline{0})$. That, so far, is for $1 \leq i \leq n-1$. If $i=n$, then again $B^{\prime}{ }_{n}=B_{n} \cap Y$ separates $h^{-1}(\{t\} B)$ and $h^{-1}(B)$ in $Y$. Now $\bigcap_{i=1}^{n} B_{i}=\phi$ by the construction of $\mathrm{B}_{\mathrm{i}}$. Thus the system $\left.\mathrm{h}^{-1}\left([t, 1] \mathrm{S}_{\mathrm{i}}\right), \mathrm{h}^{-1}([t],] \mathrm{S}_{\mathrm{i}}\right)$

Fig. 2.1

$1 \leq i \leq n-1$ and $h^{-1}(\{t\} B), h^{-1}(B)$ is not an essential family in $Y$. Let $C=$ boundary in $R^{n}$ of $[t, 1] B=$ n-1
$B \cup\{t\} B \cup \underset{i=1}{U}\left([t, 1] S_{i} \cup[t, 1] S_{i}\right)$.

C is homoemorphic to $\mathrm{S}^{\mathrm{n}-1}$ with $(\mathrm{B},\{t\} \mathrm{B}),\left([\mathrm{t}, 1] \mathrm{S}_{i}\right.$, [t, 1]S' ${ }_{i}$ ) $1 \leq i \leq n-1$ corresponding to pairs of opposite faces so, in view of lemma 2.4 Ja map $\mathcal{Y}: Y \rightarrow C$ s.t. $\mathcal{H}$ extends $h / h^{-1}(C)$. If we define $\theta: X \longrightarrow I^{n}$ by

$$
\theta(x)= \begin{cases}\psi(x) & \text { for } x \in Y \\ h(x) & \text { for } x \& Y\end{cases}
$$

then $\theta$ is a continuous map which does not assume values in the interior (in $\mathrm{R}^{\mathrm{n}}$ ) of $[\mathrm{t}, 1] \mathrm{B}(\theta$ is continuous because it coincides with $\mathcal{F}$ on $Y$ and it coincides with $h$ on $\overline{\mathrm{X}-\mathrm{Y}}$ ). If we compose $\theta$ with the projection from an interior (in $R^{n}$ ) point of $[t, 1] B$ to $S^{n-1}$, we obtain an extension of $f$ contrary to the choice of $f$. So we cannot have dim $X-\bigcup_{i=1}^{\infty} A_{i}<n-1$.

## Corrollary 2.1 (Nagami 1967)

Let $A_{i}$, i $\in \mathbb{N}$, be a sequence of disjoint closed sets of $I^{n}$ at least two of which are non-empty. Then $\operatorname{dim} I^{n}-\bigcup_{i=1}^{\infty} A_{i} \geq n-1$.

Proof: With the notation introduced in theorem 2.1, if $\{t\} I^{n}$ does not meet two $A_{i}$ 's for any $0<t<1$ then $\exists$ $i_{0}$ s.t. $A_{i} \subset S^{n-1}$ if $i \neq j_{0}$. Since $(0,1) I^{n} \notin A_{i_{0}}$, we have $\operatorname{dim} I^{n}-\bigcup_{i=1}^{\infty} A_{i} \geq \operatorname{dim}(0,1) I^{n}-\bigcup_{i=1}^{\infty} A_{i}=\operatorname{dim}$
for some $t \in(0,1)$,
$(0,1) I^{n}-A_{i_{0}}=n$. Otherwise, $\left\{\left\{I^{n} I^{n}\right.\right.$ intersects $A_{i}$,
$A_{j}$ for $i \neq j$ and by lemma $2.3, \exists x \in\{t\} I^{n}$ set. $x \neq \bigcup_{i=1}^{\infty} A_{i}$.
We may assume $x=0$. We let $F=S^{n-1}, f=$ identity, $h=i d e n t i t y ~ a n d ~ p r o c e e d ~ a s ~ i n ~ t h e o r e m ~ 3.1 . ~$

Corrollary 2.2. (Nagari 1967).
Let X be a connected metric space s.t. every point has a nbhd homeomorphic to $I^{n}$. Let $A_{i}$ be a disjoint sequence of closed sets of $X$ at least two of which are nonempty. Then $\operatorname{dim}\left(X-\bigcup_{i=1}^{\infty} A_{i}\right) \geq n-1$.

Proof: Let $A_{i}$ be as in the corollary.
Let $I_{X}$ be a nh of $X$ homeomorphic to $I^{n}$ for $x \in X$.
If each $I_{x}$ is contained in some $A_{i}$, then each $A_{i}$ is cloven contradicting the connectedness of $X$. We cannot have $I_{x}=\bigcup_{i=1}^{\infty} A_{i}$ for each $\mathbb{x} \in X$ because, in view of the above observation, this would contradict lemma 2.3.

So for some $x_{0}, I_{x_{0}} \nsubseteq \bigcup_{i=1}^{\infty} A_{i}$. If $I_{x_{e}}$ intersects at most one $A_{i}$ then $\operatorname{dim} X-\bigcup_{i=1}^{\infty} A_{i} \geq \operatorname{dim} I_{x_{0}}-\bigcup_{i=1}^{\infty} A_{i}=n$ (since it is open in $I_{x}$ ). If $I_{x}$ intersects two $A_{i}$ 's then by corrollary 2.1, $\operatorname{dim} X-\bigcup_{i=1}^{\infty} A_{i} \geq \operatorname{dim} I_{x_{0}}$ $-\bigcup_{i=1}^{\infty} A_{i} \geq n-1$.

Deft 2.2.
A compact Hansdorff space of dimension $n, n \geq 1$ is called a Cantor n-manifold if it cannot be separated by a closed subset of dimension less than $n-1$.

Example 2.2.
Fig 2.2. gives a cantor 2 -manifold $X$ s.t. a proposition for $X$ analogous to corrollary 2.1 fails. dim $x=2$ but $\operatorname{dim} X-\bigcup_{i=1}^{\infty} A_{i}=0$ since $X-\bigcup_{i=1}^{\infty} A_{i}$ is a subset of Cantor's discontinuum.

Fig. 2.2.


We would like to give an explanation (omitted from ivagami and roberts 1967) as to why $X$ is a Cantor 2-manifold.

First we note that the sets $A_{i j}\left(i=1,2, \ldots 1 \leq j \leq n_{i}\right.$ are so chosen that for any $\epsilon>0$, only finitely many of them have a span exceeding $\epsilon$ in the $y$-direction. This ensures that $X$ is closed in $R^{2}$. Since it is bounded, it is compact.

The sets $A_{i j}$ of fig 2.2. have the following properties.
(i) $A_{i j}$ is homeomorphic to $I^{2}$.
$\bigcup_{i, j} A_{i j}$ is dense inn $X$
(iii) ヨ an infinite subcollection eA of $\left\{A_{i j}\right\} s . t$. for any infinite subcollection $B$ of $A, \bar{B} A$
intersects each $A_{i j}$ on a set of $\operatorname{dim}$ I. A is the collection $A_{11}, A_{12}, A_{13} \ldots$.
(i) implies that $A_{i j}$ is a cantor 2-manifold, (see Engelkin pp 77). Suppose X is separated by a closed set $B$, with $X-B=U U V, U, V$ disjoint, $U \neq \phi \neq V$, $\operatorname{dim} B \leq 0$. Because $A_{i j}$ are cantor 2 -manifolds, we must have $A_{i j} \cap U=\phi$ or $A_{i j} \cap V=\phi$ for each $i, j$. Let $\phi_{1}=\left\{A_{i j} \epsilon_{c \mathcal{A}}: A_{i j} \cap V=\phi\right\}, \phi_{2}=\left\{A_{i j} \epsilon_{i \mathcal{L}}: A_{i j} \cap U=\phi\right\}$. Then one of $B_{1}, B_{2}$ must be infinite. Assume it is $\$_{1}$. Because $\bigcup_{i, j} A_{i j}$ is dense, at least one $A_{i j}$, say $A_{i c} j_{o}$ intersects V. So $A_{i_{0}} j_{\odot} \cap U=\phi$. Then $\overline{U_{A \in B_{1}} \bar{A} \cap A_{i_{0}} j_{\mathcal{O}}} \subset B$. But $\operatorname{dim}\left(\overline{U_{A \in B_{1}}^{A}} \cap A_{i_{c}} j_{0}\right)=1$ (from (iii)) so $\operatorname{dim} B \geq 1$, a contradiction.

So X cannot be separated by a zero-dimensional closed set and is therefore a cantor 2 -manifold, (of course $\operatorname{dim} X:=2)$.

Lemma 2.5 (Nagami and Roberts, 1967).
Let ( $X, \ell$ ) be a metric space and $C_{i} i=1,2, \ldots$. be a sequence of closed subsets of $X$ s.t. $\operatorname{dim} C_{i} \leq n_{i}$. Let $\mathscr{U}$ be any open cover of $X$, and $r$ any positive integer. Then $\exists \mathrm{l}$.f. open covers $\mathscr{H}_{1}, \mathscr{U}_{2}, \ldots$ 䉿 and r.l.f. closed covers $\xi_{1}, \xi_{2}, \ldots . \xi_{r}$. s.t.
(i) $\xi_{1}$ refines $\mathscr{U}$ (we will write $\xi_{1}<\mathscr{U}$ ) and $\xi_{i+1}<\mathscr{U}_{i}<\xi_{i}$ for $1 \leq i \leq r .(i<r$ for the first inequality)
(ii) If $E_{1}, E_{2}, \ldots E_{s}$ are $s$ distinct members of $\xi_{i+1}$ for some positive integer $s$, then $\exists \mathrm{s}$ distinct members $U_{1}, U_{2}, \ldots U_{s}$ of $\mathscr{U}_{i}$ s.t. $E_{1} \subset U_{1}, E_{2} \subset U_{2}, \ldots E_{S} \subset U_{S}$ and similarly for $\mathscr{U}_{i}$ and $\xi_{i}$.
(iii) ord $\xi_{i} \mid C_{i} \leq n_{i} 1 \leq i \leq r$.
(iv)ord ${ }_{r} \mid C_{i} \leq n_{i}$ for $1 \leq i \leq r$

Proof: The proof is by induction. Assume the result true for $r-1$. Then we can obtain covers $\xi_{i}, \mathscr{U}_{i}$ $1 \leq i \leq r-1$ satisfying (i) - (iii) with replaced by $r-1 . \mathscr{V}=\left\{U \cap C_{r}, U \in \mathbb{U}_{r-1}\right\}$ is an open cover of $C_{r}$. Since dim $C_{r} \leq n_{r}$ and from lemma 1. I, Whas an open 1.f. refinement of order $\leq n_{\dot{r}}$. This in turn has a closed l.f. refinement of order $\leq \mathrm{n}_{\mathrm{r}}$. Furthermore, using a technique as in the proof of lemma 1.1., this closed refinement may be assumed to be of the form
$\left\{H_{U}, U \in \mathscr{U}_{r-1}\right\}$ where $H_{U} \in U \wedge C_{r}$ (and the order is indexwise, see defn. 0.2). By lemma 1.2, since $H_{U}$ is closed in $X, \exists a \operatorname{I.f.}$ open collection $\left\{G_{U}, U \in U U_{r-1}\right\}$ s.t. $\dot{H}_{U} \in G_{U} \in U \in \not \ell_{r-1}$ and ord $\left\{G_{U}\right\} \leq n_{r}$.

Let $M_{U}=G_{U} U\left(U-C_{r}\right) .\left\{M_{U}, U E l_{r-1}\right\}$ is a 1.f.
(because $\mathcal{U}_{r-1}$ is) open cover of $X$ s.t. its restriction to $C_{r}$ i.e. $\left\{M_{U} \wedge C_{r}, \quad U \in \mathcal{H}_{r-1}\right\}$ has order $\leq n_{r}$.
Normality of X implies the existence of an open cover $\left\{W_{U}, U \in \mathcal{T L}_{T-1}\right\}$ with $\bar{W}_{U} \subset M_{U}$. Let $\mathscr{E L}_{r}=\left\{W_{U}, U \in Z_{r-1}\right\}$, $\xi_{r}=\left\{\bar{W}_{U}, U E L_{r-1}\right\}^{1}$. Conditions (i), (ij), (iii) are satisfied while (iv) follows from (ii) and (iii). The construction when $r=1$ is just as above, taking $\chi$ instead of $\mathcal{M}_{r-1}$.

Theorem 2.2. (Nagami and Roberts, 1967).
Let ( $X, e$ ) be a metric space and $C_{i}$, $i=1,2, \ldots$. be a sequence of closed sets of $X$ s.t. $d i m C_{i} \leq n_{i}$. Let $\|_{1}$ be an open cover of $X$. ヨa sequence $\mathcal{F}_{i}=\left\{F_{\alpha}\right.$, $\left.\alpha \in B_{i}\right\}$ of $1 . f . c$ ciosed covers of $X$ s.t.
(i) $\mathscr{F}_{1}$ refines $\mathscr{U}$.
(ii) mesh $\mathcal{F}_{i} \leq 1 / i$.
(iii) ord $\mathcal{F}_{i} \mid C_{j} \leq n_{j}$
(iv) Ja system of functions $f_{i}^{j}: B_{j} \rightarrow B_{i} i \leq j$ s.t $f_{i}^{i}=$ identity, $f_{i}^{j} \circ f_{j}^{k}=f_{i}^{k}$ and for $\alpha \in B_{i}$ and $j \geq i, F_{\alpha}=U_{\beta \in\left(f_{i}^{j}\right)^{-1}(\alpha)} F_{\beta}$.
(v) For any positive integers i, $j, k$, if $\alpha_{1}, \alpha_{2}, \ldots$, $\alpha_{k}$ are distinct elements of $B_{j}$, then dim

$$
\begin{aligned}
& \left(\bigcap_{r=1}^{k} F_{\alpha_{r}} \cap C_{i} \leq \overline{n_{i}-k+1} \text { where } \bar{x} \text { means } \max \{x,-1\}\right. \\
& \text { for } x \in R \text {. }
\end{aligned}
$$

Proof: We construct sequences $j_{i}$ of l.f. closed covers and $\mathscr{L}_{i}$ of $1 . f$. open covers of $X$ satisfying:-
(i) $\mathscr{L}_{i+1}<\mathscr{H}_{i+1}<\mathscr{L}_{i} \forall i$ and $\mathscr{H}_{1}<\mathcal{K}$
(ii) ord $H_{i} \mid C_{j} \leq n_{j}$ for $j \leq i$.
(iii) mesh $\partial t_{i} \leq 1 / i$.

The construction is by induction. Assume the sequence constructed upto $\mathrm{i}=\mathrm{r}-1$.

Then let $\mathscr{H}_{\mathrm{r}}$ and $\mathscr{Z}_{\mathrm{r}}$ be $\xi_{\mathrm{Y}}$ and $\mathscr{U}_{\mathrm{r}}$ (respectively) of lemma 2.5, replacing $\mathscr{U}$ of lemma 2.5. with a $1 . f$. open refinement of $\mathscr{Z}_{r-1}$ whose mesh is $\leq 1 / i$. (i), (ii), (iii) are obviously satisfied. Let $\mathcal{H}_{1}, \mathscr{Y}_{1}$ be $\xi_{1}$, $\mathscr{U}_{1}$ of lemma 2.5 with $\mathscr{U}_{1}$ replaced by a $1 . f$. open refinement of $\mathscr{U}$ with mesh $\leq 1$.

Now write $\mathcal{H}_{i}=\left\{H_{\alpha}, \alpha \in B_{i}\right\}$ where $\alpha \neq \beta \Rightarrow H_{\alpha} \neq H_{\beta}$ Define $f_{i}^{i+1}: B_{i+1} \longrightarrow B_{i}$ s.t. for $\beta<B_{i+1} \cdot H_{\beta} \subset H_{f_{i}^{i+1}(\beta)}$. For $i<j$ let $f_{i}^{j}=f_{i}^{i+1}{ }_{o} f_{i+1}^{i+2} c \ldots \ldots o f_{j-1}^{j}$ and let $f_{i}^{i}$ = identity. We note that $f_{i}^{j} \mathrm{f}_{j}^{\mathrm{k}}=\mathrm{f}_{\mathrm{i}}^{\mathrm{K}}$. Let $\mathrm{B}=\mathrm{inv}$ $\lim \left\{B_{i}, f_{i}^{j}\right\}$ and $\pi_{i}: B \longrightarrow B_{i}$ be the projections. For each i, define a collection $\mathscr{K}_{i}$ as follows:- for $\alpha \in$ $B_{i}$, let $K_{\alpha}=\bigcup_{a \in \Pi_{i}^{-1}(\alpha)}\left[\bigcap_{j=i}^{\infty} H_{\Pi_{j}}(a)\right]$ (we take $\underset{A \in \phi}{\cup A}=\phi$ ). Let $X_{i}=\left\{K_{\alpha}, \alpha \in B_{i}\right\}$.

## Claim:-

(i) $K_{a<} \subset H_{\alpha}$ for each $\alpha_{i} \in B_{i}$ for each i.
(ii) $\mathcal{K}_{\text {i }}$ is l.f. for each i.
(iii) For $i \leq j$ and $\alpha \in B_{i}, K_{\alpha}=\bigcup_{\beta \in\left(f f_{i}^{j}\right)^{1}(\alpha)} K_{\beta}$
(i) follows from the fact that if $a \in \pi_{i}^{-1}(\alpha)$ and $j \geq i$ then $f_{i}^{j}\left(\pi_{j}(a)\right)=f_{i}^{j} 0 \pi_{j}(a)=\pi_{i}(a)=\alpha$ so $H_{\pi_{j}}(a) c$
$H_{\alpha}$ (the last part follows easily from the definition of $f_{i}^{i+1}$ and $f_{i}^{j} i \leq j$ )
(ii) follows from (i) because distinct members $K_{\alpha_{1}}$,
$\ldots . . \alpha_{\alpha_{r}}^{K}$ of $X_{i}$ are contained in distinct members $H_{r_{1}}$,
$\cdots \hat{x}_{r}$ of $H_{i}\left(\alpha_{1}, \ldots \ldots \alpha_{r} \in B_{i}\right)$.
To see (iii), let $i \leq i^{\prime}$ and $\alpha \in B_{i}$.
$K_{\alpha^{\prime}}=\bigcup_{a \in \pi_{i}^{-1}(x)}\left[\bigcap_{j=i}^{\infty} H_{\pi_{j}(a)}\right]=\bigcup_{\left.a \in\left(f_{i}^{i} \dot{\prime} o \pi_{i}\right)^{-1}(\alpha) \bigcap_{j=i}^{\infty} H_{j}(a)^{]}\right]}$
$=\bigcup_{a \in \pi_{i}^{-1}\left(\left(f_{i}^{i}\right)^{-1}(\alpha)\right)}\left[\bigcap_{j=i}^{\infty} H_{j} \pi_{j}(a)\right]$
$=\bigcup_{\beta \in\left(f_{i}^{i}\right)^{\prime}}{ }^{-1}(\alpha) \quad\left\{\bigcup_{a \in \pi_{i},(\beta)}\left[\bigcap_{j=i}^{\infty} H_{\Pi_{j}}(a)\right]\right\}$
Now for $j \leq j^{\prime} \pi_{j}(a)=f_{j}^{j} \circ \pi_{j \prime}(a)=f_{j}^{j \prime} \quad\left(\pi_{j},(a)\right)$ and, as before, $H_{\pi_{j}}($ a $)<H_{j}$ (a). So the sequence ${ }^{H} \pi_{j}$ (a) is decreasing so
$\bigcap_{j=i}^{\infty} H_{\pi_{j}(a)}=\bigcap_{j=i^{\prime}}^{\infty} H_{\Pi_{j}(a)}$.
So $K_{\alpha}=\bigcup_{\beta \in\left(f_{i}^{i}\right)^{\prime}}(\alpha)\left\{\bigcup_{a \in \pi_{i^{r}}(\beta)}\left[\bigcap_{j=i^{i}}^{\infty} \pi_{j}(a)\right]\right.$
$=U_{\beta \in\left(f_{i}^{i}\right)} I_{(\alpha)} K \beta^{\text {as }}$ required

Now for each i, put $F_{\alpha}=\overline{\mathrm{K}}, \alpha \in B_{i}$ and let $\bar{J}_{i}=$ $\left\{F_{\alpha}, \alpha \in B_{i}\right\}$.

Claim:-
(i) $\mathrm{F}_{\alpha} \subset \mathrm{H} \alpha$
(ii) ${\underset{y}{x}}_{i}$ is l.f. for each i.
(iii) For $i \leq j$ and $\alpha \in B_{i}, F_{\alpha}=\bigcup_{\beta \in\left(f_{i}^{j}\right)^{-1}(\alpha)} F_{\beta}$.
(i) follows because $H_{\alpha}$ is closed so $K_{\alpha}<H_{\alpha} \Rightarrow \bar{K}_{Q}$ с脑。
(ii) follows from the fact that $\left\{\mathrm{K}_{\alpha}, \chi_{\in} \mathrm{B}_{\mathrm{i}}\right\}$ I.f. implies $\left\{\bar{K}_{\alpha,} \alpha \in B_{i}\right\}$ is I.f.
(iii) follows from condition (iii) and (ii) of the previous claim (i.e. the same conditions as above but for the $\mathrm{K}_{\alpha}$ ).

Condition (iv) of the theorem has now been established (i) and (ii) follow immediately from the fact that $\mathrm{F}_{\alpha} \subset \mathrm{H}_{\alpha}, \alpha \in \mathrm{B}_{i}$ for any i. To see (iii) i.e. that ord $\Psi_{i} \mid C_{j} \leq n_{j}$, take first the case where $j \leq i$, thent the result follows from the fact that ord $\|_{i} \mid C_{j} \leq$ $n_{j}$ s since distinct members $F_{\alpha_{1}}, \ldots F_{\alpha_{r}}$ of $\mathcal{F}_{i}$ are contained in the distinct members $H_{\alpha_{1}} \ldots \ldots \mathcal{H}_{\gamma}$ of $\mathcal{H}_{i}$. Now take the case where $i<j$. The fact that for $\alpha \in B_{i}, F_{\alpha}=\bigcup_{\beta \in\left(f_{i}^{j}\right)^{-1}(\alpha)} F_{\beta} \subset \bigcup_{\beta \in\left(f_{i}^{j}\right)^{-1}(\alpha)} H_{\beta}$
together with the fact that $H \beta_{1} \neq H_{\beta_{2}}$ if $\beta_{1} \neq \beta_{2}$ imply that ord $\left(\mathcal{F}_{i} \mid C_{j}\right) \leq$ ord $H_{j} \mid C_{j} \leq n_{j}$ as required. Condition (v) of the theorem follows from condition (ii), (iii) and (iv) as follows:-

Let i, $j, k, \alpha_{1}, \alpha_{2}^{\prime}, \ldots ., \alpha_{k}$ be as in condition (v). Let $Z=\left(\bigcap_{r=1}^{k} F_{\alpha_{r}}\right) \cap C_{i} \cdot Z \subset F_{\alpha_{1}}$, so for any $p>j,\left\{F_{\alpha} \cap Z\right.$, $\left.\alpha \in\left(f_{j}^{p}\right)^{-1}\left(\alpha_{1}\right)\right\}=\mathcal{L}_{p}$ is a $1 . f$. closed cover of $Z^{\prime}$ with mesh $\mathscr{Z}_{\mathrm{p}} \leq 1 / p$. Furthermore $\tilde{z}_{\mathrm{m}}<\tilde{z}_{\mathrm{p}}$ if $\mathrm{p}<\mathrm{m}$ so if we can show that ord $\tilde{z}_{p} \leq \overline{n_{i}-k+1}$ it will follow from theorem 0.12 that $\operatorname{dim} Z \leq \overline{n_{i}-k+1}$. Let $q=\overline{n_{i}-k+1}+2$ and let $L_{\beta_{1}}=F_{\beta_{1} \cap Z, L_{\beta_{2}}}=F_{\beta_{2}} \cap Z, \ldots, L_{\beta_{q}}=F_{\beta_{q}} \cap Z_{i}$ be $q$ distinct members of $\mathscr{L}_{p}$ for some $p>j$ and $\beta_{1} \ldots . ., \beta_{q} \in\left(f_{j}^{p}\right)^{-1}\left(\alpha_{1}\right) . L_{\beta_{1} \cap L_{\beta_{2}}} \ldots . . \cap L_{\beta_{\alpha}} C$ $\left(\bigcap_{t=2}^{k} F_{\alpha_{t}}\right) \cap C_{i}$. Since $L_{\beta_{t}} \in F_{\beta_{t}} 1 \leq t \leq q$ and $F_{\alpha_{t}}=$ $\bigcup_{\beta \in\left(f_{j}^{p}\right)^{-1}\left(\alpha_{t}\right)} F_{\beta} 2 \leq t \leq k$, we have

$$
\begin{aligned}
& L_{\beta_{1}} \cap \ldots . \mathcal{L}_{\beta_{q}} \subset \cup \beta_{2}^{\prime} \in\left(f_{j}^{p}\right)^{-1}\left(\alpha_{2}\right) \\
& F_{\beta_{1}} \cap \ldots . \cap F_{\beta_{q}} \cap F_{\beta_{3}} \cap \ldots \cap F_{2}^{\prime} \\
& \beta_{3}^{\prime} \in\left(f_{j}^{p}\right)^{-1}\left(\alpha_{3}\right)
\end{aligned}
$$

$$
\beta_{k}^{\prime} \in\left(f_{j}^{p}\right)^{-1}\left(\alpha_{k}\right)
$$

$\beta_{1}, \beta_{2}, \ldots, \beta_{q} \in\left(f_{j}^{p}\right)^{-1}\left(\alpha_{1}\right)$ and $\beta^{\prime} t^{\in\left(f_{j}^{p}\right)^{-1}\left(\alpha_{t}\right) 2 \leq t \leq k}$
imply that $\beta_{1}, \beta_{2}, \ldots, \beta_{q}, \beta_{2}^{\prime}, \ldots, \beta_{k}^{\prime}$ are all
distinct (of course $\beta_{1}, \beta_{2}, \ldots . \beta_{q}$ are distinct.)
These are $q+k-1 \geq n_{i}+2$ which implies
$F_{\beta_{1}} \cap \ldots \cap F_{\beta_{q}} \cap F_{\beta^{\prime}} \cap_{k} \ldots . \cap F_{\beta_{k}^{\prime}} \cap C_{i} \subset H_{\beta_{1}} \cap \ldots . . \cap$ $H_{\beta_{q}} \cap H_{\beta^{\prime}} \cap \ldots \ldots \cdot H_{\beta}{ }_{k} \cap C_{i}=\phi$ since $\alpha \neq \beta \Rightarrow H_{\alpha} \neq H_{\beta}$ and ord $\mathcal{H}_{\mathrm{p}} \mid \mathrm{C}_{i} \leq \mathrm{n}_{\mathrm{i}}($ since $i \leq p)$.
So $L_{\beta_{1}} \cap \cdots \cap L_{\beta_{q}}=\phi$. This shows that ord $\mathscr{L}_{p} \leq$ $\frac{1}{n_{i}-\mathrm{k}+1}$ as required and this completes the proof of the

Lemma 2.6. (Nagami 1967).
If ( $\mathrm{X}, \ell$ ) is a metric space, $\mu$ - $\operatorname{dim}(X, \ell) \leq n$
iff for each $\varepsilon>0$, ヨa l.f. closed cover $₹ \sim$ X s.t.
(i) mesh $\mathcal{F}<\varepsilon$
(ii) ord $\because \leq n$.

Proof: This is obvious from lemma 1.2.

Lemma 2.7 (Nagami 1.967)
Let $(X, \ell)$ be a metric space and $C_{1}, C_{2}, \ldots$ be a sequence of closed subsets of $X$ with $\operatorname{dim} C_{i} \leq n_{i}$.
Let $\varepsilon>0$ be given. Then $\exists \mathrm{a}$ I.f. closed cover $\mathcal{F}=\left\{\mathrm{F}_{\alpha}, \alpha \epsilon_{\alpha}\right\}$ of X s.t.
(i) mesh $\mathscr{Y} \leq \varepsilon$
(ii) ord $\sigma \neq \mathrm{Ci} \leq \mathrm{n}_{\dot{\mathrm{i}}}$
(iii) if $\mathrm{F}_{\mathcal{\alpha}_{1}} \ldots \ldots \mathrm{~F}_{\mathrm{\alpha}}$ are t distinct members of政 then $\operatorname{dim}\left({ }_{r=1}^{t} \mathrm{~F}_{\alpha_{t}}\right) n \mathrm{Ci} \leq \overline{n_{i}-t+1}$ for any i, $t$.

Proof:
The lemma is a direct consequence of theorem 2.2.

Example 2.3 (Nagami and Roberts, 1967)
Construction of totally bounded metric spaces (Yn, $\mathrm{ln}_{\mathrm{n}}$ ) with $\mu$ - $\operatorname{dim}\left(Y_{n}, \ell n\right)=\left[\frac{n}{2}\right], \operatorname{dim} Y n \geq n-1$.

Let ( $X, \ell$ ) be a compact metric space with $\operatorname{dim} X=n$ for $n \geq 3$.

We want to construct a sequence Bi, $i=1,2,3, \ldots$
of closed sets of $X$ and a sequence Q $^{\text {a }} i=1,2, \ldots$
of 1.f. closed covers of $X$ satisfying.
(i) $\quad \operatorname{dim} B i \leq n-\left[\frac{n}{2}\right]-1$
(ii) $\operatorname{Bi} \cap B j=\phi$ for $i \neq j$.
(iii) mesh ${ }^{\circ} \mathrm{i} \leq 1 / i$
(iv) ord $\mathcal{F}_{i} \left\lvert\, x-B i \leq\left[\frac{n}{2}\right]\right.$.

The construction is by induction.
Assume Bi and $\mathrm{f}_{\mathrm{j}} \mathrm{i}$ have been constructed for $1 \leq i \leq k$.
Let $m=\left[\frac{n}{2}\right]+2$
From lemma 2.7 with $C_{1}, C_{2}, \ldots$. replaced by $X, B_{1}$, $B_{2}, \ldots . B_{k}, \Phi, \Phi \ldots . . \ldots$. and $\varepsilon={ }_{1 /(k+1)}$, we obtain a l.f. closed cover Yof X s.t.
(a) $\quad \operatorname{mesh}{ }^{\circ} \leq 1 /(k+1)$
(b) if $F_{1}, F_{2}, \ldots F_{t}$ are $t$ distinct members of $F$ for any positive integer $t$, then if $C$ is any of $X, B_{1}, B_{2}, \ldots .$. we have $\operatorname{dim}\left(\sum_{j=1}^{t} F j\right)_{n C} \leq \overline{\operatorname{dim} C-t+1}$ Let $B=\left\{x: \quad \operatorname{ord}_{x} y>m-2\right\}$
Then $B=V_{\gamma}^{\prime} F_{y}$ where $F_{\gamma}$ is an intersection of at least $m$ members of $\mathcal{F}$ and the collection $\left\{F_{y}, y \in \Gamma\right\}$ is l.f. (A collection consisting of arbitrary intersections of members of a l.f. eollection is l.f., the gist of the proof being that only a finite number of intersections can be formed from a finite number of members.) From condition (b) above, dim $F_{y} \leq n-m+1$. Since $F$ is closed and $\left\{F_{y}\right\}$ is l.f. we have from theorem 0.7 that $\operatorname{dim} B \leq n-m+1=n-\left[\frac{n}{2}\right]-1$. Again from condition (b) above we have that if $i \leq k$, then, putting $C=B i, \operatorname{dim} B \cap B i \leq \sqrt{\text { aim }} \mathrm{Bi}-\mathrm{m}+\mathrm{I}$
$\leq \overline{n-\left[\frac{n}{2}\right]-1-\left(\left[\frac{n}{2}\right]+2\right)+1}=\overline{n-2\left(\left[\frac{n}{2}\right]+1\right)}=-1$ so BABi=\$. From the construction of $B$, ord $X_{X} \leq m-2=\left[\frac{n}{2}\right]$ if $x \in$ $X-B$ which means ord $\left\lvert\, X-B \leq\left[\frac{n}{2}\right]\right.$. Thus if we let $\mathcal{F}_{k+1}=$ and $B k+1=B$ then conditions (i) to (iv) are satisfied. $B_{1}$ is constructed as above with $C_{1}$, $\mathrm{C}_{2}, \ldots$ replaced with $\mathrm{X}, \phi, \phi, \ldots .$.
Now let $Y n=X-\bigcup_{i=1}^{\infty} B i$.
Since dim Bi $\leq n-\left[\frac{n}{2}\right]-1 \leq n-1$, we have from. theorem 2.1 that $\operatorname{dim} Y n \geq n-1$.

Condition (iv) above implies that ord $\left.\frac{\mathcal{F}^{\prime} i}{}\right|_{Y n} \leq\left[\frac{n}{2}\right]$ for each i. Combining this with the fact that $\mathcal{F}_{i} \mid Y n$ is $1 . f$. with mesh $\leq 1$ i, we have from lemma 2.6 that $\mu$-dim $\left(Y n, \ell_{n}\right) \leq\left[\frac{n}{2}\right]$ ( $\ell_{n}$ is the inherited metric of $Y n$ ).

It follows from proposition l.l. that if $d$ is any of the dimension functions $d_{2}, d_{3}, d_{5}, d_{6}, d_{7}$ or $\mu$-dim, then $d(Y n, l n) \leq\left[\frac{n}{2}\right]$, and if $n$ is odd dim $\mathrm{Yn}=\mathrm{n}-1$. It is obvious that $\left(\mathrm{Yn}, E_{\mathrm{n}}\right)$ is totally bounded.

NOTE. If we start with $X=I^{n}$, then $\operatorname{dim} Y n=n-1$. This is because $\mu$ - dim (Yn, En) $\leq\left[\frac{n}{2}\right]$ implies Int $Y n\left(i n I^{n}\right)=\phi$, which inturn implies, by theorem 0.15 that dim $Y n \leq n-1$.

These examples show that $d_{2}, d_{3}, d_{5}, d_{6}, d_{7}$, and $\mu-$ dim $^{\prime}$ do not always coincide with dim. We next give an example to show that $d_{2}$ and $\mu$-dim and $d_{2}$ and $d_{3}$
do not always coincide.

Lemma 2.8
Let ( $\mathrm{X}, \ell$ ) be a compact metric space. Then for any positive integer m, ヨa collection (Cik, C'ik) l-k<m, iє $N$ of disjoint closed sets of (X, l ) s.t. if (Ck, C'k) $1 \leq k \leq m$ are any $m$ pairs of disjoint closed sets of ( $\mathrm{X}, \ell$ ), then $\exists i \varepsilon \mathrm{~N}$ s.t. CkCCik and C'k CC'ik for $1 \leq k \leq m$.

Proof: Let $\mathscr{U}$ i be a finite covering of ( $\mathrm{X}, \ell$ ) by open balls of radius i/i.

For each i $\varepsilon N$, $\exists$ posjtive integers $t_{i}$ and open sets Uijk, U'ijk $1 \leq j \leq t_{j}, l \leq k \leq m$ s.t. as $j$ varies, we obtain all possible m pairs (Uijl, U'ijl), (Uij2, U'ij2),..., (Uijm, U'i角m) s.t. Uijk, U'ijk are unions of members of $\mathscr{U}_{i}$ and Uijk $\cap U^{\prime} i \frac{j}{j} k=\phi$ for all $1 \leq k \leq m$.

Let $C$ sijk $=\{x \in X: \quad \ell(x, X-U i j k) \geq 1 / s\}$
and $C^{\prime}$ sijk $=\{x \varepsilon X: \ell(x, X-U ' i j k) \geq I / s\}$ for
$s^{\varepsilon} N$. Let (Cl, C'l),....., (Cm, C'm) be any $m$ pairs of disjoint closed sets of X. Because X is compact, $\exists \varepsilon>0$ s.t. $\ell\left(C k, C^{\prime} k\right)>E V k, l \leq k \leq m$. Choose i s.t. $1 / \mathrm{i}<\frac{1}{2} \varepsilon$. If for each $k$ we let Uk be the union of members of $\mathscr{C l}$ which intersect $C k$ and U'k be the union of members of $\mathscr{U}_{i}$ which intersect C'k, then Uk ПU'k = $\phi$. So for some $j$, Uk $=$ Uijk, U'k = U'ijk for $I \leq k \leq m$. So CkCUijk, C'kCU'ijk, $1 \leq k \leq m$. Again because $X$ is compact, $\ell(C k, X-U i j k)$ $>\delta>0$ and $\ell\left(C^{\prime} k, X-U^{\prime} i j k\right)>\delta>0$ for $1 \leq k \leq m$
for some $\delta$. Choose $s \in \mathbb{N}$ s.t.i/s< $\delta$.
Then CkcCsijk, C'k CC'sijk for $1 \leq k \leq m$.

So the collection (Csijk, C'sijk) $5, i \in \mathbb{N}, 1 \leq j \leq t_{i}$ $1 \leq k \leq m$ is the required collection (the tuples ( $5, i, j$ ) are countable.).

Lemma 2.9
If $C, C^{\prime}$ are disjoint closed sets of a completely normal topological space $X$ and $Z$, A are closed sets of $X$ s.t. $A \subset Z$ and $A$ separates $C \cap Z$ and $C^{\prime} \cap Z$ in 7, then ヨa closed set $A^{\prime}$ of $X$ s.t. A' separates C and $C^{\prime}$ in $X$ and $A^{i} \cap z \subset A$.

Proof. $Z-A=k u k '$ where $k, k^{\prime}$ are open sets of $Z$,
 $\bar{K}^{\prime} \cap \mathrm{C}=\Phi($ closures in X$)$. This, together with the fact that $X$ is completely normal implies that we can obtain open sets $G(K), G\left(K^{\prime}\right)$ of $X$ s.t. $G(K) \cap Z=K$, $G\left(K^{\prime}\right) \cap z=K^{\prime}, G(K) \cap G\left(K^{\prime}\right)=\phi, \overline{G(\xi) \cap C^{\prime}=\overline{G\left(K^{\prime}\right)} \cap C}$ $=\phi \cdot \exists$ disjoint open sets $H(C), H\left(C^{1}\right)$ of $X$ containing $C$ and $C^{\prime}$ respectively.

Put $U=G(K) U(H(C)-\overline{G(K)})$,

$$
U^{\prime}=G\left(K^{\prime}\right) U\left(H\left(C^{\prime}\right)-\overline{G(K)}\right)
$$

Then putting $A^{\prime}=X-\left(U u I^{\prime}\right)$, we see that $A^{\prime}$ is as required.

Def． 2.3
Let $C \dot{i}, i \varepsilon N$ be a sequence of subsets of a topological space $X$ ．Then liminf $C i$ is the set $\{x \in X$ ：for each nbhd $y$ of $x, \exists m \varepsilon \mathbb{N}$ s．t．$\quad i \geqslant m=>$ UnCi $\neq \phi\}$ ．

Limsup Ci is the set $\{x \in X$ ：for each nbhd $U$ of $x$ and each $j \in N, \exists i \geq j$ s．t．UnCik $\phi$ 。

Clearly，liminf Ci and limsup Ci are always closed sets of $X$ and liminf Ci Climsup Ci．

Lemma 2．10．
Let $X$ be a compact，normal topological space．If liminf Cif巾，and each Ci is connected，then limsup Ci is connected．

Proof．Let $X, C i$ be as above with $x \in$ liminf Ci and assume limsup $C i$ is not connected．Then limsup Ci is the union of disjoint，closed，non－empty sets E，F．Since limsup Ci is closed in $\mathbb{X}, \mathrm{E}, \mathrm{F}$ are closed in $X . \exists$ disjoint open sets $U, V$ of $X$ with EcU，FCV．W．L．G．assume $x \in U$ ．Then for some $m \varepsilon N$ ， $i \geq m \Rightarrow \operatorname{Cin} \| \neq \phi$ ．Let y\＆FCV．Then for $i \varepsilon N$ ，马ris．t． $\gamma_{i} \geq i, C r_{i} \cap V \neq \phi$（because y Elimsup Ci）．Then for $i \geq m$ ，we have $\mathrm{Cr}_{\mathrm{i}} \cap \mathrm{U} \neq \phi \neq \mathrm{Cr}_{i} \cap \mathrm{~V}$ ．Since $\mathrm{Cr}_{\mathrm{i}}$ is connected， $W i=C r i n[X-(U U V)] \neq \phi$ ．Let $x_{i}$ EWi．Then，since $X$－（UUV）is compact，the sequence $\left\{X_{i}\right\}$ has a convergent subsequence converging to say $z, z \varepsilon X-(U U V)$ ．But then zelimsup Ci contrary to the fact that limsup $\mathrm{Ci}=$ EUFcUuV．

For any integer $n, n \geq 4$, we construct a metric space $(X n, \ell n)$ with $d_{2}(X n, \ell n) \leq n-2, d_{3}(X n, \ell n)=\mu-$ $\operatorname{dim}(X n, \ell n)=n-1$, and $\operatorname{dim} X n=n$. This generalizes on the example given by Nagami and Roberts (Nagami and Roberts, 1967 pp 430) of a metric space ( $\mathrm{X}, \ell$ ) with $d_{2}(X, \ell)=2, d_{3}(X, \ell)=\mu-\operatorname{dim}(x, \ell)=3$, and $\operatorname{dim}(X, l)=4$. Note that the inequality $\operatorname{dim} X \leq$ $2 \mathrm{~d}_{2}(\mathrm{X}, \ell)$ implies that in our example, when $\mathrm{n}=4$ we must have $\mathrm{d}_{2}(\mathrm{Xn}, 2 \mathrm{n})=\mathrm{n}-2$. The main sets discussed are subsets of $I^{n}$, so when we talk of hyperplanes e.t.c. we shali mean their intersection with $I^{n}$. In addition, boundaries, closures, interiors e.t.e. of subsets of $I^{n}$ will be with reference to $I^{n}$. Boundaries, closures, interiors e.t.c. of subsets of I will be with reference tc I.

First we construct a metric space (Yn, $\sigma \mathrm{n}$ ) with $d_{2}(Y n, \sigma n) \leq n-2, \mu-\operatorname{dim}(Y n, \sigma n)=\operatorname{dim} Y n=n-1$. For a prime number $\pi, \pi \geq 5$, let $D(\pi)$ be the collection of overlapping intervals $\left\{\left[0, \frac{2}{\pi}\right),\left(\frac{\pi-2}{\pi}, 1\right],\left(\frac{2 k-1}{\pi}, \frac{2 k+2}{\pi}\right), k=1,2, \ldots \frac{\pi-3}{2}\right\}$

Let $\overline{\operatorname{G}}(\pi)$ be the collection of closures in $I$ of the intervals of $D(\pi)$.

Let $\zeta(\pi)=\left\{D_{1} \times D_{2} \times \ldots \times D_{n} ; D_{1}, D_{2}, \ldots D_{n} \mathscr{D}(\pi)\right\}$. $\xi(\pi)$ is an open cover of $I^{n}$.

From lemma 2.8, ヨa collection of disjoint pairs of clused sets of $I^{n}$ Ci.j, $1 \leq j \leq n-1$, i $£ N$ such that if (Cj, C'j) $1 \leq j \leq n-1$ are any $n-1$ pairs of disjoint closed sets of $I^{n}$ then for some $i, C j \subset C i j, C^{\prime} j \subset C ' i j 1 \leq j \leq n-1$.

Let $\pi i j, i=1,2,3, \ldots 1 \leq j \leq n-1$ be distinct prime numbers s.t. $\pi_{i j}>5$ and for each $i \max$ $\operatorname{mesh} \xi(\pi i j)<\min _{j}\left\{d\left(C i j, C^{\prime} i j\right) 1 \leq j \leq n-1\right\}$ where $d$ is the euclidean metric ( $I^{n}$ is compact so CijnC'ij $=\phi$

$$
\left.\Rightarrow d\left(C i j, C^{\prime} i j\right)>0\right) .
$$


Then Bij. separates $\mathrm{Ci}_{\mathrm{j}}$ and C'ij. Let $\mathrm{Bi}=\bigcap_{j=1}^{n-1} \mathrm{Bij}$.

Proposition 2.1. If $\mathrm{p}, \mathrm{q}$ are distinct positive prime numbers and $a, b$ are integers s.t. $1 \leq a \leq p-1$ and $1 \leq b \leq q-1$ then $a / p \neq b / q$.

Whenever we talk of $a / \pi_{i j}$ in the rest of this discussion, we shall have as $\left\{1,2, \ldots \pi_{i j-1\}}\right.$, unless otherwise stated.

Let $\xi^{\prime}$ (Tijij) be the collection of the closures of those members oif $\xi\left(\Pi_{i j}\right)$ which intersect with Cij. Let $\mathrm{Fij}=\mathrm{U} \quad \mathrm{E}$. Then Bij = Ddry Fij. Let $i$ E $\varepsilon{ }^{\prime}(\pi i j)$
be fixed (until after the proof of assertion 3).
Let Pi the collection of faces of members of $\xi^{\prime}(\pi i j)$ which faces intersect with the interior of $I^{n}$, i.e. faces of the form
$D_{1} x \ldots x\left\{\frac{a / \pi i j}{}\right\} \times \ldots x D n$ and $\operatorname{not} D_{1} \times \ldots x\{0\} \times \ldots$
 For a member $S$ of $P j$ where $S=D_{1} \times \ldots x D_{r-1} \times\left\{\frac{\left.a / \pi i_{j}\right\}}{}\right.$ $x . . . x$ Dn, we say $S$ has normal vector $e_{r}$ and write $N(S)=e_{r}\left(e_{1}=(1,0, \ldots .0) e_{2}=(0,1,0, \ldots, 0)\right.$ e.t.c.).

We note that BijC. $\bigcup_{S \varepsilon P_{j}} S \forall j, 1 \leq j \leq n-1$

Diagram 2.1


Proposition 2.2.
(i) If $x \in B_{i}$, then for any $j, 1 \leq j \leq n-1$, there is at least one and at most two integers $r, l \leq r \leq n$, s.t. $x$ is contained in a member of $P_{j}$ with normal vector $e_{r}$. Furthermore, if for some $j_{o}$ there are two integers $r$ s.t, $x$ is contained in a member of $P_{j}$ with normal vector $e_{r}$, then for any $j, j \neq j_{o}$, there is only one integer $r$ s.t. $x$ is contained in a member of $P_{j}$ with normal vector $e_{r}$.
(ii) $\exists \mathrm{n}-1$ distinct integers $r_{j}, 1 \leq j \leq n-1$ s.t. $x_{r_{j}}=a_{j} / \Pi_{i j}\left(\right.$ for $\left.\quad \% \in B_{i}\right)$.

Proof:
if $x \in S \in P_{j}$ and $N(S)=e_{v}$, then $x_{r}=a_{\text {/ }}$. Since
$B i, j<U S$ and $B i<B i j, 1 \leq j \leq n-1$, we have for each $S \in P_{j}$
$j$, that $X_{X \in S \in P_{j}}$ for some $S$ with $N(S)=e_{r_{j}}$ and $x_{r_{j}}=$ $a_{j / \pi i j}$ for some ${ }_{j}$. From proposition 1, $a_{j} \pi_{i j}$, $1 \leq j \leq n-1$ are distinct, and therefore $\gamma_{j}, I \leq j \leq n-1$ are distinct. This proves part (ii). If in addition for some $j_{0}$ we have two more integers ${ }_{j} j_{0}$ and $r_{0} j_{0}$ with $\gamma_{j_{0}}, r_{j_{0}}, Y_{j_{0}}$ distinct and $x \in S^{\prime} \in P_{j_{0}}$ with $N\left(S^{\prime}\right)=e_{j_{0}^{\prime}} \quad, \quad x \in S^{\prime \prime} \in P j_{0}$ with $N\left(S^{\prime \prime}\right)=e_{r_{0}^{\prime \prime}}$, then we would have $x_{\gamma_{j}}=a^{j_{0}} / \pi_{i j_{0}}, x_{\psi_{i}}=$ $a{ }^{\prime} j_{0} / \pi_{i j_{0}}$. Since $x$ has only $n$ coordinates, this would force, for some $i, j+j_{0}, Y_{j} \in\left\{r j_{0}, r_{j}\right\}$ and $a / \pi_{i j} \in\left\{a_{j_{0}} / \pi_{i, j}, a_{j_{0}}^{\prime} / \pi_{j}\right\}$ which is impossible in view of prop. 2.1. Similarly, we cannot have two integers i, $1 \leq j \leq n-1$ for each of which there are two integers r set. xeSep.i with $\mathbb{N}(S)=e_{r}$ for some $S$.

Assertion 1. If $k \neq i$, then $\mathrm{Bk} \cap \mathrm{Bi}=\mathrm{p}$.
This follows immediately from prop. 2.2. (ii) and prop. 2.1. since $x \in B i \cap B k$ would imply $\square n-1$ integers $r_{1}, \ldots . r_{n-1}$ and $n-1$ integers $r_{1}^{1} \ldots . r_{n-1}^{1}$ set. $x_{r_{j}}=a_{j} / \pi_{i j} 1 \leq i \leq n-1$ and $x_{r_{j}}=a_{j}^{\prime} / \pi_{j j} 1 \leq i \leq n-1$.

## Assertion 2

(i) Bi does not meet the n-2-dimensional edge of $I^{n}$ and (ii) Bi meets the surface of $I^{n}$ at only finitely many points.

To see this, we note that prop. 2.2. (ii) implies Bi is contained in a union of line segments of the form $\left\{y \in I^{n}: y_{\gamma_{j}}=a_{j} / W_{j j}, 1 \leq j \leq n-1\right\}$ with $r_{j}, 1 \leq j \leq n-1$
distinct. Since $0<a_{j} / \pi_{i j}<I$, any such segment meets the surface of $I^{n}$ at only two points. There are only a finite number of them for each i, hence the assertion.

Assertion 3
(i) Bi is a finite union of line segments of the form $\left\{y \in I^{n}: y_{r_{j}}=a_{j} \pi_{i,} \quad 1 \leq j \leq n-1, y_{r_{0}} \in\left[\frac{a}{\pi_{i j}} \quad, \frac{b}{\pi_{i j} j^{\prime \prime}}\right]\right\}$ $r_{j}, 0 \leq j \leq n-1$ distinct, $\left.a \in\left\{0,1, \ldots \Pi_{i j}\right\}\right\}$, $b \in\left\{0, \ldots, \pi_{i} j^{\prime \prime}\right\}$.
(ii) Bi is the disjoint union of a finite number of simple closed curves and a finite number of simple $\operatorname{arcs}(i . e . B i$ does not contain something like this $\perp$ ), the curves and arcs being closed setss of $I^{n}$.

We first give an intuitive argument. If $x \in B i$, then, with the exception of at most one $j, x$ is not contained in a 'corner' of $\mathrm{B}_{\mathrm{ij}}$, i.e. on some nbhd of $x, B_{i j}$ coincides with a hyperplane. Furthermore, when $x$ is contained in a 'corner' of Bij it must be a 'simple corner', i.e. one that involves the intersection of only two faces. This is because for each is, at least one coordinate of $x$ is determined at a value of the form $\frac{a_{j}}{i j}$ and to be contained in a 'corner' of $B i_{i}$ means at least two coordinates of $x$ are determined at

Figure 2.3 .
(a)

$(b)$

(c)

(d)


$$
S_{0} \in Q_{j_{0}}^{\prime \prime}, S \in Q_{j 0}^{\prime}
$$

values of the form $\frac{a j}{\pi i j}$ while to be contained in a 'complex corner' means at least three coordinates of $x$ are determined at values of the form $\frac{a j}{\pi j \omega}$. The claim now follows from proposition 2.1. Given also that the intervals of $D_{1}(\pi i j$ ) are either a positive distance apart or overlapping, it follows that when $x$ is at a 'corner' of Bis', then on some nbhd of $x$ Bij coincides with the union of two half-hyperplanes $H_{1}, H_{2}$ intersecting along their edges both of which edges contain $x$. (see fig. 2.3a). Thus at worst we could have a situation where on some nbhd of $\mathrm{x}, \mathrm{Bi}$ coincides with the intersection of $\mathrm{n}-1$ sets, $n-2$ of them being hyperplanes and the $n-l$ th being a union of two half--hyperplanes intersecting along their edges, both edges containing $x$. The. hyperplanes and half-hyperplanes furthermore, have distinct normal vectors. In this case Bi coincides, on the nbhd of $x$, with an arc havirg a corner at $x$. Otherwise Bi coincides on some nbhc of $x$ with the intersection of $n-1$ hyperplanes hasing distinct normal vectors in which case Bi colncides, on the nbhd, with a line segment. This shows that Bi cannot contain something like this $\mathcal{L}$. That Bi is a finite union of line segments is intuitively clear. The assertion then follows.

We now give the detailed proof.
First we show that Bi is a finite maion of line segments. From prop 2.2. (ii), xG日i implies $x$ is contained in a line segment of the form $\left\{y \in I^{n}\right.$ :
$\left.y_{r_{j}}=a_{j} / r_{j}, 1 \leq j \leq n-1\right\}$ with $\gamma_{j}, 1 \leq j \leq n-1$ distinct.
Let $r_{0}^{*}$ be the unique integer sot. $1 \leq r_{0} \leq n$,

$$
r_{c} \notin\left\{\begin{array}{r}
r_{j}, 1 \leq j \leq n-1
\end{array}\right\} .
$$

Let $J$ be the set $\left\{a \in I:\left(x_{1}, x_{2}, \ldots x_{r_{0}-1}, a_{2} \ldots . . x_{n}\right)\right.$ $\left.\in B_{i}\right\}$. Then $x_{r_{-}} \in J$. Let $J$ ' be the component of $J$ containing $x_{r_{o}}$. Then $J^{\prime}$ is an interval (from a property of $R$ ). Let $b=\inf J^{\prime}$ and $b^{\prime}=\sup J^{\prime}$. $J '$ is closed in $J$ (being a component of $J$ ) and therefore in I since $J$ is closed in $I$. So $b, b^{\prime} \in J^{\prime}$. Thus $\left(x_{1}, x_{2}, \ldots x_{r_{0}-I}, b, \ldots \ldots . x_{n}\right)$ is contained in Bi and for any $\epsilon>0, \exists 0<\delta<\epsilon$ s.t. $\quad\left(x_{1}, x_{2}, \ldots x_{r_{0}-1}\right.$ $\left.b^{\prime}+\delta, \ldots x_{n}\right) \not \subset B i$. Since. $B i=\bigcap_{j=1}^{1} B i j^{\prime}$, then for some
$j_{1},\left(x_{1}, x_{2}, \ldots \ldots x_{r_{0}-1}, b^{\prime}, \ldots \ldots x_{n}\right) \in \operatorname{Bij}_{1}$ and for any $\epsilon>0, \exists 0<\delta<\epsilon$, s.t.
$\left(x_{1}, x_{2}, \ldots x_{r_{-1}-1}, b^{\prime}+\delta, \ldots \ldots, x_{n}\right)$ \& Bi j $j_{1}$. The same
 makes it clear that $b^{\prime}=\frac{a^{\prime}}{\pi i j_{1}}$ for some $a^{\prime} \in\{0,1, \ldots$ $\left.\pi_{i j_{1}}\right\}$. Similarly, $b=\frac{a}{\pi i j_{2}}$, a $\in\left\{0, \ldots, \pi_{i j_{2}}\right\}$. Since J'cJ, the line segment $\left\{x_{1}\right\} \times \ldots \ldots \times\left\{x_{r_{0}-1}\right\} \times$ $\left[\frac{a}{\pi i j_{2}}, \frac{a^{r}}{\pi i j_{1}}\right] \times \ldots x\left\{x_{n}\right\}$ is contained in Bi (and contains $x$ ). Thus Bi is a union of such line segments which are finite in number (recall $x_{r_{j}}=\alpha_{j}^{\prime} r_{i}^{\prime}, r_{j} \neq r_{0}$ and $a_{j}, a, a^{\prime} \in\left\{0, \ldots . \pi_{i j^{\prime}}\right\}$ for the appropriate $\left.j^{\prime}\right)$. This proves part (i).

We next prove the following:-

Let $x \in B i$, then:-

Proposition 2．3：Either（i）$\#$ a nh $U$ of $x$ set． $B_{i} \cap U C L=\bigcap_{j=1} H_{j}$ where $H_{j}$ is a hyperplane of the form $\left\{y \in I^{n}: y_{r_{j}}=x_{r_{j}}=a_{j} / \Pi_{i j}\right\}$ or（ii）$⿻ コ 一 𠃌$ abed $U$ of $x$ and an integer $j_{0}, l \leq j_{0} \leq n-1 ~ s . t$.
$B_{i} \cap U C L=\left[\left(\underset{\substack{n_{j}=1 \\ j \neq j_{0}}}{ } H_{j}\right) \cap H_{j}^{\prime}\right] \cup\left[\left(\underset{\substack{j_{j=1}^{n} j+j_{0}}}{n} H_{j}\right) \cap H_{j_{0}^{\prime \prime}}\right]$ where $H_{j}$ is a hyperplane of the form $\left\{y \in I^{n}: y_{r_{j}}=x_{r_{j}}=\right.$ $\left.a_{j} / \pi_{i j}\right\} j \neq j_{O}, H_{j}^{\prime}$ is a half－hyperplane of the form $\left\{y \in I^{n}: y_{j_{O}}^{\prime}=x_{r_{j}}=a_{j_{O}}^{\prime} / \pi_{i j_{O}}, y_{r_{j_{O}^{\prime}}^{\prime \prime}} \leq a_{j_{O}^{\prime}}^{\prime \prime} / \pi_{i j_{O}}=\right.$ $\left.\mathrm{xr}_{j_{0}^{\prime \prime}}^{\prime}\right\}\left(\right.$ or $\left.y_{\mathrm{J}_{0}^{\prime \prime}} \geq a_{j_{0}^{\prime}}^{\prime} / \pi_{i j_{0}}=x_{r_{j_{0}^{\prime}}^{\prime \prime}}\right)$ ，and $H_{j_{0}}^{\prime \prime}$ is a half hyperplane of the form $\left\{y \in I n: y_{r_{j_{0}}^{\prime \prime}}=x_{r_{j}^{\prime}}^{\prime \prime}=a_{j_{0}}^{\prime \prime} / \pi_{i j_{0}}\right.$ ， $\left.y_{r_{j}}^{\prime} \leq a_{j_{O}}^{\prime} / \pi_{i j_{O}}=x_{r_{j_{O}^{\prime}}^{\prime}}\right\}\left(\operatorname{or} y_{r_{j_{O}}^{\prime}} \geq a_{j_{O}}^{\prime} / \pi_{i j_{O}}=x_{r_{j_{O}}^{\prime}}\right)$. We see that in the first case，because $a_{j} / \pi_{i j}$ ， and therefore $x_{r_{j}}$ ，and therefore $r_{j, ~} 1 \leq j \leq n-1$ are distinct（prop．2．1），L is a line segment containing $x$ while in the second case，for similar reasons，L is an arc containing $x$ with a corner at $x$（the union of two line segments ending at x）．This together with part（i）of assertion 3 gives us part（ii）of assertion 3.

We divide the argument into two cases（in view of prop．2．2．）．

Case 1．For all $j, 1 \leq j \leq n-1, \exists$ one and only one $r_{j}$ st．$x \in S \in P_{j}$ with $N(S)=e_{r_{j}}(f i g .2 .3 \mathrm{~b})$ Fix $j$ ．Let．$Q_{j}=\left\{S \in P_{j}: x \in S\right\}$ ．Then，for $S \in Q_{j}$ ， since $\mathbb{N}(S)=e_{r_{j}}$ ，we have $S=D_{1} x \ldots . . . x D r_{j-1} x$ $\left\{a / \pi_{i j}\right\} x \ldots . . . x D n, D_{r} \subset \bar{\phi}\left(\pi_{j j}\right)$ ．Since $\mathbb{E} \in S$ we have $a / \pi_{i j}=x_{r_{j}}$.
$\operatorname{Thus} \bigcup_{S \in Q_{j}} S C H_{j}=\left\{y \in I^{n}: y_{r_{j}}=x_{r_{j}}=a j / \pi_{i j}\right\}$ (for some
maj). The set $\bigcup_{S \in P_{j}-Q_{j}} S$ is closed so $\exists$ a nod $U_{j}$ of $x$
s.t. $\left(\underset{S \in P_{j}}{\bigcup} S\right) \cap U_{j} \subset \underset{S \in Q_{j}}{\bigcup} S$. Since $B_{i j} \subset \underset{S \in P_{j}}{U} S$,
$B_{i j} \cap U_{j} \subset\left(\underset{S \in P}{ } \bigcup_{j} S\right)_{n} U_{j}^{C} \underset{S \in Q_{j}}{\bigcup_{n-1}} S \subset H_{j}$
Now unfix $j$ and let $U=\bigcap_{j=1}^{n-1} U_{j}$.
Then $B_{i} \cap U C\left(n_{j=1}^{n-1} B_{i j}\right) \cap U=n_{j=1}^{n-1}\left(B_{i j} \cap U\right) \subset_{i=1}^{n-1} H_{j}$ as required.

Case $2 \cdot J i_{0}, I \leq j_{0} \leq n$ and integers $r_{j_{0}}^{\prime}, r_{j_{0}}^{\prime \prime} l \leq r_{j_{0}}^{\prime}<r_{j_{0}}^{\prime \prime} \leq n$
set. $x \in S^{\prime} \in P_{j_{0}}$ and $N\left(S^{\prime}\right)=e_{r_{j}}^{\prime}$ for some $S^{\prime} ; x \in S^{\prime \prime P} j_{0}$
and $N\left(S^{\prime \prime}\right)=e_{r_{j}^{\prime \prime}}$ for some $S^{\prime \prime}$. Define $Q_{j}$ as in case 1 .
Then from prop. 2.2., for each $j, j \neq j_{0}, \exists r_{j}$ st. $S \in Q_{j} \Rightarrow$
$\mathbb{N}(S)=e_{r_{j}}$. As in case 1 , we have $\underset{S E Q_{j}}{ } S \in H_{j}=\left\{y \in I^{n}\right.$ :
$\left.y_{r_{j}}=x_{r_{j}}=a j / \pi_{i j}\right\}$ for $j \neq j_{0}$. Again from Prop. 2.2.,
$S \in Q_{j_{0}} \Rightarrow \operatorname{IN}(S)=E_{r_{j}}$ or $N(S)=E_{r_{j}^{\prime \prime}}$
Let $Q^{\prime}{ }_{j_{O}}=\left\{S \in Q_{j_{O}}: N(S)=E_{\left.r_{j_{O}}^{\prime}\right\}}\right\}, Q^{\prime \prime}{ }_{j_{O}}=\left\{S \in Q_{j_{0}}: \mathbb{N}(S)=\right.$ $E_{\mathrm{j}_{0}^{\prime \prime}} ?$
 we shall say $x$ is within $S$ if $x_{r} \in \operatorname{lnt} D_{r}$ for $r \neq r_{o}$ where Int $D_{r}$ is the interior of $D_{r}$ in $I$. Thus $x$ is within S iff $x \in I n t ~ S$ where $\operatorname{Int} S$ is the interior of $S$ in the hyperplane containing $S$.

Proposition 2.4.
If $x$ is not within $S$ for any $S$ in $Q^{\prime} j_{0}$, then
$\bigcup_{S \in Q}{ }_{j_{0}} S C\left\{y \in I^{n}: y_{r_{j_{0}}^{\prime \prime}} \geq x_{r_{j_{O}}^{\prime \prime}}=a^{\prime \prime}{ }_{j_{0}} / \pi_{i j_{0}}\right\}$
Likewise, if $x$ is not within $S$ for any $S$ in $Q_{j}^{\prime \prime}$, then $\underset{S \in Q_{j_{0}^{\prime}}^{\prime}}{\cup} S c\left\{y \in I^{n}: y_{r_{j_{0}}^{\prime}} \leq \mathbb{x}_{r_{j_{0}}^{\prime}}=a_{j_{0}}^{\prime} / \pi_{i j_{0}}\right\}$ or $\underset{S \in Q_{j_{0}}^{\prime \prime}}{U S \subset\left\{y \in I^{n}: y_{r_{j_{O}}^{\prime}} \geq x_{r_{j_{O}}^{\prime}}=a_{j_{O}}^{\prime} / \pi_{i j_{O}}\right\} .}$

For, suppose $x$ is not within $S$ for some $S$ in $Q_{j_{0}}^{1}$.
Then $S=D_{1} x \ldots \times D_{r_{j_{0}}^{\prime}-1} \times\left\{x_{r_{j}^{\prime}}\right\} x \ldots . . . D_{n}$,
$D_{r} \in d\left(\pi_{i j_{0}}\right)$ with $a / \pi_{i j_{0}}=x_{r_{1}}=\inf D_{r_{1}}$ or $a / \pi_{i j_{0}}=$
$x_{r_{1}}=\sup D_{r_{1}}$ for some $r_{1}, 1 \leq r_{1} \leq n, r_{1} \neq r_{j_{0}}^{\prime}$. But this implies $X E S^{\prime} \in Q_{j_{0}}$ with $\mathbb{N}\left(S^{\prime}\right)=e_{r_{1}}$ and since $r_{1} \neq$ $r_{j_{0}}$. we must infect have $r_{1}=r_{j}^{\prime \prime}$ (see a condition above on $Q_{j_{o}}$ ). Thus either $S c\left\{y \in I^{n}: y_{r_{j}^{\prime \prime}} \leq x_{r_{j}^{\prime \prime}}\right.$ $\left.=a_{j_{0}}^{\prime \prime} / \pi_{i j_{0}}\right\}^{o}$ or $\operatorname{sc}\left\{y \in I^{n}: y_{r_{j o}^{\prime \prime}} \geqslant x_{\left.r_{\tilde{j}_{0}^{\prime \prime}}=a_{j_{0}}^{k} / j_{j_{0}}\right\} \text {. Suppose }}\right.$ now that $x$ is not within $S$ for any $S$ in $Q_{j_{0}}^{\prime}$. If


$D\left(\pi_{i j_{0}}\right)$. But the description of intervals in $D\left(\pi_{j j_{0}}\right)$ precludes this. We must therefore have $\underset{S \in Q_{j_{0}}^{\prime}}{ } S C\left\{y \in I^{n}: y_{\mathbb{P}_{j_{0}}} \leq x_{r_{j_{0}^{\prime \prime}}}\right\}$ or $\bigcup_{S \in Q_{j_{0}}} \operatorname{Sc}\left\{y \in I^{n}: y_{r_{j_{0}}^{\prime \prime}} \geq x_{r_{j_{0}^{\prime \prime}}}\right\}$.

The second part of proposition 2.4 is proved in a similar manner.

We now divide case two into four situations.
Situation 1: $x$ is not within $S$ for any is in $Q_{j_{0}}^{\prime}$ and $x$ is not within $S$ for any $S$ in $Q_{j_{0}}^{\prime}$ (fig. 2.3c). Of four possible cases here, we treat only one, the rest
being similar. So we assume $\bigcup_{S \in Q_{j}^{2}}^{j_{0}} S \in\left\{y \in I^{n}: y_{r_{j_{0}^{\prime \prime}}^{\prime \prime} \leq}\right.$ $\left.x_{r_{j}^{\prime \prime}}=a_{j_{0}^{\prime \prime}} / \pi_{i j j_{0}}\right\}$ and $\bigcup_{S \in Q_{j}^{\prime \prime}} S \in\left\{y \in I^{n}: y_{r_{0}^{\prime \prime}} \leq x_{r_{0}^{\prime}}=a_{j_{0}}^{\prime} / \pi_{i j_{O}}\right\}$.

Te have, as in case 1 , that $\bigcup_{S \in Q} \quad S \in\left\{y \in I^{n}: y_{X_{j}^{\prime}}^{\prime}=x_{r_{0}^{\prime}}\right.$ $\left.=a_{j}^{\prime} / \pi_{i, j_{o}}\right\}$, and $\underset{S \in Q_{j_{0}}^{\prime \prime}}{U} S \subset\left\{y \in I^{n}: y_{r_{j}^{\prime \prime}}^{o}=x_{r_{j_{0}^{\prime \prime}}^{\prime \prime}}=a_{j}^{\prime \prime} / \pi_{i j}\right\}$.

Do if we let $\mathrm{H}_{j_{0}}^{\prime}=\left\{y \in I^{n}: y_{r_{j_{O}}^{\prime}}=x_{r_{0}^{\prime}}=\hat{j}_{0}^{\prime} / \pi_{i . j_{O}}, y_{r_{j_{0}^{\prime \prime}}^{\prime \prime} \leq}\right.$ $\left.x_{r_{j}^{\prime \prime}}=a_{j}^{\prime \prime} / \pi_{i j_{O}}\right\}$ and $H_{j_{0}^{\prime}}^{\prime \prime}=\left\{y \in I^{n}: y_{r_{j_{0}^{\prime \prime}}}=x_{r_{j}^{\prime \prime}}=a_{j_{0}^{\prime \prime}}^{\prime} / \pi_{i j_{0}}, y_{r_{j}^{\prime}} \leq x_{r}\right.$ we have $\bigcup_{S \in Q_{j_{0}}} S \subset H_{j_{0}}^{\prime} U_{j_{O}}^{\prime \prime}$. As before, $\exists$ a nhl $U_{j o}$ of $x$ sot. $B_{i j_{0}} \cap U_{j_{0}} \subset U_{S \in Q_{j o}}^{U} S$. If we let $U=\bigcap_{j=1}^{n} U_{j}$ ( $U_{j}, H_{j}, j \neq j_{o}$ have been treated earlier) then we end up with the situation in prop. 2.3 (ii).

Situation 2: (fig 2.3d) $x$ is not within $S$ for any $S$ in $Q_{j_{0}}^{\prime}$ and $x$ is within $S_{o}$ for some $S_{O}$ in $Q_{j_{0}}^{\prime \prime}$. Again $j \neq j_{0}$ is treated as in case 1 so we have $U_{j}, H_{j}, r_{j}$ satisfying the same conditions as in case 1. For some $E_{O} \in \xi^{\prime}\left(\eta_{i j_{0}}\right), S_{O}$ is a face of $\mathrm{E}_{\mathrm{O}}$ so we have $\mathrm{E}_{\mathrm{O}}$
 $x\left\{x_{r_{j_{0}^{\prime \prime}}}\right\} x \ldots . . \operatorname{xDn}$ with $x_{r_{j}^{\prime}}=a_{j_{0}^{\prime \prime}} / \pi_{i j_{0}}$. Since $x_{0}^{j_{0}}$ within $S_{o}, x_{r} \in \operatorname{Int} D_{r}$ if $r \neq r_{j_{0}}^{\prime \prime}$. Either $x_{r_{j}^{\prime \prime}}=\inf$ $D_{r_{j}^{\prime \prime}}$ or $x_{r_{j_{O}^{\prime \prime}}^{\prime \prime}}=\sup D_{r_{j_{O}^{\prime}}^{\prime \prime}}$. We consider only the case where $x_{r_{j_{0}}^{\prime}}=\sup D_{r_{j_{0}}^{\prime \prime}}$, the other case being similar. Then $E_{0}=D_{1} x \ldots D_{r_{j}^{\prime \prime}-1} x\left[x_{r_{j}^{\prime \prime}}-3 / \sigma_{j_{j}} j_{o}, x_{r_{j_{0}^{\prime \prime}}}\right] x \ldots x D n$. From prop.2.4 and the assumption of situation 2, we either have $\bigcup_{S \in Q_{j_{0}^{\prime}}^{\prime}} S c\left\{y \in I^{n}: y_{r_{j}^{\prime \prime}} \leq x_{r_{0}^{\prime \prime}}\right\}_{0}$ or $\bigcup_{S \in Q_{j_{0}}^{1}} S c\left\{y \in I^{n}\right.$ :
$y_{r_{j}^{\prime \prime}} \geq x_{r_{j_{0}^{\prime \prime}}^{\prime}}$. The latter inclusion implies that $x_{x_{j_{0}^{\prime \prime}}^{\prime \prime}}=$ inf
$D$ for some $D \in \mathcal{d}\left(\Pi_{i} j_{0}\right)$ (recall $x \in \bigcup_{S \in Q_{j}^{\prime}} S$ and $\left.r_{j_{0}}^{\prime} \neq r_{j_{0}^{\prime \prime}}^{\prime \prime}\right)$ but we already have $x_{r_{j o}^{\prime \prime}}=\sup { }_{D_{r_{0}^{\prime \prime}}}^{S_{j o}^{\prime}}{ }_{j_{0}}$ and we have seen earlier that this cannot happen. So $\bigcup S \in\left\{y \in I^{n}\right.$ : $\Delta \in Q_{j}{ }_{0}$
$\left.y_{r_{j}^{\prime \prime}} \leq x_{r_{j}^{\prime \prime}}\right\}$. Let $U^{\prime}=\operatorname{Int} D_{1} x$ Int $D_{2} x \ldots x^{\prime} \ldots \operatorname{Int} D_{r_{j}^{\prime \prime}}-1$
$x\left(x_{r_{j}^{\prime \prime}}-3 / \pi_{i j_{0}}, 1\right] x \ldots . . . x$ Int in. Then $U^{\prime}$ is a nbhi of
 Thus $\left(\left\{y \in I^{n}: y_{r_{j}^{\prime \prime}} \leq x_{r_{j}^{\prime \prime}}\right\}_{0}^{O} n_{i j_{0}}\right) \cap U^{\prime} \subset S_{O}$. Since $\underset{S \in Q_{j_{O}^{\prime}}^{\prime}}{U} S \subset$ $\left\{y \in I^{n}: y_{r_{j}^{\prime \prime}} \leq x_{r_{j}^{\prime \prime}}\right\}_{0}$, we have $\left[\left(\underset{S \in Q_{j}^{\prime}}{U} S\right)_{O} B_{i j_{O}}\right] \cap U^{\prime} \subset S_{O}$. As in case $1, \bigcup_{S \in Q_{j_{0}^{\prime \prime}}^{\prime \prime}} S \subset\left\{y \in I^{n}: y_{r_{j}^{\prime \prime}}=x_{r_{j}^{\prime \prime}}\right\}$. Again as in case 1 ,
 $U^{\prime}$. Then $B_{i j} n U_{j} \in \underset{S \in Q_{j}^{\prime \prime}}{\cup} S \in\left\{y \in I^{n}: y_{r_{j}^{\prime \prime}}=x_{j_{0}}=a_{j_{0}}^{\prime \prime \prime} / \pi_{j_{0}^{\prime} j_{0}}\right\}$ Put $H_{j_{O}}=\left\{y \in I^{n}: y_{r_{-1}^{\prime \prime}}=x_{r_{0}^{\prime \prime}}=a_{j_{O}}^{\prime \prime} / \pi_{i j}\right\}_{o}$ Let $r_{j_{O}}=r_{j_{0}}^{\prime \prime}$. Then with $U=\bigcap_{j=1} U_{j}$, we have a situation as in prop. 2.3.(i).

Situation 3. $x$ is not within $S$ for any $S$ in $Q_{j_{0}^{\prime}}^{\prime}$ and $x$ is within $S_{o}$ for some $S_{o}$ in $Q_{j_{0}}^{\prime}$. This situation is similar to situation 2 .

Situation 4. (fig 2.3a)
$x$ is within $S^{\prime}$ for some $S^{\prime}$ in $Q_{j}^{\prime}$ and $x$ is within $S^{\prime \prime}$ for some $S^{\prime \prime}$ in $Q_{j_{0}^{\prime}}^{\prime \prime}$

For some $E^{\prime}, E^{\prime \prime} \in \xi^{\prime}\left(\Pi_{i j_{0}}\right)$, $S^{\prime}$ is a face of $E^{\prime}$ and $S^{\prime \prime}$ is a face of $E^{\prime \prime}$. We have $E^{\prime}=D_{1}^{\prime} \times \ldots . . D^{\prime} n, E^{\prime \prime}=$


$=a_{j_{0}}^{\prime} / \pi_{i j_{0}}, x_{r_{j_{0}}^{\prime \prime}}=a_{j_{0}}^{\prime \prime} / \pi_{i j_{0}}, x_{r} \in \operatorname{Int} D_{r}^{\prime} \quad$ if $r \neq r_{j_{0}}^{\prime}$,
and $x_{r} \in \operatorname{Int} D_{r}^{\prime \prime}$ if $r \neq r_{j_{j}}^{\prime \prime}$. Furthermore, $x_{r_{j}^{\prime}} \in\{s u p$

four possible cases, we consider only one, i.e. $\mathrm{x}_{\mathrm{r}_{j_{0}}}=$ $\inf D_{r_{j_{0}}^{\prime}}^{\prime}$ and $x_{r_{j_{0}}^{\prime \prime}}=\sup D_{r_{j_{0}}^{\prime \prime}}^{\prime \prime}$.
Then $E^{\prime}=D_{1}^{1} x \ldots D^{\prime}{ }_{r_{j_{0}}^{\prime}-1} \times\left[x_{r_{j_{0}}^{\prime}}, x_{r_{j_{0}}}+3 / \pi_{i j_{0}}\right] x$

$$
\mathrm{E}^{\prime \prime}=\mathrm{D}_{1}^{\prime \prime x} \ldots . . \mathrm{D}^{\prime \prime}{ }_{r_{j_{0}}^{\prime \prime}-1} \times\left[x_{r_{j_{0}}^{\prime \prime}}-3 / \pi_{i j_{0}}, x_{r_{j_{0}}^{\prime \prime}}\right] x \ldots x D^{\prime \prime}
$$

Let $U^{\prime}=\operatorname{Int} D_{i}^{\prime} x \ldots \ldots x \operatorname{Int} D^{\prime} r_{j_{0}}^{\prime}{ }^{-1} \times\left[a, x_{r_{j_{0}}}+3 / \pi_{i j_{o}}\right) x$ .x.tnt.D'n. and $U^{\prime \prime}=$ Int $D_{1}^{\prime \prime} x \ldots . . . x$ Int $D^{\prime \prime}{ }_{r_{j_{0}^{\prime}}^{\prime}-1} x$

and $U_{O}=U^{\prime} \cap U^{\prime \prime}$. Then $U_{O}$ is a nbhd of $x$ set. $U_{0} n$

As in case 1, $\underset{S \in Q \mathcal{j}_{0}^{\prime}}{U} S \in\left\{y \in I^{n}: y_{r_{j_{O}}^{\prime}}=x_{\left.r_{j_{0}}^{\prime}\right\}}\right.$.
$\operatorname{SEQ}_{j_{0}^{\prime \prime}} \operatorname{Sc}\left\{y \in I^{n}: y_{r_{j_{0}}^{\prime \prime}}=x_{\left.r_{j_{0}^{\prime \prime}}^{\prime \prime}\right\}}\right.$
whence $\left(\bigcup_{S \in Q_{j}^{\prime}} S\right) \cap U_{o} C S^{\prime}$ and $\left(\underset{S \in Q_{j}^{\prime \prime}}{ } S\right) n U_{o} c S^{\prime \prime}$. As
in case 1 , obtain a nbhd $V$ of $\boldsymbol{q}^{2} . t . \quad B_{i j_{o}} \cap V \underset{S \in Q_{j}}{U} S$.
Let $U_{j_{0}}=U_{o} n V$. Then (*) $B_{i j_{0}} \cap U_{j_{0}} \subset S^{\prime} \cup S^{\prime \prime} \subset\left\{\in \in I^{n}: Q_{j}\right.$
$\left.y_{r_{j_{0}}^{\prime}}=x_{r_{j_{0}}^{\prime}}=a_{j_{0}}^{\prime} / \pi_{i j}\right\} \cup \cup\left\{y \in I^{n}: y_{r_{j_{0}}^{\prime \prime}}=x_{r_{j_{0}}^{\prime \prime}}=a_{j_{0}}^{\prime \prime} / \pi_{i j}\right\}$.
As in a previous case (because $U_{j_{0}}^{c} U^{\prime}$ ) we have $\left\{y \in I^{n}\right.$ :

Similarly, $\left\{y \in I^{n}: y_{r^{\prime \prime}}<x_{\mathrm{r}_{\mathrm{j}}^{\prime \prime}}\right\}_{\mathrm{O}} \cap \mathrm{U}_{j_{\mathrm{O}}} c \mathrm{I}^{\mathrm{n}}-\mathrm{B}_{\mathrm{ij}}$ 。


Combining with (*) above, we have Bijo $\cap \mathrm{U}_{\mathrm{j}}$ c $\mathrm{H}^{\prime} j_{0} U$ $H^{\prime \prime} j_{0}$. Where $H^{\prime} j_{0}, H_{n-1} j_{0}$ are as in prop. 2.3(ii). Thus letting $U=\bigcap_{j=1}^{n} U_{j}$, we have a situation as in prop. 2.3 (ii).
Let $(Y n, \sigma n)=I^{n}-\bigcup_{i=1}^{\infty} B i$ with the inherited (euclidean) metric. We show that (Yn, O'n) satisfies the requirements mentioned earlier.

Assertion 4 $d_{2}\left(\begin{array}{ll}Y n & \sigma n\end{array}\right) \leq n-2$.
Proof: Let (Cj, $C^{\prime} j$ ) $1 \leq j \leq n-1$ be $n-1$ pairs of closed sets of (Yn, orn) s.t.
$\sigma_{n}\left(C_{j}^{j}, C^{\prime} j\right)>0 \forall j, 1 \leq j \leq n-1$. Then if $\bar{C}_{j}$ and $\bar{C}^{\prime} j$ are the closures of $C_{j}$ and $C^{\prime} j$ in $I^{n}$ we have $\bar{C}_{j} \cap \bar{C}^{\prime} j$
$=\oint 1 \leq j \leq n-1$. So for some $i \in \mathbb{N}, \bar{C} j \in C i j, \bar{C} \cdot j \subset C^{\prime} i j$ $1 \leq j \leq n-1$. Thus Bij separates $\bar{C}_{j}$ and $\overline{\mathrm{C}}^{\prime} j$ in $I^{n}$ for each $j, 1 \leq j \leq n-i$. Let $B^{\prime} j=B i j \cap Y n$. Then $B^{\prime j}$ is a closed set of (Yn, $\sigma$ ) separating $C j$ and $C^{\prime} \dot{f}$ for each $j$. Furthermore $\bigcap_{j=1}^{n-1} B^{\prime} j=\left(\bigcap_{j=1}^{n-1} B i j\right) \cap Y n=$ BinYn $=\Phi$. Thus $d_{2}\left(Y n, O_{n}\right) \leq n-2$.

Assertion $5 \quad \mu$-dim $\left(Y n, \sigma_{n}\right) \geq n-1$. Proof. Assume $\mu$-dim $(Y n, \sigma n) \leq n-2$. For $1 \leq k \leq n$, let $A k=\left\{y \in I^{n}: y_{k}=0\right\}, \quad A^{\prime} k=\left\{y \in I^{n}: y_{k}=1\right\}$. We want to construct closed sets Mr, $0 \leq k \leq n$, of $I^{n}$ satisfying:-
(1) $M_{0}=I^{n}, M n=\phi$.
(2) $M \mathrm{k} \subset M k-1 \quad 1 \leq \mathrm{k} \leq \mathrm{n}$
(3) $M k$ separates $A k \cap M k-1$ and $A^{\prime} k \cap M k-1$ in $M k-1$.

The construction is by induction. Assume, for some $j, 0 \leq j \leq n-2$, that we have constructed closed sets Mk of $I^{n}$ and collections $k$ of closed subsets of Yn satisfying:- (for $0 \leqslant k \leqslant j$ )
(i) $M_{0}=I^{n}$
(ii) $M k \subset M k-1,1 \leq k \leq j$
(iii) $M k$ separates $A k \cap M k-1$ and $A ' k \cap M k-1$ in $M k-1$
(iv) $F^{k}$ is finite
(v) $\bar{F}_{k}=\left\{\bar{F}, F \in \Psi_{k}\right\}$ covers $M k$.
(vi) Mesh $\Psi_{k<1}$
(vii) If $x \in M k \cap Y n$, then ord $\mathcal{X}$ 解 $\leq n-k-2$

Construct $\frac{\mathrm{O}}{3} \mathbf{i + 1}$ and $\mathrm{Mi}+1$ as follows.
Put $\mathcal{F}_{i+1}=\left\{F \in \mathcal{F}_{j}: \bar{F} \cap A_{i}+1 \cap M \dot{j} \neq \phi\right\}$.
Put $W=\left(\bigcup_{F \in \mathcal{W}} \bar{F}\right) \cap M j$ and let $M i+1$ be the
boundary in $M$ i of $W$. (i) and (ii) are obvious.
To see that (iii) holds, note that Mi-( $\cup \quad \bar{F})$
$F \in \mathcal{J}-5 j+1$
is an open set of $M \mathcal{M}$ (condition iv) containing
$A \mathfrak{i}+1 \cap \mathrm{Mj}$. (by the construction of $\mathcal{F} \dot{j}+1$ ) and contained
in $\mathbb{W}$ (because of (v)). Furthermore, (vi) implies
that $W \cap A^{\prime} j+1=\phi . \quad$ This proves (iii).
(iv), (v) and (vi) are obvious. To see (vii), let

(from iv) (closures are in $I^{n}$ ).
So for some $F, F \in$ Fifi, $F \notin \mathcal{F}+1, x \in \bar{F}$.
Since $x \in Y n$ and $F$ is a closed set of Yn, XEF. Thus $\operatorname{ord}_{x} \mathscr{F}_{j+1} \leq \operatorname{ord}_{x} \mathcal{F}_{j}-1 \leq n-(j+1)-2$

Put $M_{0}=I^{n}$ and construct ${ }^{\text {fo }} 0$ as follows． Let $\phi$ be a finite open cover of $I^{n}$ by open balls of radius $\frac{1}{3}$ ．Since $I^{n}$ is compact，$\beta$ has a Lebesque number $\epsilon$ so that any set of diameter not exceeding $\epsilon$ is contained in a member of $\Phi$ ．Since $\mu$－dim $Y_{n} \leq n-2$ ，
 ord 持 $\leq n-2$ and mesh F＂＇$^{\prime}<\epsilon$ ．Then 3．a function． f：F゙ $\Rightarrow$ s．t．$F \in f(F)$ ．For $B \in$ ，let $g(B)=$ $\bigcup_{F \in G} F$ ．Let $G_{0}=\{g(B), B \in B\}$ ．Then 0 $f(F)=B$
is a finite closed cover of $Y n$ ，with mesh $0<1$ ，and ord $0 \leq n-2$ ．Also $U_{\infty} U_{0} \cdot \overline{\mathrm{~F}}$ is a closed set containing Yn．Since $\operatorname{dim} \underset{i=1}{U} B i \leq n-1$（countable sum theorem）， Yn is dense in $I^{n}$ ．Thus $\underset{F \in \mathcal{H}}{U_{0}} \bar{F}=I^{n}$ ．We have therefore shown that（i），（iv），（v），（vi）and（vii） are satisfied．The rest of the conditions are vacuously satisfied．We can therefore construct closed sets Mk， $0 \leq k \leq n-1$ satisfying conditions（i）to（vii）． However，the empty set may not separate Ann Mn－1 and $A^{\prime} n \cap M n-1$ in $M n-1$ ．We shall therefore refer to $M n-1$ as $M$ and construct the proper $\begin{aligned} & \text { and } \\ & M\end{aligned}$ From（vii）if xemnin then ordx ${ }_{\mathrm{n}-1} \leq-1$ ．But Mc U $\bar{F}$ and further，if $x \in M a y_{n}$ then $x \in \bar{F}, F \in \notin n-1 \Rightarrow$ Fe 等 $\mathrm{n}-1$
$x \in F$ since F is a closed set of Yn ．so $n-1$ covers MnYn．Combining this with ord $X_{x}$ 光 $-1 \leq-1$ for $x \in M n$ Yn，we see that $\mathrm{Mn}_{n}=\phi$ ．
Let $T=\left\{x \in M-2: \operatorname{ord}_{x} \overline{\left.\sigma^{\prime} n-2 \geq 1\right\}}\right.$ ．T is a closed
set of $M n-2$. McTcMn-2 $\cap\left(\bigcup_{i=1}^{\cup} B i\right)$. The first
inclusion follows because $x \in M \Rightarrow x \in \bar{F}$ for some $F \in$
 earlier). To see that the second inclusion holds, we recall that $x \in M n-2 \cap Y n$ and $x \in \bar{F}, F \in \mathcal{F}_{n-2}$ implies
 (from (vii)). So TCMn-2-Yn $\operatorname{Tr} \operatorname{Mn-2} \cap\left(\bigcup_{i=1}^{\infty} B i\right)$

Let $P, p^{\prime}, Q, Q^{\prime}$ be the union of components of $T$ that intersect $\mathrm{An}-1, A^{\prime} \mathrm{n}-1, \mathrm{An}, \mathrm{A}^{\prime} \mathrm{n}$ respectively. These sets are closed. Take $P$, for example. Let $\alpha \in T$ be a limit point of $P$. Fsequences $\alpha_{i}$ of points of $P$ and $C i$ of components of $P$ s.t. $\lim _{i} \alpha_{i}=\alpha$ and $\alpha i \in C i$. Then $\alpha \in \liminf \mathrm{Ci}(w \cdot r . t . T)$. So, from lemma 2.10, Iimsup Ci (w.r.t.T) is connected. Limsup Ci intersects An-1. This is because each Ci intersects An-l at, say, Bi. Exempting the trivial case where the $\beta i$ are only a finite number, $\left\{\beta_{i}\right\}$ is an infinite subset of the compact $T \cap A n-1$ and so has a limit point $\beta$. Then $\beta \in$ limsup Ci. So limsup Ci is a connected set of $T$ mersecting An-1 which implies limsup CiCP so $\alpha \in l i m i n f ~ C i C l i m s u p ~$ Cic P. So $\alpha \in \mathrm{P}$. So P is closed in T. Similarly, $P^{\prime}, Q, Q^{\prime}$ are closed.

Claim: There is no connected set of intersecting both $P \cup P^{\prime}$ and $Q \cap Q^{\prime}$. For suppose there were. Then we could construct (by uniting with appropriate components of $T$ and taking the closure) a connected
compact set of $T$ intersecting $A n$ and $A^{\prime} n$ and one (or both) of An-1 and A'n-1. Since Te $\mathrm{C}_{\mathrm{U}} \mathrm{Bi}$ and from assertion 1, assertion 3(ii), and lemma 2.3, this connected subset must be contained in some simple arc or some simple closed curve say $\Gamma$ of some Bi. This would imply that $\Gamma$ touches An-l (or A'n-1), An, and A'n. From assertion 3(i) and assertion 2 (ii) it follows that $\Gamma^{\top}$ is a simple arc and $\Gamma$ meets the surface of $I^{n}$ only at its end points. But now assertion 2(i) implies $\Gamma$ has three end points, impossible for a simple arc.

It also follows that $P P^{\prime}$ and $Q \cap Q^{\prime}$ are disjoint (a point is connected). So thene exist, by lemma 2.2, disjoint clopen sets $U, U^{\prime}$ of $T$ with $T=U u U^{\prime}$, PuP'c $U$, and $Q \cap Q^{\prime} \subset U^{\prime}$.

Because An-1 UA'n-1 does not intersect $U$ ' (because $\left.A n-1 \cup A^{\prime} n-I \cap T c U\right)$, we have $\left[\left(A n-I \cup A^{\prime} n-1\right) \cap M n-2\right] \cup U$ and U' are disjoint closed sets of Mn-2 We can therefore find an open set $V$ of $M_{m-2}$ s.t. VnT $=U U^{\prime}$ and $\overline{\mathrm{V}} \cap\left(\mathrm{An}-1 \cup A^{\prime} \mathrm{n}-1 \cup \mathrm{U}\right)=\varnothing$. Define $\mathrm{Mn}-1$ as follows.

Let $\mathrm{Mn}-1=(\mathrm{M}-\mathrm{V}) \cup(\overline{\mathrm{V}}-\mathrm{V})$.
We recall that $M$ separates $A n-1 \cap M n-2$ and $A^{\prime} n-1 \cap M n-2$
in Mn-2. Let $G$, $G^{\prime}$ be open sets of $M n-2$ s.t.
$M n-2-M=G U G^{\prime}, A n-1 \cap M n-2 \subset G, A^{\prime} n-1 \cap M n-2 \subset G^{\prime}$. and $G \cap G^{\prime}=\phi$
Let $H=G-\bar{V}, H^{\prime}=\left(G^{\prime} U \bar{V}\right)-(\bar{V}-V)$.
Then clearly $H, H^{\prime}$ are open sets of $M n-2$ s.t.
$\mathrm{Mn}-2-\mathrm{Mn}-1=\mathrm{HuH}^{\prime}$,
$\mathrm{An}-1 \cap \mathrm{Mn}-2 \subset \mathrm{H}, \mathrm{A}^{\prime} \mathrm{n}-1 \mathrm{n} M \mathrm{n}-2 c \mathrm{H}^{\mathrm{t}}$, and $\mathrm{HnH} \mathrm{H}^{\mathrm{s}}=\phi$.

So $M n-1$ separates $A n-1 \cap M n-2$ and $A^{\prime} n-1 \cap M n-2$ in $M n-2$. We show that no component of $M n-1$ meets both An and A'n. We first note that $(\overline{\mathrm{V}}-\mathrm{V}) \cap \mathrm{T}=\phi$. For suppose $x \in T=U U U^{\prime}$ (see above). If $x \in U^{\prime} \subset V$ then $x \in \bar{V}-V$. If $x \in U$ then we already have $\bar{V} \cap U=\phi$.

Since $M \subset T, M n-1$ is a union of the disjoint clopen sets $M-V$ and $\bar{V}-V$. It suffices to show that no component of either of these sets meets both An and A'n. Suppose a component of $M-V$ meets both $A n$ and A'n. Then it is contained in a component of $T$ that meets both An and A'n. But such a component is contained in $Q_{n} Q^{\prime} \subset U^{\prime}<\mathrm{V}$, a contradiction. To see that no component of $\bar{V}-V$ touches both An and $A ' n$, we recall that $\left(\bar{V}-V_{n} T T=\phi\right.$ and $T$ is the set $\left\{x \in M_{n-2}\right.$ : ord $\bar{x}$ 程 $n-2$ $\geq 1\}$. Since $\overline{\mathrm{V}}-\mathrm{V} \subset \mathrm{Mn}-2$, we have ordx $\overline{\mathrm{F}-2} \leq 0$ if $x \in \overline{\mathrm{~V}}-\mathrm{V}$. Thus $\overline{\sigma_{n-2}} \mid \overline{\mathrm{V}}-\mathrm{V}$ is a finite disjoint clopen cover of $\vec{V}-V$. So any component of $\bar{V}-V$ must lie in a member of $\overline{\mathcal{F}_{n-2}} I \bar{v}-V$. Since mesh $\bar{F}_{n-2}<1$, no such member, and therefore no component of $\bar{V}-V$ can touch both An and A'n. So no component of $M n-1$ touches both An and $A^{\prime} n$.

Let $J$ be the union of components of $M n-1$ that touch An and J' the union of components of Mn-1 that touch An'. AS: in the case for $P, P^{\prime}, Q, Q^{\prime}, J$ and $J^{\prime}$ are closed sets of $\mathrm{Mn}-1$. There is no connected set of Mn-1 touching both $J$ and $J '$ since this would yield a component of $M n-1$ touching both An and $A n^{\prime}$. It follows that JnJ' $=\phi$. By lemma 2.2. J, J' are separated in $M n-1$ by $\Phi$. Since $A n \cap M n-1 \subset J, A ' n n M n-1 \in J^{\prime}$,

An $\cap M n-1$, $A^{\prime} n \cap M n-1$ are separated in $M n-1$ by $\phi$. The sets $M k, 0 \leq k \leq n$ then satisfy conditions (1), (2), (3) at the beginning of the proof. Now from lemma 2.9, $\exists$ for each $1 \leq k \leq n$, a closed set Nk of $I^{n}$ s.t. Nk separates $A k$ and $A^{\prime} k$ in $I^{n}$ and $N k \cap M k-1 C M k$. Suppose for $1 \leq j \leq n-1$ that $\bigcap_{k=1}^{j} N K C M j$.
Then $\underset{k=1}{\substack{j+1}} i N k=\left(\bigcap_{k=1}^{j} i N k\right) \cap N j+1 \subset M j \cap N j+1 \in M j+1$.
Since $N_{1}=N_{1} \cap I^{n}=N_{1} \cap M_{0} \subset M_{1}$, we have $\underset{k=1}{n} N_{k} \subset M_{n}=\phi$. Thus we have found closed sets $N_{k}, 1 \leq k \leq n$ s.t. $N_{k}$ separates $A_{k}$ and $A_{k}^{\prime}$ and $\bigcap_{k=1} N_{k}=\phi$. This, however, is impossible; the boundary of $I^{n}$ in $\Omega^{n}$ is isomorphic to $S^{n-1}$ so we refer to it as $S^{n-1}$. Let $f: S^{n-1} \longrightarrow S^{n-1}$ be the function given by $f(x)=\left(1-x_{1}, 1-x_{2}, 1-x_{3}, \ldots\right.$. $\left.1-x_{n}\right)$. Then $f$ is continuous and $f^{-1}\left(A_{k}\right)=A_{k}^{\prime}, f^{-1}\left(A_{k}^{\prime}\right)$ $=A_{k}, 1 \leq k \leq n$. From the condition satisfied by $N_{k}$, above, $f^{-1}\left(A_{k}\right), f^{-1}\left(A_{k}^{\prime}\right) \quad l \leq k \leq n$ is not an essential family (see def 2.1). So from lemma 3.4 (after adjusting to using $I=[0,1]$ instead of $J=[-1,1]$ ), $f$ has an extension $f *: I^{n} \rightarrow S^{n-1}$. But then $f^{*}$ is a continuous function of $I^{n}$ into $I^{n}$ not having a fixed point contrary to Brouwer's theorem. This contradiction shows that $\mu$-dim $\left(Y_{n}, \sigma_{n}\right) \geq n-1$.
$\frac{\text { Assertion 6. }}{\infty} \cdot \operatorname{dim} Y_{n} \leq n-1$.
The set $\bigcup_{i=1}^{\infty} B_{i}$ is dense in $I^{n}$. For, let $U$ be an open set of $I^{n}, U \neq \phi . \exists$ an open set $V$ of $I^{n}$ s.t. $\phi \neq$ Vē̃eu. Now dim $\overline{\mathrm{V}}=\mathrm{n}>\mathrm{n}-2$. So $3 \mathrm{n}-1$ pairs (Cj, C'j) of disjoint closed sets of $\overline{\mathrm{V}}$ s.t. if Tj,
$1 \leq j \leq n-1$, are closed sets of $\overline{\mathrm{V}} \mathrm{s} . \mathrm{t}$. Tj separates Cj and $C^{i} i$ in $\bar{V}$ for $l \leq j \leq n-1$, then $\cap_{j=1}^{n-1} T i \neq \phi$. Ci and C'i are also disjoint closed sets of $I^{n}$ for each i so by the choice of Bij, $\exists i \in N$ s.t. Bij separates Ci and $C^{\prime \prime} \dot{i}$ in $I^{n}$ for $I \leq j \leq n-1$. Then Biin $\bar{V}$ is a closed set of $\bar{V}$ separating $C i$ and $C$ 'i in $\bar{V}, I \leq i \leq n-1$ Thus $\phi \neq n_{j=1}^{n-1}($ Bii $n \bar{V})=\left(\bigcap_{j=1}^{n-1}\right.$ Bi.i. $) n \bar{V}=\operatorname{Bi} \cap \bar{V} C$

Bi $\cap U$. So for some $i \in \mathbb{N}$ BinU才 $\boldsymbol{B}$. The assertion now foliows from theorem 0.l5.

We therefore have $\mu$-dim $(Y n, \sigma n)=n-1$
We now construct ( $\mathrm{Xn}, \ell_{n}$ ).
Let ( $Z, \bar{\psi}$ ) be a totally bounded and therefore bounded metric space as in example 2.3 with dim $Z=n$ and $\mu$ $\operatorname{dim}\left(\mathcal{L}_{2}, \psi\right)=\mathrm{d}_{2}(\underset{\sim}{2}, \psi)=\left[\frac{\mathrm{n}+1}{2}\right] \leq \mathrm{n}-2$ (remember $\mathrm{n}>4$ ). We may assume the diameter of Yn and Zis $I$.

Let $X n$ be the disjoint union of $Y n$ and $Z$ and define the metric $e_{n}$ on Xn as follows:-
$\ell_{n}(x, y)=\sigma_{n}(x, y)$ if $x, y \in Y n$,
$\ell_{n}(x, y)=\psi(x, y)$ if $x, y \notin Z$
$\operatorname{Rn}(x, y)=1$ if $x \in Y n, y \in Z$ or $x \in \mathbb{Z}, y \in Y n$.
Clearly, $E_{n}$ is a metric, $d_{2}\left(X n, \ell_{n}\right) \leq n-2$,
$\mu-\operatorname{dim}\left(X n, \ell_{n}\right)=n-1$ and $\operatorname{dim} X n=n$. Furthermore,
(Yn, $\sigma_{n}$ ) is clearly totally bounded and so, therefore,
is $\left(X n, \ell_{n}\right)$. From theorem $1.6, d_{3}\left(X n, \ell_{n}\right)=\mu$-dim
( $X n, \ell n$ ). Thus ( $X n, \ell_{n}$ ) is as required.

## SECTION THREE

A natural question to ask about metric-dependent dimension functions is whether they actually depend on the metric as opposed to, say, the topology arising from the metric. That is, is the terminology 'metric-dependent' justified? We show below that it is. Infact for any integer $n, n>3$, we shall exhibit a set $X n$ and equivalent metrics $\operatorname{Enj},\left[\frac{\mathrm{n}}{2}\right] \leq i \leq n-1$, on $X n$ such that $d\left(X n, l_{n i}\right)=i$, where $d$ is any of the metric-dependent dimension functions discussed above, and dim $X n=n-1$.

Lemma 3.1 (Nagami and Roberts, 1967).
If X is any metrizable topological space with dim $X=n, \exists$ a metric $E$ on $X$ giving the topology of $X$ s.t. $(X, C)$ is bounded and $d(X, E)=r$ where $d$ is any of the above metric-dependent dimension functions.

Proof: In view of proposition 1.1 and remark 1.1, we only need to find a metric $E$ s.t. $d_{2}(X, R)=n$. Since $X$ is metrizable, $\exists$ a metric $e^{\prime}$ on $X$ giving the topology of $X$ and s.t. ( $X, e^{\prime}$ ) is bounded. If $n=0$, we would necessarily have $d_{2}\left(X, l^{\prime \prime}\right)=0$ and we would be through. Assume $n>0$. Since $\operatorname{dim} X>n-1$, $\exists \mathrm{n}$ pairs (Ci, C'i), $1 \leq i \leq n$, of closed sets of $X$ satisfying:-
(i) $\quad \operatorname{Cin} C^{\prime} i=\phi \quad 1 \leq i \leq n$.
(ii) If Bi, $l \leq i \leq n$ are $n$ closed sets of $X$ s.t. $B i$ separates $C i$ and $C^{i} i$, then $n B B \neq \phi$. $i=1$
(This is because of theorem 0.4.) ヨ, by Urysohn's lemma, continuous functions fi: $X \longrightarrow I \quad I \leq i \leq n$ s.t. $f j(C i)=\{0\}, f i\left(C^{\prime} i\right)=\{1\}$ for $1 \leq i \leq n$. Define a metric $\ell$ on $X$ by $\ell(x, y)=\ell^{\prime}(x, y)+\sum_{i=1}^{n} f f i(x)-f i(y) \quad$. . It is clear that $E$ is an equivalent metric to. $E^{\prime}$ and so gives the topology of $X$. It is also clear that 2 is bounded, since $e^{\prime}$ is. The fact that $\ell\left(C i, C^{\prime} i\right) \geq 1$ Vi, $1 \leq i \leq n$ and the pairs (Ci, C'i), $1 \leq i \leq n$, satisfy condition (ii) implies that $d_{2}$ $(X, \ell)>n-1$. But $d_{2}(X, l) \leq \operatorname{dim} X$ so $d_{2}(X, \ell)=n$ as desired.

Example 3.1 (Nagami and Roberts, 1967)
Let $n \geq 3$. For $\left[\frac{n}{2}\right]+1 \leq i \leq n$, let $(Y j, \sigma j)$ be a bounded metric space with $d_{2}\left(Y i, \sigma_{i}\right)=\mu$-dim (Yi, $\left.\sigma_{i}\right)$ $=\left[\frac{\mathfrak{j}}{2}\right]$ and $\operatorname{dim} Y j=j-1$ as in example 2.3. From lemma 3.1, ヨ, for each $\dot{j}$, $\left[\frac{n}{2}\right]+1 \leq \dot{3} \leq n$ a bounded metric $\sigma^{\prime \prime} \dot{y}$ on $Y j$ which is equivalent to oji and s.t. $d_{2}\left(Y j, \operatorname{\sigma r}^{\prime} \dot{i}\right)=\operatorname{dim} Y j=\mathfrak{i}-1$. Let $X n$ be the disjoint union of the spaces Yi, $\left[\frac{n}{2}\right]+1 \leq \mathfrak{j} \leq n$. We may assume the diameters of the spaces (Yj, $\sigma_{i}$ ), (Yj, $\left.\sigma^{\prime} j\right)$ are all less than 1 . Define for each j., $\left[\frac{n}{2}\right] \leq i \leq n-1$ a metric $e_{n i}$ on $X n$ as follows:-
$\ell_{n i}(x, y)=\left\{\begin{array}{l}\sigma j(x, y) \text { if } x, y \in Y j \text { and } j \neq i+1 \\ \sigma^{\prime} j(x, y) \text { if } x, y \in Y j \text { and } j=i+1 \\ 1 \text { if } x \in Y j_{1}, y \in Y j_{2} \text { and } j_{1} \neq j_{2} .\end{array}\right.$
Clearly, $\ell_{n i}$ is a metric on Xn .
$\left.\ell_{n i}\right|_{Y i}=\sigma i$ if $i \neq i+1,\left.\ell_{n i}\right|_{Y i+1}=\ell_{i+1}$

It is clear that $d_{2}\left(\mathrm{Xn}, \ln _{\mathrm{ni}}\right)=\mu$-dim $\left(\mathrm{Xn}, \operatorname{Rni}_{\mathrm{ni}}\right)$
$=i$ and dim $X n=n-1$.
Since $\sigma_{i}$ and $\sigma^{\prime \prime j}$ are equivalent $\left[\frac{n}{2}\right]+1 \leq i \leq n$, it is clear that $\ln i,\left[\frac{n}{2}\right] \leq i \leq n-1$ are all equivalent. We now turn to the following question: -

If $d$ is a metric--dependent dimension function and $d(X, \ell)=m<n=\operatorname{dim} X$, then do there exist metrics Ei for each i, $m \leq i \leq n s . t . e_{i}$ is equivalent to $\ell$ and $d\left(X, \ell_{i}\right)=i$ ?

We answer this question in the affirmative for the metric-dependent dimension functions $\mu$-dim, $d_{2}, d_{3}$ and $d_{5}$.

Lemma 3.2 (Roberts and slaughter)
Let $X$ be a paracompact Hansdorff space and $\mathscr{U}$ an open cover of $x$ s.t. ord $\mathscr{Z} \leq n \geq 0$. Then $\mathbb{U}$ has an open l.f. refinement $V=\bigcup_{i=0}^{v i} V_{i}$ where each $\Upsilon_{i}$ is a disjoint collection.

Proof: The proof is by induction on $n$. The result is obvious when $n=0$. Now assume the result true for some non-negative integer $n$. Suppose $\mathscr{U}$ is an open cover of $X$ s.t. ord $\mathscr{Z} \leq n+1 . \mathscr{U}$ has a $1 . f$. open refinement of order $\leq n+1$ so we may assume $\mathcal{U}$ is 1.f. Let $S(\mathbb{Q})$ be the collection of all subcollections of $\mathscr{U}_{\text {with }} \mathrm{n}+2$ members. For each $\mathrm{A} \in \mathbb{S}(\mathscr{U})$ let $\mathrm{V}_{\mathrm{A}}=$ $\cap_{U \in A} U$. Then $\left\{V_{A}, A \in S(\mathscr{U})\right\}$ is a I.f. open disjoint collection of subsets of $X$. It is disjoint because $\operatorname{ord} \mathscr{U} \leq n+1 . \quad$ Let $Y=X-\underset{A \in S(\mathscr{U})}{ } V_{A}$.

Then $Y$ is a closed subset of $X$ and $\mathcal{Q} \mid X$ is an open (in $Y$ ), 1.f. (in $Y$ ), cover of $Y$ of order $\leq n . ~ थ l Y$ has an open (in $Y$ ), 1.f (in $Y$ ) refinement $\mathcal{V}^{-1}$ set. $V^{\prime}=\bigcup_{i=0}^{n} V^{\prime} i$. Where each $V_{i}^{\prime}$ is a disjoint collection. Because $Y$ is normal, $V$ has a 1.f. (in $Y$ ) closed refinement $\mathcal{F}=\bigcup_{i=0}^{n} \mathscr{F}_{i}$ where each 步i is disjoint. Since $Y$ is closed, $\mathcal{F}$ is also 1.f. and closed in $X$. Since $X$ is paracompact and normal, $\exists$, by lemma 1.2 an open 1.f. collection $\mathscr{y}^{\prime \prime}$ of subsets of $X$ sot. $V^{\prime \prime}=U^{n} V_{i}$, each $\mathscr{V}_{i}$ disjoint, and $V \in V^{\prime \prime} \Rightarrow V C U$ $\epsilon \mathscr{U} \mathrm{f}_{\mathrm{O}}^{\mathrm{i}=0}$ some U . Let $V_{\mathrm{n}+1}=\left\{\mathrm{V}_{\mathrm{A}}, A \in S(\mathscr{U})\right\}$. Then $\mathcal{V}={\underset{i=0}{n+1}}_{V_{i}}$ is the required refinement of $\mathscr{U}$.

Lemma 3.3. (Roberts and Slaughter)
Given $\epsilon>0$ and a positive integer $k, \exists \mathrm{k}$ finite open covers $\xi_{1}, \xi_{2}, \ldots . ., \xi_{k}$ of the unit interval I set.
(i) $\operatorname{mesh} \xi_{i}<\epsilon \forall i, I \leq i \leq k$.
(ii) ord $\bar{\xi}_{i \leq 1} \leq \forall i, l \leq i \leq k$.
(iii) If ord $x \quad \xi_{i}=1$ then ord $\xi_{i} \leq 0$ for $i \neq i_{0}$.

Proof: $\exists \mathrm{a}$ set of $k$ distinct prime numbers $q_{1}, g_{2} \ldots$
$q_{k}$ sot. $q_{i} \geq 3$ and $^{1 / q i}<\varepsilon / 3$
$\forall i, l \leq i \leq k$. Let $\delta=\min \left\{\left|\frac{r}{q} i-\frac{s}{q} i\right|, r=\right.$
$1,2, \ldots . ., q_{j}-1, s=1,2, \ldots, q_{j}-1 \quad$ and $1 \leq i, i \leq k, 1 \neq j$
$r=s\}$. (We note that $\left|\frac{r}{q i}-\frac{s}{q i}\right|>0$ ).
Let $\xi_{i}=\left[0, \frac{1}{\mathrm{q}} i+\frac{1}{2} \delta,\left(\frac{1}{q} i-\frac{1}{2} \delta, \frac{2}{q} i+\frac{1}{2} \delta\right)\right.$,
$\left(\frac{2}{q i}-\frac{1}{2} \delta, \frac{3}{q i}+\frac{1}{2} \delta\right), \ldots \ldots\left(\frac{q_{i}-1}{q i}-\frac{1}{2} \delta, 1\right] \quad$.
Then the covers $\xi_{1}, \xi_{2}, \ldots ., \xi_{\mathrm{k}}$ are as required.

Theorem 3.1 (Roberts and slaughter)
If $(X, \dot{X})$ is a metric space with $\mu-\operatorname{dim}(X, C) \leq r$ and
$f: X \longrightarrow I$ is a continuous function, then $\sigma: X x X \longrightarrow R$ defined by $\sigma(x, y)=\ell(x, y)+|f(x)-f(y)|$ is an equivalent metric to l and $\mu$ - $\operatorname{dim}\left(X, \sigma^{\infty}\right) \leq r+1$.

Proof: The facts that $\mathcal{L}(x, y) \leq \sigma(x, y) \forall x, y \in X$
and $\sigma: X x X \longrightarrow R$ is continuous w.r.t. $\mathcal{E}$ imply that $E$ and $\sigma$ are equivalent.

Let $\in>0$ be given. Since $\mu$-dim $(X, C) \leq r \exists a n$ open cover $\mathscr{Q}$ of $X$ with $\ell$-mesh $\mathscr{U}<\frac{1}{2} \epsilon$ and ord $\mathscr{U} \leq r$. By lemma $3.2, \mathscr{U}$ has an open refinement $\mathscr{U}^{\prime}=\underset{i=0}{\substack{U_{i}}}$
where each $\mathscr{U} i \quad 0 \leq i \leq r$ is disjoint. By lemma 3.3. ヨr+1 open covers $\xi_{0}, \xi_{1}, \ldots \ldots . \xi_{r}$ of $I$ s.t. (i) mesh $\xi_{i<\frac{1}{2} \in \text {, }}$ (ii) ord $\xi_{i \leq 1}$ and (iii) if ord $\xi_{\mathrm{i}} \mathrm{H}_{\mathrm{o}}=1$ then ord x $\xi i \leq 0$ if $i \neq \dot{\xi}_{0}$
For each $0 \leq i \leq r$, let $J_{i}=\left\{U \cap f^{-1}(G), U \in \mathcal{U}_{i}, G \in \xi_{i}\right\}$. Then $V_{i}$ is is an open collection and $U V=U \quad U$ so $\mathcal{V}=\bigcup_{i=0}^{r} V_{i}$ is a cover of $X$.

Claim 1: ord $V \leq r+1$.
Let $x \in X$. Suppose that $x$ is contained in $r+3$ distinct inembers of $V$, say $V_{0}, V_{1}, \ldots ., V_{r+2}$. Suppose three of these, say $V_{0}, V_{1}, V_{2}$ are members of $V_{i_{0}}$ for some $i_{0}$. Since $\mathscr{U}_{i}$ is discrete, and $\bigcap_{j=0}^{2} V_{j} \neq \phi$, we must have $V_{j}=U \cap f^{-1}\left(G_{j}\right) 0 \leq j \leq 2$ for some $U \in \mathscr{U} i_{o}$ and $G_{j} \in \xi_{i_{o}}, G_{j}$ distinct. This implies $x \in \underset{j=0}{2} f^{-1}\left(G_{j}\right)$ which implies $f(x) \in \cap_{j=0}^{2} G_{j}$ contradicting the fact that ord $\xi i_{0} \leq 1$.

So we cannot have three members of $\left\{V_{0}, \ldots V_{r+2}\right\}$
being in the same $\mathrm{Vi}_{0}$. It follows that we must have two members, say $V_{0}, V_{1}$ in $g i_{0}$ and two other members, say $V_{2}, V_{3}$ in $V_{i_{1}}, i_{0} \neq i_{1} . \quad\left(V_{0}, V_{1}, V_{2}, V_{3}\right.$ are all distinct). From an argument analogous to the one above, we see that $f(x) \varepsilon G_{0}{ }^{\prime} G_{1} \quad G_{0}, G_{1}$ being distinct members of $\xi_{i_{0}}$ and $f(x) \varepsilon G_{2}() G_{3}, G_{2}, G_{3}$ being distinct members of $\xi_{i}$. Thus ord ${ }_{f(x)} \quad \xi_{0} i_{0} \operatorname{ord}_{f(x)}$ $\xi^{i_{I}}=1$ contradicting condition (iii) above for the $\xi_{i}$. So $x$ cannot be contained in $r+3$ distinct members of $\mathcal{V}$. Since $x$ is arbitrary, ord $\mathscr{V} \leq 1$ as required.

Claim 2. $\quad \sigma$-mesh $\mathscr{V} \leq \varepsilon$
For, if $V \varepsilon Q\left(\right.$, then $V=U \cap^{-1}(G)$ for some $U \varepsilon \mathscr{Z}$ and $\mathrm{G} \varepsilon \xi_{0}$ for some $i_{0}$. Since $\mathscr{U}^{\prime}$ refines $\mathscr{U}$ and mesh $\mathscr{U}<$ $\frac{1}{2} \varepsilon$, diameter $U<\frac{1}{2} \varepsilon$. Also, since mesh $\xi_{0}<\frac{1}{2} \varepsilon$, $x, y \varepsilon f^{-1}(G) \Rightarrow|f(x)-f(y)|<\frac{1}{2} \in$. Thus $x, y \varepsilon$ $V \Rightarrow \sigma(x, y)=\ell(x, y)+|f(x)-\mathbb{f}(y)| \cdot<\varepsilon$. So $O(V) \leq \varepsilon$ and $\sigma$ mesh $V \leq \varepsilon$ as required.

So for $\varepsilon>0$, ヨ an open cover $\mathscr{V}$ of $X$ s.t. ord $\mathcal{V}$ $\leq r+1$ and $\sigma$-mesh $\mathscr{V} \varepsilon$ which shows that $\mu$ - $\operatorname{dim}(X, \sigma)$ $\leq r+1$.

Theorem 3.2 (Roberts and Slaughter)
Let $(X, \ell)$ be a metric space with $\mu$-dim $(X, \ell)=r<$
$n=\operatorname{dim} X$. Then for each $i, r \leq i \leq n \quad \exists$ a metric $\ell i$ on $X$ s.t. $\ell i$ is equivalent to $\&$ and $\mu-\operatorname{dim}(X, \ell i)=i$.

Proof: Since dim $X$ > $n-1, \exists \mathrm{n}$ pairs (Ci, C'i)
$1 \leq i \leq n$ of disjoint closed sets of $X$ s.t. if $\{B i, 1 \leq i \leq n\}$ is any collection of closed sets of X s.t. Bi separates Ci and $C^{\prime} i$ then $\bigcap_{i=1}^{n} B i \neq \phi$. By Urysohn's lemma, ヨ continuous functions fi: X $\longrightarrow I, I \leq i \leq n$, s.t. $f i(C i)=0$ and $f i\left(C_{i}^{\prime}\right)=1$. Let $\ell_{j}(x, y)=\ell(x, y)+\sum_{i=1}^{j}|f i(x)-f i(y)|, l \leq j \leq n$, $C_{0}=\ell$. As in the proof of lemma 3.1, $l_{j}$ is equivalent to $\ell$ for $1 \leq j \leq n$ and $\mu-\operatorname{dim}\left(X, \ell_{n}\right)=n$. From theorem $3.1, \mu$-dim $\left(X, \ell_{j}+1\right) \leq \mu$ - $\operatorname{dim}\left(X, \ell_{j}\right)$ +1 for $0 \leq j \leq n-1$. It follows from these facts that for each i, $r \leq i \leq n, \exists j, 1 \leq j \leq n$ s.t. $\mu$-dim $\left(X, \mathcal{E}_{j}\right)=$ i. This proves the theorem.

## Lernma 3.4

Let ( $\mathrm{X}, \ell$ ) be a metric space, ( $\mathrm{C}, \mathrm{C}^{\prime}$ ) be disjoint closed sets of $X$ and $W i, i=1,2, \ldots$ be subsets of X s.t.
(i) $\quad l(W i+1, X-W i)>0$
(ii) $\ell\left(C-W i, C^{\prime}-W i\right)>0 \forall i$.

Then $\exists a$ continuous function $f: X \longrightarrow I$ s.t. $f(C)=\{0\}=, f\left(C^{\prime}\right)=\{1\}$ and $f \mid X-W i$ is unjformly continuous w.r.t. $\ell$ for all i.

Proof: Define $f$ by $f(x)=\frac{\ell(x, C)}{\ell(x, C)+\ell\left(x, C^{1}\right)}$

Then $f(x) \in I, f$ is continuous and $f(C)=\{0\}$, $f\left(C^{\prime}\right)=\{1\}$.

Claim: For each $i, \exists \delta i>0$ s.t.
$\ell(x, C)+\ell\left(x, C^{\prime}\right) \geq \delta i \forall x \in X-W i$.
Infact, put $\delta i=\min \left(2\left(C-W i+1, C^{\prime}-W i+1\right), \ell(W i+1\right.$,
$X-W i)\}$. Suppose for some $y \varepsilon C, y^{\prime} \varepsilon C^{\prime}$ we have
$\ell(x, y)+\ell\left(x, y^{\prime}\right)<\delta i$ where $x \varepsilon X-W i$.
Then $\ell\left(y, y^{\prime}\right)<\ell\left(C-W i+1, c^{\prime}-W_{1+1}\right)$ so we must have either $y \varepsilon W i+1$ or $y^{\prime} \varepsilon W i+1$. Assume W.L.G, that $y \varepsilon$ Wi+1. Then, since $x \in X-W i, \ell(x, y) \geq \delta i$, a contradiction. So for $y \varepsilon C, y^{\prime} \varepsilon C^{\prime}$, we always have $\ell(x, y)+\ell\left(x, y y^{\prime}\right)$ $\geq \delta i$ if $x \neq w i$. Fixing $x$ and $y^{\prime}$ and letting $y$ vary over $C$, we have $\ell(x, C)+\ell\left(x, y^{\prime}\right) \geq \delta_{i}$ and similarly, $\ell(x, C)+\ell\left(x, C^{\prime}\right) \geq o ̂ i$.

Let $g(x)=\ell(x, C)$ and $h(x)=\ell(x, C)+\ell\left(x, C^{\prime}\right)$.
Since $|\ell(a, A)-\ell(b, A)| \leq \ell(a, b)$ for $a, b, \varepsilon X$ and $A$ a subset of $X, g(x)$ and $h(x)$ are uniformly continuous functions. We have seen above that $h(x)$ $\geq \delta i$ for $x \in X-W i$. For $x, y \in X-W i,|f(x)-f(y)|=$ $\frac{|g(x) h(y)-h(x) g(y)|}{h(x) h(y)}=\frac{|(g(x) h(y)-g(x) h(x)) \ldots(h(x) g(y)-h(x) g(x))|}{h(x) h(y)}$
$\leq \frac{g(x)|h(x)-h(y)|+h(x)|g(x)-g(y)|}{h(x)}$
$=\frac{1}{h(y)}\left[\frac{g(x)}{h(x)}|h(x)-h(y)|+|g(x)-g(y)|\right]$
Since $\frac{1}{h}(y) \leq \frac{1}{\delta i} \forall y \in X-W i, \frac{g(x)}{h(x)} \leq 1$, and $h$ and $g$ are uniformly continuous functions, it is now clear that $f$ is uniformly continuous on ...Wi.

Notation: For a set $X$ and a collection $U$ of subsets


If $A$ is a subset of $X$, we denote by $S t(A, v)$ the set UU. If (X, l) is a metric space we denote by $\mathrm{U} \varepsilon^{U}$ Ur $1 A \neq \phi$
$U(\ell, \varepsilon)$ the collection of all open balls of radius ع w.r.t. l.

Def 3.1. A cover $\nabla$ of $X$ is said to be a star refinement of a cover $v$ of $X$ and we write $\nabla * u$ if the collection $\{S t(V, \nabla), V \varepsilon \nabla\}$ refines $u$.

Lemma 3.5
If $\nabla \mathrm{k}, \mathrm{k}=1,2, \ldots$. is a sequence of open Lebesque covers of a metric space ( $\mathrm{X}, \mathrm{l}$ ) s.t.
(i) $\nabla \mathrm{k}+1{ }^{*} \quad \nabla \mathrm{k} \forall \mathrm{K}$ ल
(ii) The collection $\{S t(x, \nabla \mathrm{k}) \mathrm{k}=1,2, \ldots .$.$\} is a$ neighbourhood base at $x$ xeX then $\exists \mathrm{a}$ metric $\sigma$ equivalent to \& s.t. $\nabla \mathrm{k}+1<$ $U\left(\sigma, 2^{-k}\right)<\nabla_{k}$ Fk.

For a proof of this lemma, see Isbell, theorem 4.

Lemma 3.6 (Goto)
Let (Ci, Cij) $I \leq i \leq r$ be $r$ paixs of disjoint closed sets of a metric space ( $X, \ell$ ). Then $\exists$ a metric $\sigma$ an $X$ and $r$ continuous functions $f i: X \longrightarrow I I \leq i \leq r$ s.t.
(i) $\sigma$ is equivalent to $\ell$ and $\ell>\sigma$ i.e. given $\delta>0, \exists \varepsilon>0$ s.t. $\ell(x, y)<\varepsilon \Rightarrow \sigma(x, y)<\delta \forall x, y \in X$.
(ii) $f i(C i)=\{0\}, f i\left(C^{\prime} i\right)=\{1\}$
(iii) For any $\varepsilon>0, \exists$ an open set $U$ of $X$ s.t.
$\sigma(U)<\varepsilon$ and $f i \mid X-U$ is uniformly continuous w.r.t.
ofor each i.

Proof: Let (X,l) and (Ci, C'i) $l \leq i \leq r$ be as in the lemma. Let $\cup \mathrm{k}=\mathrm{U}\left(\ell, 2^{-\mathrm{k}}\right), \mathrm{k}=2,3,4, \ldots$

Then (ai) $u k$ is a uniform open cover of ( $X, \ell$ ).
(a2) $u \mathrm{k}+1{ }^{*}$ < $u k$
(a3) mesh $u k<1 / k$.

For $\mathrm{k}=2,3, \ldots$ and $I \leq i \leq r$, let
Aki $=\left\{x \in X: \quad \ell(x, C i) \leq 1 / k, \ell\left(x, C^{\prime} i\right) \leq 1 / k\right\}$.
Let $A k=U$ Aki.
Then (b1) $A k+1 \subset A k$
(b2) For each $x \in X, \exists k_{0}$ s.t. $\quad \ell\left(x, \bigcup_{k=k_{0}}^{\infty} A k\right) \geq 1 / k_{0}$.
(b1) is obvious. To see (b2), let x\&X. $\exists \delta>0$ s.t. for each i, either $\ell(x, C i) \geqslant \delta$ or $\ell(x, C ' i)>\delta$. Choose $k_{0}$ s.t. $1 / k_{0}<\frac{1}{2} \delta$. Suppose $k \geq k_{0}$ and ye Ak. If $\ell(x, Y) \leq 1 / k_{0}$ then, since $\ell(y, C i) \leq 1 / k \leq 1 / k_{0}$ and $\ell\left(y, \quad c_{i}^{\prime}\right) \leq 1 / k \leq 1 / k_{0}$ for some i. We have $\ell(x, C i) \leq 2 / k_{0}<\delta$ and $\ell\left(x, C_{i}^{1}\right)<\delta$ for some $i$ contradicting the choice of $\delta$.

So $y \in A_{k}, k \geq k_{0} \Rightarrow h(x, y)>1 / k_{0}$ which proves (b2).
If for some $k A k=\varnothing$ then $\ell(C i, C i ')>0$ for
$1 \leq i \leq r$ and the metric $\sum$ and functions
$\frac{\ell(x, C i)}{\ell(x, C i)+\ell\left(X, C i^{\prime}\right)}$ would satisfy conditions (i) to
(iii) of lemma 3.6. (iii) would be sitisfied because
$\ell(x, C i)+\ell(x, C i ') \geq \delta>0 F x$ for some $\delta$ if
$\ell\left(\mathrm{Ci}, \mathrm{C}^{\prime}\right)>0$ and we would then proceed as in lemma
3.4 .

So we assume Ak才Ф for all K.
Let $\mathrm{Gk}=\mathrm{St}(\mathrm{Ak}, \eta \mathrm{k})$ and $\operatorname{let} \nabla \mathrm{k}=\{\mathrm{Gk}\} U\{\mathrm{U} \varepsilon \mathrm{Jk}$ :
UrIAk $=\phi\}$. Then $\nabla k$ is a Lebesque open cover of $X$
(since $u k<\nabla k$ and $u k$ is Lebesque) and the sequence
$\nabla \mathrm{k}, \mathrm{k}=2,3, \ldots$. satisfies:-
(cl) $\nabla \mathrm{k}+\mathrm{I}{ }^{*} \mathrm{~V} \mathrm{k}$
(c2) The collection $\{$ St $(\mathrm{x}, \nabla \mathrm{k}) \mathrm{k}=1,2, \ldots \mathrm{~F}$ is a
nbhd base at $x$ for each $x_{\varepsilon} X$.

To see (cl), suppose $V_{\varepsilon} \nabla k+1$. We want to show St $(V, \nabla k+l) \subset V^{\prime} \varepsilon \nabla k$ for some $V^{\prime}$. Suppose $V=$
$\mathrm{Gk}+1 . \quad \mathrm{Clearly} \operatorname{St}(\mathrm{Gk}+1, \nabla \mathrm{k}+1)=\mathrm{St}(\mathrm{Gk}+1, \mathrm{v} \mathrm{k}+1)$.
Suppose $U_{\varepsilon} U k+1$ and $U_{f} G k+1 \neq \phi$. Then $S t(U, y k+1)$ )
$A k+1 \neq \phi$. But $S t(U, u k+1) \varepsilon U^{\prime} \varepsilon U k$ for some $U^{\prime}$.
$U^{\prime( } A k+1 \neq \phi$, so $U^{n \prime} A k \neq \phi$, so $U^{\prime} e S t(A k, U k)=G k$.
So UcGk (infact St(U, Uk+1) c Gk). It follows that
$\operatorname{St}(\mathrm{Gk}+1, \cup \mathrm{k}+1) \subset \mathrm{Gk}$ so $\mathrm{St}(\mathrm{Gk}+1, \nabla \mathrm{k}+1) \subset \mathrm{Gk} \varepsilon \nabla \mathrm{k}$.
Now suppose $V \neq G k+1$. Then $V=U_{0} \varepsilon \cup k+1$. If
$\operatorname{Gk}+I^{( }{ }^{U_{0}}=\phi$ then $\operatorname{St}\left(\mathrm{U}_{0}, \nabla \mathrm{k}+I\right)=\operatorname{St}\left(\mathrm{U}_{0}, \mathrm{v} \mathrm{k}+\mathrm{I}\right) \subset$ $U^{\prime} c V^{\prime}$ for some $U^{\prime} \varepsilon V_{k}$ and $V^{\prime} \varepsilon \nabla k$. If $G k+1 \cap U_{0} \neq \phi$, then, as above, $S t\left(U_{0}, v k+l\right) \subset G k$. Now, clearly $S t\left(U_{0}\right.$,
$\left.\nabla_{\mathrm{k}+1}\right)=\operatorname{St}\left(\mathrm{U}_{\mathrm{O}}, \tau_{\mathrm{K}+1}\right) \cup \cup \tilde{G}_{\mathrm{K}+1}$. Since $A_{\mathrm{K}+1} \subset_{\mathrm{A}_{\mathrm{k}}}$ and $\nu_{\mathrm{k}+1}<\eta_{\mathrm{K}}$. $\mathrm{G}_{\mathrm{k}+1} \subset \mathrm{G}_{\mathrm{k}} \operatorname{soSt}\left(\mathrm{U}_{\mathrm{O}}, \nabla_{\mathrm{k}+1}\right) \subset \mathrm{G}_{\mathrm{k}} \subset \nabla_{\mathrm{k}}$.
To show (c2), we only need show that for any $x \in X$ and $\varepsilon>0, \exists \mathrm{k}_{0} \mathrm{~s} \cdot \mathrm{t} . \quad \ell\left(\operatorname{St}\left(\mathrm{x}, \nabla \mathrm{k}_{0}\right)\right)<\varepsilon$. Let $\mathrm{x} \varepsilon \mathrm{X}$. (b2) implies $\exists k_{0}$ s.t. $1 / k_{0}<\frac{1}{2} \varepsilon$ and $\left(x, A k_{0}\right) \geq 1 / k_{0}$.

Since mesh $u k_{0}<{ }^{1 / k_{0}}, x \neq G k_{0}$. So if $x \in V \varepsilon \square k_{0}$ then $V \varepsilon \cup \mathrm{k}_{0}$ and $\ell(\mathrm{V})<1 / \mathrm{k}_{0}$. So $\ell\left(\operatorname{st}\left(\mathrm{x}, \nabla \mathrm{k}_{0}\right)\right) \leq 2 / \mathrm{k}_{0}<\varepsilon$.

Thus $\nabla k, k=2,3, \ldots$ satisfy the conditions of
lemma 3.5 and $\exists$ metric $\sigma$ on $X$ s.t:- (dl) $\sigma$ is compatible withl and $\nabla_{\mathrm{k}+1}<\mathrm{U}\left(\sigma, 2^{-\mathrm{k}}\right)<\nabla \mathrm{k}$
$\forall k, k=2,3, \ldots$.
Since $U\left(l, 2^{-\mathrm{k}-1}\right)=U \mathrm{k}+1<\nabla \mathrm{k}+1<\mathrm{U}\left(\sigma, 2^{-\mathrm{k}}\right)$, we have $\ell(x, y)<2^{-\mathrm{k}-1} \Rightarrow \sigma(\mathrm{x}, \mathrm{y})<2^{-\mathrm{k}}$ and condition (i) of lemma 3.6 follows.

Claim: For each $\mathrm{k}, \mathrm{k}=2,3,4, \ldots$ and $1 \leq \mathrm{i} \leq \mathrm{r}$ $\operatorname{St}(\mathrm{Ci}-\mathrm{Gk}, \nabla \mathrm{k}) \pitchfork\left(\mathrm{G}_{\mathrm{i}}^{\prime}-\mathrm{Gk}\right)=\Phi$

For suppose $\mathrm{x} \varepsilon \mathrm{St}^{(\mathrm{Ci}-\mathrm{Gk}, \nabla \mathrm{k})} \mathrm{Cl}^{\prime}\left(\mathrm{C}^{\prime} \mathrm{i}-\mathrm{Gk}\right)$. Then $\mathrm{x} \varepsilon \mathrm{V} \varepsilon \nabla \mathrm{k}$ for some V s.t. V$)(\mathrm{Ci}-\mathrm{Gk}) \neq \Phi, \mathrm{Vf})(\mathrm{Ci}-$ $\mathrm{Gk}) \neq \Phi$. Obviously $\mathrm{V} \neq \mathrm{Gk}$ so $\mathrm{V} \varepsilon \cup \mathrm{k}$ so $\quad \ell(\mathrm{V})<1 / \mathrm{k}$. But this implies $\mathrm{x} \varepsilon$ Ak $\in G k$ contrary to the fact that $\mathrm{x} \varepsilon \mathrm{C}_{i}^{i}-\mathrm{Gk}$.

Since $U\left(\sigma, 2^{-k}\right)<\nabla k, \quad \operatorname{St}\left(C i-G k, U\left(\sigma, 2^{-k}\right)\right) \upharpoonleft\left(C_{i}^{1}-G k\right)$
$=\Phi$. Hence $\sigma\left(\mathrm{Ci}-\mathrm{Gk}, \mathrm{C}^{\prime} \mathrm{i}-\mathrm{Gk}\right) \geq 2^{-\mathrm{k}}$.
Now let $W k=\left\{X \in X: \sigma(x, G k)<2^{-k+1}\right\} \quad k=2,3, \ldots$ Since Gk+1<Gk it follows that $\sigma(W k+1, X-W k) \geq 2^{-k}$. Since Gk $C W k$ we have $\sigma\left(C i-W k, C^{\prime} i-W k\right) \geq 2^{-k} \forall i$, $I \leq i \leq r$. Now from lemma 3.4, $\exists$ for each i, a continuous function $f i: X \longrightarrow I$ s.t. $f i(C i)=\{0\}: f i\left(C^{\prime} i\right)=\{1\}$ and fi is uniformly continuous on X-Wk w.r.t. $\sigma$ for each $k$. To complete the proof, it is only necessary to show that $\underset{k}{\lim } \sigma(W k)=0$. Since $G k \varepsilon \quad \nabla \mathrm{k}$ and $\nabla \mathrm{k}$ $<\mathrm{U}\left(\sigma, 2^{-\mathrm{k}+1}\right)$ we have $\sigma(\mathrm{Gk}) \leq 2^{-\mathrm{k}+2}$. It
then follows that $\sigma(W k) \leq 2^{-k+3}$ and the proof is complete.

Lemma 3.7 (Goto)
Let ( $X, \ell$ ) be a metric space. Let $\tau$ be a metric on $I^{r}$, for some positive integer $r$, giving the usual topology of $I^{r}$ : Let $f: X \rightarrow I^{r}$ be a continuous fanction $\wedge$ s.t. for any $\varepsilon>0$, ヨan open set $U$ of $X$ s.t. $\ell(U)<\varepsilon$ and $f$ is uniformly continuous on X-Y w.r.t. $\ell, \tau$

If $\sigma: X \times X \longrightarrow R$ is the function described by $\sigma$ ( $x, y$ ) $=\ell(x, y)+\tau(f(x), f(y))$, then $\sigma$ is an equivalent metric tol and $d_{2}(X, \sigma) \leq \max \left\{d_{2}(X, \ell), r\right\}$.

Proof: We may assume $\mathrm{d}_{2}(\mathrm{X}, \mathrm{l})<\infty$ otherwise there is nothing to prove. It is clear that $\sigma$ is a metric equivalent to 2 . Let $m=\max \left\{d_{2}(X, \ell), r\right\}$.

Let (Ci, C'i) $1 \leq i \leq m+1$ be $m+1$ pairs of closed sets of X s.t. $\sigma\left(\mathrm{Ci}, \mathrm{C}^{\prime} \mathrm{i}\right)>01 \leq i \leq m+1$. Let $\delta=$ min $\left\{\sigma\left(C i, C^{\prime} i\right), I \leq i \leq m+1\right\}$. By hypothesis $\exists$ an open set $U$ s.t. $\ell(U)<\frac{1}{4} \delta$ and $f$ is uniformly continuous on X-U w.r.t. \& , $\tau$. Let $V=\{x \in X$ : $\left.\ell(x, \bar{U})<\frac{1}{8} \delta\right\}$.

Then $\ell(V)<\frac{1}{2} \delta$.
Claim: $T\left(f(C i n V), f\left(C^{\prime} i(V)\right) \geq \frac{1}{2} \delta \cdot \forall i, l \leq i \leq m+1\right.$, For, if $x \in C i f V, y \in C^{\prime} i f V$ and $\tau(f(x), f(y))<\frac{1}{2} \delta$, we would have $\sigma(x, y)=\ell(x, y)+\tau(f(x), f(y))<$ $\frac{1}{2} \delta+\frac{1}{2} \delta=\delta$ contrary to the choice of $\delta$.

Let $\left.B i=\overline{f(C i n V)}, \quad B_{i}^{\prime}=\overline{f(C i}(/ V),\right] \leq i \leq m+1$.
Then BiA $B_{i}^{i}={ }_{\phi} \forall i, l \leq i \leq m+l$. Since $\operatorname{dim} I^{r}=r \leq m$ and using theorem 0.4 closed sets Ei, E'i $1 \leq i \leq m+1$ of $I^{r}$ s.t.:-
（bl）BicEi and B！$B_{i}^{\prime} \subset E^{\prime} i$
（b2）Ei ET＇i $^{\prime}=\phi$
（b3）$\bigcup_{i=1}^{m+1}\left(E i\left(E^{\prime} i\right)=I^{r}\right.$ 。
Since $I^{r}$ is compact，we have：－
（b4）${ }^{\top}\left(E i, E^{\prime} i\right)>\delta I>0 \forall i$ for some $\delta l$ ．

We have for each i that $\ell\left(f^{-1}(E i)-U, f^{-1}\left(E^{\prime} i\right)-U\right)$ $>0$ ．

To see this，let $\varepsilon>0$ be s．t．$x, y \varepsilon X-U$ and $\ell(x, y)$ $<\varepsilon \Rightarrow \tau(f(x), f(y))<\delta 1$ ．Such an $\varepsilon$ exists because $f$ is uniformly continuous on $X-U$ ．Let $x \in f^{-1}(E i)-U$ ，$y \varepsilon f^{-1}\left(E^{\prime} i\right)-U$ for any i．Then $\ell(x, y)<\varepsilon \Rightarrow$ $\tau(f(x), f(y))<\delta 1$ ，contrary to（b4）since $f(x) \varepsilon$ Ei， $f(y) \in E^{\prime}$ ．So $\ell(x, y) \geq \varepsilon$ ．Thus $\ell\left(f^{-1}(E i)-U, f^{-1}\left(E^{\prime} i\right)\right.$
$-U) \geq \epsilon \forall i \quad 1 \leq i \leq m+1$.
Now let $\mathrm{Fi}=\mathrm{f}^{-1}(\mathrm{Ei}) \wedge \bar{U}, \mathrm{~F}^{\prime} \mathrm{i}=\mathrm{f}^{-1}\left(\mathrm{E}^{\prime} i\right) \wedge \bar{U}$ ．
Then：－
（d1）$\ell\left(F i-U, F^{\prime} i-U\right)>0$ Vi． It is also clear that：－
（d2）Ci UeFi，C＇iノUEF＇i
（d3）FiノF＇i $=\phi$ $\mathrm{m}+\mathrm{J}$ ．
（d4）$\quad{ }_{i=1}^{U}\left(F i\left(F^{\prime} i\right)>U\right.$.
d2 follows from（bl），（d3）from（b2）and（d4）from （b3）．

Claim：－
$(d 5) \quad \ell\left(F i-U, C^{\prime} i-U\right)>0, \quad l\left(F^{\prime} i-U, C i-U\right)>0$ $\forall i$.
To see this，let $\delta 2=\min \left\{\frac{1}{8} \varepsilon, \ell\left(f^{-1}(E i)-U, f^{-1}\left(E^{\prime} i\right)-U\right)\right.$

Suppose $x \in C^{\prime} i-U$ and $\ell(x, F i-U)<\delta 2$.
Then $\dot{l}(x, F i-U)<\frac{1}{8} \varepsilon$ so $\ell(x, \bar{U})<\frac{1}{8} \varepsilon$ since
Ficus. So $x \in V$. So $x \in C^{\prime} i \prime V \subset f^{-1}$ (E'i).
Since $x \frac{1}{4} U, X \in f^{-1}\left(E^{\prime} i\right)-U$ and so $\ell(x, F i-U) \geq$
$\ell\left(\mathrm{X}, \mathrm{f}^{-1}(E \mathrm{E})-\mathrm{U}\right) \geq \ell\left(\mathrm{f}^{-1}(\mathrm{Ei})-\mathrm{U}, \mathrm{f}^{-1}\left(\mathrm{E}^{\prime} \mathrm{i}\right)-\mathrm{U}\right) \geq \delta .2$,
a contradiction. It follows that $\ell\left(\right.$ Fi-U, $\left.C^{\prime} i-U\right) \geq \delta_{2}$
> 0. Similarly $\ell\left(F^{\prime} i-U, C i-U\right)>0$.
We also have:-
$(\mathrm{d} 6) \ell\left(\mathrm{Ci}-\mathrm{U}, \mathrm{C}^{\prime} \mathrm{i}-\mathrm{U}\right)>0$ $\mathrm{Fi}, 1 \leq i \leq m+1$.
To see this, choose $\delta$ s st.
$0<\delta_{3}<\min \left\{o\left(C i, C^{\prime} i\right), l \leq i \leq m+1\right\}$. Since $f$
is uniformly continuous on $X-U, \exists \varepsilon>0$ sit.
$\varepsilon<\frac{1}{2} \delta$ and for $x, y \in X-U \ell(x, y)<\varepsilon \Rightarrow$
$\tau(f(x), f(y))<\frac{1}{2} \delta 3$. Then if $x \in C i-U, y \varepsilon C^{\prime} i-U$
for any i, $\ell(x, y)<\varepsilon \Rightarrow \tau(f(x), f(y))<\frac{1}{2} \delta 3$.
So $\sigma(x, y)=\ell(x, y)+\tau(f(x), f(y))<\varepsilon+\frac{1}{2} \delta_{3}<\delta_{3}$ contrary to the choice of $\delta_{3}$ and the fact that $x \in C i$, $y^{\prime} C^{\prime} i$. So for $x \varepsilon C i-U, y \varepsilon C^{\prime} i-U \quad \ell(x, y) \geq \varepsilon \bigvee^{x} i$ which implies $\ell\left(C i-U, C^{\prime} i-U\right) \geq \varepsilon>0 \quad i$.

Let Di = CilFi, $D^{\prime} i=C^{\prime} U^{\prime}{ }^{\prime} i \leq i \leq m+1$.
Since Pi, F'i are disjoint closed sets of $\bar{U}$ set. Cine $\bar{U} \in F i$ and C'i $\ \bar{U} \subset F^{\prime} i$, it follows that Di, D'i are disjoint closed sets of $X$ (since Ci, C'i are disjoint).

Furthermore, it follows from (di), (dy) and (db) that $\ell\left(D i-U, D^{\prime} i-U\right)>0$ Vi, $l \leq i \leq m+l$. Since $d_{2}(X, \ell) \leq m, \exists c l o s e d$ sets Ki, Ki of $X$ s.t. KinKi' $=\phi, D i-U C K i, D i \prime-U C_{K i}$, and $X=U_{i=1}^{m+1}\left(K_{i} \cup K_{i}^{\prime}\right)$ see Fig 3.1

Let $W i=(K i-U) U D i, W^{\prime} i=\left(K^{\prime} i-U\right) U D^{\prime} i$.
Since $(K i-U)>(D i-U),\left(K_{i}^{\prime}-U\right) \Longrightarrow\left(D^{\prime} i-U\right)$ and
Ki-U, K'i-U are disjoint, Wi, W'i are disjoint.
Clearly CicDicWi, C'ieD'icW'i and ${ }^{m+1}$ (WjW'i)
$i=1$

(using (d4) ).

So we have found disjoint closed sets Wi, W'i $1 \leq i \leq m+1$ m+1
s.t. CićWi, C'icG'i and $\underset{i=1}{U}\left(W i W^{\prime} i\right)=X$. Thus
$\mathrm{d}_{2}(\mathrm{x}, \sigma) \leq \mathrm{m}$ as required:

We are now ready to prove a result analogous to theorem 3.2 for the dimension function $d_{2}$.

Theorem 3.3. (Goto)
Let ( $X, \ell$ ) be a metric space $s . t \cdot d_{2}(X, \ell)=m<n$
$=\operatorname{dim} X$. Then for each $i, m \leq i \leq n$. Ja metric $l_{i}$ on
X s.t. $l_{i}$ is equivalent to $\ell$ and $d_{2}\left(X, l_{i}\right)=i$.

Proof: Let $i>m$ (there is nothing to show if $i=m$ ). The conditions of the theorem imply $m \geq 0$ so $i \geq 1$. Since dim X > i - l, ヨi pairs of disjojnt closed sets (Cj, C'i) $l \leq j \leq i \operatorname{s.t}$ for any closed sets $Y j, 1 \leq j \leq i$, s.t. Yj separates $C j$ and $C^{\prime} j$, we have $\cap_{j=1}^{n j \neq \phi .}$

By lenma 3.6 a metric $\sigma$ on $X$ and continuous functions $f_{j}: X \longrightarrow I I \leq j \leq i s . t .:-$

## Fig. 3.1


(i) $\sigma$ is equivalent to $\ell$ and $\ell>\sigma$.
(ii) $f_{j}(C j)=0, f_{j}\left(C^{\prime} j\right)=1$
(iii) Given $\varepsilon>0$, $\exists$ an open set $U$ of $X$ s.t. $\sigma(U)<\varepsilon$ and $f_{j} \mid X-U$ is uniformly continuous w.r.t. $\sigma$ y $j, l \leq j \leq i$.

Let $f: X \longrightarrow I^{i}$ be given by $f(x)=\left(f_{q}(x), f_{2}(x), \ldots\right.$, $\left.f_{i}(x)\right)$. Let $\tau$ be the metric on $I^{i}$ given by
$\tau(x, y)=\sum_{j=1}^{i}\left|x_{j}-y_{j}\right|$ where $x=\left(x_{1}, x_{2}, \ldots x_{i}\right)$,
$y=\left(y_{1}, y_{2}, \ldots . y_{i}\right)$. $\tau$ gives the usual topology of $I^{i}$. Condition (iii) above implies that $f$ satisfies the uniformity condition of lemma 3.7; i.e. given $\varepsilon<0$, $\exists$ an open set $U$ of $X$ s.t. $\sigma(U)<\varepsilon$ and $f \mid X-U$ is uniformly continuous w.r.t. $\sigma$, $\tau^{T}$ Let $l_{i}$ be given by $\ell i(x, y)=\ell(x, y)+\tau(f(x), f(y))$. Then from lemma $3.7, d_{2}(X, \ell i) \leq \max \left\{d_{2}(X, \sigma)\right.$, i\} . Since $\ell>\sigma, d_{2}(X, \sigma) \leq d_{2}(X, \ell)<i$ so $d_{2}(X, \ell i) \leq i$. On the other hand, we have $\ell i\left(C j, C^{\prime} j\right) \geq I$ $\forall j, l \leq j \leq i$ and yet if $Y . j, l \leq j \leq i$ are closed sets separating $C j$ and $C^{\prime} j$ then $\cap \quad Y j \neq \Phi$. This implies $d_{2}(X, \ell i)>i-1$, so $d_{2}(X, \ell i)=i$ as required.

We restate a special case of lemma 1.4.

Lemma 3.8
Let $X$ be a topological space, C, C' be disjoint closed k
sets of $X$ and $X=\underset{i=1}{\bigcup} D i$ where Di $l \leq i \leq k \quad$ is open and $\overline{\mathrm{D}} i<\mathrm{Di}+1$. For each i, let Fi be the closed set $\overline{\mathrm{D}} \mathrm{i}-\mathrm{Di}-1\left(\mathrm{D}_{0}=\Phi\right)$. Suppose Bi, $1 \leq i \leq \mathrm{k}$ are closed
sets of Fi s.t. Bi separates CnFi and C'へFi in Fi. Then $\exists \cdot \mathrm{a}$ closed set $B$ of $X$ s.t. $B$ separates $C$ and $C^{\prime}$ k in $X$ and $B \subset \underset{i=1}{\bigcup}$ (Bi ubdry Di) This lemma is obtained from.lemma 1.4 by putting $G j=X, j \geq k$.

Theorem 3.4 (Nichols, 1969)
Let ( $X, \ell$ ) be a metric space and $f: X \longrightarrow I$ a
continuous function. Define $\sigma: X x X \rightarrow R$ by $\sigma(x, y)=\ell(x, y)+|f(x)-f(y)|$. Then $\sigma$ is an equivalent metric to $\ell$ and
(i) $d_{5}(X, \sigma) \leq d_{5}(X, \ell)+1$
(ii) $d_{3}(X, \sigma) \leq d_{3}(X, \ell)+1$.

Proof: Since the proofs of (i) and (ii) are similar, they are proved simultaneously. We have seen earlier that $\sigma$ and $\ell$ are equivalent.

Let (X, l), f, $\sigma$ be as given with $d_{5}(X, \ell) \leq m$ (respectively $\left.\mathrm{d}_{3}(\mathrm{X}, \ell) \leq \mathrm{m}\right)$.

Let $A$ be a countable (resp. finite) set.
Let Cj, C'j jeA be pairs of disjoint closed sets of X s.t. $\sigma\left(\mathrm{Cj}, \mathrm{C}^{\prime} j\right) \geq \varepsilon>0 \forall j \varepsilon A$ for some $\varepsilon$.
Choose $N$ s.t. ${ }^{1 / N}<\frac{1}{2} \varepsilon$.
Since A is countable, $\exists$ distinct members Mj, $j^{\varepsilon} A$ of the interval ( $0,1 / \mathbb{N}$ ).
For each $j$, let $M^{0} j=0, M^{1} j=M j, M^{2} j=M j+1 / N$, $M^{3} j=M j+2 / N, \ldots M^{N} j=M j+N-1 / N, M j^{N+1}=1$. Put $k=N+1$.
Then (1) $M^{i} j<M^{i+1} j$ and $M^{i+1} j-M^{i} j \leq \frac{1}{2} \varepsilon \forall j^{\varepsilon} A$,

$$
0 \leq i \leq k-1
$$

（2）If $j \neq j^{\prime}$ and $I \leq i, i^{\prime} \leq k-1$ then $M^{i} j \neq{M^{\prime}}^{\prime} j^{\prime}$ ． Both claims are clear．

For $0 \leq i \leq k-1$ ，and $j \in A$ ，let Dji $=f^{-1}\left[0, M^{i} j\right)$ and let Djk $=X$ ．Then for fixed $j$ ，it is clear that the sets Dji $0 \leq i \leq k$ satisfy the conditions of lemma 3．8．It is also clear that if Fji is defined by Fji $=\bar{D} j i-\operatorname{Dji}-1 \leq i \leq k$（i．e．as in lemma 3．8），then：－ （3）$f(F j i) C\left[M j^{i-1}, M j^{i}\right]$ 。

Claim：（4）．$\ell\left(C j \cap F j i, C^{\prime} j \cap F j i\right) \geq \frac{1}{2} \varepsilon \quad j \varepsilon A, l \leq i \leq k$ For，if $x \in C j \cap F j i, y^{\varepsilon} C^{\prime} j^{\prime} \cap j i, ~ t h e n, ~ s i n c e \sigma\left(C j, C^{\prime} j\right)$ $>\varepsilon . \sigma(x, y)>\varepsilon ;$ but from（3）and（1），$|f(x)-f(y)|$ $\leq \frac{1}{2} \varepsilon$ So $\ell(x, y)=\sigma(x, y)-|f(x)-f(y)|>\frac{1}{2} \varepsilon$ and the claim follows．

Thus the collection（Cj＠Fji，C＇j〇Fji）$j \varepsilon A, 1 \leq i \leq k$ is a countable（resp．finite）collection satisfying （4）．Since $d_{5}(X, \ell) \leq m$（resp．$\left.d_{3}(x, \ell) \leq m\right)$ ，we can find closed sets $\mathrm{B}^{\prime} j i, j \varepsilon \mathrm{~A}, \mathrm{I} \leq i \leq \mathrm{k}$ of X s．t． $B^{\prime} j i$ separates $C j \cap F j i$ and $C^{\prime} j \cap F j i$ in $X$ and ord $\left\{B^{\prime} j i, j \varepsilon A, I \leq i \leq k\right\} \leq m-1$ ．Let $B j i=B^{\prime} j i n F j i$. Then Bji is a closed set of $X$（and $F j i$ ）separating CjnPji and C＇jnFji in Fji and ord Bji，jeA． $1 \leq i \leq k\} \leq m-1$.

We want to construct closed sets Bj of $X$ s．t． $B j$ separates $C j$ and $C^{\prime} j$ in $X$ and ord $\{B j, j \epsilon A\} \leq$ ord $\{B j i j \in A, l \leq i \leq k\}+1$ ．

From lemma 1，ヨ for each fixed $j$ a closed set $B j$ of

X s.t. By separates $C j$ and $C^{\prime} j$ and:k
(6) BiC. $\bigcup_{i=1}$ (Bjiubdry Di)

Claim: ord $\{B j, j \in A\} \leq$ ord $\{B j i, j \in A, I \leq i \leq k\}+1$.
For, suppose $x \in \bigcap_{r=1} B_{j_{r}}$ where $j_{r}, I \leq r \leq t$ are $t$ distinct members of $A(t>1)$. Then, from (6) we have:-
(7) $x \in \bigcup_{i=1}\left(B j_{r} i \cup b d r y D j_{r} i\right)$ for each $r, 1 \leq r \leq t$.

Now bury $D j_{r}^{i} \subset F j_{r} i \cap F j_{r} i+l \subset f^{-1}\left(M j_{r}^{i}\right)$ (from (3))
Also bury $D \mathrm{j}_{\mathrm{r}} \mathrm{k}=$ bury $\mathrm{X}=\phi$
So $\bigcup_{i=1}^{k}$ bdry $D j_{r}^{i}=\bigcup_{i=1}^{k-1}$ bdry $D j_{r}{ }^{i}$. We therefore have
$\bigcup_{i=1}^{k} \operatorname{bdry} D j_{r} i C \underbrace{k-1}_{i=1} f^{-1}\left(i d j_{r}^{i}\right)$. Now from (2), ( $\bigcup_{i=1}^{k-1}$
$\left.f^{-1}\left(i j^{i}\right)\right) \cap\left(\underset{i=1}{k-1} f^{-1}\left(M \frac{i}{j^{\prime}}\right)\right)=\phi$ if $j \neq j^{\prime}$.
Thus $x$ can belong to the set $\bigcup_{i=1}$ dry $D j_{r}{ }^{i}$ for at $k$ most one $r, l \leq r \leq t$. Then from (7), $x$ belongs to $\underset{i=1}{u}$
$B j_{r} i$ for at least $t-1$ indices $r$, say $1 \leq r \leq t-1$.
For each $r, l \leq r \leq t-1, \exists i_{r}, l \leq i_{r} \leq k s . t . x \in B j_{r} i_{r}$. Then $x \in B j_{r}{ }_{r}$ for $t-1$ distinct pairs $i_{r} j_{r}$. It follows that ord $\left\{B_{j}, j \in A\right\} \leq \operatorname{ord}\{B j i, J \in A, I \leq i \leq k\}+1$
Thur ord $\{B j, j \in A\} \leq m$. This shows that $d_{5}(X, \sigma)$
$\leq m+1$ (resp. $d_{3}\left(X, \infty^{\infty} \leq m+1\right)$.

We finally prove a result analogous to theorem 3.2.
for the dimension functions $d_{3}$ and $d_{5}$.

Theorem 3.5 (Nichols, 1969).
Let $(X, l)$ be a metric space with $d_{5}(X, e)=m<n=\operatorname{dim} X$ (resp. $\left.d_{3}(X, e)=m<n=\operatorname{dim} X\right)$. Then for any integer $s$ such that $m \leq s \leq n$ a metric $l_{s}$ equivalent to $l$ s.t. $d_{5}\left(x, l_{s}\right)=s$ (resp. $\left.d_{3}\left(x, l_{s}\right)=s\right)$.

Proof:
Since dim X > $n-1, \exists n$ pairs cf disjoint closed sets (Cj, C'j) $1 \leq j \leq n s . t$. if $B j 1 \leq j \leq n$ are closed sets of $X$ s.t. Bj separates $C j$ and $C^{\prime} j$ for $l \leq j \leq n$ then $\bigcap_{j=1}^{n} B j \neq \phi$. By Urysohns Iemma, $\exists$ for each
$j, 1 \leq j \leq n$, a continuous function $f_{j}: X \rightarrow I$ s.t. $f j(C j)=\{0\}, \quad f_{j}\left(C^{\prime} j\right)=\{1\}$. For each $i$, $M_{1} \leq i \leq n$ let $\ell_{i}(x, y)=C(x, y)+\sum_{j=1}^{i}\left|f_{j}(x)-f_{j}(y)\right|$.

Let $B_{0}=\ell$. Then from theorem $3.4, \quad e_{i}, 0 \leq i \leq n$ are equivalent and $d\left(X, l_{i}\right) \leq d\left(X, \ell_{i-1}\right)+1,1 \leq i \leq n, d=$ As in lemma $3.1, d_{5}\left(X, e_{n}\right)=n$ (resp. $\left.d_{3}\left(X, \ell_{n}\right)=n\right)$. It follows from the above facts that for any $s, m \leq s \leq n$ تa metric $l_{s}$ equivalent to $\ell . t . d_{5}\left(X, \ell_{S}\right)=s$ $\left(\right.$ resp. $\left.d_{3}\left(X, \ell_{s}\right)=5\right)$.

Historical notes:

The realization theorem for $d_{3}$ (theorem 3.5) was first proved for separable metric spaces only by Roberts (Roberts, 1968) in 1968. Nichols (Nichols 1969) generalized the result to all metric spaces in 1969. The same result for $\mathrm{d}_{2}$ (theorem 3.3.) was first proved in a very special case (for the spaces (Yn, $\ell_{n}$ ) in example 2.3 where $X=I^{n}$ ) by Nichols (Nichols, 1973) in 1973. Goto proved the result for all metric spaces in 1976.

In this section, we study some characterizations of the metric-dependent dimension functions $\mu$-dim, $d_{2}$, $d_{3}, d_{5}, d_{6}$ and $d_{7}$ and prove a weak sum theorem for the dimension functions $d_{2}, d_{3}, d_{6}, d_{7}$ and $\mu$-dim. In the proofs, we leave out trival cases where the dimension is -1.

Definition 4.1
A cover $\mathscr{U}$ of a metric space ( $\mathrm{X}, \mathcal{E}$ ) is said to be a Lebesgue Cover of ( $X, C$ ) if for some $\mathcal{S}>0$, every subset of X of diameter not exceeding 5 is contained in some member of $\mathscr{2}$. Such a $\mathcal{\delta}$ is called a Lebesgue number for $\mathscr{U}$.

Definition 4.2
A cover $\mathscr{U}$ of a metric space $(X, \&)$ is said to be uniformly shrinkable if for some $\delta>0$, $\exists$ a cover $\left\{F_{U}, U \in \mathscr{Q}\right\}$ of $X$ set. $\mathcal{E}\left(F_{U}, X-U\right) \geq \delta W U E \mathscr{Q}$. (Recall that $\mathcal{E}(x, \phi)=\infty \forall x \in X$ by convention). $\left\{F_{U}, U \in \mathscr{U}\right\}$ is called a uniform shrinking of $\mathscr{\ell}$.

Theorem 4.1
A cover $\mathscr{U}$ of a metric space $(X, \mathcal{C})$ is a Lebesgue cover of (X, $P$ ) iff it is uniformly shrinkable.

Proof: Necessity: Let $卂 1$ be a Lebeague cover of $(x, \ell)$ with Lebesgue number $\delta$. For each $U \in \mathscr{Z}$ Let $F_{U}=\left\{x \in X: \quad \ell(x, X-U) \geq \frac{1}{2} \delta\right\}$.

Then $\left\{F_{U}, U \in \mathscr{U}\right\}$ is a cover of $X$. For suppose $x \in X$. $\mathrm{B}(\mathrm{x}, \delta / / 2) \in \mathrm{U}_{0}$ for some $\mathrm{U}_{0} \in \mathscr{U}$. So $\ell\left(\mathrm{x}, \mathrm{X}-\mathrm{U}_{0}\right) \geq$ $\delta / 2$ so $x \in F_{U_{0}}$. Obviously $\ell\left(F_{U}, X-U\right) \geq \delta / 2 \forall U \in \mathcal{U}$. So $\mathscr{U}$ is uniformly shrinkable.

Sufficiency: Suppose a cover of a metric space ( $x, \ell$ ) is uniformly shrinkable.

Let $\left\{F_{U}, U \in \mathscr{U}\right\}$ be a cover of $X$ sit. $\ell\left(F_{U}, X-U\right)$ $\geq \delta>0 \quad \forall U E \mathscr{U}$ for some $\delta$.

Let $A$ be any subset of $X$ with $E(A) \leq \frac{1}{2} \mathcal{E}$.
Leaving out the trivial case $A=\phi, A \cap F_{0}^{+} \phi$ for some $U_{0} \in \mathscr{U}$. But this implies $A \subset U_{0}$ proving that $\mathscr{U}$ is Lebesgue.

Corollary 4.1
Every Lebesgue cover $\mathscr{U}$ of a metric space ( $X, \mathcal{Z}$ ) has an open Lebesgue refinement $\left\{G_{\mathbb{U}}, U \in \mathscr{U}\right\}$ s.t. $G_{U} \subset U$.

Proof: If $\mathcal{U}$ is a Lebesgue cover of ( $X, l$ ), let $\left\{F_{U}, U \in \mathscr{U}\right\}$ be a uniform shrinking of $\mathscr{U}$ s.t. $\left(F_{U}, X-U\right) \geq \delta>0 \quad \forall U \in \mathscr{U}$ for some $\delta$.
Let $G_{U}=B\left(F_{U}, \delta\right)$. Then $\left\{G_{U}, U \in \mathscr{U}\right\}$ is an open Lebesgue cover of $(X, \ell)$ and $G_{U} \subset U$.

Defn. 4.3 Let $\left\{G_{y}, y \in \Lambda\right\}$ be a collection of collections of subsets of a set $X$. Let $\Gamma$ be the set of functions $f: \Lambda \longrightarrow \bigcup_{y_{\in \Lambda}} \mathcal{L}^{2} y$ s.t. $f(y) \in \mathcal{Z}_{\gamma} \quad \forall y \in \Lambda$.
 $\{\cap f(y), f \in \Gamma\}$ $\gamma \in \lambda$

Defn 4．4．A collection $\}=\left\{C_{\alpha}, \alpha \in \mathcal{A}\right\}$ of subsets of a set $X$ is said to be m－point bounded if it is of order $m-1$ ．It is said to be point bounded if it is of finite order，and is said to be point finite if every point is contained in $C_{\alpha}$ for only finitely $\operatorname{many} \alpha \quad$.

Lemma 4．1
Let $\left\{\mathcal{S}_{y}, y \in \Lambda\right\}$ be a collection of collections of subsets of a metric space（X，E）．
（i）If $\mathcal{L} y$ is a Lebesgue cover of（ $\mathrm{X}, \mathcal{C}$ ）with Lebesgue number $\delta$ for each $\gamma \in \Lambda$ for some $\delta$ ，then $\Lambda_{y \in \Lambda} \zeta_{y}$ is a Lebesque cover of（ $X, E$ ）with Lebesque number $\delta$ ．
（ii）If $\mathscr{L}_{y}=\left\{G_{y}, G_{y}^{\prime}\right\}$ and $\left\{G_{y}^{\prime}, y \in \Lambda\right\}$ is locally finite，then $\Lambda_{\gamma_{\text {E }}}{ }^{4}{ }_{y}^{c} y$ is locally finite．．It is countable if $\Lambda$ is countable．
（iii）If $\mathscr{L}_{y}=\left\{G_{y}, G_{y}^{\prime}\right\}$ and $\left\{G_{y}^{\prime}, \gamma \in \Lambda\right\}$ is point bounded，then $A y_{A} \mathcal{G} y$ is point bounded．It is countable if $\Lambda$ is countable．
（iv） $\operatorname{If} \mathscr{C}_{y}=\left\{G, y, G^{\prime} y\right\}$ and $\left\{G^{\prime} y, y \in \Lambda\right\}$ is point finite，then $\Lambda_{y \in A} \mathscr{L}_{y}$ is point finite．It is countable if $\Lambda$ is countable

Proof：（i）．Suppose each 写y is Lebesgue with Lebesgue number $\mathcal{S}$ ．Let $A$ be any set of diameter not exceeding $\delta$ ．For each $\gamma \in \Lambda$ let $f(y)$ be a member of $\mathscr{L} y$ containing A（Since $\mathscr{L} y$ is Lebesgue with number $\delta)$ ．Then $A \subset \bigcap_{y \in \Lambda} f(y) \in A y \in \Lambda \mathcal{C}_{\mathcal{Y}}$ ．

This shows that $A$ yel $\mathcal{S}_{y}$ is a Lebesque cover of ( $X, \mathbb{E}$ ) with Lebesque number 5 .
(ii) Suppose $\mathcal{S}_{\gamma}=\left\{G_{\gamma}, G_{y}^{\prime}\right\}$ and $\left\{G^{\prime}, \gamma, y \in \Lambda\right\}$ is l.f. For any $x \in X, \exists$ a nbhd $U$ of $x$ s.t. $U$ intersects only finitely many $G^{\prime} y^{\prime} s$, say $G^{\prime} \gamma_{1}, \ldots, G^{\prime} y_{k}$. Put $B=$ $\left\{y_{1}, \ldots ., y_{k}\right\}$. Let $\Gamma$ be as in defn 4.3. If $f \in \Gamma$ is s.t. Un $(\cap f(y)) \neq \phi$ we must have $f(\gamma)=G_{\gamma}$ for $y \notin B$. There axe only finitely many such f's in $\Gamma$ and so $U$ intersects only finitely many members of $A_{y \in A} \sum^{2} x$
 let $f \in \Gamma$ be s.t. $f(y)=G^{\prime} y$ for infinitely may $y^{\prime} s$ in 1. Then, since $\left\{G^{\prime}, \gamma, \gamma \in \Lambda\right\}$ is $1 . f . \bigcap_{\gamma \in \Lambda} f(\gamma)=\phi$. So if $\cap_{\gamma \in \Lambda} f(\gamma) \neq \phi$, we must have $f(\gamma)=G^{\prime} y$
for only finitely many $y^{\prime}$. There are only countably many such f's in $\Gamma^{l}$ and that implies Aven 9 y is
countable. The proof of (iii) and (iv) are similar to the proof of (ii).

Lemma 4.2
Let $X$ be a normal space and ( $F_{\alpha}, F_{\alpha}^{\prime}$ ), of d a collection of closed sets of $X$ s.t. $F_{0} \cap F^{\prime}=\phi \forall \alpha E c h$ and $\left\{X-F^{\prime} \alpha\right.$, $\alpha \in \propto \mathcal{A}\}$ is point finite. If $\mathcal{G}=A \sec \left\{\left\{X-\mathrm{F}_{\alpha}, \mathrm{X}-\mathrm{F}_{\alpha}\right\}\right.$ (i.e. $\mathscr{U}_{\mathcal{L}}=A_{a \in \mathcal{A}} \mathscr{S}_{\alpha}$ where $\mathscr{S}_{\alpha}=\left\{\mathrm{X}-\mathrm{F}_{\alpha}, X-\mathrm{F} \boldsymbol{x}\right\}$ ) has an open refinement of order $\leq n \geq 0$ then $\exists$ closed sets $B_{\alpha}, \alpha \in \mathcal{A}$ s.t. $B_{\alpha}$ separates $F_{\alpha}$ and $F^{\prime} \alpha$ and ord $\left\{B_{\alpha}\right.$, $\alpha \in a\} \leq n-1$.

For a proof of this lemma, see Nagata "Modern dimension theory" II, 5, B pp 23-25.

In the rest of this section，Jn denotes the set $\{1,2,3, \ldots, n\}$ for a positive integer $n$ ．

Theorem 4.2 （Smith，1968）

Let $(X, \ell)$ be a metric space．Then $d_{2}(X, V) \leq n$ iff for each collection．$\{\mathscr{E} i, i \in J n+1\}$ of $n+1$ binary Lebesgue covers of $X$（i．e．covers consisting of two members），the cover $\mathcal{S}_{\mathcal{L}}=\Lambda_{i \in J n+1} \mathscr{S}_{2}$ of $X$ has an open refinement of order $\leq n$ ．

Proof：Necessity：Suppose $\mathrm{d}_{2}(\mathrm{X}, \mathcal{E}) \leq \mathrm{n} \geq 0$ ．
Let $\{i, i \in J n+1\}$ be $n+1$ binary Lebesque covers of X．From corollary 4．1，we may assume each $\mathcal{F}^{\mathbf{Y}} \mathrm{i}$ to be an open cover．Clearly，each $\mathcal{L}_{i}$ can be written as $\{G i, X-F i\}$ where $\ell(F i, X-G i) \geq \delta>0 \quad \forall i$ for some $\mathcal{S}$ ． Then，since $d_{2}\left(\begin{array}{l}X, \ell) \\ n+1\end{array} \leq n\right.$ ，ヨopen sets Ui，i $E J n+1$ s．t． FicUicŨicGi and $\cap \quad B i=\phi$ where $B i=b d r y$ Ui．For each non－empty subset I of Jn＋1 let $\begin{gathered}i=1 \\ \text { el be the }\end{gathered}$ collection $\{C \cap(\cap B i), C \in \wedge i \in I\{d i, X-\bar{U} i\}\}$ ． i申工
（Take $\underset{i \in \phi}{ } \mathrm{Bi}=\mathrm{X})$ ．For keJn＋1，let $F_{\text {g }}$ be the collection
 $|I|=k \quad k=1 \quad i=1$
clearly，refines $\wedge_{i \epsilon J n+1} \mathscr{L}_{i}$ ．If $F, F^{\prime}$ are distinct members of $\mathcal{F}_{\mathrm{k}}$ ，then for some $i \in \mathrm{~J} n+1$ we must have a situation where FCUi and $F^{\prime} \subset X-U i$ or $F \subset X-U \bar{U}$ and $F^{\prime} c$ $\bar{U} i$ so that $\mathrm{F} \cap \overline{\mathrm{F}}=\phi$ ．Thus ${ }^{\circ} \mathrm{k}$ ，being finite，is a disjointcollection of relatively open subsets of $U$ F． $F \in$ 特

Since $X$ is completely normal and ${ }^{2}$ is finite，$\exists$ a
disjoint collection ${ }^{5} \hat{H}^{k}$ of open subsets of X s.t. $\mathcal{H}_{\mathrm{k}}=\left\{\mathrm{H}_{\mathrm{F}}, \mathrm{FE} \mathcal{F}_{\mathrm{k}}\right\}$ and $\mathrm{FCH} \mathrm{F}_{\mathrm{F}}$. Iet $\mathrm{H}_{\mathrm{F}}{ }^{\prime}=\mathrm{H}_{\mathrm{F}} \cap \mathrm{G}$ where G
 $=\left\{H^{\prime} \cdot \mathrm{F}, \mathrm{F} \in \exists_{\mathrm{k}}\right\}$ is a disjoint collection of open sets of $X$ and $F^{2}$ refines $H^{\prime \prime k}$ (but they are not necessarily covers of $X$ ) which in turn refines $\Lambda i$ E Jn+1 ${ }^{\text {L }}$ i.
Since $U$ Fk covers $X$, so does $\bigcup_{k \in J n+1} H^{\prime} k=H$, $k \in J n+1 \quad k \in J n+1$
say .
Claim: ord $\mathscr{H} \leq n$. This is clear because each ${ }^{H} k$ is a disjoint collection. It is also clear that H refines $\Lambda_{i \in J n+1} \zeta_{i}$ since each $H_{k}$ does. Thus we have found an open refinement of $\Lambda_{i \in J n+1} \mathscr{L}_{i}$ of order $\leq n$.

Sufficiency: Assume that for each collection $\left\{\mathcal{Y}_{i}\right.$, $i \in J n+1\}$, of $n+1$ binary Lebesgue covers of $(X, l)$, ^íJn+1 Gi has an open refinement of order $\leq n$. Let (Ci, C'i) i $\in J n+1$ be $n+1$ pairs of closed sets s.t. $\ell\left(C i, C^{\prime} i\right)>0$. Then $\{X-C i, X-C ' i\}, i \in J n+1$, are clearly $n+1$ binary Lebesque covers of $(X, R), \Lambda_{i} \in J_{n+1}$ $\{X-C i, X-C ' i\}$ has an open refinement of order $\leq \mathrm{n}$ by hypothesis. From lemma 4.2, $\exists \mathrm{closed}$ sets Bi, $i \in J n+1$ s.t. Bi separates Ci and $\mathrm{C}^{\prime} \mathrm{i}$ and ord $\{B i, i \in$ $J n+1\} \leq n-1$. Thus $d_{2}(x, l) \leq n$.

Theorem 4.3. (Smith, 1968). Let (X, e) be a metric space. Then $d_{2}(X, R) \leq n$ iff every Lebesgue cover $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{n+2}\right\}$ of $(X, l)$, consisting of $n+2$ members has an open refinement of order $\leq n$.

Proof: Necessity: Assume $d_{2}(X, \ell) \leq n$.

Let $\mathscr{C}=\left\{G_{\hat{1}} \ldots . . G_{n+2}\right\}$ be a Lebesque cover of ( $X, l$ ). From theorem 4.1 (and taking closures) a closed cover $\mathcal{F}=\left\{F_{I}, F_{2}, \ldots, F_{n+2}\right\}$ of $X$ s.t. $\ell(F i, X-G i)$ $>0$ Vj, $1 \leq i \leq n+2 . ~ \Lambda i \in J n+1$ \{Gi, X-Fi\}refines $\mathcal{Z}$. This is because if $H \in / i \in J n+1$ \{Gi, X-Fi\}, then either $H \subset G j$ for some $i$, $i \in J n+l$, or $H \subset X-\bigcup_{i \in J n+1} F i$ in which case $H \in F n+2 \subset G n+2$ (since $\mathscr{F}^{\prime}$ covers $X$ ). ) By theorem $4=2, \wedge i \in J n\{G i, X-F i\}$ has an open refinement of order $\leq n$. Thus Ghas an open refinement of order $\leq n$.

Sufficiency: Suppose each Lebesgue cover $\mathcal{L}_{\mathcal{L}}=\left\{G_{1}, \ldots\right.$. $\ldots, G n+2\}$ of ( $X, \ell$ ) consisting of $n+2$ members has an open refinement of order $\leq n$. Let (Ci, C'i) i $\in J n+1$ be $n+1$ pairs of closed sets of $X$ s.t. $\ell\left(C i, C^{\prime} i\right)$ $>0$. Let $\delta$ be s.t. $0<\delta \leq \min \left\{\ell\left(C i, C^{\prime} i\right), i \in J_{r+1}\right\}$ For i $\in \mathrm{Jn}+\mathrm{l}$, let Ui $=\mathrm{B}(\mathrm{Ci}, \delta)$ and $\mathrm{Fi}=\mathrm{B}(\mathrm{Ci}, \delta / 4)$. Let $U n+2=X-U$ Fi.

Then $\mathscr{Z}=\left\{U_{1}, U_{2}, \ldots, U_{n+2}\right\}$ is uniformly shrinkable and so is a Lebesgue cover. To see that $\mathscr{U}$ is uniformly shrinkable, let $U^{\prime} i=B(C i, \delta / 2)$ i $\epsilon J n+l$ and $U^{\prime} n+2=X-\underset{i \in J n+1}{U} B(C i, \delta / 3)$. Then $\left\{U^{\prime}{ }_{1}, \ldots . U^{\prime} n+2\right\}$ is a uniform shrinking of $\mathscr{U}$. By hypothesis, $\mathscr{Z}$ has an open refinement $\mathbb{U}$ of order $\leq n$. ヨa function $f: W^{\prime}$ $\rightarrow \mathcal{U}$ s.t. for $W \in \mathscr{W}, W \subset f(W)$. For each $i \in J n+2$, let $H i=\bigcup_{W \in Q U} W$. Then $H=\left\{H_{1}, \ldots ., H_{n+2}\right\}$ is $f(W)=U i$
an open refinement of $U$ s.t. HicUi i€Jnt2, and ord $9 t \leq n$. Let $E i=C i-H i, i \in J n+l$. Let Yi $=$ $\mathrm{B}(\mathrm{Ei}, \delta / 4)$, $i \in \mathrm{Jn}+1$ (recall that $\ell(\mathrm{x}, \Phi)=\infty$ by convention), and let Vi $=$ HivYi, $i \in J n+1$, and $V n+2=$ $\mathrm{Hn}+2$. Yi $\cap \mathrm{Hn}+2$ cYi $\cap \mathrm{Un}+2=\phi$, $i \in \mathrm{Jn}+1$ from the definition of Yi and Un+2. This, together with ord $g_{1} \leq n$ implies ord $V \leq n$ where $V=\left\{V_{1}, \ldots, V_{n+2}\right\}$. It is clear that CicVicX-C'i i $\in J n+1$ and $V{ }^{\prime}$ covers X. Since X is normal, $\exists$ closed sets Di,i $\in J n+2$ )s.t. CicDicVi, iCJn+1 and $D=\left\{D_{1}, \ldots D_{n+2}\right\}$ covers X. Again, since X is normal, Jopen sets Ki, $i \in J n+1$ s.t. Dickickicvi, i $\in J n+1$. Let $B i=b d r y K_{i}$, $i \in J n+1$. Then clearly Bi separates Ci and C'i.

Claim: ord $\{B i, i \in J n+1\} \leq n-1$.
Suppose xen Bi. Then x\&Di for ieJn. Thus i $\in J n+1$
$x \in D n+2$ since covers $X$. Thus $x \in V n+2$. Also
 which is impossible since ord $V \leq n$. This shows that $d_{2}(X, e) \leq n$.

Defn 4.5 A collection of subsets of a metric space ( $X, C$ ) is said to be $n$-uniformly discrete, $n \geq 1$, if $\zeta_{0}=\bigcup_{i=1}^{n} \quad \zeta_{p i}$ where $\zeta_{i}, l \leq i \leq n$ satisfy the condition that $\exists \delta>0$ s.t. $\forall i, l \leq i \leq n$, and $C, C^{\prime}$ $\epsilon \zeta_{i}$ with $C \neq C^{\prime}$ we have $\ell\left(C, C^{\prime}\right)>\delta$.

Lemma 4.3 (Smith and Nichols)

If $\zeta$ is a Lebesgue cover of a metric space ( $X, \ell$ ) and $\zeta={ }_{\alpha \varepsilon \Delta}^{U} \zeta \alpha$ where each $\zeta \alpha$ is m-point bounded,
$m$ a fixed positive integer, then $\zeta$ has a refinement $\theta$ s.t. $\theta=\frac{U}{\alpha, \varepsilon \Delta} \quad \theta \alpha$ and each $\theta \alpha$ is m-uniformly discrete.

Proof: The proof is by induction on $m$.
Suppose the result true for a positive integer m. ) Let $\zeta$ be as in the lemma with $m$ replaced by $m+1 . \zeta$ has a Lebesque refinement $\Omega=\left\{E_{C}, C \varepsilon \zeta\right\}$ s.t. $\ell\left(F_{C}, X-C\right)>\delta>0 \quad \forall C \varepsilon \zeta$ for some $\delta$. For each $\alpha \varepsilon \Delta$ let $\dagger \alpha$ be the collection of all subcollections of $\zeta \alpha$ with $\mathrm{m}+1$ members. For each $\mathrm{S} \varepsilon \neq \mathrm{c}$ : let $\mathrm{Gs}=\bigcap_{\mathrm{C} \mathrm{\varepsilon}} \mathrm{~S} \mathrm{~F}_{C}$. Then for any $\alpha$, if $S, S^{\prime} \varepsilon \neq \alpha, S \neq S^{\prime}, \exists C \varepsilon \zeta \alpha(W \cdot L \cdot G)$ s.t. CES, C\&S'. Then, since $\zeta \propto$ is m+l-point bounded, $G s^{\prime} \cap \mathrm{C}=\Phi$. But GsCF $\mathrm{F}_{\mathrm{C}}$ so $\ell\left(\mathrm{Gs}, G s^{\prime}\right)>\delta$ Let $Y_{\alpha}=\bigcup_{S \varepsilon+\alpha} G_{S}$ Let $Y=\bigcup_{\alpha \varepsilon \Delta}^{U} \quad Y$ and let $Z=X-Y$. - For each $\alpha \varepsilon \Delta$, let $\Pi \alpha=\left\{F_{c} \cap Z, C \varepsilon \zeta \alpha\right\}$. Let $\Pi={ }_{\alpha \varepsilon}{ }^{\prime} \Delta \quad \Pi \alpha$. Then $\Pi$ is a Lebesgue cover of $Z$ For each $\alpha \varepsilon \Delta$, $\Pi \alpha$ is m-point bounded. By the induction hypothesis, It has a refinement $\theta^{\prime}={ }_{\alpha, \varepsilon}^{( } \Delta \quad \theta^{\prime} \alpha$ where $\Theta_{\alpha}^{i}$ is m-uniformly discrete with $\Theta^{\prime} \alpha=\bigcup_{i=1}^{\bigcup} \Lambda \alpha_{i}$
where $\Lambda 0 i, 1 \leq i \leq m$ satisfy the condition that for some $\delta^{\prime}>0, K, K^{\prime} \varepsilon \Lambda \alpha_{i}, K \not K^{\prime} \Rightarrow \quad \ell\left(K_{,} K^{\prime}\right)>$ for any i. For each $\alpha$, let fam+1 $=\left\{\right.$ G's, $\left.S_{\varepsilon}+\alpha\right\}$. Let $\theta \alpha=\bigcup_{i=1}^{u} \Lambda \alpha_{i}$. Then $\theta={ }_{\alpha \in \Delta} \theta \alpha$ is the
$\Omega=\left\{F_{C}^{\prime}, C \varepsilon \zeta\right\}=\bigcup_{\alpha \in \Delta} \Omega \alpha$ where $\Omega \alpha=\left\{F_{C}, C \varepsilon \zeta \alpha\right\}$
is the required refinement. This completes the induction.

Lemma 4.4. (Smith and Nichols)

Let $\zeta$ be a Lebesgue cover of a metric space ( $X, \ell$ )
s.t. $\zeta={ }_{\alpha}{ }^{\prime} \varepsilon_{\Delta} \zeta \alpha$ where each $\zeta \alpha$ is m-point bounded.

Then $\zeta$ has an open Lebesque refinement $\theta$ s.t. $\Theta$ $={ }_{\alpha \varepsilon \Delta}^{\prime} \triangleq \theta \alpha$ where each $\theta \alpha$ is m-uniformly discrete.

Proof: $\zeta$ has a Lebesque refinement $\left.\Lambda_{\Lambda}^{\{ }=\mathrm{F}, \mathrm{C} \ell \zeta\right\}$ s.t. $\ell\left(F_{G}, X-C\right)>\delta>0 \quad \mathrm{~F} \varepsilon \zeta$ for some $\delta$. Let $\Omega \alpha=\left\{\mathrm{F}_{\mathrm{C}}\right.$, C $\varepsilon \zeta \alpha\} \quad$. Then $\Omega=\bigcup_{\alpha \varepsilon \Delta} \Omega \alpha$ and each $\Omega \alpha$ is m-point bounded.

By lemma 4.3 , $\Omega$ has a refinement $I I=\underset{\alpha \varepsilon \Delta}{U}$ II $\alpha$
where each $\Pi \alpha$ is m-uniformly discrete. $\Pi \quad \alpha=\bigcup_{i=1}^{m} \Lambda \alpha_{i}$
where for some $\delta^{\prime} \alpha>0, K, K^{\prime} \varepsilon \Lambda \alpha_{i}, 1 \leq i \leq m$,

Let $\delta \alpha \cdot=\min \left\{\delta, \delta^{\prime} \alpha\right\}$ for each $\alpha \varepsilon \Delta$.
Then if $\theta \alpha=\{B(H, 1 / 4 \delta \alpha), H \varepsilon H \alpha\}, \theta \alpha$ is an
m-uniformly discrete open collection and $\theta=\bigcup_{\alpha \varepsilon \Delta} \theta \alpha$
is the required open Lebesque refinement of $\zeta$.

Corollary 4.2 (Smith and Nichols)

Let $\zeta$ be an $n$-point bounded Lebesque cover of a metric space ( $X, \ell$ ). Then $\zeta$ has an $n$-uniformly
discrete open Lebesque refinement.

Proof: This is immediate from Lemma 4.4.

Theorem 4.4. (Smith and Nichols)
Let ( $\mathrm{X}, \ell$ ) be a metric space. Then $\mathrm{d}_{2}(\mathrm{X}, \ell) \leq \mathrm{n}$ iff every $n+2$ - point boundéd Lebesgue cover of ( $X, \ell$ ) has an open refinement of order $\leq n$.

Proof: Necessity: Assume $\mathrm{d}_{2}(\mathrm{X}, \ell) \leq \mathrm{n}$. Let $\zeta$ be an $n+2$ - point bounded Lebesgue cover of $X$. From

Corollary $4.2, \zeta$ has an open Lebesque refinement $\theta$ $\mathrm{n}+2$

where $\theta=$| $\substack{\mathrm{U}=1}$ |
| :---: |$\quad \theta$ i and each $\theta i$ is disjoint.

Let $\mathrm{Gi}=\underset{\mathrm{Ge}_{\theta}}{\bigcup_{\mathrm{i}}} \mathrm{G} .\{\mathrm{Gi}, 1 \leq \mathrm{i} \leq \mathrm{n}+2\} \quad$ is a Lebesque
cover of $X$ with $n+2$ members so, from Theorem 4.3,
\{Gi\} has an open refinement II of order $\leq n . \exists$
a function $f: \Pi \longrightarrow\{1,2, \ldots . . n+2\}$ s.t.
$H \in G_{f(H)} \forall H \in \Pi$. Let $\Lambda=\left\{H \cap G, H \varepsilon \Pi, G_{\varepsilon} \cdot \theta_{f(H)}\right\}$. Then $\Lambda$ is an open refinement of $\zeta$ of order $\leq n$.

Sufficiency: This is clear from Theorem 4.3 since every collection consisting of $\mathrm{n}+2$ members is $\mathrm{n}+2$ point bounded.

Theorem 4.5 (Smith, Smith and Nichols)

Let ( $\mathrm{X}, \mathrm{l}$ ) be a metric space. Then the following are equivalent:-
(i) $\mathrm{d}_{3}(X, \ell) \leq n$
(ii) Every finite Lebesque cover of (X, l) has an open refinement of order $\leq n$.
(iii) Every point bounded Lebesque cover of (X, \&) has an open refinement of order $\leq n$.
(iv) If (C $\alpha, C^{\prime} \alpha$ ) $\alpha \varepsilon \Delta$ are pairs of closed sets of X s.t. $\ell\left(C \alpha, C^{\prime} \alpha\right)>\delta>0 \quad \forall \alpha \varepsilon \Delta$ for some $\delta$ and $\{X-C \cdot \alpha, \alpha \varepsilon \Delta\}$ is point bounded then $\exists$ closed sets $B \alpha, \alpha \varepsilon \Delta$ s.t. $B \alpha$. separates $C \alpha$ and $C^{\prime} \alpha$ and ord $\{B \alpha, \alpha \varepsilon \Delta\} \leq n-1$.

Proof: We prove (i) $\Rightarrow$ (ii) $\Rightarrow$ (iii) $\Rightarrow$ (iv) $\Rightarrow$ (i). (i) $\Rightarrow$ (ii).

Suppose $d_{3}(X, \ell) \leq n$. Let $\theta=\left\{G_{1}, G_{2}, \ldots . ., G_{k}\right\}$ be a finite Lebesque cover of (X, \&). From corollary 4.1, we may assume $\theta$ to be an open cover. $\exists$, by theorem 4.1, a closed cover $\Omega=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{k}}\right\}$ of $X$ s.t. $\ell\left(F_{i}, X-G_{i}\right)>0$ for $l \leq i \leq k$.

Since $d_{3}(X, \ell) \leq n, \exists$ open sets Ui, $1 \leq i \leq k s . t$. FiedicūieGi, $1 \leq i \leq k$, and ord $\{b d r y ~ U i, ~ l \leq i \leq k\}$ $\leq n-1$. By lemma 1.3,\{ Gi\} has an open refinement of order $\leq n$.
(ii) $=>$ (iii)

Assume (ii). Let $\zeta$ be a point bounded Lebesque cover of ( $\mathrm{K}, \ell$ ) so for some positive integer $m \zeta$ is m-point bounded. From corollary 4.2, $\zeta$ has an open Lebesque refinement $\theta$ where $\theta=\left(\begin{array}{l}\mathrm{m}\end{array}\right.$ i and each $\theta$ i is $i=1$
disjoint. Let Gi $=\underset{\mathrm{G} \varepsilon}{\mathrm{U}} \mathrm{Oi}_{\mathrm{G}}^{\mathrm{G}} . \quad\{\mathrm{Gi}, 1 \leq i \leq \mathrm{m}\}$
is a finite Lebesque cover of (X, l). From (ii), $\{$ Gi, $1 \leq i \leq m\}$ has an open refinement $\pi$ of order $\leq n$.
$\exists$ a function $f: I \longrightarrow\{I, 2, \ldots, m\}$ s.t. $H \subset G_{f}(H)$ $\forall H \varepsilon \Pi \cdot$ Let $\Lambda=\{H \cap G, H \varepsilon \Pi, G \varepsilon \Theta f(H)\}$, Then $\Lambda$ is an open refinement of $\zeta$ of order $\leq n$.
(iii) $\Rightarrow$ (iv)

Assume (iii). Let ( $\mathrm{Ca}, \mathrm{C}^{\prime} \alpha$ ) $\alpha \varepsilon \Delta$ and $\delta$ be as in (iv). $\left\{X-C, X, C^{\prime} \alpha\right\}$ is a Lebesgue cover of ( $X, \ell$ ) \# $\alpha \varepsilon \triangle$ and so, therefore, is $\Lambda \alpha \varepsilon \Delta\left\{X-C \alpha, X-C{ }^{\prime} \alpha\right\}$ from Lemma 4.1. Since $\left\{X-C^{\prime} \alpha, \alpha \varepsilon \Delta\right\}$ is point bounded, ^ar $\triangle\left\{X-C \alpha, X-C^{\prime} \alpha\right\}$ is point bounded by lemma 4.1. So from (iii), $\Lambda \alpha \varepsilon \Delta\left\{X-C \alpha, X-C^{\prime} \alpha\right\}$ has an open refinement of order $\leq n$. From lemma 4.2, Jclosed sets $B a, a \varepsilon \Delta$ s.t. $B \alpha$ separates $C \alpha$ and $C^{\prime} \alpha$ and ord $\{\mathrm{B} \alpha, \alpha \varepsilon \Delta\} \leq \mathrm{n}-1$.
(iv) $\Rightarrow$ (i).

This is clear from the definition of $d_{3}$.

Lemma 4.5 (Smith, 1970)
Let $\Theta=\{G \alpha, \alpha \varepsilon \Delta\}\}$ be a star-countable collection of subsets of a set $X$. Then $\exists$ a partition $\{\Delta \beta$, $\beta \in \chi\}$ of $\Delta$ s.t. $\Delta \beta$ is countable for each $\beta \varepsilon \chi$ and if we put $X \beta=\alpha \in \Delta{ }^{\prime} \beta$ G then if $\beta, \beta^{\prime} \quad \chi, \beta \neq \beta^{i}$, then $X_{\beta} \cap X_{\beta^{\prime}}=\Phi$.

Proof: Define a relation $\sim$ on $\Delta$ as follows. $\alpha \sim \alpha^{\prime}$ if $\exists$ a finite number of members $G_{\alpha_{1}}, G_{\alpha_{2}}, \ldots G_{\alpha_{k}}$ of $\theta$ s.t. $G \alpha \rho G \alpha_{1} \neq \Phi, ~ G \alpha_{1} \cap G \alpha_{2} \neq \Phi, \ldots . \mathrm{Ga}_{\mathrm{k}} \cap$ $G a^{\prime} \neq \Phi . \quad$ Clearly $\sim$ is an equivalence relation on $\Delta$. Let $\{\Delta \beta, \beta \varepsilon \chi\}$ be the collection of equivalence
classes of $\sim$. Then the conditions of the lemma are satisfied.

Lemma 4.6 (Smith, 1968)
Every countable Lebesgue cover of a metric space (X,l) has a countable, open, l.f. Lebesgue refinement.

Proof: Let $\theta$ be a countable Lebesgue cover of a metric space (X, ८). From corollary 4.l, $\Theta$ has a countable open Lebesgue refinement $\Pi=\left\{H_{1}, H_{2}\right.$, $\ldots$. . Let $\Omega=\left\{\mathrm{F}_{1} ; \mathrm{F}_{2}, \ldots.\right\}$ be a uniform
 2,.... for some $\delta$.

Let $U i=H i-\underset{j<i}{U(F j, \delta / 4)} i=2,3, \ldots$ and $U_{1}$
$=H_{1}$. Clearly $u=\left\{U_{1}, U_{2}, \ldots.\right\}$ is an open, countable, l.f. refinement of $\theta$. Furthermore, if $E i=B\left(F i, \frac{1}{2} \delta\right)-$ U $B(F j, 1 / 3 \delta)$
$i=2,3 \ldots$ and $E_{1}=B\left(F_{1}, \frac{1}{2} \delta\right)$, then $\left\{E_{I}, E_{2} \ldots\right.$.
... \} is a uniform shrinking of $u$ so $u$ is Lebesgue.

Theorem 4.6 (Smith, Smith and Nichols)

Let ( $X, \ell$ ) be a metric space. Then the following conditions are equivalent
(i) $\mathrm{d}_{6}(\mathrm{X}, \ell) \leq \mathrm{n}$
(ii) Every countable l.f. Lebesgue cover of ( $\mathrm{X}, \ell$ ) has an open refinement of order $\leq n$.
(iii) Every countable Lebesgue cover of ( $X, \ell$ ) has an open refinement of order $\leq n$.
(iv) Every star-countable Lebesgue cover of (X, \&) has an open refinement of order $\leq n$.
(v) Every Lebesgue cover of (X, l ) representable as a union ${ }_{i} \underline{U}_{1}$ Vi with $v i$ m-point bounded $i=1,2 \ldots$ for some positive integer $m$ has an open refinement of order $\leq n$.

Proof: We prove (i) => (ii) => (iii) => (iv) =>

$$
(v) \Rightarrow(i i) \Rightarrow(i) .
$$

(i) $\Rightarrow$ (ii).

Let $\theta=\left\{G_{1}, G_{2}, \ldots.\right\}$ be a countable l.f.
Lebesgue cover of ( $\mathrm{X}, \ell$ ). From corollary 4.1., we may assume $\Theta$ is open. Fron theorem 4.1, $\theta$ has a closed refinement $\Omega=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2} \ldots ..\right\}$ s.t. $\ell(F i, X-G i) \geq \delta>0 \forall i, i=1,2,3, \ldots$ for some $\delta$. Since $d_{6}(X, \ell) \leq n, \exists$ open sets Ui, $i=1,2, \ldots$ s.t. FicUicūicGi $i=1,2, \ldots$ and ord $\{b d r y$ Ui, $i=1,2, \ldots.\} \leq n-1 . \quad\{U i\}$ is a cover of $X$ and by lemma $1.3 \quad$ has an open refinement of order $\leq n$.
(ii) $\Rightarrow$ (iii).

This is obvious from lemma 4.6.
(iii) => (iv).

Assume (iii). Let $\theta=\left\{\mathcal{G}_{\alpha}, \alpha \varepsilon \Delta\right\}$ be a star countable Lebesgue cover of ( $\mathrm{X}, \ell$ ). From lemma 4.5, ヨ a partition $\{\Delta \beta, \beta \in X\}$ of $\Delta$ s.t. each $\Delta \beta$ is countable
and if $\operatorname{Mr} \beta={ }_{\alpha \varepsilon \Delta \beta}{ }^{\prime} \quad G^{\prime} \alpha$ then $X \beta\left(I X \beta^{\prime}=\Phi\right.$ if $\beta \neq \beta^{\prime}, \beta, \beta^{\prime} \varepsilon X$
Clearly, for each $\beta \varepsilon X, \cup \beta=\{G \alpha, \alpha \varepsilon \Delta \beta\} \cup\{X-X \beta\}$
$\left(=\{G \alpha, \alpha \varepsilon \Delta \beta\} \cup\left\{\bigcup_{\alpha \notin \Delta \beta}^{U} G \alpha\right\}\right)$ is a countable Lebesgue cover of ( $X, \ell$ ). $\varepsilon$ From (iii), $u \beta$ has an open refinement $U^{\prime} \beta$ of order $\leq n$. If we let $U^{\prime \prime} \beta$ be the collection of those members of $U \beta$ which are contained in some $\mathrm{G} \alpha, \alpha \varepsilon \Delta \beta$, then $U^{\prime \prime} \beta$ is an open cover of $X \beta$ of order $\leq \mathrm{n}$ which refines $\{\mathrm{G} \alpha, \alpha \varepsilon \Delta \beta\}$. Let $u=\mathcal{B E X}^{(J} u^{\prime \prime} \beta$.

Then $u$ is an open refinement of $\theta$ of order $\leq n$.
(iv) $\Rightarrow$ ( $v$ )

Assume (iv). Let $\zeta$ be a Lebesgue cover of (X, $\ell$ )
s.t. $\zeta=\bigcup_{i=1} \zeta i$ where $\exists$ an integer m s.t. $\zeta$ i is m-point bounded for each i. From lemma 4.4., ら has an open Lebesque refinement $\theta$ s.t. $\theta=\bigcup^{\infty} \theta$ i $\mathrm{m} \quad i=1$ and each $\theta i=\bigcup$ II $i j$ where $\Pi$ ij are disjoint $j=1$
collections. For each i, $i=1,2, \ldots$ and $1 \leq j \leq m$, let Hij $=$ U $H . \quad$ Then $\Pi=\{$ Hij, $i=1,2, \ldots$ Hє $\mathrm{Mi}^{\mathrm{j}}$
$1 \leq j \leq m\}$ is a countable Lebesque cover of ( $X, \ell$ ). From (iv) (or even (iii)) $\Pi$ h has an open refinement U of order $\leq n . \exists a$ function $f: u \longrightarrow N \times N \quad s . t$. UcHf(U) $\begin{aligned} & \mathrm{U} \\ & \mathrm{U} \\ & \mathrm{E} \\ & \text { U. }\end{aligned}$

Then $\left\{U n K, U \varepsilon U, K \varepsilon \Pi_{f(U)}\right\}$ is ar open refinement of $\zeta$ of order $\leq n$.
(v) $\Rightarrow$ (ii) is immediate.
(ii) $\Rightarrow$ (i).

Assume (ii). Let (Ci, C'i) $i^{\varepsilon} N$ be a collection of pairs of closed sets of $X$ s.t. $\quad \ell\left(C i, C^{\prime} i\right) \geq \delta>0$ $\forall i \varepsilon N$ for some $\delta$ and $\{X-C ' i, i \varepsilon N\}$ is l.f. From lemma 4.1, $\Theta=\Lambda i \varepsilon N \quad\{X-C i, X-C ' i\}$ is a countable, l.f. Lebesque cover of (X, \&). From (ii), $\Theta$ has an open refinement of order $\leq n$. From lemma 4.2, ヨ closed sets Bi, iعN s.t. Bi separates Ci and C'i and ord $\{B i, i \varepsilon N\} \leq n-1$. This completes the proof.

Lemma 4.7
Every point finite Lebesque cover of a metric space (X,l) has a locally finite Lebesque refinement.

Proof: Let $u$ be a point finite Lebesque cover of a metric space ( $X, \ell$ ). From Theorem $4.1 U$ has a uniform shrinking \{FU, UEU\} s.t. $\ell(F U, X-U)>\delta$ $>0 \forall \mathrm{U} \varepsilon \mathrm{U}$ for some $\delta$. Let $G U=B\left(F U, \frac{1}{2} \delta\right)$. Claim: $\quad \theta=\{G U, U \varepsilon U\}$ is a l.f. Lebesgue cover of (X, ८). $\theta$ is Lebesque because \{FU, U\&U\} is a uniform shrinking of $\theta$. To see that $\theta$ is l.f., let $x \varepsilon X$. Then, since $u$ is point finite, $x$ is contained in only finitely many members, say $\mathrm{U}_{1} \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{k}}$ of u. Now if $x \notin U \varepsilon U$, then $B\left(x, \frac{1}{2} \delta\right) \cap G U=\Phi$ so $B\left(x, \frac{1}{2} \delta\right)$ intersects at most a finite number of members $\left(\mathrm{GU}_{1}, \mathrm{GU}_{2}, \ldots \mathrm{GU}_{\mathrm{k}}\right)$ of $\theta$.

Theorem 4.7 (Smith, Smith and Nichols)

Let ( $\mathrm{X}, \ell$ ) be a metric space. Then the following conditions are equivalent:-
(i) $d_{7}(X, l) \leq n$.
(ii) Every locally finite Lebesque cover of (X, ) has an open refinement of order $\leq n$.
(iii) Every point finite Lebesgue cover of ( $X, \ell$ ) has an open refinement of order $\leq n$.
(iv) If ( $\left.C \alpha, C^{\prime} \alpha\right) \alpha \varepsilon \Delta$ is a collection of pairs of closed sets of $(\mathrm{X}, \ell)$ s.t. $\quad \ell\left(\mathrm{C} \alpha, \mathrm{C}^{\prime} \alpha\right)>\delta>0 \mathrm{~F}$ $\alpha \varepsilon \Delta$ for some $\delta$ and $\{\mathrm{X}-\mathrm{C} \mid \alpha, \alpha \varepsilon \Delta\}$ is point finite then $\exists \mathrm{closed}$ sets $\mathrm{B} \alpha, \alpha \varepsilon \triangle$ s.t. $\mathrm{B} \alpha$ separates $\mathrm{C} \alpha$ and $\mathrm{C}^{\prime} \alpha \quad \forall \alpha \varepsilon \Delta$ and ord $\{B \alpha, \alpha \varepsilon \Delta\} \leq \mathrm{n}-1$

Proof: We prove (i) $\Rightarrow>(i i)=>(i i i i) ~=>~(i v) ~=>~(i) . ~$ (i) $\Rightarrow$ (ii).

Assume $\mathrm{d}_{7}(\mathrm{X}, \ell) \leq \mathrm{n}$. Let $\theta$ be a l. f . Lebesgue cover of (X, \&). From corollary 4.1, we may assume $\theta$ to be open. From theorem 4.1, $\Theta$ has a closed refinement $\left\{F_{G}, G \varepsilon \theta\right\}$ s.t. $\ell(F G, X-G)>\delta>(\forall G \varepsilon \ominus$ for some $\delta$. Since $d_{7}(X, l) \leq n, \exists$ open sets $U_{G}, G \varepsilon \Theta$ s.t. $F_{G} \subset U_{G} \subset \bar{U}_{G} \subset G \quad F G \varepsilon \Theta$ and ord $\left\{\right.$ bdry $\left.U_{G}, G \varepsilon \Theta\right\} \leq n-1$. From lemma 1.3, $\Theta$ has an open refinement of order $\leq n$.
(ii) => (iii).

This is obvious from lemma 4.7
(iii) => (iv).

Let ( $\mathrm{C} \alpha, \mathrm{C}^{\prime} \alpha$ ) $\alpha \varepsilon \Delta$ and $\delta$ be as in (iv).
$\left\{X-C \alpha, X-C^{\prime} \alpha\right\} \quad$ is a Lebesque cover of ( $X, \ell$ )
with Lebesque number $\delta \forall \alpha \varepsilon \Delta$. From lemma 4.1, $\Theta$
$=\Lambda \alpha \varepsilon \Delta \quad\left\{\mathrm{X}-\mathrm{C} \alpha, \mathrm{X}-\mathrm{C}^{\prime} \alpha\right\}$ is a point finite Lebesque cover
of (X, \&). From (iii) O has an open refinement of order $\leq \mathrm{n} . \quad$ From lemma 4.2, $\exists \mathrm{closed}$ sets $\mathrm{B}_{\alpha}$, $\alpha \varepsilon \Delta$ satisfying the condition in (iv).
(iv) $\Rightarrow$ (i)

This is obvious.

Theorem 4.8 (Smith, 1970)
Let ( $X,=$ ) be a metric space.
Then the following conditions are equivalent
(i) $\quad d_{5}(X, \ell) \leq n$
(ii) If $\left(C \alpha, C^{\prime} \alpha\right) \alpha \varepsilon \Delta$ is a collection of pairs of
closed sets of ( $\mathrm{X}, \ell$ ) s.t. $\quad \ell\left(\mathrm{C} \alpha, \mathrm{C}^{\prime} \alpha\right)>\delta$
$>0 \forall \alpha \varepsilon \Delta$ for some $\delta$ and $\left\{\mathrm{Z}_{\mathrm{m}}-\mathrm{C}^{\prime} \alpha, \alpha \varepsilon \Delta\right\}$ is
star countable, then $\exists$ closed sets $B \alpha, \alpha \varepsilon \triangle$
s.t. $\bar{B} \alpha$ separates $C \alpha$ and $C^{\wedge} \alpha \quad \forall \alpha \varepsilon \Delta$ and ord $\{B \alpha, \alpha \varepsilon \Delta\} \leq n-1$.

Proof:
(i) $\Rightarrow$ (ii)

Assume $\mathrm{d}_{5}(\mathrm{X}, \ell) \leq \mathrm{n}$. Let $\left(\mathrm{C} \alpha, \mathrm{C}^{\prime} \alpha\right) \alpha \varepsilon \Delta$ and $\delta$ be as in (ii). From lemma 4.5, ヨa partition $\{\Delta \beta$, $\beta \varepsilon X\}$ of $\triangle$ s.t. each $\Delta \beta$ is countabre and if $X \beta=$


Since $\Delta \beta$ is countable and $d_{5}(X, \ell) \leq n, \exists$, for each $\dot{\beta} \varepsilon x$, closed sets $B \alpha, \alpha \varepsilon \Delta \beta$ s.t. $B \alpha$ separates $C \alpha$ and C' $\alpha$ for each $\alpha \varepsilon \Delta \beta$ and ord $\{B \alpha, \alpha \in \Delta \beta\} \leq n-1$.

Then $U\{B \alpha, \alpha \varepsilon \Delta \beta\}=\{B \alpha, \alpha \varepsilon \Delta\}$ is a collection $\beta \varepsilon \chi$
of closed sets of $(X, \ell) \cdot s . t . ~ B \alpha$ separates $C a$ and $C^{\prime} \alpha \quad \forall \alpha \varepsilon \Delta$ and ord $\left\{B_{\alpha}, \alpha \varepsilon \Delta\right\} \leq n-1$. To see that ord $\{B \alpha, \alpha \varepsilon \Delta\} \leq n-1$, we note that if $B \alpha$ separates $C \alpha$ and $C^{\prime} \alpha$, then $B \alpha \in X-C^{\prime} \alpha \subset X \beta$ if $\alpha \varepsilon \Delta \beta ; \beta \varepsilon X$. So if $\beta \neq \beta^{\prime}, \beta, \beta^{\prime} \varepsilon \chi$, then for $\alpha \varepsilon \Delta \beta$ and $\lambda \varepsilon \Delta \beta^{\prime}$, $B \alpha \cap B \lambda=\Phi$ (because $\left.X \beta \cap X \beta^{\prime}=\Phi\right)$. This, together with the fact that ord $\{B \alpha, \alpha \varepsilon \Delta \beta\} \leq n-1$ implies that ord $\left\{B_{\alpha}, \alpha \varepsilon \Delta\right\} \leq n-1$.

Thus (ii) holds.
(ii) $=>$ (i).

This is obvious.

Theorem 4.9 (Egorov)
For a metric space $(X, \ell), \mu-\operatorname{dim}\left(X_{*} \ell\right) \leq n \quad i f f$
every Lebesque cover of ( $\mathrm{X}, \ell$ ) has an open refinement of order $\leq n$.

Proof: The proof is immediate.

From theorem 4.7, the following is now obvious:-

## Theorem 4.10

For any metric space $(X, \ell), d_{7}(X, \ell) \leq \mu-\operatorname{dim}(X, \ell)$
This justifies the claim in remark 1.1.

We now use the Lebesque cover characterizations derived so far to prove a weak sum theorem for $\mathrm{d}_{2}$, $\mathrm{d}_{3}, \mathrm{~d}_{6}, \mathrm{~d}_{7}$ and $\mu$-dim.

Defn 4.6
Let $\theta$ be an open cover of a topological space $X$. Then $\Theta$-dim(X) is the smallest integer n s.t. $\exists$ an open refinement of $\theta$ of order $\leq n . \quad \theta-\operatorname{dim}(X)=\infty$ if no such integer exists. If YcX, then $\theta$-dim $Y=$ $\theta \mid Y-d i m ~ Y ~ b y ~ d e f i n i t i o n . ~$

## Theorem 4.ll (Morita)

Let $X$ be a normal topological space, $\{\mathbb{U} \alpha, \alpha \varepsilon \triangle\}$ a 1.f. open collection and $\{F \alpha, \alpha \varepsilon \Delta\}$ a closed collection couer
s.t. $F \alpha \subset U \alpha \forall \alpha \varepsilon \triangle$. Let $\theta$ be any l.f. open ${ }_{\wedge}$ of $X$
s.t. $\quad \theta$-dim $(F \alpha) \leq n \quad \forall \alpha \varepsilon \Delta$. If $\operatorname{dim} F \alpha$ ノ $F \beta$
$\leq \mathrm{n}-1$ for $\alpha_{; t} \beta$, then $\dot{\theta}-\operatorname{dim} \cup_{\alpha \varepsilon \Delta} \mathrm{F} \alpha \leq \mathrm{n}$.
The proof of this theorem can be found in Morita.

We generalize theorem 4.11 to the following:-

Theorem 4.12 (Smith, 1970).
Let X be a normal topological space,
$\{U \alpha, \alpha \varepsilon \Delta\}$ a l.f. open collection and
\{F $\alpha, \alpha \varepsilon \Delta\}$ a closed collection s.t. $F_{\alpha} \subset U_{\alpha} \quad \forall \alpha \varepsilon \Delta$.
Let $\theta$ be any l.f. open cover of X s.t. $\Theta$-dim ( $\mathrm{F} \alpha$ )
$\leq \mathrm{n} \quad \forall \alpha \varepsilon \Delta$. If dim bdry ( $\mathrm{F} \alpha$ ) $) \mathrm{FB} \leq \mathrm{n}-1$ for $\alpha \neq \beta$,
then $\theta$-dim ${ }_{\alpha \varepsilon \Delta}^{()} F \alpha<\underline{n}$.

Proof: Let $\theta, \mathrm{U} \alpha, \mathrm{F}_{\alpha}, \alpha \varepsilon \triangle$ be as above.
Let $S(\Delta)$ be the collection of all finite nonempty subsets of $\triangle$. For each $A \in S(\triangle)$, let $H_{A}=$


Let $V_{A}=\bigcap_{\alpha \varepsilon_{A}} U \alpha$. Then $\Pi=\left\{H_{A}, A^{\varepsilon} S(\Delta)\right\}$ and $\nabla=\left\{V_{A}, A \varepsilon_{S}(\Delta)\right\}$ are locally finite, $\nabla$ is open, II is closed, and $H_{A} \subset V_{A} \forall A \varepsilon S(\Delta)$.

Claim (i) ${ }_{A \in S}(\Delta) H_{A}=\alpha{ }_{\varepsilon}^{\prime} \Delta \mathrm{F} \alpha$.
(ii) If $A, A^{\prime} \varepsilon S(\triangle) A \neq A^{\prime}$ then $H_{A} \cap H_{A}^{\prime} \subset$ bdry ( $F \alpha$ ) $\cap F \alpha^{\prime}$ for some $\alpha, \alpha^{s}$.

To see (i), suppose $x \in \underset{\alpha \varepsilon \Delta}{U} \mathrm{~F} \alpha$. Since $\{F \alpha, \alpha \varepsilon \Delta\}$ is l.f. $x$ is contained in only finitely many $F_{\alpha}$, so $\{\alpha \varepsilon \Delta: X \in F \alpha\}=A_{\circ} \varepsilon S(\Delta)$.

Then $\quad x \in H_{A_{0}}$. To see (ii), suppose A, $A^{\prime} \varepsilon S(\Delta)$ with
$A \neq A^{\prime}$. Either $A-A^{\prime} \neq \Phi$ or $A^{\prime}-A \neq \Phi$. W.L.G. assume
$A-A^{\prime} \neq \Phi$. Let $\alpha \varepsilon A-A^{\prime}$. Since $A^{\prime} \neq \Phi$, ヨB $\varepsilon A^{\prime}$.
Then $H_{A} \cap H_{A}^{\prime} \subset(F \alpha-i n t F \beta)^{\prime)} F \beta \in F \alpha \cap$ bdry $F \beta$. Since $\Pi$ is a closed collection, we have $\operatorname{dim} H_{A}^{\cap} I_{A}{ }^{\prime} \leq n-1$ if $A \neq A^{\prime}, A, A^{\prime} \varepsilon S(\triangle)$. Since IIrefines $\left\{\mathrm{F}_{\alpha}, \alpha \varepsilon \Delta\right\}$,
${ }^{-}-\operatorname{dim}\left(H_{A}\right) \leq n \forall A \in S(\triangle)$. We now apply theorem 4.11 to conclude that $\theta$ - dim $\underset{\alpha \in \Delta}{U} F \alpha=\theta$ - dim $\underset{A \varepsilon S(\Delta)}{U}$ $H_{A} \leq n$.

Theorem 4.13 (Smith, 1970)
Let $\left\{F, \alpha \varepsilon_{0} \mathbb{A}\right\}$ be a l.f. closed cover of a metric space
(X, e) s.t. if $\alpha \neq \beta$ then $\operatorname{dim}$ bdry $\left(F_{\alpha}\right) \cap F_{\beta} \leq n-1$.
If $d\left(F_{\alpha}\right) \leq n \forall \alpha \in O /$ where $d$ is $\mu$-dim, $d_{7}, d_{5}, d_{3}$ or $d_{2}$, then $d(X, e) \leq n$.

Proof: Assume $\mu-\operatorname{dim} F_{\alpha} \leq \mathrm{n} \operatorname{V}_{\alpha \in \mathcal{O}}$ (respectively $\mathrm{d}_{7}$, $d_{6}, d_{3}$ and $\left.d_{2}\right)$. Let $\mathcal{G}^{2}$ be a Lebesque cover of $(X, l)$ (respectively l.f. Lebesgue cover, countable Lebesgue cover, finite Lebesgue cover or a Lebesgue cover with $\mathrm{n}+2$ members). For each $\alpha \in \operatorname{cof}, \mathscr{L}^{2} \mid \mathrm{F}_{\alpha}$ is a Lebesgue cover of $\mathrm{F}_{\boldsymbol{\alpha}}$ (resp. l.f. Lebesgue cover, countable Lebesgue cover, finite Lebesgue cover or Lebesgue cover with $\mathrm{n}+2$ members). Since $\mu$-dim $F_{\alpha} \leq n$ (resp. $d_{7}\left(F_{\alpha}\right) \leq n, d_{6}$ $\left.\left(F_{\alpha}\right) \leq n, d_{3}\left(F_{\alpha}\right) \leq n, d_{2}\left(F_{\alpha}\right) \leq n\right) W_{\alpha}$ has an open (in $F_{\alpha}$ ) l.f. (in $F_{\alpha}$ ) refinement $\mathscr{U}_{\alpha}$ s.t. ord $\mathscr{U}_{\alpha} \leq n$. Since $F_{\alpha}$ is normal, $\mathscr{l}_{\alpha}$ has a closed l.f. (in $F_{\alpha}$ ) refinement $\xi_{\alpha}$ s.t. ord $\xi_{\alpha} \leq n . \xi_{\alpha}$ is also l.f. in $X$. Furthermore, since $\left\{\mathrm{F}_{\alpha}\right\}$ is l.f. and $\mathrm{E} \in \xi_{\alpha} \Rightarrow \mathrm{E} \subset \mathrm{F}_{\alpha}, \xi=\bigcup_{\alpha \in \alpha} \xi_{\alpha}$ is l.f. in $X$. Also $\xi$ refines $\underset{\alpha}{( }$. By lemma
1.2ヨan open l.f. refinement $\mathscr{V}=\left\{V_{E}, E \in \xi\right\}$ of $\mathcal{F}$ s.t. $E \subset V_{E}$ for each $E \in \xi$ and ord $\left\{V_{E}, E \in \xi \alpha\right\} \leq n$. Clearly $V$-dim $\mathrm{F}_{\alpha} \leq \mathrm{n} \forall \cos _{\boldsymbol{\circ}}$. By theorem 4.12, $\mathscr{V}$-dim $\mathrm{X} \leq \mathrm{n}$. So $\mathscr{V}$ and therefore $\mathcal{G}$, has an open refinement of order $\leq n$. Thus $\mu$-dim $(X, e) \leq n\left(\right.$ resp. $d_{7}(X, e) \leq n, d_{6}(X, e) \leq n$, $d_{3}(X, e) \leq n$ and $\left.d_{2}(X, p) \leq n\right)$.

## Remark

It might be speculated that the various metricdependent dimension functions satisfy other sum theorems e.g. the countable sum theorem (theorem 0.7), a
monotone sum theorem (i.e. if Fi, i $\varepsilon N$ is an increasing sequence of closed sets s.t. $X=\bigcup_{i=1} F i$ and $d(F i)$
$\leq n$ then $d(X) \leq n)$, or a finite sum theorem.
J.C. Nichols and J.C. Smith have shown (Nichols and Smith) that none of the metric-dependent dimensions functions discussed above satisfy any of the sum theorems mentioned. They construct a metric space (X,l) s.t. $X=A_{1} \cup A_{2}, A_{1}, A_{2}$ closed in $X$ with $\mu$-dim $\mathrm{A}_{1} \leq 1, \mu$-dim $\mathrm{A}_{2} \leq 1$ but $\mathrm{d}_{2}(\mathrm{X}, \ell) \geq 2$. This shows that none of the metric-dependent dimension functions satisfies the countable sum theorem or finite sum theorem. They also give an example of a metric $\operatorname{space}(X, \ell)$ s.t. $X=\underset{i \in N}{\cup} A i$, where each Ai is closed, AicAi+l, and $\mu$-dim $A i \leq l$ for each $i$ but $d_{2}(X, \ell)$ $\geq 2$. This shows that none of the metric dependent dimension functions satisfies the monotone sum theorem.

Much of the current research in dimension theory involves the dimension theory of uniform spaces. A uniform space is a generalization of a metric space. Of several possible definitions of a uniform space, we give only one.

## Defn

Let $X$ be a set. Let $\Delta$ denote the subset $\{(x, x)$, $x \in X\}$ of $X x X$. If $U, V$ are subsets of $X x X$, let $U$. $V$ denote the set

```
{(x,y)&XxX: for somez\varepsilon X, (x,z)\varepsilon V and (z,y)\varepsilon U }.
```

A diagonal uniformity on $X$ is a collection $\Gamma$ ( $X$ ) (or just $\Gamma$ ), of subsets of XxX, called surroundings, which satisfy:-
(a) $\mathrm{D} \varepsilon \Gamma \Rightarrow \triangle \subset \mathrm{D}$
(b) $\mathrm{D}_{1}, \mathrm{D}_{2} \varepsilon \Gamma \Rightarrow \mathrm{D}_{1} \cap \mathrm{D}_{2} \varepsilon \Gamma$
(c) $\dot{D} \varepsilon \Gamma \Rightarrow E_{0} E \subset D$ for some $E \varepsilon \Gamma$
(d) $D \in \Gamma \Rightarrow E^{-1} \subset D$ for some $E \varepsilon \Gamma \quad\left(E^{-1}\right.$ is the set $\{(y, x),(x, y) \in E\}$.
(e) $\mathrm{D} \varepsilon \Gamma \quad, \mathrm{D} \subset \mathrm{E} \Rightarrow \mathrm{E} \varepsilon \Gamma$

A uniform space ( $X, \Gamma$ ) is a set $X$ trgether with a diagonal uniformity $I$ on $X$. A diasonal uniformity on X gives rise to a topology on as follows. For $x \varepsilon X$ and $D \varepsilon \Gamma$, let $B(x, D)=\{y \varepsilon X:(x, y) \varepsilon D\}$

Then the collection $\{B(x, D), x \varepsilon X, D \varepsilon \Gamma\}$ is a base for a topology on $X$.

Any metric $\ell$ on $X$ generates a diagonal uniformity $\left\{D_{\varepsilon}, \varepsilon>0\right\}$ where $D \varepsilon=\{(x, y) \varepsilon X x Y: \ell(x, y)<\varepsilon\}$. We therefore see that a uniform space is a generalization of a metric space. The condition that $\ell(x, y)<\varepsilon$ in a metric space is replaced by the condition that $(x, y) \varepsilon D, D \varepsilon \Gamma$ in a uniform space. Therefore the notion of two subsets being a positive distance apart or distant is meaningful in a uniform space. We say two subsets $C, C^{\prime}$ of a uniform space ( $X, \Gamma$ ) are distant if for some $D \in \Gamma . C x C \cap D=\Phi$. A collection $\mathrm{C} \alpha, \mathrm{C}^{\prime} \alpha$ ) $\alpha \in \cup$ of pairs of subsets of ( $\mathrm{X}, \Gamma$ ) are uniformly distant if $\exists \mathrm{D} \varepsilon \Gamma$ s.t.
$C \alpha \mathrm{x}^{\prime} \alpha \cap \mathrm{D}=\Phi \forall \alpha \varepsilon U$. We see therefore that all the metric-depedent dimension functirons discussed above may be generalized to uniform spaces. For these generalizations, Soniat (Soniat) has obtained Lebesque - cover type characterizations for $\mu$-dim and $d_{3}$ while Smith. (Smith ) has obtained Lebesque-cover type characterizations for $d_{2}, d_{6}$, and $d_{7}$. These dimension functions defined on uniform spaces fail to satisfy the equality $d_{4}=$ dim or the inequality dim $\leq 2 d_{2}$ satisfied by metric-dependent dimension functions. Charalambous (Charalambous) has introduced dimension functions $\Gamma$-dim, $\Gamma$-Ind, $\Gamma-d_{1}, \Gamma-d_{2}, \Gamma-d_{3}$, and $\Gamma-d_{4}$ for a uniform space ( $X, \Gamma$ which satisfy $\Gamma-d_{1} \leq \Gamma-d_{3} \leq \Gamma-d_{4}=\Gamma-d^{-d m} \leq 2 \Gamma-d_{2}$ and $\Gamma-d_{1}=$ T-Ind and $I$-dim further satisfies the countable sum
theorem, a subset theorem, the Urysohn inequality and a product theorem. It agrees with dim on Lindelaf spaces and spaces with uniformity derivable from a metric.

There exist open problems in the theory of metric (uniformity) dependent dimension functions. Notably, is $d_{3}(X, \ell)=\mu$-dim $(X, \ell)$ for any (separable) metric $\operatorname{space}(X, \ell) ?$

More generally, which of the dimension functions $\mathrm{d}_{3}$, $d_{5}, d_{6}, d_{7}$ and $\mu$-dim are equal and under what conditions?

Which subset theorems are satisfied by $d_{6}$ and $d_{7}$ ? Do $d_{6}$ and $d_{7}$ satisfy the realization theorem? (see theorem 3.2).

The notion of dimension is quite fundamental and of great intrinsic interest. Apart from that, dimension theory is a subject that could intersect with other areas of mathematics. Already, a strong relationship has been found between dimension and measure for metric spaces. (Hureuicz and Wallman, Chapter VII).

## REFERENCES

Alexandroff, P. and Hopf, H. "Topologie I" Berlin 1935.

Brouwer "Uber den naturlichen Dimensionsbegriff" Journ. Math 142 (1913) 146--152.

Charalambous, M.G. "A new covering dimension function for uniform spaces" J. Lond. Math. Soc. (2) 11 (1975) 137-143.

Dowker, C.H. "Mapping theorems for non-compact spaces" Amer. J. Math. 69(1947) 200-242.

Egorov, V. I. "On the metric dimension of point sets". mat i3b. 48 (1959) 227-250.

Engelking., R. "Dimension theory" PW Polish Scientific Publishers - Warszawa 1978.

Goto, Tatsuo "On the realization of the metric dependent dimension function $\mathrm{d}_{2}$ ". Proc. Amer. Nath. Soc. 58(1976) 265-271.

Hodel, R.玉. "Note on metric-dependent dimension functions Fund. Nath. 61(1967) 83-89.

Hurewicz, W. and Wallman, H. "Dimension theory" Princeton Ūniversity Press. 1948.

Katëtov, in. "On the relation between the metric and topologi.cal dimension" Czech. Math. J. 8(1958) 163-166.

Kelly J.I. "General topology" Van Nostrand Reinhold Co. New York, 1955.

Lebesgue "Sur la non-applicabilité de deux domaines appartenant a des espaces de $n$ et $n+p$ dimensions". Math. Ann. 70(1911) 166-168.

Morita, K. "On the dimension of product spaces". Amer. J. Math 65(1953) 205-223.

Nagami, K. and Roberts, J.H. "Metric-dependent dimension functions" Proc. Amer. Math. Soc. 16(1965) 601-604.
$\qquad$ "A study of metric-dependent dimension functions
Trans. Amer. Math. Soc. $129(1967)$ 414-435.

Nagata, J. "Modern dimension theory" Interscience, New York, 1965.

Nichols, J.C. "Equivalent metrics giving different values to metric-dependent dimension functions". Proc. Amer. Math. Soc. 23(1969) 648-652.
$\qquad$ "The realization of dimension function $d_{2}$ ". Fund. Math. 77 (1973) 212-217.

Nichols, J.C. and Smith, J.C. "Examples concerning sum properties for metric-dependent dimension functions". Pacific J. Math. 38(1) (1971) 15l-159.

Poincaré, H. "Revue de metaphysique et de morale" P. 486.

Roberts, J.H. "Metric-dependent dimension function $\mathrm{d}_{2}$ and covering dimension". Duke Math J. 37 (1970) 467-472.

Roberts, J.H. and Slaughter, F.G. Jr. 'Me̊tric dimension and equivalent metrics". Fund. Math, 62(1968) 1-5.

Smith, J.C. Jr. "Characterizations of metricdependent dimension functions". Proc. Amer. Math. Soc. 19(6) (1968) 1264-1269.
$\qquad$ "Lebesgue characterizations of uniformitydimension functions" Proc. Amer. Math. Soc. $22(1)$ (1969) 164-169.
$\qquad$ "Other characterizations and weak sum theorems for metric-dependent dimension functions". Proc. Japan. Academy. 46(4) (1970) 364-369.

Sinith, J.C. and Nichols, J.C. "A remark on the equivalence of certain dimension functions".

Portugaliae Mathematicae 37 (1978) 45-51. Soniat, L. PhD dissertation, Duke University (unpublished) Wilkinson, J.B. "Covering dimension and metricdependent dimension functions" PhD dissertation Duke University, Durham, N.C. 1966.

